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Abstract. Pair-interaction atomistic energies may give rise, in the framework

of the passage from discrete systems to continuous variational problems, to

nonlinear energies with genuinely quasiconvex integrands. This phenomenon
takes place even for simple harmonic interactions as shown by an example by

Friesecke and Theil [19]. On the other hand, a rigorous derivation of linearly

elastic energies from energies with quasiconvex integrands can be obtained by
Γ-convergence following the method by Dal Maso, Negri and Percivale [14]. We

show that the derivation of linear theories by Γ-convergence can be obtained

directly from lattice interactions in the regime of small deformations. Our
proof relies on a lower bound by comparison with the continuous result, and

on a direct Taylor expansion for the upper bound. The computation is carried

over for a family of lattice energies comprising interactions on the triangular
lattice in dimension two.

1. Introduction. In recent years variational tools for the mathematical analysis
of energies defined on discrete lattices have been developed, whose main goal is the
description of macroscopical properties of systems whose microscopical behaviour
is governed, from an ‘atomistic’ standpoint, by interactions between points of the
lattice. This type of problems have been addressed both following the methods
of Γ-convergence with in mind the convergence of discrete minimum problems to
their continuous counterparts (for a partial review see the recent review paper [6];
see also [9, 5]) and from a more ‘pointwise’ perspective that, even though not
guaranteeing the convergence of minimizers, allows for some more flexibility in the
energies treated and is an important step in the actual computation of the Γ-limits
and in the applications to problems in Mathematical Physics (see the review paper
by Le Bris and Lions [20]) and Computational Material Science (see Blanc, Le Bris
and Lions [3]).
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The simplest type of lattice interactions treated by these methods are ‘central’
or pair interactions; that is, those in which the energy between two points of the
lattice depends on the difference of the values of some parameter u = {ui} indexed
by the lattice sites (to whom we can associate the meaning of atomic position, spin,
displacement, etc.) at the two points i and j; i.e., it has the form

E(u) =
∑
i,j

fi,j(ui − uj), (1)

where the sum runs over all points in a portion of some lattice contained in some
space region. In order to understand the overall properties of such an energy some
change of variables must be performed, scaling the original lattice by a small factor
ε, and correspondingly also scaling the energy (the latter is in general a delicate
issue and the precise scaling depends on the growth of the energy densities fi,j and
their decay properties as |i − j| → +∞). In this way, after identifying each such
scaled functions with piecewise-constant interpolations on finer and finer meshes,
the resulting energies (now depending on ε) are identified with a family of functions
defined on a common Lebesgue space, and can therefore undergo a Γ-convergence
process. Since the terms ui − uj can be interpreted as difference quotients that,
after scaling, approximate some gradient Du as ε→ 0, the limit is actually defined
on some Sobolev space. Under the suitable growth and decay assumptions hinted
at above, a general compactness result by Alicandro and Cicalese [1] ensures that
the limit of such energies is indeed an integral functional of the usual form

F (u) =
∫

Ω

W (x,Du) dx (2)

defined on some Sobolev space. However the computation of W is in general a
complex task involving, besides macroscopic homogenization and relaxation due to
mesoscopic oscillations, also oscillations at the length scale of the lattice. Such mi-
croscopic oscillations can be interpreted as a weak form, or even a failure, of the
Cauchy-Born rule as stated by Ericksen [16], which holds when to a macroscopic de-
formation there corresponds a regular microscopic deformation (see, e.g., Friesecke
and Theil [19], and also recent work by Braides and Cicalese [7], and E and Ming
[15]). An important subclass of such pair-interaction energies (1) are translation-
invariant ones; that is, such that fi,j = fi−j , and those depending only on nearest
neighbours; i.e., such that fi,j = 0 except when |i−j| is equal to the minimal lattice
spacing. Even in such a simplified situation following examples in [1] the resulting
integrand W = W (Du) may be a complex genuinely quasiconvex function.

The simple example that will be the starting point of the analysis in this paper
is that of a triangular lattice in R2 where the nodes of the lattice can be interpreted
as material points linked by harmonic springs; i.e., our parameters ui can be inter-
preted as the position of the points occupying the node i in the reference lattice,
and the overall energy (before scaling) depending on u = {ui} is simply

E(u) =
∑
i,j

(
|ui − uj | − 1)2, (3)

where the sum is now taken over all nearest-neighbours in a triangular lattice (see
Fig. 1). An additional natural constraint, in the spirit of the work of Friesecke and
Theil [19] is to assume that the admissible discrete functions u are ‘microscopically
orientation-preserving’, which in this case can be simply expressed by requiring
that the corresponding piecewise-affine interpolations have gradients with positive
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Figure 1. A mass-springs system in a two-dimensional triangular lattice

determinant. After normalizing the reference lattice so that |i − j| = 1 on nearest
neighbours, in this case an absolute minimizer of this energy is (the discretization of)
the identity, and then such are all (discretization of) affine functions with gradients
in SO(2); those are all absolute minimizers up to translations. As a result, the set
of minimizers of the corresponding continuous energy density W is precisely SO(2),
and therefore W is a (non convex) quasiconvex function as in the nonlinear hyper-
elastic theories of finite elasticity (see [21, 2]). Note that the positive-determinant
constraint cannot be included in the energies of the general compactness result by
Alicandro and Cicalese [1]; however this example can be treated by the same meth-
ods as in [19]. There, an energy in a two-dimensional square mesh with interactions
between nearest and diagonal neighbours is taken into account, with the same qua-
dratic energy densities (3) as above and a determinant constraint. For this energy
an accurate analysis is performed of the elastic energy per unit volume as the sys-
tem size gets large as a function of a macroscopic affine deformation prescribed on
the boundary, whose asymptotic behaviour gives W . As remarked by Friesecke and
Theil, the form of the limit is due to the geometrically non-linear nature of the
energy E, despite the fact that the integrands are quadratic functions. Note that
in dimension two the choice of the triangular lattice is particularly natural since
it can be shown to be the (local) equilibrium state for some classes of interatomic
potentials (for a recent discussion on the subject we refer to the paper by Theil
[22]).

In the variational framework outlined above, in this paper we describe how the
same simple atomistic model as above giving a nonlinear hyperelastic limit energy
can lead under a different scaling to the standard linearized (two-dimensional) the-
ory of elasticity. Within the theory of Continuum Mechanics, a classical mathemat-
ical derivation of the linearized model can be obtained by computing the Fréchet
derivative (in suitable Sobolev spaces) of the non-linear operator which enters the
standard differential displacement-traction problem (see, e.g., Ciarlet [12]). A dif-
ferent path, more adapted to a variational setting, has been recently followed by
Dal Maso, Negri and Percivale [14] looking at the minimum problems for the en-
ergies rather than at the differential equation: let W be the stored energy density
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(as a function of the deformation gradient) of a homogeneous, isotropic, hyper-
elastic material; if we assume that the reference configuration is a natural state
(i.e., stress-free), then a perturbation δu (with fixed u) of the identity deformation
yields a function δ 7→ W (I + δ∇u) whose asymptotic expansion as δ → 0 has a
quadratic principal part. Clearly the functionals W and W/δ2 are equivalent, as
far as minimum problems of the total energy are concerned. A rigorous analysis by
Γ-convergence of the rescaled energies δ−2

∫
W (I + δ∇u) dx as δ → 0 is performed

in [14], ensuring the convergence for the related minimum through compactness
properties. We stress that the result is highly non-trivial, requiring in particular,
for a given deformation, a fine estimate of the global deviation from being a rota-
tion, in terms of the local deviation (see the geometric rigidity result of Friesecke,
James and Müller [17, 18]). In the limit the classical linearized theory is recovered.

Formally linking the two approaches above we may therefore argue that we may
obtain some energies of linearized elasticity directly starting from energies of the
form (before scaling)

Eδ(v) = E(I + δv) =
∑
i,j

(
|(i− j) + δ(vi − vj)| − 1)2. (4)

Note however that in principle such a derivation is only formal since the result in [19]
is not a complete Γ-limit, so that we have to combine the asymptotic expansion of
the energy around the equilibrium position with the large-scale analysis of discrete
two-dimensional lattice energies. In this way we directly derive a linear elastic
energy from the discrete model, combining the classical approach of Cauchy with
the modern notation of Γ-convergence. We explicitly consider nearest-neighbour
interactions on the triangular lattice. Our analysis is also carried over to more
general lattices and higher dimensions. It however relies on the validity of the
Cauchy-Born rule for minimizers, which is not always the case even for simple
square lattices with next-to-nearest interactions, as shown in [19]. In the same
way our hypotheses rule out the possibility of microscopic oscillations due to a
homogenization process as described by Braides and Francfort [8], or to a random
choice of the elastic constants of the harmonic springs in the spirit of the work by
Braides and Piatnitski [11], or to stochastic lattices as those considered by Blanc,
Le Bris and Lions [4], which may be interesting and non trivial extensions of our
result. Moreover, as a technical issue, it must be mentioned that our method also
relies on the possibility of regrouping the interactions so that to each such group
there corresponds a n-simplex in Rn (which trivially holds for the triangular lattice,
upon ‘splitting’ each interaction in two). This limitation of our method prevents
us to treat all general lattices in Rn, and we hope it will be overcome in future
work. Finally, we mention that our results, in analogy with the one-dimensional
renormalization-group analysis by Braides, Lew and Ortiz [10], suggests that some
of the scalings that we consider but with Lennard-Jones potentials in place of the
harmonic interactions should give in the limit some Griffith-type fracture energy,
with the bulk part obtained as in the harmonic case, while the determination of the
fracture energy density seems an interesting and difficult problem.

2. Discrete elastic energies. Perturbation of an equilibrium position. In
this section we first introduce a two-dimensional model that can be easily pictured
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as in Fig. 1, and then extend the notation of this example to a more general n-
dimenional framework.

A two-dimensional model.

Let η1 = (1, 0) and η2 = (cos(π/3), sin(π/3)), and L = Z[η1, η2] be the lattice on Z
generated by η1, η2. For any ε > 0 we set Lε = εL. Fix a smooth bounded open
subset Ω of R2; we interpret Ωε := Ω ∩ Lε as a sample of a two-dimensional trian-
gular lattice of particles interacting via interatomic potentials; these are assumed
to bind pairs of particles in positions x and x + εξ, with x ∈ Lε and ξ varying in
the set P = {eikπ/3 : k = 0, . . . , 5}, where we identify R2 and C.

We consider the simple case where the particles have equal mass and are linked
by harmonic springs (see Fig. 1). If εa and K are the equilibrium length and elastic
constant, respectively, of the spring between x and x+εξ, the energy corresponding
to a deformation ϕ is K

(
|ϕ(x+ εξ)− ϕ(x)| − εa

)2
/2; in terms of the displacement

u = ϕ− id, this can be expressed as:

1
2
Kε2

(∣∣∣ξ +
u(x+ εξ)− u(x)

ε

∣∣∣− a)2

.

In order to express the total energy it is convenient to introduce the following
notation: for ε > 0 if B is a bounded subset of R2 then we define the corresponding
set of lattice points

B(ε) = {x ∈ Lε : there exists y ∈ B ∩ Lε such that x ∈ y + εP}.
Note that we have x + εξ ∈ B(ε) for all x ∈ B ∩ Lε and ξ ∈ P . Given a function
u : B(ε)→ R2 and x ∈ B ∩ Lε we set:

Dξ
εu(x) =

u(x+ εξ)− u(x)
ε

(5)

and
Dεu(x) = {Dξ

εu(x) : ξ ∈ P} . (6)
Thus, if we assume the elastic constants and the equilibrium lengths independent of
x (as it is rather natural in such a periodic setting) we have the following discrete
energy (where n = 2):

Eε(u,B) =
∑

x∈Lε∩B
εnφ(Dεu(x)) , (7)

with (Kξ and aξ are fixed positive constants)

φ(Dεu(x)) =
∑
ξ∈P

1
4
Kξ

(
|ξ +Dξ

εu(x)| − aξ
)2

, (8)

Note the additional factor 1/2, due to the fact that the same contribution is shared
both by x and x+ εξ.

The factor εn will also appear in the n-dimensional version of the energy, since
a suitable scaling is needed to get a non-trivial Γ-limit.

Remark 1. With in mind to perform an asymptotic analysis around an equilibrium
position, we point out that the assumption Kξ = 1 and aξ = 1 for every ξ implies
that the reference configuration (i.e., the null displacement) is stress-free, in the
sense that the energy density φ is stationary with respect to any affine perturbation.
This can be easily checked directly (see, however, (10)). Note that, in this case,
Eε(0, B) = 0 for any B.
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An n-dimensional model.

The argument we will follow in the proof of the asymptotic analysis referred to in the
previous remark relies on a piecewise-affine extension of the discrete displacements
u on each triangle, in such a way to recast the problem in an integral form. A
straightforward n-dimensional generalization for which the same argument could
work may be obtained by a suitable triangulation in n-simplices. Clearly, natural
models such as the body-centered cubic or the hexagonal closed-packed crystal
structure do not fall in this framework, and would require a different strategy.

Let T be any given triangulation of Rn by n-simplices. Let L be the set of nodes
of T , and

Tε := εT = {εT : T ∈ T }, Lε := εL.

We say that two nodes x, y ∈ Lε are contiguous if there exists an element T ∈ Tε
which has both x and y as vertices. Clearly the set

P (x) := {ξ ∈ Rn : x and x+ εξ are contiguous}

is independent of ε.
On the line of the two-dimensional case, we would like to assume a harmonic

spring between each pair of contiguous nodes; in order to have some control on
the different kind of possible interactions, we restrict to the case of a structured
triangulation T , assuming that

P (x) is independent of x. (A)

Let us denote such a set by P . Clearly, the two-dimensional model above satisfies
this condition. In a three-dimensional setting we can consider, for instance, the
so-called Kuhn triangulation, whose set of nodes is simply εZ3, and each cube is
suitably decomposed in six tetrahedral elements (see Fig. 2). Here P = ±(P1∪P2∪
P3), where

P1 = {ei : i = 1, 2, 3}, P2 = {ei + ej : 1 ≤ i < j ≤ 3},
P3 = {e1 + e2 + e3}. (9)

Condition (A) leads to consider, for a given displacement u : B(ε)→ Rn for a set
B ⊆ Rn, the same energy introduced in (7) and (8), where Dξ

εu(x) and Dεu(x) are
defined as in (5) and (6).

Remark 2. In order to pass to a continuum model, it is convenient to identify
functions on Lε with their extensions by affine interpolation on the elements of Tε.
As noted above, this is made possible by the simplicial form of the finite elements
considered.

From the mechanical point of view it is natural to confine the attention to a class
Aε of displacements satisfying an orientation-preserving condition. We say that a
displacement u : B(ε) → Rn is admissible, or that u ∈ Aε, if for any element T
in Tε (whose vertices are in B(ε)) the determinant of the gradient (of the affine
extension) of u is positive on T .

In the sequel we will deal with prescribed boundary values, where for an open
set B the discrete boundary is given by

∂B(ε) = {x ∈ B(ε) : x+ εP 6⊆ B}.

Let Ω ⊆ Rn and M ∈ Mn×n (n × n real matrix) be given; we denote by AMε the
set of the functions in Aε which take the value Mx on the boundary of Ω, in the
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Figure 2. Kuhn decomposition of a cube in tetrahedral elements

sense that:
u(y) = My if y ∈ ∂Ω(ε);

moreover, we set
◦
Ωε= {x ∈ Ωε : x+ εP ⊆ Ωε} .

Perturbation of an equilibrium position.
Following the line sketched in the Introduction, we now consider perturbations of an
equilibrium position, say the reference configuration (i.e., the null displacement).
More precisely, we require that for every A ∈Mn×n with positive determinant the
function δ 7→ φ(δA) is stationary in δ = 0, where, with a slight abuse of notation
with respect to (8), φ is defined, for every M ∈Mn×n, by:

φ(M) =
∑
ξ∈P

1
4
Kξ

(
|ξ +Mξ| − aξ

)2

.

This condition can be equivalently stated as the stationarity of

δ 7→ Eε(δuA, B) =
∑

x∈B∩Lε

φε(δA)

in δ = 0 for any B, where uA denotes the affine map x 7→ Ax.
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The equilibrium condition amounts to:∑
ξ∈P

Kξ

(
1− aξ
|ξ|

)
ξTAξ = 0 , for every A ∈Mn×n with detA > 0. (10)

In the two-dimensional model, as mentioned in Remark 1, under the assumption
of the independence of Kξ and aξ on ξ, condition (10) amounts to requiring that the
equilibrium length has value 1. In particular, the equilibrium condition is trivially
satisfied if aξ = |ξ| for every ξ ∈ P . In such a case φ(0) = 0.

Let us now consider the three-dimensional model referred to in (9); it is a rather
natural assumption that the bonds in P1 (as well as those in P2) share the same
elastic constants, say K1 and a1 (K2 and a2 respectively); likewise, we denote the
elastic constants for e1 + e2 + e3 (P3) by K3 and a3.

Then the equilibrium condition (10) for the reference configuration adds up to
requiring that for every n× n matrix A = (aij) with detA > 0:

K1(1− a1)
∑
ξ∈P1

ξTAξ +K2(1− a2/
√

2)
∑
ξ∈P2

ξTAξ

+K3(1− a3/
√

3)ξT3 Aξ3 = 0,

where ξ3 = e1 + e2 + e3. The explicit computation gives:[
K1(1− a1) + 2K2

(
1− a2/

√
2
)

+K3

(
1− a3/

√
3
)]

trA

+
[
K2

(
1− a2/

√
2
)

+K3

(
1− a3/

√
3
)]∑

i 6=j

aij = 0.

By the arbitrariness of A we conclude that:{
K1(1− a1) + 2K2

(
1− a2/

√
2
)

+K3

(
1− a3/

√
3
)

= 0
K2

(
1− a2/

√
2
)

+K3

(
1− a3/

√
3
)

= 0 .

An obvious solution is a1 = 1, a2 =
√

2, a3 =
√

3.

Let us now examine the second-order term in the expansion of δ 7→ φ(δA) with
respect to δ → 0+. An elementary computation shows that:

d2

dδ2
φ(δA)

∣∣∣
δ=0

=
1
2

∑
ξ∈P

Kξ

[(
1− aξ
|ξ|

)
|Aξ|2 +

aξ
|ξ|3

(ξTAξ)2

]
;

applying the equilibrium condition (10) with respect to ATA, the part corresponding
to the first term in the square brackets vanishes, and we get:

d2

dδ2
φ(δA)

∣∣∣
δ=0

=
1
2

∑
ξ∈P

Kξ
aξ
|ξ|3

(ξTAξ)2 .

We conclude that:
φ(δA) = φ(0) +

1
2
γ(A)δ2 + σA(δ) , (11)

where σA(δ) = O(δ3) and

γ(A) =
1
2

∑
ξ∈P

Kξ
aξ
|ξ|3

(ξTAξ)2 . (12)

It is immediately seen that δ 7→ δ−3σA(δ) is bounded in a neighbourhood of 0,
uniformly with respect to A, when A varies in a bounded subset of Mn×n.



LINEAR ELASTICITY FROM ATOMISTIC INTERACTIONS 9

Remark 3. For every ξ ∈ P let ϕξ(A) be the single interaction corresponding to
the direction ξ for an affine deformation with gradient F , i.e.

ϕξ(F ) =
1
2
Kξ(|Fξ| − aξ)2.

We point out that under the particular stationarity assumption that aξ = |ξ| for
every ξ ∈ P , we have the following expansion:

ϕξ(I + δA) =
1
2
Kξ

|ξ|2
(ξTAξ)2δ2 + σA(δ) ,

The Taylor expansion of φ allows the following expression for the energy Eε:

1
δ2

(
Eε(δuA, B)− Eε(0, B)

)
=

1
2
C|B|γ(A) + oδ(1) , (13)

where

C = lim
ε→0+

εn#(B ∩ Lε)
|B|

is independent of B and can be explicitly computed from the geometry of T (see
the next section). Clearly this estimate holds also after additions of constants to
uA. In the next section we will see that a corresponding asymptotic analysis holds
in terms of Γ-convergence.

Remark 4. Here we make some comments on the limit density γ. First, we note

that, since ξTAξ = ξT
A+AT

2
ξ, the function γ(A) turns out to be a quadratic form

in the symmetric part (A+AT )/2 of A. Clearly, we can rewrite γ(A) as:

γ(A) =
n∑

i,j,h,k=1

mijhkaijahk,

where M = (mijhk) is the fourth-order symmetric tensor defined by:

M =
∑
ξ∈P

Kξaξ
2|ξ|3

ξ ⊗ ξ ⊗ ξ ⊗ ξ.

This defines a linear symmetric operator on the space Mn×n
sym of n × n symmetric

matrices by setting:

(MA)ij =
n∑

h,k=1

mijhkahk.

In the three-dimensional setting of the Kuhn decomposition a direct computation
yields the existence of two simple eigenvalues λ1, λ2 satisfying the equation:

λ2 − [K1 + 3(K2 +K3)]λ+K1K2 + 2K1K3 +K2K3 = 0,

and two double eigenvalues λ3, λ4 which solve the equation:

2λ2 − (2K1 + 3K2)λ+ 2K1K2 = 0.

In case K1 = K2 = K3 =: K we get the values:

λ1,2 = K(7±
√

33)/2, λ3 = K/2, λ4 = 2K.
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For the two-dimensional model introduced in the previous section the result
appears more meaningful; by a direct computation we obtain that for a symmetric
matrix A:

γ(A) = µ|AD|2 +
κ

2

∣∣∣1
2

(trA)I
∣∣∣2 , with µ = 3/4 and κ = 3 ,

where AD = A− 1
2 (trA)I denotes the deviatoric part of A. This energy corresponds

to a material with a Poisson ratio ν = 5/13 ∼ 0.38.

Further models.

The mechanical setting we deal with in the two-dimensional case appears as the
simplest case for the asymptotic analysis near an equilibrium position as the mesh
size tends to zero. Other relevant choices for the interatomic potentials and the
lattice can be made. If L = Z[η1, η2] denotes the lattice generated on Z by two
linearly independent unit vectors η1, η2, and, as above, Lε = εL, we can assume
that the atomic bonds relate particles in positions x ∈ Lε and x+εξ ∈ Lε whenever
ξ varies in a fixed finite subset P ⊆ L, with −P = P . For instance, in this frame-
work we find the case of a square lattice generated by e1 and e2, with interactions
between nearest and next-to-nearest (i.e., diagonally connected) neighbours: here
P = ±{e1, e2, e1 ± e2}.

In this setting it is meaningful to consider different elasticity parameters K1, a1

and K2, a2 for nearest and next-to-nearest (diagonal) interactions respectively. The
energy functional is the same as in (7), with

φ(Dεu(x)) =
1
4

∑
ξ∈±{e1,e2}

K1

(
|ξ +Dξ

εu(x)| − a1

)2
+

1
4

∑
ξ∈±{e1±e2}

K2

(
|ξ +Dξ

εu(x)| − a2

)2
.

The equilibrium condition amounts to K1(1 − a1)trA + 2K2(1 − a2/
√

2)trA = 0
for every A; i.e., K1a1 +

√
2K2a2 = K1 + 2K2. This is nothing but the condition

that, in the class of cubic deformations ϕ(x) = rx (r ≥ 0), the value r = 1 is the
minimum of the unscaled cell energy:

2
[
K1(r − a1)2 +K2(

√
2r − a2)2

]
.

Moreover, the expansion in (13) holds with

γ(A) =
1
2
K1a1

∑
ξ∈±{e1,e2}

(ξTAξ)2 +
1
2
K2a2

∑
ξ∈±{e1±e2}

(ξTAξ)2.

A direct computation yields, for every symmetric matrix A = (aij):

γ(A) = K1a1(a2
11 + a2

22) +K2a2

[
(trA)2 + 4a2

12

]
.

Additional analyses can be found in the paper by Friesecke and Theil [19].
We may generalize the computations above to more complex lattices. In the

three-dimensional case we may for instance examine interactions in the body-centered
cubic lattice, that may be parameterized as Z3 ∪

(
Z3 + ( 1

2 ,
1
2 ,

1
2 )
)
, given by

P = ±
{
e1, e2, e3,

1
2

(e1 + e2 + e3),
1
2

(e1 − e2 + e3),
1
2

(e1 + e2 − e3),
1
2

(e1 − e2 − e3)
}
.
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Under the assumptions that the interactions in the directions ±ei share the same
constants K1, a1 and those in the remaining directions the constants K2, a2 we have

γ(A) = K1a1

3∑
i=1

a2
ii +

2
3
√

3
K2a2

[
(trA)2 + 4

∑
i<j

a2
i,j

]
,

with the equilibrium condition (10).

3. Asymptotic analysis in terms of Γ-convergence. For the sake of simplicity
we restrict to the case where the triangulation Tε satisfies, in addition to condition
(A) above, the following assumption:

Tε consists of simplices of the same volume. (B)

Clearly, the models considered in the previous sections when n = 2 or n = 3 (see
Figures 1 and 2) fall within this setting. If we denote the volume of a single element
in T1 = T by τ , then

τ =
√

3/4 (n = 2); τ = 1/6 (n = 3).

In view of the structure of the triangulation we can select a finite number of
elements in T1, say T1, T2, . . . , Tl, in such a way that each other simplex in T1

coincides, up to a translation, with one of them. For instance, in the case of Fig. 2
we can choose the six tetrahedra which decompose the unit cube. If a simplex
T ∈ Tε coincides, up to a translation, with εTi for some i, we will write T ∼ Ti.
The assumption on T1 implies that there exist n indipendent directions along which
χi is periodic; let Y be the minimal periodicity cell. Then the constant C in (13)
is given by C = 1/|Y |.

In the sequel we will require that aξ = |ξ| for every ξ ∈ P : this is a strong form
of stationarity of the null displacement and implies (10). Moreover, it turns out
that φ(0) = 0.

Let Ω be a fixed bounded open subset of Rn with Lipschitz boundary. For any
ε, δ > 0, u ∈ AMε , and B ⊆ Ω, accordingly to (13) we define

Gε,δ(u,B) =
1
δ2
Eε(δu,B) . (14)

Let us now state the two main results, which will be proved below.

Theorem 3.1 (compactness). Let (εj) and (δj) be positive infinitesimal sequences,
and for every j ∈ N let uj be a function in AMεj

. Let the triangulations Tεj
satisfy

conditions (A) and (B). Assume that aξ = |ξ| for every ξ ∈ P .
If
(
Gεj ,δj

(uj ,Ω)
)

is bounded, then (uj), extended to piecewise-affine functions as
in Remark 2, is bounded in H1(Ω; Rn).

It is now convenient to extend the definition of Gε,δ with the value +∞ on
H1(Ω; Rn) \ AMε . In the framework of Γ-convergence (see for instance [5, 6] and
[13] for the general theory), the previous theorem implies that the functions in the
domain of the Γ-limit of any sequence (Gεj ,δj

), with respect to the L1-convergence
or equivalently the weak H1-convergence, belong to H1(Ω; Rn). Moreover they also
have trace Mx on ∂Ω since the elements of AMε coincide with that affine function
in a neighbourhood of ∂Ω.

For every u ∈ H1(Ω; Rn) let us set

G(u,Ω) =
1

2|Y |

∫
Ω

γ(∇u) dx , (15)
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where γ is given by (12). We point out that if n = 2 and we consider the triangular
lattice in Fig. 1, then k = 6 and the explicit form of γ previously computed yields

G(u,Ω) =
√

3
4

∫
Ω

(
|E(u)D|2 +

1
2

(div u)2
)
dx

=
√

3
4

∫
Ω

(
|E(u)|2 − 1

2
(div u)2

)
dx , (16)

where E(u) = 1
2 (∇u + ∇uT ). A similar computation is easily performed for the

Kuhn triangulation.

Theorem 3.2 (Γ-convergence). Let (εj) and (δj) be positive infinitesimal sequences
and let the triangulations Tεj satisfy conditions (A) and (B). Assume that aξ = |ξ|
for every ξ ∈ P . Then the sequence (Gεj ,δj

) has the functional G defined in (15) as
Γ-limit with respect to the L1-convergence or equivalently the weak convergence in
H1(Ω; Rn).

Remark 5. As a consequence of the equivalence of the L1-convergence and the weak
H1-convergence in the computation of the Γ-limit, we remark that the same result
holds if we consider the functions u extended as piecewise-constant functions, since
the difference between such piecewise-constant and piecewise-affine interpolations
tends to zero in L1 in the hypotheses of Theorem 3.1.

We now prove Theorems 3.1 and 3.2.

Reduction to a continuum setting: compactness and lower bound.

The proof of Theorem 3.1 will be obtained by estimating from below Gε,δ(u,Ω) by
suitable integral energies of the form δ−2

∫
W0(I + δ∇u) dx, which are coercive in

H1 by the results in [14].

If ξ ∈ P and T ∈ Tε we will write ξ ‖ ∂T if there exists an edge of T which has
the same direction as ξ. Define:

P (i) = {ξ ∈ P : ξ ‖ ∂Ti} (i = 1, . . . , l).

Then P = ∪iP (i). Note that the sets P (i) are not pairwise disjoint; if ξ ∈ P we
denote by m(ξ) the number of T ∈ {T1, . . . , Tl} such that ξ ‖ ∂T .

Fix ε > 0. For any u ∈ AMε (which we consider extended by affine interpolation
on the elements of Tε) we can estimate the discrete energy as follows:

Eε(u,Ω) ≥
l∑
i=1

∑
T∈
◦
T ε

T∼Ti

∑
ξ‖∂Ti

1
m(ξ)

ϕξ
(
I + (∇u)

∣∣∣
T

)

where
◦
T ε stands for the subfamily of the triangles in Tε whose vertices are in

◦
Ωε,

and ϕξ is defined in Remark 3.
Let us now introduce the following functions Wi : Mn×n → R for i = 1, . . . , l

Wi(F ) =
∑
ξ‖∂Ti

1
m(ξ)

ϕξ(F );

and set
W0 = min

i=1,...,l
Wi.



LINEAR ELASTICITY FROM ATOMISTIC INTERACTIONS 13

Then

Eε(u,Ω) ≥
l∑
i=1

∑
T∈
◦
T ε

T∼Ti

Wi

(
I + (∇u)

∣∣∣
T

)
=

l∑
i=1

∑
T∈
◦
T ε

T∼Ti

1
τ

∫
T

Wi(I +∇u) dx, (17)

and also

Eε(u,Ω) ≥
l∑
i=1

∑
T∈
◦
T ε

T∼Ti

1
τ

∫
T

W0(I +∇u) dx =
1
τ

∫
S ◦
T ε

W0(I +∇u) dx.

Let now (εj) and (δj) be positive infinitesimal sequences, and for every j ∈ N let
uj be a function in AMεj

such that
(
Gεj ,δj

(uj ,Ω)
)

is bounded. By the definition of
W0, and the previous estimate we can easily get

Gεj ,δj (u,Ω) ≥ 1
δ2
j

(∫
Ω

W0(I + δ∇uj) dx− εjcW0(I + δjM)
)

≥ 1
δ2
j

∫
Ω

W0(I + δ∇uj) dx− εjc(1 + |M |)2 ,

with c independent of j. A simple check guarantees that W0 vanishes exactly on
SO(n) and satisfies the smoothness and growth assumptions sufficient to apply the
results of [14] to W . In particular, we obtain the boundedness in H1(Ω; Rn) of the
sequence (uj) (see [14], Prop. 2.3); hence we immediately get Theorem 3.1.

The proof of the lower bound for the Γ-limit in Theorem 3.2 is obtained by a more
careful application of the previous argument and estimating from below Gε,δ(u,Ω)
by suitable integral energies of the form δ−2

∫
W (x, I + δ∇u) dx, whose asymptotic

behaviour can be deduced from the results in [14].
For any i = 1, . . . , l let χi be the characteristic function of the union of the

elements T ∈ T1 with T ∼ Ti. Define W : Ω×Mn×n → R as follows

W (x, F ) =
l∑
i=1

χi(x)Wi(F ).

Then estimate (17) yields:

Eεj
(δjuj ,Ω) ≥ 1

τ

∫
S ◦
T ε

W
( x
εj
, I + δj∇uj

)
dx. (18)

We also have: ∫
Ω\

S ◦
T ε

W
( x
εj
, I + δj∇uj

)
dx ≤ cε

l∑
i=1

Wi(I + δjM) (19)

for a suitable c > 0.
It is now convenient to express Wi in terms of the Green-St.Venant tensor E =

1
2 (FTF − I), as in [14]. Thus Wi(F ) can be written as

Vi(E) =
∑
ξ‖∂Ti

1
2m(ξ)

Kξ

(√
|ξ|2 + 2ξTEξ − aξ

)2

.

With this notation we have:

Wi(I + δj∇uj) = Vi(δjE(uj) + δ2
j∇uTj ∇uj).
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Let k ∈ N be fixed. By Lemma 4.2 in [14] there exist an increasing sequence
(V k,ji )j∈N of convex functions on Mn×n

sym and a positive number µki such that

Vi(δjE)/δ2
j ≥ V k,ji (E)

V k,ji (E) =
1
2

(
1− 1

k

)
∂2
EVi(0)[E,E] if

(
∂2
EVi(0)[E,E]

)1/2 ≤ µki /δj .
Let Ṽ k,ji be the Yosida regularization of V k,ji with parameter δ−1/2

j , i.e.

Ṽ k,ji (E) = sup
{
V k,ji (A) + δ

−1/2
j |E −A| : A ∈Mn×n

sym

}
.

Then Ṽ k,ji has δ−1/2
j as a Lipschitz constant and for every E

lim
j→∞

Ṽ k,ji (E) =
1
2

(
1− 1

k

)
∂2
EVi(0)[E,E].

By (18) and (19) and the expansion in Remark 3, for all j, k ∈ N we have:

Gεj ,δj
(uj ,Ω) =

1
δ2
j

Eεj
(uj ,Ω)

≥ 1
τ

∫
Ω

Ṽ k,j
( x
εj
, E(uj) +

1
2
δj∇uTj ∇uj

)
dx− cεj

where for every E ∈Mn×n
sym we have set

Ṽ k,j(x,E) =
l∑
i=1

χi(x)Ṽ k,ji (E).

Since j 7→ V k,ji (x,E) and j 7→ Ṽ k,j(x,E) are increasing, for every j ∈ N with j ≥ k
we have:

Gεj ,δj (uj ,Ω) ≥ 1
τ

∫
Ω

Ṽ k,k
( x
εj
, E(uj) +

1
2
δj∇uTj ∇uj

)
dx− cεj .

From the Lipschitz property of Ṽ k,k we deduce that

Ṽ k,k
( x
εj
, E(uj) +

1
2
δj∇uTj ∇uj

)
≥ Ṽ k,k

( x
εj
, E(uj)

)
− c

δ
1/2
j

δj |∇uTj ∇uj |,

for a suitable c > 0. Since (uj) is bounded in H1(Ω; Rn), we get

lim inf
j→∞

Gεj ,δj
(uj ,Ω) ≥ 1

τ
lim inf
j→∞

∫
Ω

Ṽ k,k
( x
εj
, E(uj)

)
dx.

Then, a standard argument in homogenization theory (which can be directly derived
from the discrete homogenization results in [1]) gives:

lim inf
j→∞

Gεj ,δj
(uj ,Ω) ≥ 1

τ

∫
Ω

V khom(E(u)) dx

with
V khom(E) = inf

1
|Y |

∫
Y

Ṽ k,k(x,E + E(u)) dx,

where the infimum is taken in the space PA#(Y ) of all u piecewise affine on Y , with
underlying mesh T1, with periodic boundary conditions. By taking the supremum
for k ∈ N we finally get:

lim inf
j→∞

Gεj ,δj (uj ,Ω) ≥ 1
τ

∫
Ω

Vhom(E(u)) dx
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where

Vhom(E) = inf
u∈PA#(Y )

1
|Y |

∫
Y

V0(x,E + E(u)) dx,

with

V0(x,E) =
1
2

l∑
i=1

χi(x)∂2
EVi(0)[E,E].

A direct computation (or a comparison with the expansion in Remark 3) yields that

∂2
EVi(0)[E,E] =

1
2

∑
ξ‖∂Ti

1
m(ξ)

Kξ

|ξ|2
(ξTEξ)2,

for every E ∈Mn×n
sym .

We eventually exploit the structure of the mesh T1; each simplex in the periodicity
cell Y has its vertices on those of Y , so that the periodicity condition in PA#(Y )
is only compatible with constant functions, hence null gradients. Therefore:

Vhom(E) =
1
|Y |

∫
Y

V0(x,E) dx =
1
2

l∑
i=1

∂2
EVi(0)[E,E]

1
|Y |

∫
Y

χi(x) dx

=
τ

2|Y |

l∑
i=1

∂2
EVi(0)[E,E]

=
τ

2|Y |

l∑
i=1

∑
ξ‖∂Ti

1
2

1
m(ξ)

Kξ

|ξ|2
(ξTEξ)2.

Since each element ξ of P is considered m(ξ) times in the sum, we conclude that:

Vhom(E) =
τ

2|Y |
∑
ξ∈P

1
2
Kξ

|ξ|2
(ξTEξ)2 =

τ

2|Y |
γ(E).

Upper bound.
To complete the proof of Theorem 3.2, we have to show that the lower bound is

actually attained; i.e., for every u ∈ H1(Ω; Rn) with trace Mx on ∂Ω, there exists
a sequence (uj) in AMεj

such that:

uj ⇀ u weakly in H1(Ω; Rn) , Gεj ,δj
(uj ,Ω)→ G(u,Ω) .

Assume first that u ∈ W 1,∞(Ω; Rn) ∩ C2(Rn). In this case we take uj = u; i.e.,
the recovery sequence is chosen as to be the trace of u on Ωεj

. Let x ∈ Ωεj
and

ξ ∈ P . If T is any of the simplices with an edge parallel to ξ and with an endpoint
in x, then

1
2
Kξ

(
|ξ + δjD

ξ
εj
uj(x)| − aξ

)2 =
1
2
Kξ

[∣∣∣(I + δj(∇uj)
∣∣∣
T

)
ξ
∣∣∣− aξ]2

= ϕξ
(
I + δj(∇uj)

∣∣∣
T

)
.

From the expansion in Remark 3, and taking the equi-boundedness of (Dεj
uj)j into

account, we deduce that:

1
2δ2
j

Kξ

(
|ξ + δjD

ξ
εj
uj(x)| − aξ

)2

=
1
2
Kξ

|ξ|2
(
ξT (∇uj)

∣∣∣
T
ξ
)2

+ o(δj).
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Since (∇uj)
∣∣∣
T

tends to ∇u(x) uniformly in x, we also have:

1
2δ2
j

Kξ

(
|ξ + δjD

ξ
εj
uj(x)| − aξ

)2 =
1
2
Kξ

|ξ|2
(ξT∇u(x)ξ)2 + o(1) + o(δj).

After summing up we then obtain

lim
j→+∞

1
δ2
j

Eεj
(δjuεj

,Ω) =
1

2|Y |

∫
Ω

γ(∇u(x)) dx. (20)

In the general case u ∈ H1(Ω; Rn) we observe that there exists a sequence (uk)
of Lipschitz and C2 functions, uk = uM on a neighbourhood of ∂Ω and uk → u
strongly in H1(Ω; Rn), so that

lim
k

∫
Ω

γ(∇uk) dx =
∫

Ω

γ(∇u) dx.

Then, we conclude by (20) applied to uk and a standard diagonal argument.
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