
On some notions of tangent space to a measure
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Abstract. We consider some definitions of tangent space to a Radon measure
µ on IRn which have been given in the literature. In particular we focus our
attention on a recent distributional notion of tangent vector field to a measure
and we compare it to other definitions coming from Geometric Measure Theory,
based on the idea of blow–up. After showing some classes of examples, we prove
an estimate from above for the dimension of the tangent spaces and a rectifiability
theorem which also includes the case of measures supported on sets of variable
dimension.



1. Introduction

We study some different notions of tangent space to a measure µ on IRn, with special
attention to the one given by Bouchitté, Buttazzo and Seppecher in [1].
We compare this definition with others usually employed in Geometric Measure Theory,
based on the fundamental idea of blow–up of the measure µ. One is the definition of
approximate tangent space to a measure [8] which generalizes the notion of approximate
tangent space to a rectifiable subset of IRn; another, given by Preiss, identifies the tangent
space to a measure with a set of “tangent measures” (see [7], [4]).
We will denote respectively by Tµ, Pµ and Tan(µ) the tangent spaces to a measure defined
in [1], [8], [7]. While the last two are very useful to study geometric properties of a measure
(in particular they allow rectifiability properties of µ to be deduced from its behaviour on
the balls of IRn), the main interest of the definition proposed in [1] is in applications to
variational problems. For instance, in the same paper the authors give a model for the
elastic energy of low dimensional structures, involving this notion of tangent space to a
measure and a related definition of Sobolev–type spaces.
Another field where these tools turn out to be useful is shape optimization. It is quite
natural to work in the class of measures, since in many interesting cases the minimizing
sequences do not converge to a set. See [2] for an example of this approach.
An outline of the paper is as follows.
In Section 2 we recall the different definitions and state some comparison results between
them. In particular we prove the inclusion Tµ ⊆ Pµ (see Lemma 2.4), which in some cases
may be strict, and a useful decomposition lemma for the measures of Tan(µ) showing that
all such measures are the product of a Hausdorff measure on Tµ with an arbitrary measure
on the orthogonal complement of Tµ (see Lemma 2.6). Both these results are proved by
means of blow–up techniques.
In Section 3 we consider some interesting classes of examples, some of them “regular”, in
which Tµ coincides with Pµ (see Examples 1-3), others “pathological”, like self–similar sets
for which Tµ reduces to zero (see Examples 4 and 5). In this contest some relations with
normal currents and rectifiable varifolds are proved.
In Section 4 we first prove an estimate from above for the dimension of Tµ, then we establish
a rectifiability theorem based on the behaviour of tangent spaces Tµ. Our estimate for the
dimension of Tµ says, roughly speaking, that it cannot be greater than the Hausdorff
dimension of the support of µ, while the rectifiability theorem, which is deduced from
a criterion of Preiss, also includes the case of a sum of Hausdorff measures of variable
dimension, each one concentrated on a different rectifiable set. This is possible by a nice
property of the tangent space Tµ which we want finally to point out: its dimension may
depend on the point of the support of µ, differently from what happens for the approximate
tangent space Pµ.
Throughout the paper, all the measures considered will be positive Radon measures on
IRn, unless otherwise stated.
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2. Comparison results

Different notions of tangent space to a Radon measure have been proposed in the literature;
we focus our attention mainly on the one which has been recently introduced by Bouchitté,
Buttazzo and Seppecher in [1]. We slightly modify their definition by considering a larger
set of admissible tangent fields: we consider the space of vector fields on IRn given by

Xµ = {Φ : IRn → IRn : |Φ| ∈ L1
loc(µ) ,div(Φµ) ∈M} ,

where the divergence operator is in the distributional sense and M denotes the set of
Radon measures on IRn. We make the following

Definition 2.1. For µ–a.e. x ∈ IRn, the tangent space to µ is given by

Tµ(x) = µ− ess
⋃
{Φ(x) : Φ ∈ Xµ} .

For the existence and properties of the µ–essential union, we refer to [9]. We recall that,
by definition, Tµ is the only µ–measurable, closed valued multifunction on IRn such that

i) Φ ∈ Xµ =⇒ Φ(x) ∈ Tµ(x) for µ–a.e. x ∈ IRn;

ii) for any other µ–measurable, closed valued multifunction Σ on IRn satisfying i), i.e.
Φ ∈ Σ =⇒ Φ(x) ∈ Σ for µ–a.e. x ∈ IRn, we have Tµ(x) ⊆ Σ(x) for µ–a.e. x ∈ IRn.

We also point out that, for every measure µ, the vector space Tµ(x) is well–defined up to
a µ–negligible set, and its dimension as a linear subspace of IRn may depend on the point
x.
We now aim to relate Definition 2.1 to the notions of tangent space to a measure given by
Simon [8] and by Preiss [7], both based on the crucial idea of blow–up.
For any fixed x0 ∈ IRn and any positive real number ρ, let us denote by µx0,ρ the Borel
measure on IRn defined by µx0,ρ(B) = µ(x0 + ρB) for every Borel subset B of IRn.

Definition 2.2. Let Pµ = Pµ(x0) be a k–dimensional subspace of IRn, with k ≤ n. Then
Pµ is said to be the approximate tangent space for µ at x if there exists a positive constant
θ = θ(x0), which is called the multiplicity at x0, such that, when ρ converges to zero

(2.1)
1

ρk
µx0,ρ ⇀ θ(x0)Hk Pµ(x0)

in the vague topology on measures.

For a general Radon measure µ, the existence µ–almost everywhere of Pµ = Pµ(x0) is not
guaranteed. We have the following fundamental characterization of the measures admitting
a k–dimensional approximate tangent space µ–almost everywhere (see [8], Theorem 11.8).

Theorem 2.3. The measure µ has a k–dimensional approximate tangent space Pµ(x) at
µ–a.e. x ∈ IRn if and only if µ = θHk M , where M is a countably k–rectifiable subset of
IRn and θ is a nonnegative Hk–measurable function on IRn.

2



A more general rectifiability criterion based on tangent spaces Tµ will be proved in Sec-
tion 4. For the moment we state a comparison result between definitions 2.1 and 2.2, which
is proved analogously to Lemma 5.2 of [1].

Lemma 2.4. Suppose that Pµ = Pµ(x) associates to µ–a.e. point x the k–dimensional
approximate tangent space Pµ(x) to µ at x. Then

(2.2) Tµ(x) ⊆ Pµ(x) for µ–a.e. x ∈ IRn .

Proof. For the minimality property ii) of Tµ, it is sufficient to prove that, for every
tangent field Φ, we have Φ(x) ∈ Pµ(x) for µ–a.e. x ∈ IRn.
Let Φ ∈ Xµ; we observe that Pµ(x)⊥ is spanned by{∫

Pµ(x)

∇ψ(y) dHk(y) : ψ ∈ D(B)

}
,

where B is the unit ball of IRn. Thus, we only need to prove that, for µ–a.e. x ∈ IRn,

Φ(x) ·
∫
Pµ(x)

∇ψ(y) dHk(y) = 0 ∀ψ ∈ D(B) .

We can suppose that x is a Lebesgue point for Φ with respect to µ and that both µ
and the measure m = |div(Φµ)| have finite k–dimensional density at x (by Theorem 2.3,

µ = θHk M). Let us set ψρ(y) = ψ
(
y−x
ρ

)
and M = max

B
|ψ|; then

θ(x)

∣∣∣∣∣Φ(x) ·
∫
Pµ(x)

∇ψ(y) dHk(y)

∣∣∣∣∣ = lim
ρ→0

1

ρk

∣∣∣∣∣Φ(x) ·
∫
Bρ(x)

∇ψ
(
y − x
ρ

)
dµ(y)

∣∣∣∣∣
= lim
ρ→0

ρ

ρk

∣∣∣∣∣
∫
Bρ(x)

Φ(y) · ∇ψρ(y) dµ(y)

∣∣∣∣∣
= lim
ρ→0

ρ

ρk

∣∣∣∣∣
∫
Bρ(x)

ψρ(y) d(div(Φµ))(y)

∣∣∣∣∣
≤ lim
ρ→0

ρM
m(Bρ(x))

ρk

and the last limit is zero because the k–dimensional density of m at x is finite.

Next we want to show the strict relation between the linear space Tµ and the quite general
concept of tangent measure for µ at a point x0, studied by Preiss in [7] (see also [4]).
He considers all the possible limits of sequences given by blowing up µ around x0. More
precisely, he calls a measure ν on IRn a tangent measure for µ at x0 if ν is nonzero and if
there exist two sequences of positive real numbers λi and ρi (with ρi converging to zero)

such that
µx0,ρi
λi

converge to ν in the vague topology on measures.
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Adopting this definition, the set of tangent measures for µ at x is shown to be non–empty
for µ–a.e. x (see [7], Theorem 2.5). Therefore, we prefer to take as normalization constants
λi = µ(Bρi(x

0)), instead of arbitrary positive numbers. In this way the mass on the unit

ball B of the measure
µx0,ρi

µ(Bρi (x
0)) is equal to one for every i, assuring the existence of a

weakly convergent subsequence.

Definition 2.5. We say that a measure ν on the unit ball B of IRn belongs to the set
Tan(µ, x) of tangent measures for µ at the point x0, if there exists a sequence of positive
real numbers ρi converging to zero such that, when i→∞,

(2.3)
µx0,ρi

µ(Bρi(x
0))

⇀ ν

as measures.

We can prove a structure result for measures belonging to Tan(µ, x), showing that all such
measures are of product type.

Lemma 2.6. For µ–a.e. x ∈ IRn, any measure ν ∈ Tan(µ, x) is of the form

(2.4)
(
Hk(x)
Tµ(x) × σ

)
B ,

where k(x) is the dimension of Tµ(x), where Hk(x)
Tµ(x) is the k(x)–dimensional Hausdorff

measure on Tµ(x), and σ is a measure of locally finite mass on Tµ(x)⊥.

Proof. Let Lµ(x) be the set of vectors v ∈ IRn such that every measure ν ∈ Tan(µ, x) can

be decomposed as a product
(
H1
〈v〉 × σ

)
B, where H1

〈v〉 is the one–dimensional Hausdorff

measure on the line 〈v〉 and σ is a measure on v⊥.
The conclusion of the lemma is equivalent to Tµ(x) ⊆ Lµ(x) for µ–a.e. x. So, by using
the minimality property ii) of Tµ, it is enough to show that every tangent field Φ satisfies
µ–almost everywhere Φ(x) ∈ Lµ(x).
Let Φ ∈ Xµ, and let us suppose that DΦ(x)ν = 0 for every measure ν ∈ Tan(µ, x), where
DΦ(x)ν is intended in the distributional sense, i.e.

〈DΦ(x)ν, ψ〉 =

∫
B

∂ψ(y)

∂Φ(x)
dν(y) ∀ψ ∈ D(B) ;

then, by standard regularization it can be easily checked that Φ(x) ∈ Lµ(x).
It remains to prove that for Φ ∈ Xµ and ν ∈ Tan(µ, x), at µ–a.e. x we have DΦ(x)ν = 0,
that is,

Φ(x) ·
∫
B

∇ψ(y) dν(y) = 0 ∀ψ ∈ D(B) .

Such equality can be performed by the same argument used in the proof of Lemma 2.4.
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3. Examples

Example 1 (Lipschitz manifolds).

We improve a result of [1], by showing that if µ is equal to Hk on a k–dimensional manifold
M , then Tµ coincides with the classical tangent space, even if M is Lipschitz rather than
of class C2. We denote by TM (x) the classical tangent space to M at a point x ∈ M ,
which exists Hk–almost everywhere on M by Rademacher’s theorem.

Theorem 3.1. Let µ = Hk M , where k ≤ n and M is a k–dimensional Lipschitz
manifold in IRn. Then Tµ(x) = TM (x) for µ–a.e. x ∈M .

Proof. Since in this case the approximate tangent space to µ coincides with TM , by
Lemma 2.4 we have immediately Tµ(x) ⊆ TM (x) for µ–a.e. x ∈M .
In order to prove the opposite inclusion we observe that Tµ is local on open sets of IRn, in
other words, if A ⊆ IRn is open and we have measures µ1 and µ2 with µ1 A = µ2 A,
then Tµ1

(x) = Tµ2
(x) µ–a.e. in A. Therefore, we can suppose without loss of generality

that M is the graph of a Lipschitz function u from a regular open set Ω ⊆ IRk to IRn−k.

Then, it is enough to prove that for any fixed v ∈ IRk, the vector field Φ(x) = (v,∂vu(x))
J(x)

belongs to Xµ, where J(x) denotes the Jacobian of the map x 7→ (x, u(x)).
We show that div(Φµ) is a Radon measure. For any test function ψ ∈ D(IRn) we have∫

Φ · ∇ψ dµ =

∫
M

Φ · ∇ψ dHk

=

∫
Ω

(v, ∂vu(x)) · ∇ψ(x, u(x)) dx

=

∫
Ω

∂v
[
ψ(x, u(x))

]
dx

=

∫
∂Ω

ψ(x, u(x)) v · n dHk−1

where n is the external unit normal vector to ∂Ω.

Example 2 (relations with currents).

We first show that there exists a natural one–to–one correspondence between the set of
normal 1–currents in IRn (see for instance [8, Chapter 6], [5]) and the set of pairs (µ,Φ),
where µ is a Radon measure on IRn and Φ is a unit tangent vector field to µ.

Theorem 3.2. If T is a normal 1–current with total variation µT and orientation τ , the
vector field τ is tangent to the measure µT , that is

τ ∈ XµT .

Conversely, for any given Radon measure µ on IRn which admits a tangent field Φ ∈ Xµ

with |Φ| = 1 µ–a.e., we obtain a normal 1–current by setting

(3.1) T (ω) =

∫
IRn
〈ω(x),Φ(x)〉 dµT (x) ∀ω ∈ D1(IRn) .
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Proof. Since ∂T has locally finite mass, we have∫
IRn

τ · ∇ψ dµT =

∫
IRn
〈dψ, τ〉 dµT = T (dψ) = ∂T (ψ) ,

which shows that τ ∈ XµT .
Conversely, as Φ belongs to Xµ, by the same argument the 1–current T defined by (3.1) is
immediately seen to be normal.

In the case of k–dimensional currents there exists a natural way to produce, starting from a
normal and simple k–current T , a pair (µ, {Φ1, . . . ,Φ( n

k−1 )}), where µ is a Radon measure

(which, as one expects, will be the total variation of T ) and {Φ1, . . . ,Φ( n
k−1 )} is a set of

tangent fields to µ.
Let c be the contraction operator from

∧k−1
(IRn)×

∧
k(IRn) into IRn defined by

c(ω, v1 ∧ . . . ∧ vk) =
k∑
i=1

(−1)i−1〈ω, v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk〉vi .

and denote by dxi1...ik−1 the (k − 1)–form dxi1 ∧ . . . ∧ dxik−1 .

Theorem 3.3. If T is a normal and simple k–current with total variation µT and orien-
tation τ1 ∧ . . . ∧ τk, we have

c(dxi1...ik−1 , τ1 ∧ . . . ∧ τk) ∈ XµT

for every multi–index (i1, . . . , ik−1) with 1 ≤ i1 < . . . < ik−1 ≤ n.

Proof. Let ψ be a test function in D(IRn). Then∫
IRn

c(dxi1...ik−1 , τ1 ∧ . . . ∧ τk) · ∇ψ dµT =

∫
IRn
〈dψ ∧ dxi1...ik−1 , τ1 ∧ . . . ∧ τk〉 dµT

=

∫
IRn
〈d(ψdxi1...ik−1), τ1 ∧ . . . ∧ τk〉 dµT

= ∂T (ψdxi1...ik−1)

which means, since T has locally finite mass, that the field c(dxi1...ik−1 , τ1∧. . .∧τk) belongs
to XµT .

Remark 3.4. For k > 1 we cannot repeat the same argument as the case k = 1 to produce
a normal k–current, starting from a Radon measure µ and a set of k linearly independent
vector fields Φ1, . . . ,Φk in Xµ. Indeed, because of the possible non–smoothness of the fields
Φi, we cannot integrate by parts in order to show that the boundary of the k–current

T (ω) =

∫
IRn
〈ω,Φ1 ∧ . . . ∧ Φk〉 dµT ∀ω ∈ Dk(IRn)
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has locally finite mass.

Example 3 (rectifiable k–varifolds).

For an appropriate class of rectifiable k–varifolds V (see [8]) the approximate tangent space
to the weight measure µV coincides with TµV .

Theorem 3.5. Let µV = θHk M be the weight measure of a rectifiable k–varifold
V = V (M, θ), and suppose that the first variation δV is a Radon measure.
Then TµV = PµV µV –a.e.

Proof. By (2.2) we only need to prove the inclusion PµV ⊆ TµV for µV –a.e. x ∈ M . If
ei are the coordinate fields, it is sufficient to show that eMi ∈ XµV for i = 1, . . . , n, where
eMi denotes the projection of ei on PµV . For every test function ψ ∈ D(IRn), if ∇Mψ is
the projection of ∇ψ on PµV , we have∫

IRn
eMi · ∇ψ dµV =

∫
IRn
∇Mi ψ dµV = 〈(δV )i, ψ〉 .

Then, since the measure δV is locally finite, we get eMi ∈ XµV for every i = 1, . . . , n.

Example 4 (Cantor–like sets).

We consider now the case of measures µ concentrated on Cantor–like sets. The interest
in such examples arises from the fact that the study of the corresponding Tµ throws some
light on possible pathological behaviours of tangent spaces.

i) For n = 1, we take µ = Hα C, where 0 < α ≤ 1 and C is an α–dimensional Cantor
set, that is, a closed subset of [0, 1] with a dense complement and Hα(C) ∈ (0,+∞).
Then Tµ(x) = {0} for µ–a.e. x.
Indeed, one can see that every vector field Φ ∈ Xµ must be identically zero. In fact, since
by definition the distributional derivative of Φµ is a Radon measure, we have Φµ = fH1,
where f is a function with bounded variation. Thus, in the case α < 1 we infer that Φ = 0
µ–a.e. from the fact that µ is singular with respect to H1. In the case α = 1 we get the
same conclusion by observing that f must be absolutely continuous and it vanishes on the
dense set [0, 1] \ C, being equal to ΦχC .
As an immediate consequence we get the following corollaries.

Corollary 3.6. The tangent space Tµ is not local on Borel subsets of IRn.

Corollary 3.7. The inclusion (2.2) may be strict.

In fact, the measures H1 and H1 C coincide on the Borel set C but their tangent spaces
are different almost everywhere on C.

ii) For n = 2, let us consider a product measure µ = µ1×µ2 on IR2, where µ1 is Lebesgue
measure on (0, 1) and µ2 is a measure as in the previous example, i.e. µ2 is H1 C, with C
a 1–dimensional Cantor set. One can easily check that Tµ(x) = Tµ1

(x)× Tµ2
(x) whenever

µ = µ1 × µ2. Therefore in this case Tµ(x) = IR for µ–a.e. x.
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Corollary 3.8. If µ is concentrated on a set S and if the dimension of Tµ(x) is a positive
constant k for µ–a.e. x ∈ S, the Hausdorff dimension of S may be strictly larger than k,
so that in general we have no relation between the measures µ and Hk S.

Example 5 (the Koch curve).

Let K ⊂ IR2 be the Koch curve with Hausdorff dimension α = log 4/ log 3.

Theorem 3.9. If µ = Hα K, then Tµ(x) = {0} for µ–a.e. x.

Proof. For a fixed x0 ∈ K, by the self–similarity of the Koch curve (see [3] for fur-
ther details), it is easily checked that there is a measure ν in Tan(µ, x0), which, up to
a multiplicative factor, coincides with Hα restricted to the intersection of the unit ball
with at most two copies of K. If the tangent space Tµ(x0) was one–dimensional, then, by
Lemma 2.6, the measure ν would be a product H1×σ and this is impossible. On the other
hand, the dimension of Tµ(x0) cannot be two, by an upper estimate for the dimension of
the tangent space that we are going to prove in the next section, Theorem 4.2.

4. An estimate for the dimension and a rectifiability theorem

In the first part of the section we show some estimates from above for the dimension of Tµ.
Then we deduce, from a criterion proved by Preiss in [7], a rectifiability theorem based on
tangent spaces Tµ. Our result is in some sense more general than Theorem 2.3, since it
also includes the case of a measure µ given by a sum of Hausdorff measures of different
dimensions, each one concentrated on a rectifiable set.
We adopt the usual notation θ∗α(µ, x) and θ∗α(µ, x) for the α–dimensional upper and lower
densities of the measure µ at the point x, whose definition can be found for instance in [8,
pag.10].

Lemma 4.1. Let α be a real number, 0 ≤ α ≤ n, and let E ⊆ IRn be a set where

θ∗α(µ, x) = +∞ .

Then, for µ–a.e. x ∈ E, the dimension of Tµ(x) cannot be larger than the integer part of
α.

Proof. We claim that the following condition is satisfied when x ∈ E and t ∈ (0, 1):

(4.1) limsup
ρ→0+

µ(Btρ(x))

µ(Bρ(x))
≥ tα .

Suppose by contradiction that there exist x ∈ E, t ∈ (0, 1) and ρ > 0 such that

µ(Btρ(x)) ≤ tαµ(Bρ(x)) ∀ρ ∈ (0, ρ] .

Then in particular
µ(Btnρ(x)) ≤ tnαµ(Bρ(x)) ∀n ∈ IN .
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If for every ρ ∈ (0, ρ] we choose an integer n such that ρ belongs to the interval (tn+1ρ, tnρ],
we get

µ(Bρ(x)) ≤ µ(Btnρ(x)) ≤ tnαµ(Bρ(x)) ≤ [(tρ)−αµ(Bρ(x))]ρα .

But, since [(tρ)−αµ(Bρ(x))] does not depend on the choice of ρ ∈ (0, ρ], the above inequality
contradicts the hypothesis on θ∗α(µ, x), and therefore (4.1) holds.
Let us denote by Qnρ an open cube of IRn centered at the origin with sides of semi–length
ρ, either orthogonal or parallel to Tµ(x). Then there exists a constant c(n) < 1 such that
Qnc(n) ⊆ B.

By inequality (4.1), for µ–a.e. x ∈ E and for every t ∈ (0, 1), we can choose a sequence
of positive numbers ρi tending to zero such that the corresponding blown–up measures
µx,ρi

µ(Bρi (x)) converge to a measure ν ∈ Tan(µ, x), satisfying both the inequality

ν
(
Bt
)
≥ tα

and the product decomposition (2.4).
Let d(x) be the dimension of Tµ(x). Since ν(Qnc(n)) ≤ ν(B) ≤ 1, if we take into account
the representation of ν, we get

(4.2) [2c(n)]d(x)σ(Q
n−d(x)
c(n) ) ≤ 1 .

On the other hand, since Bt ⊆ Qnt ,

(4.3) (2t)d(x)σ(Q
n−d(x)
t ) = ν

(
Qnt
)
≥ ν

(
Bt
)
≥ tα .

Finally, if we choose t < c(n), putting together (4.2) and (4.3), we get

td(x)−α ≥ [c(n)]d(x) ,

which implies d(x) ≤ α, because t can be chosen arbitrarily small. Since d(x) is an integer,
we have obtained the result.

The following theorem is a straightforward consequence of Lemma 4.1.

Theorem 4.2. Let E be any subset of IRn. Then

(4.4) dimTµ(x) ≤ H- dim(E) for µ–a.e. x ∈ E .

Proof. If α > H- dim(E), then θ∗α(µ, x) = +∞ for µ–a.e. x ∈ E. Therefore Lemma 4.1
immediately yields the estimate (4.4).

A nice property of tangent spaces in dimension one is given in the next lemma.

Lemma 4.3. Let µ be a positive Radon measure on IR, and let µs be the singular part of
µ with respect to the Lebesgue measure. Then Tµ(x) = {0} for µs–a.e. x.
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Proof. Let µ = µa + µs, where µa is the absolutely continuous part of µ, and let g be
the density of µa with respect to H1. Let Φ be a tangent field. Since the distributional
derivative of Φµ is a Radon measure, there exists a function f with bounded variation
such that Φµ = fH1 (recall Example 4 of Section 3). Then Φ must be zero µs–almost
everywhere, because Φµs = (f − Φg)H1.

Remark 4.4. The analogous statement for a measure µ on IRn would be

dimTµ(x) < n for µs–a.e. x ,

where µs now denotes the singular part of µ with respect toHn . It is not clear whether this
conjecture is true or not, because of the remarkable difference between the one–dimensional
and the n–dimensional case (see also Example 2 of Section 3). We point out that this
difference, essentially due to the presence of the divergence operator in Definition 2.1,
rules out the use of slicing type techniques in treating the spaces Tµ.
Moreover, also the blow–up techniques, which are often useful, may fail, since the set
Tan(µ, x) can be sometimes very wild; O’Neil [6] has recently constructed a measure µ, for
which, at µ–almost every point x, every measure belongs to Tan(µ, x).

We now pass to the rectifiability result.
We denote byRk the class of all measures of type θHk E, with k an integer, E a countably
Hk–rectifiable subset of IRn, and θ a positive function in Hkloc(E).

Theorem 4.5. Let k be an integer, k ≤ n, and let Ek be the set of the points x ∈ IRn

such that

i) the dimension of Tµ(x) is equal to k;

ii) θ∗k(µ, x) is positive and finite;

iii) the ‘doubling condition’ holds at x, i.e.

limsup
ρ→0+

µ(B2ρ(x))

µ(Bρ(x))
< +∞ .

Then the measure µ Ek belongs to the class Rk.

The proof of this theorem is based on the following rectifiability criterion of Preiss [7].

Theorem 4.6. Let σ be a measure on IRn satisfying, for σ–a.e. x, these two conditions:
A) if we set τ = 1− 2−k−6 and

Eρ(x) =

{
z ∈ Bρ(x) s.t. ∃ s ∈ (0, ρ) :

σ(Bs(z))

sk
≤ τ σ(Bρ(x))

ρk

}
,

we have

liminf
ρ→0+

σ(Eρ(x))

σ(Bρ(x))
= 0 ;
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B) if we set κ = 8−k−9k−4, we let Gn,k denote the class of k–dimensional linear subspaces
of IRn, and

Fρ(x) = sup
V ∈Gn,k

{
inf

z∈(x+V )∩Bρ(x)

σ(Bκρ(z))

σ(Bρ(x))

}
,

we have
liminf
ρ→0+

Fρ(x) > 0 .

Then σ ∈ Rk .

We are now in a position to prove Theorem 4.5.

Proof. We set σ = µ Ek, and we show that, under the hypotheses i), ii), and iii),
both conditions A and B are satisfied σ–almost everywhere. It is enough to verify that
such conditions hold for every density point of the set Ek with respect to µ. Since at such
points the density of σ with respect to µ is equal to one, we can replace σ with µ.
Let us begin by checking condition A. We define, for positive constants ε and c, the sets

E(ε, c) = {z :
µ(Br(z))

rk
≥ c ∀r ∈ (0, ε)}

and

Ẽ(ε, c) = E(ε, τc) \
∞⋃
n=1

E
( ε
n
, c
)
.

By ii), for µ–a.e. x ∈ Ek, we can choose t > 0 such that τt < θ∗k(µ, x) < t. Then, there

exists s > 0 such that x belongs to Ẽ(s, t). We can also suppose that x is a density point

of Ẽ(s, t), or, equivalently,

lim
ρ→0

µ
(
Ẽc(s, t) ∩Bρ(x)

)
µ(Bρ(x))

= 0 .

It is easy to see that this property implies condition A, and consequently A is satisfied
µ–almost everywhere.
We now verify condition B. First we observe that it is enough to check it at any point x
where the decomposition property (2.4) holds. For every ρ > 0, let zρ ∈ [x+Tµ(x)]∩Bρ(x).
We claim that

(4.5) liminf
ρ→0+

µ(Bκρ(zρ))

µ(Bρ(x))
> 0 .

Indeed, we can choose a sequence ρi of positive numbers tending to zero such that the
following three conditions hold:

lim
i→+∞

µ(Bκρi(zρi))

µ(Bρi(x))
= liminf

ρ→0+

µ(Bκρ(zρ))

µ(Bρ(x))
;

11



lim
i→+∞

µx,ρi
µ(Bρi(x))

= ν ∈ Tan(µ, x) ;

lim
i→+∞

zρi − x
ρi

= z ∈ B ∩ Tµ(x) .

Then by the above conditions and by the semicontinuity properties of weak convergence
of measures, we get the estimate

(4.6) liminf
ρ→0+

µ(Bκρ(zρ))

µ(Bρ(x))
≥ ν(Bκ(z) ∩B) .

Now, the doubling condition iii) implies that the origin of IRn belongs to the support of
every measure ν ∈ Tan(µ, x). Then, if we choose a point z′ ∈ B ∩ Tµ(x) with Bκ

2
(z′) ⊆

Bκ(z), we have

(4.7) ν(Bκ(z) ∩B) ≥ ν(Bκ
2
(z′) ∩B) = ν((−z′ +Bκ

2
(z′)) ∩B) > 0 .

Thus, combining (4.6) and (4.7), we get (4.5). Finally, observing that Tµ(x) ∈ Gn,k for
µ–a.e. x ∈ Ek, we deduce that condition B is satisfied µ–almost everywhere.
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