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Abstract

Pushing a little forward an approach proposed by Villani [9], we are
going to prove that in the Riemannian setting the condition ∇2f < g implies
that f is c-concave with respect to the quadratic cost as soon as it has a
sufficiently small C1-norm. From this, we deduce a sufficient condition for
the optimality of transport maps.

1 Introduction

Let us briefly recall the optimal transport problem on Rn with quadratic cost
c(x, y) = 1

2
d2(x, y). Given two probability measures µ, ν ∈ P2(Rn) we want to find

a map T : Rn → Rn such that T#µ = ν and the quantity 1
2

´
|x − T (x)|2 dµ(x) is

minimized.
It is very well-known (see [4]) that, as soon as µ and ν are absolutely continuous

with respect to the Lebesgue measure, an optimal map always exists. Moreover
a map such that T#µ = ν is optimal if and only if T is the gradient of a convex
function. This striking characterization is a peculiarity of the quadratic cost.

The optimal transport problem has been thoroughly studied in the last three
decades (see the monographs [9, 1, 8]) and for instance a fruitful generalization
was the replacement of the space Rn with a generic Riemannian manifold. In the
Riemannian setting the turning point of the theory is given by McCann’s Theo-
rem [6], that generalizes the theorem of Brenier to a general compact Riemannian
manifold. Denoting with M the manifold, McCann proves that there exists an op-
timal map T : M →M and furthermore the map T can be written as exp(−∇f),
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where f : M → R is a suitable c-concave function. A c-concave function, on a
general space X endowed with a symmetric cost function c : X × X → R, is a
function f : X → R such that there exists a family of (xi, αi)i∈I ⊆ X × R such
that it holds

f(x) = inf
i∈I

c(x, yi)− αi .

Of course this is very similar to the definition of concave functions as the infimum of
linear functions. Indeed in the Euclidean space, with cost c = 1

2
|x−y|2, a function

f is c-concave if and only if 1
2
x2 − f(x) is convex. It is therefore very natural

to ask ourselves whether this equivalence can be proven also in the Riemannian
setting. The natural generalizazion, on a compact Riemannian manifold (M, g),
should look like:

False Theorem (Näıve Statement). A function f : M → R is c-concave if and
only if ∇2f ≤ g.

Though, this statement does not take into account the fact that the manifold
is curved and indeed it turns out being false. We show a counterexample in the
last section of this document.

On the other hand, the only result known in literature that goes in this direction
is the following, stated by Villani in his monograph [9] as Theorem 13.5:

Theorem (Villani). Let M be a compact Riemannian manifold. Then, there is
ε > 0 such that any function ψ ∈ C2

c (M) satisfying ‖ψ‖C2
b
≤ ε is d2/2-concave.

It is immediately clear that such a statement seems not optimal as instead
of ∇2f ≤ g it asks that ∇2f is very small. Our main goal is proving a true
version of the false theorem stated above. The approach is exactly the same as the
one adopted by Villani, but instead of using compactness arguments, we deduce
explicit inequalities that depend on natural quantities associated to the manifold
(curvature, injectivity radius and diameter). The exact statement of our main
theorem is:

Theorem 1.1 (Main Theorem). Let (M, g) be a compact Riemannian manifold
with sectional curvature bounded from above by K ≥ 0. Then there exists a con-
stant C∗ = C∗(inj(M), K, diam(M)) > 0 such that, for any ε > 0, if f ∈ C2(M,R)
is a function with

‖∇f‖∞ ≤ min

(
ε

3K diam(M)
, C∗

)
and ∇2f ≤ (1− ε)g

then f is c-concave.
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2. Notations

The way this theorem should be intended is that if g−∇2f . ‖∇f‖∞ · g, then
f is c-concave.

As a consequence of the main theorem, we give a sufficient condition for a map
T : M → M to be optimal from µ to T#µ. The need for such an optimality
condition arose naturally while trying to simplify the approach to the random
matching problem proposed in [3]. The simplified approach will appear in the
forthcoming paper [2] coauthored with Ambrosio.

Acknowledgment. The author warmly thanks professor L. Ambrosio for con-
structive criticism of the manuscript and for several comments and suggestions.

2 Notations

Given a compact Riemannian manifold (M, g), let us fix the following notation:

• Let d : M×M → [ 0, ∞ ) the Riemannian distance onM and exp : TM →M
the exponential map.

• Let K be the supremum of the positive part of the sectional curvature.

• Let inj(M) > 0 be the injectivity radius of the exponential map on M .

• Let diam(M) be the diameter of the manifold M . We will use that for any
Lipschitz function f : M → R, it holds

sup f − inf f ≤ diam(M)‖∇f‖∞ .

The constant diam(M) is sharp, indeed if f( · ) = d( · , x̄) equality can be
attained for some x̄ ∈M .

Throughout this notes we will implicitly assume that the cost c is given by
c(x, y) = 1

2
d2(x, y). Hence, when we say that a function f is c-concave we mean

that it can be written as the infimum of functions of the form x 7→ 1
2
d2(x, xi)− ai,

where xi ∈ X, ai ∈ R and i varies in a suitable set of indexes.

3 Main Theorem

Exploiting the technical results that we will prove later, the proof of the main
theorem becomes straight-forward.

Proof of the Main Theorem. This is an easy consequence of Proposition 4.5 (Tech-
nical Version of the Main Theorem).

3



Remark 3.1. As said in the introduction, the previous theorem should be seen as
a generalization of the trivial fact that if a function f : Rn → R satisfies D2f ≤ 1

then x 7→ 1
2
x2 − f is convex (indeed on the Euclidean space this convexity is

equivalent to the c-concavity of f).
For a couple of reasons such a statement is harder to prove on a Riemannian

manifold. First of all the exponential map need not to be injective globally and
that is why we need an additional bound on the gradient. Furthermore, in positive
curvature, the Hessian of the square of the distance can be strictly smaller than
the metric and consequently we will need to ask a stricter condition on the Hessian
of the function itself (i.e. we need ∇2f strictly smaller than the metric).

Remark 3.2. The theorem can be easily extended to the case where f is compactly
supported (and the manifold is non-compact).

Remark 3.3. Under the hypothesis that ‖∇f‖∞ is small enough, the requirement
∇2f < (1+ ε)g is necessary for f to be c-concave. This is a byproduct of the proof
of Proposition 4.5 (Technical Version of the Main Theorem). Indeed, using the
notation of that proof, if the global oscillation of f is small enough, the choice of
x∗ = expx(−∇f(x)) is mandatory (as we will see in the last section). Therefore it
must hold ∇2h(x) ≥ 0, and that implies the desired bound on the Hessian.

Question. Is the assumption ‖∇f‖∞ = O(ε) optimal?

The following corollary, deeply linked to McCann’s Theorem (see [6]), is the
reason behing our investigation of c-concave functions.

Corollary 3.4 (Optimality Condition). Let M be a compact Riemannian man-
ifold. If f ∈ C2(M) satisfies the requirements of Theorem 1.1 (Main Theorem)
then, for any probability measure µ ∈ P(M), the map T = exp(−∇f) is optimal
from µ to T#µ with respect to the quadratic cost c = 1

2
d2.

Proof. This is a consequence of the strategy adopted in the proof of Theorem 1.1
(Main Theorem). Indeed we will prove that

1

2
d2(x, expx(−∇f(x)))− f(x) ≤ 1

2
d2(y, expx(−∇f(x)))− f(y)

for any x, y ∈ M . Given a set of n points (xi)1≤i≤n and a permutation σ ∈ Sn,
summing n times the latter inequality we obtain

n∑
i=1

1

2
d2(xi, expxi(−∇f(xi))) ≤

n∑
i=1

1

2
d2(xi, expxσ(i)(−∇f(xσ(i))))

that proves the c-monotonicity of the graph of T and therefore the optimality of
T .
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4. Technical Propositions and Proofs

Remark 3.5. The previous corollary could also be deduced directly from the c-
concavity of the function f using an approach similar to the one used to prove
McCann theorem. Anyway we have chosen to give a simpler proof that exploits
the equivalence between optimality and c-monotonicity.

4 Technical Propositions and Proofs

Let us start stating a well-known characterization of c-concavity.

Lemma 4.1. Let X be a metric space and let c : X × X → R be a symmetric
lower-semicontinuous cost. A function f : X → R is c-concave if and only if for
any x ∈ X there exists x∗ ∈ X such that x ∈ arg min{c(x∗, · )− f( · )}.

Proof. It is an easy consequence of the fact that f is c-concave if and only if for
any x ∈ X there exists x∗ ∈ X such that f(x) + f ∗(x∗) = c(x, x∗).

The two following statements are rather known results in Riemannian geometry.
The first one is a version of the Hessian comparison that compares a manifold
with the constant curvature model, whereas the second is a lower-bound for the
convexity radius of a manifold. As a corollary of the Hessian comparison we will
obtain a quantitative estimate on the Hessian of the square of the distance.

It is not restrictive to assume that K > 0, and indeed we are going to do it
in the following statements, since when K = 0 all the results can be recovered
through a limit procedure.

Theorem 4.2 (Hessian Comparison). Let us fix a point x ∈M and define r(y) :=
d(x, y). At any point y ∈M such that d(x, y) ≤ min( π√

K
, inj(M)) it holds

∇2r ≥
√
K cos(

√
Kr)

sin(
√
Kr)

(g − dr ⊗ dr) .

Proof. An equivalent, albeit not completely identical, statement can be found at
[7, p. 342].

Corollary 4.3. With the same assumptions of Theorem 4.2 (Hessian Comparison),
if we also have r < 1√

K
, then it holds

1

2
∇2(r2) ≥ (1−Kr2)g .

Proof. Applying the usual calculus rules and Theorem 4.2 (Hessian Comparison)
we get

1

2
∇2(r2) = dr ⊗ dr + r∇2r ≥ α(

√
Kr)g + (1− α(

√
Kr)) dr ⊗ dr ,
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where α : [ 0, ∞ )→ R is the function given by α(t) = cos(t)t
sin(t)

. The identity |∇r| = 1
implies dr⊗ dr ≤ g, therefore we can continue the chain of inequalities and obtain

1

2
∇2(r2) ≥

(
α(
√
Kr)− |1− α(

√
Kr)|

)
g .

Hence the thesis follows if we show that for any 0 ≤ t < 1 it holds

|1− α(t)| ≤ t2

2
.

We leave the proof of this elementary inequality to the reader.

Theorem 4.4 (Convexity Radius Lower-Bound). For any point x ∈ M and δ ≤
min

(
inj(M)

2
, π
2
√
K

)
, the ball B(x, δ) is geodesically convex1.

Proof. It can be found at [5, p. 404].

Proposition 4.5 (Technical Version of the Main Theorem). Given a C2 func-
tion f : M → R, let us denote δ =

√
2 diam(M)‖∇f‖∞ + ‖∇f‖2∞. If δ ≤

min( inj(M)
2

, 1√
k
) and ∇2f ≤ (1−Kδ2)g, then f is c-concave.

Proof. The proof of this proposition is heavily inspired by the proof of Theorem
3.15 [9]. Indeed, we are making quantitative the approach proposed by Villani
with the help of the Hessian Comparison Theorem.

Let us fix x ∈ M and define x∗ = expx(−∇f(x)). We are going to prove that
x is a minimizer of the function h(y) := 1

2
d2(x∗, y)− f(y). The c-concavity follows

thanks to Lemma 4.1.
More specifically we will show that the three following claims hold:

1. If y 6∈ B(x∗, δ) then h(y) ≥ h(x).

2. It holds ∇h(x) = 0.

3. In the ball B(x∗, δ) the function h is convex (i.e. ∇2h ≥ 0).

These three claims imply that x is a global minimizer as we can restrict ourselves
in the ball B(x∗, δ) thanks to 1. and then x is a critical point of a convex function
in a convex domain. The convexity of B(x∗, δ) is a consequence of the assumption
on δ thanks to Theorem 4.4 (Convexity Radius Lower-Bound).

Let us prove the three claims separately:

1A domain D ⊆M is geodesically convex if for any x, y ∈ D there exists a geodesic of length
d(x, y) that connects the two points and is completely contained in D.
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5. A Counterexample to the Näıve Statement

Proof of 1. If d(x∗, y) ≥ δ we have

h(y)− h(x) ≥ 1

2
d2(x∗, y)− (sup f − inf f)− 1

2
‖∇f‖2∞

≥ 1

2
δ2 − diam(M)‖∇f‖∞ −

1

2
‖∇f‖2∞ ≥ 0 .

Proof of 2. The function d2(x∗, · ) is smooth in x since d(x, x∗) = |∇f(x)| ≤ δ <
inj(M). Hence also the function h is smooth and its gradient is

∇h(x) = γ′(1)−∇f(x) .

where γ : [ 0, 1 ]→M is the constant speed geodesic from x∗ to x. From the
definition of x∗ it follows that γ′(1) = ∇f(x) and therefore ∇h(x) = 0.

Proof of 3. Our assumptions on δ are exactly those needed to apply Corol-
lary 4.3, hence, denoting r(y) = d(x∗, y), we get

∇2h =
1

2
∇2(r2)−∇2f ≥ (1−Kr2)g − (1−Kδ2)g ≥ 0

that is exactly what we had to show.

5 A Counterexample to the Näıve Statement

In this section we show that the condition ∇2f ≤ g is not sufficient of the c-
concavity of f . We will find a counterexample when the Riemannian manifold is
the 2-dimensional sphere S2.

Let us start by giving a necessary condition for being c-concave.

Proposition 5.1. There exists a constant δ = δ(M) such that, for any f ∈ C1(M)
with osc(f) ≤ δ, the following statements are equivalent:

1. f is c-concave;

2. for any x ∈M , it holds x ∈ arg min 1
2
d2(x∗, y)−f(y) where x∗ = expx(−∇f).

Proof. The implication 2. =⇒ 1. is a straightforward consequence of Lemma 4.1.
For the other implication, let us use again Lemma 4.1 to get that for any

x ∈ M there exists x∗ ∈ M such that x ∈ arg min 1
2
d2(x∗, y) − f(y). Thanks to

our hypothesis on ‖f‖∞ we can easily get that any such x∗ must be near to x and
therefore the distance from x∗ has to be smooth at x. Hence, given that in x the
function 1

2
d2(x∗, y) − f(y) has a minimum, its gradient must be null. Therefore,

computing the gradient of the distance function it is easy to prove that it must
hold x∗ = expx(−∇f).
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Our strategy is now to negate that x ∈ arg min 1
2
d2(x∗, y)− f(y) looking at the

Hessian. Indeed we will build a function such that ∇2f ≤ g but the Hessian of
1
2
d2(x∗, y)− f(y) is not positive-definite at y = x.

From now on we will always work on S2 (of course g will denote the Riemannian
metric on S2). The main reason behind this choice is that in this setting the
inequality stated in Theorem 4.2 (Hessian Comparison) becomes an identity2. Let
us state explicitly the said identity:

Proposition 5.2 (Hessian on the Sphere). Let us fix a point x ∈ S2 and define
r(y) := d(x, y). At any point y ∈ S2 such that 0 < d(x, y) < π, it holds

∇2r = cot(r) (g − dr ⊗ dr)

and

∇2

(
1

2
r2
)

= r cot(r) · g + (1− r cot(r)) dr ⊗ dr .

Proposition 5.3. Let f : S2 → R be a C2(S2) function such that ‖f‖∞ is as small
as asked in Proposition 5.1. If there exists an x ∈ S2 such that ∇f(x) 6= 0 and
∇2f(x) = g, then f is not c-concave.

Proof. Let us assume that f is c-concave. Hence we know from Proposition 5.1
that the function y 7→ 1

2
d2(x∗, y)− f(y) has a global minimum at y = x. Hence it

must hold that the Hessian of that function is positive semi-definite at x. Therefore
it must hold

∇2

(
1

2
d2(x∗, y)

)
|y=x ≥ g .

However, thanks to Proposition 5.2 (Hessian on the Sphere), it is easy to see
that such inequality does not hold if x∗ 6= x and that shows the contradiction as
x∗ = expx(−∇f) and ∇f(x) 6= 0.

It remains to build a function f : S2 → R such that:

• ‖f‖∞ is arbitrarily small.

• ∇f(N) 6= 0, where N is the north pole of the sphere.

• ∇2f(N) = g.

• Everywhere it holds ∇2f ≤ g.

2We don’t really need to work in dimension 2 instead of general dimension, but we believe it
is much easier to follow a reasoning on S2 than on a higher dimensional sphere.
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Such a function would be a counterexample to the “näıve theorem” stated in the
introduction as it could not be c-concave thanks to Proposition 5.3. We construct
our example as a linear combination f = f1+εf2 where ε > 0 is a sufficiently small
constant and f1, f2 are such that:

• ‖f1‖∞ is arbitrarily small.

• ∇2f1 ≤ g with equality only in N .

• ∇f1(N) = 0.

• ∇f2(N) 6= 0, ∇2f2(N) = 0 and ∇2f2 ≤ 0 in a neighbourhood of N .

It is obvious that if ε is sufficiently small then f = f1 + εf2 satisfies all our
requirements.

We are left to prove the existence of f1 and f2 with the said properties. What we
ask on f2 is almost nothing and therefore we leave it to the reader to convince him-
self that such a function exists. A good choice for f1 is given by y 7→ ρ

(
1
2
d2(N, y)

)
where ρ : R→ R satisfies ρ(t) = t in a neighbourhood of 0 and ρ becomes constant
as soon as t > ε for a certain ε > 0. We are not going to perform the computations,
but we remark that they are pretty easy exploting once again that the inequality
given by the Hessian comparison is an identity on the sphere.
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