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Abstract. We consider a model for nonlinear elastoplasticity coupled with incomplete damage.

The internal energy of the deformed elastoplastic body depends on the deformation y, on the plastic

strain P , and on an internal variable z describing the damage level of the medium. We consider
a dissipation distance D between internal states accounting for coupled plastic deformation and

damage. Moving from time-discretization we prove the existence of a rate-independent quasistatic
evolution of the system.

1. Introduction

Failure in ductile materials, such as metals or polymers, proceeds from the initiation of micro-
defects, followed by their diffuse growth accompanied by large irreversible deformations, up to the
formation of localized macroscopic cracks. Altogether, these phenomena constitute ductile fracture,
e.g., [16] or [21, Section 1.1.3], and are of primary concern in predictive modeling of forming processes
in industrial practice.

Continuum-based models for ductile fracture must involve two dissipative mechanisms: damage and
plasticity ; see, e.g., [5] for an overview. Damage accounts for the stiffness reduction due to initiation,
growth, and coalescence of defects, e.g., [21, Chapter 7], whereas plasticity quantifies the development
of permanent strains within the material, e.g., [21, Chapter 7]. Moreover, the two mechanisms interact,
resulting in the need for coupled damage-plasticity models, e.g., [21, Section 7.4.1].

In what follows, we adopt the format of generalized standard materials [19] and assume that the ma-
terial behavior is governed by a stored energy density and a dissipation potential. Under small strains,
the first local energy-based model for coupled damage-plasticity was introduced by Ju [20]. Later on,
Alessi et al. [2, 3] developed its non-local extension by including gradients of a damage variable into
the stored energy, in the spirit of regularized variational models for brittle fracture by Bourdin et
al. [7]. Such enrichment introduces an additional length scale into the energy functional to charac-
terize the regions to which damage localizes, rendering the model objective with respect to spatial
discretization; see also [1] for an overview and comparison of available formulations. Very recently,
this class of models has been extended to a finite-strain regime independently by Ambati et al. [4],
Borden et al. [6], and Miehe et al. [23]. The last formulation involves additional regularization with
gradients of plastic strains to control the localization of permanent strains, too. We invite an interested
Reader to [4, 6, 23] for illustration of predictive power of these models, including their experimental
validation.

Apart from providing a convenient approach to constitutive modeling, the framework of generalized
standard materials naturally leads to the notion of energetic solutions – a solution concept for rate-
independent problems developed by Mielke and co-workers [26, 29] that characterizes the evolution
of state variables by conditions of global stability and energy conservation. The existence of an
energetic solution for small-strain damage-plastic models has recently been shown by Crismale [10],
who further extended his result to gradient plasticity coupled with damage [11]. However, existence
results for finite-strain models are currently lacking, although finite-strain damage [28] and gradient
plasticity [22,24,25,27,30] were successfully addressed within the energetic solution concept.
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In the current work, we prove the existence of an energetic solution to models of incomplete damage
coupled with gradient plasticity at finite strains, under structural assumptions that comply with
contemporary engineering models [1].

More specifically, we consider an elastoplastic body Ω ⊂ Rd subjected to a deformation y : Ω→ Rd.
In nonlinear plasticity it is commonly assumed that the deformation gradient ∇y complies for the
multiplicative decomposition ∇y = FeP where Fe : Ω → Rd×d and P : Ω → SL(d) stand for the
elastic and plastic strains. Moreover we introduce an internal scalar variable z : Ω→ [0, 1] describing
the damage of the medium, where the value z(x) = 1 corresponds to an undamaged status of Ω at
x, while values close to zero mean that the body is highly damaged. The internal stored energy of a
material state (y, P, z) is given by

W(y, P, z) =

∫
Ω

Wel(x, Fe, z) +Wh(x, P, z) +
ν

r1
|∇P |r1 +

µ

r2
|∇z|r2 dx,

see Section 2.5. In this expression, the first term is the elastic energy, the second represents the energy
related to hardening effects, the third and fourth are regularization terms which from a physical point
of view can be viewed as surface energies penalizing spatial variations of the internal variables P and
z. More precisely, we can expect P and z, to change values on length scales of order µ1/(r1−1) and
ν1/(r2−1), respectively. This would schematically correspond to the observation of the emergence of
lower dimensional substructures in plasticity and damage, namely plastic shear bands and cracks.
The correlation between the variables P and z partly relies on the behavior of the internal energy,
which will be monotone in z at fixed P (see Section 2.6). The evolution is driven by a time-dependent
external loading ` which completes the total energy of the system given by

E(t, y, P, z) =W(y, P, z)− 〈`(t), y〉,
where the dual product 〈`(t), y〉 is defined in (2.24). We consider rate-independent evolution of the
energy E coupled with a dissipation distance between internal states given by

D(P, z, P̂ , ẑ) =

∫
Ω

D(P (x), z(x), P̂ (x), ẑ(x))dx.

The latter depends on the joint behavior of plastic strain and damage. This coupling is implemented
in the non-symmetric distance

D(P, z, P̂ , ẑ) =

{
κ|z − ẑ|+ ρ(ẑ)Dp(P, P̂ ), if z ≥ ẑ,
∞, else,

which we comment in Section 2.3. Here, ρ is a positive, monotone increasing function and Dp is the
classical plastic dissipation distance introduced by Mielke [24, 25]. The function ρ models the fact
that the material plasticizes more easily once it is damaged. We rely on the concept of energetic
solutions, and consider a quasistatic evolution, namely a trajectory [0, T ] 3 t 7→ (y(t), P (t), z(t))
on a time interval [0, T ] satisfying at every time t a stability condition and an energy balance, see
Definition 3.1. Our main result Theorem 3.2 in Section 3 asserts the existence of an energetic solution
for any compatible (stable) initial datum (see Section 3). To prove this result we apply a standard
time-discretization scheme introduced by Mielke and co-workers [26,29].

The paper is organized as follows. Section 2 introduces our model, emphasizing the treatment of
the dissipation potential that accounts for damage and plastic processes. The existence proof, based
on incremental energy minimization, is presented in Section 3. We note in passing that our analysis
rests on the conditions of global stability; alternative solution concepts like viscous approximation,
employed in a similar context by Crismale and Lazzaroni [12], or semistability, used by Roub́ıček
and Valdman [32, 33], are excluded from consideration.

2. The model

2.1. Preliminaries. We first describe the setting of our model and then introduce some basic concepts
of linear algebra and geodesic calculus which help to understand the model.

Reference configuration. In the sequel we will work on a bounded connected open set Ω ⊂ Rd with
Lipschitz boundary. This represents the reference configuration of an elastoplastic body. We assume
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that the boundary of Ω is the union of a Dirichlet and Neumann part, namely ∂Ω := ΓD ∪ ΓN , and
suppose ΓD has strictly positive (d− 1)-Hausdorff measure. Once we have fixed a Dirichlet boundary
condition for the deformation y : Ω→ R3, we will often make use of the Poincaré inequality

‖y‖W 1,p ≤ C‖∇y‖Lp ,

which holds true for this domain since Hd−1(ΓD) > 0. Throughout the paper we will use the letter C
to denote a generic positive constant that may change from line to line.

Matrices and groups. We denote by Rd×d the vector space of d× d matrices with real entries. The
standard Euclidean inner product is denoted by double dots, namely A : B = AijBij (summation

convention). The symbols Rd×dsym and Rd×danti denote the subspaces of Rd×d consisting of symmetric

and anti-symmetric matrices, respectively. The symbol Rd×ddev stands for deviatoric matrices, where
deviatoric means tracefree. We will also employ the following notation for common matrix groups

GL(d) := {A ∈ Rd×d : det A 6= 0},

GL+(d) := {A ∈ Rd×d : det A > 0},

SL(d) := {A ∈ Rd×d : det A = 1},
SO(d) := {A ∈ SL(d) : ATA = AAT = I}.

Norms. We will consistently use the notation | · | for norms of tensors and scalars, e.g. |A| = (A :
A)1/2. This notation will be used in general for k-tensors of every order. On the other hand we use
the double-bar notation ‖ · ‖ for norms on function spaces, e.g. ‖f‖L1 =

∫
Ω
|f(x)|dx.

Polar decomposition. For all A ∈ GL(d) there exists a unique decomposition

(2.1) A = RT,

with R ∈ SO(d) and T ∈ Rd×dsym positive definite. If moreover A ∈ SL(d) then it is easy to see that
both T and R must have determinant equal to 1. Furthermore, as T is symmetric, there exists an
orthogonal matrix Q and a diagonal matrix Λ such that

(2.2) T = QΛQT .

The diagonal matrix Λ has the positive eigenvalues λi of T on the diagonal. The matrix ξ =
diag(log λ1, . . . , log λd) then satisfies

(2.3) Λ = eξ and T = QeξQT = eQξQ
T

,

where the last equality follows from the fact that Q is invertible and Q−1eAQ = eQ
−1AQ for all

A ∈ Rd×d.

Geodesic exponential map vs. matrix exponential. Let G be a (matrix) Lie group, e.g. SO(d) or
SL(d). The (geodesic) exponential map is defined by

Exp : TeG→ G

v 7→ γv(1)

where γv is the unique geodesic starting from the identity e ∈ G with initial velocity v lying in the
tangent space to G at the identity. It is easy to show that the tangent space of SL(d) (resp. SO(d)) at

the identity is Rd×ddev (resp. Rd×danti ), see [8, Example I.9.4., Exercise I.17(b)]. It is important to remark
that in general the geodesic exponential map defined above differs from the algebraic exponential of
a matrix ξ we used before and denoted by eξ. In fact it was shown in [24, Theorem 6.1] that for the
left-invariant metric induced by the standard Euclidean scalar product A : B the geodesics on SL(d)

starting from P (0) in direction of ξ ∈ Rd×ddev are given by

P (t) = P (0)etξ
T

et(ξ−ξ
T ).

Notice that for tracefree matrices in general ξT ξ 6= ξξT , that is why Exp(ξ) 6= eξ. For antisymmetric
matrices however, the product commutes. This implies that on SO(d) the geodesics are exactly given

by P (t) = P (0)etξ for ξ ∈ Rd×danti .
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Rotations. In two dimensions SO(2) consists of all rotations of the form

Rα =

(
cosα sinα
− sinα cosα

)
with α ∈ [−π, π). In such a case the rotation Rα can be expressed as an exponential matrix

Rα = eαL with L =

(
0 1
−1 0

)
.(2.4)

For general dimension d, since SO(d) is a compact connected Lie group, the exponential map

Exp : Rd×danti → SO(d)

ξ 7→ eξ

is surjective [18, Corollary 11.10.]. Therefore, for every R ∈ SO(d) there exists ξ ∈ Rd×danti such that
R = eξ. We can use the spectral theory for real skew-symmetric matrices to bring ξ to a block diagonal
form. Namely, there exists an orthogonal matrix Q such that ξ = QΣQT with

Σ =


α1L1

α2L2

. . .

αpLp


where either Lj = 0 ∈ R or Lj =

(
0 1
−1 0

)
∈ R2×2

anti and αj ∈ R. Since Σ is block diagonal its

exponential is easily computed as

eΣ =


eα1L1

eα2L2

. . .

eαpLp

 , eαjLj =

(
cosαj sinαj
− sinαj cosαj

)
or e0 = 1.

Using the periodicity of sin and cos we have that the rotation R can be written as

(2.5) R = eQΣQT

= eQΣ̃QT

where Σ̃ is defined as Σ but with α̃j = αj mod 2π.

2.2. Plastic dissipation distance. The (plastic) dissipation potential is a mapping

R : Ω× SL(d)× Rd×d → [0,+∞],

which is measurable in x ∈ Ω and convex and positively 1-homogeneous in the rate, i.e.,

R(x, P, λṖ ) = λR(x, P, Ṗ ) for all λ ≥ 0.

In the following, not to overburden notation, we will drop the explicit dependence on x ∈ Ω. We
further assume plastic indifference which corresponds to requiring that

R(PQ, ṖQ) = R(P, Ṗ ) for all Q ∈ SL(d).(2.6)

This property implies that there exists a 1-homogeneous function R̂ : Ω× Rd×d → [0,+∞] such that

R(P, Ṗ ) = R̂(ṖP−1),

see [25] or [29, Section 4.2.1.1]. We assume there exist constants c0, c1 > 0 independent of x ∈ Ω such
that

c0|Q| ≤ R̂(Q) ≤ c1|Q| for every Q ∈ SL(d).(2.7)

With the potential at disposal, we define the induced plastic dissipation distance on SL(d) for any
pair P1, P2 ∈ SL(d) by

Dp(P1, P2) = inf

{∫ 1

0

R(P (s), Ṗ (s))ds : P ∈W 1,∞([0, 1];SL(d)), P (0) = P1, P (1) = P2

}
.(2.8)
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Notice that due to plastic indifference we have that Dp(P1, P2) = D̂p(P2P
−1
1 ) with

D̂p(P ) = inf

{∫ 1

0

R̂(Ṗ (s)P (s)−1)ds : P ∈W 1,∞([0, 1];SL(d)), P (0) = I, P (1) = P

}
.

Due to (2.7), the dissipation distance D̂p is equivalent to the standard Riemannian distance induced

by the Euclidean scalar product on the Lie algebra Rd×ddev . In particular, we have that

(2.9) c0d̂SL(P ) ≤ D̂p(P ) ≤ c1d̂SL(P )

where

d̂SL(P ) = inf

{∫ 1

0

|Ṗ (s)P−1(s)|ds : P ∈W 1,∞([0, 1];SL(d)), P (0) = I, P (1) = P

}
.

As it was pointed out in [24], the geodesics with respect to R̂ in direction ξ are in general not known

and even in the specific Riemannian case geodesics of d̂SL connecting the identity to ξ are not given

by t 7→ etξ. In particular it might happen that d̂SL(eξ) < |ξ|. However from standard theory of
Riemannian manifolds it is known that

dSL(P0, P1) := d̂SL(P1P
−1
0 )

is a metric on SL(d), see pp. 19-20 of [8]. We conclude this discussion with the following result:

Lemma 2.1 (Dp is a quasi-distance). The following properties hold true.
For every P1, P2, P3, Q ∈ SL(d):

(i) Dp(P1, P2) = 0 if and only if P1 = P2,
(ii) Dp(P1, P3) ≤ Dp(P1, P2) +Dp(P2, P3)
(iii) Dp(P1Q,P2Q) = Dp(P1, P2).

Proof. The implication (i) follows from the previous remark that dSL is a metric on SL(d) which by
(2.9) is equivalent to Dp. Condition (ii) is easily checked, while (iii) follows from (2.6). �

Notice that Dp might be not symmetric. We now show that the quasi-distance D̂p has sublinear
growth. To prove this upper bound the most important observation is that if P ∈ SL(d) is such that

P = eξ for some ξ then we may test the definition of D̂p(P ) with the path s 7→ esξ, s ∈ [0, 1] and get

(2.10) D̂p(P ) ≤
∫ 1

0

R̂(esξξe−sξ)ds =

∫ 1

0

R̂(ξ)ds = R̂(ξ).

Proposition 2.2. Assume that (2.6) and (2.7) hold. Then in any dimension d ∈ N, d ≥ 1, there is
a positive constant C = C(d) > 0, independent of x ∈ Ω, such that, for every P1, P2 ∈ SL(d)

Dp(x, P1, P2) ≤ C(1 + |P1|+ |P2|).(2.11)

Proof. For the Reader’s convenience the proof is split into several steps. In steps 1-3 we show that
for every P ∈ SL(d)

(2.12) D̂p(P ) ≤ C(1 + |P |)
for some constant C = C(c1, d) > 0 (c1 being the constant in (2.7)). In step 4 we deduce the general
statement of the proposition.

Step 1. Let P ∈ SL(d) be arbitrary. We use the decompositions (2.1) and (2.2), namely

P = RT = RQΛQT ,(2.13)

where R ∈ SO(d), Q is orthogonal and Λ is diagonal and can be written as the exponential of ξ = log Λ
as in (2.3). We estimate the dissipation relative to the positive definite symmetric matrix T = QΛQT

using (2.10), and writing T = QeξQT = eQξQ
T

,

D̂p(T ) ≤ R̂(QξQT ) ≤ c1|QξQT | = c1|ξ|,(2.14)

where the second inequality follows from (2.7).
Step 2. We now claim that |ξ| can be estimated in terms of |T |. First assume d = 2 and remember
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that Λ = diag(λ1, λ2) and ξ = diag(log λ1, log λ2) with λ1, λ2 being the eigenvalues of T , and λ1 =
1/λ2. Assume without loss of generality λ1 > 1. We have

|ξ|2 = | log λ1|2 + | log λ2|2 = | log λ1|2 + | log λ1|2 ≤ 2|λ1|2 ≤ 2|T |2.
Let us now focus on the case d = 3. Assume first that ξ = diag(log λ1, log λ2, log λ3) with λ1, λ2 > 1
and λ3 = (λ1λ2)−1 < 1. We have

|ξ|2 = | log λ1|2 + | log λ2|2 + | log(λ1λ2)|2 ≤ 3| log λ1|2 + 3| log λ2|2 ≤ 3|T |2.
In the case λ1, λ2 < 1 and λ3 > 1 we write ηi := λ−1

i and

|ξ|2 = | log η1|2 + | log η2|2 + | log(η1η2)|2 ≤ 3| log η1|2 + 3| log η2|2

≤ 3| log(η1η2)|2 = 3| log(λ3)|2 ≤ 3|T |2.

Therefore estimate (2.14) leads, in both cases d = 2, 3, to

(2.15) D̂p(T ) ≤ c1
√
d |T |.

In the general case d > 3 we need to argue in a different way and will obtain an estimate that is slightly

weaker than (2.15). We have
∏d
i=1 λi = 1, and thus

∑d
i=1 log(λi) = 0. Assume λ1, . . . , λm > 1 for

some m and λm+1, . . . , λd ≤ 1. Let ` =
∑m
i=1 log λi, so that

∑d
i=m+1 log λi = −`. Since log λi > 0 for

all i = 1, . . . ,m and log λi ≤ 0 for all i = m+ 1, . . . , d we can write

m∑
i=1

(log λi)
2 ≤ `2,

d∑
i=m+1

(log λi)
2 ≤ `2.

Then, Jensen’s inequality implies that

|ξ|2 =

d∑
i=1

(log λi)
2 ≤ 2`2 = 2

(
m∑
i=1

log λi

)2

≤ 2m

m∑
i=1

(log λi)
2

≤ 2m

m∑
i=1

(λi)
2 ≤ 2(d− 1)

d∑
i=1

λ2
i = 2(d− 1)|T |2.

In particular, estimate (2.14) leads to

(2.16) D̂p(T ) ≤ C1|T |,

where C1 := c1
√

2(d− 1).
Step 3. Let us now give an estimate for the rotation R in the decomposition (2.13). In case d = 2,

thanks to (2.4), we have

D̂p(R) ≤ R̂(αL) ≤ c1α|L| ≤ π
√

2c1.

For general dimensions, we use (2.5) to estimate

(2.17) D̂p(R) ≤ R̂(QΣ̃QT ) ≤ c1|QΣ̃QT | = c1|Σ̃| ≤ C2,

where C2 := c1
√
dπ.

Step 4. We first observe that by Lemma 2.1(ii),(iii) we have that

(2.18) D̂p(PQ) ≤ D̂p(Q) + D̂p(P ), for all P,Q ∈ SL(d).

Now let P1, P2 ∈ SL(d). We use the polar decomposition

Pi = RiTi = RiQiΛiQ
T
i , i = 1, 2.

Using (2.16), (2.17) and (2.18) we obtain

Dp(P1, P2) = D̂p(P2P
−1
1 ) = D̂p(R2T2T

−1
1 R−1

1 )

≤ D̂p(R−1
1 ) + D̂p(T−1

1 ) + D̂p(T2) + D̂p(R2)

≤ 2C2 + C1|T2|+ D̂p(T−1
1 ).

Now T−1
1 = Q1Λ−1

1 QT1 and

D̂p(T−1
1 ) = R̂(Q1 log Λ−1

1 QT1 ) ≤ c1| log Λ−1
1 | = c1| log Λ1|.
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As in step 2 we deduce that c1| log Λ1| ≤ C1|T1|. Altogether we have shown that

(2.19) Dp(P1, P2) ≤ 2C2 + C1(|T1|+ |T2|) ≤ 2C2 + C1C3(|P1|+ |P2|)

where C1 = c1
√

2(d− 1), C2 = c1
√
dπ and C3 = sup{|R| : R ∈ SO(d)}. �

We will also need the following statement on continuity.

Lemma 2.3. The dissipation distance Dp : Ω× SL(d)× SL(d)→ [0,∞) is a Carathéodory function
(i.e. measurable in the first variable and continuous in the other variables for a.e. fixed x ∈ Ω).

Proof. The measurability of Dp(·, P0, P1) follows from measurability of R̂. To show continuity let
P ∗, P ∈ SL(d) be fixed and let Pk → P in SL(d). Then (dropping the x-variable dependence) we use
the triangle inequality to estimate

|Dp(P ∗, Pk)−Dp(P ∗, P )| ≤ Dp(P, Pk) = D̂p(PkP
−1)

Therefore it suffices to show that D̂p(P̂k)→ 0 for any sequence P̂k → I. Since P̂k ∈ SL(d) we can use
the decompositions (2.1) and (2.3) as well as the spectral theory (2.5) to write

P̂k = eQkΣkQ
T
k eQ̃kξkQ̃

T
k

where Qk, Q̃k are orthogonal and Σk, ξk → 0 since P̂k → I. We again use the triangle inequality and
(2.10) to estimate

D̂p(P̂k) ≤ R̂(QkΣkQ
T
k ) + R̂(Q̃kξkQ̃

T
k ) ≤ c1 (|Σk|+ |ξk|)→ 0 as k →∞.

This proves the claimed continuity. �

2.3. Dissipation with damage. Let ρ : Ω × R → R+ be a Carathéodory function (measurable in
x ∈ Ω for every t ∈ R, continuous in t for a.e. x ∈ Ω). We will make the following assumption

(H) ρ is non-decreasing in the second variable and constant on the intervals (−∞, 0] and [1,+∞).

Let κ ∈ L∞(Ω;R+) be such that κ(x) ≥ κ0 > 0 for a.e. x ∈ Ω. Given x ∈ Ω, z1, z2 ∈ [0, 1] and
P1, P2 ∈ SL(d) we define the (coupled) dissipation between (P1, z1) and (P2, z2) at x as

D(x, P1, z1, P2, z2) = inf

{∫ 1

0

S(x, ż(s)) + ρ(x, z(s))R(x, P (s), Ṗ (s))ds :

(P, z) ∈W 1,∞([0, 1];SL(d)× [0, 1]),

P (0) = P1, P (1) = P2, z(0) = z1, z(1) = z2

}
,

where

S(x, ż) :=

{
κ(x)|ż| if ż ≤ 0,

∞ else.

Thanks to the monotonicity of ρ(x, ·) we can prove the following.

Proposition 2.4. Let x ∈ Ω, z1, z2 ∈ [0, 1] and P1, P2 ∈ SL(d). Then

(2.20) D(x, P1, z1, P2, z2) = S(x, z2 − z1) + ρ(x, z2)Dp(x, P1, P2).

Proof. We consider the following two cases.
Case z1 < z2: In this case the right-hand side of (2.20) is infinite. So we need to show that D is

infinite too. This follows as, for every path z ∈ W 1,∞([0, 1]; [0, 1]) connecting z1 to z2, the measure
L1({ż > 0}) is strictly positive. By definition of S the path has infinite dissipation length.
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Case z1 ≥ z2: Since ρ is non-decreasing, by definition of S every path of finite dissipation satisfies
ż ≤ 0 a.e. on [0, 1]. We know that

D(x, P1, z1, P2, z2) = inf

{∫ 1

0

S(x, ż(s))ds+

∫ 1

0

ρ(x, z(s))R(x, P (s), Ṗ (s))ds : ż ≤ 0

}
≥ S(x, z2 − z1) + inf

{∫ 1

0

ρ(x, z(s))R(x, P (s), Ṗ (s))ds : z2 ≤ z ≤ z1

}
≥ S(x, z2 − z1) + ρ(x, z2)Dp(x, P1, P2).

To show the opposite inequality let Pk ∈W 1,∞([0, 1];SL(d)) be a sequence with Pk(0) = P1, Pk(1) =
P2 such that, for any k,

(2.21)

∫ 1

0

R(x, Pk(s), Ṗk(s))ds ≤ Dp(x, P1, P2) +
1

k
.

Let zk ∈W 1,∞([0, 1]; [z2, z1]) be the function

zk(s) =

{
k(z2 − z1)(s− 1

k ) + z2, if 0 ≤ s ≤ 1
k ,

z2, else.

Moreover let ζ : [ 1
k , 1]→ [0, 1] be the unique affine function such that ζ( 1

k ) = 0, ζ(1) = 1, and let

P̃k(t) =

{
P1 for t ∈ [0, 1

k ],

Pk(ζ(t)) for t ∈ [ 1
k , 1].

Notice that P̃k is Lipschitz continuous as well. Since P̃k is constant on [0, 1/k] it follows that

R(x, ·, Ṗk) = 0 on [0, 1/k], and by 1-homogeneity (i.e. R(x, ·, αṖ ) = αR(x, ·, Ṗ ) for α ≥ 0) we
have

D(x, P1, z1, P2, z2) ≤ S(x, z2 − z1) +

∫ 1

1/k

ρ(x, zk(s))R(x, P̃k(s), ˙̃Pk(s))ds

= S(x, z2 − z1) + ρ(x, z2)

∫ 1

1/k

R(x, Pk(ζ(s)), Ṗk(ζ(s)))ζ̇(s)ds

= S(x, z2 − z1) + ρ(x, z2)

∫ 1

0

R(x, Pk(t), Ṗk(t))dt

(2.21)

≤ S(x, z2 − z1) + ρ(x, z2)

(
Dp(x, P1, P2) +

1

k

)
where we used the change of variables t = ζ(s). Now taking the limit k → ∞ on the right-hand side
we conclude. �

We can now define the dissipation between two internal states (P1, z1), (P2, z2) : Ω→ SL(d)× [0, 1],
namely

D(P1, z1, P2, z2) =

∫
Ω

D(x, P1(x), z1(x), P2(x), z2(x))dx

and we are in position to introduce the total dissipation of a damage-plastic process. Let (P, z) :
[s, t]→ L1(Ω;SL(d))× L1(Ω; [0, 1]), we define

(2.22) Diss(P, z; s, t) := sup

N∑
i=1

D(P (ri−1), z(ri−1), P (ri), z(ri)),

where the supremum is computed over all partitions s = r0 < r1 < · · · < rN−1 < rN = t, and all
N ∈ N.
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2.4. State spaces. The space of admissible states, denoted by Q, is the triple Y × P × Z where

Y := W 1,qY
D (Ω;Rd) := {y ∈W 1,qY (Ω;Rd) : y = id on ΓD},

P := W 1,r1(Ω;SL(d)),

Z := W 1,r2(Ω; [0, 1]).

for some coefficients qY > d and r1, r2 > 1. We will also consider the case r1, r2 = 1, which calls for
a BV -setting. The space Q is endowed with the weak topologies of the Sobolev spaces, namely we
write, for instance

Pk ⇀ P in P if and only if Pk ⇀ P weakly in W 1,r1(Ω;Rd×d).
Because of the fixed Dirichlet boundary condition, by Poincaré inequality, weak convergence in Y =
W 1,qY
D (Ω;Rd) is equivalent to weak convergence of gradients, i.e.,

yk ⇀ y in Y if and only if ∇yk ⇀ ∇y weakly in LqY (Ω;Rd×d).
Notice that the space P is not a linear subspace of W 1,r1(Ω;Rd×d) because the target space is the
manifold SL(d). Nevertheless weak limits of sequences (Pk)k∈N ⊂ P are again in P, and we might
assume to take values in SL(d) almost everywhere. This follows since weak convergence in P implies
strong convergence of Pk → P in L1(Ω).

Sometimes we use the short notation q = (y, P, z) for elements in Q. It is also convenient to
occasionally use the variable q in the dissipation distance D although it depends only on the internal
variables and is therefore independent of y.

2.5. Energy. We consider the following energy

E(t, y, P, z) =

∫
Ω

Wel(x,∇yP−1, z) +Wh(x, P, z)dx

+
ν

r1

∫
Ω

|∇P |r1dx+
µ

r2

∫
Ω

|∇z|r2dx− 〈`(t), y〉,(2.23)

for some material parameters ν, µ > 0. The symbol 〈·, ·〉 denotes the duality product between Y∗ and
Y, and the mapping t 7→ `(t) ∈ Y∗ represents external loading of the mechanical system. This load
can be split as

(2.24) 〈`(t), y〉 =

∫
Ω

f(t) · y dx+

∫
ΓN

τ(t) · y dHd−1,

where f(t) is a prescribed bulk force and τ(t) is a prescribed traction on the Neumann boundary ΓN .
Assumptions on the regularity of t 7→ `(t) will be specified in Section 2.6. The quantity

Wel(y, P, z) :=

∫
Ω

Wel(x,∇yP−1, z)dx,

is the elastic energy of the system and the term

Wh(y, P, z) :=

∫
Ω

Wh(x, P, z)dx,

represents the energy related to hardening instead. The terms in (2.23) involving ∇P and ∇z are
higher order energetic terms which have the role of regularizations introducing internal length scales.
Notice that the elastic energy depends solely on the elastic strain Fe := ∇yP−1 whereas the hardening
depends solely on the plastic strain P .

2.6. Assumptions on the energy. It is convenient to denote the total bulk energy density (without
regularization) by

W (x, y, P, z) = Wel(x,∇yP−1, z) +Wh(x, P, z).

We complete our hypotheses on the energy with the following conditions:

• Objectivity:
We want the energy density W to be frame-indifferent. To guarantee this we suppose that

(2.25) Wel(x,QFe, z) = Wel(x, Fe, z) ∀Q ∈ SO(d), Fe ∈ GL+(d).
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• Non-interpenetrability:
We assume that Wel(x, Fe, z) = +∞ if det Fe ≤ 0, and

(2.26) Wel(x, Fe, z)→∞ as det Fe → 0+.

• Lower semicontinuity and coercivity:
We assume that Wel,Wh are normal integrands, meaning that Wel(·, F, z) is measurable for
every F, z and Wel(x, ·, ·) is lower-semicontinuous for a.e. x ∈ Ω; the analogue for Wh holds.
Moreover, we assume that Wel(x, ·, z) is polyconvex, i.e.

(2.27) Wel(x, Fe, z) = Wconv(x,M(Fe), z),

where Wconv(x, ·, z) is convex for a.e. x ∈ Ω and every z ∈ [0, 1], and M(Fe) denotes the vector
of all minors of the elastic strain Fe. For instance in dimension d = 3:

M(Fe) = (Fe, cof Fe, det Fe).

Furthermore, we assume coercivity bounds

Wel(x, F, z) ≥ C1|F |qF − C2,(2.28a)

Wh(x, P, z) ≥ C1|P |qP − C2,(2.28b)

for some constants C1, C2 > 0 and exponents satisfying

(2.29)
1

qF
+

1

qP
≤ 1

qY
<

1

d
,

see [29, Section 4.1.3].
• Monotonicity and continuity of damage:

We further assume continuity and monotonicity in z, i.e. an increase of damage leads to a
release of stored energy. More precisely,

(2.30) z ≤ ẑ ⇒W (x, y, P, z) ≤W (x, y, P, ẑ).

• Regularity of the loading:
We require ` to be absolutely continuous in time, i.e.

(2.31) ` ∈W 1,1(0, T ;Y∗),
see [15, Section 4] for a similar assumption on the loading.

Remark 2.5 (Ciarlet-Nečas condition). By assumption (2.26) it is clear that a finite energy solution
satisfies the local non-interpenetration det ∇y > 0 a.e. in Ω. It would be possible to guarantee global
non-self-interpenetration involving the so called Ciarlet-Nečas condition [9], which reads∫

Ω

det (∇y)dx ≤ Ld(y(Ω)).

In order to achieve this we would simply change the state space Y to

YCN :=
{
y ∈ Y :

∫
Ω

det (∇y)dx ≤ Ld(y(Ω))
}

and remark that, due to the condition qY > d in (2.29), convergence of ∇yk ⇀ ∇y in LqY (Ω) implies
convergence of det (∇yk) ⇀ det (∇y) in L1(Ω). This shows that YCN is weakly closed in Y.

3. Quasistatic evolution

We follow the concept of energetic solutions, which is solely based on the energy functional E , the
dissipation distance D and the state space Q introduced above. Given an external load ` : [0, T ]→ Y∗
and suitable initial conditions (y0, P0, z0) ∈ Q we look for an energetic solution (y, P, z) : [0, T ]→ Q.
We first introduce the concept of stable states at a given time t ∈ [0, T ]: this is defined via the subset
S(t) of admissible states defined as

S(t) =
{

(y, P, z) ∈ Q : E(t, y, P, z) ≤ E(t, ŷ, P̂ , ẑ) +D(P, z, P̂ , ẑ) ∀(ŷ, P̂ , ẑ) ∈ Q
}
.

An energetic solution is asked to satisfy the following energy balance (E) and global stability condition
(S).
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Definition 3.1. We say that (y, P, z) : [0, T ] → Q is an energetic solution for the initial conditions
(y0, P0, z0) ∈ Q if (y(0), P (0), z(0)) = (y0, P0, z0), the map s 7→ ∂tE(s, y(s), P (s), z(s)) belongs to
L1(0, T ), E(t, y(t), P (t), z(t)) <∞ for all t ∈ [0, T ], and the two following conditions are satisfied:

(S) (y(t), P (t), z(t)) ∈ S(t),

(E) E(t, y(t), P (t), z(t)) + Diss(P, z; 0, t) = E(0, y0, P0, z0) +
∫ t

0
∂tE(s, y(s), P (s), z(s))ds,

where Diss(P, z; 0, t) is defined in (2.22).

In order to show existence of energetic solutions we resort in applying the existence theory introduced
and developed by Mielke and coauthors in a series of papers and books (see [26] or more recently [29]
and references therein). Along the existence proof we are called to check that, under the assumptions
stated in the previous section, the following conditions are satisfied:

(C1) The dissipation D satisfies the following two properties:
(i) ∀(P1, z1), (P2, z2) ∈ P × Z :

D(P1, z1, P2, z2) = 0 ⇔ P1 = P2, z1 = z2.

(ii) ∀(Pi, zi) ∈ P × Z, i = 0, 1, 2 :

D(P0, z0, P2, z2) ≤ D(P0, z0, P1, z1) +D(P1, z1, P2, z2).

(C2) D : P × Z × P × Z → [0,+∞] is lower-semicontinuous.
(C3) There exists a function λ ∈ L1(0, T ) such that for all q ∈ Q the following implication holds

true:

E(t, q) <∞⇒ ∂tE(·, q) : [0, T ]→ R is integrable and

|∂tE(t, q)| ≤ λ(t)(1 + E(t, q)).

(C4) For all t ∈ [0, T ], the map q 7→ E(t, q) has compact sublevels.
(C5) The set of stable states is closed on [0, T ] ×Q: namely, for every sequence (tk, qk) such that

qk ∈ S(tk) for every k, tn → t, and qk ⇀ q in Q, we have q ∈ S(t).

Let us observe that in our case

(3.1) ∂tE(t, y(t), P (t), z(t)) = −〈 ˙̀(t), y(t)〉
is linear in y and thus the map q → ∂tE(t, q) is weakly continuous for almost every fixed t ∈ [0, T ].
Notice also that (C1) and (C2) imply that for any bounded sequence (Pk, zk)k∈N ∈ P × Z we have

min{D(P, z, Pk, zk),D(Pk, zk, P, z)} → 0 ⇒ (Pk, zk) ⇀ (P, z) in P × Z

as was observed in [22, Lemma 4.1], because bounded sets in P × Z are precompact (with respect
to the weak topologies). As a consequence we may use the generalized version of Helly’s selection
principle stated in [29, Theorem 2.1.24]. We now formulate the central result of the paper.

Theorem 3.2 (Existence of energetic solutions). Let (Q, E ,D) be the triple introduced in Section
2. Let q0 = (y0, P0, z0) ∈ S(0) be a stable initial state. Then there exists an energetic solution
q = (y, P, z) : [0, T ]→ Q for the initial conditions q0.

Given an interval [0, T ] and a positive natural number n, we denote by Πn the family of partitions
of [0, T ] into n intervals, namely the family of n-tuples of real numbers satisfying 0 = t0 < t1 < · · · <
tn = T . We define the family of partitions of arbitrary length as

Π =

∞⋃
n=1

Πn.

Given σ ∈ Π the symbol ∆(σ) will denote the fineness of the partition σ, namely

∆(σ) := max
k
|tk − tk−1|.
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Theorem 3.3 (Existence via incremental minimization). For every stable initial data q0 ∈ S(0) and
every sequence of partitions σn ∈ Π of [0, T ] with fineness ∆n := ∆(σn) tending to zero as n → ∞,
we can find a trajectory qn : [0, T ] → Q with q(0) = q0 which is piecewise constant on the partition,
right-continuous and satisfies

(3.2) qn(t) ∈ S(t),

(3.3) E(t, qn(t)) + Diss(Pn, zn; s, t)− E(s, qn(s)) ≤ −
∫ t

s

〈 ˙̀(r), yn(r)〉dr

for every s, t ∈ σn. Moreover, there exists a subsequence and an energetic solution q = (y, P, z) :
[0, T ]→ Q for the initial conditions q0 with the following properties:

∀t ∈ [0, T ] : Pnk
(t) ⇀ P (t) in P,

∀t ∈ [0, T ] : znk
(t) ⇀ z(t) in Z,

∀s, t ∈ [0, T ] : Diss(Pnk
, znk

; s, t)→ Diss(P, z; s, t),

∀t ∈ [0, T ] : E(t, qnk
(t))→ E(t, q(t)),

and

(3.4) 〈 ˙̀(·), ynk
(·)〉 → 〈 ˙̀(·), y(·)〉 in L1(0, T ).

Notice that the statement of Theorem 3.3 is actually stronger than that of Theorem 3.2 because it
additionally provides a way to construct energetic solutions using incremental minimization.

In order to prove Theorem 3.3 we start by checking conditions (C1)-(C5).

Proof of (C1):
The dissipation D is defined as an integral over Ω of the non-negative function D. By Proposition 2.4
for almost every x ∈ Ω we have

D(x, P0(x), z0(x), P1(x), z1(x)) = κ(x)(z0(x)− z1(x)) + ρ(z1(x))Dp(x, P0(x), P1(x)),

with ρ(z1(x))D(x, P0(x), P1(x)) ≥ 0, and κ(x) ≥ κ0 > 0. It is thus easily seen that ifD(·, P0, z0, P1, z1) =
0 a.e. in Ω it must be z0 = z1 a.e. on Ω. Now, since ρ is strictly positive Dp(x, P0(x), P1(x)) = 0 for
a.e. x ∈ Ω, which in turn implies P0 = P1 a.e. by Lemma 2.1(i). This proves point (i) of (C1).

We now prove the triangle inequality (ii). Let (Pi, zi) ∈ P × Z for i = 1, 2, 3. We can assume
without loss of generality that z1 ≥ z2 ≥ z3 a.e. on Ω. Otherwise the right-hand side of the triangle
inequality is +∞. Fix x ∈ Ω and for the sake of simplicity do not write the x-dependence in the next
formulas. We use Lemma 2.1(ii), Proposition 2.4, and the monotonicity of ρ to estimate

D(P1, z1, P3, z3) = κ(z1 − z3) + ρ(z3)Dp(P1, P3)

= κ(z1 − z2) + κ(z2 − z3) + ρ(z3)Dp(P1, P3)

≤ κ(z1 − z2) + κ(z2 − z3) + ρ(z3)(Dp(P1, P2) +Dp(P2, P3))

≤ κ(z1 − z2) + ρ(z2)Dp(P1, P2) + κ(z2 − z3) + ρ(z3)Dp(P2, P3)

= D(P1, z1, P2, z2) +D(P2, z2, P3, z3).

We then conclude by integrating over Ω.

Proof of (C2):

We have to show that whenever (Pk, zk, P̂k, ẑk) ⇀ (P, z, P̂ , ẑ) in (P × Z)2 then

D(P, z, P̂ , ẑ) ≤ lim inf
k→∞

D(Pk, zk, P̂k, ẑk).

By compactness the convergence of (Pk, zk, P̂k, ẑk) to (P, z, P̂ , ẑ) above is strong in L1(Ω). By Propo-
sition 2.4 it suffices to show that

(3.5)

∫
Ω

S(x, z(x)− ẑ(x))dx ≤ lim inf
k→∞

∫
Ω

S(x, zk(x)− ẑk(x))dx
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and

(3.6)

∫
Ω

ρ(x, ẑ)Dp(x, P, P̂ )dx = lim
k→∞

∫
Ω

ρ(x, ẑk)Dp(x, Pk, P̂k)dx

The implication (3.5) simply follows from Fatou’s Lemma since S is non-negative and lower semicon-
tinuous in the second component. Indeed we can choose a subsequence that realizes the lim inf in
(3.5). By taking another subsequence, we can further assume that zkl → z and ẑkl → ẑ a.e. on Ω. By
Fatou’s Lemma ∫

Ω

S(x, z(x)− ẑ(x))dx ≤ lim inf
l→∞

∫
Ω

S(x, zkl(x)− ẑkl(x))dx

= lim inf
k→∞

∫
Ω

S(x, zk(x)− ẑk(x))dx.

In order to prove (3.6) we use that ρ(x, ·) is continuous. As shown in Lemma 2.3, Dp(x, ·, ·) is
continuous as well and using the sublinear growth (2.11) we conclude by Dominated Convergence
Theorem.

Proof of (C3):
From the very definition of the energy we have

∂tE(t, P, z) = −〈 ˙̀(t), y〉.

Since ∇y = FeP , we infer by Hölder and Young inequalities

(3.7) ‖∇y‖LqY ≤ C‖Fe‖LqF ‖P‖LqP ≤ C
‖Fe‖qFLqF

qF
+ C
‖P‖qPLqP

qP
,

where we have used
1

qY
≥ 1

qF
+

1

qP
.

Hence, if ` ∈W 1,1(0, T ;Y∗) we infer

∂tE(t, y, P, z) ≤ C‖ ˙̀(t)‖Y∗‖∇y‖LqY

(3.7)

≤ Cλ(t)(‖F‖qFLqF + ‖P‖qPLqP )

(2.28)

≤ Cλ(t)(1 + E(t, y, P, z))

where λ(t) := ‖ ˙̀(t)‖Y∗ ∈ L1(0, T ).

Proof of (C4):
To assume that all sublevels of the energy are compact is equivalent to saying that sublevels are
precompact and closed. We start by showing (sequential) precompactness. Let t ∈ [0, T ] and assume
that we have a sequence qk = (yk, Pk, zk) ∈ Q which satisfies E(t, qk) ≤ C. Using coercivity (2.28) we
see that

E(t, qk) ≥c
(
‖∇ykP−1

k ‖
qF
LqF + ‖Pk‖qPLqP + ‖∇Pk‖r1Lr1 + ‖∇zk‖r2Lr2

)
− C1‖∇yk‖LqY − C2,(3.8)

where C1 = C‖`‖L∞([0,T ];Y∗) by assumption (2.31). By Young’s inequality we deduce that, for any
µ > 0,

C1‖∇yk‖LqY ≤ µ−1C +
µ‖∇yk‖qYLqY

qY
.(3.9)

Additionally, in view of (2.29), we have

(3.10) ‖∇yk‖qYLqY ≤ ‖∇ykP−1
k ‖

qY
LqF ‖Pk‖

qY
LqP ≤ C

(
‖∇ykP−1

k ‖
qF
LqF + ‖Pk‖qPLqP

)
.

Combining (3.8), (3.9), and (3.10) and choosing µ > 0 suitably small, we readily see that

(3.11) ‖∇yk‖qYLqY + ‖Pk‖qPLqP + ‖∇Pk‖r1Lr1 + ‖∇zk‖r2Lr2 ≤ C.
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Then, there exists a subsequence such that

zkl → z∗ in L1(Ω) and pointwise a.e.

zkl ⇀ z∗ weakly in W 1,r2(Ω).

Notice that zk ∈ [0, 1] a.e. on Ω, thus zk stays uniformly bounded in L∞(Ω), so that by Vitali’s
Convergence Theorem we infer

zkl → z∗ in Lσ(Ω)

for all σ ≥ 1. Similarly we argue for Pk, which is uniformly bounded in Lq̄P (Ω) with

q̄P := max{qP , r∗1},

(r∗1 being the Sobolev exponent associated to r1) and we extract a subsequence such that

Pkl ⇀ P ∗ weakly in W 1,r1(Ω),

Pkl → P ∗ in Ls(Ω)

for every s ∈ [1, q̄P ). Furthermore, we infer that

∇ykl ⇀ ∇y∗ weakly in LqY (Ω),

ykl → y∗ in Ls(Ω)

for every s ∈ [1, q∗Y ] thanks to the Dirichlet boundary condition on y. In particular, we have checked
that

qkl ⇀ q∗ in Q,
which is nothing but sequential precompactness.

It remains to show the lower semicontinuity of E , which is equivalent to closedness of sublevels.
Take a sequence qk ⇀ q in Q where qk = (yk, Pk, zk) and assume without loss of generality that
supk E(t, qk) ≤ C. We can use (3.11) and choose a subsequence such that

lim
l→∞

E(t, qkl) = lim inf
k→∞

E(t, qk)

and

∇ykl ⇀ ∇y weakly in LqY (Ω),

∇Pkl ⇀ ∇P weakly in Lr1(Ω),

∇zkl ⇀ ∇z weakly in Lr2(Ω),

Pkl → P in Ls(Ω),

zkl → z in Lσ(Ω)

for every s ∈ [1, q̄P ), σ ∈ [1,∞). Now in order to use (2.27) we need to show that

M(∇ykP−1
k ) ⇀M(∇yP−1) in L1(Ω).

This result was established in [27] and can be found in [22, Proposition 5.1] or [29, Lemma 4.1.3] in a
slightly more general framework. The convergence is proven under the assumption that

1

qY
+
d− 1

s
≤ 1

which is indeed satisfied here since q̄P > qY > d and therefore s can be chosen larger than d. The
lower semicontinuity of

(y, P, z) 7→
∫

Ω

Wel(x,∇yP−1, z) +Wh(x, P, z)dx

now follows from classical theory due to polyconvexity of the integrand. It was pointed out in [29] that
the classical assumption of W being a Carathéodory function can be relaxed to the one of a normal
integrand using a Yosida-Moreau regularization.

Let us emphasize that the assumption that r1, r2 are strictly greater than 1 is not needed and one
could consider r1 = r2 = 1 as well, at the expense of rewriting the argument in BV-spaces.
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The proof of (C5) is typically the hardest part and we will establish it in the next section by
arguing as in Thomas [34–36]. The process in finding mutual recovery sequences used therein is
almost directly applicable to our setting.

3.1. Closedness of stable states (C5). This closedness relies on finding a suitable recovery se-
quence. In [28] this was achieved for r2 > d, in which case damage is continuous in space. In the
papers [34, 35], this was generalized to 1 < r2 < d first and in [36] to the case where damage is of
bounded variation (r2 = 1). We will adapt the arguments contained in these references to our model.

We want to prove that if (tk, qk) is a sequence such that qk ∈ S(tk), tk → t, and qk ⇀ q in Q, then
q ∈ S(t). Thus we need to ensure that for every q̂ ∈ Q

0 ≤ E(t, q̂) +D(q, q̂)− E(t, q).

In order to show this we will provide a so-called mutual recovery sequence (see [28, 31]) q̂k ⇀ q̂ such
that

(3.12) lim sup
k→∞

(
E(tk, q̂k) +D(qk, q̂k)− E(tk, qk)

)
≤ E(t, q̂) +D(q, q̂)− E(t, q).

Indeed, since by stability of qk we have for every q̂k ∈ Q

(3.13) 0 ≤ E(tk, q̂k) +D(qk, q̂k)− E(tk, qk),

the lim sup bound (3.12) together with (3.13) implies the claim q ∈ S(t).

Notice that if the dissipation D was continuous (not only lower semicontinuous) then (3.12) would
hold true even for the constant recovery sequence q̂k = q̂ because E is lower semicontinuous and E(·, q̂)
is continuous. In the present case however, the dissipation D is not continuous, since D(P0, z0, P1, z1)
is only continuous on its domain {z0 ≥ z1} (compare to the assumptions on D in [22, Conditions (3.5)
and Remark 3.2]). In the next lemma we show that nonetheless D is continuous on its domain.

Lemma 3.4. Let us define the domain of D as

D =
{

(P, z, P̂ , ẑ) ∈ (P × Z)2 : D(P, z, P̂ , ẑ) <∞
}
.

Then D : D→ [0,∞) is continuous.

Proof. By Proposition 2.4,

D(P, z, P̂ , ẑ) =

∫
Ω

S(x, ẑ − z) + ρ(x, ẑ)Dp(x, P, P̂ )dx.

Now take a sequence (Pk, zk, P̂k, ẑk) ∈ D such that (Pk, zk, P̂k, ẑk) ⇀ (P, z, P̂ , ẑ) in (P×Z)2. Then the
convergence is strong in L1(Ω) and for every subsequence (kl)l∈N we can find a further subsequence

(klj )j∈N such that (zklj , Pklj , ẑklj , P̂klj )→ (z, P, ẑ, P̂ ) a.e. in Ω. Observe that

D =
{

(P, z, P̂ , ẑ) ∈ (P × Z)2 : z(x) ≥ ẑ(x) for a.e. x ∈ Ω
}
.

Thus,

D(Pk, zk, P̂k, ẑk) =

∫
Ω

κ(x)(zk(x)− ẑk(x)) + ρ(x, ẑk)Dp(x, Pk, P̂k)dx

for every k ∈ N. By Lemma 2.3 the integrand converges pointwise a.e. on Ω for the sequence (klj )j
to the corresponding limit. We can further estimate the integrand, using (2.11), by

2‖κ‖L∞ + C‖ρ‖L∞(1 + |Pk(x)|+ |P̂k(x)|).

This bound allows us to use the Dominated Convergence Theorem. Hence,

(3.14) lim
j→∞

∫
Ω

κ(zklj − ẑklj ) + ρ(ẑklj )Dp(Pklj , P̂klj )dx =

∫
Ω

κ(z − ẑ) + ρ(ẑ)Dp(P, P̂ )dx,

where, for simplicity, we have again omitted the x-dependence. Noticing that κ(x)(z(x) − ẑ(x)) =

S(x, z(x) − ẑ(x)) for a.e. x ∈ Ω, the right-hand side of (3.14) is nothing but D(P, z, P̂ , ẑ) and the
statement follows. �
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Lemma 3.5. Let qk ∈ S(tk) such that tk → t and qk ⇀ q in Q. Then for every q̂ ∈ Q we can find a
sequence q̂k such that (3.12) holds true.

Proof. We proceed in several steps following the proof in [35, Theorem 3.14]:

Step 1. Let (tk, qk) be as in the lemma and q̂ = (ŷ, P̂ , ẑ) ∈ Q be arbitrary. We first set ŷk := ŷ for
all k. From this choice it is possible to reduce to the case tk = t for every k. Indeed, we claim that
the limsup in (3.12) coincides with

lim sup
k→∞

(
E(t, q̂k) +D(qk, q̂k)− E(t, qk)

)
.

Consider the difference

|E(tk, q̂k)− E(t, q̂k) + E(t, qk)− E(tk, qk)| = |〈`(tk)− `(t), ŷk〉+ 〈`(tk)− `(t), yk〉|
≤ 2C‖`(tk)− `(t)‖Y∗ → 0

as k →∞ since by (2.31) ` ∈W 1,1(0, T ;Y∗) ⊂ C0(0, T ;Y∗). This shows the claim.

Step 2. If E(t, q̂) + D(q, q̂) = +∞ then (3.12) holds trivially. Let us therefore assume E(t, q̂) < ∞
and D(q, q̂) <∞. This in particular implies

ẑ ≤ z,(3.15)

a.e. on Ω. We define the recovery sequence as q̂k := (ŷ, P̂ , ẑk) where

ẑk := min{(ẑ − δk)+, zk}

and δk > 0 is a sequence that will be chosen later (tending to zero as k → +∞).
We now claim that ẑk ⇀ ẑ weakly in W 1,r2(Ω). Indeed, by construction ẑk is bounded in W 1,r2(Ω).
So for every subsequence ẑkl there exists a further subsequence ẑklj and a limit z∗ (a priori depending

on the subsequence we choose) such that

ẑklj ⇀ z∗ weakly in W 1,r2(Ω),

ẑklj → z∗ in Lr2(Ω),

ẑklj → z∗ a.e. on Ω.

But by definition of ẑk, it follows that it converges to ẑ a.e. on Ω. Thus, z∗ = ẑ independently of the
subsequence and we have shown

ẑk ⇀ ẑ weakly in W 1,r2(Ω).

Notice that (qk, q̂k) ∈ D because ẑk ≤ zk. Therefore, by Lemma 3.4

lim sup
k→∞

D(qk, q̂k) = lim
k→∞

D(qk, q̂k) = D(q, q̂).

Step 3. It remains to show that

(3.16) lim sup
k→∞

(
E(t, q̂k)− E(t, qk)

)
≤ E(t, q̂)− E(t, q).

To achieve this we need to choose the sequence δk in such a way that Ld({zk < (ẑ − δk)+}) goes to
zero as k →∞. This particularly implies ẑk → z in Lσ for all σ ≥ 1. Recall that

E(t, y, P, z) =

∫
Ω

W (x, y, P, z)dx+
ν

r1

∫
Ω

|∇P |r1dx+
µ

r2

∫
Ω

|∇z|r2 − 〈`(t), y〉,

where W (x, y, P, z) = Wel(x,∇yP−1, z) +Wh(x, P, z). So the difference E(t, q̂k)− E(t, qk) on the left
hand side of (3.16) consists of two parts. Namely,

(3.17)

∫
Ω

(
W (x, ŷ, P̂ , ẑk)−W (x, y, P, zk)

)
dx

and

(3.18)
µ

r2

∫
Ω

(
|∇ẑk|r2 − |∇zk|r2

)
dx.
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Taking the lim sup as k →∞ in (3.17) and using lower semicontinuity of W , it suffices to show that

(3.19) lim
k→∞

∫
Ω

W (x, ŷ, P̂ , ẑk)dx =

∫
Ω

W (x, ŷ, P̂ , ẑ)dx.

Now, for every subsequence (kl)l∈N we can choose a further subsequence (klj )j∈N such that ẑklj → ẑ

a.e. on Ω. Since W is continuous in z, this implies

W (x, ŷ, P̂ , ẑklj )→W (x, ŷ, P̂ , ẑ) a.e. on Ω.

By using ẑklj ≤ ẑ, monotonicity (2.30), and coercivity (2.28) we get the uniform bound

−2C2 ≤W (x, y, P, ẑklj ) ≤W (x, y, P, ẑ) ∈ L1(Ω).

Therefore, (3.19) follows from the Dominated Convergence Theorem.

Let us now show that the lim sup as k → ∞ of the expression in (3.18) is less or equal to
µ
r2

∫
Ω

(|∇ẑ|r2 − |∇z|r2)dx. We define

Bk = {zk < (ẑ − δk)+}
Ak = Ω \Bk

Since Bk ⊂ {|z − zk| ≥ δk} thanks to (3.15), we can use Markov’s inequality to show that

Ld(Bk) ≤ 1

δr2k

∫
Ω

|z − zk|r2dx.

As we want this to go to 0 we impose that

δk = ‖z − zk‖1/r2Lr2 .

Now, we can write, by the definition of ẑk,

µ

r2

∫
Ω

(
|∇ẑk|r2 − |∇zk|r2

)
dx =

µ

r2

∫
Ak

(
|∇ẑ|r2 − |∇zk|r2

)
dx+

∫
Bk

(
|∇ẑk|r2 − |∇zk|r2︸ ︷︷ ︸

=0

)
dx


=

µ

r2

∫
Ak

(
|∇ẑ|r2 − |∇zk|r2

)
dx.

We take the lim sup above as k → ∞ and use that IAk
∇zk ⇀ ∇z weakly in Lr2(Ω) (here IAk

, the
characteristic function of Ak, converges to 1 strongly in Lq(Ω) for any q ∈ [1,+∞), while ∇zk tends
to ∇z weakly in Lp(Ω) for all p < r2; the equiboundedness of IAk

∇zk on Lr2 implies the claim) to get

lim sup
k→∞

µ

r2

∫
Ak

(
|∇ẑ|r2 − |∇zk|r2

)
dx =

µ

r2

(∫
Ω

|∇ẑ|r2dx− lim inf
k

∫
Ak

|∇zk|r2dx
)

≤ µ

r2

(∫
Ω

|∇ẑ|r2dx−
∫

Ω

|∇z|r2dx
)

by weak lower semicontinuity of the norm. This shows (3.16) and finishes the proof. �

Remark 3.6 (Case r1 = r2 = 1). In this special case, instead of µ
r2

∫
Ω
|∇z|r2dx the damage variable

z is regularized by

µ|Dz|(Ω),

where z belongs to BV (Ω; [0, 1]) and |Dz|(Ω) denotes its total variation. To deal with this case we refer
to [36] and sketch the main argument here. For the plastic variable P we proceed analogously replacing
ν
r1

∫
Ω
|∇P |r1dx by the total variation ν|DP |(Ω). Then we define the mutual recovery sequence as

q̂k = (ŷ, P̂ , ẑk),

with ẑk defined as

ẑk =


ẑ − δk on Ak := {0 ≤ ẑ − δk ≤ zk}
zk on Bk := {0 ≤ zk < ẑ − δk}
0 on Ck := Ω \ (Ak ∪Bk).
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With this choice we have that 0 ≤ ẑk ≤ zk. We have to verify that we can choose δk so that the
following three conditions are satisfied:

(1) ẑk ∈ BV (Ω; [0, 1]), Ld(Bk) + Ld(Ck)→ 0, and ẑk → ẑ strongly in L1(Ω),
(2) limk→∞D(qk, q̂k) = D(q, q̂),
(3) lim supk→∞ E(tk, q̂k)− E(tk, qk) ≤ E(t, q̂)− E(t, q).

To check (1) one follows the lines of the proof of Lemma 2.13 in [36]: this procedure consists into

choosing δk ∈ [m
1/2
k ,m

1/4
k ], with

mk := max{k−1, ‖z − zk‖L1}.

To verify (2) we first redefine the domain of D as

D =
{

(P, z, P̂ , ẑ) ∈
(
BV (Ω;SL(d))×BV (Ω; [0, 1])

)2
: D(P, z, P̂ , ẑ) <∞

}
.

Then, in the spirit of Lemma 3.4, we can prove that D : D → [0,∞) is continuous. The proof of
Lemma 3.4 can be adapted observing that weak convergence in BV implies that zk → z strongly in
L1(Ω), then the same arguments can be used.

Let us verify (3). The term
∫

Ω
W (x, y, P, ẑk)−W (x, y, P, zk)dx is treated as in the proof of Lemma

3.5. Finally the inequality

lim sup
k→∞

|Dẑk|(Ω)− |Dzk|(Ω) ≤ |Dẑ|(Ω)− |Dz|(Ω),

is achieved as in the proof of Lemma 2.13 in [36].

3.2. Proof of Theorem 3.3. We are now in position to prove the main theorem, see also [26]. We
proceed in several steps.

Step 1: Approximation via incremental minimization. Let σn = {0 = tn0 < tn1 < · · · <
tnN(n) = T} ∈ Π, n ∈ N, be a sequence of partitions such that the fineness ∆(σn) tends to zero as n

tends to ∞. For fixed n we iteratively solve for

(3.20) (yj , Pj , zj) ∈ argmin
(ŷ,P̂ ,ẑ)∈Q

{
E(tj , ŷ, P̂ , ẑ) +D(Pj−1, zj−1, P̂ , ẑ)

}
, j ∈ {1, . . . , N(n)}.

Note that (C2) and (C4) guarantee the existence of minimizers. This selection satisfies qj = (yj , Pj , zj) ∈
S(tj). This can be seen by using the minimum property in (3.20) and the triangle inequality (C1ii).
Testing the minimum in (3.20) by qj−1 we infer

E(tj , qj)− E(tj−1, qj−1) +D(qj−1, qj) ≤
∫ tj

tj−1

∂tE(s, qj−1)ds = −
∫ tj

tj−1

〈 ˙̀(s), yj−1〉ds.

Summing up over j from k + 1 to l we get

(3.21) E(tl, ql)− E(tk, qk) +

l∑
j=k+1

D(qj−1, qj) ≤ −
l∑

j=k+1

∫ tj

tj−1

〈 ˙̀(s), yj−1〉ds,

for every k, l ∈ {0, . . . , N(n)} with k ≤ l. We define the right-continuous piecewise constant approxi-
mation

qn(t) := qj−1, for t ∈ [tj−1, tj),

which turns (3.21) into

E(t, qn(t)) + Diss(Pn, zn; s, t) ≤ E(s, q(s))−
∫ t

s

〈 ˙̀(r), yn(r)〉dr,

for every s, t ∈ σn. We have just established (3.2) and (3.3). The next goal will be to pass this
inequality to the limit.

Step 2: A priori estimates. We use (3.3) together with (C3) so that for t ∈ σn

E(t, qn(t)) + Diss(Pn, zn; 0, t) ≤ E(0, q0) +

∫ t

0

λ(s)(1 + E(s, qn(s)))ds.
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Using Gronwall’s inequality and uniform continuity of E(·, q) guaranteed by (2.31) we can establish
the bound

E(t, qn(t)) ≤ (1 + E(0, q0)) exp

(∫ t

0

λ(s)ds

)
≤ C

for every t ∈ [0, T ]. This leads to

(3.22) sup
t∈[0,T ]

E(t, qn(t)) + Diss(Pn, zn; 0, T ) ≤ C.

Step 3: Selection of subsequences. The dissipation distance satisfies (C1) and (C2) and due
to (C4) the sequence (Pn, zn) takes values in a compact subset of P × Z. Moreover, its dissipation
is bounded uniformly in n. Therefore we can use Helly’s selection principle [29, Theorem 2.1.24] and
find a subsequence and functions P, z : [0, T ]→ P×Z, δ : [0, T ]→ [0, C] such that the following hold:

∀t ∈ [0, T ] : Pnk
(t) ⇀ P (t) in P,(3.23a)

∀t ∈ [0, T ] : znk
(t) ⇀ z(t) in Z,(3.23b)

∀t ∈ [0, T ] : δnk
(t) := Diss(Pnk

, znk
; 0, t)→ δ(t),(3.23c)

∀s, t ∈ [0, T ] : Diss(P, z; s, t) ≤ δ(t)− δ(s).(3.23d)

Let us define the sequence

θn(t) := −〈 ˙̀(t), yn(t)〉.
It is easy to check that θn is bounded in L1(0, T ) and equi integrable. Indeed, for every interval
I ⊂ [0, T ] : ∫

I

|θn(s)|ds ≤
∫
I

‖ ˙̀(s)‖Y∗‖yn(s)‖Yds ≤ C
∫
I

‖ ˙̀(s)‖Y∗ds

and, since ˙̀ ∈ L1(0, T ;Y∗), for every ε > 0 there exists a η > 0 such that if |I| < η we have∫
I

‖ ˙̀(s)‖Y∗ds < ε/C.

Thus, we can use Dunford-Pettis Theorem [14] or [29, Theorem B.3.8] and find a further (not relabeled)
subsequence such that

(3.24) θnk
⇀ θ weakly in L1(0, T ).

Notice that we did not construct a limit for the deformation yet because we are only able to use
Helly’s selection principle on the dissipative variables. We can still use the fact that yn is controlled
by the energy for every fixed time t.
We define the limit deformation y : [0, T ] → Y as follows. Fix a time t ∈ [0, T ] and use (C4) and
(3.22) to select a t-dependent subsequence (N t

k)k∈N of (nk)k∈N such that

θNt
k
(t)→ lim sup

k→∞
θnk

(t) =: θsup(t)

and yNt
k
(t) converges weakly to some limit ỹ in Y. We now define

y(t) := ỹ

Notice that such ỹ may not be unique and may depend on the chosen subsequence. From definition
we immediately see that

(3.25) θsup(t) = lim
k→∞

θNt
k
(t) = lim

k→∞
−〈 ˙̀(t), yNt

k
(t)〉 = −〈 ˙̀(t), y(t)〉

for every t ∈ [0, T ].

Step 4: Stability. We aim to show that the limit evolution defined in Step 3 is stable.
We define τ tn := max{τ ∈ σn : τ ≤ t}. Then by definition τ tn → t, qn(t) ⇀ q(t) as n = N t

k → ∞ and
qn(t) = qn(τ tn) ∈ S(τ tn) for every n ∈ N (see the definition of qn in step 1). Therefore q(t) ∈ S(t) by
(C5).
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In the next two steps we will show that the limit also satisfies the energy equality (E) so that
q(t) := (y(t), P (t), z(t)) is an energetic solution.

Step 5: Upper energy estimate. Let t ∈ [0, T ] be fixed and τ tn as in Step 4. The goal here is to
pass to the limit in (3.3) for s = 0 which reads

(3.26) E(τ tn, qn(τ tn)) + Diss(Pn, zn; 0, τ tn) ≤ E(0, q0)−
∫ τt

n

0

〈 ˙̀(r), yn(r)〉dr.

First we remark that qn(τ tn) = qn(t) and Diss(Pn, zn; 0, τ tn) = Diss(Pn, zn; 0, t) because Pn, zn are
constant on (τ tn, t]. Moreover, using (3.24) we get that

lim
k→∞

∫ τt
nk

0

−〈 ˙̀(r), ynk
(r)〉dr =

∫ t

0

θ(r)dr.

Let us remark that for a stable state q = (y, P, z) ∈ S(t) we have

(3.27) E(t, q) = inf {E(t, ỹ, P, z) : ỹ ∈ Y} .

We claim that

(3.28) E(t, q(t)) ≤ lim inf
k→∞

E(τ tk, qnk
(t)).

To see this we first notice that E is continuous in time and consider a subsequence such that

lim inf
k→∞

E(τ tk, qnk
(t)) = lim

l→∞
E(τ tnkl

, qnkl
(t)),

with qnkl
(t) ⇀ q̃ = (ỹ, P (t), z(t)). As qnkl

(t) ∈ S(τ tnkl
) we know that q̃ ∈ S(t). By (3.27) we deduce

now that E(t, q̃) = E(t, q(t)). This shows (3.28).

We now use (3.23c), (3.23d), (3.26) and (3.28) to get

E(t, q(t)) + Diss(P, z; 0, t) ≤ lim inf
k→∞

E(τ tnk
, qnk

(t)) + lim
k→∞

Diss(Pnk
, znk

; 0, t)

≤ lim sup
k→∞

E(τ tnk
, qnk

(t)) + lim
k→∞

Diss(Pnk
, znk

; 0, t)

≤ E(0, q0) +

∫ t

0

θ(r)dr(3.29)

≤ E(0, q0) +

∫ t

0

θsup(r)dr

= E(0, q0)−
∫ t

0

〈 ˙̀(r), y(r)〉dr.

Step 6: Lower energy estimate. Take any partition σ = {0 = r0 < r1 < · · · < rN = t} ∈ Π of
[0, t]. By the stability of the limit (step 4) one has that

E(ri−1, q(ri−1)) ≤ E(ri, q(ri))− E(ri, q(ri)) + E(ri−1, q(ri)) +D(q(ri−1), q(ri))

Summing this over i = 1, . . . , N we get

(3.30) E(t, q(t))− E(0, q(0)) +

N∑
i=1

D(q(ri−1), q(ri)) ≥ −
N∑
i=1

∫ ri

ri−1

〈 ˙̀(r), y(ri)〉dr.

We can use
N∑
i=1

D(q(ri−1), q(ri)) ≤ Diss(P, z; 0, t)

to estimate the left hand side of (3.30) as desired. It remains to show that there exists a sequence of
partitions

σn = {0 = rn0 < rn1 < · · · < rnN(n) = t} ∈ Π, n ∈ N
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such that

(3.31)

∫ t

0

〈 ˙̀(r), y(r)〉dr = lim
n→∞

N(n)∑
i=1

∫ rni

rni−1

〈 ˙̀(r), y(rni )〉dr.

The difficulty here is that we cannot assume y to be measurable in time. On the other hand 〈 ˙̀(·), y(·)〉
is integrable and we can find a sequence of partitions such that the integral is approximated by its
Riemann sums [17], i.e.

(3.32)

∫ t

0

〈 ˙̀(r), y(r)〉dr = lim
n→∞

N(n)∑
i=1

〈 ˙̀(rni ), y(rni )〉(rni − rni−1).

Now, in order to get (3.31), we have to prove that

(3.33) lim
n→∞

∣∣∣∣∣∣
N(n)∑
i=1

∫ rni

rni−1

〈 ˙̀(r)− ˙̀(rni ), y(rni )〉dr

∣∣∣∣∣∣ = 0.

Let us define ˙̀
n(r) := ˙̀(rni ) for r ∈ (rni−1, r

n
i ]. Since

sup{‖y(r)‖Y : r ∈ [0, T ]} ≤ C,
to show (3.33), thanks to the uniform estimate of y, it suffices that

(3.34) lim
n→∞

∫ t

0

‖ ˙̀(r)− ˙̀
n(r)‖Y∗dr = 0.

To show this we use a refined version of [13, Lemma 4.12] which states the approximation of Lebesgue
integrals by Riemann sums.

Lemma 3.7. Let s < t. Assume we have a countable family of Bochner integrable functions

fk : [s, t]→ Xk, k ∈ N,

where Xk are Banach spaces. Then there exists a k-independent sequence of partitions

σn = {s = rn0 < rn1 < · · · < rnN(n) = t}, n ∈ N,

with fineness ∆(σn)→ 0 such that

lim
n→∞

N(n)∑
i=1

∫ rni

rni−1

‖fk(r)− fk(rni )‖dr = 0

for every k ∈ N.

The proof can be found in [13, Lemma 4.12] where the strategy of proof for this refined lemma is

outlined in [13, Remark 4.13]. We use this lemma for the two functions 〈 ˙̀(·), y(·)〉 : [s, t] → R and
˙̀ : [s, t]→ Y∗ to deduce (3.32) and (3.34).

Step 7: Conclusion. A combination of (3.29) with the lower estimate (step 6) gives the following
chain of inequalities

E(t, q(t)) + Diss(P, z; 0, t) ≤ lim inf
k→∞

E(t, qnk
(t)) + lim

k→∞
Diss(Pnk

, znk
; 0, t)

≤ lim sup
k→∞

E(t, qnk
(t)) + δ(t)

≤ E(0, q0) +

∫ t

0

θ(r)dr

≤ E(0, q0)−
∫ t

0

〈 ˙̀(r), y(r)〉dr

≤ E(t, q(t)) + Diss(P, z; 0, t).
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We hence deduce that equality holds everywhere, implying that

θ(r) = θsup(r) = −〈 ˙̀(r), y(r)〉 for a.e. r ∈ [0, T ],

and
Diss(Pnk

, znk
; 0, t)→ Diss(P, z; 0, t),

E(t, qnk
(t))→ E(t, q(t)).

It remains to show (3.4). We know that θnk
⇀ θ in L1(0, T ) and θ(t) = lim supk→∞ θnk

(t) for a.e.
t ∈ [0, T ]. Now,

(3.35) ‖θnk
− θ‖L1 =

∫ T

0

(θ − θnk
)dt+ 2

∫ T

0

(θnk
− θ)+dt

where f+ := max{0, f}. The first integral converges to zero by weak convergence and the second
integrand satisfies 0 ≤ (θnk

− θ)+ ≤ Θk := supl≥k θnl
− θ. Due to equiboundedness of θnk

in L1

we know that Θ1 ∈ L1(0, T ). Therefore we can use Levi’s Monotone Convergence Theorem for the
monotone decreasing sequence Θk and conclude that also the second term in (3.35) converges to zero,
entailing (3.4).
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