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A B S T R A C T

In this thesis we deal with various problems arising in Calculus of Variations, Geometric
Measure Theory and Geometric Analysis. Most of the variational problems treated here
will be set in the context of multiple-valued functions, a tool introduced by F. Almgren in
[Alm00] in order to study the regularity of generalized minimal surfaces (area minimiz-
ing integer rectifiable currents) in higher codimension. In recent years, C. De Lellis and
E. Spadaro have revisited Almgren’s work (cf. [DLS11, DS15, DLS14, DLS16a, DLS16b]),
thus not only providing a shorter proof of his celebrated partial regularity result, but also
renewing the interest towards multiple-valued functions and their strong interplay with the
theory of minimal surfaces.

The topics studied in this thesis can be gathered in four groups, each corresponding to
one of the parts of the thesis.

1. Multi-valued theory of the stability operator:
One of the most relevant questions in Geometric Measure Theory is whether the
class of tangent cones at each interior point of the support of an area minimizing
integral current consists of a unique element or not. The answer to this question
is known (and it is affirmative) only for few special classes of minimizing currents
(e.g. two-dimensional currents, cf. [Whi83]). The problem in its full generality is
instead widely open. In the cases when an isolated singularity of a minimizing cur-
rent admits one tangent cone whose cross-section is a minimal submanifold of the
sphere, uniqueness of the cone can be proved, provided the spectrum of the stability
operator and the Jacobi fields of such a minimal submanifold satisfy certain proper-
ties (cf. [AA81, Sim94]). Motivated by the desire to extend the Allard-Almgren and
Simon results to more general scenarios, we develop a multi-valued theory of the
stability operator. Specifically, for every positive integer Q, we define Jacobi Q-fields
as those Q-valued sections of the normal bundle of a minimal submanifold of a Rie-
mannian manifold which minimize an energy (the Jacobi energy Jac) obtained from
a multi-valued counterpart of the second variation formula. After studying sufficient
conditions such that the minimum problem for the Jac functional admits a solution
for any given boundary datum, we explore the regularity of the minimizers. In this
direction, we first show that Jacobi Q-fields are locally Hölder continuous Q-valued
functions. Then, we prove that every JacobiQ-field can be written as the superposition
of Q classical Jacobi fields in the neighborhood of every point except those belonging
to a singular set of codimension at least 2 in the submanifold. These results extend
analogous results of Almgren and De Lellis-Spadaro (cf. [Alm00, DLS11]) valid for
Dirichlet minimizing Q-valued functions to a more general class of functionals on
Sobolev spaces of multiple valued functions, and are contained in our paper [Stu17a].

2. Multiple-valued sections of vector bundles and applications:
Following some ideas of W. Allard [All13], we define multiple-valued sections of
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an abstract vector bundle over a Riemannian manifold, and we study some geomet-
ric properties which extend the concepts of continuity and Lipschitz continuity of
multiple-valued functions to the vector-bundle setting. With these theoretical tools,
we are able to provide a new geometric proof of the delicate reparametrization the-
orem for multiple-valued graphs contained in [DS15], which in turn is the key step
for producing the normal LipschitzQ-valued approximations of a minimizing current
from the center manifold needed in the proof of Almgren’s partial regularity theorem
(cf. [DLS16a]). These results are contained in [Stu17b].

3. Regularity and singularities of multiple-valued harmonic maps:
Minimizing harmonic maps are minimizers of the Dirichlet energy with respect to
boundary data under the constraint to take values in a given Riemannian manifold.
Unlike their unconstrained counterpart, minimizing harmonic maps need not be ev-
erywhere smooth. Nonetheless, it is a well known result (cf. [SU82]) that the set
where a minimizing harmonic map fails to be smooth is “small”, in the sense that it
has codimension at least 3 in the domain of the map. In [NV17], A. Naber and D. Val-
torta prove that if the domain of the map is m-dimensional then the singular set is in
fact (m− 3)-rectifiable with uniformly finite (m− 3)-dimensional Hausdorff measure.
In [Hir16b], J. Hirsch initiated the analysis of multiple-valued Dirichlet minimizing
harmonic maps, developing the basic continuity theory for these objects, analogous to
[SU82]. Here, we extend the results of [NV17] to the multiple-valued framework, thus
proving rectifiability and volume estimates of the singular set of multiple-valued min-
imizing harmonic maps. Moreover, we study the special case of non-positively curved
target manifolds. Specifically, we show that if the target is non-positively curved and
simply connected then any Q-valued minimizing harmonic map has empty singular
set. If Q = 1, this result holds under the weaker assumption that the target is merely
connected; we provide an example showing that this stronger theorem is false when-
ever Q > 1. These results, obtained in collaboration with J. Hirsch and D. Valtorta,
are contained in [HSV17].

4. Results on real currents and currents with coefficients in groups:
In the paper [CDMS17], in collaboration with M. Colombo, A. De Rosa and A. March-
ese, we study a general class of energies defined on real rectifiable currents via integra-
tion, over the rectifiable set supporting the current, of a function H of the multiplicity.
These energies are known in the literature as H-masses, and they are usually consid-
ered, with specific choices for H, to represent the “costs” of transportation networks
in branched transportation models. We prove that, under minimal assumptions on
H, the H-mass coincides, on rectifiable currents, with the lower semi-continuous enve-
lope of the H-mass functional defined on real polyhedral chains.

In the paper [MS17], in collaboration with A. Marchese, we focus instead on the struc-
ture of currents with coefficients in the group Zp of integers mod(p). We show that
every equivalence class in the quotient group of integral 1-currents modulo p in Eu-
clidean space contains an integral current, with quantitative estimates on its mass and
the mass of its boundary. This affirmatively answers, at least in the simpler case of one-
dimensional currents, a long-standing open question of F. Almgren (cf. [ope86, Prob-



lem 3.3]). Moreover, we show that the validity of this statement for m-dimensional
integral currents modulo p implies that the family of (m− 1)-dimensional flat chains
of the form pT , with T a flat chain, is closed with respect to the flat norm. In particu-
lar, we deduce that such closedness property holds for 0-dimensional flat chains, and,
using a proposition from [Whi79], also for flat chains of codimension 1.
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Z U S A M M E N FA S S U N G

Diese Arbeit handelt von verschiedene Probleme der Variationsrechnung, geometrischer
Masstheorie und geometrischer Analysis. Die meisten Probleme der Variationsrechnung
hier behandelten sind im Zusammenhang mit mehrwertigen Funktionen beschrieben. Diese
Technik wurde von F. Almgren in [Alm00] eingeführt, um die Regularität von verallgemein-
erten Minimalflächen (flächenminimierende ganzzahlig rektifizierbare Ströme) in höherer
Codimension zu untersuchen. In den vergangenen Jahren haben C. De Lellis und E. Spadaro
die Arbeiten von F. Almgren wieder aufgegriffen (vgl. [DLS11, DS15, DLS14, DLS16a,
DLS16b]). Sie haben nicht nur einen kürzeren Beweis von seinem berühmten Resultat über
partielle Regularität erstellt, sondern auch die Wichtigkeit von mehrwertigen Funktionen
und ihren starken Zusammenhang zu der Minimalflächen-Theorie aufgezeigt.

Die verschiedenen Themen dieser Arbeit sind auf die folgenden vier Kapitel aufgeteilt:

1. Mehrwertigkeits Theorie vom Stabilitätsoperator:
Eine der bedeutendsten Fragen in der geometrischen Masstheorie ist, ob an jedem in-
neren Punkt des Trägers eines flächenminimierenden integralen Stroms die Klasse der
Tangentialkegel aus einem eindeutigen Element besteht. Die dazugehörige Antwort
ist unbekannt. Nur in wenigen Spezialfällen von Klassen von flächenminimieren-
den Strömen (z.B. zwei-dimensionale Ströme, siehe [Whi83]) ist die Antwort beja-
hend. Jedoch ist das Problem in seiner ganzen Allgemeinheit noch völlig offen.
Die Eindeutigkeit des Kegels kann gezeigt werden, falls der flächenminimierender
Strom eine isolierte Singularität besitzt, die Schnittfläche eines zugehörigen Tangen-
tialkegels mit der Sphäre eine minimale Untermannigfaltigkeit der Sphäre ist und
das Spektrum des Stabilitätsoperator und die Jacobi Felder der minimalen Unter-
mannigfaltigkeit gewisse Eigenschaften erfüllen (siehe [AA81, Sim94]). Mit dem
Ziel die Resultate von Allard-Almgren und Simon auf allgemeinere Situationen zu
erweitern, entwickeln wir eine Mehrwertigkeits Theorie für den Stabilitätsoperator.
Genauer definieren wir zu jeder positiven ganzen Zahl Q ein Jacobi Q-Feld als ein Q-
wertiger Schnitt vom Normalenbündel einer minimalen Untermannigfaltigkeit von
einer Riemannscher Mannigfaltigkeit, welcher eine Energie (die Jacobi Energie Jac)
minimiert. Diese (Jacobi) Energie kommt von dem mehrwertigen Gegenstück der
zweiten Variationsformel. Nachdem wir die hinreichenden Bedingungen dafür un-
tersuchen, dass das Minimierungsproblem für das Jac Funktional eine Lösung für
jeden beliebigen Anfangswert besitzt, beschäftigen wir uns mit der Regularität der
minimierenden Schnitte. Dort zeigen wir zuerst, dass Jacobi Q-Felder Hölder-stetige
mehrwertige Funktionen sind. Dann beweisen wir, dass ausser um Punkte, welche
zu einer singulären Menge gehören, deren Codimension in der Untermannigfaltigkeit
mindestens zwei beträgt, jedes Jacobi Q-Feld in einer offenen Umgebung als Superpo-
sition von klassischen Jacobi Q-Felder dargestellt werden kann. Diese Resultate sind
Teile von unserem Artikel [Stu17a].
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2. Mehrwertige Schnitte von Vektorbündel und Anwendungen:
Mit ähnlichen Ideen wie diesen von W. Allard in [All13] definieren wir mehrwertige
Schnitte von abstrakten Vektorbündel von Riemannschen Mannigfaltigkeiten. Wir
untersuchen gewisse geometrische Eigenschaften, welche das Konzept von Stetigkeit
und Lipschitz-Stetigkeit von mehrwertigen Funktionen auf Vektorbündel erweitern.
Mit diesen theoretischen Mitteln erschaffen wir einen neuen geometrischen Beweis für
das Umparametrisierungstheorem für Graphen von mehrwertigen Funktionen wie in
[DS15]. Dieser Beweis ist der entscheidende Schritt, um die Q-wertigen Lipschitz-
Funktionen zu konstruieren, welche normal zur zentralen Mannigfaltigkeit definiert
sind und den minimierenden Strom approximieren. Dies ist im Beweis von F. Alm-
grens partiellem Regularitätstheorem notwendig (siehe [DLS16a]). Diese Resultate
sind in [Stu17b] zu finden.

3. Regularität und Singularitäten von mehrwertigen harmonischen Abbildungen:
Minimierende harmonische Abbildungen sind Abbildungen, deren Wertebereiche in
einer gegebenen Riemannschen Mannigfaltigkeit liegen und welche die Dirichlet En-
ergie bezüglich den Randwerten minimieren. Im Gegensatz zu harmonischen Funk-
tionen sind die minimierenden harmonischen Abbildungen nicht zwingend überall
glatt. Allerdings ist bekannt (siehe [SU82]), dass die Menge der Punkte, bei denen die
minimierende harmonische Abbildung nicht glatt ist, "klein" ist in dem Sinne, dass
die Codimension dieser Menge im Definitionsbereich der Abbildung mindestens drei
beträgt. In [NV17] haben A. Naber und D. Valtorta gezeigt, dass falls der Defini-
tionsbereich der Abbildung m-dimensional ist, dann ist die singuläre Menge (m− 3)-
rektifizierbar und ihr (m− 3)-Hausdorfmass ist gleichmässig endlich. In [Hir16b] hat
J. Hirsch die Analyse von mehrwertigen Dirichlet Energie minimierenden harmonis-
chen Abbildungen eingeführt. Er hat analog zu [SU82] die grundlegende Stetigkeit-
stheorie für solche Abbildungen entwickelt. Hier erweitern wir die Resultate von
[NV17] zum mehrwertigen Konstrukt. Das heisst, wir beweisen die Rektifizierbarkeit
der singulären Menge und schätzen ihr Volumen ab. Des Weiteren untersuchen wir
den Spezialfall, wenn die Mannigfaltigkeit, in welcher der Wertebereich der Abbil-
dung liegt, nicht-positiv gekrümmt ist. Genauer zeigen wir, dass falls diese Mannig-
faltigkeit nicht-positiv gekrümmt und einfach zusammenhängend ist, dann ist jede
Q-wertige minimierende harmonische Abbildung überall stetig. Dies ist auch wahr,
falls Q = 1 und die Mannigfaltigkeit nur zusammenhängend ist. Wir zeigen anhand
eines Beispiels, dass diese stärkere Aussage jedoch nicht mehr gilt, falls Q > 1. Diese
Resultate, welche in Zusammenarbeit mit J. Hirsch und D. Valtorta entstanden sind,
sind in [HSV17] aufgeführt.

4. Resultate über reelle Ströme und Ströme mit Koeffizienten in Gruppen:
In dem Artikel [CDMS17] untersuchen wir in Zusammenarbeit mit M. Colombo, A.
De Rosa und A. Marchese eine allgemeine Klasse von Energien, welche auf reellen
rektifizierbaren Strömen durch Integration einer Funktion H der Multiplizität über
der rektifizierbaren Menge, welche der Träger des Stroms darstellt, definiert ist. Diese
Energien sind in der Literatur mit H-Massen bezeichnet und werden gewöhnlich als
"Kosten" von Transport-Netzwerken in verzweigten Transportmodellen angesehen.



Wir zeigen, dass falls H gewisse Annahmen erfüllt, dann ist die H-Masse auf rekti-
fizierbaren Strömen die unterhalbstetige Hülle vom H-Mass-Funktional, welches auf
polyedrischen Strömen definiert ist.

Im Artikel [MS17] beschäftigen wir uns in Zusammenarbeit mit A. Marchese mit der
Struktur von Strömen mit Koeffizienten in der Gruppe Zp von den ganzen Zahlen
mod(p). Wir zeigen, dass jede Äquivalenzklasse in der Quotientengruppe von in-
tegralen 1-Strömen modulo p im Euklidischen Raum einen integralen Repräsentan-
ten besitzt. Dies bejaht die lange offen gestandene Frage von F. Almgren (siehe
[ope86, Problem 3.3]) im einfacheren Fall von 1-dimensionalen Strömen. Des Weit-
eren zeigen wir, dass die Gültigkeit dieser Aussage im Falle von m-dimensionalen
integralen Ströme modulo p impliziert, dass die Familie der (m− 1)-dimensionalen
flat Chains der Form pT , wobei T ein flat Chain ist, abgeschlossen ist in der flat Norm.
Insbesondere folgern wir, dass diese Abgeschlossenheit auch für 0-dimensionale flat
Chains gilt. Zusammen mit einer Proposition von [Whi79] leiten wir dies auch für
flat Chains mit Codimension 1 her.
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G E N E R A L C O N V E N T I O N S A D O P T E D I N
T H I S T H E S I S

Natural, integer, rational and real numbers are canonically denoted by N, Z, Q and R

respectively. Complex numbers are denoted C, and z̄ denotes the complex conjugate of the
complex number z. We will denote by [a,b] the closed interval in R, defined by a 6 x 6 b,
and by (a,b) the open interval, defined by a < x < b. The Euclidean space of dimension
d is canonically denoted Rd. If v,w ∈ Rd, then their Euclidean scalar product is denoted

〈v,w〉 :=
∑d
i=1 viwi. The Euclidean norm of v ∈ Rd is |v| := (〈v, v〉)1/2 =

(∑d
i=1 v

2
i

)1/2
.

The (d − 1)-dimensional sphere in Rd, defined by the condition |x| = 1, is denoted Sd−1.
The symbol Br(x) (or sometimes B(x, r)) will denote the open ball centered at x ∈ Rd and
having radius r > 0. We will often simply write Br if the center is the origin, whereas we
will use the writing Bdr (x) to emphasize that the ambient space is Rd. If E ⊂ Rd, then E,
intE, and ∂E denote its closure, its interior, and its boundary respectively. We will also set
Ec := Rd \ E.

If (X, d) is a metric space and E ⊂ X then the diameter of E is the number

diam(E) := sup {d(x,y) : x,y ∈ E} .

If diam(E) <∞, then we say that E is bounded. If E1,E2 ⊂ X then their distance is

dist(E1,E2) := inf {d(x,y) : x ∈ E1 , y ∈ E2} .

The Lebesgue measure of a measurable set E ⊂ Rd is denoted Ld(E) or simply |E|. If m is
a non-negative real number, with the symbol Hm we denote the m-dimensional Hausdorff
measure on Rd, i.e.

Hm(B) := lim
δ→0

inf

{ ∞∑
h=1

ωm

(
diam(Eh)

2

)m
: B ⊂

∞⋃
h=1

Eh , diam(Eh) 6 δ

}
,

with ωm := π
m/2

Γ(m2 +1)
, Γ denoting the usual Gamma function. In particular, if m is integer

then ωm is the volume of the unit m-dimensional ball.

If µ is a positive Radon measure on Rd, m > 0, and x ∈ Rd, we will denote by Θm∗ (µ, x)
and Θm∗(µ, x) the lower and upper m-dimensional densities of µ at x, respectively defined by

Θm∗ (µ, x) := lim inf
r→0

µ(Br(x))

ωmrm
, Θm∗(µ, x) := lim sup

r→0

µ(Br(x))

ωmrm
.

In case the two limits above coincide, we will let Θm(µ, x) denote their common value. We
will then call Θm(µ, x) the m-dimensional density of µ at x.

The restriction of a positive Radon measure µ to a Borel set E is denoted µ E.
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With a slight abuse of notation, we will identify a linear map L : Rm → Rn with its
representation matrix with respect to the standard bases of Rm and Rn, and thus we will
write L ∈ Rn×m. The action of L ∈ Rn×m on a vector v ∈ Rm is denoted L · v. If
L,M ∈ Rn×m then we will denote by 〈L : M〉 their Hilbert-Schmidt scalar product, given
by 〈L : M〉 :=

∑n
i=1

∑m
j=1 LijMij. The Hilbert-Schmidt norm of L ∈ Rn×m is then simply

|L| := (〈L : L〉)1/2.

We will use standard notations for the classical spaces of functions: Lebesgue spaces,
Sobolev spaces, and Hölder spaces are denoted Lp, Wk,p, and Ck,α respectively. Spaces
C0,1 of Lipschitz functions are denoted Lip. If F is a space of functions, then the writ-
ing f ∈ F(A,B) means that f : A → B and that f ∈ F. If X and Y are metric spaces and
f ∈ Lip(X, Y) then Lip(f) denotes its Lipschitz constant. The support of a function f (or of a
measure µ) is denoted spt(f) (or spt(µ)). The writing f ∈ Ck,α

c means that f is a function in
Ck,α and that spt(f) is a compact subset of its domain.

All manifolds appearing in this thesis are assumed to be second countable and Hausdorff.
The notation here used for classical objects in differential geometry is standard, and some
notions will be recalled when the need arises. The class of differentiability of a manifold is
either specified or assumed to be ∞. If Σ is a manifold then we will sometimes write Σm

to underline that the dimension of Σ is m. If Σm is a manifold of class C1 and x ∈ Σ then
TxΣ denotes the tangent space to Σ at x. If f : Σ→ Rq is a C1 map and ξ is a tangent vector
field to Σ, the symbol Dξf will denote the directional derivative of f along ξ, that is

Dξf(x) :=
d

dt
(f ◦ γ)

∣∣∣∣
t=0

whenever γ = γ(t) is a C1 curve on Σ with γ(0) = x and γ̇(0) = ξ(x). The differential of f at
x ∈ Σwill be denotedDf(x): we recall that this is the linear operatorDf(x) : TxΣ→ Rq such
that Df(x) · ξ(x) = Dξf(x) for any tangent vector field ξ. The notation Df|x will sometimes
be used in place of Df(x). Moreover, the derivative along ξ of a scalar function f : Σ → R

will be sometimes simply denoted by ξ(f).

We will assume that the reader is familiar with basic notions in multi-linear algebra (cf.
[Sim83b, Section 25]). The vector spaces of m-vectors and m-covectors in Rd are denoted
Λm(Rd) and Λm(Rd) respectively. The pairing between m-covectors and m-vectors is
denoted 〈·, ·〉. If ~v = v1 ∧ · · ·∧ vm ∈ Λm(Rd) is a simple m-vector, then its Euclidean norm
is denoted |~v|. If ω ∈ Λm(Rd) is an m-covector, we will let ‖ω‖c denote its comass norm,
that is the quantity

‖ω‖c := sup {〈ω,~v〉 : ~v is a simple m-vector and |~v| = 1} .

Let Ω ⊂ Rd be an open set. A smooth map

ω : Ω→ Λm(Rd)

is called a smooth differential m-form in Ω. We will denote Dm(Ω) := C∞c (Ω,Λm(Rd)) the
space of smooth compactly supported differential m-forms in Ω, endowed with the usual



locally convex topology of uniform convergence on compact sets. If ω ∈ Dm(Ω) then
dω ∈ Dm+1(Ω) is its exterior differential.

Finally, constants will be usually denoted by C. The precise value of C may change from
line to line throughout a computation. Moreover, we will write C(a,b, . . . ) or Ca,b,... to
specify that C depends on previously introduced quantities a,b, . . . .

3





1 I N T R O D U C T I O N

Understanding the structure of minimal surfaces has represented, and still represents, a
great, long-standing challenge to mathematicians.

The starting point of our discussion is the following very simple question, historically
attributed to the Belgian physicist J.A.F. Plateau (although it had been formulated much
earlier by Lagrange, Meusnier and others), who originally raised it for two-dimensional
surfaces in the three-dimensional Euclidean space.

Question 1.0.1 (Plateau’s problem). Given an (m− 1)-dimensional “contour” Γ in Rm+n

(or in an (m+n)-dimensional Riemannian manifold), is there an m-dimensional surface Σ
having minimal m-dimensional area among all those spanning Γ?

The problem is deliberately stated in vague terms. The concepts “m-dimensional sur-
face”, “m-dimensional area” and “spanning” can be interpreted mathematically in many
different ways, and different theories can be consequently produced. During the nineteenth
century, Plateau’s problem was solved for many special contours Γ , but a sufficiently gen-
eral solution was only obtained in 1930 simultaneously by J. Douglas and T. Radó. Their
solution considered only two-dimensional surfaces in Euclidean space R3, defined as im-
ages of mappings from the disc D :=

{
u2 + v2 6 1

}
⊂ R2. As soon as one tries to tackle

the problem in higher dimension (the numberm in the statement of Plateau’s problem) and
codimension (the number n in the statement of Plateau’s problem), it becomes clear that
the “surface as a mapping” approach is not promising at all. The main reason being that
the natural topology lacks the necessary compactness properties to solve the problem by
direct methods. As it is often the case in the Calculus of Variations, in order to gain enough
compactness to guarantee convergence of a minimizing sequence, one has to enlarge the
class of competitors sacrificing some a priori regularity assumptions. Guided by this prin-
ciple, many generalizations of the classical notion of surface have been introduced in the
second half of the twentieth century: among others, we cite De Giorgi’s sets of finite perimeter,
Federer-Fleming’s integer rectifiable currents, and Almgren-Allard’s integral varifolds.

In this thesis, we will work in the framework of integer rectifiable currents. Born in the
early 1960s after the foundational work [FF60] of H. Federer and W.H. Fleming, currents are
a very broad generalization of surfaces. Nonetheless, they are powerful enough not only to
produce a satisfactory analytical and topological formulation of “m-dimensional domains
of integration in a d-dimensional ambient space”, but also to provide a satisfactory and
extremely general (affirmative) answer to Plateau’s problem. Once that the solvability of
Plateau’s problem has been established in the framework of integer rectifiable currents,
and consequently the notion of area minimizing current has been introduced, one is left with
the regularity issue that was created when the class of competitors was enlarged. One
could hope that every area minimizing current is, eventually, everywhere regular. Maybe
surprisingly, it turns out that this is not the case, since there exist “minimal surfaces” with

5
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singularities. In turn, this information tells us that some generalization of the classical
notion of surface was, in fact, unavoidable.

Let us try to provide a glimpse to the (interior) regularity theory for area minimizing cur-
rents. In doing this, we will necessarily need to use some of the notation and terminology
which is typical of the theory of currents. The reader who is not familiar with it can refer
to Section 2.1 and, of course, to the references therein.

Let us assume that T is an area minimizing (locally) integer rectifiable m-dimensional
current in Rd. Let n := d−m be the codimension of T . Also let Sing(T) denote the set
of points x ∈ spt(T) \ spt(∂T) for which there exists a neighborhood U of x in Rd such
that spt(T) ∩U is a smooth embedded m-dimensional submanifold. Then, the problem is
to understand whether Sing(T) is empty and, in case it is not, to estimate its Hausdorff
dimension.

It turns out that the answer to the above question strongly depends on the codimension
n. If n = 1, then it is known that the singular set Sing(T) of an m-dimensional area
minimizing current T has Hausdorff dimension at most m− 7 ([DG61, Fle62, DG65, Alm66,
Sim68, Fed70]), and it is countably (m− 7)-rectifiable ([Sim95b], later improved in [NV15]);
furthermore, if m = 7 then Sing(T) consists of isolated points ([Fed70]). In particular, m-
dimensional area minimizing currents in Rm+1 are classical submanifolds for every m 6
6. On the other hand, if n > 2 then the current might exhibit singularities already in
dimension m = 2. Indeed, it is known that in this higher codimension case the singular set
Sing(T) of an m-dimensional area minimizing current T has Hausdorff dimension at most
m− 2 ([Alm00]), and consists of isolated points if m = 2 ([Cha88]). In fact, both results are
sharp (see [BDGG69] for the codimension one case and [Fed65] for the higher codimension
case).

Now, not only the singularities already appear in low dimensions when n > 2, but in fact
the degree of difficulty of the two problems is substantially different. It is fair to say that,
by now, the techniques leading to the regularity result in codimension one have been well
assimilated by the community of mathematicians working in Geometric Measure Theory
and Geometric Analysis. On the other hand, the proof of the result in the case n > 2 has
required the development of a whole range of new tools, in order to deal with the kind of
singularities that can arise.

A fundamental notion that is needed when addressing the problem of the regularity
of area minimizing currents is that of a tangent cone. A by now very standard monotonicity
formula (see [All72]) states that if T is area minimizing andm-dimensional, then the function
r 7→ ‖T‖(Br(x))

ωmrm
(where ‖T‖(Br(x)) denotes the “area” of T in the ball Br(x)) is monotone

non-decreasing at every point x ∈ spt(T) \ spt(∂T). There are two main consequences of
this monotonicity result: first, that the m-density Θm(‖T‖, x) of the measure ‖T‖ associated
with T is well defined at every interior point x; second, that if we define, for any r > 0, the
function ιx,r : Rd → Rd by ιx,r(y) := r−1(y− x), then for any sequence of radii rh ↓ 0 the
rescalings Tx,rh := (ιx,rh)]T obtained by push-forwarding T via ιx,rh (see § 2.1.2) converge,
up to subsequences, to a (locally) area minimizing current which is invariant with respect
to homotheties centered at the origin: such a limit current is called a tangent cone to T at x.

Now, one key idea that can be exploited in the regularity theory when n = 1 is that if T is
area minimizing and if at least one tangent cone to T at a point x ∈ spt(T) \ spt(∂T) is (the
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current associated to) a flat plane π, then, at a sufficiently small scale ρ, the current is close
to the graph of a harmonic function defined on π. In particular, every point that admits at
least one flat tangent cone is regular. On the other hand, a careful analysis of minimizing
hypercones, together with the classical dimension reduction argument by Federer implies that
the Hausdorff dimension of the set of points which do not admit any flat tangent cone
cannot exceed m− 7.

Such an argument fails dramatically in the higher codimension case. As an example,
consider the holomorphic curve

Γ := {(z,w) ∈ C2 : z2 = w3}.

The curve Γ is calibrated, and thus area-minimizing. Nonetheless, the origin is a singular
point for Γ , even though the (unique!) tangent cone to Γ at (0, 0) is the plane {z = 0}

(counted with multiplicity two). In fact, Γ cannot be approximated with the graph of a
(single-valued!) function in any neighborhood of the origin.

This phenomenon, typical of the higher codimension, is called branching. In [Alm00],
Almgren introduces the notion of multiple-valued functions taking a fixed numberQ of values
in order to approximate area minimizing currents in a neighborhood of a singular point of
branching type with multiplicity Q. Specifically, a Q-valued function is a function taking
values in the space AQ(R

n) of unordered Q-tuples of points in Rn (Q-points): each Q-point
S =

∑Q
`=1Jp`K is naturally identified with the purely atomic measure of mass Q in Rn

obtained by placing a Dirac delta at each p`, and AQ(R
n) is endowed with the structure

of complete separable metric space when the distance between two Q-points is defined as
the L2-based Wasserstein distance between the associated measures. A brief overview of
Almgren’s theory of multiple valued functions is the content of Section 2.2.

Almgren’s strategy to tackle the regularity problem in higher codimension can be very
broadly summarized in three main steps:

(1) develop a regularity theory for multiple-valued functions minimizing a suitable gen-
eralization of the Dirichlet energy (Dir-minimizers, the Q-valued counterpart of har-
monic functions), where suitable means that it appears as the first non-trivial term in
the Taylor expansion of the mass of (the rectifiable current associated to) a multiple-
valued graph;

(2) perform a delicate approximation of the rescalings Tx,rh of an area minimizing current
T at a singular point x ∈ spt(T) \ spt(∂T) with multiple-valued functions converging,
in the limit, to a Dir-minimizer;

(3) argue by contradiction: if the singular set of T was too large, a large singular set
would also be inherited by the Dir-minimizer in the limit, thus contradicting the
“linear” regularity theory in (1).

This program was successfully implemented in the enormous Big Regularity Paper [Alm00].
In recent years, C. De Lellis and E. Spadaro have revisited Almgren’s program, giving a
much shorter version of it (cf. [DLS11, DS15, DLS14, DLS16a, DLS16b] and also [DL16a,
DL16b]). The new techniques developed in the last two decades to perform analysis in
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metric spaces allowed De Lellis and Spadaro to substantially reduce the complexity of sev-
eral arguments contained in [Alm00], thus getting more transparent proofs and achieving
stronger analytic estimates. Chang’s theorem [Cha88], according to which the singularities
of two-dimensional area minimizing currents are isolated, was also re-proved in the light
of the new techniques by the same authors and L. Spolaor (cf. [DSS15a, DSS15b, DSS15c]).

The major role played by multiple-valued Dirichlet minimizers in the regularity theory
for higher codimension minimal surfaces suggests that a finer analysis of their properties
may be the starting point for solving some of the yet unanswered questions in the theory
of rectifiable currents minimizing the area functional. In this thesis, after some unavoidable
preliminaries aimed both at introducing the main objects of our study (Chapter 2), and at
presenting some technical tools which will be used in the next chapters (Chapter 3), we
will present the results of our investigations on multiple-valued functions, which go both
in the direction of studying the minimization of more general functionals than the Dirichlet
energy (coming from higher order Taylor expansions of the mass of graphs, cf. Part I,
Chapters 4 to 7), and in the sense of more general target spaces than Rn (Part II, Chapters
8-9, and Part III, Chapters 10-11). Part IV, the last of the thesis, will contain some results
on real currents (Chapter 12) and on currents with coefficients in the group Zp of integers
modulo p (Chapter 13).

1.1 part I: multi-valued theory of the stability operator

In the above discussion we have introduced the fundamental notion of a tangent cone C
to an m-dimensional area minimizing integer rectifiable current T at a point x ∈ spt(T) \
spt(∂T). Now, if x is a regular point, and thus spt(T) is a classical m-dimensional mini-
mal submanifold in a neighborhood of x, then the cone C is certainly unique, and in fact
C = QJπK, where π = Tx(spt(T)) is the tangent space to spt(T) at x, the double brackets
roughly mean “the current associated to”, and Q = Θm(‖T‖, x) is the m-dimensional den-
sity of the measure ‖T‖ at x. If, on the other hand, x happens to be singular, then not
only we have no information about the limit cone, but in fact it is still an open question
whether in general such a limit cone is unique (that is, independent of the approximating
sequence) or not. The problem of uniqueness of tangent cones at the singular points of area
minimizing currents of general dimension and codimension stands still today as one of the
most celebrated of the unsolved problems in Geometric Measure Theory (cf. [ope86, Prob-
lem 5.2]), and only a few partial answers corresponding to a limited number of particular
cases are available in literature. In [Whi83], B. White showed such uniqueness for two-
dimensional area minimizing currents in any codimension, building on a characterization
of two-dimensional area minimizing cones proved earlier on by F. Morgan in [Mor82]. In
general dimension, W. Allard and F. Almgren [AA81] were able to prove that uniqueness
holds under some additional requirements on the limit cone. Specifically, they have the
following theorem.

Theorem 1.1.1 ([AA81]). Let T be an m-dimensional area minimizing integer rectifiable current
in Rm+n, and let x ∈ spt(T) be an isolated singular point. Assume that there exists a tangent cone
C to T at x satisfying the following hypotheses:
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(H1) C is the cone over an (m− 1)-dimensional minimal submanifold Σ of Sm+n−1 1, and thus C
has an isolated singularity at 0 and Θm(‖C‖, x) = 1 for every x ∈ spt(C) \ {0};

(H2) all normal Jacobi fieldsN of Σ in Sm+n−1 are integrable, that is for every normal Jacobi field
N there exists a one-parameter family of minimal submanifolds of Sm+n−1 having velocity N
at Σ.

Then, C is the unique tangent cone to T at x. Furthermore, the blow-up sequence Tx,r = (ιx,r)]T

converges to C as r ↓ 0 with rate rβ for some β > 0.

The hypotheses (H1) and (H2) are however quite restrictive. Allard and Almgren were
able to show that (H2) holds in case Σ is the product of two lower dimensional standard
spheres (of appropriate radii to ensure minimality), since in this case all normal Jacobi
fields of Σ in Sm+n−1 arise from isometric motions of Sm+n−1. It seems however rather
unlikely that the condition can hold for any general Σ admitting normal Jacobi fields other
than those generated by rigid motions of the sphere. In [Sim83a], L. Simon was able to
prove Theorem 1.1.1 dropping the hypothesis (H2), with a quite different approach with
respect to [AA81] and purely PDE-based techniques. Not much has been done, instead, in
the direction of removing (or, at least, weakening) the hypothesis (H1): to our knowledge,
indeed, the only result concerning the case when a tangent cone C has more than one
isolated singularity at the origin is contained in L. Simon’s work [Sim94], where the author
proves uniqueness of tangent cones to any codimension one area minimizing m-current T
whenever one limit cone C is of the form C = C0 ×R, with C0 a strictly stable, strictly
minimizing (m− 1)-dimensional cone in Rm with an isolated singularity at the origin, and
under additional assumptions on the Jacobi fields of C and on the spectrum of the Jacobi
normal operator of C0.

However, all the results discussed above do not cover the cases when a tangent cone has
higher multiplicity: it is remarkable that uniqueness is still open even under the strong
assumption that all tangent cones to an area minimizing m-current T (m > 2) at an interior
singular point x are of the form C = QJπK, where JπK is the rectifiable current associated
with an oriented m-dimensional linear subspace of Rm+n and Q > 1 (cf. [Alm00, Section
I.11(2), p. 9]).

In Part I we will present our paper [Stu17a], where we develop a complete multi-valued
theory of the Jacobi normal operator: we believe that such a theory may facilitate the un-
derstanding of the qualitative behaviour of the area functional near a minimal submanifold
with multiplicity, and eventually lead to a generalization of Theorem 1.1.1 (and neighbouring
results) to relevant cases when the condition that Θm(‖C‖, x) = 1 for every x ∈ spt(C) \ {0}
fails to hold.

As a byproduct, the theory of multiple-valued Jacobi fields will show that the regularity
theory for Dir-minimizing Q-valued functions developed in step (1) of Almgren’s program
(of which we will give an account in § 2.2.4) is robust enough to allow one to produce
analogous regularity results for minimizers of functionals defined on Sobolev spaces of Q-
valued functions other than the Dirichlet energy (see also [Mat83, DLFS11] for a discussion
about general integral functionals defined on spaces of multiple valued functions and their
semi-continuity properties).

1 See Section 2.1.2 for the definition of a cone over a current.
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1.1.1 Structure and main results

Let us first recall what is classically meant by Jacobi operator and Jacobi fields. Let Σ be
anm-dimensional compact oriented submanifold (with or without boundary) of an (m+k)-
dimensional Riemannian manifold M ⊂ Rd, and assume that Σ is stationary with respect
to the m-dimensional area functional. Then, a one-parameter family of normal variations
of Σ in M can be defined by setting Σt := Ft(Σ), where Ft is the flow generated by a smooth
cross-section N of the normal bundle NΣ of Σ in M which has compact support in Σ. It is
known that the second variation formula corresponding to such a family of variations can
be expressed in terms of an elliptic differential operator L defined on the space Γ(NΣ) of the
cross-sections of the normal bundle. This operator, usually called the Jacobi normal operator,
is given by L := −∆⊥Σ −A −R, where ∆⊥Σ is the Laplacian on NΣ, and A and R are linear
transformations of NΣ defined in terms of the second fundamental form of the immersion
ι : Σ→M and of a partial Ricci tensor of the ambient manifold M, respectively. The notions
of Morse index, stability and Jacobi fields, central in the analysis of the properties of the class
of minimal submanifolds of a given Riemannian manifold, are all defined by means of the
Jacobi normal operator and its spectral properties (see Section 4.2 for the precise definitions
and for a discussion about the most relevant literature related to the topic). In particular,
Jacobi fields are defined as those sections N ∈ Γ(NΣ) lying in the kernel of the operator L,
and thus solving the system of partial differential equations L(N) = 0.

In Part I, we consider instead multi-valued normal variations in the following sense. Let
Σ and M be as above, and consider, for a fixed integer Q > 1, a Lipschitz multiple valued
vector field N : Σ → AQ(R

d) vanishing at ∂Σ and having the form N =
∑Q
`=1JN

`K, where
N`(x) is tangent to M and orthogonal to Σ at every point x ∈ Σ and for every ` = 1, . . . ,Q.
The “flow” of such a multiple valued vector field generates a one-parameter family Σt of
m-dimensional integer rectifiable currents in M such that Σ0 = QJΣK and ∂Σt = QJ∂ΣK for
every t. The second variation

δ2JΣK(N) :=
d2

dt2
M(Σt)

∣∣∣∣
t=0

,

M(T) denoting the mass of a current T , is a well-defined functional on the space Γ1,2
Q (NΣ)

of Q-valued W1,2 sections of the normal bundle NΣ of Σ in M. We will denote such Jacobi
functional by Jac. Explicitly, the Jac functional is given by

Jac(N,Σ) :=
ˆ
Σ

Q∑
`=1

(
|∇⊥N`|2 − |A ·N`|2 −R(N`,N`)

)
dHm, (1.1)

where ∇⊥ is the projection of the Levi-Civita connection of M onto NΣ, |A ·N`| is the
Hilbert-Schmidt norm of the projection of the second fundamental form of the embedding
Σ ↪→ M onto N` and R(N`,N`) is a partial Ricci tensor of the ambient manifold M in the
direction of N` (see Section 4.2 for the precise definition of the notation used in (1.1)).

Unlike the classical case, it is not possible to characterize the stationary maps of the Jac
functional as the solutions of a certain Euler-Lagrange equation, and no PDE techniques
seem available to study their regularity. Therefore, we develop a completely variational
theory of multiple valued Jacobi fields. Hence, we give the following definition.
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Definition 4.2.11 Let Ω ⊂ Σ ↪→ M be a Lipschitz open set. A map N ∈ Γ1,2
Q (NΩ) is said to be a

Jac-minimizer, or a Jacobi Q-field in Ω, if it minimizes the Jacobi functional among all Q-valued
W1,2 sections of the normal bundle of Ω in M having the same trace at the boundary, that is

Jac(N,Ω) 6 Jac(u,Ω) for all u ∈ Γ1,2
Q (NΩ) such that u|∂Ω = N|∂Ω.

We are now ready to state the main theorems of this part. They develop the theory of
Jacobi Q-fields along three main directions, concerning existence, regularity, and estimate of
the singular set.

Theorem 5.0.1 (Conditional existence). Let Ω be an open and connected subset of Σ ↪→ M

with C2 boundary. Assume that the following strict stability condition is satisfied: the only
Q-valued Jacobi field N in Ω such that N|∂Ω = QJ0K is the null field N0 ≡ QJ0K. Then, for
any g ∈ Γ1,2

Q (NΩ) such that g|∂Ω ∈ W1,2(∂Ω,AQ(Rd)) there is a Jacobi Q-field N such that
N|∂Ω = g|∂Ω.

Note that the above result strongly resembles the classical Fredholm alternative condition
for solving linear elliptic boundary value problems: the solvability of the minimum prob-
lem for the Jac functional in Γ1,2

Q (NΩ) for any given boundary datum g as in the statement
is guaranteed whenever Ω does not admit any non-trivial Jacobi Q-field vanishing at the
boundary.

Theorem 6.0.1 (Regularity). Let Ω ⊂ Σ be an open subset, with Σ ↪→ M as above. There exists
a universal constant α = α(m,Q) ∈ (0, 1) such that if N ∈ Γ1,2

Q (NΩ) is Jac-minimizing then
N ∈ C0,α

loc(Ω,AQ(Rd)).

Theorem 6.0.3 (Estimate of the singular set). LetN be aQ-valued Jacobi field inΩ ⊂ Σm. Then,
there exists a relatively closed set sing(N) ⊂ Ω of Hausdorff dimension dimH(sing(N)) 6 m− 2

(and at most countable if m = 2) such that on the open set Ω \ sing(N) the vector field N can be
locally written as the superposition of Q classical Jacobi fields. Furthermore, either two Jacobi fields
of the local selection coincide, or they never cross.

Note that Theorems 5.0.1, 6.0.1 and 6.0.3 all have a counterpart in (and can in fact be con-
sidered a generalization of) Almgren’s theory of Dir-minimizing multiple valued functions
(cf. Theorems 2.2.20, 2.2.21 and 2.2.23). The existence result for Jacobi Q-field is natu-
rally more difficult than its Dir-minimizing counterpart, because in general the space of
Q-valued W1,2 sections of NΣ with bounded Jacobi energy is not weakly compact. There-
fore, the proof of Theorem 5.0.1 requires a suitable extension result (cf. Corollary 5.1.3)
for multiple valued Sobolev functions defined on the boundary of an open subset of Σ
to a tubular neighborhood, which eventually allows one to exploit the strict stability con-
dition in order to gain the desired compactness. In turn, such an extension theorem is
obtained as a corollary of a multi-valued version of the celebrated Luckhaus’ Lemma, cf.
Proposition 5.1.1. The proof of Theorem 6.0.1 is obtained from the Hölder regularity of
Dir-minimizing Q-valued functions by means of a perturbation argument. Finally, the es-
timate of the Hausdorff dimension of the singular set of a Jac-minimizer, Theorem 6.0.3,
relies on its Dir-minimizing counterpart once we have shown that the tangent maps to a



12 introduction

Jacobi Q-field at a collapsed singularity p (obtained as uniform limits of suitable sequences
of rescalings of N in a neighborhood of p) are non-trivial homogeneous Dir-minimizing
functions, see Theorem 6.3.8. In turn, the proof of the Blow-up Theorem 6.3.8 is based on
a delicate asymptotic analysis of an Almgren’s type frequency function, which is shown
to be almost monotone and bounded at every collapsed point. This is done by providing
fairly general first variation integral identities satisfied by the Jac-minimizers.

Let us also remark that Theorem 6.3.8 does not guarantee that tangent maps to a JacobiQ-
field at a collapsed singularity are unique. Similarly to what happens for tangent cones to
area minimizing currents (and for several other problems in Geometric Analysis), different
blow-up sequences may converge to different limit profiles. Whether this phenomenon
occurs or not is an open problem. On the other hand, if the dimension of the base manifold
ism = dimΣ = 2, then we are able to show that the limit profile must be a unique non-trivial
Dirichlet minimizer. Indeed, we have the following theorem.

Theorem 7.0.1 (Uniqueness of tangent maps). Let m = dimΣ = 2, and let N be a Q-valued
Jacobi field in Ω ⊂ Σ2. Let p be a collapsed singular point, that is, assume that N(p) = QJvK for
some v ∈ T⊥p Σ ⊂ TpM but there exists no neighborhood U of p such that N|U = QJζK for some
single-valued section ζ. Then, there exists a unique tangent map Np to N at p. Np is a non-trivial
homogeneous Dir-minimizer Np : TpΣ→ AQ(T

⊥
p Σ ⊂ TpM).

The key to prove Theorem 7.0.1 is to show that, in dimension m = 2, the rate of con-
vergence of the frequency function at a collapsed singularity to its limit is a small power
of the radius. In turn, this is achieved by exploiting one more time the variation formulae
satisfied by N.

The part is organized as follows. After a quick review of some classical notions in Differ-
ential Geometry, Chapter 4 contains the derivation of the second variation formula gener-
ated by a Q-valued section of NΣ, which leads to the definition of the Jac functional and to
a first analysis of its properties: in particular, we show that the Jac functional is lower semi-
continuous with respect to W1,2 weak convergence (cf. Proposition 4.3.1) and we study the
strict stability condition mentioned in the statement of Theorem 5.0.1 (cf. Lemma 4.3.4).
Chapter 5 contains the proof of Theorem 5.0.1. The regularity theory in general dimension
is instead developed in Chapter 6. In particular, the proof of Theorem 6.0.1 is contained
in Section 6.1. In Section 6.2 we prove the properties of the frequency function which are
needed to carry on the blow-up scheme, which is instead the content of Section 6.3. Theo-
rem 6.0.3 is finally proved in Section 6.4. Last, Chapter 7 contains the uniqueness of tangent
maps in dimension 2: the decay of the frequency function, Proposition 7.1.1, is proved in
Section 7.1; Theorem 7.0.1 is finally proved in Section 7.2.

1.2 part II: multiple-valued sections of vector bundles
and applications

Many natural problems in the Calculus of Variations require to minimize a given func-
tional among all functions in a certain functional space which not only attain a prescribed
boundary datum, but also satisfy an assigned geometric constraint. The harmonic maps
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problem, which is going to be the subject of Part III, can be naturally seen under this per-
spective: minimize the Dirichlet energy among all (single-valued or multi-valued) maps
which are constrained to take values into a prescribed target manifold N. The multi-valued
theory of the stability operator developed in Part I provides another instance of this class
of problems: Jacobi Q-fields are minimizers of the Jac functional among Q-valued maps
satisfying the additional requirement of taking values in the normal bundle NΣ of the min-
imal submanifold Σ in M. This last example in particular has driven our investigation
towards the possibility of developing a theory of multiple-valued sections of an abstract
vector bundle E over a Riemannian manifold Σ.

In part II we present our work [Stu17b], where we initiate this theory. First, in Chapter
8, building on some unpublished ideas of W. Allard [All13], we provide the elementary
definition of Q-multisection of the bundle E over Σ, and we establish how these multisec-
tions relate to Almgren’s multiple-valued functions and in which sense the former are a
generalization of the latter.

Then, in Chapter 9, we apply the theory of Q-multisections to provide an elementary
proof of a delicate “reparametrization statement” for multi-valued graphs, which in turn
plays an important role in the regularity theory à la Almgren-De Lellis-Spadaro for min-
imizing currents in codimension higher than one. Specifically, the problem we are going
to consider is the following: let f : Ω ⊂ Rm → AQ(R

n) be a Lipschitz Q-valued function,
and let Σ be a regular m-dimensional manifold which is the graph of a sufficiently smooth
function ϕ : Ω ′ ⊂ Ω → Rn. If the Lipschitz constant of f is small and Σ is sufficiently
flat, then is it possible to represent the graph of f also as the image of a Lipschitz multiple-
valued function F defined on Σ and taking values in its normal bundle? Furthermore, which
control do we have on the Lipschitz constant of F in terms of the Lipschitz constant of f?

In order to motivate the interest in the above problem, we need to go back to the regularity
theory for area-minimizing currents in high codimension, and in particular to steps (2)

and (3) of the Almgren-De Lellis-Spadaro program. When performing the approximation
procedure described in there, it is crucial, in order to close the contradiction argument, that
the limiting Dir-minimizer “inherits” the singularities of the current. In order to guarantee
that this happens, it is necessary to suitably construct a regular manifold (the center manifold)
which is an approximate “average” of the sheets of the current itself, and to approximate
with high degree of accuracy the current with Q-valued functions defined on the center
manifold and taking values in its normal bundle. Using the center manifold as reference
manifold from which the approximation is constructed is a way to prevent the sheets of the
approximating Q-valued functions from collapsing, in the limit, onto a single sheet, that is
a regular Dir-minimizer which would therefore fail in capturing the singular behavior of
the current. The center manifold construction and the related normal approximation are
performed in [DLS16a]. Solving the above reparametrization problem is a key step in the
construction of the approximation.

The reparametrization problem has been tackled and successfully solved in [DS15]. On
the other hand, the proof suggested by De Lellis and Spadaro makes use of the theory
of currents in metric spaces developed by Ambrosio-Kirchheim (see [AK00]). It turns out,
instead, that the theory of Q-multisections developed in Chapter 8 contains all the tools
that are required to provide a completely elementary and purely geometric proof of the
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reparametrization theorem for Lipschitz multiple-valued graphs needed in [DLS16a]. In
turn, this new approach will also serve as an example of the fact that some a-priori elemen-
tary geometric concepts may turn out to be extremely powerful in proving deep analytical
results.

1.2.1 Structure and main results

In Chapter 8 we consider an m-dimensional Riemannian manifold Σ of class C1 and a
vector bundle Π : E→ Σ of rank n and class C1 over Σ. For any fixed integer Q > 1, we give
the following definition.

Definition 8.1.1 (Q-valued sections) Given a vector bundle Π : E → Σ as above, and a subset
B ⊂ Σ, a Q-multisection over B is a map

M : E→N∪ {0}

with the property that ∑
ξ∈Π−1({p})

M(ξ) = Q for every p ∈ B.

It is immediate to observe that Q-multisections are a generalization of Almgren’s Q-
valued functions to vector bundle targets. In particular, if E = Σ×Rn is the trivial bundle
of rank n over Σ then every multisection M over B ⊂ Σ defines a unique function uM : B→
AQ(R

n), and, vice versa, every Q-valued function u : B → AQ(R
n) induces a unique Q-

multisection over B. These preliminary notions are the content of Section 8.1. In Section
8.2, instead, we turn our attention to two properties of Q-multisections suggested by Allard
in [All13]: coherence and vertical boundedness. These properties are particularly relevant, as
they “mimic” the classical notion of Lipschitz continuity in the vector bundle-valued case.

Roughly speaking, a Q-multisection M over Σ is coherent if the following holds. For
every point p ∈ Σ and for every disjoint family V of open sets V ⊂ E such that each V ∈ V

contains one and only one of the points ξ ∈ Π−1({p}) such that M(ξ) > 0, there exists
a neighborhood U of p in Σ with the property that if q ∈ U and V contains the point
ξ ∈ Π−1({p}) then the sum of the multiplicities M(ζ) of the points ζ ∈ V with Π(ζ) = q is
precisely equal to M(ξ).

The vertical boundedness property can be easily described for multisections M : Ω ×
Rn → N ∪ {0}, Ω ⊂ Rm open, and then extended to general multisections by means of
charts and trivializations. A multisection M over the trivial bundle Ω×Rn is vertically
bounded if there exists τ > 0 such that for any (x, v) ∈ Ω×Rn with M(x, v) > 0 there
exists a neighborhood U × V of (x, v) in Ω ×Rn such that the “graph” of M in U × V
is contained in a τ-cone centered at (x, v). We have the following result on coherent and
vertically limited multisections.

Proposition 8.2.2 and Proposition 8.2.4 LetΩ ⊂ Rm be open, and let E = Ω×Rn be the trivial
bundle of rank n overΩ. AQ-multisectionM : E→N∪ {0} is coherent if and only if the associated
multiple-valued function u : Ω→ AQ(R

n) is continuous. If M is also τ-vertically bounded then u
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is Lipschitz with Lip(u) 6
√
Qτ. Vice versa, if u : Ω → AQ(R

n) is L-Lipschitz continuous then
the associated multisection M is coherent and L-vertically bounded.

The above theory is then applied in Chapter 9 to prove the following reparametrization
result.

Theorem 9.1.4 Let Q, m and n be positive integers, and 0 < s < r < 1. Suppose that Σ is an open
m-dimensional submanifold of Rm+n which is the graph of a C3 function ϕ : Bs(0) ⊂ Rm → Rn,
and that f : Br(0) ⊂ Rm → AQ(R

n) is a Lipschitz Q-valued function. If the norms ‖ϕ‖C2 , ‖f‖C0
and Lip(f) are suitably small (depending onQ,m, n, r− s and rs ), then there exist a normal tubular
neighborhood U of Σ in Rm+n and a Lipschitz Q-valued section N of the normal bundle of Σ such
that the graph of f in U coincides (as current) with the image of the map F(p) =

∑Q
`=1Jp+N

`(p)K.
Furthermore, Lip(N) 6 C(‖D2ϕ‖C0 , ‖N‖C0 , Lip(f)).

1.3 part III: regularity and singularities of multiple-valued
harmonic maps

The Dirichlet energy is one of the simplest functionals studied in the framework of Calcu-
lus of Variations. Unconstrained (that is, Rn-valued) critical points of the Dirichlet energy
are harmonic functions, and as such they enjoy strong regularity properties. Harmonic
maps are maps taking values in a prescribed (compact) Riemannian manifold which are
critical for the Dirichlet energy with respect to variations preserving the constraint on the
target. The presence of the constraint gives rise to non-linear Euler-Lagrange equations for
its critical points; in turn, these non-linearities make it a challenge to study the regularity
of the solutions. In fact, it is not difficult to produce harmonic maps with singularities,
and thus the best one can hope for is a partial regularity theory. Such a theory has been
developed starting with the pioneering work [SU82] by Schoen and Uhlenbeck in the 1980s.
An account for the theory of harmonic maps is the content of § 2.3.1.

Some of the methods and techniques developed for the analysis of harmonic maps are
robust enough to be applicable in the study of even more general problems, such as the
regularity theory for minimizers of the Dirichlet energy taking values in a metric space.
Note, for instance, that Almgren’s Dir-minimizers are precisely minimizers of the Dirich-
let energy taking values in the very special metric space AQ(R

n). As a matter of fact,
the “locally Euclidean” structure of AQ(R

n) makes Dir-minimizers better behaved even
than classical energy minimizing harmonic maps into compact Riemannian manifolds (for
instance, energy minimizing harmonic maps, in general, fail to be continuous everywhere).

In [Hir16b], Hirsch started analyzing Dirichlet-minimizing Q-valued maps into compact
Riemannian manifolds, introducing the appropriate definitions and developing the basic
continuity theory for such objects, which we will summarize in § 2.3.3. In particular, the
partial regularity theory for multi-valued energy minimizing maps turns out to be com-
pletely equivalent to its classical single-valued counterpart. Motivated by this analogy, we
decided to investigate the possibility of deducing finer properties (rectifiability, Minkowski
estimates) of the singular set of Hirsch’s multiple valued energy minimizing maps in the
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spirit of the corresponding single-valued theory recently developed by Naber and Valtorta
in [NV17] (see § 2.3.2 for a quick overview of the results of [NV17]).

As a byproduct of these investigations, we have also discovered that some of the standard
results that are available in the single-valued situation fail to hold in the multiple-valued
case. This shows once more that the properties of Q-valued maps can be very different
from their single-valued counterparts.

Part III contains a presentation of our paper [HSV17], obtained in collaboration with J.
Hirsch and D. Valtorta, in which the results of the aforementioned studies are recorded.

1.3.1 Structure and main results

Part III is divided into two chapters. Chapter 10 contains a proof of the following result.

Theorem 10.0.1 Letm, n,Q be positive integers, let Nn ↪→ Rd be a compact Riemannian manifold,
and set

AQ(N) :=

{
T =

Q∑
`=1

Jp`K : each p` ∈ N

}
.

Suppose that u : B2(0) ⊂ Rm → AQ(N) is energy minimizing with energy bounded by Λ. If

singH(u) := {x ∈ B2(0) : u is not Hölder continuous in a neighborhood of x } ,

and
Br(singH(u)) :=

⋃
x∈singH(u)

Br(x) ,

then we have the uniform Minkowski estimate

Lm
(
Br(singH(u))∩B1(0)

)
6 C(m,N,Λ)r3 .

Furthermore, singH(u) is countably (m− 3)-rectifiable.

The proof of Theorem 10.0.1 uses the techniques developed in [NV17] for the single-
valued case, which roughly speaking rely on a quantitative version of the Federer-Almgren
dimension reduction argument. In fact, as in [NV17] Theorem 10.0.1 will be obtained as a
corollary of a more general statement on the quantitative stratification of singH(u), cf. Theo-
rem 10.2.17. However, we present an alternative definition of the quantitative stratification
used in [NV17] (which was originally introduced by Cheeger and Naber, see § 2.3.2 and
the references therein). The new stratification turns out to be equivalent to the standard
one in the case of minimizing maps, but easier to handle.

In Chapter 11 we consider instead the special case when the target N is connected and
has non-positive sectional curvatures. For classical harmonic maps, this assumption implies
full-blown continuity of the map u everywhere. On the other hand, in the case of Q-valued
maps this is true only if N is assumed to be also simply connected. We will provide a
counterexample to show that this assumption is needed. Specifically, we have the following
result.
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Theorem 11.0.1 and Proposition 11.4.1 Let Ω ⊂ Rm be an open set, and let N be a complete,
simply connected Riemannian manifold all of whose sectional curvatures are non-positive. Then,
every minimizing harmonic map u ∈W1,2(Ω,AQ(N)) satisfies

singH(u) = ∅.

If Q > 1, the result does not hold if N is merely connected. Indeed, there is a 2-valued Dirichlet
minimizing map u from B1(0) ⊂ R3 into the flat torus T2 = C/Z2 with the property that u|S2 is
Lipschitz continuous, singH(u) b B1(0) and singH(u) 6= ∅.

1.4 part IV: results on real currents and currents with
coefficients in groups

It is often the case in Mathematics that new concepts and ideas not only contribute to
the solution of many long-standing problems, but also pose new questions and initiate new
lines of research. Following this line of thinking, it is not surprising that the theory of
currents is not limited solely to the solution of Plateau’s problem. On the contrary, many
generalizations of the classical theory of integer rectifiable currents have been studied, both
in the direction of considering more general functionals than the mass, and in the direction
of analyzing more general classes of currents. At the same time, currents have proven
themselves to be a powerful and versatile tool for tackling problems coming from different
areas of Analysis.

In particular, regarding the study of more general classes of currents, let us first mention
the work of Ziemer [Zie62], who introduced the notion of integral currents modulo 2 in order
to develop a theory concerning the existence of solutions to the Plateau’s problem among
non-orientable surfaces spanning a given boundary. Further generalizations, such as inte-
gral currents modulo p and flat chains modulo p, were considered in order to treat a wider class
of surfaces which can be realized, for instance, as soap films. An interesting property of
such surfaces is that they can develop singularities in low codimension, unlike the classical
solutions to Plateau’s problem (see, for instance, [Mor86] and [Whi86]). The occurrence, in
practical experiments, of two-dimensional soap films with a line of singularities (prohibited
in the classical theory of area minimizing integer rectifiable currents) justifies the interest
towards this kind of objects.

This line of research has in turn initiated the investigations on the more general classes
of currents with coefficients in a normed abelian group G, of which currents modulo p
represent the particular case when G = Zp. Introduced by Fleming in the seminal paper
[Fle66], currents with coefficients in groups have been used in modelling immiscible fluids
and soap bubble clusters (see [Whi96]), in proving that various surfaces are area minimiz-
ing [LM94], and in analyzing the properties of networks arising as solutions to classical
problems such as the Steiner or the Gilbert-Steiner problem (cf. [MM16b, MM16a]). The
interested reader can also see [AK11, DPH12, DPH14] for more on the topic.
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1.4.1 Structure and main results

Part IV is divided into two chapters. In Chapter 12 we present our work [CDMS17],
obtained in collaboration with M. Colombo, A. De Rosa and A. Marchese. We work in
the framework of real currents, and we deal with a more general class of functionals than
the mass. Specifically, consider any subadditive, lower semi-continuous and even function
H : R → [0,∞) with H(0) = 0. Any such a function induces a functional ΦH on the space
of real polyhedral m-chains in Rd (roughly speaking, finite unions of non-overlapping
oriented m-simplexes carrying real multiplicities) by setting, for any polyhedral m-chain
P =
∑N
i=1 θiJσiK associated to non-overlapping oriented m-simplexes σi with multiplicities

θi ∈ (0,∞),

ΦH(P) :=

N∑
i=1

H(θi)H
m(σi).

Observe that the mass M(P) coincides with ΦH(P) corresponding with the choice H(θ) :=
|θ|. The functional ΦH extends to a functional MH, the so-called H-mass, defined on all
real rectifiable m-currents (that is, currents supported on an m-rectifiable set E oriented by
a tangent m-vector field ~τ and carrying a real multiplicity function θ) by setting, for every
R = JE, ~τ, θK,

MH(R) :=

ˆ
E

H(θ(x))dHm(x) .

H-mass functionals naturally arise in the context of branched transport problems, variants of
the optimal transport problem where the cost function not only depends on the spatial
distribution of the masses that one wants to move, but also on the paths along which the
flow takes place. These models have been proposed in order to describe a large variety
of natural phenomena as well as engineering problems, and other very interesting math-
ematical problems can be related with it, such as the analysis of topological singularities
for Ginzburg-Landau models (see the recent papers [MM16a, CDM17] and the references
therein).

It is easy to see that the above assumptions on H are necessary for the functional MH

to be (well defined and) lower semi-continuous on rectifiable currents with respect to con-
vergence in an appropriate topology - the so called flat norm topology -. In Chapter 12, we
prove that they are also sufficient. Furthermore, we obtain the following theorem.

Theorem 12.2.4 The lower semi-continuous envelope of ΦH, namely the functional FH defined on
any real flat chain T by

FH(T) := inf
{

lim inf
j→∞ ΦH(Pj) : Pj are polyhedral and converge to T in the flat topology

}
,

coincides, on the class of rectifiable currents, with the functional MH.

The validity of the representation FH = MH on rectifiable currents has recently attracted
some attention. For instance, it is clearly assumed in [Xia03] for the choice H(θ) = |θ|α,
with α ∈ (0, 1) , in order to prove some regularity properties of minimizers of problems
related to branched transportation (see also [PS06], [BCM09], [Peg16]), and in [CMF16] in
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order to define suitable approximations of the Steiner problem, with the choice H(θ) =

(1+β|θ|)1R\{0}, where β > 0 and 1A denotes the indicator function of the Borel set A.
The proof that we suggest is based on the aforementioned lower semi-continuity result

for MH and on a polyhedral approximation of real rectifiable currents with real polyhe-
dral chains having H-mass arbitrarily close to the H-mass of the current they approximate.
We remark that in the last section of [Whi99a] the author sketches a strategy to prove an
analogous version of Theorem 12.2.4 in the framework of flat chains with coefficients in
a normed abelian group G. Motivated by the relevance of such result for real valued flat
chains, the ultimate aim of Chapter 12 is to present a self-contained complete proof of it
when G = R.

In Chapter 13, instead, we present our paper [MS17], obtained in collaboration with A.
Marchese, where we work in the framework of currents modulo p. It has to be noted that,
despite the substantial interest in the subject, the very structure of flat chains and integral
currents modulo p is yet to be completely understood. The initial idea of defining flat
chains modulo p by identifying currents which differ by pT , where T is a “classical” flat
chain, fails because of one major drawback: the closedness of the classes with respect to
the flat norm is a-priori not guaranteed. Hence, it is more convenient to define the classes
of flat chains modulo p as the flat closure of the equivalence classes mentioned above. The
equivalence of the two definitions is still an open problem.

A second issue regards the structure of integral currents modulo p. They are defined as
flat chains modulo p with finite p-mass and finite p-mass of the boundary. It is not known
whether each equivalence class contains at least one classical integral current.

In Chapter 13, we specifically address these two problems. After introducing the basic
terminology and properties concerning flat chains and integral currents modulo p, we for-
mulate two questions related to the two above problems and collect some partial answers
from the literature. Then, we throw light on the connection between the two questions,
and we provide a positive answer to the second one in the case of 1-dimensional currents.
Specifically, we have the following theorem.

Theorem 13.2.5 Let [T ]mod(p) be an integral 1-current modulo p in Rd. Then, there exists a 1-
current T0 in Rd such that T0 ≡ Tmod(p) and T0 is integral. In particular, every integer rectifiable
1-current without boundary modulo p admits an integer rectifiable representative without boundary
in the classical sense.

Finally, we conclude the chapter with an example illustrating how it is possible to pro-
duce situations in which the answer to the second question is negative in higher dimension.





2 P R E L I M I N A R I E S

This chapter is dedicated to give an overview of standard topics from the literature in
Geometric Measure Theory and Geometric Analysis in which the research presented in
this thesis has its roots. Nothing written in this chapter is original, and we will provide
references to standard textbooks or research papers where the material here included is
thoroughly developed. Clearly, our presentation is not supposed to be exhaustive: our
main goal is rather to fix the notation and recall some important background results for
further reference. The chapter is divided in three sections: Section 2.1 is dedicated to the
theory of currents, Section 2.2 contains an introduction to the theory of multiple-valued
functions, Section 2.3 deals with the theory of harmonic maps. Currents are ubiquitous
in this thesis, and thus the contents of Section 2.1 are a prerequisite to all other chapters;
multiple-valued functions do not appear in Part IV, so Section 2.2 is propaedeutic only to
parts I, II and III; the material presented in Section 2.3 will only be used in Part III.

2.1 an overview of the theory of currents

We start with a tutorial on the theory of currents. For a thorough discussion of the topic,
the reader can refer to standard books in Geometric Measure Theory such as [Sim83b] and
[KP08], to the monograph [GMS98] or to the treatise [Fed69].

As anticipated in the Introduction, currents are a generalization of the notion of surface,
introduced in order to produce a general existence theory of solutions of Plateau’s problem.
The key idea motivating the definition of a current is the following. If Σ is an oriented m-
dimensional submanifold (possibly with boundary) of an open set Ω ⊂ Rd (d > m) with
locally finite m-dimensional Hausdorff measure, and ω ∈ Dm(Ω) is a smooth differential
m-form on Ω with compact support, then one can consider the quantity

JΣK(ω) :=

ˆ
Σ

ω .

It is then easy to check that the functional ω ∈ Dm(Ω) 7→ JΣK(ω) is linear and continuous
with respect to the standard locally convex topology of Dm(Ω). Moreover, the map Σ 7→ JΣK
is injective: thus, in a sense, the value of JΣK on all possible forms ω ∈ Dm(Ω) determines
the submanifold Σ itself.

The above discussion makes the following definition extremely natural.

Definition 2.1.1 (General currents). Given an open set Ω ⊂ Rd, an m-dimensional current
in Ω is a linear and continuous functional

T : Dm(Ω)→ R.

21
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The space of m-currents in Ω is therefore the topological dual space of Dm(Ω), and
will be denoted by Dm(Ω). Rephrasing the observation above, if Σ ⊂ Ω is an oriented m-
dimensional submanifold, then there is a corresponding m-current JΣK ∈ Dm(Ω) defined
by integration of m-forms on Σ in the usual sense of differential geometry:

JΣK(ω) :=

ˆ
Σ

ω ∀ω ∈ Dm(Ω).

The idea of “spanning” a given contour can be formalized by introducing the notion of
boundary of a current. If T ∈ Dm(Ω), then its boundary is the (m− 1)-current ∂T whose
action on any form ω ∈ Dm−1(Ω) is given by

∂T(ω) := T(dω).

Observe that the definition of boundary is obtained by enforcing Stokes’ theorem: in partic-
ular, ∂JΣK = J∂ΣK if Σ is a smooth oriented m-dimensional submanifold in Ω. Furthermore,
from the fact that d ◦ d = 0 immediately follows that ∂(∂T) = 0 for every T ∈ Dm(Ω).

The mass of T ∈ Dm(Ω), denoted M(T), is the (possibly infinite) supremum of the values
T(ω) among all formsω ∈ Dm(Ω) with ‖ω(x)‖c 6 1 everywhere. Again, for a submanifold
Σ, computing M(JΣK) produces the expected value Hm(Σ). Hence, M(T) can be thought of
as the “m-dimensional area” of T . The definition of mass can be localized to any W b Ω
simply by restricting the class of competitors in the supremum only to those forms ω with
spt(ω) ⊂ W. We will use the notation MW(T) for the localized mass in W. Both the mass
and the localized mass satisfy the triangle inequality MW(T1 + T2) 6MW(T1) + MW(T2).

The support spt(T) of the current T is the intersection of all closed subsets C such that
T(ω) = 0 whenever spt(ω) ⊂ Rd \C.

A suitable notion of convergence of currents can be defined by endowing Dm(Ω) with the
weak-∗ topology induced by the topology on Dm(Ω). Hence, we will say that a sequence
{Th}

∞
h=1 ⊂ Dm(Ω) converges to T ∈ Dm(Ω) in the sense of currents, and we will write Th ⇀ T ,

if Th(ω) → T(ω) for every ω ∈ Dm(Ω). It is clear that if Th ⇀ T then also ∂Th ⇀ ∂T .
Moreover, the mass is lower semi-continuous with respect to convergence in the sense of
currents.

Since the mass is lower semi-continuous with respect to the weak-∗ convergence of cur-
rents, using standard functional analytic methods to gain compactness it is easy to provide
an affirmative answer to the Plateau’s problem in the framework of general currents with
finite mass. Nonetheless, such a solution is highly unsatisfactory, because, for instance, the
resulting minimizing current might be a surface carrying real multiplicities. This issue was
overcome in [FF60], where the authors prove a highly non-trivial compactness result for a
subclass of the class of general currents, which goes under the name of integral currents and
is going to be defined in the next paragraph.

2.1.1 Integral currents and the solution of Plateau’s problem

A subset B ⊂ Ω is (countably) m-rectifiable if B can be covered, up to a Hm-null set,
by countably many m-dimensional embedded submanifolds of Rd of class C1. If B is
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m-rectifiable, then to Hm-a.e. point x ∈ B can be suitably associated an m-dimensional ap-
proximate tangent space, denoted Tan(B, x), in such a way that Tan(B, x) = TxΣ if B coincides
with a C1 submanifold Σ in a neighborhood of x (cf. [Sim83b, Theorem 11.6]).

Let B be m-rectifiable. An orientation of B is a Hm-measurable function ~τ : B → Λm(Rd)

such that, for Hm-a.e. x ∈ B, ~τ(x) is a simple unit m-vector having the form ~τ(x) =

τ1(x)∧ · · ·∧ τm(x), where (τ1(x), . . . , τm(x)) is an orthonormal basis of Tan(B, x).
A multiplicity on B is a real-valued function θ ∈ L1loc(Hm B).
To any triple (B, ~τ, θ) as above it is possible to associate a current T setting

T(ω) :=

ˆ
B

〈ω(x), ~τ(x)〉 θ(x)dHm(x) ∀ω ∈ Dm(Ω).

If the action of T is given by the above expression, we will write T = JB, ~τ, θK. Moreover,
if θ(x) ∈ Z for Hm-a.e. x ∈ B we will call T a locally integer rectifiable current. The set of
locally integer rectifiable m-currents in Ω is denoted Rlocm (Ω). If T = JB, ~τ, θK ∈ Rlocm (Ω),
we denote by ‖T‖ the Radon measure given by

‖T‖(A) :=
ˆ
A∩B

|θ|dHm for every A ⊂ Rd Borel.

One can check that MW(T) = ‖T‖(W) for every W b Ω and thus, in particular, locally
integer rectifiable currents have locally finite mass. For T ∈ Rlocm (Ω) the m-dimensional
density Θm(‖T‖, x), when it exists, will be sometimes simply denoted Θ(‖T‖, x).

Locally integer rectifiable currents with locally integer rectifiable boundary are called
locally integral currents. We write T ∈ I loc

m (Ω) if T is a locally integral m-current in Ω. One
of the cornerstones of the Federer-Fleming theory, known as the Boundary Rectifiability
Theorem, shows that for T ∈ Rlocm (Ω) the condition MW(∂T) < ∞ for every W b Ω

suffices to conclude that T is actually locally integral.

Theorem 2.1.2 (Boundary Rectifiability, cf. [Fed69, Theorem 4.2.16] and [Sim83b, Theorem
30.3]). It holds:

I loc
m (Ω) = {T ∈ Rlocm (Ω) : MW(∂T) <∞ for every W b Ω}. (2.1)

More importantly for our purposes, the class of locally integral currents enjoys good
compactness properties, as stated in the next, remarkable, Compactness Theorem.

Theorem 2.1.3 (Compactness, cf. [Sim83b, Theorem 27.3]). Let {Th}
∞
h=1 ⊂ I loc

m (Ω) be a
sequence of locally integral currents such that

sup
h>1

(MW(Th) + MW(∂Th)) <∞ ∀W b Ω. (2.2)

Then, there exist T ∈ I loc
m (Ω) and a subsequence {Thj} such that Thj ⇀ T .

Theorem 2.1.3 allows to conclude that the Plateau’s problem does admit a positive answer
in the framework of locally integer rectifiable currents: in particular, for any locally integer
rectifiable (m− 1)-current S for which the class of locally integer rectifiable m-currents T
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having ∂T = S is non-empty it is possible to find a locally integer rectifiable current T0 with
∂T0 = S which satisfies the following minimality condition:

MW(T0) 6MW(T0 + ∂R) for every W b Ω, for every R ∈ I loc
m+1(Ω) with spt(R) bW .

(2.3)

Definition 2.1.4. A current T ∈ Rlocm (Ω) satisfying (2.3) is said to be area minimizing in Ω.

In § 2.1.5 we will record the main results available in literature concerning the regularity
of area minimizing locally integer rectifiable currents.

Remark 2.1.5. A remark on the terminology we have used in this paragraph is now in order.
The reader might indeed wonder why we have used the adverb “locally” when discussing
the notions of integer rectifiable and integral currents. The reason being that what we have
used is precisely the terminology adopted by Federer [Fed69], for which integer rectifiable
and integral currents all have compact support and finite mass. In particular, the m-current
JπK associated to an m-dimensional plane π ⊂ Rd with multiplicity one is not a rectifiable
current in the sense of Federer, but rather a locally rectifiable current. On the other hand,
when presenting the notion of minimality for a current it is rather advisable to include
planes in the discussion. Anyway, as a matter of fact most of the integer rectifiable or
integral currents appearing in this thesis are going to have compact support and finite mass.
Hence, we have decided to stick to the notation of [Fed69] and to reserve the notations
Rm(Ω) and Im(Ω) for those (locally) integer rectifiable (resp. integral) currents with
compact support and finite mass. In particular, if K ⊂ Ω is a compact set then we will
denote Rm,K(Ω) (resp. Im,K(Ω)) the sets of currents T in Rlocm (Ω) (resp. I loc

m (Ω)) with
spt(T) ⊂ K. Further, we will set

Rm(Ω) :=
⋃
K

Rm,K(Ω) ,

Im(Ω) :=
⋃
K

Im,K(Ω) ,

where the union is extended to all compact subsets K ⊂ Ω. Currents in Rm(Ω) and Im(Ω)

will be called integer rectifiable and integral m-dimensional currents respectively.

2.1.2 Some relevant constructions with currents

Let T ∈ Dm(Ω) and suppose f : Ω→ Rn is a C∞ map. If f is proper (i.e. f−1(K) is compact
for any compact K ⊂ Rn), then the push-forward of T through f is the current f]T ∈ Dm(Rn)

defined by
f]T(ω) := T(f]ω) ∀ω ∈ Dm(Rn),

where f]ω denotes the pull-back of the form ω through f. The push-forward operator
f] is linear, and moreover an elementary computation shows that it commutes with the
boundary operator:

∂(f]T) = f](∂T). (2.4)
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Next, we recall the important homotopy formula for currents. Let f,g : Ω→ Rn be smooth,
and let σ : [0, 1] ×Ω → Rn be a smooth function such that σ(0) ≡ f and σ(1) ≡ g. If
T ∈ Dm(Ω) and if σ is proper, then σ](J(0, 1)K× T) 1 is a well defined current in Dm+1(R

n),
and moreover (cf. [Sim83b, (26.22)])

∂σ](J(0, 1)K× T) = g]T − f]T − σ](J(0, 1)K× ∂T). (2.5)

An important case of the above construction occurs when σ is the affine homotopy
σ(t, x) := (1 − t)f(x) + tg(x). In this case, we have the following estimate on the mass
of σ](J(0, 1)K× T), which will be useful in the sequel (see [Sim83b, Section 26] for the proof):

M(σ](J(0, 1)K× T)) 6

(
sup

x∈spt(T)
|f(x) − g(x)|

)(
sup

x∈spt(T)
(|Df(x)|+ |Dg(x)|)

)
M(T). (2.6)

Next, we define the cone 0×× T over a current T ∈ Dm(Ω). IfΩ is star-shaped with respect
to 0 and spt(T) is compact, we set

0×× T := h](J(0, 1)K× T),

where h : (0, 1)×Rd → Rd is defined by h(t, x) := tx. Thus, 0×× T ∈ Dm+1(Ω), and by the
homotopy formula (2.5) one has

∂(0×× T) = T − 0×× (∂T).

Observe that if T = JΣK is the current associated to an m-dimensional submanifold Σ of
Sd−1 ⊂ Rd, then 0×× T = JCΣK, where CΣ = {tx : x ∈ Σ, t ∈ (0, 1)}.

The following theorem is very useful.

Theorem 2.1.6 (Constancy Theorem, cf. [Sim83b, Theorem 26.27]). IfΩ is open and connected
in Rm (i.e. d = m), and if T ∈ Dm(Ω) has ∂T = 0 then there is a constant c ∈ R such that
T = cJΩK.

If T = JB, ~τ, θK is a (locally) rectifiable current, and A ⊂ Rd is a Borel set, we denote the
restriction of T to A by setting T A := JB ∩A, ~τ, θK. The restriction operator analogously
extends to all currents which can be represented by integration.

Now, we introduce the notion of slicing a locally integer rectifiable current by a Lipschitz
function. Let T = JB, ~τ, θK ∈ Rlocm (Ω), and let f : B → R be Lipschitz. Denote by Df(x)
the tangent map of f at x, which exists at Hm-a.e. x ∈ B since B is rectifiable and f is
Lipschitz, and set B+ := {x ∈ B : |Df(x)| > 0}. Then, for a.e. t ∈ R one has that the set
Bt := f−1({t}) ∩ B+ is countably (m− 1)-rectifiable (cf. [Sim83b, Lemma 28.1]). Moreover,
at Hm−1-a.e. x ∈ Bt the approximate tangent spaces Tan(B, x) and Tan(Bt, x) both exist

1 Here, J(0, 1)K× T denotes the cartesian product of the currents J(0, 1)K and T . Of course, when T = JΣK is the
current associated to a smooth submanifold Σ then J(0, 1)K× T coincides with the current which is naturally
associated to the product manifold (0, 1)× Σ. For the general definition of the cartesian product of currents,
the reader can refer to [Fed69, 4.1.8] or [Sim83b, Section 26].
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and Tan(Bt, x) ⊂ Tan(B, x). For any such x there is ~ξ(x) ∈ Λm−1(Tan(Bt, x)) such that
|~ξ(x)| = 1, ~ξ(x) is simple and Df(x)

|Df(x)| ∧
~ξ(x) = ~τ(x). For the (L1-almost all) t ∈ R such

that Bt is rectifiable, one defines then the slice 〈T , f, t〉 of T by f at t by setting 〈T , f, t〉 :=
JBt,~ξ, θtK ∈ Rlocm−1(Ω), where θt := θ|Bt . The properties of the slices are recorded in the
following proposition.

Proposition 2.1.7 (Slicing, cf. [Sim83b, Lemma 28.5]).

(i) For every W b Ω it holds
ˆ +∞
−∞ MW(〈T , f, t〉)dt =

ˆ
W∩B

|Df(x)||θ(x)|dHm(x) 6 ‖Df‖L∞(W∩B)MW(T) ;

(ii) if MW(∂T) <∞ for every W b Ω, then for L1-a.e. t ∈ R one has

∂ (T {f < t}) = (∂T) {f < t}+ 〈T , f, t〉;

(iii) if T ∈ I loc
m (Ω), then for L1-a.e. t ∈ R it holds

〈∂T , f, t〉 = −∂ (〈T , f, t〉) .

The slicing theory can then be extended to slicing by Rn-valued maps by iteratively
slicing by the (real-valued) components of the map (see [Fed69, Section 4.3]).

2.1.3 Integral flat chains

Let K ⊂ Ω be a compact set. We set

Fm,K(Ω) := {T = R+ ∂S : R ∈ Rm,K(Ω) and S ∈ Rm+1,K(Ω)} ,

and we let Fm(Ω) be the union of the sets Fm,K(Ω) over all compact K ⊂ Ω. Observe that
Rm(Ω) ⊂ Fm(Ω). Currents T ∈ Fm(Ω) are called m-dimensional (integral) flat chains in
Ω. On each set Fm,K(Ω) one can define a metric as follows: for T ∈ Fm,K(Ω), set

FK(T) := inf {M(R) + M(S) : R ∈ Rm,K(Ω),S ∈ Rm+1,K(Ω) such that T = R+ ∂S} ,

and then let the distance between T1 and T2 (usually called flat distance) be given by

dFK(T1, T2) := FK(T1 − T2).

It turns out that the resulting metric space (Fm,K(Ω), dFK) is complete. Moreover, the mass
functional is lower semi-continuous with respect to the flat convergence.

For every K, the class Im,K(Ω) is dense in Rm,K(Ω) in mass, and consequently Im,K(Ω)

is dense in Fm,K(Ω) in flat norm. In particular, given T ∈ Fm,K(Ω) there exist sequences
{Tj} ⊂ Im,K(Ω), {Rj} ⊂ Rm,K(Ω), {Sj} ⊂ Rm+1,K(Ω) such that

T = Tj + Rj + ∂Sj
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and
M(Rj) + M(Sj)→ 0.

If T has finite mass, then the ∂Sj’s have finite mass too, and thus Sj ∈ Im+1,K(Ω) by
Theorem 2.1.2. Therefore, the currents Tj + ∂Sj ∈ Rm,K(Ω) approximate T in mass, and
this suffices to conclude that T ∈ Rm,K(Ω) (cf. [Sim83b, Lemma 27.5]). We have shown the
following result:

Theorem 2.1.8 (Rectifiability of flat chains with finite mass, cf. [Fed69, Theorem 4.2.16]).
One has:

Rm,K(Ω) = {T ∈ Fm,K(Ω) : M(T) <∞}. (2.7)

It is immediate to show that if a sequence {Th} of flat chains converges to T with respect
to the flat distance then it also weakly converges to T . The two notions of convergence
are in fact equivalent if {Th} is a sequence of integral currents satisfying (2.2) (cf. [Sim83b,
Theorem 31.2]). Hence, in Theorem 2.1.3 the conclusion Thj ⇀ T is in fact equivalent to
FK(Thj − T)→ 0 for every K ⊂ Ω compact.

Finally, it is possible to show that the infimum in the definition of FK(T) is, in fact, a
minimum (see [Fed69, Corollary 4.2.18]).

Proposition 2.1.9. If T ∈ Fm,K(Ω), then there exists a current S ∈ Rm+1,K(Ω) such that
T − ∂S ∈ Rm,K(Ω) and

FK(T) = M(T − ∂S) + M(S). (2.8)

2.1.4 Approximation theorems

When working with integral currents or flat chains, it is sometimes extremely useful to
approximate such currents with more regular objects. Surprisingly enough, the “regular”
objects we are referring to are not the currents associated with smooth submanifolds, but
polyhedral chains.

Given an m-dimensional simplex σ in Rd with constant unit orientation ~τ, we denote
by JσK the rectifiable current Jσ, ~τ, 1K. Finite linear combinations of (the currents associated
with) orientedm-simplexes with integer coefficients are called (integral) polyhedralm-chains.
The set of polyhedral m-chains in Rd will be denoted Pm(Rd).

The following Deformation Theorem, first proved by Federer and Fleming in [FF60], is a
central result in the theory of currents.

Theorem 2.1.10 (Deformation, cf. [Fed69, Theorem 4.2.9]). There exists a constant γ = γ(m,d)
with the following property. For any T ∈ Im(Rd) and ε > 0 there exist P ∈ Pm(Rd), R ∈
Im(Rd) and S ∈ Im+1(R

d) such that the following holds:

(i) T = P+ R+ ∂S;

(ii) M(P) 6 γ (M(T) + εM(∂T)) , M(∂P) 6 γM(∂T),
M(R) 6 γεM(∂T), M(S) 6 γεM(T);

(iii) spt(P)∪ spt(S) ⊂ {x : dist(x, spt(T)) 6 2dε}
spt(∂P)∪ spt(R) ⊂ {x : dist(x, spt(∂T)) 6 2dε};
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(iv) if ∂T is an integral polyhedral chain, so is R;

(v) if T is an integral polyhedral chain, so is S.

A great variety of results concerning the approximation of currents with polyhedral
chains stem directly from the Deformation Theorem. In the sequel, we will mainly use
the following two “flat norm” approximation theorems, stated in the next two propositions
and concerning integral currents and flat chains respectively.

Proposition 2.1.11 (Polyhedral approximation of integral currents, cf. [Fed69, Corollary
4.2.21]). If T ∈ Im(Ω), ρ > 0 and K ⊂ Ω is a compact subset such that spt(T) ⊂ intK, then there
exists P ∈Pm(Rd) with spt(P) ⊂ K and

FK(T − P) 6 ρ, M(P) 6M(T) + ρ, M(∂P) 6M(∂T) + ρ. (2.9)

Proposition 2.1.12 (Polyhedral approximation of flat chains, cf. [Fed69, Theorem 4.2.22]). If
T ∈ Fm(Ω) and K ⊂ Ω is a compact subset such that spt(T) ⊂ intK, then T ∈ Fm,K(Ω), and for
every ε > 0 there exists P ∈Pm(Rd) with spt(P) ⊂ K and

FK(T − P) 6 ε, M(P) 6M(T) + ε. (2.10)

2.1.5 Area minimizing currents: interior regularity theory

Let Ω ⊂ Rd be an open set, and let T ∈ Rlocm (Ω) be area minimizing in Ω. Define
Reg(T) to be the set of points x ∈ spt(T) \ spt(∂T) for which there exists r > 0 such that
spt(T)∩Br(x) is a smoothly embedded m-dimensional submanifold, and set

Sing(T) := spt(T) \ (Reg(T)∪ spt(∂T)) .

As anticipated in the Introduction, in order to discuss the regularity of T we have to distin-
guish two cases.

Theorem 2.1.13 (Regularity in codimension one). Let Ω ⊂ Rd be an open set, and let T ∈
Rlocm (Ω) be area minimizing in Ω. Suppose that n := d−m = 1. Then, the following holds:

(i) for m 6 6, Sing(T) ∩Ω is empty (Fleming and De Giorgi (m = 2), Almgren (m = 3),
Simons (4 6 m 6 6), see [DG61, Fle62, DG65, Alm66, Sim68]);

(ii) for m = 7, Sing(T)∩Ω consists of isolated points (Federer [Fed70]);

(iii) for m > 8, Sing(T) ∩Ω has Hausdorff dimension not larger than m− 7 (Federer [Fed70]),
and it is countably (m− 7)-rectifiable (Simon [Sim95b], Naber and Valtorta [NV15]);

(iv) the above results are optimal: for everym > 7 there are area minimizing T in Rm+1 for which
Sing(T) has positive Hm−7 measure (Bombieri-De Giorgi-Giusti [BDGG69]).

Theorem 2.1.14 (Regularity in higher codimension). Let Ω ⊂ Rd be an open set, and let
T ∈ Rlocm (Ω) be area minimizing in Ω. Suppose that n := d−m > 2. Then, the following holds:

(i) for m = 1, Sing(T)∩Ω is empty;
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(ii) for m = 2, Sing(T)∩Ω consists of isolated points (Chang [Cha88]);

(iii) for m > 3, Sing(T) ∩Ω has Hausdorff dimension not larger than m− 2 (Almgren [Alm00],
De Lellis-Spadaro [DLS14, DLS16a, DLS16b]);

(iv) the above results are optimal: for every m > 2 there are area minimizing T in Rm+n (n > 2)
for which Sing(T) has positive Hm−2 measure (Federer [Fed65]).

The occurrence of branching-type singularities in the higher codimension case has made
necessary the development of a whole range of new tools. Central among them is Alm-
gren’s theory of multiple-valued functions, which is the topic of our next section.

2.2 almgren’s theory of multiple-valued functions

Here we briefly recall the relevant definitions and properties concerning Q-valued func-
tions. Our main reference is [DLS11].

2.2.1 The metric space of Q-points

From now on, let Q > 1 be a fixed positive integer. The set of Q-points in Rn is, roughly
speaking, the set of unordered Q-tuples of vectors in Rn. More precisely, we have the
following definition.

Definition 2.2.1 (Q-points). The set of Q-points in the Euclidean space Rn is denoted
AQ(R

n) and defined as the quotient (Rn)Q/ ∼ modulo the equivalence relation(
v1, . . . , vQ

)
∼
(
vσ(1), . . . , vσ(Q)

)
∀σ ∈ PQ,

where PQ is the group of permutations of {1, . . . ,Q}. Equivalently, AQ(Rn) can be identi-
fied with the following set:

AQ(R
n) =

{
T =

Q∑
`=1

Jv`K : v` ∈ Rn for every ` = 1, . . . ,Q

}
, (2.11)

where JvK is the Dirac mass δv centered at the point v ∈ Rn. Hence, every Q-point T can in
fact be identified with a purely atomic non-negative measure of mass Q in Rn which is the
sum of Dirac deltas with integer multiplicities.

For the sake of notational simplicity, we will sometimes write AQ instead of AQ(Rn) if
there is no chance of ambiguity.

Remark 2.2.2. Observe that the notation JvK to denote the Dirac delta δv is consistent with
that introduced in Section 2.1 for the current associated to a submanifold. Indeed, if v ∈ Rn

then the action of the 0-dimensional current associated to v is precisely given by

JvK(f) = f(v) for every f ∈ D0(Rn) = C∞c (Rn).
Hence, JvK is in fact the restriction of δv to C∞c (Rn).
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The identification of Q-points with measures plays a fundamental role in the develop-
ment of calculus on AQ(R

n), as it allows one to define a distance between Q-points bor-
rowing one of the distances defined for measures with finite mass. In particular, it is
customary to use the Wasserstein distance of exponent two (cf. for instance [Vil03, Section
7.1]).

Definition 2.2.3. If T1 =
∑

Jv`K and T2 =
∑

Jw`K, then the distance between T1 and T2 is
denoted G(T1, T2) and given by

G(T1, T2)2 := min
σ∈PQ

Q∑
`=1

|v` −wσ(`)|
2. (2.12)

One can easily see that (AQ(Rn),G) is a complete, separable metric space.
If T ∈ AQ(R

n) can be written as T = kJvK +
∑Q−k
i=1 JviK with each vi 6= v, then we

say that v has multiplicity k in T . Sometimes, when v has multiplicity k in T we will
write k = Θ0(T , v) =: ΘT (v), using a notation which is coherent with regarding T as a
0-dimensional integer rectifiable current in Rn.

Also, to any point T =
∑
`Jv`K ∈ AQ(R

n) one can naturally associate two objects, of
which we will make use in the sequel: the diameter of T is the scalar

diam(T) := max
i,j∈{1,...,Q}

|vi − vj|, (2.13)

whereas the center of mass of T is the vector

η(T) :=
1

Q

Q∑
`=1

v`. (2.14)

2.2.2 Q-valued functions

Let Σ = Σm be an m-dimensional C1 submanifold of Rd. We will regard Σ as a Rie-
mannian manifold with the metric induced by the flat metric of the ambient space Rd. In
particular, given two points x,y ∈ Σ we will let d(x,y) denote their Riemannian geodesic
distance. Furthermore, measures and integrals on Σ will always be computed with respect
to the m-dimensional Hausdorff measure Hm defined in the ambient space (note that the
Hausdorff measure can be defined also intrinsically in terms of the distance d: however,
since Σ is isometrically embedded in Rd, the intrinsic Hm measure coincides with the
restriction of the “Euclidean one”).

Any map u : Σ→ AQ(R
n) will be called a Q-valued function on Σ.

Continuous, Lipschitz, Hölder and measurable functions u : Σ→ AQ(R
n) can be straight-

forwardly defined taking advantage of the metric space structure of both the domain and
the target. As for the spaces Lp

(
Σ,AQ

)
, 1 6 p 6∞, they consist of those measurable maps

u : Σ → AQ(R
n) for which ‖u‖Lp := ‖G(u,QJ0K)‖Lp(Σ) is finite. We will systematically use

the notation |u| := G(u,QJ0K), so that

‖u‖pLp =

ˆ
Σ

|u|p dHm when 1 6 p <∞ ,

‖u‖L∞ = ess sup
Σ

|u| .
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In spite of this notation, we remark here that, when Q > 1, AQ(Rn) is not a linear space:
thus, in particular, the map T 7→ |T | is not a norm.

Any measurableQ-valued function can be thought as coming together with a measurable
selection, as specified in the following proposition.

Proposition 2.2.4 (Measurable selection, cf. [DLS11, Proposition 0.4]). Let B ⊂ Σ be a Hm-
measurable set and u : B → AQ(R

n) be a measurable function. Then, there exist measurable
functions u1, . . . ,uQ : B→ Rn such that

u(x) =

Q∑
`=1

Ju`(x)K for Hm-a.e. x ∈ B. (2.15)

It is possible to introduce a notion of differentiability for multiple-valued maps.

Definition 2.2.5 (Differentiable Q-valued functions). A map u : Σ → AQ(R
n) is said to be

differentiable at x ∈ Σ if there exist Q linear maps λ` : TxΣ→ Rn satisfying:

(i) G
(
u(expx(ξ)), Txu(ξ)

)
= o(|ξ|) as |ξ| → 0 for any ξ ∈ TxΣ, where exp is the exponen-

tial map on Σ and

Txu(ξ) :=

Q∑
`=1

Ju`(x) + λ` · ξK; (2.16)

(ii) λ` = λ` ′ if u`(x) = u` ′(x).

We will use the notation Du`(x) for λ`, and formally set Du(x) =
∑
`JDu`(x)K: observe

that one can regard Du(x) as an element of AQ(R
n×m) as soon as a basis of TxΣ has

been fixed. For any ξ ∈ TxΣ, we define the directional derivative of u along ξ to be
Dξu(x) :=

∑
`JDu`(x) · ξK, and establish the notation Dξu =

∑
`JDξu`K.

Differentiable functions enjoy a chain rule formula.

Proposition 2.2.6 (Chain rules, cf. [DLS11, Proposition 1.12]). Let u : Σ → AQ(R
n) be differ-

entiable at x0.

(i) Consider Φ : Σ̃ → Σ such that Φ(y0) = x0, and assume that Φ is differentiable at y0. Then,
u ◦Φ is differentiable at y0 and

D(u ◦Φ)(y0) =

Q∑
`=1

JDu`(x0) ·DΦ(y0)K. (2.17)

(ii) Consider Ψ : Σx ×Rnv → Rq such that Ψ is differentiable at the point (x0,u`(x0)) for every
`. Then, the map Ψ(x,u) : x ∈ Σ 7→

∑Q
`=1JΨ(x,u`(x))K ∈ AQ(R

q) fulfills (i) of Definition
2.2.5. Moreover, if also (ii) holds, then

DΨ(x,u)(x0) =
Q∑
`=1

JDxΨ(x0,u`(x0)) +DvΨ(x0,u`(x0)) ·Du`(x0)K. (2.18)
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(iii) Consider a map F : (Rn)Q → Rq with the property that, for any choice ofQ points (y1, . . . ,yQ) ∈
(Rn)Q, for any permutation σ ∈ PQ

F(y1, . . . ,yQ) = F(yσ(1), . . . ,yσ(Q)).

Then, if F is differentiable at (u1(x0), . . . ,uQ(x0)) the composition F ◦ u 2 is differentiable at
x0 and

D(F ◦ u)(x0) =
Q∑
`=1

Dv`F(u1(x0), . . . ,uQ(x0)) ·Du`(x0). (2.19)

Rademacher’s theorem extends to the Q-valued setting, as shown in [DLS11, Theorem
1.13]: Lipschitz Q-valued functions are differentiable Hm-almost everywhere in the sense
of Definition 2.2.5. Moreover, for a Lipschitz Q-valued function the decomposition result
stated in Proposition 2.2.4 can be improved as follows.

Proposition 2.2.7 (Lipschitz selection, cf. [DS15, Lemma 1.1]). Let B ⊂ Σ be measurable, and
assume u : B → AQ(R

n) is Lipschitz. Then, there are a countable partition of B in measurable
subsets Bi (i ∈N) and Lipschitz functions u`i : Bi → Rn (` ∈ {1, . . . ,Q}) such that

(a) u|Bi =
∑Q
`=1Ju

`
iK for every i ∈N, and Lip(u`i) 6 Lip(u) for every i, `;

(b) for every i ∈N and `, ` ′ ∈ {1, . . . ,Q}, either u`i ≡ u`
′
i or u`i(x) 6= u`

′
i (x) ∀x ∈ Bi;

(c) for every i one has Du(x) =
∑Q
`=1JDu

`
i(x)K for Hm-a.e. x ∈ Bi.

We conclude this paragraph with the following useful Lipschitz decomposition property.

Proposition 2.2.8 (Lipschitz decomposition, cf. [DLS11, Proposition 1.6]). Let u =
∑Q
`=1Ju`K

be a Lipschitz function, u : B ⊂ Σ → AQ(R
n). Suppose that there exists x0 ∈ B and i, j ∈

{1, . . . ,Q} such that
|ui(x0) − uj(x0)| > 3(Q− 1)Lip(u)diam(B). (2.20)

Then, there are integersQ1 < Q andQ2 < Q withQ1+Q2 = Q and Lipschitz functions u1 : B→
AQ1(R

n) and u2 : B → AQ2(R
n) such that u = Ju1K + Ju2K, Lip(u1), Lip(u2) 6 Lip(u) and

spt(u1(x))∩ spt(u2(x)) = ∅ for every x ∈ B.

2.2.3 Q-valued Sobolev functions and their properties

Next, we study the Sobolev spaces W1,p
(
Σ,AQ

)
, where Σm is compact (or it is an open

subset of Rm). The definition that we use here was proposed by C. De Lellis and E. Spadaro
(cf. [DLS11, Definition 0.5 and Proposition 4.1]), and allowed the authors to develop an
alternative, intrinsic approach to the study of Q-valued Sobolev mappings, which does not
rely on Almgren’s embedding of the space AQ(R

n) in a larger Euclidean space (cf. [Alm00]
and [DLS11, Chapter 2]). Such an approach is close in spirit to the general theory of Sobolev
maps taking values in abstract metric spaces and started in the works of Ambrosio [Amb90]
and Reshetnyak [Res97, Res04, Res06].

2 Observe that F ◦ u is a well defined function Σ → Rq, because F is, by hypothesis, a well defined map on the
quotient AQ(Rn) = (Rn)Q/PQ.
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Definition 2.2.9 (Sobolev Q-valued functions). A measurable function u : Σ → AQ(R
n) is

in the Sobolev class W1,p, 1 6 p 6 ∞ if and only if there exists a non-negative function
ψ ∈ Lp(Σ) such that, for every Lipschitz function φ : AQ(R

n) → R, the following two
properties hold:

(i) φ ◦ u ∈W1,p(Σ) 3;

(ii) |D(φ ◦ u)(x)| 6 Lip(φ)ψ(x) for almost every x ∈ Σ.

We also recall (cf. [DLS11, Proposition 4.2]) that if u ∈ W1,p
(
Σ,AQ(Rn)

)
and ξ is a

tangent vector field defined on Σ, there exists a non-negative function gξ ∈ Lp(Σ) with the
following two properties:

(i) |Dξ(G(u, T))| 6 gξ Hm-a.e. in Σ for all T ∈ AQ;

(ii) if hξ ∈ Lp(Σ) satisfies |Dξ(G(u, T))| 6 hξ for all T ∈ AQ, then gξ 6 hξ Hm-a.e.

Such a function is clearly unique (up to sets of Hm-measure zero), and will be denoted by
|Dξu|. Moreover, chosen a countable dense subset {Ti}∞i=0 ⊂ AQ, it satisfies

|Dξu| = sup
i∈N

|DξG(u, Ti)| (2.21)

almost everywhere in Σ.
As in the classical theory, Sobolev Q-valued maps can be approximated by Lipschitz

maps.

Proposition 2.2.10 (Lipschitz approximation, cf. [DLS11, Proposition 4.4]). There exists a
constant C = C(m,Σ,Q) with the following property. Let u be a function in W1,p(Σ,AQ). For
every λ > 0, there exists a Lipschitz Q-function uλ such that Lip(uλ) 6 Cλ and

Hm ({x ∈ Σ : uλ(x) 6= u(x)}) 6
C

λp

ˆ
Σ

|Du|p dHm , (2.22)

where

|Du| :=

(
m∑
i=1

|Dξiu|
2

)1/2
for any choice of an orthonormal frame (ξi)

m
i=1 of the tangent bundle TΣ.

As a corollary, Proposition 2.2.10 allows to prove that SobolevQ-valued maps are approx-
imately differentiable almost everywhere.

3 Here, the Sobolev space W1,p(Σ) is classically defined as the completion of C1(Σ) with respect to the W1,p-
norm

‖f‖p
W1,p(Σ)

:=

ˆ
Σ
(|f(x)|p + |Df(x)|p) dHm(x)

for 1 6 p <∞ and
‖f‖W1,∞(Σ) := ess sup

Σ

(|f(x)|+ |Df(x)|) .
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Corollary 2.2.11 (cf. [DLS11, Corollary 2.7]). Let u ∈W1,p(Σ,AQ). Then, u is approximately
differentiable Hm-a.e. in Σ: precisely, for Hm-a.e. x ∈ Σ there exists a measurable set Ω ⊂ Σ
containing x such that Ω has density 1 at x and u|Ω is differentiable at x.

The next proposition explores the link between the metric derivative defined in (2.21) and
the approximate differential of a Q-valued Sobolev function.

Proposition 2.2.12 (cf. [DLS11, Proposition 2.17]). Let u be a map inW1,2
(
Σ,AQ(Rn)

)
. Then,

for any vector field ξ defined on Σ and tangent to Σ the metric derivative |Dξu| defined in (2.21)
satisfies

|Dξu|
2 =

Q∑
`=1

|Dξu
`|2 Hm- a.e. in Σ, (2.23)

where
∑
` |Dξu

`|2 = G(Dξu,QJ0K)2 and Dξu(x) ∈ AQ(R
n) is the approximate directional

derivative of u along ξ at the point x ∈ Σ. In particular, it holds

|Du(x)|2 :=

m∑
i=1

|Dξiu(x)|
2 =

m∑
i=1

Q∑
`=1

|Dξiu
`(x)|2, (2.24)

with (ξi)
m
i=1 any orthonormal frame of TΣ, at all points x of approximate differentiability for u in

Σ.

Remark 2.2.13. Observe that by the above formula the definition of |Du(x)| is indeed inde-
pendent of the choice of the frame (ξi), as in fact one has

|Du(x)|2 =

Q∑
`=1

|Du`(x)|2,

where |Du`(x)| is the Hilbert-Schmidt norm of the linear map Du`(x) : TxΣ → Rn at every
point of approximate differentiability for u.

The main consequence of the above proposition is that essentially all the conclusions of
the usual Sobolev space theory for single-valued functions can be recovered in the multi-
valued setting modulo routine modifications of the usual arguments. Some of these con-
clusions will be useful in the coming chapters, thus we will list them here, again referring
the interested reader to [DLS11] for their proofs and other useful considerations. In what
follows, Ω ⊂ Σ is an open set with Lipschitz boundary.

Definition 2.2.14 (Trace of Sobolev Q-functions). Let u ∈W1,p
(
Ω,AQ(Rn)

)
. A function g

belonging to Lp
(
∂Ω,AQ(Rn)

)
is said to be the trace of u at ∂Ω (and we write g = u|∂Ω) if

for any T ∈ AQ the trace of the real-valued Sobolev function G (u, T) coincides with G (g, T).

Definition 2.2.15 (Weak convergence). Let {uh}∞h=1 be a sequence of maps in W1,p(Ω,AQ).
We say that uh converges weakly to u ∈W1,p(Ω,AQ) for h→∞, and we write uh ⇀ u, if

(i) limh→∞ ´
Ω G(uh,u)p dHm = 0;

(ii) there exists a constant C such that suph
´
Ω |Duh|

p dHm 6 C.
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Proposition 2.2.16 (Weak sequential closure, cf. [DLS11, Proposition 2.10, Proposition 4.5]).
Let u ∈ W1,p(Ω,AQ). Then, there is a unique function g ∈ Lp(∂Ω,AQ) such that g = u|∂Ω in
the sense of Definition 2.2.14. Moreover, the set

W1,p
g (Ω,AQ) := {u ∈W1,p(Ω,AQ) : u|∂Ω = g}

is sequentially closed with respect to the notion of weak convergence introduced in Definition 2.2.15.

Proposition 2.2.17 (Sobolev embeddings, cf. [DLS11, Proposition 2.11, Proposition 4.6]).
The following embeddings hold:

(i) if p < m, then W1,p(Ω,AQ) ⊂ Lq(Ω,AQ) for every q ∈ [1,p∗], p∗ := mp
m−p , and the

inclusion is compact when q < p∗;

(ii) if p = m, then W1,p(Ω,AQ) ⊂ Lq(Ω,AQ) for all q ∈ [1,∞), with compact inclusion;

(iii) if p > m, thenW1,p(Ω,AQ) ⊂ C0,α(Ω,AQ) for all α ∈
[
0, 1− m

p

]
, with compact inclusion

if α < 1− m
p .

Proposition 2.2.18 (Poincaré inequality, cf. [DLS11, Proposition 2.12, Proposition 4.9]). Let
Ω be a connected open subset of Σ with Lipschitz boundary, and let p < m. There exists a constant
C = C(p,m,n,Q,Ω) with the following property: for every u ∈ W1,p

(
Ω,AQ(Rn)

)
there exists

a point u ∈ AQ(R
n) such that(ˆ

Ω

G(u,u)p
∗

dHm
)1/p∗

6 C

(ˆ
Ω

|Du|p dHm
)1/p

. (2.25)

Proposition 2.2.19 (Campanato-Morrey estimates, cf. [DLS11, Proposition 2.14]). Let u be a
W1,2(B1,AQ) function, with B1 = B1(0) ⊂ Rm, and assume α ∈ (0, 1] is such that

ˆ
Br(y)

|Du|2 6 Arm−2+2α for every y ∈ B1 and a.e. r ∈ (0, 1− |y|) .

Then, for every 0 < δ < 1 there is a constant C = C(m,n,Q, δ) such that

[u]C0,α(Bδ)
:= sup
x,y∈Bδ

G (u(x),u(y))
|x− y|α

6 C
√
A. (2.26)

2.2.4 The Dirichlet energy. Dir-minimizers

A simple corollary of Proposition 2.2.12 and Remark 2.2.13 is that the Dirichlet energy of
a map u ∈W1,2

(
Ω,AQ(Rn)

)
can be defined in a unique way by setting

Dir(u,Ω) :=

ˆ
Ω

m∑
i=1

|Dξiu|
2 dHm =

ˆ
Ω

m∑
i=1

Q∑
`=1

|Dξiu
`|2 dHm, (2.27)

for any choice of a (local) orthonormal frame (ξ1, . . . , ξm) of the tangent bundle of Σ.
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As already mentioned before, the first step of Almgren’s program towards the partial
regularity for area minimizing currents in codimension higher than one is to develop a
theory concerning existence and regularity properties of minimizers of the Dirichlet energy
in W1,2 (the so called Dir-minimizers). Such a theory, extensively studied by Almgren in
[Alm00] and revisited by De Lellis and Spadaro in [DLS11], can be summarized in four
main theorems.

Theorem 2.2.20 (Existence, cf. [DLS11, Theorem 0.8]). Let Ω ⊂ Rm be a bounded open subset
with Lipschitz boundary. Let g ∈ W1,2(Ω,AQ). Then, there exists a function u ∈ W1,2(Ω,AQ)
minimizing the Dirichlet energy (2.27) among all W1,2 Q-valued functions v such that v|∂Ω =

g|∂Ω.

Theorem 2.2.21 (Hölder regularity, cf. [DLS11, Theorem 0.9]). There exists a constant α =

α(m,Q) > 0 with the following property. If u ∈ W1,2(Ω,AQ) is Dir-minimizing, then u ∈
C0,α(Ω ′,AQ) for every Ω ′ b Ω.

The statement of the other two results requires the definition of regular and singular
points of a Dir-minimizer u.

Definition 2.2.22 (Regular and singular points of a Dir-minimizing map). A Q-valued Dir-
minimizer u is regular at a point x ∈ Ω if there exist a neighborhood B of x in Ω and Q
harmonic functions u` : B→ Rn such that

u(y) =

Q∑
`=1

Ju`(y)K for almost every y ∈ B

and either u`(y) 6= u` ′(y) for every y ∈ B or u` ≡ u` ′ . We will write x ∈ reg(u) if x is
a regular point. The complement of reg(u) in Ω is the singular set, and will be denoted
sing(u).

Theorem 2.2.23 (Estimate of the singular set, cf. [DLS11, Theorem 0.11]). Let u be a Dir-
minimizer. Then, the Hausdorff dimension of sing(u) is at most m− 2. If m = 2, then sing(u) is
at most countable.

Theorem 2.2.24 (Improved estimate of the singular set for m = 2, cf. [DLS11, Theorem
0.12]). Let u be Dir-minimizing, and m = 2. Then, the singular set sing(u) consists of isolated
points.

Remark 2.2.25. It is worth observing that here we have only discussed those results in the
theory of Dir-minimizing multiple-valued functions which will be useful for our purposes
at a later stage of this thesis, and therefore our summary is far from being complete. Among
the results that we have not included in the above presentation, we mention the paper
[Hir16a], concerned with the problem of extending the Hölder regularity in Theorem 2.2.21

up to the boundary of Ω, and the recent result [DMSV16], where the authors prove that if
u is Dir-minimizing then sing(u) is actually countably (m− 2)-rectifiable (and hence Hm−2

σ-finite), thus extending to general Q a previous result obtained for Q = 2 by Krummel
and Wickramasekera in [KW13] and considerably improving Almgren’s original theory.
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2.3 the theory of harmonic maps

After having studied the regularity theory of “Rn-valued” Sobolev functions minimizing
the Dirichlet energy, a natural question is whether the same regularity properties are shared
by functions minimizing the Dirichlet energy among those that are constrained to have
target in a given (compact) Riemannian manifold. The resulting theory is known in the
literature as harmonic maps theory. In this section we will first discuss the basic properties of
single-valued harmonic maps (§ 2.3.1), then we will move to more recent advances in the
theory (§ 2.3.2), and finally we will present the recent theory of multiple-valued harmonic
maps (§ 2.3.3). References for the first part are the standard books by Simon [Sim96], Moser
[Mos05] and Lin-Wang [LW08]; for the second part, we will mainly refer to the beautiful
paper [NV17]; finally, for the third part our main reference is [Hir16b].

2.3.1 Harmonic maps: an overview

Suppose that Ω is an open subset of Rm, where m > 2, and that N is a smooth compact
Riemannian manifold of dimension n > 2 which is isometrically embedded in some Eu-
clidean space Rd. A map u of Ω into N will always be thought of as a map u : Ω → Rd

with the additional property that u(Ω) ⊂ N. In particular, we set

W1,2(Ω,N) :=
{
u ∈W1,2(Ω, Rd) : u(x) ∈ N for a.e. x ∈ Ω

}
,

and
W1,2
loc(Ω,N) :=

{
u ∈W1,2(Ω ′,N) for every Ω ′ b Ω

}
.

If u ∈W1,2
loc(Ω,N) and Br(x) b Ω, then the (rescaled) Dirichlet energy of u in Br(x) is the

quantity

E (u,Br(x)) := r2−m
ˆ
Br(x)

|Du(y)|2 dy ,

where Du(y) ∈ Rd×m is the classical differential of u and |Du(y)| is its Hilbert-Schmidt
norm. A map u ∈W1,2

loc(Ω,N) is a (local) minimizer of the Dirichlet energy if the following
holds: for any ball Br(x) b Ω one has

E (u,Br(x)) 6 E (v,Br(x))

for every map v ∈ W1,2(Br(x),N) such that v ≡ u in a neighborhood of ∂Br(x). Observe
that energy minimizing maps with values in Rn solve the linear system of equations ∆u = 0

everywhere in Ω. As it will be clear in a few lines, an energy minimizing map which is
constrained to take values in a manifold N solves a nonlinear version of the Laplace equation
in Ω. It is therefore both extremely natural and very interesting to study the regularity for
such an object.

The first observation is that if u ∈ W1,2
loc(Ω,N) is energy minimizing and if Br(x) b Ω

then one can test the minimality of u along suitably chosen families uε of competitors in
order to infer that u satisfies some integral equations, known as variational equations, which
turn out to be of fundamental importance for the regularity theory. Explicitly, if δ > 0 and
{us}s∈(−δ,δ) is a one-parameter family of maps us ∈ W1,2(Br(x),N) having the properties



38 preliminaries

that u0 ≡ u in Br(x) and us ≡ u in a neighborhood of ∂Br(x) for every s ∈ (−δ, δ), then the
minimizing property of u implies that

d

ds
E (us,Br(x))

∣∣∣∣
s=0

= 0. (2.28)

Equation (2.28) is the variational equation associated to the family {us}. There are two
important kinds of variations of u:

(OV) outer variations are variations of the form

us := Π ◦ (u+ sY),

where Y =
(
Y1, . . . , Yd

)
∈ C1c(Br(x), Rd) is a vector field in the target, and where Π is

the nearest point projection map from a tubular neighborhood of N in Rd onto N. For
such a kind of variations the variational equation (2.28) reads

ˆ
Br(x)

m∑
i=1

(〈Diu,DiY〉− 〈Au(Diu,Diu), Y〉) dy = 0 , (2.29)

where Diu ∈ Rd is the derivative of u in the direction ei, {ei}mi=1 being the standard
orthonormal basis of Rm, and A is the second fundamental form of the embedding
N ↪→ Rd. Notice that if u ∈ C2 then we can integrate by parts the left-hand side in
the above equation, and, using that the map Y is arbitrary, conclude that u solves

∆u+

m∑
i=1

Au(Diu,Diu) = 0 in Ω, (2.30)

which is the nonlinear variant of the Laplace equation mentioned above. If u ∈ C2
then equation (2.30) is in fact equivalent to

pTu(y)N ·∆u(y) = 0 for every y ∈ Ω, (2.31)

where pTu(y)N is the orthogonal projection of Rd onto the tangent space Tu(y)N at
every y;

(IV) inner variations are instead variations of the form

us(y) := u(y+ sX(y)),

where X ∈ C1c(Br(x), Rm) is a vector field in the domain. For such a kind of variation
the variational equation (2.28) reads

ˆ
Br(x)

m∑
i,j=1

(
|Du|2δij − 2〈Diu,Dju〉

)
DiX

j = 0. (2.32)

Maps u ∈ W1,2
loc(Ω,N) which satisfy both the variational equations (2.29) and (2.32) are

called in the literature stationary harmonic maps. By the discussion above, every energy
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minimizing map is stationary harmonic. Maps satisfying only the outer variation formula
(2.29) are instead known as weakly harmonic maps. As a matter of fact, weakly harmonic
maps admit far worse singularities than energy minimizing or stationary harmonic maps
(see e.g. [Riv92]), except in the case m = 2, when there are no singularities at all (cf.
[Hél91]). In this thesis we are never going to work with weakly harmonic maps.

A fundamental consequence of the variational equations is that if u ∈ W1,2
loc(Ω,N) is

stationary harmonic then for any x ∈ Ω the function r ∈ (0, dist(x,∂Ω)) 7→ E (u,Br(x)) is
monotone non-decreasing. Therefore, the quantity

Θu(x) := lim
r↓0

E (u,Br(x))

is well defined for every x ∈ Ω. We will call Θu(x) the density of u at x. It is very easy
to check that Θu : Ω → R is an upper semi-continuous function. The monotonicity of
the rescaled energy and the existence of the density at every point are key tools in the
study of energy minimizing and stationary harmonic maps. The breakthrough result in
the regularity theory is the following ε-regularity theorem, which is due to Schoen and
Uhlenbeck [SU82] in the energy minimizing case.

Theorem 2.3.1 (ε-regularity). There exist ε0 > 0, α > 0 and C > 1 depending on m,N with the
property that if u ∈W1,2

loc(Ω,N) is energy minimizing in BR0(x0) with

E (u,BR0(x0)) 6 ε0 ,

then the following energy decay estimate holds:

E (u,Br(x)) 6 C
( r
R

)2α
E (u,BR(x)) ∀ x ∈ BR0

2

(x0) ,∀ 0 < r 6 R 6 R0
2

.

In particular, u ∈ C0,α(BR0
2

(x0),N).

Observe that by standard elliptic regularity theory the Hölder continuity of u in BR0
2

(x0)

upgrades to C∞ regularity in a smaller ball. Also note that it is now a simple consequence
of Theorem 2.3.1 that minimizing harmonic maps u in dimension m = 2 are smooth. On
the other hand, concrete examples indicate that minimizing harmonic maps in dimension
m > 3 may exhibit singularities. Indeed, it is known that for m > 3 the map u0 : B1 ⊂
Rm → Sm−1 defined by u0(x) := x

|x| is a minimizing harmonic map. This was proved
first by Jäger-Kaul [JK83] for m > 7, later by Brezis-Coron-Lieb [BCL86] for m = 3 and
finally by Lin [Lin87] and Coron-Gulliver [CG89] independently for all m > 3. Needless
to say, u0 is singular at the origin. Furthermore, starting from u0 it is easy to produce,
for any m > 3, minimizing harmonic maps u : Rm → S2 which are singular along an
(m− 3)-dimensional linear subspace of Rm. By the following celebrated partial regularity
theorem by Schoen and Uhlenbeck [SU82], these are, in a sense, the “worst” singularities
for minimizing harmonic maps.

Theorem 2.3.2 (Partial regularity for minimizing maps). For m > 3, let u ∈W1,2
loc(Ω,N) be a

minimizing harmonic map, and set

sing(u) := {x ∈ Ω : u is discontinuous at x} .
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Then, sing(u) is a closed set which is discrete form = 3 and has Hausdorff dimension dimH(sing(u)) 6
m− 3 for m > 4. Furthermore, u ∈ C∞(Ω \ sing(u),N).

Let us now briefly comment on the strategy to prove Theorem 2.3.2. From the ε-regularity
Theorem 2.3.1 it follows that

sing(u) = {x ∈ Ω : Θu(x) > ε0} = {x ∈ Ω : Θu(x) > 0} .

Using this information, it is not difficult to prove that Hm−2(sing(u)) = 0. The refined
dimension estimate on sing(u) is based on a compactness theorem for minimizing harmonic
maps and on a variant of the Federer-Almgren dimension reduction argument. Let us first
state the compactness theorem.

Theorem 2.3.3 (Compactness). Let {uh}
∞
h=1 ⊂ W1,2(Ω,N) be a sequence of minimizing har-

monic maps with suph>1 E (uh,Br(x)) <∞ for each ball Br(x) b Ω. Then, there is a subsequence
uhj and a minimizing harmonic map u ∈ W1,2(Ω,N) such that uhj → u strongly in W1,2 in
every Br(x) b Ω.

Theorem 2.3.3 allows to prove the following proposition.

Proposition 2.3.4. Let u ∈W1,2
loc(Ω,N) be energy minimizing, and let x0 ∈ Ω.

(1) For any sequence rh of radii with rh ↓ 0 there exists a subsequence rhj such that the maps
Tux0,rhj

(y) := u(x0 + rhjy) converge strongly in W1,2
loc(R

m,N) to a minimizing harmonic
map φ;

(2) φ is homogeneous of degree zero, and thus

Θu(x0) = Θφ(0) = E (φ,Bρ(0)) ∀ ρ > 0 ;

(3)

Θφ(0) = max
y∈Rm

Θφ(y) ;

(4) The set
S(φ) :=

{
y ∈ Rm : Θφ(y) = Θφ(0)

}
is a linear subspace of Rm. Moreover, φ is invariant under composition with translations by
elements in S(φ), i.e. φ(x+ y) = φ(x) for every x ∈ Rm, for every y ∈ S(φ).

Any map φ arising as in (1) as a limit of the maps Tux0,rj for some sequence rj ↓ 0 is
called a tangent map to u at x0. Note that tangent maps to u at a given point x0 may not
be unique. Nonetheless, every tangent map φ to u at x0 is a zero-homogeneous minimizer
for which (2), (3), and (4) above hold. If φ is a tangent map, then S(φ) is called its
spine. The dimension of S(φ) is the number of independent directions along which φ is
invariant. Now, if x0 ∈ reg(u) := Ω \ sing(u), then Θu(x0) = 0, and thus, by (2) and (3),
u has a constant tangent map at x0. If instead x0 ∈ sing(u) then for every tangent map
φ to u at x0 it holds Θφ(0) = Θu(x0) > 0, and thus 0 ∈ sing(φ) 6= ∅. Furthermore, the
spine S(φ) is a subset of the singular set sing(φ). Since S(φ) is a linear subspace, and since
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Hm−2(sing(φ)) = 0 because φ is minimizing, it immediately follows that dimS(φ) 6 m− 3.
It is now possible to stratify the singular set sing(u) of the minimizing harmonic map u
we started with according to the number of symmetries a tangent map has at each point.
Specifically, for every 0 6 k 6 m− 3 we set

Sk(u) : = {x ∈ sing(u) : dimS(φ) 6 k for all tangent maps φ to u at x}

= {x ∈ sing(u) : no tangent map to u at x is invariant along k+ 1 directions} .
(2.33)

Then, one has
S0(u) ⊂ S1(u) ⊂ . . . ⊂ Sm−3(u) = sing(u),

and the estimate on the Hausdorff dimension of sing(u) follows from the Federer-Almgren
dimension reduction argument:

Lemma 2.3.5 (Federer-Almgren dimension reduction argument). For 0 6 k 6 m− 3, one has
dimH(Sk(u)) 6 k.

As for stationary harmonic maps, the situation is more involved, and we are not going
further into the details. Let us only mention that the ε-regularity Theorem 2.3.1 was ex-
tended to stationary harmonic maps by Bethuel [Bet93] and later improved by Rivière and
Struwe in [RS08]. As a consequence, the following theorem holds.

Theorem 2.3.6 (Partial regularity for stationary harmonic maps). Form > 3, if u ∈W1,2
loc(Ω,N)

is stationary harmonic then Hm−2(sing(u)) = 0 and u ∈ C∞(Ω \ sing(u),N).

2.3.2 Fine properties of the singular set

Beyond the dimension estimate in Lemma 2.3.5, little else was known about the structure
of the singular strata Sk(u) until very recently. In [Sim95a], Simon proved that if the target
N is analytic then the singular set sing(u) = Sm−3(u) is countably (m− 3)-rectifiable. The
breakthrough in this direction was made by Naber and Valtorta in the pioneering work
[NV17], where they were able to prove that Sk(u) is countably k-rectifiable for any k when-
ever u is stationary harmonic and under minimal assumptions on the regularity of the
target manifold N.

Theorem 2.3.7 (Stratification for stationary harmonic maps, cf. [NV17, Theorem 1.5]). Let
u : B2 ⊂ Rm → N be a stationary harmonic map with E (u,B2) 6 Λ. Then for every k the
singular stratum Sk(u) is k-rectifiable. Furthermore, for Hk-a.e. x ∈ Sk(u) there exists a unique
k-dimensional linear subspace Vk ⊂ Rm such that every tangent map to u at x is invariant with
respect to compositions with translations by vectors in Vk.

If u is energy minimizing, then the result can be improved: indeed, not only one has
that sing(u) = Sm−3(u) is countably (m− 3)-rectifiable, but also that it has uniformly finite
(m− 3)-dimensional Hausdorff measure. More precisely, the following theorem holds.
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Theorem 2.3.8 (Fine structure of the singular set, cf. [NV17, Theorem 1.6]). Let u : B2 ⊂
Rm → N be a minimizing harmonic map with E (u,B2) 6 Λ. Then, sing(u) is countably (m− 3)-
rectifiable and there exists C = C(m,N,Λ) such that, denoting Br(sing(u)) :=

⋃
x∈sing(u) Br(x)

the r-tubular neighborhood of sing(u) in Rm, one has

Lm (Br(sing(u))∩B1) 6 Cr3 .

In particular, Hm−3(sing(u)∩B1) 6 C.

Theorems 2.3.7 and 2.3.8 were in fact obtained as corollaries of more general statements
on the quantitative stratification for stationary harmonic maps, and not on the standard strat-
ification itself. A first version of the quantitative stratification can be found in [Alm00,
§2.25]; the concept was later developed by Cheeger and Naber first in [CN13a] in order to
prove new estimates on the singular set of Gromov-Hausdorff limits of non-collapsed mani-
folds with Ricci curvature bounded below, and then in [CN13b] to obtain new Lp estimates
on the second derivatives of minimizing harmonic maps and on the second fundamental
form of area minimizing integral currents in codimension one. Since then, the quantitative
stratification has appeared in several works to obtain similar results in different contexts
of Geometric Analysis, including mean curvature flow, critical sets of elliptic equations,
harmonic map flow among others.

Before explaining what the quantitative stratification is, we need to discuss the notion of
symmetry associated to a harmonic map.

Notation 2.3.9. We will use the notation [CN]Skε,r(u) to denote the standard quantitative
stratification à la Cheeger-Naber, in order to distinguish it from the new notion of quanti-
tative stratification Skε,r(u) that we will use in our discussion on multiple-valued harmonic
maps in Chapter 10. The notion of quantitative stratification we will propose, although nat-
urally inspired by the original Cheeger-Naber one, will allow us to obtain a slightly better
control on the different strata. A careful comparison between [CN]Skε,r(u) and Skε,r is carried
on in § 10.2.

Notation 2.3.10. For any x ∈ Rm, we shall denote by rx the radial unit vector field with
respect to x, defined by

rx(y) :=
y− x

|y− x|
for every y ∈ Rm \ {x}.

Definition 2.3.11 (k-symmetric maps, cf. [NV17, Definition 1.1]). A map h ∈W1,2
loc(R

m,N)

is said to be:

• homogeneous with respect to x ∈ Rm if

h(x+ λv) = h(x+ v) for all λ > 0, for every v ∈ Rm,

or equivalently if
Drxh = 0 a.e. in Rm.
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• k-symmetric if it is homogeneous with respect to the origin and there exists a linear
subspace L ⊂ Rm with dim(L) = k along which h is invariant, that is

h(x+ v) = h(x) for every x ∈ Rm, for all v ∈ L,

or, equivalently, such that

Dvh(x) = 0 for a.e. x ∈ Rm, for all v ∈ L.

Definition 2.3.12 ((k, ε)-symmetric balls, cf. [NV17, Definition 1.1]). Let u ∈ W1,2
loc(Ω,N),

and fix k ∈ {0, . . . ,m} and ε > 0. A ball Br(x) ⊂ Ω is said to be (k, ε)-symmetric for u in
the sense of Cheeger-Naber, or briefly [CN] (k, ε)-symmetric, if there exists some k-symmetric
map h ∈W1,2

loc(R
m,N) such that

 
Br(x)

|u(y) − h(y− x)|2 dy 6 ε. (2.34)

Definition 2.3.13 ([CN] Quantitative stratification). Let u ∈ W1,2
loc(Ω,N) be stationary har-

monic, and let ε, r > 0 and k ∈ {0, . . . ,m}. We will set

[CN]Skε,r(u) := {x ∈ Ω : for no r 6 s < 1 the ball Bs(x) is [CN] (k+ 1, ε)-symmetric w.r.t. u} .

It is an immediate consequence of the definition that if k ′ 6 k, ε ′ > ε and r ′ 6 r then

[CN]Sk
′

ε ′,r ′(u)⊆ [CN]Skε,r(u).

Hence, we can set:

[CN]Skε(u) :=
⋂
r>0

[CN]
Skε,r(u),

[CN]Sk(u) :=
⋃
ε>0

[CN]
Skε(u).

Remark 2.3.14. It is of great importance to observe that the set [CN]Sk(u) coincides with the
standard singular stratum Sk(u) as defined in (2.33), cf. [NV17, Section 9.3].

We are now ready to state the results of [NV17] concerning the quantitative stratification.

Theorem 2.3.15 (Quantitative stratification for stationary harmonic maps, cf. [NV17, The-
orems 1.3 and 1.4]). Let u : B2 ⊂ Rm → N be a stationary harmonic map with E (u,B2) 6
Λ. Then, for any ε > 0 there exists C = C(m,N,Λ, ε) such that the following k-dimensional
Minkowski content estimates hold:

Lm
(
Br

(
[CN]Skε,r(u)

)
∩B1

)
6 Cεr

m−k (2.35)

and
Lm

(
Br

(
[CN]Skε(u)

)
∩B1

)
6 Cεr

m−k . (2.36)

In particular, Hk
(
[CN]Skε(u)∩B1

)
6 Cε. Moreover, [CN]Skε(u) is countably k-rectifiable, and for

Hk-a.e. x∈ [CN]Skε(u) there exists a unique k-dimensional linear subspace Vk ⊂ Rm such that
every tangent map to u at x is invariant with respect to compositions with translations by vectors
in Vk.
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The core of Theorem 2.3.15 is represented by the Minkowski bounds (2.35) and (2.36).
For the moment, let us just mention that the two new main ingredients exploited in [NV17]
in order to get the estimates above are new Reifenberg-type results and a new L2-subspace
approximation theorem for stationary harmonic maps. We will not enter further into the
details, since we will present these tools “directly in action” in the context of multiple-
valued minimizing harmonic maps when we need them. Let us also point out that the
tools introduced in [NV17] are so robust that they have been already fruitfully applied in
several different areas: we mention here the recent preprints [NV15], dealing with the quan-
titative stratification of integral varifolds with bounded mean curvature, [NV16], which ex-
tends (and simplifies) the theory of [NV17] to approximate harmonic maps, and [DMSV16],
where the rectifiability of the singular set of multiple-valued Dir-minimizers is discussed.
A Reifenberg-type result for general non-negative Borel measures can be instead found in
[ENV16].

2.3.3 Multiple-valued harmonic maps

As anticipated, in this paragraph, the last containing preparatory material, we are going
to provide a brief overview of the notion and properties of multiple-valued harmonic maps.
The main reference is [Hir16b], where Hirsch introduces the notion of multiple-valued
harmonic maps and develops a parallel theory to the one presented in § 2.3.1.

For Ω ⊂ Rm open, Nn ↪→ Rd compact Riemannian manifold and Q > 1 integer, we
define

W1,2(Ω,AQ(N)) :=
{
u ∈W1,2(Ω,AQ(Rd)) : spt(u(x)) ⊂ N for a.e. x ∈ Ω

}
,

and W1,2
loc(Ω,AQ(N)) accordingly. If u ∈W1,2

loc(Ω,AQ(N)) and Br(x) b Ω, we set

E (u,Br(x)) := r2−mDir(u,Br(x)) = r2−m
ˆ
Br(x)

|Du(y)|2 dy .

Definition 2.3.16 (Q-valued energy minimizers, cf. [Hir16b, Definition 1.1]). A map u ∈
W1,2
loc(Ω,AQ(N)) is a local minimizer, or simply minimizer, of the Dirichlet energy if for any

Br(x) b Ω it holds
E (u,Br(x)) 6 E (v,Br(x)) (2.37)

for every v ∈W1,2
loc(Ω,AQ(N)) such that v ≡ u in a neighborhood of ∂Br(x).

As a consequence of the minimality condition, Q-valued minimizers satisfy inner varia-
tion and outer variation formulae, which we record in the following proposition.

Proposition 2.3.17 (Variational equations, cf. [Hir16b, Equations (2.2) and (2.5)]). Let u =∑
`Ju`K ∈W

1,2
loc(Ω,AQ(N)) be energy minimizing, and assume Br(x) b Ω. Then, for every vector

field X =
(
X1, . . . ,Xm

)
∈ C1c(Br(x), Rm) the following inner variation formula holds:

ˆ
Br(x)

m∑
i,j=1

(
|Du|2δij − 2

Q∑
`=1

〈Diu`,Dju`〉

)
DiX

j dy = 0. (2.38)
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Moreover, for any vector field Y ∈ C1(Br(x)×Rd, Rd) such that Y(y,p) = 0 for y in a neighbor-
hood of ∂Br(x) we have the following outer variation formula:

ˆ
Br(x)

m∑
i=1

Q∑
`=1

(〈Diu`,Di(Y(y,u`))〉− 〈Au`(Diu`,Diu`), Y(y,u`)〉) dy = 0. (2.39)

In analogy with the classical case, we will call stationary Q-harmonic any map u in
W1,2
loc(Ω,AQ(N)) for which both equations (2.38) and (2.39) hold. As a consequence of

the inner variation formula (2.38), one classically recovers the monotonicity of the function
r ∈ (0, dist(x,∂Ω)) 7→ E (u,Br(x)) and, therefore, the existence of the density

Θu(x) := lim
r↓0

E (u,Br(x))

at every x ∈ Ω whenever u is a stationary Q-harmonic map. Furthermore, Q-valued
minimizers enjoy the following compactness theorem, which extends Theorem 2.3.3 to the
multiple-valued context.

Theorem 2.3.18 (Compactness, cf. [Hir16b, Lemma 4.1]). Let {uh}∞h=1 ⊂ W1,2(Ω,AQ(N))

be a sequence ofQ-valued minimizing harmonic maps with suph>1 E (uh,Br(x)) <∞ for each ball
Br(x) b Ω. Then, there is a subsequence uhj and a minimizing harmonic map u ∈W1,2(Ω,AQ(N))

such that

(i) limj→∞ ´
Ω G(uhj ,u)

2 dy = 0;

(ii) limj→∞ E (uhj ,Br(x)) = E (u,Br(x)) for every ball Br(x) b Ω.

As a consequence, Proposition 2.3.4 holds modulo replacing the target N with AQ(N)

whenever it occurs. If x0 ∈ Ω then every tangent map to u at x0 is a Q-valued map
φ ∈ W1,2

loc(R
m,AQ(N)) which is homogeneous of degree zero with respect to 0 ∈ Rm.

Further, Θφ(0) = Θu(x0), and the (upper semi-continuous) map y ∈ Rm 7→ Θφ(y) attains
its maximum at y = 0. The spine S(φ) is a linear subspace of Rm with respect to which φ
is invariant. Extending the terminology introduced in § 2.3.2, if dimS(φ) = k then φ is a
k-symmetric map with invariance space given by S(φ).

Before proceeding with the regularity theory for Q-valued minimizing harmonic maps,
we need to discuss the different notions of singularities that can be taken into consideration
in this context.

Definition 2.3.19 (Regular and singular sets, cf. [Hir16b, Definitions 1.2 and 1.4]). An
energy minimizing map u ∈ W1,2

loc(Ω,AQ(N)) is regular at a point x ∈ Ω if there exist a
neighborhood U of x in Ω and Q smooth minimizing harmonic maps u` : U→ N such that

u(y) =

Q∑
`=1

Ju`(y)K for a.e. y ∈ U .

If u is regular at x then we write x ∈ reg(u). The singular set of u is the set sing(u) :=

Ω \ reg(u).
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If x ∈ reg(u), then a fortiori u is Hölder continuous in a neighborhood of x. Hence, one
can regard reg(u) as a subset of a larger set, called the Hölder regular set of u and defined
by

regH(u) := {x ∈ Ω : u is Hölder continuous in a neighborhood of y} ⊃ reg(u) .

The Hölder singular set of u is then defined by singH(u) := Ω \ regH(u). Observe that
singH(u) ⊂ sing(u).

Remark 2.3.20. Note that trivially one has regH(u) = reg(u) and singH(u) = sing(u) if
Q = 1. Also observe that for Dir-minimizers, i.e. for Q-valued energy minimizers with
target Rn, one has singH(u) = ∅ and dimH(sing(u)) 6 m− 2 by Theorems 2.2.21 and 2.2.23

respectively. Of course, if the target is a manifold then in general singH(u) is not empty, as
it is not empty even in the classical Q = 1 case.

The results about tangent maps described above allow to apply the standard stratification
to the set singH(u), and classically define, for 0 6 k 6 m,

Sk(u) :=
{
x ∈ singH(u) : dimS(φ) 6 k for all tangent maps φ to u at x

}
.

The last ingredient to complete the regularity theory forQ-valued minimizers is then clearly
only the Schoen-Uhlenbeck ε-regularity result, which is indeed the core of [Hir16b].

Theorem 2.3.21 (Q-valued ε-regularity, cf. [Hir16b, Lemma 5.2]). There exist ε0 > 0, α >
0 and C > 1 depending on m,N,Q with the property that if u ∈ W1,2

loc(Ω,AQ(N)) is energy
minimizing in BR0(x0) with

E (u,BR0(x0)) 6 ε0 ,

then the following energy decay estimate holds:

E (u,Br(x)) 6 C
( r
R

)2α
E (u,BR(x)) ∀ x ∈ BR0

2

(x0) ,∀ 0 < r 6 R 6 R0
2

.

In particular, u ∈ C0,α(BR0
2

(x0),AQ(N)).

Theorem 2.3.21 implies that singH(u) = {Θu(x) > 0}, and thus that Hm−2(singH(u)) = 0.
The condition x ∈ regH(u) is equivalent to u having a constant tangent map at x. On the
other hand, if x ∈ singH(u) then every tangent map φ to u at x has a non-empty Hölder
singular set singH(φ) ⊃ S(φ). Since S(φ) is a linear subspace and Hm−2(singH(φ)) = 0

it is necessarily dimS(φ) 6 m− 3, and thus singH(u) = Sm−3(u). The Federer-Almgren
dimension reduction argument then allows to conclude the following theorem.

Theorem 2.3.22 (Partial regularity for Q-valued minimizers, cf. [Hir16b, Theorem 0.1]).
If u ∈ W1,2

loc(Ω,AQ(N)) is energy minimizing then singH(u) is a closed set having Hausdorff
dimension dimH(singH(u)) 6 m− 3.



3 A T E C H N I C A L TO O L : M U LT I P L E -VA L U E D
P U S H - F O R W A R D S

In this chapter we study an important technical tool, of which we will often make use
in the coming chapters: the extension of the push-forward operator introduced in § 2.1.2
to multiple-valued functions. Multiple-valued push-forwards were already considered by
Almgren in his monumental Big Regularity Paper [Alm00], and later revisited by De Lellis
and Spadaro in [DS15], and most of the results here presented have a counterpart in there.
Our contribution is mainly to present a homogeneous treatment of the subject and to sim-
plify the arguments. In particular, in Section 3.1 we quote some elementary definitions and
results from [DS15] in order to fix notation and terminology related to the subject. In Section
3.2 we provide a slightly simplified proof of the fact that the multi-valued push-forward
operator acting on Lipschitz manifolds commutes with the boundary operator. Finally, in
Section 3.3 we extend the multi-valued push-forward operator to integral flat chains. This is
the most original part of the chapter: indeed, in order to extend the push-forward operator
to the class Fm(Rd) Almgren relies on the intersection theory of flat chains. Our approach,
instead, makes use only of the polyhedral approximation results discussed in § 2.1.4. The
material covered in this chapter is taken from our paper [Stu17b].

3.1 the push-forward of rectifiable currents. graphs

Let Ω ⊂ Rd be an open set, and let f : Ω→ Rn be smooth and proper. We have seen in §
2.1.2 that if T ∈ Dm(Ω) then the push-forward of T through f is the current f]T ∈ Dm(Rn)

defined by
f]T(ω) := T(f]ω) for every ω ∈ Dm(Rn).

Now, if T = JB, ~τ, θK is rectifiable then it is straightforward to verify that the push-forward
f]T is given explicitly by

f]T(ω) =

ˆ
B

〈ω(f(x)),Df(x)]~τ(x)〉 θ(x)dHm(x) ∀ω ∈ Dm(Rn),

where
Df(x)]~τ(x) := (Df(x) · τ1(x))∧ · · ·∧ (Df(x) · τm(x)).

The hypotheses on f can in fact be relaxed, as the above formula makes sense whenever
f : B→ Rn is Lipschitz and proper. In this case,Df(x) has to be regarded as the tangent map
of f at x, which exists at Hm-a.e. x ∈ B since B is rectifiable and f is Lipschitz. Furthermore,
since |Df(x)]~τ(x)| coincides with the Jacobian determinant

Jf(x) :=
√

det ((Df(x))T ·Df(x)),

47
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from the area formula it follows that

f]T(ω) =

ˆ
f(B)

〈
ω(y),

∑
x∈B+ : f(x)=y

θ(x)
Df(x)]~τ(x)

|Df(x)]~τ(x)|

〉
dHm(y),

with B+ := {x ∈ B : Jf(x) > 0}. Moreover, f(B) is an m-rectifiable subset of Rn, and for
Hm-a.e. y ∈ f(B) one has

Df(x)]~τ(x)

|Df(x)]~τ(x)|
= ±~η(y)

for all x ∈ B+ such that f(x) = y, where ~η(y) = η1(y)∧ · · ·∧ ηm(y) is a simple unit m-
vector orienting Tan(f(B),y). It follows that f]T is a rectifiable m-current in Rn, and in fact
f]T = Jf(B),~η,ΘK, with

Θ(y) :=
∑

x∈B+ : f(x)=y

θ(x)

〈
~η(y),

Df(x)]~τ(x)

|Df(x)]~τ(x)|

〉
.

We discuss now how to extend the above results to the context of multiple-valued func-
tions. The Lipschitz selection property, already recalled in Proposition 2.2.7, plays a funda-
mental role in achieving the goal.

The first step is to define the push-forward of C1 submanifolds. Hence, in what follows
we will assume that Σ is an m-dimensional C1 submanifold of Rd, and B ⊂ Σ is Hm-
measurable. We will also assume that Σ is oriented with orientation ~τ.

Definition 3.1.1 (Proper Q-valued functions, cf. [DS15, Definition 1.2]). A measurable func-
tion u : B ⊂ Σ→ AQ(R

n) is proper if there exists a measurable selection u =
∑Q
`=1Ju`K such

that the set
⋃Q
`=1 u

−1
` (K) is compact for any compact K ⊂ Rn. If such a selection exists,

then clearly the same property is indeed satisfied by every measurable selection.

Definition 3.1.2 (Q-valued push-forward, cf. [DS15, Definition 1.3]). Let B ⊂ Σ be as above,
and let u : B → AQ(R

n) be Lipschitz and proper. Then, the push-forward of B through u is
the current Tu :=

∑
i∈N

∑Q
`=1(u

`
i)]JBiK, where Bi and u`i are as in Proposition 2.2.7: that

is,

Tu(ω) :=
∑
i∈N

Q∑
`=1

ˆ
Bi

〈
ω(u`i(x)),Du

`
i(x)]~τ(x)

〉
dHm(x) ∀ω ∈ Dm(Rn). (3.1)

Using the classical results concerning the push-forward of integer rectifiable currents
through (single valued) proper Lipschitz functions recalled above and the properties of
Lipschitz selections, it is not difficult to conclude the validity of the following proposition.

Proposition 3.1.3 (Representation of the push-forward, cf. [DS15, Proposition 1.4]). The
definition of the action of Tu in (3.1) does not depend on the chosen partition Bi, nor on the chosen
decomposition {u`i}. If u =

∑
`Ju`K, we are allowed to write

Tu(ω) =

ˆ
B

Q∑
`=1

〈
ω(u`(x)),Du`(x)]~τ(x)

〉
dHm(x) ∀ω ∈ Dm(Rn). (3.2)
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Thus, Tu is a (well-defined) locally integer rectifiablem-current in Rn given by Tu = JIm(u),~η,ΘK,
where:

(R1) Im(u) =
⋃
x∈B spt(u(x)) =

⋃
i∈N

⋃Q
`=1 u

`
i(Bi) is an m-rectifiable set in Rn;

(R2) ~η is a Borel unit m-vector field orienting Im(u); moreover, for Hm-a.e. y ∈ Im(u), we have
Du`i(x)]~τ(x) 6= 0 for every i, `, x such that u`i(x) = y and

~η(y) = ±
Du`i(x)]~τ(x)

|Du`i(x)]~τ(x)|
; (3.3)

(R3) for Hm-a.e. y ∈ Im(u), the (Borel) multiplicity function Θ equals

Θ(y) =
∑

i,`,x : u`i(x)=y

〈
~η(y),

Du`i(x)]~τ(x)

|Du`i(x)]~τ(x)|

〉
. (3.4)

Remark 3.1.4. The definition of push-forward can be easily extended to the case when the
domain Σ is a Lipschitz oriented m-dimensional submanifold. In this case, indeed, there
are countably many submanifolds Σj of class C1 which cover Hm-a.a. Σ, and such that the
orientations of Σj and Σ coincide on their intersection (see [Sim83b, Theorem 5.3]). Hence,
if B ⊂ Σ is a measurable subset and u : B→ AQ(R

n) is Lipschitz and proper, then the push-
forward of JBK through u can be defined to be the integer rectifiable current Tu :=

∑∞
j=1 Tuj ,

where uj := u|B∩Σj . All the conclusions of Proposition 3.1.3 remain valid in this context (cf.
[DS15, Lemma 1.7]). Furthermore, the push-forward is invariant with respect to bi-Lipschitz
homeomorphisms: if u : Σ→ AQ(R

n) is Lipschitz and proper, φ : Σ̃→ Σ is bi-Lipschitz and
ũ := u ◦φ, then Tũ = Tu.

The following Q-valued area formula is a fundamental tool to compute the mass of Tu.
If u =

∑
`Ju`K is Lipschitz, we will denote by Ju`(x) the Jacobian determinant of Du`, i.e.

the number
Ju`(x) := |Du`(x)]~τ(x)| =

√
det ((Du`(x))T ·Du`(x)). (3.5)

Proposition 3.1.5 (Q-valued area formula, cf. [DS15, Lemma 1.9]). Let B be a measurable
subset of a Lipschitz oriented m-dimensional submanifold Σ ⊂ Rd, and let u =

∑
`Ju`K : B →

AQ(R
n) be a Lipschitz and proper Q-valued function. Then, for every Borel function h : Rn →

[0,∞), we have ˆ
h(p)d‖Tu‖(p) 6

ˆ
B

Q∑
`=1

h(u`(x))Ju`(x)dHm(x). (3.6)

Equality holds in (3.6) if there is a set B ′ ⊂ B of full Hm-measure for which

〈Du`(x)]~τ(x),Du` ′(y)]~τ(y)〉 > 0 ∀ x,y ∈ B ′ and `, ` ′ with u`(x) = u` ′(y). (3.7)

The notion of push-forward allows one to associate a rectifiable current to the graph of a
multiple-valued function. Here and in the sequel, if Σ ⊂ Rd is an m-dimensional Lipschitz
submanifold and u : B ⊂ Σ → AQ(R

n) is a Q-valued map we will denote by Gr(u) the
set-theoretical graph of u, given by

Gr(u) := {(x, v) ∈ Rd ×Rn : x ∈ B, v ∈ spt(u(x))}.
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Definition 3.1.6. Let u =
∑
`Ju`K : B ⊂ Σ → AQ(R

n) be a proper Lipschitz Q-valued map,
and define the map

Id× u : x ∈ B 7→
Q∑
`=1

J(x,u`(x))K ∈ AQ(R
d ×Rn).

Then, the push-forward TId×u is the locally integer rectifiable current associated to Gr(u),
and will be denoted by Gu.

Using similar arguments to those carried in Remark 3.1.4, it is not difficult to extend the
above results to multi-valued push-forwards of general integer rectifiable currents. This
was already observed by De Lellis and Spadaro in [DS15], without going further into the
details. Indeed, if Ω ⊂ Rd is open and if T ∈ Rm(Ω) then there exist a sequence of
C1 oriented m-dimensional submanifolds Σj ⊂ Rd, a sequence of pairwise disjoint closed
subsets Kj ⊂ Σj, and a sequence of positive integers kj such that

∑∞
j=1 kjH

m(Kj) <∞ and

T =

∞∑
j=1

kjJKjK. (3.8)

Now, if u : Ω→ AQ(R
n) is Lipschitz and proper, we define the push-forward of T through

u by setting

u]T :=

∞∑
j=1

kjTuj , (3.9)

where uj := u|Kj . We record the properties of u]T in the following proposition.

Proposition 3.1.7 (Q-valued push-forward of rectifiable currents.). The integer rectifiable cur-
rent u]T ∈ Rm(Rn) defined in (3.9) is independent of the particular representation (3.8) of T . If
T = JB, ~τ, θK, then u]T acts on forms ω ∈ Dm(Rn) as follows:

(u]T)(ω) =

ˆ
B

Q∑
`=1

〈ω(u`(x)),Du`(x)]~τ(x)〉 θ(x)dHm(x). (3.10)

Moreover, u]T can be represented by u]T = JIm(u|B),~η,ΘK, where

(R1) ′ Im(u|B) =
⋃∞
j=1 Im(uj) is an m-rectifiable set in Rn;

(R2) ′ ~η is a Borel unit m-vector field orienting Im(u|B); moreover, if Kj =
⋃
i∈N K

i
j is a count-

able partition of Kj ⊂ Σj in measurable subsets associated to a Lipschitz selection u|Kij =∑
`J(u

i
j)
`K of u as in Proposition 2.2.7, then for Hm-a.e. y ∈ Im(u|B) one has that

D(uij)
`(x)]~τ(x)

|D(uij)
`(x)]~τ(x)|

= ±~η(y) (3.11)

for all j, i, `, x such that (uij)
`(x) = y;
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(R3) ′ for Hm-a.e. y ∈ Im(u|B), the (Borel) multiplicity function Θ equals

Θ(y) =
∑

j,i,`,x : (uij)
`(x)=y

θ(x)

〈
~η(y),

D(uij)
`(x)]~τ(x)

|D(uij)
`(x)]~τ(x)|

〉
. (3.12)

Notation 3.1.8. In the sequel, we will use the symbol u]T to denote the push-forward of a
current T ∈ Dm(Ω) through a multiple-valued function u : Ω→ AQ(R

n) whenever such a
push-forward is defined. The symbol Tu will be still used when it is understood that the
push-forward operator is acting on the whole domain of u. In particular, if Σ ⊂ Rd is an
m-dimensional Lipschitz submanifold and u : Σ→ AQ(R

n) then the writings Tu and u]JΣK
are equivalent.

As already anticipated, in Section 3.3, we will take advantage of the polyhedral approxi-
mation of flat chains, Theorem 2.1.12, to give a meaning to u]T when T ∈ Fm(Ω). Before
doing that, we have to investigate the behaviour of the multi-valued push forward with
respect to the boundary operator.

3.2 push-forward and boundary

An important feature of the notion of push-forward of Lipschitz manifolds through
multiple-valued functions is that, exactly as in the single valued context (cf. (2.4)), it be-
haves nicely with respect to the boundary operator. The first instance of such a result
appears already in [Alm00, Section 1.6], where Almgren relies on the intersection theory of
flat chains to define a multi-valued push-forward operator acting on flat chains and study
its properties. A more elementary proof was then suggested by De Lellis and Spadaro in
[DS15, Theorem 2.1]. Here we provide a slightly simplified version of their proof, relying
on a double inductive process, both on the number Q of values that the function takes and
on the dimension m of the domain.

Theorem 3.2.1 (Boundary of the push-forward). Let Σ ⊂ Rd be an m-dimensional Lipschitz
manifold with Lipschitz boundary, and let u : Σ → AQ(R

n) be a proper Lipschitz map. Then,
∂Tu = Tu|∂Σ .

Proof. First observe that since every Lipschitz manifold can be triangulated, and since the
statement is invariant under bi-Lipschitz homeomorphisms, it is enough to prove the theo-
rem with Σ = [0, 1]m. Furthermore, it suffices to show that the theorem holds in the case
of the currents associated to graphs. Indeed, suppose to know that ∂Gu = Gu|∂Σ , and let
p : Rd ×Rn → Rn be the orthogonal projection onto the second components. Then, it is
immediate to see that

p]Gu = p]TId×u = Tp◦(Id×u) = Tu ,

where, for given Lipschitz F : Rd → AQ(R
n) and φ : Rn → Rk, we have used the notation

φ ◦ F for the Q-valued function φ ◦ F(x) :=
∑Q
`=1Jφ(F`(x))K ∈ AQ(R

k). Then, using that
push-forward and boundary do commute in the case of single valued Lipschitz functions,
one readily concludes

∂Tu = ∂p]Gu = p]∂Gu = p]Gu|∂Σ = Tu|∂Σ .
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Hence, we show that ∂Gu = Gu|∂Σ . The proof is by induction on both m and Q. If
Q = 1, the result is classical. On the other hand, the case m = 1 is a consequence of [DLS11,
Proposition 1.2]: if u : [0, 1] → AQ(R

n) is Lipschitz, then there exist Lipschitz functions
u1, . . . ,uQ : [0, 1] → Rn such that u =

∑Q
`=1Ju`K. Therefore, Tu =

∑
`(u`)]J(0, 1)K, and

thus

∂Tu =
∑
`

∂(u`)]J(0, 1)K =
∑
`

(u`)] (J1K− J0K) =
∑
`

(Ju`(1)K− Ju`(0)K) = Tu|∂Σ .

Then, we make the following inductive hypotheses:

(H1) the theorem is true when dim(Σ) 6 m− 1,

(H2) the theorem is true for dim(Σ) = m when the function u takes Q∗ values for every
Q∗ < Q,

and we show that the theorem is true for (m,Q). In order to do this, we consider a dyadic
decomposition of Σ = [0, 1]m in m-cubes of side length 2−h with h ∈N, and for any integer
vector k ∈ {0, 1, . . . , 2h − 1}m we let Ch,k be the cube Ch,k := 2−h (k+ [0, 1]m).

Now, for fixed h, let Bh be the set of all k ∈ {0, 1, . . . , 2h − 1}m such that on the corre-
sponding cube Ch,k one has

max
x∈Ch,k

diam(u(x)) > 3(Q− 1)Lip(u)2−h
√
m. (3.13)

By Proposition 2.2.8, if k ∈ Bh then on the cube Ch,k the function u is well separated into
the sum

u|Ch,k = Juk,Q1K+ Juk,Q2K, (3.14)

where uk,Q1 ∈ Lip(Ch,k,AQ1(R
n)), uk,Q2 ∈ Lip(Ch,k,AQ2(R

n)) and Q1,Q2 < Q. There-
fore, by the inductive hypothesis (H2) we can conclude that

∂Gu|Ch,k
= Gu|∂Ch,k

(3.15)

for every k ∈ Bh.
If on the other hand k /∈ Bh, consider the affine homotopy σ : [0, 1] × Ch,k ×Rn →

Rd ×Rn defined by
σ(t, x, v) := (x, (1− t)η ◦ u(x) + tv) , (3.16)

and define the current

Rk := QG(η◦u)|Ch,k
+ σ](J(0, 1)K×Gu|∂Ch,k

). (3.17)

Here, η ◦ u denotes the (single valued) Lipschitz function η ◦ u : Σ→ Rn given by

η ◦ u(x) := η(u(x)) = 1

Q

Q∑
`=1

u`(x).

Since η ◦u is a classical Lipschitz function, the classical commutation rule of push-forward
and boundary gives

∂(QG(η◦u)|Ch,k
) = QG(η◦u)|∂Ch,k

. (3.18)
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On the other hand, the homotopy formula (2.5) yields

∂σ](J(0, 1)K×Gu|∂Ch,k
) = Gu|∂Ch,k

−QG(η◦u)|∂Ch,k
− σ](J(0, 1)K× ∂Gu|∂Ch,k

). (3.19)

Since ∂Ch,k is the union of (m− 1)-dimensional cubes, the inductive hypothesis (H1) en-
sures that in fact ∂Gu|∂Ch,k

= 0, and thus the last addendum in the r.h.s. of equation (3.19)
vanishes. Combining (3.18) and (3.19) therefore yields

∂Rk = Gu|∂Ch,k
. (3.20)

For every h ∈N, define the current

Th :=
∑
k∈Bh

Gu|Ch,k
+
∑
k/∈Bh

Rk, (3.21)

and notice that by (3.15) and (3.20) one has

∂Th =
∑
k

Gu|∂Ch,k
= Gu|∂Σ (3.22)

because the common faces to adjacent cubes have opposite orientations. Furthermore, it is
easy to see that for every h ∈N and for every k ∈ Bh one has

M(Gu|Ch,k
) 6 C(1+ Lip(u))mHm(Ch,k) 6 C(2

−h)m, (3.23)

whereas

M(Rk)
(2.6)
6 C(2−h)m +CM(Gu|∂Ch,k

) sup
(x,v)∈Gr(u|∂Ch,k)

|(x, v) − (x,η ◦ u(x))|

6 C(2−h)m +C(2−h)m−1 sup
x∈∂Ch,k

max
`∈{1,...,Q}

|u`(x) −η ◦ u(x)|

6 C(2−h)m +C(2−h)m−1 sup
x∈∂Ch,k

diam(u(x))

6 C(2−h)m

(3.24)

if k /∈ Bh, for a constant C = C(m,Q, Lip(u)).
By equations (3.21), (3.22), (3.23) and (3.24) we immediately conclude that

M(Th) + M(∂Th) 6 C, (3.25)

where C = C(m,Q, Lip(u)) is a constant independent of h. It then follows from the Com-
pactness Theorem 2.1.3 that when h ↑∞ a subsequence of the Th’s converges to an integral
current T such that ∂T = Gu|∂Σ .

We are only left to prove that in fact T = Gu. Since clearly spt(T) ⊂ Gr(u) and T is
integral, we have that T = JGr(u),~η,ΘT K and Gu = JGr(u),~η,ΘGuK. We only need to show
that ΘT (x, v) = ΘGu(x, v) at Hm-a.e. (x, v) ∈ Gr(u). Let x ∈ Σ, and denote by DQ(u) the
closed set

DQ(u) := {x ∈ Σ : u(x) = QJvK for some v ∈ Rn}
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of multiplicity Q points of the function u. If x /∈ DQ(u), then there exists a suitably large h̄
such that for every h > h̄ one has x ∈ Ch,k for some k ∈ Bh, and thus it follows naturally
that ΘT (x,u`(x)) = ΘGu(x,u`(x)) for every `. Hence, if Hm(DQ(u)) = 0 then we are
done. Otherwise, consider the 1-Lipschitz orthogonal projection on the first components
p̄ : Rd ×Rn → Rd. One has that p̄]T = Θ̄T JΣK and p̄]Gu = Θ̄GuJΣK, with

Θ̄T (x) =
∑

(x,v)∈Gr(u)

ΘT (x, v) and Θ̄Gu(x) =
∑

(x,v)∈Gr(u)

ΘGu(x, v) forHm-a.e. x ∈ Σ.

In particular, for Hm-a.e. x ∈ DQ(u), if u(x) = QJv(x)K then Θ̄T (x) = ΘT (x, v(x)) and
Θ̄Gu(x) = ΘGu(x, v(x)). On the other hand, by the definitions of u and Th it also holds
p̄]Gu = QJΣK = p̄]Th for every h. Since T is the limit of (a subsequence of) the Th, then
necessarily Θ̄Gu(x) = Q = Θ̄T (x) Hm-a.e. on Σ, and thus finally ΘGu(x, v(x)) = Q =

ΘT (x, v(x)) for Hm-a.e. x ∈ DQ(u). This completes the proof.

3.3 the push-forward of flat chains

The goal of this section is to extend the definition of multiple-valued push-forward to
the class of integral flat chains. As mentioned before, the existence of a multi-valued push-
forward operator acting on flat chains has already been investigated by Almgren in [Alm00,
Section 1.6]. In what follows, we deduce it as a rather immediate consequence of Theorem
3.2.1 and of the polyhedral approximation of flat chains, Proposition 2.1.12.

We fix the following hypotheses.

Assumption 3.3.1. We will consider:

• a Lipschitz Q-valued function u : Ω→ AQ(R
n) defined in an open subset Ω ⊂ Rd;

• a compact subset K ⊂ Ω;

• an integral flat m-chain T ∈ Fm(Rd) with spt(T) ⊂ intK.

Given K and T as in Assumptions 3.3.1, by Proposition 2.1.12 there exists a sequence
{Pj}

∞
j=1 of integral polyhedral m-chains supported in K such that

FK(T − Pj) 6
1

j
and M(Pj) 6M(T) +

1

j
. (3.26)

Now, integral polyhedral chains are a subclass of the class of integer rectifiable currents,
as any Pj can be written as the linear combination Pj =

∑kj
i=1 βjiJσjiK of a finite number of

oriented simplexes JσjiK with coefficients βji ∈ Z. Since we have a well defined notion of
multi-valued push-forward of an integer rectifiable current, we can consider the currents

u]Pj =

kj∑
i=1

βji u]JσjiK. (3.27)
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We also know that the mass of u]Pj can be estimated by

M(u]Pj) 6 CM(Pj), (3.28)

where C is a constant depending on Lip(u), and Theorem 3.2.1 guarantees that

∂(u]Pj) = u](∂Pj). (3.29)

Clearly, {Pj} is a Cauchy sequence with respect to the flat distance FK. Indeed, for any
j,h ∈N one can explicitly estimate

FK(Pj − Ph) 6 FK(Pj − T) + FK(T − Ph) 6
1

j
+
1

h
. (3.30)

Now, we have the following

Theorem 3.3.2 (Push-forward of a flat chain). Let u, K and T be as in Assumptions 3.3.1. Then,
for any open subset W b Ω with K ⊂ W, for any compact K ′ ⊂ Rn containing Im(u|W) =⋃
x∈W spt(u(x)), and for any sequence {Pj}

∞
j=1 of integral polyhedral m-chains converging to T

with respect to dFK , the sequence {u]Pj}
∞
j=1 is Cauchy with respect to dFK ′ . Therefore, there exists

an integral flat m-chain Z ∈ Fm,K ′(R
n) such that FK ′(Z− u]Pj) → 0 as j ↑ ∞. Such a Z does

not depend on the approximating sequence Pj converging to T .

Definition 3.3.3. The current Z ∈ Fm(Rn) given by Theorem 3.3.2 is the push-forward of
T through u. Coherently with Notation 3.1.8, we will set Z = u]T .

The proof of Theorem 3.3.2 is a simple consequence of the following lemma, which is
proved for real polyhedral chains in [Fed69, Lemma 4.2.23]. For the reader’s convenience,
we provide here also the proof.

Lemma 3.3.4. If K ⊂ W ⊂ Rd with K compact, W open, and P ∈ Pm(Rd) with spt(P) ⊂ K,
then the quantity

G(P) := inf
{

M(P− ∂S) + M(S) : S ∈Pm+1(R
d) with spt(S) ⊂W

}
(3.31)

does not exceed FK(P).

Proof. Preliminarly, we show that

G(P) 6 γ̃FK(P) (3.32)

for some constant γ̃ = γ̃(m,d). In order to do this, first use Proposition 2.1.9 to determine
a current N ∈ Im+1,K(R

d) such that

FK(P) = M(P− ∂N) + M(N). (3.33)

Observe that ∂(P − ∂N) = ∂P ∈ Pm−1(R
d). Therefore, we can apply the Deformation

Theorem 2.1.10 with T = P − ∂N and small ε, to conclude the existence of R1 ∈ Pm(Rd)

and S1 ∈ Im+1(R
d) with spt(R1)∪ spt(S1) ⊂W such that

P− ∂N = R1 + ∂S1, (3.34)
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and furthermore satisfying the estimates

M(R1) 6 γ (M(P− ∂N) + εM(∂P)) ,

M(S1) 6 γεM(P− ∂N),
(3.35)

for a constant γ = γ(m,d). Again, since ∂(N+S1) = P−R1 ∈Pm(Rd) from (3.34), another
application of the Deformation Theorem with T = N+ S1 and ε suitably small implies that
there exist R2 ∈Pm+1(R

d) and S2 ∈ Im+2(R
d) with spt(R2)∪ spt(S2) ⊂W such that

N+ S1 = R2 + ∂S2 (3.36)

and furthermore satisfying

M(R2) 6 γ (M(N+ S1) + εM(P− R1)) . (3.37)

Combining (3.34) and (3.36), we see that

P = R1 + ∂(N+ S1) = R1 + ∂R2, (3.38)

with R1 ∈Pm(Rd), R2 ∈Pm+1(R
d), spt(R1)∪ spt(R2) ⊂W satisfying

G(P) 6M(R1) + M(R2)
(3.35),(3.37)
6 γ (1+ 2εγ) (FK(P) + ε (M(P) + M(∂P))) . (3.39)

The preliminary estimate (3.32), then, follows from (3.39) by letting ε→ 0.
Next, in order to complete the proof of the lemma, fix ρ > 0, letN be as above and select a

compact K1 ⊂W such that K ⊂ intK1. Apply Proposition 2.1.11 twice, first with T = P−∂N

and then with T = N to conclude the existence of P1 ∈Pm(Rd) and P2 ∈Pm+1(R
d) with

spt(P1)∪ spt(P2) ⊂ K1 such that

FK1(P− ∂N− P1) 6 ρ and FK1(N− P2) 6 ρ (3.40)

and satisfying

M(P1) 6M(P− ∂N) + ρ and M(P2) 6M(N) + ρ. (3.41)

Observe now that the current P− P1 − ∂P2 ∈Pm(Rd) satisfies

FK1(P− P1 − ∂P2) 6 FK1(P− ∂N− P1) + FK1(∂N− ∂P2)

6 FK1(P− ∂N− P1) + FK1(N− P2)

(3.40)
6 2ρ

(3.42)

because FK(∂T) 6 FK(T) for any T ∈ Fm,K(R
d). Applying the estimate (3.32) with P and

K replaced by P− P1 − ∂P2 and K1 respectively, we finally conclude

G(P) 6 G(P1 + ∂P2) +G(P− P1 − ∂P2)

6M(P1) + M(P2) + γ̃FK1(P− P1 − ∂P2)

(3.41),(3.42)
6 M(P− ∂N) + M(N) + 2ρ(1+ γ̃)

= FK(P) + 2ρ(1+ γ̃).

(3.43)

The conclusion follows by letting ρ↘ 0.
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Proof of Theorem 3.3.2. Fix any open set W b Ω with K ⊂ W, let K ′ ⊂ Rn be any compact
set containing Im(u|W), and let {Pj}

∞
j=1 be any sequence of integral polyhedral m-chains

supported in K and satisfying (3.26). For any j,h ∈ N, consider the current Pj − Ph ∈
Pm(Rd), and notice that spt(Pj − Ph) ⊂ K. For any choice of polyhedral currents R ∈
Pm(Rd), S ∈Pm+1(R

d) with spt(R)∪ spt(S) ⊂W such that

Pj − Ph = R+ ∂S, (3.44)

Theorem 3.2.1 guarantees that

u]Pj − u]Ph = u]R+ ∂(u]S). (3.45)

Since u]R and u]S are rectifiable currents supported in K ′, one has

FK ′(u]Pj − u]Ph) 6M(u]R) + M(u]S)

6 C (M(R) + M(S)) ,
(3.46)

for some constant C depending on Lip(u). Taking the infimum among all integral poly-
hedral currents R and S supported in W such that (3.44) holds, we immediately conclude
from Lemma 3.3.4 that

FK ′(u]Pj − u]Ph) 6 CG(Pj − Ph) 6 CFK(Pj − Ph) 6
C

j
+
C

h
. (3.47)

This proves that the sequence {u]Pj}
∞
j=1 is Cauchy with respect to dFK ′ and, thus, has a

limit Z ∈ Fm,K ′(R
n). In order to see that the limit does not depend on the approximating

sequence {Pj}, consider two sequences of integral polyhedral m-currents {Pj} and {P̃j} both
approximating T in the FK distance, and assume that u]Pj and u]P̃j flat converge to Z and
Z̃ respectively. For any ε > 0, let j0 ∈ N be such that both FK(T − Pj0) + FK(T − P̃j0) < ε

and FK ′(Z− u]Pj0) + FK ′(Z̃− u]P̃j0) < ε. Then, we can estimate:

FK ′(Z− Z̃) 6 FK ′(Z− u]Pj0) + FK ′(u]Pj0 − u]P̃j0) + FK ′(u]P̃j0 − Z̃)

6 ε+ FK ′(u]Pj0 − u]P̃j0)
(3.48)

On the other hand, applying the same argument that we have used above to prove (3.47) to
Pj0 − P̃j0 ∈Pm(Rd) shows that

FK ′(u]Pj0 − u]P̃j0) 6 CFK(Pj0 − P̃j0) 6 Cε. (3.49)

Combining (3.48) and (3.49), and letting ε ↓ 0 yields that Z = Z̃.

Corollary 3.3.5. Let u, K and T be as in Assumption 3.3.1. If Z = u]T , then it also holds
∂Z = u](∂T).

Proof. Let W b Ω and K ′ ⊂ Rn be as in Theorem 3.3.2, and let {Pj}∞j=1 be any sequence of
integral polyhedral m-chains FK-converging to T . Then, by Theorem 3.3.2 Z is the FK ′-limit
of the currents u]Pj. Hence, since in general FK(∂T) 6 FK(T), we also have that ∂Z is the
FK ′-limit of the currents ∂(u]Pj) = u](∂Pj) by Theorem 3.2.1. On the other hand, since the
∂Pj’s are a sequence of integral polyhedral (m− 1)-chains which FK-approximates ∂T , the
sequence u](∂Pj) necessarily FK ′-converges to u](∂T). The claim follows by uniqueness of
the limit.
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In this chapter we initiate the study of the multi-valued theory for the stability operator.
After a preliminary section in which we introduce the main geometric objects and the ter-
minology that we are going to use throughout the whole Part I, we will turn to Section 4.2,
where we compute the second variation formula corresponding to Q-valued normal defor-
mations of a minimal submanifold Σ of an ambient Riemannian manifold M (cf. Theorem
4.2.4 below). This will naturally lead us to the definition of the Jac functional on the space
of Q-valued W1,2 sections of the normal bundle of Σ in M. Multiple-valued Jacobi fields
are then defined as the minimizers of Jac with respect to boundary data. We conclude the
chapter with the analysis of the first elementary properties of Jacobi Q-fields and with the
proof of Proposition 4.3.1, which establishes the weak lower semi-continuity of Jac in the
aforementioned space of sections. This is the first step towards the developments of the
existence theory to be carried on in Chapter 5.

4.1 geometric preliminaries

Throughout the whole Part I, we will work under the following assumptions.

Assumption 4.1.1. We will consider:

(M) a closed (i.e. compact with empty boundary) Riemannian manifold M of dimension
m+ k and class C3,β for some β ∈ (0, 1);

(S) a compact oriented minimal submanifold Σ of the ambient manifold M of dimension
dim(Σ) = m and class C3,β.

Without loss of generality, we will regard M as an isometrically embedded submanifold
of some Euclidean space Rd. We will let n := d−m and K := d− (m+ k) be the codimen-
sions of Σ and M in Rd respectively.

Let Σm ↪→ Mm+k ⊂ Rd be as in Assumption 4.1.1. Since the metric on M and Σ is
induced by the flat metric in Rd, the symbol 〈·, ·〉 adopted for the Euclidean scalar product
in Rd will also denote the scalar product between tangent vectors to M or to Σ.

If z ∈ M, then the maps pM
z : Rd → TzM and pM⊥

z : Rd → T⊥z M denote orthogonal
projections of Rd onto the tangent space to M at z and its orthogonal complement in Rd

respectively. If x ∈ Σ, the tangent space TxM can be decomposed into the direct sum

TxM = TxΣ⊕ T⊥x Σ,

where T⊥x Σ is the orthogonal complement of TxΣ in TxM. At each point x ∈ Σ, we define
orthogonal projections px : TxM→ TxΣ and p⊥x : TxM→ T⊥x Σ.

61



62 the jacobi functional

This decomposition at the level of the tangent spaces induces an orthogonal decomposi-
tion at the level of the tangent bundle, namely

TM = TΣ⊕NΣ,

where NΣ denotes the normal bundle of Σ in M.
We will use D to denote the standard flat connection in Rd. The symbol ∇ will instead

identify the Levi-Civita connection on M. If ξ and X are tangent vector fields to Σ, then for
every x ∈ Σ we have

∇ξX(x) = px · ∇ξX(x) + p⊥x · ∇ξX(x) =: ∇ΣξX(x) +Ax (ξ(x),X(x)) ,

where ∇Σ is the Levi-Civita connection on Σ and A is the 2-covariant tensor with values
in NΣ defined by Ax(X, Y) := p⊥x · ∇XY for any x ∈ Σ, for any X, Y ∈ TxΣ. A is called the
second fundamental form of the embedding Σ ↪→M by some authors (cf. [Sim83b, Section 7],
where the tensor is denoted B, or [Lee97, Chapter 8], where the author uses the notation II)
and we will use the same terminology, although in the literature in differential geometry
(above all when working with embedded hypersurfaces, that is in case the codimension of
the submanifold is k = 1) it is sometimes more customary to call A “shape operator” and
to use “second fundamental form” for scalar products h(X, Y) = 〈A(X, Y),η〉 with a fixed
normal vector field η (cf. [dC92, Chapter 6, Section 2]).

Observe that, since we have assumed Σ to be minimal in M, the mean curvature H :=

tr(A) is everywhere vanishing on Σ.
The curvature endomorphism of the ambient manifold M is denoted by R: we recall that

this is a tensor field on M of type (3, 1), whose action on vector fields is defined by

R(X, Y)Z := ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z,

where [X, Y] is the Lie bracket of the vector fields X and Y.
Recall also that the Riemann tensor can be defined by setting

Rm(X, Y,Z,W) := 〈R(X, Y)Z,W〉

for any choice of the vector fields X, Y,Z,W, and that the Ricci tensor is the trace of the
curvature endomorphism with respect to its first and last indices, that is Ric(X, Y) is the
trace of the linear map

Z 7→ R(Z,X)Y.

For any pair of points x,y ∈ Σ, d(x,y) will be their Riemannian geodesic distance, while
measures and integrals will be computed with respect to the m-dimensional Hausdorff
measure Hm defined in the ambient space Rd. Boldface characters will be used to denote
quantities which are related to the Riemannian geodesic distance: for instance, if x ∈ Σ and
r is a positive number, Br(x) is the geodesic ball with center x and radius r, namely the set
of points y ∈ Σ such that d(y, x) < r. In the same fashion, if U and V are two subsets of Σ
we will set

dist(U,V) := inf{d(x,y) : x ∈ U,y ∈ V}.

In this part we will work with multi-valued functions u : Σ → AQ(R
d), where Q > 1

is a fixed integer. Together with the notions introduced in Section 2.2, we will need the
following definition of Dirichlet energy of a tangent vector field to the manifold M.
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Definition 4.1.2 (Dirichlet energy of a tangent Q-field). Let Σ ↪→ M be as in Assumption
4.1.1, and let Ω ⊂ Σ be an open set. Let u =

∑
`Ju

`K ∈ W1,2
(
Ω,AQ(Rd)

)
be a Sobolev

Q-valued tangent vector field to M: that is, assume that spt(u(x)) ⊂ TxM for Hm-a.e. x ∈ Ω.
Then, for any point x of approximate differentiability for u in Ω, and for any tangent vector
field ξ, we set

∇ξu(x) :=
Q∑
`=1

JpM
x ·Dξu`(x)K. (4.1)

The Dirichlet energy of the vector field u in Ω is thus given by

DirTM(u,Ω) :=

ˆ
Ω

m∑
i=1

|∇ξiu|
2 dHm (4.2)

for any (local) orthonormal frame (ξ1, . . . , ξm) of TΣ.

Remark 4.1.3. Observe that, when u is Lipschitz continuous and u|Bi =
∑Q
`=1Ju

`
iK is a local

Lipschitz selection of u as in Proposition 2.2.7, one has

|∇ξu(x)|2 =
Q∑
`=1

|∇ξu`i(x)|2 for Hm − a.e. x ∈ Bi, for all vector fields ξ,

where the ∇ on the right-hand side has to be intended as the classical covariant derivative
(which can be extended to Lipschitz maps by means of Rademacher’s theorem).

The functional DirTM defined in (4.2) is the “right” geometric quantity to consider when
dealing with tangent vector fields, since it does not involve any geometric structure which
is external to the manifold M. In particular, it does not depend on the isometric embedding
of the Riemannian manifold M in the Euclidean space Rd.

4.2 Q-valued second variation of the area functional

Let M and Σ be as in Assumption 4.1.1. The goal of this section is to define the admissible
Q-valued normal variations of Σ in M and to compute the associated second variation
functional. In what follows, we will denote by AQ(M) the space of Q-points T =

∑
`Jp`K ∈

AQ(R
d) with each p` in M.

Definition 4.2.1. An admissible variational Q-field of Σ in M is a Lipschitz map

N :=

Q∑
`=1

JN`K : Σ→ AQ(R
d)

satisfying the following assumptions:

(H1) N`(x) ∈ T⊥x Σ ⊂ TxM for every ` ∈ {1, . . . ,Q}, for every x ∈ Σ;

(H2) N` vanishes in a neighborhood of ∂Σ for every ` ∈ {1, . . . ,Q}.
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Definition 4.2.2. Given an admissible variational Q-field N, the one-parameter family of
Q-valued deformations of Σ in M induced by N is the map

F : Σ× (−δ, δ)→ AQ(M)

defined by

F(x, t) :=
Q∑
`=1

Jexpx(tN
`(x))K, (4.3)

where exp denotes the exponential map on M.

Observe that, for any given N as in Definition 4.2.1, the induced one-parameter family
of Q-valued deformations is always well defined for a positive δ which depends on the L∞
norm of N and on the injectivity radius of M. Note, furthermore, that F(x, 0) = QJxK for
every x ∈ Σ, and that F(x, t) = QJxK for all t if x ∈ ∂Σ.

If F is an admissible one-parameter family of Q-valued deformations, we will often write
Ft(x) instead of F(x, t). Moreover, we will set F`t(x) := expx(tN

`(x)).
In what follows, we will always assume to have fixed an orthonormal frame (ξ1, . . . , ξm)

of the tangent bundle TΣ, so that ~ξ = ξ1 ∧ · · ·∧ ξm is a continuous simple unit m-vector
field orienting Σ. Given any admissible variational Q-field N, we can now apply the results
of Chapter 3, and consider the push-forward of Σ through the family Ft induced by N. An
immediate consequence of Proposition 3.1.3 is that the resulting object is a one-parameter
family of integer rectifiable m-currents, denoted Σt := TFt = (Ft)]JΣK with spt(Σt) ⊂ M.
From (3.2), we have also the explicit representation formula

Σt(ω) =

ˆ
Σ

Q∑
`=1

〈
ω
(
F`t(x)

)
,DF`t(x)]~ξ(x)

〉
dHm(x) ∀ω ∈ Dm(Rd). (4.4)

We will denote µ(t) the mass M(Σt) of the current Σt.

Definition 4.2.3. Let Σ ⊂M, and let N be an admissible variational Q-field. For any integer
j > 1, the jth order variation of Σ generated by N is the quantity

δjJΣK(N) :=
djµ

dtj

∣∣∣∣
t=0

. (4.5)

δ1JΣK is usually denoted δJΣK, and called first variation. δ2JΣK is called second variation.

For every j, δjJΣK is a functional defined on the space of admissible variational Q-fields.
In the following theorem we show that the first variation functional δJΣK is identically zero
under the assumption that Σ is minimal in M. Furthermore, and more importantly for our
purposes, we provide an explicit representation formula for δ2JΣK.

Theorem 4.2.4. Let Σ ↪→M be as in Assumption 4.1.1. If N is an admissible variational Q-field of
Σ in M, then

δJΣK(N) = 0, (4.6)



4.2 Q-valued second variation of the area functional 65

and

δ2JΣK(N) = DirTM(N,Σ) − 2
ˆ
Σ

Q∑
`=1

|A ·N`|2 dHm −

ˆ
Σ

Q∑
`=1

R(N`,N`)dHm, (4.7)

where

|A ·N`|2 :=
m∑
i,j=1

|〈A(ξi, ξj),N`〉|2 (4.8)

and

R(N`,N`) :=
m∑
i=1

〈R(N`, ξi)ξi,N`〉. (4.9)

Remark 4.2.5. Observe that formula (4.7) makes sense because the quantity on the right-
hand side does not depend on the particular selection chosen forN, nor on the orthonormal
frame chosen for the tangent bundle TΣ.

The first addendum in the sum is the Dirichlet energy of the multi-valued vector field N
on the manifold M as defined in (4.2).

The second term in the sum can as well be given an intrinsic formulation, once we observe
that |A ·N`| is the Hilbert-Schmidt norm of the symmetric bilinear form A ·N` : TΣ× TΣ→
R defined by A ·N`(ξ,η) := 〈A(ξ,η),N`〉.

Regarding the third term, the symmetry properties of the Riemann tensor allow to write

〈R(N`, ξi)ξi,N`〉 = 〈R(ξi,N`)N`, ξi〉 = 〈p · R(ξi,N`)N`, ξi〉,

which in turn implies that R(N`,N`) coincides with the trace of the endomorphism

ξ 7→ p · R(ξ,N`)N`

of the tangent bundle TΣ. In other words, this term is a partial Ricci curvature in the
direction of the vector field N`.

Proof of Theorem 4.2.4. Let N be an admissible variational Q-field of Σ in M, and let F =

F(x, t) denote the induced one-parameter family of Q-valued deformations. The proof of
the representation formulae (4.6) and (4.7) will be obtained by direct computation.

The starting point is theQ-valued area formula, Proposition 3.1.5, which yields an explicit
formula for the function µ(t). Indeed, we may write

µ(t) =

ˆ
Σ

Q∑
`=1

JF`t(x)dHm(x), (4.10)

provided condition (3.7) is satisfied: that is, provided there is a set B ⊂ Σ of full measure for
which

〈DF`t(x)]~ξ(x),DF`
′
t (y)]~ξ(y)〉 > 0 ∀ x,y ∈ B and `, ` ′ with F`t(x) = F

` ′
t (y). (4.11)

Now, it is not difficult to show that in fact condition (4.11) holds with B = Σ: to see this,
first observe that since Σ is compact there exists a number ε > 0 such that 〈~ξ(x),~ξ(y)〉 > 1

2
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for all points x,y ∈ Σ such that d(x,y) 6 ε. On the other hand, the very definition
of F implies that for any x ∈ Σ one may write F`t(x) = x + tN`(x) + o(t) for t → 0.
Therefore, if |t| is chosen small enough, depending on Σ, ε and on the L∞ norm of N
in Σ, the condition F`t(x) = F`

′
t (y) implies d(x,y) 6 ε and consequently the condition

〈~ξ(x),~ξ(y)〉 > 1
2 . But now, since DF`t(x) = Id + tDN`(x) + o(t), we easily infer that

〈DF`t(x)]~ξ(x),DF`
′
t (y)]~ξ(y)〉 > 1

4 for all x,y ∈ Σ and `, ` ′ with F`t(x) = F`
′
t (y) provided

|t| 6 δ0 for some δ0 = δ0
(
Σ, ε, ‖N‖L∞(Σ), Lip(N)

)
.

Thus, we can work on each component F` of the decomposition of F separately: in the
end, we will just apply (4.10) to obtain the desired variation formulae. Moreover, since the
coming arguments are local, we will assume in what follows that the frame {ξi}

m
i=1 is C2

and that the selection N =
∑
`JN

`K is Lipschitz in a neighborhood of any given point x.
With that being said, let us now consider a fixed value of ` ∈ {1, . . . ,Q} and introduce the

following quantities. For any x point of differentiability for N in Σ, let Z`(x) := ∂ttF
`(x, 0)

denote the initial acceleration of the `th sheet at the point x, so that the second order Taylor
expansion of F`(x, ·) around t = 0 is

F`(x, t) = x+ tN`(x) +
1

2
t2Z`(x) + o(t2)

in a suitable δ-neighborhood of t = 0. Then, for any i ∈ {1, . . . ,m}, define

e`i = e
`
i(x, t) := DξiF

`
t(x) = ξi(x) + tDξiN

`(x) +
1

2
t2DξiZ

`(x) + o(t2) (4.12)

and
V` = V`(x, t) := ∂tF`(x, t). (4.13)

Observe that e`i and V` are tangent vector fields to M.
Next, for i, j ∈ {1, . . . ,m} denote

g`ij = g`ij(x, t) := 〈e`i(x, t), e`j(x, t)〉 (4.14)

and
g` = g`(x, t) := det(g`ij(x, t)). (4.15)

Using the above notation, we readily see that the Jacobian determinant JF`t can be written
as follows:

J` = J`(x, t) := JF`t(x) =
√

g`(x, t), (4.16)

so that, finally, the mass of the push-forwarded current is given by

µ(t) =

Q∑
`=1

µ`(t), (4.17)

where

µ`(t) :=

ˆ
Σ

J`(x, t)dHm(x). (4.18)
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Thus, we conclude that the first and second variation of Σ under the deformation generated
by N can be represented in the following way:

δJΣK(N) =

Q∑
`=1

dµ`

dt

∣∣∣∣
t=0

(4.19)

and

δ2JΣK(N) =

Q∑
`=1

d2µ`

dt2

∣∣∣∣
t=0

. (4.20)

In what follows, in order to simplify the notation, we will drop the superscript ` when
carrying on the computation.

One has:
dµ

dt

∣∣∣∣
t=0

=

ˆ
Σ

∂tJ(x, 0)dHm(x). (4.21)

Now, since

∂tJ =
1

2J
∂tg,

and since gij = δij at time t = 0, easy computations show that

∂tJ
∣∣
t=0

=
1

2

m∑
i=1

∂tgii
∣∣
t=0

=

m∑
i=1

〈ei,∂tei〉
∣∣
t=0

, (4.22)

and thus

δJΣK(N) =

ˆ
Σ

Q∑
`=1

m∑
i=1

〈ξi,DξiN
`〉dHm =

ˆ
Σ

Q∑
`=1

m∑
i=1

〈ξi,∇ξiN
`〉dHm =

ˆ
Σ

Q∑
`=1

divΣ(N`)dHm.

In particular, recalling the definition of the map η in (2.14), we deduce from the linearity
of the divergence operator that

δJΣK(N) = Q

ˆ
Σ

divΣ(η ◦N)dHm, (4.23)

where η ◦N : Σ → Rd, the “average” of the sheets of the vector field N, is a classical
single-valued Lipschitz map. Note that if N is single-valued then η ◦N ≡ N, and we
recover the usual formulation of the first variation formula in terms of the divergence
of the variational vector field. Observe now that the average η ◦N vanishes in a neigh-
borhood of ∂Σ and satisfies η ◦N(x) ∈ T⊥x Σ ⊂ TxM for every x ∈ Σ. Hence, for every
i ∈ {1, . . . ,m} the scalar product 〈ξi,η ◦N〉 is everywhere vanishing, and we have that
〈ξi,∇ξi(η ◦N)〉 = −〈∇ξiξi,η ◦N〉 = −〈A(ξi, ξi),η ◦N〉. Therefore, recalling the definition
of the mean curvature vector H as the trace of the second fundamental form, one can also
write

δJΣK(N) = Q

ˆ
Σ

m∑
i=1

〈ξi,∇ξi(η ◦N)〉dHm = −Q

ˆ
Σ

〈H,η ◦N〉dHm = 0 (4.24)

because Σ is minimal in M. This proves (4.6).
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Next, we go further and we compute the second variation of the mass. We first write, for
every t and for every x ∈ Σ of differentiability for the variational field:

∂tJ =
1

2
√g
∂tg =

1

2
J
1

g
∂tg =

1

2
J∂t (log(g)) =

1

2
Jgij∂tgji,

where in the last identity we have used Jacobi’s formula

∂t log detA(t) = tr
(
A(t)−1 · ∂tA(t)

)
for any invertible matrix A(t) with positive determinant. Moreover,

(
gij
)

is the inverse
matrix of

(
gij
)
, and Einstein’s convention on the summation of repeated indices has been

used. Now, since
∂tgji = ∂t

(
〈ej, ei〉

)
= 〈∂tej, ei〉+ 〈ej,∂tei〉,

and using the fact that the matrix
(
gij
)

is symmetric, we can conclude the following iden-
tity:

∂tJ = Jgij〈ei,∂tej〉.

In turn, this produces:

∂ttJ = (∂tJ) gij〈ei,∂tej〉︸ ︷︷ ︸
=:I

+ J
(
∂tgij

)
〈ei,∂tej〉︸ ︷︷ ︸

=:II

+ Jgij∂t
(
〈ei,∂tej〉

)︸ ︷︷ ︸
=:III

. (4.25)

Now, we evaluate equation (4.25) at time t = 0. Regarding the first term in the sum,
we use (4.22), the orthonormality condition gij

∣∣
t=0

= δij and the fact that ei
∣∣
t=0

= ξi,
∂tei

∣∣
t=0

= DξiN (here, of course, we are writing N instead of N`) to conclude

I
∣∣
t=0

=

(
m∑
i=1

〈ξi,∇ξiN〉

)2
. (4.26)

Since N = N` is Lipschitz, and since 〈ξi,N〉 ≡ 0, we have 〈ξi,∇ξiN〉 = −〈A(ξi, ξi),N〉, and
thus

I
∣∣
t=0

= (〈H,N〉)2 = 0 (4.27)

due to the minimality of Σ.
In order to derive a formula for II

∣∣
t=0

, we first differentiate the identity

gijgjh = δih

to obtain that
∂tgij = −gik (∂tgkh) ghj,

whence
∂tgij

∣∣
t=0

= −∂tgij
∣∣
t=0

= −
(
〈∇ξiN, ξj〉+ 〈ξi,∇ξjN〉

)
. (4.28)

Since 〈∇ξiN, ξj〉 = −〈A
(
ξi, ξj

)
,N〉, the symmetry of the second fundamental form implies

∂tgij
∣∣
t=0

= 2〈A
(
ξi, ξj

)
,N〉. (4.29)



4.2 Q-valued second variation of the area functional 69

Again, since
〈ei,∂tej〉

∣∣
t=0

= 〈ξi,∇ξjN〉 = −〈A
(
ξi, ξj

)
,N〉,

we can finally obtain

II
∣∣
t=0

= −2

m∑
i,j=1

|〈A(ξi, ξj),N〉|2. (4.30)

Finally, we compute III
∣∣
t=0

. The simplest way to do it is to regard the operator ∂t as the
covariant derivative along the vector field V = V`. One therefore has:

∂t
(
〈ei,∂tej〉

)
= V〈ei,∇Vej〉
= 〈∇Vei,∇Vej〉+ 〈ei,∇V∇Vej〉
= 〈∇eiV ,∇ejV〉+ 〈ei,∇V∇ejV〉,

where in the last identity we have used the fact that the vector fields ei and V commute,
and, of course, that the Riemannian connection on M is torsion-free. Now, using again that[
V , ej

]
= 0 and the definition of the curvature tensor R, we may write

∇V∇ejV = ∇ej∇VV + R(V , ej)V ,

so that, finally, the evaluation of ∂t
(
〈ei,∂tej〉

)
at time t = 0 yields

∂t
(
〈ei,∂tej〉

) ∣∣
t=0

= 〈∇ξiN,∇ξjN〉+ 〈ξi,∇ξjZ〉+ 〈ξi,R(N, ξj)N〉,

with Z = Z`. Since J
∣∣
t=0

= 1 and gij
∣∣
t=0

= δij, we conclude the following identity:

III
∣∣
t=0

=

m∑
i=1

|∇ξiN|2 + divΣZ−

m∑
i=1

〈R(N, ξi)ξi,N〉. (4.31)

Observe that, in deriving formula (4.31), we have used that 〈R(X, Y)U,W〉 = −〈R(X, Y)W,U〉
for any choice of X, Y,U,W vector fields on M.

We have now all the tools to conclude: from the Q-valued area formula (4.10) it follows
that

d2µ

dt2

∣∣∣∣
t=0

=

ˆ
Σ

Q∑
`=1

∂ttJ
`(x, 0)dHm(x),

thus it suffices to plug equations (4.27), (4.30), (4.31) in (4.25) to get

δ2JΣK(N) =

ˆ
Σ

Q∑
`=1

 m∑
i=1

|∇ξiN
`|2 − 2

m∑
i,j=1

|〈A(ξi, ξj),N`〉|2 −
m∑
i=1

〈R(N`, ξi)ξi,N`〉

dHm

+Q

ˆ
Σ

divΣ(η ◦Z)dHm,

(4.32)

where Z :=
∑
`JZ

`K. Now, we decompose

η ◦Z = p · (η ◦Z) + p⊥ · (η ◦Z) = (η ◦Z)> + (η ◦Z)⊥, (4.33)
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and we see that, since 〈ξi, (η ◦Z)⊥〉 = 0 for all i,

divΣ((η ◦Z)⊥) =
m∑
i=1

〈ξi,∇ξi(η ◦Z)
⊥〉 = −

m∑
i=1

〈A(ξi, ξi),η ◦Z〉 = −〈H,η ◦Z〉 = 0. (4.34)

On the other hand, Stokes’ theorem and the fact that N is vanishing in a neighborhood of
∂Σ readily imply that ˆ

Σ

divΣ((η ◦Z)>)dHm = 0, (4.35)

and thus the last addendum on the right-hand side of (4.32) vanishes. This completes the
proof of formula (4.7).

We note now that the quantity appearing on the right-hand side of formula (4.32) is in
fact well defined for any Q-valued vector field tangent to M and belonging to the class
W1,2

(
Σ,AQ(Rd)

)
. This motivates the following definitions.

Definition 4.2.6 (W1,2 sections of the normal bundle). Let Σ ↪→ M be as above, and let
Ω ⊂ Σ be open. We define the class of W1,2 sections of the normal bundle of Ω in M,
denoted Γ1,2

Q (NΩ), as follows:

Γ1,2
Q (NΩ) :=

{
N ∈W1,2 (Ω,AQ(Rd)

)
: spt(N(x)) ⊂ T⊥x Σ ⊂ TxM for Hm-a.e. x ∈ Ω

}
.

(4.36)

Definition 4.2.7 (Jacobi functional). For a section N ∈ Γ1,2
Q (NΩ), the Jacobi functional, or

stability functional, is defined by:

Jac(N,Ω) := DirTM(N,Ω) − 2

ˆ
Ω

Q∑
`=1

|A ·N`|2 dHm −

ˆ
Ω

Q∑
`=1

R(N`,N`)dHm. (4.37)

Our first observation is that the classical theory of the Jacobi normal operator can be
recovered within the above framework by simply setting Q = 1.

Remark 4.2.8. Consider the classical single-valued setting, corresponding to Q = 1, let
Ω = Σ and recall that

DirTM(N,Σ) =
ˆ
Σ

m∑
i=1

|∇ξiN|2 dHm

for any orthonormal frame (ξ1, . . . , ξm) of TΣ. Assume also that N is Lipschitz continuous
for convenience. Let (ν1, . . . ,νk) be local sections of the normal bundle NΣ of Σ in M such
that, at each point x ∈ Σ, the system

(
(ξj(x))

m
j=1, (να(x))kα=1

)
is an orthonormal basis of

TxM. Then, for every point of differentiability for N and for every i = 1, . . . ,m we have:

|∇ξiN|2 =

m∑
j=1

|〈∇ξiN, ξj〉|2 +
k∑
α=1

|〈∇ξiN,να〉|2.



4.2 Q-valued second variation of the area functional 71

Now, the usual considerations about the orthogonality of N and ξj imply that 〈∇ξiN, ξj〉 =
−〈A(ξi, ξj),N〉. We therefore obtain that

ˆ
Σ

 m∑
i=1

|∇ξiN|2 −

m∑
i,j=1

|〈A(ξi, ξj),N〉|2
 dHm =

ˆ
Σ

m∑
i=1

k∑
α=1

|〈∇ξiN,να〉|2 dHm,

and finally conclude the identity

Jac(N,Σ) =
ˆ
Σ

 m∑
i=1

k∑
α=1

|〈∇ξiN,να〉|2 −
m∑
i,j=1

|〈A(ξi, ξj),N〉|2 −
m∑
i=1

〈R(N, ξi)ξi,N〉

 dHm.

(4.38)
It is immediately seen that the Euler-Lagrange operator associated to the second variation

functional (4.38) is the linear elliptic operator L defined on the space of sections of NΣ and
given by

L := −∆⊥Σ −A −R, (4.39)

where ∆⊥Σ is the Laplacian on the normal bundle of Σ, A is Simons’ operator, defined by

A (N) :=

m∑
i,j=1

〈A(ξi, ξj),N〉A(ξi, ξj), (4.40)

and R is given by

R(N) :=

m∑
i=1

p⊥ · R(N, ξi)ξi. (4.41)

As already anticipated in the Introduction, the operator L is classically called Jacobi normal
operator, and the solutions of the differential equation L(N) = 0 (that is, the normal vector
fields that are in its kernel) are known in the literature as Jacobi fields. The importance of
studying the second variation operator of minimal submanifolds into Riemannian mani-
folds is well justified by the arguments given earlier on in this section: in the single valued
case Q = 1, the Jacobi operator L carries the information about the stability properties of
the submanifold itself, when it is thought of as a stationary point for the m-dimensional
volume. In particular, non-trivial Jacobi fields vanishing on ∂Σ are, when they exist, the in-
finitesimal normal deformations of Σ which preserve the volume up to second order. From
a functional analytic point of view, L is a second-order strongly elliptic operator. When
diagonalized on the space of sections of NΣ vanishing on ∂Σ with respect to the standard
inner product, it exhibits distinct, real eigenvalues {λh}

∞
h=1 (counted with multiplicities)

such that
λ1 < λ2 < · · · < λh < · · · → +∞.

Moreover, the dimension of each eigenspace is finite. The sum of the dimensions of the
eigenspaces corresponding to negative eigenvalues is called the Morse index of Σ: it accounts
for the number of independent infinitesimal normal deformations of Σ which do decrease
the volume at second order. If λ = 0 is an eigenvalue, then the dimension of ker(L) is called
nullity. We recall that Σ is called stable if its Morse index is 0, and strictly stable if there exist
no non-trivial Jacobi fields vanishing at the boundary, i.e. if index(Σ) + nullity(Σ) = 0.
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A systematic study of the Jacobi normal operator was initiated by J. Simons in [Sim68].
One of Simons’ main results was to prove that if M = Sm+1 and Σm is a closed minimal
hypersurface immersed in Sm+1 which is not totally geodesic then the first eigenvalue of
the operator L satisfies the upper bound λ1 6 −m. As a consequence of this, he was
able to show that no non-trivial stable minimal hypercones exist in Rm+1 for m 6 6. In
turn, this led to the proof of the Bernstein conjecture, stating that the only entire solutions
u : Rm → R of the minimal surface equation are linear, for every m 6 7. The result is sharp,
as the Bernstein conjecture was proved to be false for m > 7 by E. Bombieri, E. De Giorgi
and E. Giusti in [BDGG69].

The considerations leading to formula (4.38) can be repeated in the Q-valued setting,
thus showing that the Definition 4.2.7 of the Jacobi functional agrees with the one given
in formula (1.1). This equivalence is recorded in Lemma 4.2.10 below. We first need a
definition.

Definition 4.2.9 (Normal Dirichlet energy of a section). Let N ∈ Γ1,2
Q (NΩ). For any point

x ∈ Ω where N is approximately differentiable, and for any tangent vector field ξ, set

∇⊥ξN(x) :=

Q∑
`=1

JpΣ⊥x ·DξN`(x)K, (4.42)

where pΣ⊥x = p⊥x ◦ pM
x is the orthogonal projection of Rd onto T⊥x Σ. Then, the normal

Dirichlet energy of N in Ω is the quantity

DirNΣ(N,Ω) :=

ˆ
Ω

m∑
i=1

|∇⊥ξiN|2 dHm, (4.43)

for any choice of a (local) orthonormal frame {ξi}
m
i=1 of TΣ.

Lemma 4.2.10 (Equivalence of the definitions of the Jac functional). For any N =
∑
`JN

`K ∈
Γ1,2
Q (NΩ) it holds

Jac(N,Ω) = DirNΣ(N,Ω) −

ˆ
Ω

Q∑
`=1

|A ·N`|2 dHm −

ˆ
Ω

Q∑
`=1

R(N`,N`)dHm

=

ˆ
Ω

Q∑
`=1

 m∑
i=1

k∑
α=1

|〈DξiN
`,να〉|2 −

m∑
i,j=1

|〈A(ξi, ξj),N`〉|2 −
m∑
i=1

〈R(ξi,N`)N`, ξi〉

dHm ,

(4.44)

where {ξi}mi=1 and {να}
k
α=1 are (local) orthonormal frames of TΣ and NΣ respectively.

Proof. It is a straightforward consequence of the arguments contained in Remark 4.2.8
combined with the Lipschitz approximation theorem, Proposition 2.2.10 (cf. also [DLS14,
Lemma 4.5]) and the Lipschitz selection property in Proposition 2.2.7.

On the other hand, unlike the single-valued case, the lack of linear structure of Γ1,2
Q (NΩ)

in the multi-valued case Q > 1 does not allow one to associate an operator to the Jacobi



4.3 jacobi Q-fields 73

functional, nor to characterize multiple valued Jacobi fields as the solutions of a certain
(Euler-Lagrange) PDE. Nonetheless, the variational structure of the problem suggests that
the minimizers of the Jacobi functional for a given boundary datum have the right to be
considered the multi-valued counterpart of the classical Jacobi fields. This justifies the
following definition.

Definition 4.2.11. Let Σ ↪→M be as in Assumption 4.1.1, and let Ω ⊂ Σ be a Lipschitz open
set. A map N ∈ Γ1,2

Q (NΩ) is said to be a Jac-minimizer, or a JacobiQ-field inΩ, if it minimizes
the Jacobi functional among all Q-valued W1,2 sections of the normal bundle of Ω in M

having the same trace at the boundary, that is

Jac(N,Ω) 6 Jac(u,Ω) for all u ∈ Γ1,2
Q (NΩ) such that u|∂Ω = N|∂Ω. (4.45)

4.3 jacobi Q-fields

The goal of this section is to provide the two fundamental tools which will be used in
Chapter 5 to address the question of the existence of Jacobi Q-fields N in Ω with prescribed
boundary value N|∂Ω = g|∂Ω for some fixed g ∈ Γ1,2

Q (NΩ), and ultimately to prove Theo-
rem 5.0.1. These tools are encoded in Proposition 4.3.1 and Lemma 4.3.4 below. The proof
of Theorem 5.0.1 will be obtained by direct methods in the Calculus of Variations, and
therefore it is natural to analyze the properties of lower semi-continuity and compactness of
the stability functional. The proof of the weak lower semi-continuity is rather simple, and
it is the content of the following proposition.

Proposition 4.3.1. The Jacobi functional is lower semi-continuous with respect to the weak topology
of Γ1,2

Q (NΩ).

Before coming to the proof, it will be useful to make some further considerations about
the structure of the Jacobi functional, in order to simplify the notation and to express it as
a perturbation of the Dirichlet functional Dir(u,Ω).

Remark 4.3.2. Given any Q-valued Lipschitz map u =
∑
`Ju

`K satisfying u`(x) ∈ T⊥x Σ ⊂
TxM for all x ∈ Ω, the orthogonal decomposition

Dξu
`(x) = pM

x ·Dξu`(x) + pM⊥
x ·Dξu`(x) = ∇ξu`(x) +Ax

(
ξ(x),u`(x)

)
holds for any tangent vector field ξ at any point x of differentiability for u, hence Hm-a.e.
in Ω. Here, A denotes the second fundamental form of the embedding M ↪→ Rd. Hence, at
any such point we may write

|∇ξu`|2 = |Dξu
`|2 − |A(ξ,u`)|2.

These considerations are extended in the obvious way to all sections u ∈ Γ1,2
Q (NΩ) at all

points of approximate differentiability. Ultimately, we will write

Jac(u,Ω) = Dir(u,Ω) −BΩ(u), (4.46)
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where BΩ is the functional on Γ1,2
Q (NΩ) defined by

BΩ(u) :=

ˆ
Ω

Q∑
`=1

 m∑
i=1

|A(ξi,u`)|2 + 2
m∑
i,j=1

|〈A(ξi, ξj),u`〉|2 +
m∑
i=1

〈R(u`, ξi)ξi,u`〉

 dHm.

(4.47)
Observe that BΩ satisfies an estimate of the form

|BΩ(u)| 6 C0‖u‖2L2 , (4.48)

where C0 is a geometric constant, depending on A, A, R, where

A = ‖A‖L∞ := max
x∈Σ

max
{
|Ax(X, Y)| : X, Y ∈ Sm−1 ⊂ TxΣ

}
, (4.49)

A = ‖A‖L∞ := max
x∈Σ

max
{
|Ax(X, Y)| : X, Y ∈ Sm+k−1 ⊂ TxM

}
, (4.50)

R = ‖R‖L∞ := max
x∈Σ

max
{
|pΣ⊥x · Rx(X, Y)Z| : X ∈ T⊥x Σ, Y,Z ∈ TxΣ, |X| = |Y| = |Z| = 1

}
.

(4.51)

Proof of Proposition 4.3.1. Consider Q-valued sections uh,u ∈ Γ1,2
Q (NΩ) and assume that

uh ⇀ u weakly in W1,2(Ω;AQ) as in Definition 2.2.15. Now, use (4.46) in order to write

Jac(uh,Ω) = Dir(uh,Ω) −BΩ(uh).

The weak lower semi-continuity of the Dirichlet energy was proved by De Lellis and
Spadaro in [DLS11, Proof of Theorem 0.8, p.30]. On the other hand, the condition

lim
h→∞

ˆ
Ω

G (uh,u)2 dHm = 0

is enough to show that in fact

lim
h→∞BΩ(uh) = BΩ(u). (4.52)

To see this, just write (4.52) as

lim
h

ˆ
Ω

bh dHm =

ˆ
Ω

bdHm, (4.53)

with

bh(x) =

Q∑
`=1

 m∑
i=1

|A(ξi,u`h)|
2 + 2

m∑
i,j=1

|〈A(ξi, ξj),u`h〉|2 +
m∑
i=1

〈R(u`h, ξi)ξi,u`h〉


and

b(x) =

Q∑
`=1

 m∑
i=1

|A(ξi,u`)|2 + 2
m∑
i,j=1

|〈A(ξi, ξj),u`〉|2 +
m∑
i=1

〈R(u`, ξi)ξi,u`〉

 ,

and observe that the strong convergence uh → u in L2(Ω,AQ) suffices to prove that along
a subsequence (not relabeled) bh(x) → b(x) pointwise Hm-a.e. in Ω. Equation (4.53) then
follows by standard techniques in integration theory.
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As for compactness, the situation is much more involved. Indeed, as already anticipated,
the existence of a solution of the minimum problem for the Jacobi functional with any
boundary datum g is strictly related with showing that N0 ≡ QJ0K is in fact the only
minimizer under QJ0K boundary conditions.

Remark 4.3.3. If N ∈ Γ1,2
Q (NΩ) is a Jacobi Q-field with N|∂Ω = QJ0K, then Jac(N,Ω) = 0.

This is a consequence of the homogeneity properties of the functional: in this case, indeed,
for any t ∈ R the Q-field tN :=

∑
`JtN

`K is a suitable competitor, and

Jac(tN,Ω) = t2Jac(N,Ω).

Hence, were Jac(N,Ω) < 0 1, one would obtain that limt→∞ Jac(tN,Ω) = −∞, thus contra-
dicting the definition of N.

We are then able to conclude that if the minimum problem for the Jacobi functional with
QJ0K boundary data does admit a solution, then for any minimizerN one has Jac(N,Ω) = 0.
In particular, N0 ≡ QJ0K is a minimizer.

The condition that N0 ≡ QJ0K is the only minimizer for its boundary value will be
referred to as strict stability condition, as it characterizes the strictly stable submanifolds in
the Q = 1 case. In the following lemma we provide an equivalent condition to the strict
stability.

Lemma 4.3.4. There exists a unique solution N0 ≡ QJ0K of the problem

min
{

Jac(u,Ω) : u ∈ Γ1,2
Q (NΩ) such that u|∂Ω = QJ0K

}
if and only if there exists a positive constant c = c(Ω) such that

Jac(u,Ω) > c
ˆ
Ω

|u|2dHm, (4.54)

for all u ∈ Γ1,2
Q (NΩ) with u|∂Ω = QJ0K.

Remark 4.3.5. If Q = 1 and Σ is strictly stable, then the largest positive constant c(Ω) such
that (4.54) holds for every W1,2 section u of NΩ with u|∂Ω = 0 is the first eigenvalue λ1 of
the Jacobi normal operator L.

Proof. Assume first that (4.54) holds. Then, the Jacobi functional is non-negative on the
space of W1,2 sections of NΩ with vanishing trace at the boundary. It is then clear that
N0 ≡ QJ0K is a minimizer. Moreover, it is the only one. Indeed, if u is a minimizer, then
Jac(u,Ω) = 0, and therefore (4.54) forces

ˆ
Ω

G(u,QJ0K)2dHm = 0.

For the converse, assume that the minimum problem for the Jacobi functional with vanish-
ing boundary condition admits N0 ≡ QJ0K as the only solution. In particular, this implies

1 Observe that ifN|∂Ω = QJ0K, then the nullQ-fieldN0 ≡ QJ0K is a competitor, whence Jac(N,Ω) 6 Jac(N0,Ω) =

0 if N is a minimizer.
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that Jac(u,Ω) > 0 for all sections u ∈ Γ1,2
Q (NΩ) such that u|∂Ω = QJ0K, and in fact that

Jac(u,Ω) > 0 for all such sections except the trivial one N0. Now, assume by contradiction
that (4.54) does not hold. Then, for any h ∈ N there is a competitor uh ∈ Γ1,2

Q (NΩ) such
that uh|∂Ω = QJ0K, ‖uh‖L2 = 1 and

Jac(uh,Ω) 6
1

h
.

In particular, as a consequence of (4.48), we conclude that
ˆ
Ω

|Duh|
2 dHm 6 C. (4.55)

By the compact embedding theorem for Q-valued maps, Proposition 2.2.17, and by Propo-
sition 2.2.16, we infer that there exist a subsequence {uh ′} of {uh} and a section u∞ ∈
Γ1,2
Q (NΩ), u∞|∂Ω = QJ0K, such that

lim
h ′→∞

ˆ
Ω

G(uh ′ ,u∞)2 dHm = 0,

that is uh ′ ⇀ u∞ weakly in W1,2. Then, from the semi-continuity of the Jacobi functional
follows:

0 6 Jac(u∞,Ω) 6 lim inf
h ′→∞ Jac(uh ′ ,Ω) = 0.

Hence, Jac(u∞,Ω) = 0, and thus u∞ is a minimizer. By hypothesis, u∞ ≡ QJ0K, which
contradicts ‖u∞‖L2 = 1.
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In this chapter we provide a proof of the following (conditional) existence theorem for
Jacobi Q-fields.

Theorem 5.0.1 (Conditional existence). Let Σ ↪→ M be as in Assumption 4.1.1, and let Ω ⊂ Σ
be an open and connected subset with C2 boundary. Assume that the strict stability condition is
satisfied: the onlyQ-valued Jacobi fieldN inΩ such thatN|∂Ω = QJ0K is the null fieldN0 ≡ QJ0K.
Then, for any g ∈ Γ1,2

Q (NΩ) such that g|∂Ω ∈W1,2(∂Ω;AQ(Rd)) there is a Jacobi Q-field N such
that N|∂Ω = g|∂Ω.

The proof of Theorem 5.0.1 will be obtained by direct methods. Since we know that the
Jac functional is weakly lower semi-continuous in Γ1,2

Q (NΩ), there are only two other pieces
of information that we need in order to achieve the result. First, we need to know that for
any fixed boundary datum g the Jacobi functional is bounded below in the space of sections
u ∈ Γ1,2

Q (NΩ) with u|∂Ω = g|∂Ω. Second, we need to prove a compactness theorem for
sections in Γ1,2

Q (NΩ) with Jac bounded above. Both these two results will follow from the
strict stability condition, but in order to obtain them we first need to derive an extension
theorem for Q-valued W1,2 maps. In turn, the extension theorem will follow as a corollary
of a Luckhaus type result for multiple-valued maps.

5.1 Q-valued luckhaus lemma and the extension theorem

Proposition 5.1.1. Let N be a d-dimensional closed Riemannian manifold of class C2. Assume
0 < λ < 1 and f1, f2 : N → AQ(R

q) are two maps in W1,2. Then, there exist a constant C =

C(N,d,q,Q) and a map h ∈W1,2
(
N× [0, λ],AQ(Rq)

)
such that

h(·, 0) ≡ f1 and h(·, λ) ≡ f2 in N, (5.1)

satisfying ˆ
N×[0,λ]

|h|2 6 Cλ
ˆ
N

(
|f1|2 + |f2|2

)
, (5.2)

ˆ
N×[0,λ]

|Dh|2 6 Cλ
ˆ
N

(
|Df1|2 + |Df2|2

)
+
C

λ

ˆ
N

G(f1, f2)2. (5.3)

Such a result adapts to the Q-valued setting a classical result by S. Luckhaus, concerning
the extension of a Sobolev map defined on the boundary of an annulus ∂(B1 \ B1−λ) in its
interior with control on the L2 norm of the gradient of the extension map (for the precise
statement and the proof, see the original paper [Luc88, Lemma 1], or the nice presentations
given by L. Simon in [Sim96, Section 2.12.2] or by R. Moser in [Mos05, Lemma 4.4]).

77
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A version of this result in the Q-valued setting was given by C. De Lellis in [DL13],
where the author interpolates between two functions defined on flat cubes, and by J. Hirsch
in [Hir16b, Lemma C.1] in the original Luckhaus setting of functions defined on the bound-
ary of an annulus. The proof of the interpolation between maps defined over a closed
Riemannian manifold presented here is based on De Lellis’ result and on a decomposition
of the manifold that is bi-Lipschitz to a d-dimensional cubic complex, following ideas al-
ready contained in [Whi88] and [Han05]. We will make an extensive use of the following
Lemma, which provides the elementary step in the construction of the interpolation.

Lemma 5.1.2. There is a constant C depending only on j and Q with the following property.
Assume that 0 < λ 6 1, L = [0, λ]j + z is a j-dimensional cube of side length λ, and ϕ ∈
W1,2

(
∂L,AQ(Rq)

)
. Then, there is an extension ψ of ϕ to L such that

ˆ
L

|ψ|2 dHj 6 Cλ
ˆ
∂L

|ϕ|2 dHj−1 (5.4)

and
Dir(ψ,L) 6 CλDir(ϕ,∂L). (5.5)

Proof. First observe that, since the inequalities (5.4) and (5.5) are invariant with respect to
translations and dilations, it suffices to prove the lemma when L = [0, 1]j. Moreover, since
L is bi-Lipschitz equivalent to the unit ball, it is enough to show the claim for L = B1 ⊂ Rj.

For reasons that will soon become clear, the proof when working in dimension j = 2 is
different with respect to the one in the higher dimensional case (j > 3): for this reason, we
will distinguish between these two scenarios.

The higher dimensional case (j > 3). This is the easiest situation: indeed, it suffices to define
ψ as the zero-degree homogeneous extension of ϕ. That is, if ϕ =

∑
`Jϕ

`K on ∂B1, then
one just sets

ψ(x) :=

Q∑
`=1

s
ϕ`
(
x

|x|

){
for x ∈ B1 \ {0}. (5.6)

A simple computation in radial coordinates shows that both estimates (5.4) and (5.5) hold
with C = max{j−1, (j− 2)−1} = (j− 2)−1. Observe that this proof breaks down when j = 2,
because the zero-degree homogeneous extension of ϕ has infinite Dirichlet energy in two
dimensions.

The planar case (j = 2). For this proof, it will be useful to introduce a suitable notation.
We identify R2 with the complex plane C, and the unit ball B1 ⊂ R2 with the disk D, as
usual defined as

D := {z ∈ C : |z| < 1} = {reiθ : 0 6 r < 1, θ ∈ R}.

The boundary of D is the unit circle S1, described by

S1 := {z ∈ C : |z| = 1} = {eiθ : θ ∈ R}.

Consider now a function ϕ ∈ W1,2(S1,AQ). By [DLS11, Proposition 1.5], there exists a
decomposition ϕ =

∑P
`=1Jϕ`K, where each ϕ` is an irreducible map in W1,2(S1,Ak`). This
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means that
∑P
`=1 k` = Q, and furthermore that for every ` = 1, . . . ,P there exists a W1,2

map γ` : S1 → Rq such that
ϕ`(x) =

∑
zk`=x

Jγ`(z)K, (5.7)

and with γ`(z1) 6= γ`(z2) if z1 6= z2 are two distinct k`th roots of x. In other words, if we
identify the point x = eiθ ∈ S1 with the phase θ ∈ [0, 2π) we have that

ϕ`(θ) =

k`−1∑
m=0

s
γ`

(
θ+ 2πm

k`

){
, (5.8)

with

γ`

(
θ+ 2πm

k`

)
6= γ`

(
θ+ 2πm̃

k`

)
for m 6= m̃.

The idea, now, is to consider the harmonic extension to the disk D of the function γ`: if

γ`(θ) =
a`,0
2

+

∞∑
n=1

(a`,n cos(nθ) + b`,n sin(nθ)) (5.9)

is the Fourier series of γ`, we let

ζ`(r, θ) =
a`,0
2

+

∞∑
n=1

rn (a`,n cos(nθ) + b`,n sin(nθ)) (5.10)

denote its harmonic extension to the whole disk. Then, for each ` = 1, . . . ,P, we consider
the k`-valued function ψ` obtained “rolling” back the ζ`, that is

ψ`(x) :=
∑
zk`=x

Jζ`(z)K (5.11)

for x ∈ D, and, finally, we set ψ :=
∑P
`=1Jψ`K. We claim now that ψ is a W1,2(D,AQ)

extension of ϕ satisfying the estimates (5.4) and (5.5). To see this, fix ` ∈ {1, . . . ,P} and
define the following subsets of the unit disk,

Dm :=

{
reiθ : 0 < r < 1,

2πm

k`
< θ <

2π(m+ 1)

k`

}
for m = 0, . . . ,k` − 1, and

C := {reiθ : 0 < r < 1, θ 6= 0}.

One immediately sees that ψ`|C =
∑k`−1
m=0Jζ` ◦ σmK, where σm : C→ Dm are the k` determi-

nations of the k`th root, that is

σm(reiθ) = r
1
k` e

i
(
θ+2πm
k`

)
.

Similarly, if the arcs Sm are defined by

Sm :=

{
eiθ :

2πm

k`
< θ <

2π(m+ 1)

k`

}
,
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we have that ϕ`|S1\{1} =
∑k`−1
m=0Jγ` ◦ τmK, where τm : S1 \ {1}→ Sm is given by τm := σm|S1 .

Thus, we can immediately compute

ˆ
S1

|ϕ`|
2 =

k`−1∑
m=0

ˆ
S1

|γ` ◦ τm|2

= k`

k`−1∑
m=0

ˆ
Sm

|γ`|
2

= k`

ˆ
S1

|γ`|
2 = k`π

(
|a`,0|

2

2
+

∞∑
n=1

(|a`,n|
2 + |b`,n|

2)

) (5.12)

by Plancherel’s theorem. On the other hand, we can use polar coordinates to compute the
integral of the extension ψ` to the disk and see that

ˆ
D

|ψ`|
2 =

k`−1∑
m=0

ˆ
C

|ζ` ◦ σm|2

=

k`−1∑
m=0

ˆ 1

0

(ˆ 2π

0

∣∣∣∣ζ`(ρ 1
k` ,
α+ 2πm

k`

)∣∣∣∣2 dα
)
ρdρ

= k2`

k`−1∑
m=0

ˆ 1

0

(ˆ 2π(m+1)
k`

2πm
k`

|ζ`(r, θ)|
2 dθ

)
r2k`−1 dr

= k2`

ˆ 1

0

(ˆ 2π

0

|ζ`(r, θ)|2 dθ

)
r2k`−1 dr

= k2`π

ˆ 1

0

(
|a`,0|

2

2
+

∞∑
n=1

r2n(|a`,n|
2 + |b`,n|

2)

)
r2k`−1 dr

(5.12)
6 k`

(ˆ
S1

|ϕ`|
2

)(ˆ 1

0

r2k`−1 dr

)

=
1

2

ˆ
S1

|ϕ`|
2.

(5.13)

Summing over ` ∈ {1, . . . ,P}, we finally conclude that
ˆ

D

|ψ|2 6
1

2

ˆ
S1

|ϕ|2, (5.14)

that is, (5.4) holds with C = 1
2 . Concerning (5.5), we exploit the invariance of the Dirichlet

energy under conformal mappings in order to infer that, for any ` = 1, . . . ,P,

Dir(ψ`,C) =
k`−1∑
m=0

Dir(ζ` ◦ σm,C) =
k`−1∑
m=0

Dir(ζ`,Dm) =

ˆ
D

|Dζ`|
2. (5.15)

Now, by a simple computation on planar harmonic functions, it is easy to see that
ˆ

D

|Dζ`|
2 6

ˆ
S1

|∂θγ`|
2, (5.16)
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where ∂θ is the tangential derivative along the circle. On the other hand, for every ` =

1, . . . ,P,

Dir(ϕ`, S1) =

k`−1∑
m=0

ˆ
S1

|∂θ(γ` ◦ τm)|2

=

k`−1∑
m=0

ˆ
S1

1

k2`
|∂θγ` ◦ τm|2

=

k`−1∑
m=0

ˆ
Sm

1

k`
|∂θγ`|

2

=
1

k`

ˆ
S1

|∂θγ`|.

(5.17)

Finally, summing on `, the above arguments produce

Dir(ψ, D)
(5.15)
=

P∑
`=1

ˆ
D

|Dζ`|
2

(5.16)
6

P∑
`=1

ˆ
S1

|∂θγ`|
2 (5.17)

=

P∑
`=1

k`Dir(ϕ`, S1) 6 QDir(ϕ, S1),

(5.18)
whence (5.5) holds with C = Q.

Proof of Proposition 5.1.1. Without loss of generality, we assume that N is an embedded sub-
manifold of some Euclidean space RN. We shall divide the proof into steps.

Step 1. We first consider a Lipschitz cubic decomposition of the manifold N, that is a pair
(K,σ), where K is a d-dimensional cubic complex, and σ : |K|→ N is a bi-Lipschitz map, |K|

denoting the union of all cells of K. Without loss of generality, we may assume that each cell
in K has unit d-dimensional volume. Set m := b1λc+ 1. Using that [0, 1] =

⋃m
i=1

[
i−1
m , im

]
,

we can divide each cell in K into md smaller d-dimensional cubes, whose side length
is at most λ. We will denote the resulting cubic complex by Km, and regard σ as a bi-
Lipschitz map σ : |Km| → N: observe that if L is any cell in Km then the image σ(L)
is a domain in N with diameter (computed with respect to the geodesic distance on N)
diam(σ(L)) 6

√
dLip(σ)λ.

For each j ∈ {0, 1, . . . ,d}, Kjm will denote the j-skeleton of the complex Km, that is the
family of all j-dimensional faces, and |K

j
m| will be their union.

Step 2. Let now η = η(N) > 0 be so small that the set U = U2η(N) := {x ∈ RN : dist(x,N) <

2η} is a tubular neighborhood of N, with (unique) differentiable nearest point projection
Π : U2η(N)→ N. For i = 1, 2, we extend fi to a map Fi : U→ AQ(R

q) by setting Fi := fi ◦Π.
One has that ˆ

U
|Fi|2 6 c1

ˆ
N

|fi|2, (5.19)

ˆ
U
|DFi|2 6 c1

ˆ
N

|Dfi|2, (5.20)

and ˆ
U
G(F1, F2)2 6 c1

ˆ
N

G(f1, f2)2, (5.21)
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where the constant c1 depends only on the retraction Π (and, thus, on the dimensions d
and N and on the width η of the tubular neighborhood).

Furthermore, for every z ∈ |Km| and for every vector v ∈ BNη , we define σv(z) :=

Π (σ(z) + v). Assume that η is so small that all σv’s are bi-Lipschitz maps |Km| → N,
and set fiv := fi ◦ σv, that is fiv(z) = Fi (σ(z) + v). By Fubini’s theorem, for all j = 1, . . . ,d
and for a.e. v ∈ BNη one has that fiv ∈W1,2

(
F,AQ(Rq)

)
for all faces F ∈ K

j
m.

Consider now any non-negative function α ∈ L1(U). It is easily seen that there exists a
constant c2 = c2(N,d,N,η) such that for any j = 0, . . . ,d and for every θ ∈ (0, 1)ˆ

|K
j
m|

α (σ(z) + v) dHj(z) 6 c2θ−1λj−d
ˆ

U
α (5.22)

for all v ∈ BNη with the exception of a set E of LN-measure |E| 6 θ|BNη |. To prove this, first
note thatˆ

|K
j
m|

α (σ(z) + v) dHj(z) 6
1

θ|BNη |

ˆ
BNη

(ˆ
|K
j
m|

α (σ(z) + v) dHj(z)
)
dv (5.23)

for all v ∈ BNη \ E, |E| 6 θ|BNη |. Then, conclude by estimating:
ˆ
BNη

(ˆ
|K
j
m|

α (σ(z) + v) dHj(z)
)
dv =

ˆ
|K
j
m|

(ˆ
BNη

α (σ(z) + v) dv

)
dHj(z)

=

ˆ
|K
j
m|

(ˆ
BNη (σ(z))

α(w)dw

)
dHj(z)

6 Hj(|Kjm|)

ˆ
U
α

6 Cmdλj
ˆ

U
α

6 Cλj−d
ˆ

U
α,

(5.24)

where the constant C appearing in the last line depends only on the number of cells in the
original cubic complex K and on the dimension d.

Now, it suffices to apply (5.22) with α = |Fi|2, α = |DFi|2 and α = G(F1, F2)2, and, say,
θ = 1

2 , and to plug in equations (5.19), (5.20) and (5.21) to finally show the following: there
exists v ∈ BNη such that for all j ∈ {1, . . . ,d} the following inequalities

ˆ
|K
j
m|

(
|f1v|

2 + |f2v|
2
)
6 Cλj−d

ˆ
N

(
|f1|2 + |f2|2

)
, (5.25)

and ˆ
|K
j
m|

(
|Df1v|

2 + |Df2v|
2 + G(f1v, f2v)

2
)
6 Cλj−d

ˆ
N

(
|Df1|2 + |Df2|2 + G(f1, f2)2

)
(5.26)

hold true with a constant C = C(c1, c2, Lip(σ)). Furthermore, for j = 0:∑
z∈|K0

m|

(
|f1v|

2(z) + |f2v|
2(z)

)
6 Cλ−d

ˆ
N

(
|f1|2 + |f2|2

)
, (5.27)
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∑
z∈|K0

m|

G
(
f1v(z), f

2
v(z)

)2
6 Cλ−d

ˆ
N

G
(
f1, f2

)2
. (5.28)

From now on, we will then assume to have fixed a v ∈ BNη such that the corresponding
maps fiv : |Km| → AQ(R

q) satisfy equations (5.25), (5.26), (5.27), (5.28) and the following
condition: for every j > 1, for each τ ∈ K

j
m and for all γ ∈ K

j−1
m with γ ⊂ τ, the restrictions

fiv|τ and fiv|γ are all W1,2, and moreover the trace of fiv|τ at γ is precisely fiv|γ.

Step 3. Consider now the (d + 1)-dimensional cubic complex K := Km × [0, λ] whose
(d+ 1)-dimensional cells are cubes of the form L× [0, λ] for some L ∈ Kdm. A face τ ∈ K

j
,

j < d+ 1, is said to be horizontal if it is contained in Km× {0} (lower horizontal) or Km× {λ}

(upper horizontal), vertical otherwise. The collection of j-dimensional faces of K is hence
given by

K
j
= L j ∪U j ∪ V j, (5.29)

where L j, U j and V j are the lower horizontal, upper horizontal and vertical j-dimensional
faces respectively. Observe that V 0 = ∅, L 0 consists of points (z, 0), while U 0 consists of
points (z, λ) with z ∈ K0m; note, furthermore, that all (d+ 1)-dimensional cells are vertical.

We are now in the position to define a map h : |K| → AQ(R
q). First of all, we set

h|β ≡ f1v|β if β is a lower horizontal face, and h|τ ≡ f2v|τ if τ is an upper horizontal face.
Consider next any vertical segment γ ∈ V 1. Its two endpoints are given by (z, 0) and (z, λ)
for some z ∈ K0m. Now, if f1v(z) =

∑
`J(f

1
v)`(z)K and f2v(z) =

∑
`J(f

2
v)`(z)K are ordered

in such a way that G
(
f1v(z), f2v(z)

)2
=
∑
` |(f

1
v)`(z) − (f2v)`(z)|

2, then a natural extension is
obtained by setting

h(z, θ) :=
Q∑
`=1

s
(f1v)`(z) +

θ

λ

(
(f2v)`(z) − (f1v)`(z)

){
, (5.30)

for all θ ∈ [0, λ]. In this way, we obtain the bounds
ˆ
γ

|h|2 6 2λ
(
|f1v|

2(z) + |f2v|
2(z)

)
(5.31)

and ˆ
γ

|Dh|2 6 λ−1G
(
f1v(z), f

2
v(z)

)2
. (5.32)

If we carry on this procedure for all vertical segments, we obtain a well defined Q-valued
map h on all the vertical 1-skeleton V 1, which, thanks to (5.27) and (5.28), satisfies

ˆ
|V 1|

|h|2 6 Cλ1−d
ˆ
N

(
|f1|2 + |f2|2

)
(5.33)

and ˆ
|V 1|

|Dh|2 6 Cλ−1−d
ˆ
N

G
(
f1, f2

)2
. (5.34)
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β

τ

h
∣∣∣
τ
≡ f2

v

∣∣
τ

h
∣∣∣
β
≡ f1

v

∣∣
β

A vertical segment γ ∈ V1

1

Figure 1: The cubic complex K and the first step in the construction of h.

Pick next a vertical 2-dimensional face τ. Its boundary consists of two horizontal seg-
ments β ∈ L 1 and δ ∈ U 1, and two vertical segments joining the points (z, 0), (w, 0) to the
points (z, λ), (w, λ) respectively. Using our assumptions on v, we can conclude that h|∂τ is
in W1,2, whence Lemma 5.1.2 yields an extension of h to τ with estimatesˆ

τ

|h|2 6 Cλ

(ˆ
β

|f1v|
2 +

ˆ
δ

|f2v|
2

)
+Cλ2

(
(|f1v|

2 + |f2v|
2)(z) + (|f1v|

2 + |f2v|
2)(w)

)
(5.35)

andˆ
τ

|Dh|2 6 Cλ

(ˆ
β

|Df1v|
2 +

ˆ
δ

|Df2v|
2

)
+C

(
G
(
f1v(z), f

2
v(z)

)2
+ G

(
f1v(w), f

2
v(w)

)2)
. (5.36)

Summing over the 2-skeleton V 2, from the estimates (5.25) and (5.27) we deduceˆ
|V 2|

|h|2 6 Cλ2−d
ˆ
N

(
|f1|2 + |f2|2

)
, (5.37)

whereas (5.26) and (5.28) implyˆ
|V 2|

|Dh|2 6 Cλ2−d
ˆ
N

(
|Df1|2 + |Df2|2

)
+Cλ−d

ˆ
N

G
(
f1, f2

)2
. (5.38)

We then proceed inductively over V j, iteratively applying Lemma 5.1.2 and using the
inequalities (5.25) to (5.28) at each step. At the final iteration, namely for j = d + 1, we
construct a map h which is W1,2 on each (d + 1)-dimensional cell L × [0, λ], coinciding
with f1v on L× {0} and with f2v on L× {λ}. Furthermore, if two cells H = L1 × [0, λ] and
K = L2 × [0, λ] have a common face S ∈ V d, the traces of h|H and h|K at S coincide. Thus,
we can regard h as a W1,2 map defined on the whole cubic complex K. Moreover, since
|K| =

⋃
V d+1 = |V d+1|, the inductive step provides the following estimates:ˆ

|K|

|h|2 6 Cλ
ˆ
N

(
|f1|2 + |f2|2

)
, (5.39)
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ˆ
|K|

|Dh|2 6 Cλ
ˆ
N

(
|Df1|2 + |Df2|2

)
+
C

λ

ˆ
N

G
(
f1, f2

)2
. (5.40)

Step 4. Finally, we simply define a map h ∈W1,2
(
N× [0, λ],AQ(Rq)

)
by setting

h(x, θ) := h
(
σ−1v (x), θ

)
. (5.41)

It is immediate to check that such a map indeed satisfies (5.1), (5.2) and (5.3) in the statement.

Corollary 5.1.3. Let Σm ↪→ Rd be a regular compact submanifold, and let λ0 := inj(Σ) > 0 be the
injectivity radius of Σ. Then, for any 0 < λ < λ0, for any V ( Σ connected, open subset with C2

boundary and such that
dist(x,∂Σ) > λ for every x ∈ ∂V,

and for any g̃0 ∈W1,2(∂V,AQ(Rd)) there exist an open set Vλ ⊂ Σ with V b Vλ, dist(V,∂Vλ) 6
λ, and a map gλ ∈W1,2

(
Vλ \ V,AQ(Rd)

)
satisfying:

gλ|∂V = g̃0 and gλ|∂Vλ = QJ0K, (5.42)

ˆ
Vλ\V

|gλ|
2 dHm 6 Cλ

ˆ
∂V

|g̃0|
2 dHm−1, (5.43)

Dir(gλ,Vλ \ V) 6 CλDir(g̃0,∂V) +
C

λ

ˆ
∂V

|g̃0|
2 dHm−1, (5.44)

for a constant C = C(V,m,d,Q).

Proof. Let V and g̃0 be as in the statement. Then, by the very definition of injectivity radius,
for any 0 < λ < λ0 the exponential map, restricted to ∂V, is injective in a ball of radius λ
around the zero section of the normal bundle of ∂V in Σ. In turn, this allows one to define,
for any such λ, a λ-tubular neighborhood Uλ of ∂V in Σ by setting

Uλ := {expπ (θη(π)) : π ∈ ∂V, |θ| < λ}, (5.45)

where for every point π ∈ ∂V we have denoted η(π) ∈ TπΣ the unit outer co-normal vector
to ∂V at π.

Note that it is well defined a differentiable parametrization x ∈ Uλ 7→ (π(x), θ(x)) ∈
∂V× (−λ, λ) such that expπ(x) (θ(x)η(π(x))) = x for all x ∈ Uλ.

Next, the positive and negative λ-tubular neighborhoods of ∂V in Σ are respectively defined
by

U+
λ := {expπ (θη(π)) : π ∈ ∂V, 0 < θ < λ}, (5.46)

U−
λ := {expπ (θη(π)) : π ∈ ∂V, −λ < θ < 0}. (5.47)

We set Vλ := V∪Uλ. The claimed result is then simply obtained by applying Proposition
5.1.1 with N = ∂V, f1 = g̃0, f2 = QJ0K and setting gλ(x) := h (π(x), θ(x)) for x ∈ Vλ \ V =

U+
λ .
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5.2 the compactness theorem

Here we go back to our original setting, in order to finally prove Theorem 5.0.1. Let
Ω be an open and connected subset of Σ ↪→ M in which we wish to solve the minimum
problem for the Jac functional. We will assume C2 regularity for ∂Ω. Let λ0 := inj(Σ). For
0 < λ < λ0, set V := {x ∈ Ω : dist(x,∂Ω) > λ}, so that Ω coincides with the set Vλ = V∪Uλ
which was obtained in the proof of Corollary 5.1.3. Using the same notations introduced in
the proof of Corollary 5.1.3, we parametrize Uλ with coordinates (π, θ) ∈ ∂V× (−λ, λ).

Let us now define Φλ : V→ Ω to be the diffeomorphism given by:

Φλ(x) :=

{
expπ(x) (ϕλ(θ(x))η(π(x))) if x ∈ U−

λ

x otherwise ,
(5.48)

where ϕλ is any monotone increasing diffeomorphism ϕλ : (−λ, 0) → (−λ, λ) such that
ϕλ(θ) = θ for θ ∈

(
−λ,−λ2

)
. From this moment on, we will assume that such a family of

diffeomorphisms ϕλ has been fixed, and satisfies a bound of the form

c−1 6 |ϕ ′λ| 6 c (5.49)

for a positive constant c which does not depend on λ.
Furthermore, if u =

∑
`Ju`K is any map in W1,2

(
Ω,AQ(Rd)

)
, we set:

u⊥(x) :=

Q∑
`=1

JpΣ⊥x · u`(x)K, (5.50)

where pΣ⊥ is the normal bundle projection defined in Definition 4.2.9. Observe that u⊥ ∈
Γ1,2
Q (NΩ). The following Lemma yields a useful formula to relate the Dirchlet energy of u

with the Dirichlet energy of u⊥.

Lemma 5.2.1. For every ε > 0 there exists a positive constant Cε such that the following estimate
holds true:

Dir(u⊥,Ω) 6 (1+ ε)Dir(u,Ω) +Cε

ˆ
Ω

|u|2 dHm. (5.51)

Proof. Write pΣ⊥(x, v) := pΣ⊥x · v for x ∈ Ω, v ∈ Rd. If v = v(x) is a (single valued) Lipschitz
map defined in Ω, then for any tangent vector field ξ one has

DξpΣ⊥(x, v(x)) = ∂xpΣ⊥(x, v(x)) · ξ(x) + ∂vpΣ⊥(x, v(x)) ·Dξv(x).

Since, for fixed x, the map v ∈ Rd 7→ pΣ⊥(x, v) ∈ T⊥x Σ is linear with Lipschitz constant
not larger than 1, we conclude that for any v : Ω→ Rd Lipschitz one has

Dir(v⊥,Ω) 6 Dir(v,Ω) +C

ˆ
Ω

|v|2 dHm +C

ˆ
Ω

|v||Dv|dHm,

where C is a constant depending on maxΩ×Sd−1 |∂xpΣ⊥|.
Formula (5.51) is then a consequence of Young’s inequality. The formula is then ex-

tended to Lipschitz Q-valued maps via decomposition into Q Lipschitz functions (Proposi-
tion 2.2.7), and finally to Sobolev Q-maps via approximation (Proposition 2.2.10).
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We are now ready to state and prove the proposition that will provide the key towards
Theorem 5.0.1.

Proposition 5.2.2. Let Ω ⊂ Σ be open, connected with C2 boundary. Assume the strict stability
condition (4.54) holds for every u ∈ Γ1,2

Q (NΩ) such that u|∂Ω = QJ0K. Then, if g ∈ Γ1,2
Q (NΩ) has

boundary trace g0 := g|∂Ω ∈W1,2(∂Ω,AQ(Rd)), the following estimate

Jac(N,Ω) > c(Ω)

ˆ
Ω

|N|2 dHm −C(Ω,g0) (5.52)

holds true for any N ∈ Γ1,2
Q (NΩ) such that N|∂Ω = g0.

Proof. Fix λ < λ0 to be chosen, and let V b Ω be such that Ω = Vλ as above. For any
N ∈ Γ1,2

Q (NΩ) such that N|∂Ω = g0, consider the map Ñ := N ◦Φλ ∈ W1,2(V,AQ(Rd)),
and observe that Ñ|∂V = g̃0, where g̃0(π) = g0(expπ(λη(π))) for π ∈ ∂V.

Now, apply Corollary 5.1.3 with this choice of V, g̃0 and λ in order to extend Ñ to the
map u ∈W1,2(Ω,AQ(Rd)) given by

u(x) :=

{
Ñ(x) if x ∈ V

gλ(x) if x ∈ Ω \ V = U+
λ ,

(5.53)

Observe that the normal bundle projection u⊥ satisfies u⊥ ∈ Γ1,2
Q (NΩ) and the boundary

condition u⊥|∂Ω = QJ0K. From the hypothesis, we are therefore able to conclude that

Jac(u⊥,Ω) > c(Ω)

ˆ
Ω

|u⊥|2 dHm. (5.54)

Now, note that u⊥ ≡ N in Ω \ Uλ. Combining this observation with (5.54), we trivially
deduce

Jac (N,Ω \ Uλ) + Jac
(
u⊥, Uλ

)
> c(Ω)

(ˆ
Ω\Uλ

|N|2 dHm +

ˆ
Uλ

|u⊥|2 dHm
)

. (5.55)

In order to prove our result, we then clearly have to provide suitable estimates for
Jac
(
u⊥, Uλ

)
and

´
Uλ

|u⊥|2.
We observe first that

ˆ
Uλ

|u⊥|2 =

ˆ
U−
λ

|u⊥|2 +

ˆ
U+
λ

|u⊥|2 >
ˆ

U−
λ

|u⊥|2. (5.56)

Recall that

u⊥|U−
λ
=

Q∑
`=1

JpΣ⊥ · (N` ◦Φλ)K =
Q∑
`=1

u

v
k∑
β=1

〈N` ◦Φλ,νβ〉νβ

}

~ ,

whence ˆ
U−
λ

|u⊥|2 =

ˆ
U−
λ

Q∑
`=1

k∑
β=1

|〈N` (Φλ(x)) ,νβ(x)〉|2 dHm(x). (5.57)
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Now, changing variable y = Φλ(x), integrating along geodesics and using (5.49) one easily
proves that from this follows

ˆ
U−
λ

|u⊥|2 > C

(ˆ
Uλ

|N|2 dHm − E
(1)
λ

)
, (5.58)

where the error term E
(1)
λ satisfies the estimate

|E
(1)
λ | 6

1

2

ˆ
Uλ

|N|2 dHm, (5.59)

provided λ satisfies some suitable smallness conditions which are not depending on N. Com-
bining (5.55), (5.56), (5.58) and (5.59), we conclude that for suitably small λ

Jac (N,Ω \ Uλ) + Jac
(
u⊥, Uλ

)
> c(Ω)

ˆ
Ω

|N|2 dHm, (5.60)

up to possibly changing the value of c(Ω).
Now, we work on Jac

(
u⊥, Uλ

)
. As before, decompose

Jac
(
u⊥, Uλ

)
= Jac

(
u⊥, U−

λ

)
+ Jac

(
u⊥, U+

λ

)
. (5.61)

Concerning the first addendum, one shows that

Jac
(
u⊥, U−

λ

)
6 CJac (N, Uλ) + E

(2)
λ , (5.62)

where the error E(2)
λ satisfies

|E
(2)
λ | 6 ε

(
Dir (N, Uλ) +

ˆ
Uλ

|N|2 dHm
)

(5.63)

for any choice of ε > 0, provided λ is smaller than some λ∗ depending on ε and on the
geometry of the problem, but, again, not on the map N. In particular, this allows to absorb
the error term and conclude, under the previously considered smallness assumptions on λ,
that

Jac (N,Ω) > c(Ω)

(ˆ
Ω

|N|2 dHm − Jac
(
u⊥, U+

λ

))
(5.64)

after possibly having redefined c(Ω).
Now we are able to conclude: following the same strategy as before, it is not difficult to

estimate

|Jac
(
u⊥, U+

λ

)
| 6 C

(
Dir

(
gλ, U+

λ

)
+

ˆ
U+
λ

|gλ|
2 dHm

)
, (5.65)

where λ is small, but fixed, and does not depend on N. Our result, equation (5.52), is then
an immediate consequence of Corollary 5.1.3 and of the definition of g̃0.

We are now ready to prove the Conditional Existence Theorem 5.0.1.
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Proof of Theorem 5.0.1. The proof is an application of the direct methods in the Calculus of
Variations. Fix any g ∈ Γ1,2

Q (NΩ) with boundary trace g0 := g|∂Ω ∈ W1,2(∂Ω;AQ(Rd)).
Then, the inequality (5.52) implies that for any N ∈ Γ1,2

Q (NΩ) with N|∂Ω = g0 one has

Jac(N,Ω) > −C(Ω,g0),

thus the Jacobi functional is bounded from below in the class of competitors.
Set

Λ := inf{Jac(N,Ω) : N ∈ Γ1,2
Q (NΩ),N|∂Ω = g0} > −∞,

and consider a minimizing sequence {Nh}
∞
h=1 ⊂ Γ

1,2
Q (NΩ),Nh|∂Ω = g0, limh→∞ Jac(Nh,Ω) =

Λ. Then, for h > h0 sufficiently large, one has

Jac(Nh,Ω) 6 Λ+ 1,

from which we deduce

Dir(Nh,Ω) 6 C
ˆ
Ω

|Nh|
2 dHm + |Λ|+ 1.

On the other hand, (5.52) immediately implies that
ˆ
Ω

|Nh|
2 dHm 6 C(|Λ|,Ω,g0).

Putting all together, we conclude that

Dir(Nh,Ω) +

ˆ
Ω

|Nh|
2 dHm 6 C, (5.66)

where C is a constant depending only on |Λ|, Ω, g0 and the geometry of the embeddings
Σ ↪→ M ↪→ Rd. Hence, up to extracting a subsequence, Nh converges weakly in W1,2,
strongly in L2, to a map N ∈ Γ1,2

Q (NΩ) with N|∂Ω = g0. The lower semi-continuity of the
Jacobi functional with respect to weak convergence, Proposition 4.3.1, allows us to conclude
that N is the desired minimizer.
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In this chapter we develop the regularity theory for Jacobi Q-fields. First, we show that
any Jac-minimizing map N ∈ Γ1,2

Q (NΩ) is locally Hölder continuous in Ω.

Theorem 6.0.1 (Hölder regularity of Jacobi multi-fields). LetΩ be an open subset of Σ ↪→M as
in Assumption 4.1.1. There exist universal constants α = α(m,Q) ∈ (0, 1) and Λ = Λ(m,Q) > 0

and a radius 0 < r0 = r0(m,Q) < inj(Σ) with the following property. If N ∈ Γ1,2
Q (NΩ) is

Jac-minimizing, then for every 0 < θ < 1 there exists a constant C = C(m,d,Q,Σ, θ) such that

[N]C0,α(Bθr(p)) : = sup
x1,x2∈Bθr(p)

G(N(x1),N(x2))

d(x1, x2)α

6 C

(
r2−m−2α

(
Dir(N, Br(p)) +Λ

ˆ
Br(p)

|N|2 dHm
))1/2 (6.1)

for every p ∈ Ω and for every r 6 min{r0, dist(p,∂Ω)}. In particular, N ∈ C0,α
loc(Ω,AQ(Rd)).

Then, we turn our attention to finer regularity properties. Let us give the following
definition of regular and singular points.

Definition 6.0.2 (Regular and singular set). Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. A point

p ∈ Ω is regular for N (and we write p ∈ reg(N)) if there exists a neighborhood B of p in Ω
and Q classical Jacobi fields N` : B→ Rd such that

N(x) =

Q∑
`=1

JN`(x)K ∀ x ∈ B

and either N` ≡ N` ′ or N`(x) 6= N`
′
(x) for all x ∈ B, for any `, ` ′ ∈ {1, . . . ,Q}. The singular

set of N is defined by
sing(N) := Ω \ reg(N).

We have the following theorem.

Theorem 6.0.3 (Estimate of the singular set). LetN be aQ-valued Jacobi field inΩ ⊂ Σm. Then,
the singular set sing(N) is relatively closed in Ω. Furthermore, if m = 2, then sing(N) is at most
countable; if m > 3, then the Hausdorff dimension dimH sing(N) does not exceed m− 2.

Starting from Section 6.2, the chapter will be devoted to the proof of Theorem 6.0.3,
which will eventually be obtained in Section 6.4 as a consequence of the analogous theorem
valid for Dir-minimizing Q-valued functions, after we have shown the key fact that at
any multiplicity Q point for N every tangent map is a non trivial homogeneous Dirichlet
minimizer. This is the content of Theorem 6.3.8. A careful analysis of Almgren’s frequency
function will be indispensable to prove Theorem 6.3.8.
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6.1 hölder regularity of jacobi Q-fields

The proof of Theorem 6.0.1 is a fairly easy consequence of Proposition 6.1.1 below. Before
stating it, we need to introduce some further notation.

Let us fix a point p ∈ Ω, and a radius r < min{inj(Σ), dist(p,∂Ω)}, in such a way that the
exponential map expp defines a diffeomorphism

expp : Br(0) ⊂ TpΣ→ Br(p) ⊂ Ω.

Denote by y = (y1, . . . ,ym) coordinates in TpΣ corresponding to the choice of an or-
thonormal basis (e1, . . . , em), and set u := N ◦ expp. Observe that for any y ∈ Br the
differential d(expp)|y realizes a linear isomorphism between TpΣ and Texpp(y)Σ. Fix an
orthonormal frame (ξ1, . . . , ξm) of the tangent bundle TΣ|Br(p) extending (e1, . . . , em) (i.e.
such that ξi|p = ei for i = 1, . . . ,m), and define, for y ∈ Br,

εi(y) :=
(
d(expp)|y

)−1
· ξi(expp(y)). (6.2)

Then, an elementary computation shows that
ˆ

Br(p)
|N(x)|2 dHm(x) =

ˆ
Br

|u(y)|2J expp(y)dy (6.3)

and

Dir(N, Br(p)) =
ˆ
Br

m∑
i=1

|Dεiu(y)|
2J expp(y)dy, (6.4)

where J expp is the Jacobian determinant of the exponential map. From this it is immediate
to deduce that the following asymptotic behaviors are satisfied for r→ 0 uniformly in p:

ˆ
Br(p)

|N(x)|2 dHm(x) = (1+O(r))

ˆ
Br

|u(y)|2 dy, (6.5)

Dir(N, Br(p)) = (1+O(r))

ˆ
Br

m∑
i=1

|Deiu(y)|
2 dy = (1+O(r))Dir(u,Br). (6.6)

We can now state the key result from which we will conclude the Hölder regularity of
Jacobi Q-fields.

Proposition 6.1.1. There exist a universal positive constant Λ = Λ(m,Q) and a radius 0 < r0 =

r0(m,Q) < inj(Σ) with the following property. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing and p ∈ Ω.

Then, for a.e. radius r 6 min{r0, dist(p,∂Ω)} one has

Dir(u,Br) +Λ
ˆ
Br

|u|2 dy 6 C(m)r

(
Dir(u,∂Br) +Λ

ˆ
∂Br

|u|2 dHm−1

)
, (6.7)

where u := N ◦ expp |Br ∈W1,2
(
Br,AQ(Rd)

)
and C(m) < (m− 2)−1 when m > 3.

In order to prove Proposition 6.1.1, we will need the following simple result on classical
Sobolev functions in the Euclidean space.
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Lemma 6.1.2. For every ε > 0 there exists a constant C = Cε > 0 such that the inequality
ˆ
Br

|g|2 dy 6
(
1

m
+ ε

)
r

ˆ
∂Br

|g|2 dHm−1 +Cεr
2

ˆ
Br

|Dg|2 dy (6.8)

holds for any function g ∈W1,2(Bmr ).

Proof. First observe that, by a simple scaling argument, it is enough to prove the lemma for
r = 1. Assume the lemma is false: suppose, by contradiction, that there exists ε0 > 0 such
that for any h ∈N there is gh ∈W1,2(Bm1 ), with ‖gh‖L2 = 1, such that

1 >

(
1

m
+ ε0

)ˆ
∂B1

|gh|
2 dHm−1 + h

ˆ
B1

|Dgh|
2 dy. (6.9)

The inequality (6.9) readily implies that

lim
h→∞

ˆ
B1

|Dgh|
2 dy = 0, (6.10)

whence, by Rellich’s compactness theorem, the sequence gh converges up to a subsequence
(not relabeled) weakly in W1,2, strongly in L2, to a constant function g ≡ c. The condition
‖g‖L2 = 1 forces the constant to satisfy |c|2 = ω−1

m , where ωm is the volume of the unit ball
in Rm. Hence, it suffices to pass to the limit the inequality

1 >

(
1

m
+ ε0

)ˆ
∂B1

|gh|
2 dHm−1 (6.11)

to obtain the desired contradiction:

1 >

(
1

m
+ ε0

)
m. (6.12)

Corollary 6.1.3. For every ε > 0 there exists a constant Cε > 0 such that for any function
v ∈W1,2

(
Br,AQ(Rd)

)
one has:

ˆ
Br

|v|2 dy 6
(
1

m
+ ε

)
r

ˆ
∂Br

|v|2 dHm−1 +Cεr
2Dir(v,Br). (6.13)

Proof. Fix ε > 0 and v ∈ W1,2(Br,AQ(Rd)), and apply Lemma 6.1.2 to the function g =

|v| = G(v,QJ0K) ∈W1,2(Br). The inequality (6.13) then follows immediately, because g|∂Br =
|v|∂Br | and |∂jg| 6 |∂jv| for every j = 1, . . . ,m.

Proof of Proposition 6.1.1. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing, and fix any point p ∈ Ω.

For every radius r < min{inj(Σ), dist(p,∂Ω)} the exponential map expp maps the Euclidean
ball Br(0) ⊂ TpΣ diffeomorphically onto the geodesic ball Br(p) ⊂ Σ, and the composition
u := N ◦ expp is a W1,2 Q-valued map defined in Br.
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Let now f ∈W1,2
(
Br,AQ(Rd)

)
be Dir-minimizing in Br such that f|∂Br = u|∂Br

1, and set
h := f ◦ exp−1

p . Then, the normal bundle projection h⊥ ∈ Γ1,2
Q (NBr(p)) satisfies h⊥|∂Br(p) =

N|∂Br(p) and is therefore a competitor for the Jacobi functional. Hence, using minimality,
the definition of the Jacobi functional and (4.48), we deduce:

Jac(N, Br(p)) 6 Jac(h⊥, Br(p)) 6 Dir(h⊥, Br(p)) +C0
ˆ

Br(p)
|h|2 dHm, (6.14)

which in turn produces

Dir(N, Br(p)) 6 Dir(h⊥, Br(p)) +C0

(ˆ
Br(p)

|h|2 dHm +

ˆ
Br(p)

|N|2 dHm
)

. (6.15)

Hence, combining Lemma 5.2.1 with (6.5) and (6.6), we can conclude that for any ε1 ∈
(0, 1) there exists a radius 0 < rε1 < inj(Σ) such that the estimate

Dir(u,Br) 6 (1+ ε1)Dir(f,Br) +Cε1

(ˆ
Br

|f|2 dy+
ˆ
Br

|u|2 dy
)

, (6.16)

holds true whenever r 6 rε1 .
Now we apply [DLS11, Proposition 3.10]: since f is Dir-minimizing in Br, the estimate

Dir(f,Br) 6 C(m)rDir(u,∂Br) (6.17)

holds with constants C(2) = Q and C(m) < (m− 2)−1 for m > 3 whenever Dir(u,∂Br)
is finite, and thus for a.e. r. Combining (6.16) with (6.17), we deduce that we can choose
ε1 = ε1(m,Q) so small that the inequality

Dir(u,Br) 6 C(m)rDir(u,∂Br) +C
(ˆ
Br

|f|2 dy+
ˆ
Br

|u|2 dy
)

(6.18)

holds with, say, C(2) = 2Q and again C(m) < (m− 2)−1 when m > 3 for a.e. r 6 rm,Q.
Now, fix ε > 0 and apply the result of Corollary 6.1.3 first with v = f and then with v = u,

and plug the resulting inequalities in (6.18). Using the fact that f and u have the same
boundary value and that Dir(f,Br) 6 Dir(u,Br), we obtain the following key inequality:

Dir(u,Br) 6 C(m)rDir(u,∂Br) +C
(
1

m
+ ε

)
r

ˆ
∂Br

|u|2dHm−1 +Cεr
2Dir(u,Br). (6.19)

This implies the following: for every Λ > 0 one has

Dir(u,Br) +Λ
ˆ
Br

|u|2 dy 6 C(m)rDir(u,∂Br)

+ (C+Λ)

(
1

m
+ ε

)
r

ˆ
∂Br

|u|2 dHm−1

+Cε,Λr
2Dir(u,Br).

(6.20)

1 Recall that the existence of such a map f is guaranteed by Theorem 2.2.20.
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For a suitable choice of Λ = Λm,ε � 1 this yields:(
1−Cm,εr

2
)

Dir(u,Br)+Λ
ˆ
Br

|u|2 dy 6 C(m)rDir(u,∂Br)+Λ
(
1

m
+ 2ε

)
r

ˆ
∂Br

|u|2 dHm−1.

(6.21)
Finally, we divide the whole inequality by 1−Cm,εr

2 and conclude that if r is sufficiently
small, say r 6 rm,ε,Q then the inequality

Dir(u,Br) +Λ
ˆ
Br

|u|2 dy 6 C(m)rDir(u,∂Br) +Λ
(
1

m
+ 4ε

)
r

ˆ
∂Br

|u|2 dHm−1 (6.22)

holds with a possible new choice of C(m), say C(2) = 4Q and still C(m) < (m− 2)−1 for
m > 3. The conclusion immediately follows, by choosing ε = ε(m,Q) in such a way that
1
m + 4ε < 4Q when m = 2 and 1

m + 4ε < 1
m−2 when m > 3.

We have now all the ingredients that are needed to prove Theorem 6.0.1: as announced at
the beginning of the section, the proof can be easily achieved by combining our Proposition
6.1.1 with the Campanato-Morrey estimates 2.2.19.

Proof of Theorem 6.0.1. Let r0 be the radius given in Proposition 6.1.1. Fix any point p ∈
Ω, and assume without loss of generality that Br0(p) b Ω. Consider the corresponding
exponential map expp : Br0(0) ⊂ TpΣ→ Br0(p) ⊂ Σ, and set u := N ◦ expp. By Proposition
6.1.1, for a.e. radius r 6 r0 the inequality (6.7) is satisfied with universal constants Λ and
C(m), with C(m) < (m− 2)−1 when m > 3. We set:

γ(m) :=

{
C(m)−1 if m = 2

C(m)−1 −m+ 2 if m > 3,
(6.23)

and we denote by φ = φ(r) the absolutely continuous function

φ(r) := Dir(u,Br) +Λ
ˆ
Br

|u|2 dy (6.24)

for r ∈ (0, r0]. By (6.7), φ satisfies the differential inequality

(m− 2+ γ)φ 6 rφ ′ (6.25)

almost everywhere in the interval (0, r0]. Integrating (6.25) we obtain:

Dir(u,Br) 6 φ(r) 6
φ(r0)

r
m−2+γ
0

rm−2+γ =: Arm−2+γ. (6.26)

As a consequence of the Campanato - Morrey estimates, Proposition 2.2.19, we conclude
that u is Hölder continuous with exponent α := γ

2 , with

[u]C0,α(Bθr0)
:= sup
y1,y2∈Bθr0

G (u(y1),u(y2))
|y1 − y2|α

6 C
√
A, (6.27)

for any 0 < θ < 1 and for a constant C = C(m,d,Q, θ).
The estimate (6.1) is an immediate consequence of (6.27) and the properties of the expo-

nential map.
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6.2 first variation formulae and the analysis of the fre-
quency function

In this section we start the machinery that will eventually lead us, in Section 6.4, to the
proof of Theorem 6.0.3.

The first step towards this result consists of deriving some Euler-Lagrange conditions
for Jac-minimizing multi-valued maps. Throughout the whole section, we will assume, as
usual, that N is a Q-valued section of the normal bundle of Σ in M defined in an open set
Ω, where it minimizes the Jacobi functional as specified in Definition 4.2.11.

6.2.1 First variations

Suppose that for some δ > 0 we have a 1-parameter family {Ns}s∈(−δ,δ) ⊂ Γ1,2
Q (NΩ)

such that N0 = N and Ns ≡ N in a neighborhood of ∂Ω for all s. Then, the minimization
property of N implies that the map s 7→ Jac(Ns,Ω) takes its minimum at s = 0, and thus

d

ds
Jac(Ns,Ω)

∣∣∣∣
s=0

= 0 (6.28)

whenever the derivative on the left exists. The family {Ns} is called an (admissible) 1-
parameter family of variations of N in Ω, and formula (6.28) is the first variation formula
corresponding to the given variation.

We will consider two natural types of variations in order to perturb the map N. The inner
variations are generated by right compositions with diffeomorphisms of the domain and
by a suitable “orthogonalization procedure”; the outer variations correspond instead to “left
compositions”. The relevant definition is the following.

Definition 6.2.1. Let N =
∑
`JN

`K ∈ Γ1,2
Q (NΩ) be Jac-minimizing in Ω.

(OV) Given ψ ∈ C1(Ω × Rd, Rd) such that spt(ψ) ⊂ Ω ′ × Rd for some Ω ′ b Ω and
ψ(x,u) ∈ T⊥x Σ ⊂ TxM for all (x,u) ∈ Ω× T⊥x Σ, an admissible variation of N in Ω
can be defined by Ns(x) :=

∑Q
`=1JN

`(x) + sψ(x,N`(x))K. Such a family is called outer
variation (OV);

(IV) Given a C1 vector field X of TΣ compactly supported in Ω, for s sufficiently small the
map x 7→ Φs(x) := expx (sX(x)) is a diffeomorphism of Ω which leaves ∂Ω fixed. As
a consequence, the family {Ns} defined by Ns := (N ◦Φs)⊥ is an admissible variation
of N in Ω, which we call inner variation (IV).

In the next proposition, we obtain an explicit formulation of (6.28) in the case of outer
variations induced by maps ψ as above. Consistently with the notation introduced for
multi-fields in Definition 4.2.9, given (x,u) ∈ Ω ×Rd we will denote by ∇⊥ψ(x,u) the
linear operator TxΣ → T⊥x Σ obtained by projecting Dxψ(x,u) onto T⊥x Σ at every x. Also,
recall the definitions of A · u, u being a (single-valued) section of NΩ, and of the quadratic
form R. Finally, recall that the symbol 〈L : M〉 denotes the usual Hilbert-Schmidt scalar
product of two matrices L and M.
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Proposition 6.2.2 (Outer variation formula). Let ψ be as in (OV) and such that

|Duψ| 6 C <∞ and |ψ|+ |Dxψ| 6 C(1+ |u|). (6.29)

Then, the first variation formula corresponding to the outer variation Ns defined by ψ is

ˆ
Ω

Q∑
`=1

〈∇⊥N`(x) :
(
∇⊥ψ(x,N`(x)) +Duψ(x,N`(x)) ·DN`(x)

)
〉dHm(x) = EOV(ψ), (6.30)

where

EOV(ψ) :=

ˆ
Ω

Q∑
`=1

(
〈A ·N`(x) : A ·ψ(x,N`(x))〉+R(N`(x),ψ(x,N`(x)))

)
dHm(x). (6.31)

Proof. The proof is straightforward: using (4.44) with Ns in place of u, it suffices to differ-
entiate in s and recall that R is a symmetric quadratic form on the normal bundle of Σ in
M (the hypotheses in (6.29) ensure the summability of the various integrands involved in
the computation).

An explicit formula for (6.28) in the case of inner variations induced by vector fields X
as in Definition 6.2.1 is the content of the following proposition. Recall that A denotes the
second fundamental form of the embedding M ↪→ Rd.

Proposition 6.2.3 (Inner variation formula). Let X be as in (IV). Then, the first variation formula
corresponding to the inner variation Ns defined by the family Φs of diffeomorphisms induced by X
is

−

ˆ
Ω

|∇⊥N|2divΣ(X)dHm + 2

ˆ
Ω

Q∑
`=1

〈∇⊥N` : ∇⊥N` · ∇ΣX〉dHm = EIV(X), (6.32)

where
EIV(X) = E

(1)
IV (X) + E

(2)
IV (X) + E

(3)
IV (X)

is defined by

E
(1)
IV (X) := 2

ˆ
Ω

Q∑
`=1

(
trΣ(〈A(·,N`),A(X,∇⊥(·)N

`)〉) − trΣ(〈A(X,N`),A(·,∇⊥(·)N
`)〉)
)

dHm,

(6.33)

E
(2)
IV (X) := 2

ˆ
Ω

Q∑
`=1

〈A ·N` : A · ∇⊥XN`〉dHm, (6.34)

and

E
(3)
IV (X) := 2

ˆ
Ω

Q∑
`=1

R(N`,∇⊥XN`)dHm. (6.35)
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Proof. Fix the vector field X, and consider the associated variation {Ns}, with Ns =
∑
`JN

`
sK

defined by

N`s(x) = (N` ◦Φs)⊥(x) =
k∑
β=1

〈N`(Φs(x)),νβ(x)〉νβ(x), (6.36)

(
νβ
)k
β=1

being a (local) orthonormal frame of NΩ. Recall thatΦ0 = IdΩ and that ∂
∂sΦs(x)

∣∣
s=0

=

X(x). Now, using (4.44), we write the first variation formula as

0 =
d

ds
Jac(Ns,Ω)

∣∣∣∣
s=0

=
d

ds

∣∣∣∣
s=0

DirNΣ(Ns,Ω)︸ ︷︷ ︸
=:I1

+

(
−
d

ds

∣∣∣∣
s=0

ˆ
Ω

Q∑
`=1

|A ·N`s|2 dHm
)

︸ ︷︷ ︸
=:I2

+

(
−
d

ds

∣∣∣∣
s=0

ˆ
Ω

Q∑
`=1

R(N`s,N
`
s)dHm

)
︸ ︷︷ ︸

=:I3

,

(6.37)

and we will work on the three terms separately.
Step 1: computing I1. Write I1 =

∑
` I
`
1, where

I`1 =
d

ds

∣∣∣∣
s=0

ˆ
Ω

m∑
i=1

k∑
α=1

|〈DξiN
`
s,να〉|2 dHm. (6.38)

Using the representation formula (6.36), one immediately computes

〈DξiN
`
s,να〉(x) = 〈DN`|Φs(x) ·DΦs|x · ξi(x),να(x)〉

+ 〈N`(Φs(x)),Dξiνα(x)〉

+

k∑
β=1

〈N`(Φs(x)),νβ(x)〉〈Dξiνβ(x),να(x)〉.
(6.39)

Now, since 〈να,νβ〉 = δαβ, we have that 〈Dξiνβ,να〉 = −〈νβ,Dξiνα〉, so that the last term
in formula (6.39) becomes

−

k∑
β=1

〈N`(Φs(x)),νβ(x)〉〈Dξiνα(x),νβ(x)〉 = −〈N`(Φs(x)),∇⊥ξiνα(x)〉, (6.40)

and we can write

〈DξiN
`
s,να〉(x) = 〈DN`|Φs(x) ·DΦs|x · ξi(x),να(x)〉

+ 〈N`(Φs(x)), (Dξiνα −∇⊥ξiνα)(x)〉.
(6.41)

For small values of the parameter s, the map Φs is a diffeomorphism of Ω, and we will
denote by Φ−1

s its inverse. Then, we can change variable x = Φ−1
s (y) in the integral, and

finally write

I`1 =
d

ds

∣∣∣∣
s=0

ˆ
Ω

m∑
i=1

k∑
α=1

|g`iα(s,y)|
2JΦ−1

s (y)dHm(y), (6.42)
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where JΦ−1
s is the Jacobian determinant of DΦ−1

s and

g`iα(s,y) = 〈DN`|y · ζi(s,y),να(Φ−1
s (y))〉+ 〈N`(y), (Dξiνα −∇⊥ξiνα)(Φ

−1
s (y))〉, (6.43)

with ζi(s,y) := DΦs|Φ−1
s (y) · ξi(Φ

−1
s (y)). Hence, we have:

I`1 = −

ˆ
Ω

m∑
i=1

k∑
α=1

|g`iα(0,y)|
2divΣ(X)dHm + 2

ˆ
Ω

m∑
i=1

k∑
α=1

g`iα(0,y)∂sg
`
iα(0,y)dHm

= −

ˆ
Ω

m∑
i=1

k∑
α=1

|g`iα(0,y)|
2divΣ(X)dHm +

ˆ
Ω

∂

∂s

(
m∑
i=1

k∑
α=1

|g`iα(s,y)|
2

)∣∣∣∣
s=0

dHm(y).

(6.44)

Now, since
m∑
i=1

k∑
α=1

|g`iα(s,y)|
2 = |∇⊥N`s|2(Φ−1

s (y)),

its value is independent of the orthonormal frame chosen: thus, having fixed a point y ∈ Ω,
we can impose ∇ξi = ∇να = 0 at y.

We can now proceed computing explicitly (6.44). Clearly, g`iα(0,y) = 〈DξiN`,να〉(y), so
we are only left with the computation of ∂sg`iα(0,y). We start observing that

∂sζi(0,y) = (DξiX−DXξi)(y) = − [X, ξi] (y), (6.45)

from which we easily deduce

∂s|s=0
(
〈DN`|y · ζi(s,y),να(Φ−1

s (y))〉
)
= −〈D[X,ξi]N

`,να〉− 〈DξiN
`,DXνα〉

= 〈D∇ΣξiX
N`,να〉− 〈A(ξi,N`),A(X,να)〉,

(6.46)

where we have used that ∇Xξi = ∇Xνα = 0 at y (and, therefore, [X, ξi] (y) = −∇ΣξiX(y)
and DXνα = A(X,να)).

On the other hand,

∂s|s=0

(
〈N`(y), (Dξiνα −∇⊥ξiνα)(Φ

−1
s (y))〉

)
= −〈N`,DX(Dξiνα −∇⊥ξiνα)〉

= 〈DXN`,Dξiνα −∇⊥ξiνα〉
= 〈A(X,N`),A(ξi,να)〉

(6.47)

because the fields N` and Dξiνα −∇⊥ξiνα are mutually orthogonal and, again, because
∇να = 0 at y.

This allows to conclude:

I1 =−

ˆ
Ω

|∇⊥N|2divΣ(X)dHm + 2

ˆ
Ω

Q∑
`=1

〈∇⊥N` : ∇⊥N` · ∇ΣX〉dHm

+ 2

ˆ
Ω

Q∑
`=1

(
trΣ(〈A(X,N`),A(·,∇⊥(·)N

`)〉) − trΣ(〈A(·,N`),A(X,∇⊥(·)N
`)〉)
)

dHm

= −

ˆ
Ω

|∇⊥N|2divΣ(X)dHm + 2

ˆ
Ω

Q∑
`=1

〈∇⊥N` : ∇⊥N` · ∇ΣX〉dHm − E
(1)
IV (X).

(6.48)
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Step 2: computing I2. Write I2 =
∑
` I
`
2, where

I`2 = −
d

ds

∣∣∣∣
s=0

ˆ
Ω

|A ·N`s|2 dHm. (6.49)

Since the tensor A takes values in the normal bundle of Σ, clearly A ·N`s = A · (N` ◦Φs),
whence

ˆ
Ω

|A ·N`s|2 dHm =

ˆ
Ω

m∑
i,j=1

|〈Ax(ξi(x), ξj(x)),N`(Φs(x))|2 dHm(x). (6.50)

We can now differentiate in s and evaluate for s = 0 in formula (6.50) to obtain:

I`2 = −2

ˆ
Ω

m∑
i,j=1

〈Ax(ξi(x), ξj(x)),N`(x)〉〈Ax(ξi(x), ξj(x)),DXN`(x)〉, (6.51)

which readily yields

I2 = −2

ˆ
Ω

Q∑
`=1

〈A ·N` : A · ∇⊥XN`〉dHm = −E
(2)
IV (X). (6.52)

Step 3: computing I3. As before, write I3 =
∑
` I
`
3, where

I`3 = −
d

ds

∣∣∣∣
s=0

ˆ
Ω

R(N`s,N
`
s)dHm. (6.53)

Now, it suffices to differentiate in s and evaluate at s = 0 inside the integral keeping in
mind that R is a symmetric 2-tensor to get

I3 = −2

ˆ
Ω

Q∑
`=1

R(N`,∇⊥XN`)dHm = −E
(3)
IV (X). (6.54)

Conclusion. The statement, formula (6.32), is immediately obtained by plugging equations
(6.48), (6.52) and (6.54) into (6.37).

The first variation formulae (6.30) and (6.32) will play a fundamental role in the next
section to discuss the almost monotonicity properties of the frequency function. Before pro-
ceeding, we apply the outer variation formula to show that minimizers of the Jac functional
enjoy a Caccioppoli type inequality.

Proposition 6.2.4 (Caccioppoli inequality). There exists a geometric constant C > 0 such that
for any Jac-minimizing Q-valued map N =

∑
`JN

`K ∈ Γ1,2
Q (NΩ) the inequality

ˆ
Ω

η(x)2|∇⊥N(x)|2 dHm(x) 6 4
ˆ
Ω

|Dη(x)|2|N(x)|2 dHm(x) +C

ˆ
Ω

η(x)2|N(x)|2 dHm(x)

(6.55)
holds for any choice of η ∈ C1c(Ω). In particular, for every p ∈ Ω and for every r < min {inj(Σ), dist(p,∂Ω)}

one has ˆ
B r
2
(p)

|∇⊥N|2 dHm 6
C

r2

ˆ
Br(p)

|N|2 dHm. (6.56)
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Proof. Fix N and η as in the statement, and apply the outer variation formula (6.30) with
ψ(x,u) := η(x)2u. Since Dxψ(x,u) = 2η(x)u⊗Dη(x) and Duψ(x,u) = η(x)2Id, for this
choice of ψ the outer variation formula reads

ˆ
Ω

η2|∇⊥N|2 + 2

Q∑
`=1

〈η∇⊥N` : N` ⊗Dη〉dHm =

ˆ
Ω

η2
Q∑
`=1

(
|A ·N`|2 +R(N`,N`)

)
dHm.

(6.57)
Applying Young’s inequality we immediately deduce that for any δ > 0 one has

ˆ
Ω

η2|∇⊥N|2 dHm 6 δ
ˆ
Ω

η2|∇⊥N|2 dHm +
1

δ

ˆ
Ω

|Dη|2|N|2 dHm +C

ˆ
Ω

η2|N|2 dHm,

(6.58)
for a constant C = C(A, R), where, we recall, A = ‖A‖L∞ and R = ‖R‖L∞ are defined in
(4.49) and (4.51). Choose δ = 1

2 to obtain (6.55). In order to deduce (6.56), apply (6.55) with

η(x) := φ
(
d(x)
r

)
, where d(x) := d(x,p) and φ is a cut-off function 0 6 φ 6 1 such that

φ(t) = 1 for 0 6 t 6 1
2 , φ(t) = 0 for t > 1 and |φ ′| 6 2.

6.2.2 Almost monotonicity of the frequency function and its consequences

The next step towards the proof of Theorem 6.0.3 consists of a careful asymptotic analysis
of the celebrated frequency function.

Definition 6.2.5 (Frequency function). Fix any point p ∈ Ω. For any radius 0 < r <

min{inj(Σ), dist(p,∂Ω)}, define the energy function

DN,p(r) :=

ˆ
Br(p)

|∇⊥N|2(x)dHm(x) (6.59)

and the height function

HN,p(r) :=

ˆ
∂Br(p)

|N|2(x)dHm−1(x). (6.60)

The frequency function is then defined by

IN,p(r) :=
rDN,p(r)

HN,p(r)
(6.61)

for all r such that HN,p(r) > 0. When the Q-field N and the point p are fixed and there is
no ambiguity, we will drop the subscripts and simply write D(r), H(r) and I(r).

Remark 6.2.6. Observe that D(r) = DirNΣ(N, Br(p)); D is an absolutely continuous function
with derivative

D ′(r) =
ˆ
∂Br(p)

|∇⊥N|2 dHm−1

almost everywhere. As for H(r), note that |N| is the composition of N with the Lipschitz
function G(·,QJ0K), thus it belongs to W1,2. Hence, |N|2 is a W1,1 function, and also H ∈
W1,1.
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Remark 6.2.7. It is an easy consequence of the Hölder regularity of N that the frequency
function I(r) is well defined and bounded for suitably small radii at any point p ∈ Ω such
that N(p) 6= QJ0K. Indeed, if such assumption is satisfied then

lim
r→0+

1

Hm−1(∂Br(p))
H(r) = |N|2(p) = G(N(p),QJ0K)2 > 0,

which in turn implies that H(r) > 0 for small values of r. Furthermore, from the proof of
Theorem 6.0.1 (cf. in particular formula (6.26)) we can also infer that if r is sufficiently small
then

D(r) 6 Crm−2+2α,

where α is the Hölder exponent of N. In particular, from this one immediately concludes
that there exists the limit

lim
r→0

I(r) = 0

at every point p such that N(p) 6= QJ0K.
As we shall see, we will obtain as a byproduct of the improved regularity theory developed
in this section that the frequency function is well defined and bounded also in a suitable
neighborhood of r = 0 at every point p such that N(p) = QJ0K, and that also at such points
the limit limr→0+ I(r) exists, but it is strictly positive.

The main analytic feature of the frequency function is the following almost monotonicity
property.

Theorem 6.2.8 (Almost monotonicity of the frequency). There exist a geometric constant C0
and a radius 0 < r0 < min{inj(Σ), dist(p,∂Ω)} such that for all 0 < s < t 6 r0 with H

∣∣
[s,t] > 0

one has
I(s) 6 C0 (1+ I(t)) . (6.62)

Propositions 6.2.9 and 6.2.10 below contain the most relevant consequences of Theorem
6.2.8. Both these results will be derived under the additional assumption that p ∈ Ω has
been fixed in such a way that N(p) = QJ0K. As already observed in Remark 6.2.7 above,
these are exactly the points where we lack a precise description of the behavior of the
frequency function. The arguments contained in the next sections will illustrate the reason
why an analysis of the Jacobi multi-field N in a neighborhood of such a point is indeed
crucial in order to obtain the proof of Theorem 6.0.3.

The first result we are interested in is the following dichotomy: if N(p) = QJ0K, then
either there exists a neighborhood of p where the map N is identically vanishing, and thus
where the frequency function is not defined at all, or, conversely, there is a neighborhood
of p where the frequency function is well defined everywhere and bounded.

Proposition 6.2.9. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. Assume p ∈ Ω is such that N(p) =

QJ0K. Then, the following dichotomy holds:

(i) either N ≡ QJ0K in a neighborhood of p;

(ii) or there exists a radius r0 > 0 such that

H(r) > 0 for all r ∈ (0, r0] and lim sup
r→0

I(r) <∞.
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As it is natural, the most interesting situation is when condition (ii) in the above Proposi-
tion 6.2.9 is observed. As a first remark, we observe that the fact that the frequency function
is bounded in a neighborhood of a point p allows to improve the almost monotonicity prop-
erty itself.

Proposition 6.2.10 (Improved almost monotonicity of the frequency). Let N ∈ Γ1,2
Q (NΩ) be

Jac-minimizing. Assume p ∈ Ω is such that N(p) = QJ0K but N does not vanish in a neighborhood
of p. Then, there exist r0 > 0 and a constant λ = λ(I(r0)) > 0 such that the function

r ∈ (0, r0] 7→ eλrI(r) (6.63)

is monotone non-decreasing. The limit

lim
r→0

I(r) =: I0(p) (6.64)

exists and is strictly positive.

The rest of the section will be devoted to the proofs of Theorem 6.2.8, Proposition 6.2.9
and Proposition 6.2.10.

6.2.3 First variation estimates and the proof of Theorem 6.2.8

The proof of Theorem 6.2.8 is a consequence of some estimates involving the functions
D and H and their derivatives, which in turn can be obtained by testing the first variations
formulae (6.30) and (6.32) with a suitable choice of the maps ψ and X. The derivation of
these estimates is the content of Lemma 6.2.13 below. We need to define the following
auxiliary functions.

Definition 6.2.11. We denote by ∂
∂r̂ the vector field which is tangent to geodesic arcs

parametrized by arc length and emanating from p. We will set ∇r̂ := ∇ ∂
∂r̂

, the directional

derivative along ∂
∂r̂ , and we will let ∇⊥r̂ be its projection onto the normal bundle of Σ in M.

We set:

E(r) = EN,p(r) :=

ˆ
∂Br(p)

Q∑
`=1

〈N`(x),∇⊥r̂ N`(x)〉dHm−1(x), (6.65)

G(r) = GN,p(r) :=

ˆ
∂Br(p)

|∇⊥r̂ N|2(x)dHm−1(x), (6.66)

and

F(r) = FN,p(r) :=

ˆ
Br(p)

|N|2(x)dHm(x). (6.67)

Remark 6.2.12. Note that F(r) = ‖N‖2
L2(Br(p))

is an absolutely continuous function, and for
a.e. r

F ′(r) =
ˆ
∂Br(p)

|N|2 dHm−1 = H(r). (6.68)
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Lemma 6.2.13 (First variation estimates). There exist a geometric constant C0 > 0 and a radius
0 < r0 < min{inj(Σ), dist(p,∂Ω)} such that the following inequalities hold true for a.e. 0 < r 6 r0:

|D(r) − E(r)| 6 C0F(r), (6.69)

|D ′(r) − 2G(r) −
m− 2

r
D(r)| 6 C0rD(r) +C0(D(r)F(r))1/2, (6.70)

|H ′(r) −
m− 1

r
H(r) − 2E(r)| 6 C0rH(r). (6.71)

Furthermore, if I(r) > 1 then
|D(r) − E(r)| 6 C0r2D(r), (6.72)

and
|D ′(r) − 2G(r) −

m− 2

r
D(r)| 6 C0rD(r). (6.73)

Proof. Step 1: proof of (6.69). We test the outer variation formula (6.30) with the map ψ given
by

ψ(x,u) := φ
(

d(x)
r

)
u, (6.74)

where d(·) := d(·,p), and φ = φ(t) ∈ C∞([0,∞)) is a cut-off function such that:

0 6 φ 6 1, φ ≡ 1 in a neighborhood of t = 0, φ ≡ 0 for t > 1. (6.75)

Observe first that this choice of ψ induces an admissible family of outer variations: indeed,
one clearly sees that spt(ψ) ⊂ Br(p), the geodesic ball centered at p and of radius r, which
is compactly supported in Ω, and that the orthogonality conditions and the assumptions in
(6.29) are satisfied. We compute:

Dxψ(x,u) = r−1φ ′
(

d(x)
r

)
u⊗∇d,

which yields

〈∇⊥N`(x) : ∇⊥ψ(x,N`(x))〉 = r−1φ ′
(

d(x)
r

)
〈∇⊥r̂ N`(x),N`(x)〉. (6.76)

On the other hand, Duψ(x,u) = φ
(

d(x)
r

)
Id, whence

〈∇⊥N`(x) : Duψ(x,N`(x)) ·DN`(x)〉 = φ
(

d(x)
r

)
|∇⊥N`|2(x). (6.77)

Analogously, we can compute explicitly the right-hand side of (6.30) corresponding to
our choice of ψ and get:

EOV(ψ) =

ˆ
Σ

φ

(
d(x)
r

) Q∑
`=1

(
|A ·N`|2(x) +R(N`(x),N`(x))

)
dHm(x). (6.78)
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By a standard approximation procedure, the details of which are left to the reader, it is
easy to see that we can test with

φ(t) = φh(t) =


1 for 0 6 t 6 1− 1

h

h(1− t) for 1− 1
h 6 t 6 1

0 for t > 1.

(6.79)

Inserting into (6.76), (6.77) and (6.78), the outer variation formula (6.30) becomes

−
h

r

ˆ
Br(p)\Br− r

h
(p)

Q∑
`=1

〈∇⊥r̂ N`(x),N`(x)〉dHm(x) +

ˆ
Σ

φh

(
d(x)
r

)
|∇⊥N(x)|2 dHm(x)

=

ˆ
Σ

φh

(
d(x)
r

) Q∑
`=1

(
|A ·N`|2(x) +R(N`(x),N`(x))

)
dHm(x).

(6.80)

Now, let h ↑ ∞. The left-hand side of (6.80) converges to D(r) − E(r), whereas the right-
hand side converges to

ˆ
Br(p)

Q∑
`=1

(
|A ·N`|2 +R(N`,N`)

)
dHm.

In particular, the inequality (6.69) readily follows with a constant C0 depending on A =

‖A‖L∞ and R = ‖R‖L∞ .

Step 2: proof of (6.70). We test now the inner variation formula (6.32) with the vector field
X defined by

X(x) :=
d(x)
r
φ

(
d(x)
r

)
∂

∂r̂

= φ

(
d(x)
r

)
1

2r
∇(d(x)2),

(6.81)

with φ as in (6.75).
Standard computations lead to

∇ΣX(x) = φ ′
(

d(x)
r

)
d(x)
r2

∂

∂r̂
⊗ ∂

∂r̂
+φ

(
d(x)
r

)
1

2r
HessΣ(d(x)2)

= φ ′
(

d(x)
r

)
d(x)
r2

∂

∂r̂
⊗ ∂

∂r̂
+φ

(
d(x)
r

)(
Id
r
+O(r)

)
for r→ 0, and consequently

divΣX(x) = φ ′
(

d(x)
r

)
d(x)
r2

+φ

(
d(x)
r

)
1

2r
∆Σ(d(x)2)

= φ ′
(

d(x)
r

)
d(x)
r2

+φ

(
d(x)
r

)(m
r
+O(r)

)
.
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Choosing again tests of the form φ = φh as in (6.79), plugging into (6.32) and taking the
limit h ↑∞, we see that the left-hand side of the inner variation formula reads

D ′(r) − 2G(r) −
m− 2

r
D(r) +O(r)D(r) (6.82)

for r→ 0.
We proceed with the analysis of the error term EIV(X). Straightforward computations

imply the following estimates:

|E
(1)
IV | 6 C1

ˆ
Br(p)

|N(x)||∇⊥N(x)|dHm(x),

|E
(2)
IV |+ |E

(3)
IV | 6 C2,3

ˆ
Br(p)

|N(x)||∇⊥r̂ N(x)|dHm(x),

where C1 is a geometric constant depending on A = ‖A‖L∞ , and C2,3 depends on A and R.
Applying the Cauchy-Schwarz inequality we conclude

|EIV(X)| 6 C0 (D(r)F(r))
1/2 . (6.83)

Combining (6.82) and (6.83), we deduce the inequality (6.70) whenever r is small enough.

Step 3: proof of (6.71). Let expp : V ⊂ TpΣ→ Σ be the exponential map with pole p. Since
Br(0) b V for every r < inj(Σ), we can use the change of coordinates x = expp(y) to write:

H(r) =

ˆ
∂Br

|N|2(expp(y)) J expp(y)dHm−1(y)

= rm−1

ˆ
∂B1

|N|2(expp(rz)) J expp(rz)dHm−1(z).

Thus, we differentiate under the integral sign and compute

H ′(r) = (m− 1)rm−2

ˆ
∂B1

|N|2(expp(rz)) J expp(rz)dHm−1(z)

+ 2rm−1

ˆ
∂B1

Q∑
`=1

〈N`(expp(rz)),∇
⊥
r̂ N

`(expp(rz))〉 J expp(rz)dHm−1(z)

+ rm−1

ˆ
∂B1

|N|2(expp(rz))
d

dr

(
J expp(rz)

)
dHm−1(z).

Since d
dr

(
J expp(rz)

)
= O(r) for r→ 0, we are able to conclude

H ′(r) =
m− 1

r
H(r) + 2E(r) +O(r)H(r), (6.84)

from which (6.71) readily follows.
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Step 4: proof of (6.72) and (6.73). It suffices to exploit the inequality

F(r) 6 C0rH(r) +C0r
2D(r), (6.85)

which can be easily deduced from the Poincaré inequality (note also that the same inequal-
ity has been already proved in the Euclidean setting earlier on, cf. Corollary 6.13). In the
regime I(r) > 1, that is H(r) 6 rD(r), (6.85) simply reads

F(r) 6 C0r2D(r). (6.86)

Then, (6.72) and (6.73) are an immediate consequence of (6.69) and (6.70) respectively.

We can now proceed with the proof of the almost monotonicity property of the frequency.

Proof of Theorem 6.2.8. Set Ω(r) := log(max{I(r), 1}). In order to prove the theorem, it suf-
fices to show that

Ω(s) 6 C+Ω(t) (6.87)

for some positive geometric constant C. If Ω(s) = 0 there is nothing to prove. Thus, we
assume that Ω(s) > 0. Define

τ := sup{r ∈ (s, t] : Ω(r) > 0 on (s, r)}.

If τ < t, then by continuity it must be Ω(τ) = 0: hence, in this case we would have
Ω(τ) = 0 6 Ω(t), and therefore proving that Ω(s) 6 C+Ω(τ) would imply (6.87). Thus,
we can assume without loss of generality that Ω(r) > 0 in (s, t): in other words, I(r) > 1,
and Ω(r) = log(I(r)). Then, as a consequence of (6.72), if r0 is taken small enough one has

D(r)

2
6 E(r) 6 2D(r), (6.88)

that is the quantity E(r) is positive and comparable to D(r) at small scales.
Guided by this principle, we compute:

−
d

dr
(log I(r)) =

H ′(r)
H(r)

−
D ′(r)
D(r)

−
1

r

=
H ′(r)
H(r)

−
D ′(r)
E(r)

− D ′(r)Z(r) −
1

r
,

(6.89)

where Z(r) :=
1

D(r)
−

1

E(r)
satisfies

|Z(r)| =
|D(r) − E(r)|

D(r)E(r)

(6.88)
6 2

|D(r) − E(r)|
D(r)2

(6.69)
6 C0

F(r)
D(r)2

. (6.90)

Now, by (6.71) one has that

H ′(r)
H(r)

6 Cr+
m− 1

r
+ 2

E(r)
H(r)

, (6.91)
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whereas the inner variation formula (6.73) yields

−
D ′(r)
E(r)

6 Cr
D(r)

E(r)
− 2

G(r)

E(r)
−
m− 2

r

D(r)

E(r)
(6.88)
6 Cr− 2

G(r)

E(r)
−
m− 2

r
(1− D(r)Z(r))

(6.90)
6 Cr− 2

G(r)

E(r)
−
m− 2

r
+Cr−1

F(r)
D(r)

6 Cr− 2
G(r)

E(r)
−
m− 2

r

(6.92)

because of (6.86).
Plugging (6.91) and (6.92) into (6.89), and using the estimate on the error term Z(r) given

by (6.90), we obtain the following:

−
d

dr
(log I(r)) 6 Cr+ 2

(
E(r)
H(r)

−
G(r)

E(r)

)
+C

D ′(r)
D(r)2

F(r). (6.93)

Now, by the Cauchy-Schwarz inequality one has

E(r)2 6 G(r)H(r),

whence the term
E(r)
H(r)

−
G(r)

E(r)
is non-positive and (6.93) yields

−
d

dr
(log I(r)) 6 Cr+C

D ′(r)
D(r)2

F(r). (6.94)

Integrating for r ∈ (s, t), we obtain

Ω(s) −Ω(t) 6 C+C

(
F(s)
D(s)

−
F(t)
D(t)

)
+C

ˆ t

s

F ′(r)
D(r)

dr 6 C, (6.95)

where the last inequality follows from the above observation that, in the regime I > 1, the
inequalities

F(r) 6 C0r2D(r), F ′(r) = H(r) 6 rD(r)

hold almost everywhere. This completes the proof.

6.2.4 Proof of Propositions 6.2.9 and 6.2.10

We will need the following version of the Poincaré inequality.

Lemma 6.2.14. There exist a radius 0 < r0 = r0(m,Q) < inj(Σ) and a geometric constant C > 0
with the following property. Let N ∈ Γ1,2

Q (NΩ) be a multiple valued section of NΣ Jac-minimizing
in Ω. Assume p ∈ Ω is such that N(p) = QJ0K. Then, the inequality

‖N‖2L2(Br(p)) 6 Cr
2DirNΣ(N, Br(p)) (6.96)

holds true for every 0 < r 6 min{r0, dist(p,∂Ω)}.
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Proof. Let r0 = r0(m,Q) be the radius given by Theorem 6.0.1, and let r 6 min{r0, dist(p,∂Ω)}

be arbitrary. Let ρ ∈
(
0, r2

]
be a radius to be chosen later and split ‖N‖2

L2(Br(p))
into the

sum ˆ
Br(p)

|N|2 dHm =

ˆ
Bρ(p)

|N|2 dHm +

ˆ
Br(p)\Bρ(p)

|N|2 dHm. (6.97)

In order to estimate the first term in the sum, we recall that |N|2(x) = G(N(x),QJ0K)2 =

G(N(x),N(p))2 and exploit the α-Hölder continuity of N to conclude
ˆ

Bρ(p)
|N|2 dHm 6 ρ2α [N]2C0,α(Bρ(p))H

m(Bρ(p))

(6.1)
6 Cρ2

(
Dir(N, B2ρ(p)) +Λ

ˆ
B2ρ(p)

|N|2 dHm
)

6 Cρ2Dir(N, Br(p)) +CΛρ2
ˆ

Br(p)
|N|2 dHm

6 Cr2DirNΣ(N, Br(p))︸ ︷︷ ︸
=:I1

+C(Λ+C0)ρ
2

ˆ
Br(p)

|N|2 dHm︸ ︷︷ ︸
=:I2

,

(6.98)

where C0 depends on A and A.
As for the second addendum in (6.97), we integrate in normal polar coordinates with

pole p to write

ˆ
Br(p)\Bρ(p)

|N|2 dHm =

ˆ r

ρ

(ˆ
∂Bτ(p)

|N|2 dHm−1

)
dτ. (6.99)

Now, fix any τ ∈ (ρ, r), and for every x ∈ ∂Bτ(p) let γx = γx(s), s ∈ [0, τ], be the unique
geodesic parametrized by arclength joining p to x. Also denote by x the point where γx
intersects ∂Bρ(p). Then, the fundamental theorem of calculus immediately yields

|N|2(x) 6 |N|2(x) + 2

ˆ τ

ρ

(|N||∇⊥N|)(γx(s))ds. (6.100)

Integrate the above inequality in x ∈ ∂Bτ(p) to get

ˆ
∂Bτ(p)

|N|2 dHm−1 6 C

(
τ

ρ

)m−1
(ˆ

∂Bρ(p)
|N|2 dHm−1 + 2

ˆ
Bτ(p)\Bρ(p)

|N||∇⊥N|dHm
)

.

(6.101)
Using once again the Hölder estimate (6.1) and recalling that ρ 6 r

2 , we are able to control(
τ

ρ

)m−1 ˆ
∂Bρ(p)

|N|2 dHm−1 6

(
τ

ρ

)m−1

ρ2α [N]2C0,α(B r
2
(p))H

m−1(∂Bρ(p))

6 Cτm−1ρ2αr2−m−2α

(
Dir(N, Br(p)) +Λ

ˆ
Br(p)

|N|2 dHm
)

.

(6.102)



110 regularity theory

We can now integrate in τ ∈ (ρ, r), so that using the estimates in (6.101) and (6.102) we can
easily deduce from (6.99) the following inequality:

ˆ
Br(p)\Bρ(p)

|N|2 dHm 6 C
(ρ
r

)2α
r2DirNΣ(N, Br(p))︸ ︷︷ ︸

=:J1

+C(Λ+C0)ρ
2α

ˆ
Br(p)

|N|2 dHm︸ ︷︷ ︸
=:J2

+C

(
r

ρ

)m−1

r

ˆ
Br(p)

|N||∇⊥N|dHm︸ ︷︷ ︸
=:J3

,

(6.103)

where C and C0 are geometric constants. Now we can sum up the contributions coming
from the ball Bρ(p) and from the annulus Br(p) \Bρ(p) and choose ρ = ρ(Λ,C,C0) so small
that the terms I2 and J2 are absorbed in the left-hand side of the equation, thus ultimately
providing

ˆ
Br(p)

|N|2 dHm 6 Cr2DirNΣ(N, Br(p)) +Cr
ˆ

Br(p)
|N||∇⊥N|dHm. (6.104)

Finally, use Young’s inequality: for any choice of the parameter η > 0, (6.104) implies
thatˆ

Br(p)
|N|2 dHm 6 Cr2DirNΣ(N, Br(p)) +Cr

(
η

ˆ
Br(p)

|N|2 dHm +
1

η
DirNΣ(N, Br(p))

)
.

(6.105)
The conclusion immediately follows by choosing η such that Crη = 1

2 .

Proof of Proposition 6.2.9. First observe that if N does not vanish identically in a neighbor-
hood of p, then there exists r0 > 0 such that H(r0) > 0. Clearly, without loss of generality
we can suppose that (6.96) holds for every 0 < r 6 r0, and also that (6.62) holds in any
interval [s, t] ⊂ (0, r0] such that H

∣∣
[s,t] > 0. We claim that in fact H(r) > 0 for all 0 < r 6 r0.

Indeed, if this is not true, let ρ > 0 be given by ρ := sup{r ∈ (0, r0] : H(r) = 0}. By definition
H(r) > 0 for ρ < r 6 r0, whence for such r’s we can take advantage of Theorem 6.2.8 and
write

I(r) 6 C0(1+ I(r0)).

By letting r ↓ ρ we conclude

ρD(ρ) 6 C0(1+ I(r0))H(ρ) = 0,

which in turn produces DirNΣ(N, Bρ(p)) = 0. Then, by Lemma 6.2.14, N vanishes identi-
cally in Bρ(p), contradiction.

It is now a simple consequence of Theorem 6.2.8 that

lim sup
r→0

I(r) 6 C0(1+ I(r0)),

which completes the proof.
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Proof of Proposition 6.2.10. Under the assumptions in the statement, case (ii) in Proposition
6.2.9 must hold, and thus the frequency function is well defined and bounded in an interval
(0, r0]. Moreover, the Poincaré inequality (6.96) implies that, modulo possibly taking a
smaller value of r0, the first variation estimates of Lemma 6.2.13 can be again re-written as
in (6.72) and (6.73), and that (6.88) holds. Thus, we can compute:

I ′(r) =
D(r)

H(r)
+
rD ′(r)
H(r)

−
rD(r)H ′(r)

H(r)2

=
D(r)

H(r)
+

r

H(r)

(
2G(r) +

m− 2

r
D(r) + E1(r)

)
−
rD(r)

H(r)2

(
m− 1

r
H(r) + 2E(r) + E2(r)

)
=

2r

H(r)2
(
G(r)H(r) − E(r)2

)
+

r

H(r)
E1(r) −

rD(r)

H(r)2
E2(r) + E3(r),

(6.106)

where

|E1(r)|
(6.73)
6 C0rD(r), (6.107)

|E2(r)|
(6.71)
6 C0rH(r), (6.108)

and

|E3(r)| =
2rE(r)
H(r)2

|E(r) − D(r)|
(6.72),(6.88)
6 C0

r3D(r)2

H(r)2
, (6.109)

if r0 is chosen small enough. Since G(r)H(r)−E(r)2 > 0 by the Cauchy-Schwartz inequality,
the above arguments show the existence of a radius r0 > 0 and a geometric constant C0 > 0
such that

I ′(r) > −C0rI(r) −C0rI(r)2 (6.110)

for all r ∈ (0, r0]. On the other hand, for such r’s one has I(r) 6 C0(1+ I(r0)) by Theorem
6.2.8. Thus, this allows to conclude that

I ′(r) > −λI(r), (6.111)

for some positive λ depending only on r0 and I(r0). The monotonicity of the function
r 7→ eλrI(r) is now a simple consequence of (6.111).

Next, we conclude the proof showing that the limit

I0 := lim
r→0

eλrI(r) = lim
r→0

I(r) (6.112)

is positive. To see this, we show that the Poincaré inequality (6.96) allows to bound the
frequency function from below with a positive constant. Indeed, arguing as in the proof of
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Lemma 6.2.14 (cf. in particular the equations (6.101) and (6.102)), it is easily seen that one
can estimate

H(r) =

ˆ
∂Br(p)

|N|2 dHm−1 6 C

(ˆ
∂B r

2
(p)

|N|2 dHm−1 +

ˆ
Br(p)\B r

2
(p)

|N||∇⊥N|dHm
)

6 Cr

(
Dir(N, Br(p)) +Λ

ˆ
Br(p)

|N|2 dHm
)
+C

ˆ
Br(p)

|N||∇⊥N|dHm

6 CrD(r) +CrF(r) +C
ˆ

Br(p)
|N||∇⊥N|dHm.

(6.113)

In turn, applying Young’s inequality to the last addendum in the right-hand side of
(6.113) yields ˆ

Br(p)
|N||∇⊥N|dHm 6

r

2
D(r) +

1

2r
F(r). (6.114)

Plugging (6.114) in (6.113) and using the Poincaré inequality (6.96) finally gives

H(r) 6 C(1+ r2)rD(r) 6 C(1+ r20)rD(r), (6.115)

thus completing the proof.

6.3 reverse poincaré and analysis of blow-ups for the top
stratum

The final goal of this section is to perform the key step in the proof of Theorem 6.0.3,
namely the blow-up procedure, see Theorem 6.3.8 below. In doing this, we will clarify the
importance of the results obtained in the previous paragraph.

6.3.1 Reverse Poincaré inequalities

The proof of the blow-up theorem will heavily rely on an important technical tool, a
reverse Poincaré inequality for Jac-minimizers. In Proposition 6.2.4, we have already shown
that Jac-minimizers enjoy a Caccioppoli type inequality: the L2-norm of a Jacobi Q-field
N in a ball Br(p) controls the Dirichlet energy in the ball with half the radius. As an
immediate consequence of the boundedness of the frequency function, one can actually
show that the Dirichlet energy in B r

2
(p) can be controlled with the L2-norm of N in the

annulus Br(p) \ B r
2
(p), provided that we allow the constant to depend on the value of the

frequency at a given scale.

Proposition 6.3.1. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. Then, there exists r0 > 0 such that for

any r ∈ (0, r0] one has

DirNΣ(N, B r
2
(p)) 6

C

r2

ˆ
Br(p)\B r

2
(p)

|N|2 dHm (6.116)

for some positive C = C(I(r0)).
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Proof. If N is vanishing identically in a neighborhood of p there is nothing to prove. There-
fore, we can assume that either N(p) 6= QJ0K or N(p) = QJ0K but N does not vanish
identically in any neighborhood of p. In any of the two cases, either by the arguments
contained in Remark 6.2.7 or by Proposition 6.2.9, there exists a positive radius r0 such that
the frequency function is well defined and bounded for all r ∈ (0, r0]. Thus, there exists
a positive constant C = C(I(r0)) such that, for fixed r 6 r0, τD(τ) 6 CH(τ) for τ in the
interval

[
r
2 , r
]
. Integrate with respect to τ to get (6.116):

3

8
r2DirNΣ(N, B r

2
(p)) =

3

8
r2D

( r
2

)
6
ˆ r

r
2

τD(τ)dτ

6 C
ˆ r

r
2

H(τ)dτ = C
ˆ

Br(p)\B r
2
(p)

|N|2 dHm.

The Caccioppoli inequality can in fact be improved further under the assumption that
N(p) = QJ0K: indeed, at small scales the inequality (6.56) holds without having to increase
the support of the ball on the right-hand side. Again, for this to be true we need to allow
the constant to depend on the value of the frequency at scale r0.

Proposition 6.3.2 (Reverse Poincaré Inequality). LetN ∈ Γ1,2
Q (NΩ) be Jac-minimizing. Assume

N(p) = QJ0K. Then, there exists r0 > 0 such that for any r ∈ (0, r0] the following inequality

DirNΣ(N, Br(p)) 6
C

r2

ˆ
Br(p)

|N|2 dHm (6.117)

holds for some positive C = C(I(r0)).

Proof. Once again, we observe that (6.117) is trivial when N ≡ QJ0K in a neighborhood of p.
We assume then that case (ii) in Proposition 6.2.9 holds, and we let r0 be the radius given
in there. Since the frequency function is well defined and bounded in (0, r0], there exists
C = C(I(r0)) > 0 such that

ˆ
Br(p)

|∇⊥N|2 dHm 6
C

r

ˆ
∂Br(p)

|N|2 dHm−1, (6.118)

for all r’s in the above interval. Arguing once again as in the proof of Lemma 6.2.14, we
have that for every ρ ∈

(
0, r2

]
it holds

ˆ
∂Br(p)

|N|2 dHm−1 6 C

(
r

ρ

)m−1
(ˆ

∂Bρ(p)
|N|2 dHm−1 + 2

ˆ
Br(p)\Bρ(p)

|N||∇⊥N|dHm
)

.

(6.119)
Furthermore, by the Hölder continuity of N and since ρ 6 r

2 we also have(
r

ρ

)m−1 ˆ
∂Bρ(p)

|N|2 dHm−1
(6.96)
6 C

(ρ
r

)2α
r

(ˆ
Br(p)

|∇⊥N|2 dHm + (C0 +Λ)

ˆ
Br(p)

|N|2 dHm
)

.

(6.120)
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Combining (6.118), (6.119) and (6.120) gives
ˆ

Br(p)
|∇⊥N|2 dHm 6 C

(ρ
r

)2α(ˆ
Br(p)

|∇⊥N|2 dHm +

ˆ
Br(p)

|N|2 dHm
)

+
C

r

(
r

ρ

)m−1 ˆ
Br(p)

|N||∇⊥N|dHm.
(6.121)

Now, if we choose ρ so small that C
(
ρ
r

)2α
6 1
2 then from (6.121) follows

ˆ
Br(p)

|∇⊥N|2 dHm 6
ˆ

Br(p)
|N|2 dHm +

C

r

ˆ
Br(p)

|N||∇⊥N|dHm

6
ˆ

Br(p)
|N|2 dHm +

C

2r
η

ˆ
Br(p)

|∇⊥N|2 dHm +
C

2rη

ˆ
Br(p)

|N|2 dHm,

(6.122)

by the Young’s inequality. Choose η = r
C to obtain

ˆ
Br(p)

|∇⊥N|2 dHm 6
(
C

r2
+ 2

)ˆ
Br(p)

|N|2, (6.123)

which immediately implies (6.117).

Now that we have the Reverse Poincaré inequality at our disposal, we can enter the core
of the blow-up scheme.

6.3.2 The top-multiplicity singular stratum. Blow-up

The main difficulty in the proof of Theorem 6.0.3 consists of estimating the Hausdorff
dimension of the set of singular points with multiplicity exactly equal to Q. The proof of
the general result then follows in a relatively easy way by an induction argument on Q.
Therefore, it is fundamental to study the structure of the top-multiplicity singular stratum of
N, denoted singQ(N) and defined as follows.

Definition 6.3.3 (Top-multiplicity points). Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. A point

p ∈ Ω has multiplicity Q, or simply is a Q-point for N, and we will write p ∈ DQ(N), if
there exists v ∈ T⊥p Σ such that N(p) = QJvK. We will define the top-multiplicity regular and
singular strata of N by

regQ(N) := reg(N)∩DQ(N), singQ(N) := sing(N)∩DQ(N),

respectively.

From this point onward, we will assume to have fixed a point p ∈ DQ(N). The first step
is to show that without loss of generality we can always assume that N(p) = QJ0K. Recall
the definition of the map η given in (2.14).

Lemma 6.3.4. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. Then:
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(i) the map η ◦N : Ω→ Rd is a classical Jacobi field;

(ii) if ζ : Ω → Rd is a classical Jacobi field, then the Q-valued map u :=
∑
`JN

` + ζK is Jac-
minimizing.

Proof. Recall (cf. Remark 4.2.8 and the notation therein) that a normal vector field ζ ∈
Γ1,2(NΩ) := Γ1,2

1 (NΣ) is a Jacobi field if it is a weak solution of the linear elliptic PDE on
the normal bundle NΣ (

−∆⊥Σ −A −R
)
ζ = 0,

that is, if the identity
ˆ
Ω

(
〈∇⊥ζ : ∇⊥φ〉− 〈A · ζ : A ·φ〉−R(ζ,φ)

)
dHm = 0 (6.124)

holds for all test functions φ ∈ C1
(
Ω, Rd

)
with spt(φ) ⊂ Ω ′ b Ω and φ(x) ∈ T⊥x Σ ⊂ TxM

for every x ∈ Ω.
In order to prove (i), first observe that the map η preserves the fibers of the normal

bundle, so that η ◦N(x) ∈ T⊥x Σ for a.e. x ∈ Ω and thus η ◦N ∈ Γ1,2(NΩ) = Γ1,2
1 (NΩ). Now,

fix any vector field φ as above. It is immediate to see that we can test the outer variation
formula (6.30) with ψ(x,u) := φ(x), and that the resulting equation is precisely

ˆ
Ω

(
〈∇⊥(η ◦N) : ∇⊥φ〉− 〈A · (η ◦N) : A ·φ〉−R(η ◦N,φ)

)
dHm = 0,

that is η ◦N solves (6.124) and the proof of (i) is complete.
In order to prove (ii), we take any h ∈ Γ1,2

Q (NΩ) such that h|∂Ω = N|∂Ω and we show
that

Jac(u,Ω) 6 Jac(h̃,Ω),

with h̃ =
∑
`Jh

` + ζK. We compute:

Jac(u,Ω) =

ˆ
Ω

Q∑
`=1

(
|∇⊥(N` + ζ)|2 − |A · (N` + ζ)|2 −R(N` + ζ,N` + ζ)

)
dHm

= Jac(N,Ω) +Q

(ˆ
Ω

(|∇⊥ζ|2 − |A · ζ|2 −R(ζ, ζ))dHm
)

+ 2Q

(ˆ
Ω

(〈∇⊥(η ◦N) : ∇⊥ζ〉− 〈A · (η ◦N) : A · ζ〉−R(η ◦N, ζ))dHm
)

.

Using that Jac(N,Ω) 6 Jac(h,Ω) and recalling the definition of h̃, we see that

Jac(u,Ω) − Jac(h̃,Ω) 6 2Q
ˆ
Ω

〈∇⊥(η ◦N−η ◦ h) : ∇⊥ζ〉

− 2Q

ˆ
Ω

〈A · (η ◦N−η ◦ h) : A · ζ〉

− 2Q

ˆ
Ω

R(η ◦N−η ◦ h, ζ) = 0,

because ζ is a Jacobi field and the function φ = η ◦N−η ◦h is a W1,2 section of the normal
bundle vanishing at ∂Ω. This completes the proof.
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Remark 6.3.5. As a simple corollary of Lemma 6.3.4, if N is Jac-minimizing then the Q-
valued map Ñ =

∑
`JN

` − η ◦NK is a Jac-minimizer with η ◦ Ñ ≡ 0 and the same singular
set as N. Therefore, there is no loss of generality in assuming that η ◦N ≡ 0, and, thus,
that every Q-point p satisfies N(p) = QJ0K. In particular, when p ∈ DQ(N) we can apply
all the results of the previous section that were proved under the above assumption. Fur-
thermore, the content of Proposition 6.2.9 becomes more apparent in this context. Indeed,
the dichotomy stated in there discriminates perfectly between regular and singular top-
multiplicity points: p ∈ regQ(N) if and only if the condition (i) is observed; on the other
hand, p ∈ singQ(N) if and only if the frequency function is well defined and bounded in a
neighborhood of p.

In view of the above remark, we assume from this point onwards thatN is Jac-minimizing
and such that η ◦N = 0. We fix a point p ∈ singQ(N), and an orthonormal basis

(e1, . . . , em, em+1, . . . , em+k, em+k+1, . . . , ed)

of the euclidean space Rd with the property that TpΣ = span(e1, . . . , em) and T⊥p Σ =

span(em+1, . . . , em+k). Choose local orthonormal frames (ξi)
m
i=1 and (να)

k
α=1 of TΣ and

NΣ respectively which extend the basis at p, that is, such that ξi(p) = ei for i = 1, . . . ,m
and να(p) = em+α for α = 1, . . . ,k. With a slight abuse of notation, we will sometimes
denote the linear subspace Rm × {0}× {0} by Rm and {0}×Rk × {0} by Rk.

Let r0 > 0 be such that all the conclusions from the previous paragraphs hold. For every
r ∈ (0, r0], translate and rescale the manifolds M and Σ, setting

Mr :=
M− p

r
, Σr :=

Σ− p

r
,

that is Mr = ιp,r(M) and Σr = ιp,r(Σ), where

ιp,r(x) :=
x− p

r
.

The manifolds Mr and Σr will be regarded as Riemannian submanifolds of Rd with the
induced euclidean metric. We will let

exr : B1 ⊂ T0Σr ' Rm → Σr

be the exponential map, and we will use the symbol ψp,r to denote the map

ψp,r := ι
−1
p,r ◦ exr.

Observe that ψp,r maps the euclidean ball B1(0) ⊂ Rm diffeomorphically onto the geodesic
ball Br(p) ⊂ Σ.

Remark 6.3.6. Observe that, since T0Mr = TpM = span(e1, . . . , em+k) for every r, the
ambient manifolds Mr converge, as r ↓ 0, to Rm+k × {0} in C3,β. For the same reason, the
Σr’s converge to Rm × {0}× {0} in C3,β and the exponential maps exr converge in C2,β to
the identity map of the ball B1 ⊂ Rm (cf. [DLS16b, Proposition A.4]).
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Definition 6.3.7. We define the blow-ups of N at p as the one-parameter family of maps
Np,r : B1 ⊂ T0Σr → AQ(R

d) indexed by r ∈ (0, r0] and given by

Np,r(y) :=
r
m
2 N(ψp,r(y))

‖N‖L2(Br(p))
=
r
m
2 N(p+ rexr(y))
‖N‖L2(Br(p))

. (6.125)

Observe that the maps Np,r are well defined because N is not vanishing in any ball Br(p)
with 0 < r 6 r0.

The next theorem is the anticipated convergence result for the blow-up maps.

Theorem 6.3.8. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing with η ◦N = 0. Assume p ∈ singQ(N).

Then, for any sequence Np,rj with rj ↓ 0, a subsequence, not relabeled, converges weakly in W1,2,
strongly in L2 and locally uniformly to a continuousQ-valued function Np : B1 ⊂ Rm → AQ(R

k)

such that:

(a) Np(0) = QJ0K and η ◦Np ≡ 0, but ‖Np‖L2(B1) = 1, and thus, in particular, Np is
non-trivial;

(b) Np is locally Dir-minimizing in B1;

(c) Np is µ-homogeneous, with µ = I0(p), the frequency of N at p defined in (6.64).

Remark 6.3.9. Any map Np which is the limit of a blow-up sequence Np,rj in the sense
specified above will be called a tangent map to N at p.

Proof. Let N and p be as in the statement. For any sequence rj ↓ 0, let us denote Mj := Mrj ,
Σj := Σrj , exj := exrj , ψj := ψp,rj and Nj := Np,rj in order to simplify the notation. We will
divide the proof into steps.

Step 1: boundedness in W1,2. Assume for the moment that j ∈ N is fixed. We start esti-
mating ‖Nj‖L2(B1). Changing coordinates x = ψj(y) in the integral, we compute explicitly

‖N‖2L2(Brj(p))
=

ˆ
Brj(p)

|N(x)|2 dHm(x)

= ‖N‖2L2(Brj(p))

ˆ
B1

|Nj(y)|
2 Jexj(y)dy,

(6.126)

and thus ˆ
B1

|Nj(y)|
2 Jexj(y)dy = 1 (6.127)

for every j. By the considerations in Remark 6.3.6, we can deduce that necessarily

1

2
6 ‖Nj‖2L2(B1) 6 2 (6.128)

when j is large enough.
Next, we bound the Dirichlet energy of the blow-up maps in B1. For any y ∈ B1 ⊂ T0Σj,

and for all i = 1, . . . ,m, let εi = εi(y) be the vector in T0Σj defined by

d(exj)|y · εi(y) = ξi(p+ rjexj(y)).
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We note that, when j ↑∞, εi converges to ei = ξi(p) uniformly in B1.
Again by changing variable x = ψj(y) in the integral, we compute:

Dir(N, Brj(p)) =
ˆ

Brj(p)

m∑
i=1

|DξiN(x)|2 dHm(x)

=
‖N‖2

L2(Brj(p))

r2j

ˆ
B1

m∑
i=1

|DεiNj(y)|
2 Jexj(y)dy.

(6.129)

On the other hand, using that N takes values in the normal bundle, we have the usual
estimate

Dir(N, Brj(p)) 6 DirNΣ(N, Brj(p)) +C0‖N‖
2
L2(Brj(p))

, (6.130)

for some positive geometric constant C0 = C0(A, A). From (6.129) and (6.130) we conclude
that for any j

ˆ
B1

m∑
i=1

|DεiNj(y)|
2 Jexj(y)dy 6

r2j DirNΣ(N, Brj(p))

‖N‖2
L2(Brj(p))

+C0r
2
j 6 C(1+ r

2
j ), (6.131)

because of the reverse Poincaré inequality (6.117). Thus, we conclude that the Dirichlet
energy of the blow-up maps in B1 is bounded:

Dir(Nj,B1) :=
ˆ
B1

m∑
i=1

|DeiNj|
2 dy 6 C. (6.132)

Step 2: convergence. The W1,2 bounds given by estimates (6.128) and (6.132), together
with Proposition 2.2.17, clearly imply the W1,2-weak and L2-strong convergence of a sub-
sequence in B1. We claim now that the Nj’s are locally Hölder equi-continuous. This is
an easy consequence of the Hölder estimate in (6.1) and of the reverse Poincaré inequality.
Indeed, for any 0 < θ < 1 and for any points y1,y2 ∈ Bθ one has the following:

G(Nj(y1),Nj(y2)) =
r
m
2

j

‖N‖L2(Brj(p))
G(N(p+ rjexj(y1)),N(p+ rjexj(y2)))

6
r
m
2

j

‖N‖L2(Brj(p))
[N]C0,α(Bθrj(p))

d(p+ rjexj(y1),p+ rjexj(y2))α

(6.1)
6 C

rj

‖N‖L2(Brj(p))

(
DirNΣ(N, Brj(p)) + (Λ+C0)|N‖2L2(Brj(p))

)1/2
|y1 − y2|

α

(6.117)
6 C(1+ rj)|y1 − y2|

α.

Hence, for every 0 < θ < 1 there exists C = C(θ) > 0 such that

[
Nj
]
C0,α(Bθ)

:= sup
y1,y2∈Bθ

G(Nj(y1),Nj(y2))
|y1 − y2|α

6 C (6.133)
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for all j. Since Nj(0) = QJ0K, the Nj’s are also locally uniformly bounded, hence the
Ascoli-Arzelà theorem implies that, up to extracting another subsequence if necessary, the
convergence is locally uniform, and the limit is a continuous Q-valued function Np : B1 ⊂
Rm → AQ(R

d).
Step 3: properties of the limit: proof of (a). It is immediate to see that η ◦Np ≡ 0. Indeed,

from the assumption that η ◦N ≡ 0 and the definition of the blow-up maps, we deduce
that η ◦Nj ≡ 0 for every j. Now, the Nj’s converge to Np locally uniformly, and thus

η ◦Np(y) = lim
j→∞η ◦Nj(y) = 0

for all y ∈ B1. With the same argument, using the pointwise convergence of Nj to Np and
the fact that Nj(0) = QJ0K for every j we conclude that Np(0) = QJ0K.

Nonetheless, the map Np is non-trivial. Indeed, since Nj → Np strongly in L2, estimate
(6.127) guarantees that:

‖Np‖2L2(B1) = lim
j→∞

ˆ
B1

|Nj(y)|
2 Jexj(y)dy = 1. (6.134)

Next, we see that Np(y) ∈ AQ(R
k) for every y ∈ B1. Indeed, considering the projection

N
(1)
p of Np onto the subspace Rm × {0}× {0} we easily infer that

ˆ
B1

|N
(1)
p (y)|2 dy =

ˆ
B1

Q∑
`=1

m∑
i=1

|〈N `
p (y), ei〉|2 dy

= lim
j→∞

ˆ
B1

Q∑
`=1

m∑
i=1

|〈N`j(y), ξi(p+ rjexj(y))〉|2 dy = 0,

because of the definition of Nj. Analogously, the projection N
(3)
p onto {0}× {0}×RK satis-

fies

ˆ
B1

|N
(3)
p (y)|2 dy =

ˆ
B1

Q∑
`=1

K∑
β=1

|〈N `
p (y), em+k+β〉|2 dy

= lim
j→∞

ˆ
B1

Q∑
`=1

K∑
β=1

|〈N`j(y),ηβ(p+ rjexj(y))〉|2 dy = 0,

where the ηβ’s are a local orthonormal frame of the normal bundle of M in Rd extending
the em+k+β’s in a neighborhood of p.

Step 4: harmonicity of the limit: proof of (b). We show now that Np is locally Dir-minimizing
in B1 and, moreover, that for every 0 < ρ < 1 the following identity holds true:

Dir(Np,Bρ) = lim inf
j→∞ Dir(Nj,Bρ). (6.135)

In order to obtain the proof of the above claim, we need to exploit the minimizing prop-
erty of the Jacobi Q-valued field N in order to deduce some crucial information on the
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blow-up sequence Nj. Fix j ∈N, and let u : B1 ⊂ T0Σj ' Rm → AQ(R
d) be any W1,2 map

such that u|∂B1 = Nj|∂B1 . Then, the map ũ ∈W1,2
(
Brj(p),AQ(R

d)
)

defined by

ũ(x) := r
−m
2

j ‖N‖L2(Brj(p))

(
u ◦ψ−1

j

)⊥
(x)

= r
−m
2

j ‖N‖L2(Brj(p))

Q∑
`=1

u

v
k∑
β=1

〈u` ◦ψ−1
j (x),νβ(x)〉νβ(x)

}

~

is a section of NΣ in Brj(p) such that ũ|∂Brj(p)
= N|∂Brj(p)

. By minimality, it follows then
that

Jac(N, Brj(p)) 6 Jac(ũ, Brj(p)). (6.136)

Standard computations show that (6.136) is equivalent to the condition

Fj(Nj) 6 Fj(u), (6.137)

where Fj(u) is the functional defined by

Fj(u) : =

ˆ
B1

Q∑
`=1

m∑
i=1

k∑
α=1

∣∣∣〈Dεiu`(y),να ◦ψj(y)〉+ rj〈u`(y), (Dξiνα −∇⊥ξiνα) ◦ψj(y)
∣∣∣2 Jexj(y)dy

− r2j

ˆ
B1

Q∑
`=1

(∣∣∣A ◦ψj(y) · (u`)⊥ψj(y)∣∣∣2 +R ◦ψj((u`)
⊥ψj(y) , (u`)⊥ψj(y))

)
Jexj(y)dy

= F
(1)
j (u) +F

(2)
j (u)

(6.138)

on the space of u ∈ W1,2
(
B1,AQ(Rd)

)
such that u|∂B1 = Nj|∂B1 . Note that the following

notation has been adopted in formula (6.128): (u`)⊥ψj(y) is the orthogonal projection of the
vector u`(y) onto T⊥ψj(y)Σ, given by

(u`)
⊥ψj(y) =

k∑
β=1

〈u`(y),νβ(ψj(y))〉νβ(ψj(y)).

Hence, one has

∣∣∣A ◦ψj(y) · (u`)⊥ψj(y)∣∣∣2 = m∑
i,h=1

∣∣∣∣∣∣
k∑
β=1

A
β
ih(ψj(y))〈u

`(y),νβ(ψj(y))〉

∣∣∣∣∣∣
2

,

with Aβih := 〈A(ξi, ξh),νβ〉, and

R ◦ψj((u`)
⊥ψj(y) , (u`)⊥ψj(y)) =

m∑
i=1

k∑
β,γ=1

Riiβγ(ψj(x))〈u`(y),νβ(ψj(y))〉〈u`(y),νγ(ψj(y))〉,

with Riiβγ := 〈R(ξi,νβ)νγ, ξi〉.
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Now, for every 0 < ρ < 1, set

Dρ := lim inf
j→∞ Dir(Nj,Bρ) = lim inf

j→∞
ˆ
Bρ

m∑
i=1

|DeiNj|
2 dy,

and suppose by contradiction that either Np is not Dir-minimizing in Bρ or Dir(Np,Bρ) <
Dρ

2 for some ρ. In any of the two situations, there exists a ρ0 > 0 such that for any ρ > ρ0
there exists a multiple valued map g ∈W1,2(Bρ,AQ(Rk)) with

g|∂Bρ = Np|∂Bρ and γρ := Dρ − Dir(g,Bρ) > 0. (6.139)

A simple application of Fatou’s lemma shows that for almost every ρ ∈ (0, 1) both the
quantities lim infjDir(Nj,∂Bρ) and lim infj ‖Nj‖2L2(∂Bρ) are finite:

ˆ 1

0

lim inf
j→∞ Dir(Nj,∂Bρ)dρ 6 lim inf

j→∞
ˆ 1

0

Dir(Nj,∂Bρ)dρ = lim inf
j→∞ Dir(Nj,B1) 6M <∞,

ˆ 1

0

lim inf
j→∞ ‖Nj‖2L2(∂Bρ) dρ 6 lim inf

j→∞
ˆ 1

0

‖Nj‖2L2(∂Bρ) dρ = lim
j→∞ ‖Nj‖2L2(Bρ) = ‖Np‖2L2(Bρ) 6 1.

Therefore, passing if necessary to a subsequence, we can fix a radius ρ > ρ0 such that

Dir(Np,∂Bρ) 6 lim
j→∞Dir(Nj,∂Bρ) 6M <∞ (6.140)

and
‖Np‖2L2(∂Bρ) 6 lim

j→∞ ‖Nj‖2L2(∂Bρ) 6 1. (6.141)

This allows us also to fix the corresponding map g satisfying the conditions in (6.139). The
strategy to complete the proof is now the following: we will use the map g to construct, for
every j, a competitor uj for the functional Fj, that is a map uj ∈ W1,2(B1,AQ(Rd)) with
uj|∂B1 = Nj|∂B1 . Then, we will show that if j is chosen sufficiently large then Fj(uj) <

Fj(Nj), thus contradicting (6.137) and, in turn, the minimality of N in Brj(p).
The construction of the maps uj is analogous to the one presented in [DLS11, Proposition

3.20]: we fix a number 0 < δ < ρ
2 to be suitably chosen later, and for every j ∈N we define

uj on B1 as follows:

uj(y) :=


g
(
ρy
ρ−δ

)
for y ∈ Bρ−δ,

hj(y) for y ∈ Bρ \Bρ−δ,

Nj(y) for y ∈ B1 \Bρ,

where the maps hj interpolate between g
(
ρy
ρ−δ

)
= Np

(
ρy
ρ−δ

)
∈ W1,2(∂Bρ−δ,AQ) and

Nj ∈ W1,2(∂Bρ,AQ). Observe that the existence of the hj’s is guaranteed by Proposition
5.1.1 (also cf. [DLS11, Lemma 2.15]).

2 Observe that the inequality
Dir(Np,Bρ) 6 Dρ

is guaranteed for every ρ because the Dirichlet functional is lower semi-continuous with respect to weak con-
vergence in W1,2.
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As anticipated, the goal is now to show that this map uj has less Fj energy than Nj
when j is big enough (and thus rj is suitably close to 0). We first note that uj differs
from Nj only on Bρ, therefore our analysis will be carried on this smaller ball only. Then,
fix a small number θ > 0, and recall that, in the limit as j ↑ ∞, the exponential maps
exj converge uniformly to the identity map of the unit ball in Rm, whereas the maps ψj
converge uniformly to the constant map identically equal to p. Hence, the first line in the
definition of Fj(uj) can be estimated by

F
(1)
j (uj)

∣∣
Bρ
6 (1+ θ)Dir(uj,Bρ) + θ‖uj‖2L2(Bρ) (6.142)

for all j > j0(θ). On the other hand, the definition of uj together with the estimate (5.3)
imply that

Dir(uj,Bρ) 6 Dir(uj,Bρ−δ) +Cδ
(
Dir(uj,∂Bρ−δ) + Dir(Nj,∂Bρ)

)
+
C

δ

ˆ
∂Bρ

G(uj,Nj)2

6 Dir(g,Bρ) +CδDir(Np,∂Bρ) +CδDir(Nj,∂Bρ) +
C

δ

ˆ
∂Bρ

G(Np,Nj)2

(6.143)

whereas

‖uj‖2L2(Bρ) = ‖uj‖
2
L2(Bρ−δ)

+ ‖uj‖2L2(Bρ\Bρ−δ)
6 ‖g‖2L2(Bρ) + ‖hj‖

2
L2(Bρ\Bρ−δ)

(5.2)
6 ‖g‖2L2(Bρ) +Cδ

(
‖Np‖2L2(∂Bρ) + ‖Nj‖

2
L2(∂Bρ)

)
(6.141)
6 ‖g‖2L2(Bρ) + 3Cδ.

(6.144)

Concerning the second term in the functional Fj, it is easy to compute that

F
(2)
j (uj)

∣∣
Bρ
6 F

(2)
j (Nj)

∣∣
Bρ

+Cr2j

(ˆ
Bρ

|Nj|
2 dy

) 1
2
(ˆ

Bρ

G(uj,Nj)2 dy

) 1
2

+Cr2j

ˆ
Bρ

G(uj,Nj)2 dy

6 F
(2)
j (Nj)

∣∣
Bρ

+Cr2j ,

(6.145)

because the L2 norms of both the maps uj and Nj are uniformly bounded in j.

We can finally close the argument. Choose δ such that 4Cδ(M+ 1) 6 γρ, whereM and γρ
are the constants in (6.140) and (6.139) respectively. Invoking (6.140) and using the uniform
convergence of Nj to Np, from (6.143) follows

Dir(uj,Bρ) 6 Dρ − γρ +CδM+Cδ(M+ 1) +
C

δ

ˆ
∂Bρ

G(Np,Nj)2

6 Dρ −
γρ

2
+
C

δ

ˆ
∂Bρ

G(Np,Nj)2 6 Dρ −
γρ

4

(6.146)
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whenever j is sufficiently large. A suitable choice of the parameter θ in (6.142) depending
on γρ, Dρ and ‖g‖L2(Bρ) allows to conclude that for j big enough (depending on the same
quantities):

F
(1)
j (uj)

∣∣
Bρ
6 Dρ −

γρ

8

6 Dir(Nj,Bρ) −
γρ

16

6 F
(1)
j (Nj)

∣∣
Bρ

−
γρ

32
.

(6.147)

Observe that in the last inequality we have used again that the manifolds Σj are becoming
more and more flat in the limit j ↑ ∞, and also that the projection of the Nj’s on the
orthogonal complement to Rk is vanishing in an L2 sense in the same limit. Now, summing
(6.145) and (6.147), we conclude:

Frj(uj) 6 Frj(Nj) −
γρ

32
+Cr2j . (6.148)

The desired contradiction is immediately obtained by choosing j so big that Cr2j 6
γρ
64 .

Step 5: homogeneity of the limit: proof of (c). We conclude the proof of the theorem showing
that the limit map Np admits a homogeneous extension to the whole Rm. In other words,
the goal is to show that

Np

(
ρy

|y|

)
=

(
ρ

|y|

)µ
Np(y)

for all y ∈ B1 \ {0}, for all 0 < ρ < 1, and with µ = I0(p).
The strategy is to take advantage of [DLS11, Corollary 3.16]: since Np is Dir-minimizing,

in order to prove that it is homogeneous it suffices to show that its frequency function at
the origin y = 0 is constant. Hence, we set for 0 < ρ < 1:

I (ρ) :=
ρD(ρ)

H (ρ)
, (6.149)

where

D(ρ) := Dir(Np,Bρ) =
ˆ
Bρ

|DNp|
2 dy =

ˆ
Bρ

Q∑
`=1

m∑
i=1

k∑
α=1

|〈DeiN
`
p , em+α〉|2 dy, (6.150)

and

H (ρ) :=

ˆ
∂Bρ

|Np|
2 dy. (6.151)

We first observe that I (ρ) is well defined for all ρ ∈ (0, 1). Indeed, if there is ρ0 such that
H (ρ0) = 0, then by minimality it must be Np ≡ QJ0K in Bρ0 . On the other hand, the unique
continuation property of Dir-minimizers (cf. [DLS16a, Lemma 7.1]) would then imply that
Np ≡ QJ0K in the whole B1, which in turn contradicts the fact that ‖Np‖L2(B1) = 1. In
other words, this shows that the origin is singular for Np.
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Extract, if necessary, a subsequence such that the lim inf in (6.135) can be replaced by a
lim, and compute:

I (ρ) =
ρ
´
Bρ

∑Q
`=1

∑m
i=1

∑k
α=1 |〈DeiN `

p , em+α〉|2 dy´
∂Bρ

|Np|2 dy

= lim
j→∞

ρ
´
Bρ

∑Q
`=1

∑m
i=1

∑k
α=1 |〈DεiN`j ,να ◦ψj〉|2 Jexj(y)dy´

∂Bρ
|Nj|2 Jexj(y)dy

= lim
j→∞

ρrjDirNΣ(N, Bρrj(p))´
∂Bρrj(p)

|N|2 dHm−1

= lim
j→∞

ρrjD(ρrj)

H(ρrj)
= lim
j→∞ I(ρrj) = I0,

(6.152)

where we have used (modifications of) formulae (6.126), (6.129) and finally (6.112).
As already anticipated, [DLS11, Corollary 3.16] implies now that Np is a µ-homogeneous

Q-valued function, with µ = I0(p) > 0.

Remark 6.3.10. Note that from the proof of Theorem 6.3.8 it follows that the convergence
of (a subsequence of) the Np,rj to Np is actually strong in W1,2 in any ball Bρ ⊂ B1 (cf.
formula (6.135)). This stronger convergence has been in fact tacitly used in deriving (6.152).

6.4 the closing argument: proof of theorem 6.0.3

Proposition 6.4.1. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. Assume Ω ⊂ Σm is connected. Then:

(i) either N = QJζK with ζ : Ω→ Rd a classical Jacobi field,

(ii) or the set DQ(N) of multiplicity Q points is a relatively closed proper subset of Ω consisting
of isolated points if m = 2 and with dimH(DQ(N)) 6 m− 2 if m > 3.

Proof. Assume without loss of generality that η ◦N = 0, so that p ∈ DQ(N) if and only if
N(p) = QJ0K. We first observe the following fact: the set DQ(N) is relatively closed in Ω.
This can be rapidly seen writing DQ(N) = σ−1({Q}), where σ : Ω→N is the function given
by

σ(x) := card(spt(N(x))), (6.153)

and noticing that, since N is continuous, σ is lower semi-continuous.
We will now treat the two cases m = 2 and m > 3 separately.
Case 1: dimensionm = 2. In this case, we claim that the points p ∈ singQ(N) are isolated in

DQ(N). Assume by contradiction that this is not the case, and let p ∈ singQ(N) be the limit
of a sequence {xj}

∞
j=1 of points in DQ(N). Set rj := d(xj,p). Since rj ↓ 0, by Theorem 6.3.8

the corresponding blow-up familyNp,rj converges uniformly, up to a subsequence, to a Dir-
minimizing, µ-homogeneous tangent map Np : B1 ⊂ R2 → AQ(R

k) with ‖Np‖L2(B1) = 1

and η ◦Np ≡ 0. Moreover, since each xj ∈ DQ(N), the points yj := ψ−1
p,rj(xj) are a sequence

of multiplicity Q points for the corresponding Np,rj in S1 = ∂B1: from this, we conclude
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that there exists w ∈ S1 such that Np(w) = QJ0K. Up to rotations, we can assume that
w = e1. Denote z := 1

2e1, and observe that, since Np is homogeneous, necessarily Np(z) =

QJ0K. Consider now the blow-up of Np at z: by [DLS11, Lemma 3.24], any tangent map h
to Np at z is a non-trivial β-homogeneous Dir-minimizer, with β equal to the frequency of
Np at z, and such that h(x1, x2) = ĥ(x2), for some function ĥ : R → AQ(R

k) which is Dir-
minimizing on every interval. Moreover, since Dir(h,B1) > 0, it must also be Dir(ĥ, I) > 0,
where I := [−1, 1]. On the other hand, every 1-dimensional Dir-minimizer ĥ is affine, that
is it has the form ĥ(x) =

∑Q
i=1JLi(x)K, where the Li’s are affine functions such that either

Li ≡ Lj or Li(x) 6= Lj(x) for every x ∈ R, for any i, j. Now, since ĥ(0) = QJ0K, we deduce
that ĥ = QJLK; on the other hand, η ◦ h ≡ 0, and thus necessarily L = 0. This contradicts
Dir(ĥ, I) > 0.

Hence, if p ∈ DQ(N) then either p is isolated or, in case p is a regular multiplicityQ point,
there exists an open neighborhood V of p such that V ⊂ DQ(N). From this we deduce that
regQ(N) is both open and closed in Ω. Since Ω is connected, then either regQ(N) = Ω,
and N ≡ QJ0K, or regQ(N) = ∅, and DQ(N) = singQ(N) consists of isolated points. This
completes the proof in the dimension m = 2 case.

Case 2: dimension m > 3. In this case, the goal is to show that Hs(DQ(N)) = 0 for every
s > m−2, unlessN ≡ QJ0K. Consider the set singQ(N). We first claim that Hs(singQ(N)) =

0 for every s > m− 2. Suppose by contradiction that this is not the case. Then, by [Sim83b,
Theorem 3.6 (2)], there exist s > m− 2 and a subset F ⊂ singQ(N) with Hs(F) > 0 such that
every point p ∈ F is a point of positive upper s-density for the measure Hs∞, that is

lim sup
r→0

Hs∞(singQ(N)∩Br(p))
rs

> 0 for every p ∈ F. (6.154)

Here, the symbol Hs∞ denotes as usual the s-dimensional Hausdorff pre-measure, defined
by

Hs∞(A) := inf

{ ∞∑
h=1

ωs

(
diam(Eh)

2

)s
: A ⊂

∞⋃
h=1

Eh

}
,

with ωs := π
s
2

Γ( s2+1)
, where Γ(s) is the usual Gamma function. Among the properties of

Hs∞, it is worth recalling now that it is upper semi-continuous with respect to Hausdorff
convergence of compact sets: in other words, if Kj is a sequence of compact sets converging
to K in the sense of Hausdorff, then

lim sup
j→∞ Hs∞(Kj) 6 Hs∞(K). (6.155)

Now, (6.154) together with Theorem 6.3.8 imply the existence of a point p ∈ singQ(N) and
a sequence of radii rj ↓ 0 such that the blow-up maps Nj = Np,2rj converge uniformly to a
Dir-minimizing homogeneous Q-valued function Np : B1 ⊂ Rm → AQ(R

k) with η ◦Np ≡
0 and ‖Np‖L2(B1) = 1, and furthermore such that

lim sup
j→∞

Hs∞(singQ(N)∩Brj(p))
rsj

> 0, (6.156)
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or, equivalently,
lim sup
j→∞ Hs∞(singQ(Nj)∩B 12 ) > 0, (6.157)

where B 1
2
⊂ T0Σj ' Rm. Set Kj := singQ(Nj) ∩ B 12 , and observe that, since Nj converge

to Np uniformly, the compact sets Kj converge in the sense of Hausdorff to a compact set
K ⊂ DQ(Np). From the semi-continuity property (6.155), we can therefore deduce that:

Hs(DQ(Np)) > Hs∞(DQ(Np)) > Hs∞(K)
> lim sup

j→∞ Hs∞(Kj) > lim sup
j→∞ Hs∞(singQ(Nj)∩B 12 ) > 0.

(6.158)

Since s > m− 2, [DLS11, Proposition 3.22] implies that this can happen only if Np ≡ QJζK,
where ζ : B1 → Rk is a harmonic function. Since η ◦Np ≡ 0, then it must be Np ≡ QJ0K,
which in turns contradicts the fact that ‖Np‖L2(B1) = 1.

We can therefore conclude that necessarily Hs(singQ(N)) = 0 for every s > m− 2. Since
singQ(N) = ∂DQ(N) ∩Ω, either DQ(N) = Ω and N ≡ QJ0K, or DQ(N) = singQ(N). The
proof is complete.

Remark 6.4.2. As a corollary of Proposition 6.4.1, one easily deduces the following: if N is
a Jac-minimizing Q-valued vector field in the open and connected subset Ω ⊂ Σ which is
not of the form N = QJζK for some classical Jacobi field ζ, then DQ(N) = singQ(N), that is
all multiplicity Q points are singular.

We have now all the tools that are needed to prove Theorem 6.0.3.

Proof of Theorem 6.0.3. Since our manifolds are always assumed to be second-countable spaces,
Ω can have at most countably many connected components, and these connected compo-
nents are open. Hence, there is no loss of generality in assuming that Ω itself is connected:
in the general case, we would just work on each connected component separately.

The fact that sing(N) is a relatively closed set in Ω (whereas reg(N) is open) is an imme-
diate consequence of Definition 6.0.2. Let σ be the function defined in (6.153). If x ∈ Ω is
a regular point, then it is clear that σ is continuous at x. On the other hand, assume x is a
point of continuity for σ, and write N(x) =

∑J
j=1 kjJP

jK, where the kj’s are integers such
that

∑J
j=1 kj = Q, each Pj ∈ T⊥x Σ and Pi 6= Pj if i 6= j. Since the target of σ is discrete,

the fact that σ is continuous at x implies that in fact σ(z) = J for all z in a neighborhood
U of x. Hence, since N is continuous, there exists a neighborhood x ∈ V ⊂ U such that
the map N|V admits a continuous decomposition N(z) =

∑J
j=1 kjJN

j(z)K, where each map
Nj : V → NΣ is a classical Jacobi field. Therefore, x ∈ reg(N).

The above argument implies that sing(N) coincides with the set of points where σ is dis-
continuous. The proof that its Hausdorff dimension cannot exceed m− 2 will be obtained
via induction on Q. If Q = 1, there is nothing to prove, since single-valued Jac-minimizers
are classical Jacobi fields. Assume now that the theorem holds for every Q∗-valued Jac-
minimizer with Q∗ < Q and we prove it for N. If N ≡ QJζK with ζ a classical Jacobi field,
then sing(N) is empty, and the theorem follows. Assume, therefore, this is not the case.
By Proposition 6.4.1, the set DQ(N) = singQ(N) is a closed subset of Ω which is at most
countable if m = 2 and has Hausdorff dimension at most m− 2 if m > 3. Consider now
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the open set Ω ′ := Ω \ DQ(N). Since N is continuous, we can find countably many open
geodesic balls Bj such that Ω ′ =

⋃
j Bj and N|Bj can be written as the superposition of two

multiple-valued functions:

N|Bj = JNj,Q1K+ JNj,Q2K with Q1 < Q,Q2 < Q (6.159)

and
spt(Nj,Q1(x))∩ spt(Nj,Q2(x)) = ∅ for every x ∈ Bj. (6.160)

From this last condition, it follows that

sing(N)∩Bj = sing(Nj,Q1)∪ sing(Nj,Q2). (6.161)

The maps Nj,Q1 and Nj,Q2 are both Jac-minimizing, and thus, by inductive hypothesis,
their singular set has Hausdorff dimension at most m − 2, and is at most countable if
m = 2. Finally:

sing(N) = singQ(N)∪
∞⋃
j=1

(
sing(Nj,Q1)∪ sing(Nj,Q2)

)
(6.162)

also has Hausdorff dimension at most m− 2 and is at most countable if m = 2.





7 U N I Q U E N E S S O F TA N G E N T M A P S I N
D I M E N S I O N 2

This last chapter dedicated to the theory of multiple-valued Jacobi fields is devoted to
the proof of the following result.

Theorem 7.0.1 (Uniqueness of the tangent map at collapsed singularities). Let Σ ↪→ M be
as in Assumption 4.1.1, with m = dimΣ = 2. Let N ∈ Γ1,2

Q (NΩ) be Jac-minimizing in the open
set Ω ⊂ Σ2, and assume, without loss of generality, that η ◦N ≡ 0. Let p ∈ Ω be such that
N(p) = QJ0K but N does not vanish in a neighborhood of p. Then, there is a unique tangent map
Np to N at p (that is, the blow-up family Np,r defined in (6.125) converges locally uniformly to
Np).

Theorem 7.0.1 has the following natural corollary.

Corollary 7.0.2. Let Ω be an open subset of the two-dimensional manifold Σ2 ↪→M as in Assump-
tion 4.1.1, and let N ∈ Γ1,2

Q (NΩ) be Jac-minimizing. Then, for every p ∈ Ω there exists a unique
tangent map Np to N at p.

Proof. The proof is by induction on Q > 1. If Q = 1 then the result is trivial, since N is a
classical Jacobi field. Let us then assume that the claim holds true for every Q ′ < Q, and
we prove that it holds true for Q as well. Let N ∈ Γ1,2

Q (NΩ) be Jac-minimizing, and let
p ∈ Ω. Without loss of generality, assume that η ◦N ≡ 0. If diam(N(p)) > 0, then, since N
is continuous, there exists a neighborhood U of p in Ω such that N|U = JN1K+ JN2K, where
each Ni ∈ Γ1,2

Qi
(NU) is Jac-minimizing, Qi < Q for i = 1, 2 and spt(N1(x))∩ spt(N2(x)) = ∅

for every x ∈ U. By induction hypothesis, N1 and N2 have unique tangent maps N 1
p and

N 2
p at p respectively. Hence, Np := JN 1

p K+ JN 2
p K is the unique tangent map to N at p.

If, on the other hand, diam(N(p)) = 0, N(p) = QJ0K because of the hypotheses on N. If
N ≡ QJ0K in a neighborhood of p, then the unique tangent map to N at p is Np ≡ QJ0K. If
N does not vanish identically in any neighborhood of p, then the tangent map Np is unique
by Theorem 7.0.1. In either case, this completes the proof of the corollary.

It only remains to prove Theorem 7.0.1. The plan is the following: first, in Section 7.1
we show that under the assumptions of Theorem 7.0.1 the frequency function Ir = IN,p(r)

converges, as r ↓ 0, to its limit I0 = I0(p) > 0 with rate rβ for some β > 0 (cf. Proposition
7.1.1 below). Then, we will use this key fact to deduce Theorem 7.0.1 in Section 7.2.

7.1 decay of the frequency function

The main result of this section is the following proposition. Recall the definitions of the
energy function D(r), the height function H(r) and the frequency function I(r).

129
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Proposition 7.1.1. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing in Ω ⊂ Σ2, and let p be such that

N(p) = QJ0K but N does not vanish in a neighborhood of p. Let I0 := I0(p) > 0 be the frequency of
N at p (which exists and is strictly positive by Proposition 6.2.10). Then, there are β,C,D0,H0 > 0
such that for every r sufficiently small one has

|I(r) − I0|+
∣∣∣∣ H(r)

r2I0+1
−H0

∣∣∣∣+ ∣∣∣∣D(r)

r2I0
−D0

∣∣∣∣ 6 Crβ . (7.1)

We will need a preliminary lemma.

Lemma 7.1.2. Let N and p be as in Proposition 7.1.1. For every µ > 0 there exists β0 = β0(µ)

and C = C(µ) such that for every 0 < β < β0 the inequality

D(r) 6
r

2(2µ+β)
D ′(r) +

µ(µ+β)

r(2µ+β)
H(r) +CµrD(r) (7.2)

holds true for every r small enough.

Proof. Let r0 < inj(Σ) be a radius such that I(r) = IN,p(r) is well defined and bounded in
Br(p) for every 0 < r < min{r0, dist(p,∂Ω)}. Recall that for every 0 < r < min{r0, dist(p,∂Ω)}

the exponential map expp defines a diffeomorphism expp : Dr → Br(p), where Dr is the
disk of radius r in R2 ' C. Let g := N◦expp : Dr → AQ(R

d), and let f ∈W1,2(Dr,AQ(Rd))
be the “harmonic extension” of g|rS1 already considered in Section 5.1. In particular, let
ϕ(θ) := g(reiθ), and let ϕ =

∑P
`=1Jϕ`K be an irreducible decomposition of ϕ in maps

ϕ` ∈W1,2(S1,AQ`(R
d)) such that for some γ` ∈W1,2(S1, Rd)

ϕ(θ) =

P∑
`=1

Q`−1∑
m=0

s
γ`

(
θ+ 2πm

Q`

){
.

Such an irreducible decomposition exists by [DLS11, Proposition 1.5]. Then, if the Fourier
expansions of the γ`’s are given by

γ`(θ) =
a`,0
2

+

∞∑
n=1

rn (a`,n cos(nθ) + b`,n sin(nθ)) ,

we consider their harmonic extensions to Dr, namely the functions defined by

ζ`(ρ, θ) :=
a`,0
2

+

∞∑
n=1

ρn (a`,n cos(nθ) + b`,n sin(nθ)) for every 0 < ρ 6 r ,

and finally we let

f(ρeiθ) :=

P∑
`=1

Q∑̀
m=0

s
ζ`

(
ρ
1/Q` ,

θ+ 2πm

Q`

){
for ρeiθ ∈ Dr .
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Recalling [DLS11, Lemma 3.12], one can explicitly compute the following quantities:

ˆ
Dr

|Df|2 =

P∑
`=1

Dir(ζ`, Dr) = π

P∑
`=1

∞∑
n=1

r2nn
(
|a`,n|

2 + |b`,n|
2
)

, (7.3)

ˆ
rS1

|∂τf|
2 =

P∑
`=1

Dir(ϕ`, rS1) =
1

r

P∑
`=1

1

Q`

ˆ 2π

0

|γ ′`(α)|
2 dα = π

P∑
`=1

∞∑
n=1

r2n−1n2

Q`

(
|a`,n|

2 + |b`,n|
2
)

,

(7.4)
ˆ
rS1

|f|2 = r

P∑
`=1

Q`

ˆ 2π

0

|γ`(α)|
2 dα = π

P∑
`=1

Q`

(
r|a`,0|

2

2
+

∞∑
n=1

r2n+1
(
|a`,n|

2 + |b`,n|
2
))

,

(7.5)

where ∂τ denotes the tangential derivative along rS1.
Now, it is an elementary fact (cf. [DLS11, proof of Proposition 5.2]) that for any µ > 0

there exists β0 = β0(µ) > 0 such that for every 0 < β < β0 it holds

(2µ+β)n 6
n2

Q`
+ µ(µ+β)Q` for every n ∈N and for every Q` . (7.6)

Multiplying (7.6) by πr2n
(
|a`,n|

2 + |b`,n|
2
)

and summing over n and `, we obtain from
(7.3), (7.4), and (7.5) that for every µ > 0 there exists β0 > 0 such that for every 0 < β < β0

(2µ+β)

ˆ
Dr

|Df|2 6 r
ˆ
rS1

|∂τg|
2 +

µ(µ+β)

r

ˆ
rS1

|g|2 . (7.7)

Now, let u := f ◦ exp−1
p : Br(p)→ AQ(R

d), so that the orthogonal projection u⊥ is a map
in Γ1,2

Q (NBr(p)) with u⊥
∣∣
rS1

= N|rS1 . The minimality of N then implies that

Jac(N, Br(p)) 6 Jac(u⊥, Br(p))

6 Dir(u⊥, Br(p)) +C0
ˆ

Br(p)
|u|2

(5.51)
6 (1+ r)Dir(u, Br(p)) +

C

r

ˆ
Br(p)

|u|2 ,

from which in turn follows

D(r) 6 (1+ r)Dir(u, Br(p)) +
C

r

ˆ
Br(p)

|u|2 +C0

ˆ
Br(p)

|N|2 .

Using that the metric of Σ in Br(p) is almost euclidean when r→ 0, we conclude that for
small r’s

D(r) 6 (1+Cr)

[
(1+ r)Dir(f, Dr) +

C

r

ˆ
Dr

|f|2
]
+C0

ˆ
Br(p)

|N|2 .

Now, by definition of f one has
ˆ

Dr

|f|2 6 Cr
ˆ
rS1

|g|2 6 Cr(1+Cr)
ˆ
∂Br(p)

|N|2 . (7.8)
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Combining (7.8) with (7.7), we deduce that for every µ > 0 there exists β0 = β0(µ) such
that for every 0 < β < β0

D(r) 6 (1+Cr)

[
r

2µ+β

ˆ
∂Br(p)

|∇⊥τN|2 +
µ(µ+β)

r(2µ+β)
H(r)

]
+CµH(r) +C0

ˆ
Br(p)

|N|2 . (7.9)

Next, observe that the inner variation formula (6.70) together with the Poincaré inequality
(6.96) imply that in dimension m = 2∣∣∣∣ˆ

∂Br(p)
|∇⊥τN|2 −

D ′(r)
2

∣∣∣∣ 6 CrD(r) ,

and thus, since, again by the Poincaré inequality
ˆ

Br(p)
|N|2 6 Cr2D(r) ,

equation (7.9) reads

D(r) 6 (1+Cr)

[
r

2(2µ+β)
D ′(r) +

µ(µ+β)

r(2µ+β)
H(r)

]
+CµH(r) +Cµr

2D(r) . (7.10)

Finally, divide by 1+Cr and use that H(r) 6 2
I0
rD(r) for small r’s to finally conclude the

validity of (7.2).

Proof of Proposition 7.1.1. Let N and p be as in the statement, and fix a suitably small ra-
dius r0 > 0. In particular, take r0 < min{inj(Σ), dist(p,∂Ω)} such that the conclusions of
Proposition 6.2.10 hold. Recall from the aforementioned proposition that there exists λ > 0
such that the function r ∈ (0, r0) 7→ eλrI(r) is monotone non-decreasing. As an immediate
corollary we deduce that when r is small enough

I(r) − I0 > −Cr . (7.11)

The goal now is to get the upper bound. In order to do this, first we exploit the variation
estimates deduced in Lemma 6.2.13 to compute again the derivative

I ′(r) =
D(r)

H(r)
+
rD ′(r)
H(r)

−
rD(r)H ′(r)

H(r)2

=
rD ′(r)
H(r)

− 2
rD(r)E(r)

H(r)2
−
rD(r)

H(r)2
E(6.71)(r)

=
rD ′(r)
H(r)

− 2
rD(r)2

H(r)2
−
rD(r)

H(r)2
(
E(6.71)(r) + 2E(6.69)(r)

)
,

where

|E(6.71)(r)|
(6.71)
6 C0rH(r) , (7.12)

|E(6.69)(r)| = |D(r) − E(r)|
(6.69),(6.96)
6 C0r

2D(r) . (7.13)
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Now, apply the estimate (7.2) from the previous lemma with µ = I0 to deduce that for
every 0 < β < β0(I0) one has

rD ′(r)
H(r)

− 2
rD(r)2

H(r)2
>
2

r
(I0 +β− I(r)) (I(r) − I0) − 2CI0(2I0 +β)I(r) ,

so that, recalling that I(r) 6 C, we can finally estimate

I ′(r) >
2

r
(I0 +β− I(r)) (I(r) − I0) −CI(r) . (7.14)

Hence, if we fix 0 < β < β0(I0) we easily conclude

d

dr

[
I(r) − I0
rβ

]
=

I ′(r)
rβ

−β
I(r) − I0
rβ+1

>
1

rβ+1
(2I0 +β− 2I(r)) (I(r) − I0) −

C

rβ
> −

C

rβ
,

(7.15)

for all radii 0 < r < r0(β).
Integrating in [r, r0] we conclude

I(r0) − I0
r
β
0

−
I(r) − I0
rβ

> −Cr1−β0 , (7.16)

that is
I(r) − I0 6 Crβ . (7.17)

This concludes the proof of
|I(r) − I0| 6 Crβ (7.18)

To get the other estimates, compute

d

dr

[
log
(

H(r)

r2I0+1

)]
=

H ′(r)
H(r)

−
2I0 + 1

r
=
2E(r)
H(r)

+
1

H(r)
E(6.71)(r) −

2I0
r

=
2

r
(I(r) − I0) +

1

H(r)

(
E(6.71)(r) + 2E(6.69)(r)

)
,

with E(6.71)(r) and E(6.69)(r) satisfying the same bounds as in (7.12), (7.13). Using that I(r) 6
C, this allows to conclude that

2

r
(I(r) − I0) −Cr 6

d

dr

[
log
(

H(r)

r2I0+1

)]
6
2

r
(I(r) − I0) +Cr . (7.19)

After applying (7.18), integrating on 0 < s < r < r0 and taking exponentials, we therefore
obtain the estimate

e−Cβ(r
β−sβ) 6

H(r)

r2I0+1
s2I0+1

H(s)
6 eCβ(r

β−sβ) . (7.20)

In particular, (7.20) implies that the map

r ∈ (0, r0) 7→
H(r)e−Cβr

β

r2I0+1
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is monotone non-increasing. In turn, from this immediately follows the existence of the
limit

H0 := lim
r→0

H(r)

r2I0+1
.

The rate of convergence ∣∣∣∣ H(r)

r2I0+1
−H0

∣∣∣∣ 6 Crβ for r small enough

is also a standard consequence of (7.20).
Finally, we set D0 := I0 ·H0 and immediately obtain∣∣∣∣D(r)

r2I0
−D0

∣∣∣∣ = ∣∣∣∣I(r) H(r)

r2I0+1
− I0 ·H0

∣∣∣∣ 6 |I(r) − I0|
H(r)

r2I0+1
+ I0

∣∣∣∣ H(r)

r2I0+1
−H0

∣∣∣∣ (7.18),(7.20)
6 Crβ .

(7.21)

7.2 uniqueness of the tangent map at collapsed singular-
ities

We are now ready to prove Theorem 7.0.1.

Proof of Theorem 7.0.1. Let N and p be as in the statement, and recall the definition of the
blow-up maps Nr = Np,r given in (6.125) (together with the definitions of the maps exr
and ψr = ψp,r used in there). We first remark that by the Poincaré inequality (6.96) and
the reverse Poincaré inequality (6.117) any convergence result for the maps Nr as r ↓ 0 is
equivalent to the same result obtained for the maps

Ñr(y) :=
r
m−2
2 N(ψr(y))√

D(r)
.

Let us assume without loss of generality that D0 = 1. Then, in dimension m = 2 the
decay estimate (7.21) implies that for r ↓ 0

Ñr(z) = r
−I0N(ψr(z))

(
1+ o(r

β/2)
)

, (7.22)

and therefore in order to show the existence of a uniform limit for the maps Ñr in D1

it suffices to show the existence of a uniform limit for the maps ũr(z) := r−I0N(ψr(z)).
Furthermore, if we write z = ρeiθ ∈ D1 we see immediately that

ũr(ρe
iθ) = r−I0N(ψr(ρe

iθ)) = ρI0(ρr)−I0N(ψρr(e
iθ)) = ρI0ũρr(e

iθ) ,

and thus our goal will be achieved if we show uniform convergence of the maps ũr|S1 . For
the sake of notational simplicity we will then remove the tilde, call w = eiθ the variable on
S1 and consider the one-parameter family of maps ur : S1 → AQ(R

d) given by

ur(w) = r
−I0N(ψr(w)) .
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We then fix r
2 6 s 6 r and compute

ˆ
S1

G(ur,us)2 dH1 =
ˆ

S1
G

(
N(ψr(w))

rI0
,
N(ψs(w))

sI0

)2
dH1(w)

6
ˆ

S1

Q∑
`=1

(ˆ r

s

∣∣∣∣ ddt
(
N`(ψt(w))

tI0

)∣∣∣∣ dt
)2

dH1(w)

6 (r− s)

ˆ
S1

ˆ r

s

Q∑
`=1

∣∣∣∣ ddt
(
N`(ψt(w))

tI0

)∣∣∣∣2 dtdH1(w) .

(7.23)

Note that in the above computation we have used [DLS11, Proposition 1.2] and the fact that
the map t ∈ (s, r) 7→ N(ψt(w))

tI0
is in W1,2 for a.e. w ∈ S1.

Now, we have

d

dt

(
N`(ψt(w))

tI0

)
=
DN`(ψt(w)) · d expp

∣∣∣
tw

(w)

tI0
− I0

N`(ψt(w))

tI0+1
,

and thus∣∣∣∣ ddt
(
N`(ψt(w))

tI0

)∣∣∣∣2 6 |∇⊥r̂ N`(ψt(w))|2

t2I0
+ I20

|N`(ψt(w))|
2

t2I0+2
− 2I0

〈∇⊥r̂ N`(ψt(w)),N`(ψt(w))
t2I0+1

+ Err ,

where
Err 6 Ct1−2I0 |∇⊥r̂ N`(ψt(w))|2 +Ct−2I0 |N`(ψt(w))|2

for small t.
Inserting in (7.23) and changing variable x = ψt(w) we easily obtain from the variation

estimates in Lemma 6.2.13:ˆ
S1

G(ur,us)2dH1 6(r− s)(1+Cr)
ˆ r

s

G(t)

t2I0+1
+ I20

H(t)

t2I0+3
− 2I0

E(t)
t2I0+2

dt

+C(r− s)

ˆ r

s

G(t)

t2I0
+

H(t)

t2I0+1
dt

=(r− s)(1+Cr)

ˆ r

s

D ′(t)
2t2I0+1

+ I20
H(t)

t2I0+3
− 2I0

D(t)

t2I0+2
dt︸ ︷︷ ︸

=:A

+C(r− s)

ˆ r

s

G(t)

t2I0
+

H(t)

t2I0+1
dt︸ ︷︷ ︸

=:E1

+ (r− s)(1+Cr)

ˆ r

s

E(6.70)(t)

t2I0+1
+

E(6.69)(t)

t2I0+2
dt︸ ︷︷ ︸

=:E2

.

(7.24)

Now, we have

A = (r− s)(1+Cr)

ˆ r

s

1

2t

(
D(t)

t2I0

) ′
+ I20

H(t)

t2I0+3
− I0

D(t)

t2I0+2
dt

= (r− s)(1+Cr)

ˆ r

s

1

2t

(
D(t)

t2I0

) ′
+ I0

H(t)

t2I0+3
(I0 − I(t)) dt ,

(7.25)
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so that, for s = r
2

A 6 C

∣∣∣∣D(r)

r2I0
−

D(r/2)

(r/2)2I0

∣∣∣∣+C ˆ r

r/2

I0 − I(t)
t

dt
(7.21),(7.18)
6 Crβ . (7.26)

For what concerns the error terms, we can use the variation estimates (6.69) and (6.70)
together with the Poincaré inequality (6.96) to control

|E2| 6 C
r

2

ˆ r

r/2

D(t)

t2I0
dt

(7.21)
6 Cr2 , (7.27)

and

|E1| 6 C
r

2

ˆ r

r/2

D ′(t)
t2I0

+
|E(6.70)(t)|

t2I0
+

H(t)

t2I0+1
dt

6 Cr1−2I0 |D(r) − D(r/2)|+Cr2
ˆ r

r/2

D(t)

t2I0
dt+Cr

ˆ r

r/2

H(t)

t2I0+1
dt

(7.21),(7.20)
6 Cr1+β .

(7.28)

Plugging (7.26), (7.27) and (7.28) in (7.24) we conclude that
ˆ

S1
G(ur,u r

2
)2 dH1 6 Crβ . (7.29)

With an elementary dyadic argument analogous to [DLS11, proof of Theorem 5.3], we
conclude that the family ur is L2-Cauchy. Since the ur’s are equi-Hölder (cf. (6.133)), this
suffices to conclude uniform convergence to a unique limit.



Part II

Multiple-valued sections of vector
bundles and applications
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8 M U LT I P L E -VA L U E D S E C T I O N S O F V E C TO R
B U N D L E S

In this chapter we introduce the notion of Q-multisection of an abstract vector bundle
over a Riemannian manifold, developing some ideas contained in the unpublished note
[All13] by W. Allard. The techniques contained in this chapter will be then applied in
Chapter 9 to provide a new proof of the reparametrization theorem for Lipschitz Q-valued
functions.

8.1 preliminary definitions

In what follows, Σ = Σm denotes an m-dimensional Riemannian manifold of class C1,
and E is an (m+n)-dimensional manifold which is the total space of a vector bundle Π : E→
Σ of rank n and class C1 over the base manifold Σ. Following standard notations, we will
denote by Ep = Π−1({p}) the fiber over the base point p ∈ Σ. We will let {(Uα,Ψα)}α∈I be
a locally finite family of local trivializations of the bundle: thus, {Uα} is a locally finite open
covering of the manifold Σ, and

Ψα : Π
−1(Uα)→ Uα ×Rn

are differentiable maps satisfying:

(i) p1 ◦Ψα = Π|Π−1(Uα), where p1 : Uα ×Rn → Uα is the projection on the first factor;

(ii) for any α,β ∈ I with Uα ∩Uβ 6= ∅, there exists a differentiable map

ταβ : Uα ∩Uβ → GL(n, R)

with the property that

Ψα ◦Ψ−1
β (p, v) = (p, ταβ(p) · v) ∀p ∈ Uα ∩Uβ, ∀ v ∈ Rn.

Without loss of generality, we can assume that each open set Uα is also the domain of a
local chart ψα : Uα → Rm on Σ.

Let now Q be an integer, Q > 1. We adopt the convention that the set N of natural
numbers contains zero.

Definition 8.1.1 (Q-valued sections, Allard [All13]). Given a vector bundle Π : E → Σ as
above, and a subset B ⊂ Σ, a Q-multisection over B is a map

M : E→N (8.1)

with the property that ∑
ξ∈Ep

M(ξ) = Q for every p ∈ B. (8.2)
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Remark 8.1.2. If s : B→ E is a classical local section, then the map M : E→N defined by

M(ξ) :=

{
1, if there exists p ∈ B such that ξ = s(p),

0, otherwise
(8.3)

is evidently a 1-multisection over B, according to Definition 8.1.1. On the other hand, given
a 1-multisection M, condition (8.2) ensures that for every p ∈ B there exists a unique ξ ∈ Ep
such that M(ξ) > 0. If such an element ξ is denoted s(p), then the map p 7→ s(p) defines
a classical section of the bundle E over B. Hence, 1-multisections over a subset B are just
(possibly rough) sections over B in the classical sense.

The above Remark justifies the name that was adopted for the objects introduced in
Definition 8.1.1: Q-multisections are simply theQ-valued counterpart of classical sections of
a vector bundle. From a different point of view, we may say that Q-multisections generalize
Almgren’sQ-valued functions to vector bundle targets. Indeed, Q-valued functions defined
on a manifold Σ might be seen as Q-multisections of a trivial bundle over Σ, as specified in
the following remark.

Remark 8.1.3. Assume E is the trivial bundle of rank n over Σ, that is E = Σ×Rn and Π
is the projection on the first factor. Then, to any Q-multisection M over Σ it is possible to
associate the multiple-valued function uM : Σ→ AQ(R

n) defined by

uM(p) :=
∑
v∈Rn

M(p, v)JvK. (8.4)

Conversely, if u : Σ → AQ(R
n) is a multiple-valued function then one can define the Q-

multisection Mu induced by u simply setting

Mu(p, v) := Θu(p)(v), (8.5)

where Θu(p)(v) is the multiplicity of the vector v in u(p).

8.2 coherent and vertically limited multisections

Definition 8.2.1 (Coherence, Allard [All13]). A Q-multisection M of the vector bundle
Π : E → Σ over Σ is said to be coherent if the following holds. For every p ∈ Σ and for
every disjoint family V of open sets V ⊂ E such that each member V ∈ V contains exactly
one element of Mp := {ξ ∈ Ep : M(ξ) > 0}, there is an open neighborhood U of p in Σ such
that for any q ∈ U ∑

ζ∈Mq∩V
M(ζ) =M(ξ) if ξ ∈Mp ∩ V . (8.6)

The following proposition motivates the necessity of introducing the notion of coherence:
it is a way of generalizing the continuity of Q-valued functions in the vector bundle-valued
context.
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Proposition 8.2.2. Let E = Σ×Rn be the trivial bundle of rank n over Σ. Then, a Q-multisection
M is coherent if and only if the associated multiple-valued function uM : Σ→ AQ(R

n) is continu-
ous.

Proof. Let u : Σ→ AQ(R
n) be a continuous Q-valued function, and let M : Σ×Rn →N be

the induced multisection defined by (8.5). In order to show that M is coherent, fix a point
p in the base manifold Σ, and decompose u(p) =

∑J
j=1mjJvjK so that vj 6= vj ′ when j 6= j ′

and mj := M(p, vj). Now, let V = {V1, . . . ,VJ} be a disjoint family of open sets Vj ⊂ Rn

with the property that if Mp := {v ∈ Rn : M(p, v) > 0} then Mp ∩ Vj = {vj}. Let ε > 0 be a
radius such that Bε(vj) ⊂ Vj for every j = 1, . . . , J. Then, since u is continuous, there exists
a neighborhood U of p in Σ such that

u(q) ∈ B ε
2
(u(p)) :=

{
T ∈ AQ(R

n) : G(T ,u(p)) <
ε

2

}
,

for every q ∈ U. From the definition of the metric G(·, ·) in AQ(R
n), it follows naturally

that for every q ∈ U it has to be∑
w∈Vj

M(q,w) = mj for every j ∈ {1, . . . , J},

and thus M is coherent.
Conversely, suppose M is a coherent Q-multisection of the trivial bundle Σ×Rn, and

let u be the associated multiple-valued function as defined in (8.4). The goal is to prove
that u is continuous. Fix any point p ∈ Σ, and let {ph}

∞
h=1 ⊂ Σ be any sequence such

that ph → p. Since M is coherent, for any ball BR ⊂ Rn such that spt(u(p)) ⊂ BR there
exists h0 ∈ N such that spt(u(ph)) ⊂ BR for every h > h0. In particular, |u(ph)|

2 :=

G(u(ph),QJ0K)2 6 QR2 for every h > h0, and thus the measures {u(ph)} have uniformly
finite second moment. Therefore, since the metric G on AQ(R

n) coincides with the L2-
based Wasserstein distance on the space of positive measures with finite second moment,
from [AGS08, Proposition 7.1.5] immediately follows that G(u(ph),u(p))→ 0 if and only if
the sequence u(ph) narrowly converges to u(p), that is if and only if

lim
h→∞〈u(ph), f〉 = 〈u(p), f〉 ∀ f ∈ Cb(Rn), (8.7)

that is, explicitly,

lim
h→∞

∑
v∈Rn

M(ph, v)f(v) =
∑
v∈Rn

M(p, v)f(v) ∀ f ∈ Cb(Rn), (8.8)

where Cb(Rn) denotes the space of bounded continuous functions on Rn. So, in order
to prove this, fix f ∈ Cb(Rn) and ε > 0. Let v1, . . . , vJ be distinct points in Mp, and let
η = η(ε) > 0 be a number chosen in such a way that

|v− vj| < η =⇒ |f(v) − f(vj)| < ε for every j = 1, . . . , J. (8.9)

Choose now radii r1, . . . , rJ such that rj <
η
2 , the balls Bj := Brj(vj) are pairwise disjoint

and M(p, v) = 0 for any v ∈ Bj \ {vj}. Since M is coherent, in correspondence with the
choice of the family {Bj} there is an open neighborhood U of p in Σ with the property that∑

v∈Bj

M(q, v) =M(p, vj) for every q ∈ U. (8.10)
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Since
∑J
j=1M(p, vj) = Q, equation (8.10) implies that

J∑
j=1

∑
v∈Bj

M(q, v) = Q for every q ∈ U, (8.11)

and thus, whenever q ∈ U, M(q, v) = 0 if v /∈
⋃J
j=1 Bj. Therefore, only the balls Bj are

relevant, namely

∑
v∈Rn

M(q, v) =
J∑
j=1

∑
v∈Bj

M(q, v) for every q ∈ U. (8.12)

We can now finally conclude the validity of (8.8): Let N ∈N be such that ph ∈ U for every
h > N and estimate, for such h’s:∣∣∣∣∣∑

v∈Rn

M(ph, v)f(v) −
∑
v∈Rn

M(p, v)f(v)

∣∣∣∣∣ (8.12)
=

∣∣∣∣∣∣
J∑
j=1

∑
v∈Bj

M(ph, v)f(v) −
J∑
j=1

M(p, vj)f(vj)

∣∣∣∣∣∣
6

J∑
j=1

∣∣∣∣∣∣
∑
v∈Bj

M(ph, v)f(v) −M(p, vj)f(vj)

∣∣∣∣∣∣
(8.10)
6

J∑
j=1

∑
v∈Bj

M(ph, v)|f(v) − f(vj)|

(8.11)
6 Qε,

which completes the proof.

The next step will be to define a suitable property of Q-multisections that is equivalent
to Lipschitz continuity of the associated multiple-valued function whenever such an asso-
ciation is possible. We start from a definition in the easy case when the vector bundle E
coincides with the trivial bundle Ω×Rn over an open subset Ω ⊂ Rm.

Definition 8.2.3 (τ-cone condition, Allard [All13]). Let τ > 0 be a real number. We say that
a Q-multisection M : Ω×Rn → N satisfies the τ-cone condition if the following holds. For
any x ∈ Ω, for any v ∈Mx = {v ∈ Rn : M(x, v) > 0}, there exist neighborhoods U of x in Ω
and V of v in Rn such that

{(y,w) ∈ U× V : M(y,w) > 0} ⊂ Kτx,v , (8.13)

where
Kτx,v := {(y,w) ∈ Rm ×Rn : |w− v| 6 τ|y− x|} (8.14)

is the τ-cone centered at (x, v) in Rm ×Rn.

Proposition 8.2.4. LetΩ ⊂ Rm be open and convex. If u is an L-LipschitzQ-valued function, then
the induced multisectionMu : Ω×Rn →N is coherent and satisfies a τ-cone condition with τ = L.
Conversely, if a Q-multisection of the bundle Ω×Rn is coherent and satisfies the τ-cone condition,
then the associated Q-valued function uM : Ω→ AQ(R

n) is Lipschitz with Lip(uM) 6
√
Qτ.
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Proof. The first part of the statement is immediate. Indeed, first observe that the continuity
of u implies that M = Mu is coherent by Proposition 8.2.2. Then, fix x ∈ Ω, and suppose
that u(x) =

∑J
j=1mjJṽjK, with the ṽj’s all distinct and mj := M(x, ṽj). Let ε > 0 be such

that the balls Bε(ṽj) ⊂ Rn are a disjoint family of open sets such that Mx ∩ Bε(ṽj) = {ṽj}.
Since M is coherent, there exists an open neighborhood U of x in Ω such that the following
two properties are satisfied for any y ∈ U:

(i)
∑
w∈Bε(ṽj)M(y,w) = mj;

(ii) if u(x) =
∑Q
`=1Jv`K with the first m1 of the v`’s all identically equal to ṽ1, the next m2

all identically equal to ṽ2 and so on, and if u(y) =
∑Q
`=1Jw`K with the w` (not nec-

essarily all distinct) ordered in such a way that G(u(x),u(y)) =
(∑Q

`=1 |v` −w`|
2
)1/2

,
then w` ∈ Bε(v`) for every ` ∈ {1, . . . ,Q}.

Thus, for such y’s it is evident that the Lipschitz condition G(u(y),u(x)) 6 L|y− x| forces
|w` − v`| 6 L|y− x| for every ` = 1, . . . ,Q, which is to say that for every j = 1, . . . , J

{(y,w) ∈ U×Bε(ṽj) : M(y,w) > 0} ⊂ KLx,ṽj ,

as we wanted.
For the converse, consider a Q-multisection M, and assume it is coherent and satisfies

the τ-cone condition. Define u : Ω → AQ(R
n) as in (8.4). We will first prove the following

claim, from which the Lipschitz continuity of u will easily follow:
Claim. For every x ∈ Ω there exists an open neighborhood Ux of x in Ω such that

G(u(y),u(x)) 6
√
Qτ|y− x| for every y ∈ Ux. (8.15)

In order to show this, fix a point x ∈ Ω, and let {v1, . . . , vJ} be distinct vectors in Mx.
Since M satisfies the τ-cone condition, there exist open neighborhoods U of x in Ω and Vj
of vj in Rn for every j = 1, . . . , J such that

{(y,w) ∈ U× Vj : M(y,w) > 0} ⊂ Kτx,vj ∀ j = 1, . . . , J. (8.16)

In particular, condition (8.16) implies that Mx ∩ Vj = {vj} for every j. Up to shrinking the
Vj’s if necessary, we can also assume that they are pairwise disjoint. Hence, since M is also
coherent, we can conclude the existence of a (possibly smaller) neighborhood of x, which
we will still denote U, with the property that not only (8.16) is satisfied but also∑

w∈Vj

M(y,w) =M(x, vj) ∀ j = 1, . . . , J, ∀y ∈ U. (8.17)

Therefore, if y ∈ U we can write

u(y) =

J∑
j=1

∑
w∈Vj

M(y,w)JwK, (8.18)

whereas

u(x) =

J∑
j=1

M(x, vj)JvjK. (8.19)
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Using (8.17), (8.18), (8.19) and the fact that if (y,w) ∈ U × Vj then M(y,w) > 0 =⇒
|w− vj| 6 τ|y− x|, we immediately conclude that

G(u(y),u(x))2 6

 J∑
j=1

M(x, vj)

 τ2|y− x|2 for every y ∈ U, (8.20)

which proves our claim.
Next, we prove that u is Lipschitz continuous with Lip(u) 6

√
Qτ. To achieve this, fix

two distinct points p,q ∈ Ω. Since Ω is convex, the segment [p,q] is contained in Ω, and
let e denote the unit vector orienting the segment [p,q] in the direction from p to q. By the
claim, for every x ∈ [p,q] there exists a radius rx > 0 such that

G(u(y),u(x)) 6
√
Qτ|y− x| for every y ∈ Ix := (x− rxe, x+ rxe) . (8.21)

The open intervals Ix are clearly an open covering of [p,q]. Since the segment is compact,
it admits a finite subcovering, which will be denoted {Ixi}

N
i=0. We may assume, refining

the subcovering if necessary, that an interval Ixi is not completely contained in an interval
Ixj if i 6= j. If we relabel the indices of the points xi in a non-decreasing order along the
segment, we can now choose an auxiliary point yi,i+1 in Ixi ∩ Ixi+1 ∩ (xi, xi+1) for each
i = 0, . . . ,N− 1. We can finally conclude:

G(u(p),u(q)) 6G(u(p),u(x0))

+

N−1∑
i=0

(G(u(xi),u(yi,i+1)) + G(u(yi,i+1),u(xi+1))) + G(u(xN),u(q))

(8.21)
6
√
Qτ

(
|x0 − p|+

N−1∑
i=0

(|yi,i+1 − xi|+ |xi+1 − yi,i+1|) + |q− xN|

)
=
√
Qτ|q− p|,

(8.22)

which completes the proof.

Definition 8.2.5 (Allard, [All13]). Let Π : E → Σ be a vector bundle, M a Q-multisection
over Σ and τ > 0. We say that M is τ-vertically limited if for any coordinate domain Uα
on Σ with associated chart ψα : Uα → Rm and trivialization Ψα : Π−1(Uα) → Uα ×Rn the
multisection

Mα :=M ◦Ψ−1
α ◦

(
ψ−1
α × idRn

)
: ψα(Uα)×Rn →N

satisfies the τ-cone condition.



9 R E PA R A M E T R I Z AT I O N O F
M U LT I P L E -VA L U E D G R A P H S

Here we revisit the proof of the reparametrization theorem for multiple-valued Lipschitz
graphs [DS15, Theorem 5.1], a fundamental tool for the construction of the normal approx-
imation of an area minimizing current from the center manifold performed in [DLS16a].
In the proof that we are going to suggest, we deduce the Lipschitz continuity of the
reparametrization from a simple geometric argument which is completely given in terms
of the Q-multisections introduced in Chapter 8, rather than from an application of the
Ambrosio-Kirchheim theory of currents in metric spaces [AK00] as in [DS15].

9.1 the reparametrization theorem

Before stating the precise result we are aiming at, we need to introduce some notation
and terminology, which will be used throughout the whole chapter.

Assumption 9.1.1. Let m, n and Q denote fixed positive integers. Let also 0 < s < r < 1.
We will consider the following:

(A1) an openm-dimensional submanifold Σ of the Euclidean space Rm+n with Hm(Σ) <∞
which is the graph of a function ϕ : Bs ⊂ Rm → Rn with ‖ϕ‖C3 6 c̄;

(A2) a regular tubular neighborhood U of Σ, that is the set of points

U := {ξ = p+ v : p ∈ Σ, v ∈ T⊥p Σ, |v| < c0} ⊂ Rm+n , (9.1)

where the thickness c0 is small enough to guarantee that the nearest point projection
Π : U→ Σ is well defined and C2;

(A3) a proper Lipschitz Q-valued function f : Br ⊂ Rm → AQ(R
n).

Some comments about the objects introduced in Assumptions 9.1.1 are now in order. First
observe that the map ϕ induces a parametrization of the manifold Σ, which we denote by

Φ : x ∈ Bs ⊂ Rm 7→Φ(x) := (x,ϕ(x)) ∈ Rm+n. (9.2)

The inverse of Φ can be used as a global chart on Σ. If p ∈ Σ, then πp and κp will denote
the tangent space TpΣ and its orthogonal complement in Rm+n respectively. The symbols
π0 and π⊥0 , instead, will be reserved for the planes Rm × {0} ' Rm and {0}×Rn ' Rn

respectively. In general, if π is a linear subspace of Rm+n, the symbol pπ will denote
orthogonal projection onto it.

Concerning the tubular neighborhood U, we will denote by {ν1, . . . ,νn} the standard
orthonormal frame of the normal bundle of Σ described in [DS15, Appendix A]. Such a
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frame is simply obtained by applying, at every point p ∈ Σ, the Gram-Schmidt orthogo-
nalization algorithm to the vectors pκp(em+1), . . . , pκp(em+n), where {em+1, . . . , em+n} is
the standard orthonormal basis of {0}×Rn ⊂ Rm+n. The analytic properties of the frame
ν1, . . . νn are recorded in the following lemma.

Lemma 9.1.2 (cf. [DS15, Lemma A.1]). If ‖Dϕ‖C0 is smaller than a geometric constant, then
ν1, . . . νn is an orthonormal frame spanning κp at every p ∈ Σ. Consider νi as functions of x ∈ Bs
using the inverse of Φ as a chart. For every γ+ k > 0, there is a constant C = C(m,n,γ,k) such
that if ‖ϕ‖Ck+1,γ 6 1, then ‖Dνi‖Ck,γ 6 C‖Dϕ‖Ck+1,γ .

Recall that, for any Q-valued function f as in assumption (A3), Gr(f) and Gf denote
the set-theoretical graph of f and the integral m-current associated to it respectively. The
concept of reparametrization of f is introduced next.

Definition 9.1.3. Given Σ, U and f as in Assumptions 9.1.1, we call a Lipschitz normal
reparametrization of the Q-function f in the tubular neighborhood U any Q-valued function
F : Σ→ AQ(R

m+n) such that the following conditions are satisfied:

(i) for every p ∈ Σ, F(p) =
∑Q
`=1Jp +N`(p)K, with N : Σ → AQ(R

m+n) a Lipschitz
continuous Q-valued function;

(ii) p+N`(p) ∈ U and N`(p) ∈ κp = T⊥p Σ for every ` ∈ {1, . . . ,Q}, for every p ∈ Σ;

(iii) TF = Gf U.

We are now ready to state the main theorem we are aiming at.

Theorem 9.1.4 (Existence of the reparametrization). Let Q, m and n be positive integers, and
0 < s < r < 1. Then, there are constants c0,C > 0 (depending on m, n, Q, r− s and r

s ) with the
following property. For any ϕ, Σ, U and f as in Assumptions 9.1.1 such that

‖ϕ‖C2 + Lip(f) 6 c0, ‖ϕ‖C0 + ‖f‖C0 6 c0s, (9.3)

there exists a Lipschitz normal reparametrization F of the Q-valued function f in U. Furthermore,
the associated normal multi-valued vector field N satisfies:

Lip(N) 6 C
(
‖N‖C0‖D2ϕ‖C0 + ‖Dϕ‖C0 + Lip(f)

)
, (9.4)

1

2
√
Q
|N(Φ(x))| 6 G(f(x),QJϕ(x)K) 6 2

√
Q|N(Φ(x))| ∀ x ∈ Bs, (9.5)

|η ◦N(Φ(x))| 6 C|η ◦ f(x) −ϕ(x)|+CLip(f)|Dϕ(x)||N(Φ(x))| ∀ x ∈ Bs. (9.6)

Finally, assume x ∈ Bs and (x,η ◦ f(x)) = p+ v for some p ∈ Σ and v ∈ T⊥p Σ. Then,

G(N(p),QJvK) 6 2
√
QG(f(x),QJη ◦ f(x)K). (9.7)
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9.2 the proof of theorem 9.1.4

The argument will be divided into two parts: in the first part, we will suppose to be given
Σ, U and f as in Assumptions 9.1.1, and we will associate in an extremely natural way to the
Q-valued function f a Q-multisection M of the tubular neighborhood U, regarded as (the
diffeomorphic image of) an open subset of a rank n vector bundle of class C2 over Σ. Under
suitable smallness assumptions on the universal constant c0 which controls the relevant
norms of the functions ϕ and f as in (9.3), we will be able to show that the multisection
M so defined enjoys good properties of coherence and vertical boundedness. In the second
part of the argument, we will produce the reparametrization F using the multisection M
previously analyzed, and we will prove that the aforementioned geometric properties of M
do suffice to conclude the proof of Theorem 9.1.4, using techniques that have been already
introduced in the proofs of Propositions 8.2.2 and 8.2.4.

We start with the first part of our program. Assume, therefore, that the manifold Σ, the
tubular neighborhood U and the Q-valued function f are given, and that the functions ϕ
and f satisfy the bounds in (9.3). Suitable restrictions on the size of the constant c0 will
appear throughout the argument. Let

Mf : Rm ×Rn →N (9.8)

be the Q-multisection over Br associated to f. Observe that, setting L := Lip(f), Proposition
8.2.4 guarantees that Mf is coherent and satisfies an L-cone condition.

Now, we define a Q-multisection M of the tubular neighborhood U as follows: for any
ξ ∈ U, M(ξ) coincides with the multiplicity of the “vertical coordinate” pπ⊥0 (ξ) in f(pπ0(ξ)).
In symbols, we set:

M(ξ) := Θf(pπ0(ξ))
(pπ⊥0 (ξ)) =Mf(pπ0(ξ), pπ⊥0 (ξ)), for every ξ ∈ U. (9.9)

The following Proposition shows that, under suitable smallness conditions on c0, M is
indeed a coherent Q-multisection over the base manifold Σ.

Proposition 9.2.1. If c0 is small enough, depending on m, n, r− s and r
s , then the identity∑

ξ∈Π−1({p})

M(ξ) = Q (9.10)

holds for every p ∈ Σ, and thus M is a Q-multisection over Σ. Moreover, M is coherent.

Proof. First, we claim the following: the current T := Gf (Π−1(Σ)) satisfies Π]T = QJΣK.
In order to see this, fix a point ξ ∈ spt(T). By definition, ξ = (y, f`(y)) for some y ∈ Br
and for some ` ∈ {1, . . . ,Q}; furthermore, there exist a point p = (x,ϕ(x)) ∈ Σ and a vector
v ∈ T⊥p Σ with |v| < c0 such that ξ = p+ v. Hence, we can easily estimate

|y| = |pπ0(p+ v)| 6 |x|+ |v| < s+ c0.

This implies that if we choose c0 suitably small, say

c0 6
1

2
(r− s), (9.11)
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then the current (pπ0)] T is compactly supported in Br, and thus (∂Gf) Π−1(Σ) = (Gf|∂Br )
Π−1(Σ) = 0. Now, we estimate more carefully the quantity |v| = |ξ−p| = dist(ξ,Σ). Decom-
pose

|v|2 = |pπ0(v)|
2 + |pπ⊥0 (v)|

2, (9.12)

and observe that the hypothesis (9.3) readily implies that

|pπ⊥0 (v)|
2 = |f`(y) −ϕ(x)|

2 6 c20s
2. (9.13)

As for the “horizontal” component of the vector v, write

v =

n∑
i=1

viνi(x), (9.14)

where v =
(
v1, . . . , vn

)
∈ Rn, {ν1, . . . ,νn} is the standard orthonormal frame on the normal

bundle of Σ previously introduced, and where, with a slight abuse of notation, we are
writing νi(x) instead of νi (Φ(x)). In this way,

|pπ0(v)|
2 6

(
n∑
i=1

|vi||pπ0(νi(x))|

)2
. (9.15)

Clearly, in doing this we are tacitly assuming that c0 is chosen so small that all the conclu-
sions of Lemma 9.1.2 hold (in particular, we will always assume c0 6 1). Now, the quantity
|pπ0(νi(x))| can be estimated by

|pπ0(νi(x))| 6
∣∣∣cos

(π
2
− θi(x)

)∣∣∣ , (9.16)

where θi(x) is the angle between νi(x) and pπ⊥0 (νi(x)). In turn, this angle is controlled by
C|Dϕ(x)|, with C a geometric constant, because νi(x) is orthogonal to TΦ(x)Σ. Thus, one
has

|pπ0(νi(x))| 6 |sin(θi(x))| 6 C|Dϕ(x)|. (9.17)

Further estimating |Dϕ(x)| 6 ‖Dϕ‖C0 6 c0 by (9.3) and inserting into (9.15) yields:

|pπ0(v)|
2 6 Cc20

(
n∑
i=1

|vi|

)2
6 Cc20

n∑
i=1

|vi|2 = Cc20|v|
2, (9.18)

with C = C(m,n). Combining (9.12), (9.13) and (9.18) produces

|v|2 6 Cc20|v|
2 + c20s

2. (9.19)

If

c20 6 C
−1

(
1−

(s
r

)2)
, (9.20)

then the term Cc20|v|
2 on the right-hand side can be absorbed on the left-hand side, and in

turn (9.19) leads to
dist(ξ,Σ)2 6 c20r

2, (9.21)
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which shows that the current T is in fact compactly supported in U. Together with the
fact that Gf has no boundary in Π−1(Σ), such a result implies that the boundary of T
is actually supported in Π−1(∂Σ) as soon as the constant c0 is chosen in agreement with
(9.11) and (9.20). Hence, under these conditions we can deduce that ∂Π]T is supported
in ∂Σ. Thus, we are allowed to apply the Constancy Theorem 2.1.6, and consequently
conclude that Π]T = kJΣK for some k ∈ Z. In order to show that k = Q, we consider
the functions ϕt := tϕ for t ∈ [0, 1], the corresponding manifolds Σt := Gr(ϕt) with the
associated projections Πt : Ut → Σt. Also in this case, the constancy theorem produces
(Πt)](Gf (Π−1

t (Σt))) = k(t)JΣtK. On the other hand, since the map

t ∈ [0, 1] 7→ (Πt)](Gf (Π−1
t (Σt)))

is continuous in the space of currents, one infers that t 7→ k(t) is a continuous integer-
valued function, and thus is constant. Since k(0) = Q, then necessarily also k = k(1) = Q,
and the claim is proved.

Now, the fact that Π]T = QJΣK does not immediately imply that
∑
ξ∈Mp

M(ξ) = Q, since
there could in principle be cancellations and the total mass on the fiber could in principle be
larger than Q. To see that this is not the case, consider, for every p ∈ Σ, the 0-dimensional
current Tp := 〈Gf,Π,p〉 supported on the intersection Gr(f)∩Π−1({p}). By the slicing theory
(cf. § 2.1.2 or [Fed69, Section 4.3]), one has that there exists a set Z ⊂ Σ with Hm(Z) = 0

such that the following holds for every p ∈ Σ \Z:

(i) Tp consists of a finite sum of Dirac masses
∑Jp
j=1mjJξjK with coefficients mj ∈ Z;

(ii) for every j ∈ {1, . . . Jp}, ξj ∈ Gr(f) ∩ Π−1({p}) and |mj| = Mf(pπ0(ξj), pπ⊥0 (ξj)) =

M(ξj);

(iii) if ~ν is the continuous unit n-vector orienting Π−1({p}) compatibly with the orien-
tation of Σ, then the sign of mj is sgn

(
〈~T(ξj)∧ ~ν(ξj),~e〉

)
, where ~e := e1 ∧ · · · ∧

em ∧ · · ·∧ em+n, with {e1, . . . , em} the standard orthonormal basis of Rm × {0} and
{em+1, . . . , em+n} the standard orthonormal basis of {0}×Rn.

Since ‖ϕ‖C1 + Lip(f) 6 c0, if c0 is suitably small then every ~T(ξj) is close to ~em := e1 ∧

· · ·∧ em, whereas every ~ν(ξj) is close to ~en := em+1 ∧ · · ·∧ em+n, and therefore every mj
is positive. Since

∑Jp
j=1mj = Q because Π]T = QJΣK, we conclude that (9.10) holds for

every p ∈ Σ \Z.
Therefore, if Z̃ denotes the set of points p ∈ Σ such that (9.10) does not hold (and hence∑
ξ∈Mp

M(ξ) > Q) then one has Z̃ ⊂ Z. Now, we claim that in fact Z̃ = ∅. This will be
an easy consequence of the fact that M is coherent. Indeed, the coherence of M would
immediately imply that Z̃ is open in Σ, and thus empty, since Hm(Z̃) = 0. Hence, we only
have to prove that M is coherent. Fix p ∈ Σ, and assume that Mp = {ξ1, . . . , ξJ}, with
mj := M(ξj). Let V = {V1, . . . VJ} denote a collection of disjoint bounded open sets in U
such that Mp ∩ Vj = {ξj} for every j = 1, . . . , J. We will show that for every j there is an
open neighborhood Uj of p in Σ such that∑

ζ∈Mq∩Vj

M(ζ) = mj for every q ∈ Uj, (9.22)
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so that the coherence condition will hold in U :=
⋂
jUj. Consider the current Tj := Π](Gf

Vj). We claim the following: there exists Uj ⊂ Σ open neighborhood of p such that

spt
(
∂(Tj Uj)

)
⊂ ∂Uj. (9.23)

If (9.23) holds, the proof is finished. Indeed, the constancy theorem would imply the ex-
istence of a constant kj ∈ Z such that Tj Uj = kjJUjK. On the other hand, it would
necessarily be kj = mj, because 〈Gf Vj,Π,p〉 = mjJξjK. Then, since no cancellations are
allowed, if q ∈ Uj the slice 〈Gf Vj,Π,q〉 must be necessarily supported in a set of points
{ζ1, . . . , ζJq} ⊂ Gr(f)∩ Vj with

∑Jq
j=1M(ζj) = mj, which concludes the proof of (9.22).

Therefore, we just have to prove (9.23). By contradiction, assume that there exists a
sequence {ph}

∞
h=1 ⊂ Σ with ph → p and such that ph ∈ spt(∂Tj) for every h. Since the

push-forward and boundary operators commute, and since Gf has no boundary in Vj, this
would imply the existence of a sequence of points ζh ∈ Gr(f) ∩ ∂Vj such that Π(ζh) = ph.
By the compactness of ∂Vj and the continuity of the projection, a subsequence of the ζh’s
would converge to a point ζ̄ ∈ ∂Vj such that Π(ζ̄) = p. Furthermore, since f is continuous
Gr(f) is closed, and thus ζ̄ ∈ Gr(f). But this is an evident contradiction, since by assumption
Gf is supported outside of Π−1({p})∩ ∂Vj. This shows the validity of (9.23), and concludes
the proof of the Proposition.

As an immediate consequence, the above result allows us to define the required reparametriza-
tion F: if Σ, U and f are such that (9.3) holds with the constant c0 given by Proposition 9.2.1,
we set

F(p) :=
∑

ξ∈Π−1({p})

M(ξ)JξK for every p ∈ Σ. (9.24)

x

p = Φ(x)

Σ = Φ(Bs)
Gr(f)

1

Figure 2: The reparametrization F. The black points are the support of id× f(x); the blue points are
the support of F(Φ(x)).
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By Proposition 9.2.1, F is a well defined Q-valued function on Σ. By construction, the
associated map N : Σ→ AQ(R

m+n) given by

N(p) :=
∑

ξ∈Π−1({p})

M(ξ)Jξ− pK (9.25)

is a well defined Q-valued vector field with values in the normal bundle, and hence it
satisfies property (ii) in Definition 9.1.3. Furthermore, it is evident from the very definition
of M that property (iii) in Definition 9.1.3 is satisfied as well.

Hence, we are only left with proving that N is Lipschitz continuous and that properties
(9.4)-(9.7) are satisfied.

Proposition 9.2.2. If c0 is small enough, depending on m, n, r− s and r
s , then there exists τ̃ > 0

such that the multisection M is τ̃-vertically limited. Furthermore,

τ̃ 6 C
(
‖N‖C0‖D2ϕ‖C0 + ‖Dϕ‖C0 + Lip(f)

)
, (9.26)

where C = C(m,n) and ‖N‖C0 := supp∈Σ |N(p)| = supp∈Σ G(N(p),QJ0K).

Proof. First, let us exploit again the orthonormal frame {ν1, . . . ,νn} in order to introduce
coordinates on U. Precisely, we let Ψ denote the map ξ ∈ U 7→ (Π(ξ), v(ξ)) ∈ Σ×Rn, where
p := Π(ξ) is the base point of ξ on Σ, and v(ξ) =

(
v1(ξ), . . . , vn(ξ)

)
is the set of coordinates

of the vector v := ξ− p ∈ κp with respect to the basis ν1(p), . . . ,νn(p), explicitly given by
vi(ξ) = 〈ξ− p,νi(p)〉 for i = 1, . . . ,n. The map Ψ is a global trivialization of the bundle
U; moreover, since Φ−1 is a global chart on Σ, then, in order to show that M is τ̃-vertically
limited, it suffices to prove that the Q-multisection

M̃ :=M ◦Ψ−1 ◦ (Φ× idRn) : Bs ×Rn →N

satisfies the τ̃-cone condition. In order to see this, fix (x, v) ∈ Bs ×Rn, and denote by
ξ = ξ(x, v) the corresponding point in U, given by

ξ(x, v) :=Φ(x) +

n∑
i=1

viνi(x). (9.27)

Assume that M̃(x, v) = M(ξ) > 0: the goal is then to prove that there exists a positive
number ε such that if (y,w) ∈ Bmε (x)×Bnε (v) satisfies M̃(y,w) > 0, then necessarily

|w− v| 6 τ̃|y− x|. (9.28)

Let (x ′, v ′) denote the coordinates of ξ in the standard reference frame on Rm+n, that is
x ′ := pπ0(ξ) and v ′ := pπ⊥0 (ξ). Observe that the condition M(ξ) > 0 is equivalent to say
that v ′ ∈ spt(f(x ′)), and in fact M(ξ) = Mf(x

′, v ′). Now, since the Q-valued function f is
L-Lipschitz continuous, Mf satisfies the L-cone condition, and thus there exists δ > 0 such
that if (y ′,w ′) ∈ Bmδ (x ′)×Bnδ (v ′) is such that Mf(y

′,w ′) > 0 then

|w ′ − v ′| 6 L|y ′ − x ′|. (9.29)
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We first claim the following: there exists 0 < ε = ε(δ,m,n) with the property that if

ζ =Φ(y) +

n∑
i=1

wiνi(y) with (y,w) ∈ Bmε (x)×Bnε (v),

then
|pπ0(ζ) − x

′| < δ, |pπ⊥0 (ζ) − v
′| < δ.

This can be immediately seen by estimating:

|ζ− ξ| 6 |Φ(y) −Φ(x)|+

n∑
i=1

|wiνi(y) − v
iνi(x)|

6 (1+ ‖Dϕ‖C0) |y− x|+
n∑
i=1

(
|wi||νi(y) − νi(x)|+ |vi −wi|

)
6 C (1+ ‖Dϕ‖C1) |y− x|+C|w− v|,

(9.30)

where C = C(m,n) is a geometric constant. The conclusion immediately follows, since
|pπ0(ζ) − x

′| = |pπ0(ζ− ξ)| 6 |ζ− ξ| and |pπ⊥0 (ζ) − v
′| = |pπ⊥0 (ζ− ξ)| 6 |ζ− ξ|.

Now, let (y,w) be any point in Bmε (x)× Bnε (v) such that for the corresponding ζ ∈ U
one has M(ζ) > 0. By the above claim, if we set y ′ := pπ0(ζ) and w ′ := pπ⊥0 (ζ), then
(y ′,w ′) ∈ Bmδ (x ′)×Bnδ (v ′), and thus the condition Mf(y

′,w ′) > 0 implies that (9.29) holds.
Hence, we proceed with the proof of (9.28). For any i = 1, . . . ,n, one has:

|wi − vi| = |〈ζ−Φ(y),νi(y)〉− 〈ξ−Φ(x),νi(x)〉|
6 |〈ξ−Φ(x),νi(x) − νi(y)〉|+ |〈ξ− ζ,νi(y)〉|+ |〈Φ(x) −Φ(y),νi(y)〉|.

(9.31)

Now, since ξ ∈MΦ(x), the vector ξ−Φ(x) is in the support of N(Φ(x)), and thus

|ξ−Φ(x)| 6 |N(Φ(x))|.

Therefore, if we apply Lemma 9.1.2 we easily estimate

|〈ξ−Φ(x),νi(x) − νi(y)〉| 6 C‖N‖C0(Σ)‖D2ϕ‖C0 |y− x|. (9.32)

In order to estimate the second and third term of (9.31), instead, we first decompose both
ξ− ζ and Φ(x) −Φ(y) by projecting them onto the planes π0 and π⊥0 . Then, we use (9.17)
to conclude that

|〈ξ− ζ,νi(y)〉| 6 |〈y ′ − x ′, pπ0(νi(y))〉|+ |〈w ′ − v ′, pπ⊥0 (νi(y))〉|

6 C|Dϕ(y)||y ′ − x ′|+ |w ′ − v ′|

(9.29)
6 (C‖Dϕ‖C0 + L) |y ′ − x ′|,

(9.33)

and analogously

|〈Φ(x) −Φ(y),νi(y)〉| 6 C|Dϕ(y)||y− x|+ |ϕ(y) −ϕ(x)|

6 C‖Dϕ‖C0 |y− x|.
(9.34)
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Inserting (9.32), (9.33) and (9.34) into (9.31), we then conclude the following estimate:

|wi − vi| 6 C
(
‖N‖C0‖D2ϕ‖C0 + ‖Dϕ‖C0

)
|y− x|+ (C‖Dϕ‖C0 + L) |y ′ − x ′|. (9.35)

Therefore, in order to conclude, we need to bound:

|y ′ − x ′| = |pπ0(ζ) − pπ0(ξ)|

=

∣∣∣∣∣y+
n∑
i=1

wipπ0(νi(y)) − x−
n∑
i=1

vipπ0(νi(x))

∣∣∣∣∣
6 |y− x|+

n∑
i=1

(
|wi||νi(y) − νi(x)|+ |wi − vi||pπ0(νi(x))|

)
6
(
1+C‖D2ϕ‖C0

)
|y− x|+C‖Dϕ‖C0 |w− v|.

(9.36)

If we combine (9.35) and (9.36), after standard algebraic computations we obtain:

|w− v| 6 C
(
‖N‖C0‖D2ϕ‖C0 + ‖Dϕ‖C0 + Lip(f)

)
|y− x|+Cc20|w− v|, (9.37)

where the constant C appearing on the right-hand side of the inequality is purely geometric,
and, in particular, does not depend on c0. This allows us to conclude that if c0 is such that

Cc20 6
1

2
, (9.38)

then a cone condition for M̃ holds in the form

|w− v| 6 τ̃|y− x| (9.39)

with τ̃ as in (9.26) for any (y,w) in a suitable neighborhood of (x, v) such that M̃(y,w) > 0.
Since the choice of the point (x, v) was arbitrary, the proof is complete.

Proof of Theorem 9.1.4. We start proving that N is Lipschitz continuous. Let c0 be such that
Proposition 9.2.1 and Proposition 9.2.2 both hold. We make the following

Claim. For every p ∈ Σ there exists an open neighborhood Up of p in Σ such that

G(N(q),N(p)) 6
√
Qτ̃ ′d(q,p) for every q ∈ Up, (9.40)

where τ̃ ′ satisfies the same estimate as in equation (9.26) and d(·, ·) is the geodesic distance
function on Σ. In order to see this, fix a point p ∈ Σ and let Mp denote, as usual, the set of
points ξ ∈ U such that Π(ξ) = p and M(ξ) > 0. Assume that Mp = {ξ1, . . . ξJ}. If p =Φ(x),
then for any j = 1, . . . , J one has

ξj =Φ(x) +

n∑
i=1

vijνi(x). (9.41)

By Proposition 9.2.2, there exist neighborhoods Uj of x in Bs and Vj of vj :=
(
v1j , . . . , vnj

)
in Rn such that if

ζ = ζ(y,w) :=Φ(y) +

n∑
i=1

wiνi(y) with (y,w) ∈ Uj × Vj (9.42)
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is such that M(ζ) > 0 then necessarily

|w− vj| 6 τ̃|y− x|. (9.43)

Let (x(ζ), v(ζ)) denote the inverse mapping of ζ(x, v), given by

x(ζ) := pπ0 ◦Π(ζ), vi(ζ) := 〈ζ−Π(ζ),νi(Π(ζ))〉, (9.44)

and let
Vj := {ζ ∈ U : (x(ζ), v(ζ)) ∈ Uj × Vj}. (9.45)

Each Vj is an open neighborhood of ξj, and moreover the cone condition (9.43) forces
Vj ∩Mp = {ξj}. We can also assume without loss of generality that the Vj’s are pairwise
disjoint. By Proposition 9.2.1, since M is coherent there exists a neighborhood Up of p in Σ
such that ∑

ζ∈Π−1({q})∩Vj

M(ζ) =M(ξj) for every q ∈ Up. (9.46)

Since
J∑
j=1

M(ξj) = Q, (9.47)

it is evident that when q is chosen in Up then any ζ ∈ Π−1({q}) with M(ζ) > 0 must be an
element of one and only one Vj, and thus we can write

N(q) =

J∑
j=1

∑
ζ∈Π−1({q})∩Vj

M(ζ)Jζ− qK, (9.48)

whereas

N(p) =

J∑
j=1

M(ξj)Jξj − pK. (9.49)

We can now estimate, for any ζ ∈ Π−1({q})∩Vj with M(ζ) > 0 and q =Φ(y) ∈ Up:

∣∣(ζ− q) − (ξj − p)
∣∣ = ∣∣∣∣∣

n∑
i=1

wiνi(y) −

n∑
i=1

vijνi(x)

∣∣∣∣∣
6

n∑
i=1

(
|wi||νi(y) − νi(x)|+ |wi − vij |

)
6 C‖N‖C0‖D2ϕ‖C0 |y− x|+C|w− vj|

(9.43)
6 C

(
‖N‖C0‖D2ϕ‖C0 + τ̃

)
|y− x| = τ̃ ′|y− x|.

(9.50)

Observe that the constant C appearing in (9.50) is purely geometric, and that τ̃ ′ also satisfies
the bound in (9.26). It is now evident that

G(N(q),N(p))2 6 Qτ̃ ′2|y− x|2, (9.51)

from which the claim follows because |y− x| 6 |q− p| 6 d(q,p).
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Now, we show how from the claim one can easily conclude the Lipschitz continuity of N
with the required estimates. Fix two distinct points p,q ∈ Σ, and let γ : [a,b] → Σ be any
(piecewise) smooth curve such that γ(a) = p and γ(b) = q. By the claim, for every t ∈ [a,b]
there exists a neighborhood Uγ(t) such that

G(N(z),N(γ(t))) 6
√
Qτ̃ ′d(z,γ(t)) for every z ∈ Uγ(t). (9.52)

Since γ is continuous, there exist numbers δt such that

It := (t− δt, t+ δt) ⊂ γ−1(Uγ(t)). (9.53)

The family {It} is an open covering of the interval [a,b], and thus by compactness we can
extract a finite subcovering {Iti}

K
i=0. We may assume, refining the subcovering if necessary,

that an interval Iti is not completely contained in an interval Itj if i 6= j. If we relabel
the indices of the points ti in a non-decreasing order, and thus in such a way that γ(ti)
precedes γ(ti+1), we can now choose an auxiliary point si,i+1 in Iti ∩ Iti+1 ∩ (ti, ti+1) for
each i = 0, . . . ,K− 1. We can finally conclude:

G(N(q),N(p)) 6 G(N(p),N(γ(t0)))

+

K−1∑
i=0

(G(N(γ(ti)),N(γ(si,i+1))) + G(N(γ(si,i+1)),N(γ(ti+1)))) + G(N(γ(tK)),N(q))

(9.53)
6
√
Qτ̃ ′L (γ),

(9.54)

where L (γ) is the length of the curve γ. Minimizing among all the piecewise smooth
curves γ joining p to q, one finally obtains

G(N(q),N(p)) 6
√
Qτ̃ ′d(q,p), (9.55)

that is
Lip(N) 6

√
Qτ̃ ′. (9.56)

The estimate (9.4) is now just a consequence of (9.26).
In order to complete the proof, we are left with showing the validity of (9.5), (9.6) and

(9.7). This can be done by reproducing verbatim the proof suggested by De Lellis and
Spadaro in [DS15]; the arguments will be presented here only for completeness.

We start with the proof of (9.5) and (9.6). Fix a point x ∈ Bs, and let p := Φ(x) ∈ Σ.
Observe that, by (9.9) and (9.25), the definition of the value of N(p) does not change if we
replace ϕ with its first order Taylor expansion at x, since this operation preserves the fiber
Π−1({p}). Furthermore, we can assume without loss of generality that x = 0 and ϕ(0) = 0.
We will still use the symbols π0 and π⊥0 to denote the planes Rm× {0} ' Rm and {0}×Rn '
Rn respectively, whereas the tangent space T0Σ and its orthogonal complement T⊥0 Σ will
be denoted π and κ. Now, concerning the estimate (9.5), assume that f(0) =

∑Q
`=1Jv`K, set

ξ` := (0, v`) ∈ π0 × π⊥0 and q` := pπ(ξ`). If N(q`) =
∑Q
j=1Jζ`,jK, then there is an index j(`)

such that ζ`,j(`) = ξ`. If the point ζ`,j(`) has coordinates
(
q`, v ′`

)
in the frame π×κ, we get

|v`| 6 |q`|+ |v ′`| 6 |q`|+ |N(0)|+ G(N(0),N(q`))

6 |N(0)|+ (1+ Lip(N)) |q`| 6 |N(0)|+C (1+ Lip(N)) ‖Dϕ‖C0 |v`|,
(9.57)
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where we have used that q` = |pπ(ξ`)| 6 C|Dϕ(0)||ξ`| = C‖Dϕ‖C0 |v`|. Now, we use (9.4)
with ϕ linear to estimate

Lip(N) 6 C (‖Dϕ‖C0 + Lip(f)) 6 Cc0. (9.58)

Thus, we conclude
|v`| 6 |N(0)|+C(1+Cc0)c0|v`|. (9.59)

Since the constant C is purely geometric and does not depend on c0, we deduce that if
c0 is sufficiently small then |v`| 6 2|N(0)|. Summing over ` ∈ {1, . . . Q} we obtain |f(0)| 6
2
√
Q|N(0)|. The proof of the other inequality, namely |N(0)| 6 2

√
Q|f(0)|, is analogous,

reversing the roles of the systems of coordinates π0 × π⊥0 and π× κ. This concludes the
proof of (9.5).

We proceed with the proof of (9.6). Assume once again that f(0) =
∑Q
`=1Jv`K, and write

N(0) =
∑Q
`=1Jξ`K. For every ` ∈ {1, . . . ,Q}, we set x` := pπ0(ξ`), w` := pπ⊥0 (ξ`) and

w ′` := pκ(ξ`), so that the point ξ` is represented by coordinates (x`,w`) in the standard
reference frame π0×π⊥0 and by coordinates

(
0,w ′`

)
in the frame π×κ. As usual, we have:

|x`| = |pπ0(ξ`)| 6 C|Dϕ(0)||ξ`| 6 C|Dϕ(0)||N(0)| =: ρ. (9.60)

Using these notations, one has |η ◦N(0)| = Q−1
∣∣∑

`w
′
`

∣∣. On the other hand, under our
usual smallness assumptions on the size of c0, we can also assume that the operator norm
of the linear and invertible transformation L : π⊥0 → κ is bounded by 2. Thus, we can

further estimate |η ◦N(0)| 6 2Q−1
∣∣∣∑Q`=1w`∣∣∣, so that in order to get (9.6) it would suffice

to prove the following: ∣∣∣∣∣
Q∑
`=1

w`

∣∣∣∣∣ 6
∣∣∣∣∣
Q∑
`=1

v`

∣∣∣∣∣+CLip(f)ρ. (9.61)

In order to show the validity of (9.61), we notice that if we set h := Lip(f)ρ, then we
can decompose f(0) =

∑J
j=1JTjK, where each Tj ∈ AQj(R

n),
∑J
j=1Qj = Q and with the

property that:

(i) diam(Tj) 6 4Qh;

(ii) |y− z| > 4h for all y ∈ spt(Ti) and z ∈ spt(Tj) when i 6= j.

This claim can be justified with the following simple argument. First, we order the vectors
v`, and then we partition them in subcollections Tj according to the following algorithm:
T1 contains v1 and any other vector v` for which there exists a chain v`(1), . . . v`(k) with
`(1) = 1, `(k) = ` and |v`(i+1) − v`(i)| 6 4h for every i = 0, . . . ,k − 1. By construction,
diam(T1) 6 4Qh, and if spt(T1) = spt(f(0)) then we are finished. Otherwise, we construct
T2 applying the same algorithm to the vectors in spt(f(0)) \ spt(T1). The construction of the
algorithm guarantees that also property (ii) is satisfied.

Given the above decomposition of f(0), we observe that from the choice of the constants
it follows that in the ball Bρ the function f decomposes into the sum f =

∑J
j=1Jf

jK of J Lips-
chitz functions fj : Bρ → AQj(R

n) with Lip(fj) 6 Lip(f) for every j. In agreement with this
decomposition, also the graph Gr(f|Bρ) separates into the union

⋃J
j=1Gr(fj). By the defini-

tion of the vector fieldN (cf. again (9.9) and (9.25)), the support ofN(0) contains points from



9.2 the proof of theorem 9.1.4 157

each of these sets; furthermore, if ξ ∈ spt(N(0)) ∩Gr(fj) then M(ξ) =Mfj(pπ0(ξ), pπ⊥0 (ξ)).

It follows that also N(0) can be decomposed into N(0) =
∑J
j=1

∑Qj
i=1Jξ

j
iK with the property

that ξji ∈ Gr(fj) for every i = 1, . . . ,Qj.
Now, by the definition of the distance G, for each ξji ∈ spt(N(0)) there exists a point

vk(j,i) ∈ spt(fj(0)) such that |w
j
i − vk(j,i)| 6 G(fj(xji), f

j(0)) 6 Lip(f)|xji|
(9.60)
6 Lip(f)ρ = h.

Hence, we conclude:∣∣∣∣∣
Q∑
`=1

w`

∣∣∣∣∣ =
∣∣∣∣∣∣
J∑
j=1

Qj∑
i=1

w
j
i

∣∣∣∣∣∣ 6
∣∣∣∣∣∣
J∑
j=1

Qj∑
i=1

v
j
i

∣∣∣∣∣∣+
J∑
j=1

Qj∑
i=1

|w
j
i − v

j
i|

6

∣∣∣∣∣
Q∑
`=1

v`

∣∣∣∣∣+
J∑
j=1

Qj∑
i=1

(
|w
j
i − vk(j,i)|+ |vk(j,i) − v

j
i|
)
6

∣∣∣∣∣
Q∑
`=1

v`

∣∣∣∣∣+Ch,

where we used that diam(fj(0)) 6 4Qh. This proves (9.61) and concludes the proof of (9.6).
Finally, we show that (9.7) holds. Let x ∈ Bs, and assume that (x,η ◦ f(x)) = p + v

for some p ∈ Σ and v ∈ T⊥p Σ. Now, if v = 0 then the above assumption implies that
η ◦ f(x) = ϕ(x), and thus (9.7) reduces to the first inequality in (9.5). On the other hand, if
v 6= 0 then we shift Σ to Σ̃ := v+Σ. Then, if we apply Theorem 9.1.4 with Σ̃ in place of Σ we
obtain a vector field Ñ which satisfies Ñ(p+ v) =

∑
`JN`(p) − vK. Hence, G(N(p),QJvK) =

G(Ñ(p+ v),QJ0K), which reduces the problem again to the case v = 0. This completes the
proof of Theorem 9.1.4.





Part III

Regularity and singularities of
multiple-valued harmonic maps
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10 R E C T I F I A B I L I T Y O F T H E H Ö L D E R
S I N G U L A R S T R ATA

Let Ω ⊂ Rm be an open set, and let Nn be a smooth compact Riemannian manifold,
smoothly embedded in Rd. In this chapter we study the fine properties of the Hölder
singular set singH(u) of Dirichlet-minimizingQ-valued maps u : Ω→ AQ(N). In particular,
we prove the following theorem.

Theorem 10.0.1. Given a Dirichlet-minimizing Q-valued map u : B2(0) ⊂ Rm → AQ(N) with
energy E (u,B2(0)) 6 Λ, if we denote Br

(
singH(u)

)
:=
⋃
x∈singH(u)

Br(x) then we have

Lm
(
Br
(
singH(u)

)
∩B1(0)

)
6 Cr3

for some constant C = C(m,N,Q,Λ). Moreover, singH(u) is countably (m− 3)-rectifiable.

The plan of the chapter is the following. In Section 10.1 we consider a slightly modified
version of the rescaled Dirichlet energy E (u,Br(x)) in a ball Br(x) b Ω, and we prove its
monotonicity with respect to the radius r of the ball. With section 10.2 we enter the core
of the chapter. First, we provide an alternative definition of the quantitative singular strata
Skε,r(u): as in the classical Cheeger-Naber quantitative stratification (cf. Definitions 2.3.12

and 2.3.13), Skε,r is, roughly speaking, the set of points x ∈ Ω for which u on Br(x) is ε-far
away from being homogeneous and invariant with respect to a k-dimensional subspace.
While the notion of closeness employed by Cheeger and Naber relies on the L2 distance
of the map u from some k-symmetric model map h, we propose a notion that focuses on
the L2 norm of the gradient of u along arbitrary k-subspaces. Once we have the notion of
quantitative stratification at our disposal, we can state the main theorem of this chapter, that
is Theorem 10.2.17, concerning Minkowski estimates and rectifiability of the quantitative
strata: Theorem 10.0.1, in fact, is essentially a simple corollary of Theorem 10.2.17 and (a
slightly refined version of) the ε-regularity theorem. After discussing some quantitative
versions of the ε-regularity theorem in Section 10.3, we start the machinery which will
eventually lead us to the proof of Theorem 10.2.17. Sections 10.4 and 10.5 contain the most
important technical tools needed for the proof, which is instead completed in Section 10.6
with a double inductive covering argument in the spirit of Naber-Valtorta [NV17].

10.1 the mollified dirichlet energy and its monotonicity

From now on, we fix an open subset Ω ⊂ Rm, a smooth compact Riemannian man-
ifold Nn ↪→ Rd and an integer Q > 1. Recall from § 2.3.3 the definition of the space
W1,2
loc(Ω,AQ(N)) and the notions of stationary and minimizing Q-harmonic maps u ∈

W1,2
loc(Ω,AQ(N)).

161
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Definition 10.1.1 (Mollified energy). Letϕ = ϕ(t) be any non-negative function in C1c([0, 1))
which is constant in a neighborhood of t = 0.

Then, for any u ∈W1,2
loc(Ω,AQ(N)) and for any Br(x) ⊂ Ω we define the quantity

θu(x, r) := r2−m
ˆ
ϕ

(
|x− y|

r

)
|Du(y)|2 dy. (10.1)

When the map u is fixed, we will simply write θ(x, r) for the sake of notational simplicity.
In what follows, we show that, under suitable assumptions on ϕ, the function r 7→ θ(x, r) is
monotone non-decreasing for fixed x, and we explicitly compute its derivative. Recall that
for any x ∈ Rm the radial unit vector field with respect to x is denoted rx(y) := y−x

|y−x| .

Lemma 10.1.2. Let u ∈ W1,2
loc(Ω,AQ(N)) be a stationary Q-harmonic map, and let x ∈ Ω. For

any ϕ as in Definition 10.1.1, the following identity holds true for all r such that Br(x) ⊂ Ω:

d

dr
θ(x, r) = −2r2−m

ˆ
ϕ ′
(
|x− y|

r

)
|x− y|

r2
|Drxu(y)|

2 dy. (10.2)

In particular, if we let ψ = ψ(t) denote a primitive function of ϕ ′(t)tm−2, then for 0 < s < r <
dist(x,∂Ω) we have:

θ(x, r) − θ(x, s) =
ˆ (

ψ

(
|x− y|

r

)
−ψ

(
|x− y|

s

))
|x− y|2−m |Drxu(y)|

2 dy. (10.3)

In case we choose ϕ to be non-increasing, we have that r 7→ θ(x, r) is non-decreasing; furthermore,
if −ϕ ′(t) > (1− t)+ then it holds

θ(x, r) − θ(x, r/2) > C
ˆ
B r
2
(x)

|x− y|

rm−1
|Drxu(y)|

2 dy (10.4)

for some positive constant C = C(m).

Proof. The identity (10.2) follows from the inner variation formula, equation (2.38). Indeed,
for any fixed x ∈ Ω and 0 < r < dist(x,∂Ω) define the vector field X(y) := ϕ

(
|x−y|
r

)
(y− x).

If we plug this choice of X in (2.38), we easily deduce the identity

(m−2)

ˆ
ϕ

(
|x− y|

r

)
|Du(y)|2 dy +

ˆ
ϕ ′
(
|x− y|

r

)
|x− y|

r

(
|Du(y)|2 − 2 |Drxu(y)|

2
)

dy = 0.

To conclude, we can differentiate the quantity θ(x, r) in r and obtain the differential identity
(10.2).

Now, let ψ be a primitive function of ϕ ′(t)tm−2. We have

d

dr
ψ

(
|x− y|

r

)
= −

1

r
ϕ ′
(
|x− y|

r

)(
|x− y|

r

)m−1

,

and thus we can rewrite (10.2) as

d

dr
θ(x, r) = 2

d

dr

ˆ
ψ

(
|x− y|

r

)
|x− y|2−m |Drxu(y)|

2 dy.
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Integrating immediately leads to (10.3).
If we choose ϕ ′(t) 6 0, then (10.2) implies that r 7→ θ(x, r) is non-decreasing. In case

−ϕ ′(t) > (1− t)+, we have for 0 < a 6 1
2

ψ(a) −ψ(2a) = −

ˆ 2a

a

ϕ ′(t)tm−2 > am−1

(
2m−1 − 1

m− 1
− a

2m − 1

m

)
> Cma

m−1. (10.5)

Hence, the estimate (10.4) can be deduced from (10.3) by using the fact that ψ is non-
increasing to estimate

θ(x, r)−θ(x, r/2) >
ˆ
B r
2
(x)

(
ψ

(
|x− y|

r

)
−ψ

(
2|x− y|

r

))
|x−y|2−m |Drxu(y)|

2 dy, (10.6)

and then using the inequality in (10.5) with a =
|x−y|
r for y ∈ B r

2
(x).

Assumption 10.1.3. For the rest of the chapter, we will assume that ϕ has been fixed, and
that it satisfies the condition −ϕ ′(t) > (1− t)+, so that the inequality (10.4) holds.

10.2 quantitative stratification

The first step towards the definition of the quantitative singular strata is to introduce the
notion of “model maps” having a given number of symmetries. This definition is analogous
to Definition 2.3.11.

Definition 10.2.1 (k-symmetric maps). A map h ∈W1,2
loc(R

m,AQ(N)) is said to be:

• homogeneous with respect to x ∈ Rm if

h(x+ λv) = h(x+ v) for all λ > 0, for every v ∈ Rm,

or equivalently if
Drxh = QJ0K a.e. in Rm.

• k-symmetric if it is homogeneous with respect to the origin and there exists a linear
subspace L ⊂ Rm with dim(L) = k along which h is invariant, that is

h(x+ v) = h(x) for every x ∈ Rm, for all v ∈ L,

or, equivalently, such that

Dvh(x) = QJ0K, for a.e. x ∈ Rm, for all v ∈ L.

Observe that if h ∈ W1,2
loc(R

m,AQ(N)) is stationary and homogeneous with respect to
x then θh(x, s) = θh(x, r) for every 0 < s < r by (10.3). Also, if h is k-symmetric with
invariance subspace L then the energy of h in the direction of any v ∈ L vanishes. Hence, it
is very natural to give the following definition, which is the starting point for introducing
the quantitative stratification.
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Definition 10.2.2. Given a stationary Q-harmonic map u ∈W1,2
loc(Ω,AQ(N)), we say that a

ball Br(x) with B2r(x) ⊂ Ω is (k, ε)-symmetric for u if and only if the following conditions
hold:

(a) θu(x, 2r) − θu(x, r) < ε;

(b) there exists a linear subspace L ⊂ Rm with dim(L) = k such that

r2−m
ˆ
Br(x)

|DLu(y)|
2 dy 6 ε,

where ˆ
Br(x)

|DLu(y)|
2 dy :=

ˆ
Br(x)

k∑
i=1

|Deiu(y)|
2 dy,

for any orthonormal basis {ei}
k
i=1 of L.

Remark 10.2.3. Observe that the conditions (a) and (b) above are scale-invariant in the
following sense. For x ∈ Ω and r > 0 such that B2r(x) ⊂ Ω, consider the blow-up map Tux,r
given by

Tux,r(y) := u(x+ ry).

Then, Br(x) is (k, ε)-symmetric with respect to u if and only if B1(0) is (k, ε)-symmetric
with respect to Tux,r.

Definition 10.2.4 (Quantitative stratification). Let u ∈ W1,2
loc(Ω,AQ(N)) be stationary Q-

harmonic, and let ε, r > 0 and k ∈ {0, . . . ,m}. We will set

Skε,r(u) := {x ∈ Ω : for no r 6 s < 1 the ball Bs(x) is (k+ 1, ε)-symmetric with respect to u} .

It is an immediate consequence of the definition that if k ′ 6 k, ε ′ > ε and r ′ 6 r then

Sk
′

ε ′,r ′(u) ⊆ Skε,r(u).

Hence, we can set:
Skε(u) :=

⋂
r>0

Skε,r(u), Sk(u) :=
⋃
ε>0

Skε(u).

Remark 10.2.5. Note that from Theorem 2.3.21 one easily deduces that if u ∈W1,2
loc(Ω,AQ(N))

is energy minimizing and a ball Br(x) is (m, ε0)-symmetric for u, with the ε0 given in there,
then u is Hölder continuous in B r

2
(x), and thus in particular Sk(u) ∩ B r

2
(x) = ∅ for every

k 6 m − 1. In fact, we can also conclude that Sm(u) \ Sm−1(u) coincides with the set
regH(u) := Ω \ singH(u) of points of Hölder continuity for u, and singH(u) = Sm−1(u).

The first important property of the quantitative stratification is that the sets Sk(u) coin-
cide with the classical singular k-strata defined by means of the number of symmetries of
the tangent maps (cf. § 2.3.3).

Proposition 10.2.6. Let u ∈W1,2(Ω,AQ(N)) be energy minimizing. Then

Sk(u) = {x : no tangent map to u at x is (k+ 1)-symmetric} .
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Proof. First recall that for any x ∈ Ω there exists at least one tangent map φ ∈W1,2
loc(R

m,AQ(N))

to u at x, and that all tangent maps are energy minimizing and 0-symmetric.
Now, let x be a point such that there exists a tangent map φ to u at x which is (k+ 1)-

symmetric. Then, there is a sequence rj ↘ 0 of radii such that the corresponding sequence
of blow-up maps uj := Tux,rj satisfies G(uj,φ)→ 0 in L2loc(R

m) as j→∞ and furthermore

θφ(0, ρ) = lim
j→∞ θuj(0, ρ) ∀ ρ > 0.

In particular, since φ is homogeneous with respect to the origin, and thus θφ(0, 2) −
θφ(0, 1) = 0 by (10.3), for any ε > 0 there exists j0 = j0(ε) such that

θuj(0, 2) − θuj(0, 1) < ε ∀ j > j0. (10.7)

Moreover, since φ is (k+ 1)-symmetric there exists a linear subspace L ⊂ Rm with dim(L) =

k + 1 such that DLφ = QJ0K a.e. in Rm. Hence, from the convergence of energy for
minimizers we deduce that if j0 is chosen suitably large then also

ˆ
B1(0)

|DLuj|
2 dy 6 ε ∀ j > j0. (10.8)

Together, equations (10.7) and (10.8) imply that Brj(x) is (k+ 1, ε)-symmetric for u if j >
j0(ε), and thus x /∈ Sk(u). This proves the first inclusion, namely

Sk(u) ⊆ {x ∈ Ω : no tangent map to u at x is (k+ 1)-symmetric} .

In order to prove the other inclusion, assume that x /∈ Sk(u). Then, for every j ∈ N there
exist a radius rj > 0 and a (k+ 1)-dimensional linear subspace Lj ⊂ Rm such that if we set
uj := T

u
x,rj then

θuj(0, 2) − θuj(0, 1) <
1

j
(10.9)

and ˆ
B1(0)

|DLjuj|
2 dy 6

1

j
. (10.10)

Modulo a simple right composition of each uj with a rotation, we can assume that the
invariant subspace is a fixed (k+ 1)-dimensional subspace L ⊂ Rm. By the compactness
theorem for Q-valued energy minimizing maps, a subsequence (not relabeled) of the uj’s
converges in L2loc and in energy to an energy minimizing map φ. From (10.9) together
with (10.4) we deduce that the limit map φ is homogeneous with respect to the origin.
Furthermore, (10.10) implies that φ is invariant along the subspace L, and thus φ is (k+ 1)-
symmetric. Now, if a subsequence of the rj’s converges to 0 then φ is by definition a tangent
map to u at x. If, on the other hand, the rj’s are bounded away from 0 then u = φ on a ball
of positive radius centered at x, and thus, in particular, all tangent maps to u at x coincide
with φ. In either case, this completes the proof.

Corollary 10.2.7. Let u ∈W1,2(Ω,AQ(N)) be energy minimizing. Then

Sm−1(u) \ Sm−3(u) = ∅.
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Proof. This is a direct consequence of the Proposition 10.2.6, since the identity Sm−1(u) =

Sm−3(u) holds for the standard stratification.

The definition of quantitative stratification that we have proposed differs from the origi-
nal one introduced by Cheeger and Naber in [CN13a, CN13b] and then used by Naber and
Valtorta in [NV17]. Of course, the Cheeger-Naber quantitative stratification can be without
any difficulties extended to the Q-valued context. We recall the definition here, in order to
compare it with Definition 10.2.4.

Definition 10.2.8. Let u ∈ W1,2
loc(Ω,AQ(N)), and fix k ∈ {0, . . . ,m} and ε > 0. A ball Br(x)

with B2r(x) ⊂ Ω is said to be (k, ε)-symmetric for u in the sense of Cheeger-Naber, or briefly
[CN] (k, ε)-symmetric, if there exists some k-symmetric map h ∈ W1,2

loc(R
m,AQ(N)) such

that  
Br(x)

G(u(y),h(y− x))2 dy 6 ε. (10.11)

The definitions of [CN] (ε, r)-singular strata [CN]Skε,r(u) and [CN] ε-singular strata [CN]Skε(u)

can be then straightforwardly obtained according to the definition of [CN] (k, ε)-symmetry
precisely as in Definition 2.3.13. In particular, [CN]Sk(u) classically consists of all points
x ∈ Ω having the property that there exists ε > 0 such that no ball Br(x) is [CN] (k+ 1, ε)-
symmetric with respect to u.

The following simple proposition shows that if u is a minimizing Q-valued map then
Definition 10.2.2 and Definition 10.2.8 are equivalent, in the sense that they generate the
same stratification. In order to fix the ideas, for the vast majority of the following results
we will work under the following assumption.

Assumption 10.2.9. Assume that u ∈ W1,2(B10(0),AQ(N)) is a Q-valued energy minimiz-
ing map, and that E (u,B10(0)) 6 Λ.

Proposition 10.2.10. For every ε > 0 there exists δ = δ(m,N,Q,Λ, ε) > 0 such that for any u
satisfying Assumption 10.2.9:

(i) if Br(x) is (k, δ)-symmetric for u, then it is [CN] (k, ε)-symmetric for u;

(ii) if Br(x) is [CN] (k, δ)-symmetric for u, then it is (k, ε)-symmetric for u.

Proof. Since both the definitions of symmetry are scale-invariant, modulo translations and
dilations it suffices to show the validity of the proposition for x = 0 and r = 1. We start
proving the first claim. Assume by contradiction that there exist ε0 > 0 and a sequence
{uj}j∈N of maps as in Assumption 10.2.9 for which the ball B1 is (k, j−1)-symmetric but
such that 

B1

G(uj(y),h(y))2 dy > ε0 for every k-symmetric function h, for every j ∈N. (10.12)

Modulo rotations, we can assume that the k-dimensional linear subspace L such that condi-
tion (b) in Definition 10.2.2 is satisfied is fixed along the sequence: namely, we can assume
without loss of generality that

θuj(0, 2) − θuj(0, 1) < j
−1
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and that ˆ
B1

|DLuj(y)|
2 dy 6 j−1

for some fixed k-dimensional plane L ⊂ Rm. Now, the compactness theorem for Q-valued
energy minimizing maps implies that a subsequence of the uj’s (not relabeled) converges
in L2(B10(0),AQ(RN)) and in energy to a Q-valued energy minimizing map h for which

θh(0, 2) − θh(0, 1) = 0

and
DLh = QJ0K a.e. in B1.

Hence, by (10.4) the map h|B1 can be extended to a k-symmetric map (which we still denote
by h), and the fact that G(uj,h)→ 0 in L2(B1) contradicts (10.12).

For the converse, assume again by contradiction that there exist ε0, a sequence {uj}j∈N of
maps as in Assumption 10.2.9 and a sequence {hj}j∈N ⊂W1,2

loc(R
m,AQ(N)) of k-symmetric

maps such that  
B1

G(uj(y),hj(y))2 dy 6 j−1 (10.13)

and such that the ball B1 is not (k, ε0)-symmetric. Again, after applying suitable rotations
we can assume that the invariant subspace for the maps hj is a fixed k-dimensional plane
L ⊂ Rm. By compactness, the maps uj converge, up to subsequences, to an energy mini-
mizing u ∈W1,2(B10(0),AQ(N)). By (10.13), also hj → u strongly in L2(B1,AQ(N)). Since
the space of k-symmetric maps is L2-closed, we deduce that u is k-symmetric. Since the uj’s
converge to u also in energy, the ball B1 must be (k, ε0)-symmetric for uj if j is sufficiently
large, which is the required contradiction.

Corollary 10.2.11. Let u satisfy Assumption 10.2.9. Then, for every k ∈ {0, . . . ,m} one has

Sk(u) = [CN]Sk(u). (10.14)

Using more quantitative estimates, the comparison between the two notions of quantita-
tive symmetry can be carried to the case of stationary Q-harmonic maps.

Proposition 10.2.12. There exists a constant C = C(m,N,Q) > 0 with the following property. Let
u ∈ W1,2

loc(Ω,AQ(N)) be a stationary Q-harmonic map. If a ball Br(x) b Ω is (k, ε)-symmetric
for u, then B r

4
(x) is (k,C|ε ln(ε)|)-symmetric for u in the sense of Cheeger-Naber.

Proof. Without loss of generality, we prove the claim for x = 0 and r = 1. The idea of
the proof is to explicitly construct from u a k-symmetric map in B 1

4
. Modulo a rotation,

we can assume that the k-dimensional plane L of ε-almost symmetry is L = {xi = 0 : i >

k} = Rk × {0}. For convenience, we will denote the variables of Rk with y,y ′ and the
variables of Rm−k with z, z ′. The point x ∈ Rm will be therefore given coordinates x =

(y, z) ∈ Rk ×Rm−k. With a slight abuse of notation, we will also sometimes regard y and
z as vectors in Rm, thus avoiding the cumbersome, although more correct, writings (y, 0)
and (0, z). Finally, when we integrate a function with respect to the variable y over a ball
Bkr ⊂ Rk we will use the notation Byr as domain of integration (and analogously for the
variables y ′, z, z ′).
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In order to construct the k-symmetric map, we need to prove two simple inequalities for
multiple-valued functions.

Claim 1: there exists a constant C = C(k,d,Q) with the following property. For any function
f = f(y, z) in W1,2

(
Bk1 ×B

m−k
1 ,AQ(Rd)

)
, one has

ˆ
B
y ′
1

ˆ
B
y
1×Bz1

G(f(y, z), f(y ′, z))2 6 C
ˆ
B
y
1×Bz1

|DLf|
2. (10.15)

Claim 2: Let 0 < s0 < a < 1. There exists a constant C = C(j,a,Q) such that for any f ∈
W1,2(Bj1 ⊂ Rj,AQ(Rd)) and every a < t 6 1 such that f|

∂B
j
t
∈ W1,2(∂Bjt,AQ(R

d))

the following holds:

ˆ
B
j
1\B

j
s0

G

(
f(x), f

(
t
x

|x|

))2
6 C|ln(s0)|

ˆ
B
j
1\B

j
s0

|Df(x) · x|2 . (10.16)

Proof of Claim 1: The proof is a consequence of the Poincaré inequality for multiple valued
functions, Proposition 2.2.18. Indeed, first observe that for a.e. z ∈ Bm−k

1 the map y 7→
f(y, z) is in W1,2(Bk1 ,AQ(Rd)). Hence, by the aforementioned Poincaré inequality, for any
such a z there exists a point f̄(z) ∈ AQ(R

d) such that
ˆ
B
y
1

G(f(y, z), f̄(z))2 6 C
ˆ
B
y
1

|DLf(y, z)|2 ,

where C = C(k,d,Q). Hence, by triangle inequality we infer that

ˆ
B
y
1

ˆ
B
y ′
1

G(f(y, z), f(y ′, z))2 6 2Hk(Bk1)

(ˆ
B
y
1

G(f(y, z), f̄(z))2 +
ˆ
B
y ′
1

G(f(y ′, z), f̄(z))2
)

6 C
ˆ
B
y
1

|DLf(y, z)|2 .

Integrating now this inequality in z ∈ Bm−k
1 gives (10.15).

Proof of Claim 2: First note that for Hj−1-a.e. w ∈ ∂Bj1 the map r 7→ gw(r) := f(rw) is
in W1,2((0, 1) ,AQ(Rd)). By the W1,2-selection theorem for multiple-valued functions of
one variable (cf. [DLS11, Proposition 1.2]), there exist W1,2 functions gw` : (0, 1) → Rd for
` = 1, . . . ,Q such that

∣∣ d
drg

w
` (r)

∣∣ 6 |Dwf(rw)| for a.e. r ∈ (0, 1). Now, fix t ∈ (a, 1). Then,
by one-dimensional calculus, we have for s0 < s 6 t and for every ` ∈ {1, . . . ,Q} that

|gw` (s) − g
w
` (t)|

2 6

(ˆ t

s

r−j−1dr
)(ˆ t

s

∣∣∣∣ ddrgw` (r)
∣∣∣∣2 rj+1dr

)

6
s−j

j

ˆ 1

s0

|Df(rw) ·w|2 rj+1dr

=
s−j

j

ˆ 1

s0

|Df(rw) · rw|2 rj−1dr.
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For t 6 s 6 1 the same computation holds true interchanging t and s: in this case, we
estimate t

−j

j 6
a−j

j s
−j. Hence in both cases we have

|gw` (s) − g
w
` (t)|

2 6 Cs−j
ˆ 1

s0

|Df(rw) · rw|2 rj−1dr.

Summing over ` ∈ {1, . . . ,Q} and recalling the definition of the metric G this produces

G(f(sw), f(tw))2 6 Cs−j
ˆ 1

s0

|Df(rw) · rw|2 rj−1dr for every s ∈ (s0, 1) ,

where C = C(j,a,Q). Multiply by sj−1 and integrate in s between s0 and 1 to obtain
ˆ 1

s0

G(f(sw), f(tw))2sj−1ds 6 C|ln(s0)|
ˆ 1

s0

|Df(rw) · rw|2 rj−1dr.

Integrating now in w ∈ ∂B1 gives inequality (10.16).

We are now ready to prove the proposition. Let u ∈ W1,2(Ω,AQ(N)) be a stationary
Q-harmonic map, and assume that B1 is (k, ε)-symmetric for u. By (b) in Definition 10.2.2,
we can fix 1

4 6 t 6 1√
2

such that x ∈ ∂Bt 7→ u(x) is in W1,2(∂Bt,AQ(N)) and satisfies´
∂Bt

|DLu|
2 6 C

´
B1

|DLu|
2.

For a.e. y ′ ∈ Bkt we have that the map z 7→ vy ′(z) := u(y ′, z) is in W1,2(Bm−k
t ,AQ(N)).

Hence, by the scaled version of (10.16) with j = m− k we have for any 0 < s0 < 1
4 that

ˆ
Bzt\B

z
s0

G

(
vy ′(z), vy ′

(
t
z

|z|

))2
6 C|ln(s0)|

ˆ
Bzt

∣∣Du(y ′, z) · z∣∣2 ,

where C = C(m,Q). Integrating this now in y ′ ∈ Bkt we obtain
ˆ
B
y ′
t

ˆ
Bzt\B

z
s0

G

(
vy ′(z), vy ′

(
t
z

|z|

))2
6 C|ln s0|

ˆ
Bkt×B

m−k
t

|Du(y, z) · z|2 dydz.

Adding the scaled version of (10.15), since Bkt ×Bm−k
t ⊂ B1 we obtain

ˆ
B
y ′
t

(ˆ
B
y
t×Bzt

G(u(y, z), vy ′(z))2 +
ˆ
Bzt\B

z
s0

G

(
vy ′(z), vy ′

(
t
z

|z|

))2)

6 C

(ˆ
B1

|DLu|
2 + |ln(s0)|

ˆ
B1

|Du(x) · x|2
)

.

Hence there exists y ′0 ∈ Bkt such that

ˆ
B
y
t×Bzt

G(u(y, z), vy ′0(z))
2 +

ˆ
Bzt\B

z
s0

G

(
vy ′0(z), vy ′0

(
t
z

|z|

))2
6

C

Hk(Bkt )

(ˆ
B1

|DLu|
2 + |ln(s0)|

ˆ
B1

|Du(x) · x|2
)

6 C(1+ |ln(s0)|)ε,
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where in the last inequality we have used that the ball B1 is, by assumption, (k, ε)-symmetric
for u together with (10.4).

Set h(x) = h(y, z) := vy ′0

(
t z
|z|

)
∈ W1,2(Bt,AQ(N)). Note that, by definition, h is homo-

geneous with respect to 0. Furthermore, h is k-symmetric. An application of the triangle
inequality gives
ˆ
B
y
t×Bzt

G(u(y, z),h(x))2 62
ˆ
B
y
t×Bzt

G(u(y, z), vy ′0(z))
2 + 2

ˆ
B
y
t×(Bzt\Bzs0)

G(vy ′0(z),h(x))
2

+ 2

ˆ
B
y
t×Bzs0

G(vy ′0(z),h(x))
2.

As we have shown above, the first two integrals can be bounded by C(1+ |ln(s0)|)ε. As for
the last integral, we estimate it brutally by fixing a point p ∈ N and computing
ˆ
B
y
t×Bzs0

G(vy ′0(z),h(x))
2 6 2 sup

x∈B1
G(u(x),QJpK)2Hk(Bk1)H

m−k(Bm−k
s0

) 6 CQdiam(N)2sm−k
0

Hence choosing s0 = ε proves the proposition, since we get
ˆ
Bt

G(u(x),h(x))2 6 C|ε ln(ε)|.

Corollary 10.2.13. Let u ∈W1,2
loc(Ω,AQ(N)) be a stationary Q-harmonic map. Then

[CN]Sk(u) ⊂ Sk(u).

We conclude the section with two propositions about the characterization of the singular
set for minimizing and stationary maps. The first one is the following effective version of
Corollary 10.2.7.

Proposition 10.2.14. There exists ε = ε(m,N,Q,Λ) such that for any map u satisfying Assump-
tion 10.2.9 the following holds:

B1 ∩
(
Sm−1(u) \ Sm−3

ε (u)
)
= ∅.

Proof. The proof is by contradiction. Assume, therefore, that for every j ∈ N there exists
uj as in Assumption 10.2.9 with a point xj ∈ B1 ∩

(
Sm−1(uj) \ S

m−3
j−1

(uj)
)

. Since xj /∈
Sm−3
j−1

(uj), there exists 0 < rj < 1 and a linear subspace Lj ⊂ Rm with dim(Lj) = m− 2

such that

θuj(xj, 2rj) − θuj(xj, rj) 6 j
−1 , (10.17)

r2−mj

ˆ
Brj(xj)

|DLjuj|
2 6 j−1 . (10.18)
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As usual, without loss of generality we assume that the (m − 2)-planes of j−1-almost
symmetry are a fixed subspace L along the sequence. Set vj(y) := uj(xj+ rjy), and re-write
the equations (10.17) and (10.18) in terms of vj:

θvj(0, 2) − θvj(0, 1) 6 j
−1 , (10.19)ˆ

B1

|DLvj|
2 6 j−1 . (10.20)

Now, by an elementary computation it is immediate to see that for every ρ ∈ (0, 8) one
has

ρ2−m
ˆ
Bρ

|Dvj|
2 = (ρrj)

2−m

ˆ
Bρrj(xj)

|Duj|
2 6 CmΛ.

Hence, by the Compactness Theorem 2.3.18, the sequence {vj}j∈N converges up to subse-
quences in L2(B8,AQ(RN)) and in energy to a Q-valued energy minimizing map v for
which

θv(0, 2) − θv(0, 1) = 0 , (10.21)ˆ
B1

|DLv|
2 = 0 . (10.22)

In particular, v|B1 can be extended to an (m− 2)-symmetric energy minimizer. This implies
that a fortiori 0 ∈ regH(v). Thus, 0 /∈ Sm−1(vj) for j large, which contradicts the fact that
xj ∈ Sm−1(uj).

In the single-valued case Q = 1, we have the following result on the quantitative stratifi-
cation for stationary harmonic maps.

Proposition 10.2.15. There exists ε = ε(m,N) such that for any single-valued stationary har-
monic map u ∈W1,2

loc(Ω,N) the following holds:

Sm−1(u) \ Sm−2
ε (u) = ∅.

Proof. Proposition 10.2.15 is a consequence of the inner variation formula. First we derive
a general estimate and show afterwards how it implies the proposition.

Let us consider a single-valued harmonic map u in B1 that satisfies the inner variation
formula (2.32). We fix two non-negative, non-increasing functions ψ,ϕ ∈ C1c

([
0, 1√

2

))
and

a k-dimensional subspace L ⊂ Rm. After a rotation, we may assume that L = {xi = 0 : i =

k+ 1, . . . ,m}. To make the notation a bit simpler we will write x = (y, z) ∈ L× L⊥, and by
a slight abuse of notation we shall again consider z = (0, z) as a vector in Rm. Consider the
vector field X(y, z) := ψ(|y|)ϕ(|z|)z = ψϕz. We have DX = ψϕP⊥ + ψϕ ′

|z| z⊗ z+
ψ ′ϕ
|y| z⊗ y,

where P⊥ denotes the orthogonal projection onto L⊥. We use this vector field in the inner
variation formula (2.32) and obtain

0 =

ˆ
|Du|2

(
(m− k)ψϕ+ψϕ ′|z|

)
− 2

(
ψϕ|DL⊥u|

2 +ψϕ ′
1

|z|
|Du · z|2 +ψ ′ϕ

〈
Du · z,Du · y

|y|

〉)
.

Observe that

(m− k)ψϕ|Du|2 − 2ψϕ|DL⊥u|
2 = (m− k− 2)ϕψ|Du|2 + 2ψϕ|DLu|

2.
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Furthermore, we can write z = x− y to estimate

|Du · z|2 6 2|Du · x|2 + 2|Du · y|2〈
Du · z,Du · y

|y|

〉
6
1

2
|Du · x|2 + 1

2

∣∣∣∣Du · y|y|
∣∣∣∣2 .

Combining all together, and recalling that ϕ ′,ψ ′ 6 0, we obtain the inequality

ˆ
−
(
(m− k− 2)ψϕ+ψϕ ′|z|

)
|Du|2

6
ˆ
2ψϕ |DLu|

2 +

ˆ
−4ψϕ ′

|z|

(
|Du · x|2 + |Du · y|2

)
−ψ ′ϕ

(
|Du · x|2 +

∣∣∣∣Du · y|y|
∣∣∣∣2
)

.

(10.23)

We are ready to prove the proposition. Fix ε > 0 to be determined later, and suppose
by contradiction that there is a point x ∈ Sm−1(u) \ Sm−2

ε (u). Since x /∈ Sm−2
ε , there exists

r = r(ε) > 0 and an (m− 1)-dimensional subspace L = L(ε) such that r2−m
´
Br(x)

|DLu|
2 < ε

and θ(x, 2r) − θ(x, r) < ε. By translation and scaling, i.e. passing to Tux,r, we may assume
that x = 0 and r = 1. However, for notational convenience, we will still write u for Tux,r.
After a further rotation we may assume that L = {xm = 0}. Now, we have B 1

2
⊂ Bm−1

1√
2

×(
− 1√

2
, 1√
2

)
⊂ B1. Fix a function η ∈ C1 with η ′ 6 0 and η(t) = 1 for t 6 1

2 , η(t) = 0

for t > 1√
2

. Set ϕ = ψ := η in (10.23). Recall that in our situation k = m− 1, and thus

−(m− k− 2) = 1. Furthermore, we have ψϕ > 1B 1
2

, and |4ψϕ ′|
|z| , |ψ ′ϕ| are bounded and

supported in B1. Hence (10.23) reads in our case

ˆ
B 1
2

|Du|2 6 C
ˆ
B1

(
|x||Dru|

2 + |DLu|
2
)

,

where r(x) = r0(x) = x
|x| . By (10.4), we deduce that

´
B 1
2

|Du|2 6 Cε. If ε > 0 is chosen

sufficient small, i.e. Cε < ε0 where ε0 = ε0(m,N) is the threshold in the ε-regularity
theorem for stationary harmonic maps (cf. [Bet93, RS08]), this allows to infer that u is
Hölder continuous in B 1

4
, and hence 0 is a regular point. This contradicts the assumption

that 0 ∈ Sm−1.

Remark 10.2.16. Note that the above proposition could be extended (with exactly the same
proof) to the case of stationary Q-harmonic maps if an ε-regularity theorem was available
in that case.

10.2.1 Main theorem on the quantitative strata

Since the relevant terminology has been introduced now, we can finally state the main
estimates that we are going to prove on the singular strata.
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Theorem 10.2.17. Given a Dirichlet-minimizing Q-valued map u : B2 (0) ⊆ Rm → AQ(N)

with E (u,B2(0)) 6 Λ, let Skε,r(u) be its quantitative singular strata. Then, if Br
(
Skε,r(u)

)
:=⋃

x∈Skε,r(u)
Br(x), we have

Lm
(
Br
(
Skε,r(u)∩B1 (0)

))
6 C(m,N,Q,Λ, ε)rm−k . (10.24)

Moreover, Skε(u) is k-rectifiable for all ε > 0.

Remark 10.2.18. This theorem is similar in spirit to [NV17, Theorem 1.3].

Note that this and the ε-regularity theorem immediately imply Theorem 10.0.1 as a corol-
lary.

Proof of Theorem 10.0.1. By remark 10.2.5 and proposition 10.2.14, there exists an ε such that

Sm−3
ε (u)∩B1 (0) = singH(u)∩B1 (0) . (10.25)

Thus Theorem 10.2.17 immediately proves the volume estimates and rectifiability for singH(u).

We postpone the proof of Theorem 10.2.17 to Section 10.6, after having discussed a few
technical tools needed to complete it.

10.3 quantitative ε-regularity theorems

In this section we are going to present the proof of a quantitative version of the ε-
regularity theorem for Q-valued minimizers, cf. Theorem 10.3.3 below, which in turn im-
plies Corollary 10.3.4, providing sufficient conditions under which the singular set singH(u)
is constrained to live in the tubular neighborhood of an affine subspace of Rm of appro-
priate dimension. We start with the following definition, analogous to [NV17, Definition
4.5].

Definition 10.3.1. Let y0,y1, . . . ,yk be (k+ 1) points in B1(0) ⊂ Rm, and let ρ > 0. We say
that these points ρ-effectively span a k-dimensional affine subspace if

dist(yi,y0 + span[y1 − y0, . . . ,yi−1 − y0]) > 2ρ for every i = 1, . . . ,k. (10.26)

A set F ⊂ B1(0) ρ-effectively spans a k-dimensional subspace if there exist points {yi}ki=0 ⊂ F
which ρ-effectively span a k-dimensional subspace.

Remark 10.3.2. It is easy to see that if the points {yi}
k
i=0 ρ-effectively span a k-dimensional

affine subspace then for every point

x ∈ y0 + span[y1 − y0, . . . ,yk − y0]

there exists a unique set of numbers {αi}
k
i=1 such that

x = y0 +

k∑
i=1

αi(yi − y0), |αi| 6 C(m, ρ)|x− y0|.



174 rectifiability of the hölder singular strata

Furthermore, the notion of ρ-effectively spanning a k-dimensional affine subspace passes to
the limit: if for every j ∈ N the points {y

j
i}
k
i=0 ρ-effectively span a k-dimensional subspace

and there exist the limits yi := limj→∞ yji, then also the points {yi}
k
i=0 ρ-effectively span a

k-dimensional subspace.

We can now state the main theorem of this section.

Theorem 10.3.3. Let ε, ρ > 0 be fixed. There exist δ, r > 0, depending on m, ρ,Λ, ε, with the
following property. Let u ∈ W1,2(B10(0),AQ(N)) be a stationary Q-harmonic map with energy
bounded by Λ, let r 6 1, and let

F := {y ∈ Br(0) : θ(y, 4r) − θ(y, 2r) < δ}.

If F (ρ · r)-effectively spans a k-dimensional subspace L, then(
Skε,rr(u)∩B r2 (0)

)
\Brρ(L) = ∅. (10.27)

Corollary 10.3.4. For every ρ > 0, there exists δ = δ(m,N,Q,Λ, ρ) > 0 with the following
property. Let u : B10(0) ⊂ Rm → AQ(N) be a W1,2 map with energy bounded by Λ, and let
r 6 1.

(i) In case u is energy minimizing, if there exist m− 2 points {yi}
m−3
i=0 ⊂ Br(0) which (ρ · r)-

effectively span an (m− 3)-dimensional affine subspace L ⊂ Rm and such that

θ(yi, 4r) − θ(yi, 2r) < δ for every i = 0, . . . ,m− 3,

then (
singH(u)∩B r2 (0)

)
\Bρr(L) = ∅;

(ii) in case u is single-valued and stationary harmonic, if there exist m− 1 points {yi}
m−2
i=0 ⊂

Br(0) which (ρ · r)-effectively span an (m − 2)-dimensional affine subspace L ⊂ Rm and
such that

θ(yi, 4r) − θ(yi, 2r) < δ for every i = 0, . . . ,m− 2,

then (
singH(u)∩B r2 (0)

)
\Bρr(L) = ∅.

In particular, ifm = 3 and u is aQ-valued energy minimizer, and if θ(y0, 4r)−θ(y0, 2r) < δ
then

B r
2
(y0) \Bρr(y0) ⊂ regH(u) .

The same holds if m = 2 and u is single-valued and stationary.

Proof of Corollary 10.3.4. It follows immediately from Theorem 10.3.3 and Propositions 10.2.14

for the minimizing case and 10.2.15 for the stationary harmonic case.

For the proof of Theorem 10.3.3 we will need the following lemma.
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Lemma 10.3.5. Let u ∈W1,2(B10(0),AQ(N)) be a stationary Q-harmonic map, and let r 6 1. If
{yi}

k
i=0 ⊂ Br(0) (ρ · r)-effectively span a k-dimensional affine subspace L ⊂ Rm, then

r−m
ˆ
Br(0)

(
r2|DL̂u(z)|

2 + |Dvu(z)|
2
)

dz 6 C(m, ρ)
k∑
i=0

(θ(yi, 4r) − θ(yi, 2r)) , (10.28)

where L̂ is the linear part of L and v is the vector field v(z) := D
(
1
2dist2(z,L)

)
.

Proof. It is an immediate consequence of (10.4) that there exists a constant C = C(m) such
that

r−m
ˆ
Br(x)

|Du(z) · (z−x)|2 dz 6
ˆ
Br(x)

|z− x|

rm−1

∣∣∣∣Du(z) · z− x|z− x|

∣∣∣∣2 dz 6 C(m) (θ(x, 2r) − θ(x, r))

(10.29)
whenever B2r(x) ⊂ B10(0). Now, assume that y0,y1, . . . ,yk are as in the statement, and
observe that for every unit vector e in the linear part L̂ of L there exists a unique set of
numbers {αi}

k
i=1 such that

e = r−1
k∑
i=1

αi(yi − y0), |αi| 6 C(m, ρ).

Hence, we get

r2−m
ˆ
Br(0)

|Deu(z)|
2 dz 6 C(m, ρ)r−m

k∑
i=1

ˆ
Br(0)

|Du(z) · (yi − y0)|2 dz

6 C(m, ρ)r−m
k∑
i=0

ˆ
Br(0)

|Du(z) · (z− yi)|2 dz

6 C(m, ρ)r−m
k∑
i=0

ˆ
B2r(yi)

|Du(z) · (z− yi)|2 dz

(10.29)
6 C(m, ρ)

k∑
i=0

(θ(yi, 4r) − θ(yi, 2r)) .

Summing over an orthonormal basis e1, . . . , ek of L̂ produces

r2−m
ˆ
Br(0)

∣∣DL̂u(z)∣∣2 dz 6 C(m, ρ)
k∑
i=0

(θ(yi, 4r) − θ(yi, 2r)) . (10.30)

As for the second term, let z ∈ Br(0), and let π := πL(z) be the orthogonal projection of z
onto L. Of course,

v(z) := D

(
1

2
dist2(z,L)

)
= z− π.

On the other hand, we have as usual that

π = y0 +

k∑
i=1

αi(yi − y0), |αi| 6 C(m, ρ)|π− y0| 6 C(m, ρ)r,
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and thus

v(z) = z−

(
y0 +

k∑
i=1

αi(yi − y0)

)
.

Arguing as above, one concludes that also

r−m
ˆ
Br(0)

|Dvu(z)|
2 dz 6 C(m, ρ)

k∑
i=0

(θ(yi, 4r) − θ(yi, 2r)) , (10.31)

which together with (10.30) completes the proof of (10.29).

For k = m− 2, the conclusions of the previous lemma can be improved using again the
inner variation formula.

Lemma 10.3.6. Let u ∈W1,2(B10(0),AQ(N)) be a stationary Q-harmonic map, and let r 6 1. If
{yi}

m−2
i=0 ⊂ Br(0) (ρ · r)-effectively span an (m− 2)-dimensional affine subspace L ⊂ Rm, then

r−m
ˆ
Br(0)

(
r2|DL̂u|

2 + |DL̂⊥u|
2|v|2

)
6 C(m, ρ)

m−2∑
i=0

(θ(yi, 8r) − θ(yi, 4r)) , (10.32)

where L̂ is the linear part of L, L̂⊥ is its orthogonal complement in Rm and v is the vector field
v(x) := D

(
1
2dist2(x,L)

)
.

Proof. The proof is very similar to the one of Proposition 10.2.15: also in this case, we will
make use of the stationary equation with a suitable choice of the vector field X. Without loss
of generality, we can assume that r = 1. Furthermore, modulo translations and rotations
we can assume that L = {xi = 0 : i = m − 1,m}. As usual, coordinates on L and L⊥

will be denoted by y and z respectively, and in order to simplify our notation the vectors
(y, 0) and (0, z) in L× L⊥ will be simply denoted by y and z. Observe that under these
assumptions one has v(x) = z for every x = (y, z) ∈ B1. Now, let ψ = ψ(y) be a cut-off
function of the variable y ∈ L, with ψ ≡ 1 in Bm−2

1 , spt(ψ) ⊂ Bm−2
2 and |Dψ| 6 1. Let also

ϕ(t) := max{1− t, 0}, and consider the vector field X(y, z) := ψ(y)ϕ(|z|2)z = ψϕz. We can
immediately compute DX = ψϕP⊥+ϕz⊗Dψ+ 2ψϕ ′z⊗ z. With this choice of X, the inner
variation formula (2.38) reads

0 =

ˆ
|Du|2

(
2ψϕ+ 2ψϕ ′|z|2

)
− 2

(
ψϕ|DL⊥u|

2 +ϕ〈Du · z,Du ·Dψ〉+ 2ψϕ ′|Du · z|2
)

= 2

ˆ
ψϕ|DLu|

2 +ψϕ ′|Du|2|z|2 −
(
ϕ〈Du · z,Du ·Dψ〉+ 2ψϕ ′|Du · z|2

)
.

In particular, since ϕ ′(|z|2) = −χ{|z|61}, ψ|{|y|61} ≡ 1 and B1 ⊂ Bm−2
1 × B21 ⊂ B2, we

immediately deduce
ˆ
B1

|Du|2|z|2 6 C
ˆ
B2

(
|DLu|

2 + |Du · z|2
)

.

The estimate (10.32) then follows from Lemma 10.3.5.
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We are now ready to prove Theorem 10.3.3.

Proof of Theorem 10.3.3. Since the statement is scale-invariant, there is no loss of generality
in proving it only in the case r = 1. Let {yi}ki=0 ⊂ F ρ-effectively span the k-dimensional
subspace L, and let x be any point in B 1

2
(0) \ Bρ(L). The goal is to prove that x /∈ Skε,r(u)

for some r > 0, and thus that there exists r > 0 and a radius rx ∈ [r, 1) such that the ball
Brx(x) is (k+ 1, ε)-symmetric for u. Let 0 < δ � 1 to be chosen later. Since x ∈ B 1

2
(0),

Bσ(x) ⊂ B1(0) for every 0 < σ < 1
2 . Hence, we deduce from Lemma 10.3.5 that
ˆ
Bσ(x)

|DL̂u|
2 6 C(m, ρ)δ

for any such σ. In order to gain another direction along which the energy is small, we let
v(z) := D

(
1
2dist2(z,L)

)
, and we set e :=

v(x)
|v(x)| . Note that |v(x)| = dist(x,L) > ρ. Again by

Lemma 10.3.5 and by the monotonicity of the function r 7→ E (u,Br(x)), we have
ˆ
Bσ(x)

|Deu|
2 6 ρ−2

ˆ
Bσ(x)

|Du(z) · v(x)|2

6 2ρ−2
(ˆ
Bσ(x)

|Du(z) · v(z)|2 +
ˆ
Bσ(x)

|Du(z) · (v(z) − v(x))|2
)

6 C
ˆ
B1(0)

|Dvu|
2 +Cσ2

ˆ
Bσ(x)

|Du|2

6 Cδ+CΛσm,

where C = C(m, ρ). Hence, if V := L̂⊕ span(e) then
ˆ
Bσ(x)

|DVu|
2 6 Cδ+CΛσm (10.33)

for every 0 < σ < 1
2 . Note that dim(V) = k+ 1.

Fix now ε > 0, and let σ = σ(m, ρ,Λ, ε) < 1
2 be such that CΛσ2 6 ε

2 . We claim that for
any 0 < τ� 1 there exists τσ 6 rx < σ such that

θ(x, 2rx) − θ(x, rx) 6
2c1(m)Λ

− log2(2τ)
. (10.34)

Indeed, otherwise for any integer M ∈
(
3
4 log2

(
1
2τ

)
, log2

(
1
2τ

))
we would get

c1(m)Λ > θ(x,σ) >
M∑
i=0

θ(x, 2−iσ) − θ(x, 2−(i+1)σ) >M
2c1(m)Λ

− log2(2τ)
>
3

2
c1(m)Λ,

which is impossible. Hence, if we fix τ = τ(m,Λ, ε) so small that 2c1(m)Λ
− log2(2τ)

6 ε, the above
argument allows to conclude that if we set r := τσ then there is a radius rx ∈ (r,σ) such
that

θ(x, 2rx) − θ(x, rx) 6 ε. (10.35)
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Furthermore, formula (10.33) with rx in place of σ implies that

r2−mx

ˆ
Brx(x)

|DVu|
2 6 Cδr2−m +CΛσ2. (10.36)

We can finally chose δ = δ(m, ρ,Λ, ε) such that Cδr2−m 6 ε
2 . From equations (10.35) and

(10.36) we infer that Brx(x) is (k+ 1, ε)-symmetric for u.

We conclude the section with the following proposition, according to which if the molli-
fied energy is pinched enough at k points spanning a k-plane L, then it is almost constant
along this L.

Proposition 10.3.7. Let u satisfy Assumption 10.2.9. Let 0 < ρ < 1 and η > 0 be fixed, and
assume that θ(y, 8) 6 E for every y ∈ B1(0). There exists δ0 = δ0(m,N,Q,Λ, ρ,η) > 0 such that
if the set F := {y ∈ B1(0) : θ(y, ρ) > E− δ0} (2ρ)-effectively spans a k-dimensional affine subspace
L ⊂ Rm then

|θ(x, ρ) − E| < η for every x ∈ L∩B1(0).

Proof. The proof is by contradiction. Assume that there are 0 < ρ0 < 1, η0 > 0 and a
sequence ui of maps satisfying Assumptions 10.2.9 and the condition θui(y, 8) 6 E every-
where in B1, and with the property that for every i ∈ N there are points {yij}

k
j=0 ⊂ B1(0)

with θui(y
i
j, ρ0) > E− i

−1 (2ρ0)-effectively spanning a k-dimensional affine subspace Li ⊂
Rm but with θ(xi, ρ0) 6 E− η0 for some xi ∈ L ∩ B1(0). As usual, without loss of gen-
erality we can assume that the subspace L = Li is fixed along the sequence. By the usual
compactness for energy minimizers, modulo passing to a subsequence (not relabeled) the
ui’s converge in L2 and in energy to a minimizer u. Up to further extracting another sub-
sequence, we can also assume that yij → yj and xi → x. By Remark 10.3.2, also the yj’s
(2ρ0)-effectively span L. Moreover, θu(yj, ρ0) > E, and thus θu(yj, 8) − θu(yj, ρ0) 6 0. By
monotonicity, then it has to be

θu(yj, 8) − θu(yj, ρ0) = 0,

and hence, by Lemma 10.3.5, u is invariant along L in B2(0). Since θu(yj, ρ0) = E, it has to
be θu(y, ρ0) = E everywhere on L∩B1(0), which contradicts the existence of x.

10.4 reifenberg theorem

This section is dedicated to Reifenberg-type results needed for the proof of the main
theorem. The results will only be quoted without proof, and they are in some sense a
quantitative generalization of Reifenberg’s topological disk theorem (see [Rei60]). Many
generalizations of this landmark theorem are available in literature, we limit ourselves to
citing [Tor95, DT12] among the various present. Here we will need two versions of this
theorem originally proved in [NV17].

Before quoting the theorems, we need the following definition of the the so-called Jones’
β2 numbers.
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Definition 10.4.1. Given a positive Borel measure µ defined in Rm, for all positive radii
r > 0 and dimensions k ∈N, we define

Dkµ(x, r) := min

{ˆ
Br(x)

dist2(y,V)
r2

dµ(y)
rk

: V ⊂ Rm is an affine subspace with dim(V) = k

}
.

(10.37)

Usually in literature this quantity is referred to as Jones’ β-2 number βk2,µ(x, r)2.

D captures in a scale invariant way the distance between the support of µ and some k-
dimensional subspace V . Indeed, the factor r−2 in the distance term makes the integrand
scale-invariant, while r−kµ is scale invariant if we assume that µ is Ahlfors upper k-regular,
in the sense µ(Br (x)) 6 Crk for some constant C. For example, this is the case if µ is the
k-dimensional Hausdorff measure on a k-dimensional subspace V ⊂ Rm.

Here we mention two easy and crucial properties of D.

Lemma 10.4.2 (Bounds on D). Given two measures µ,µ ′ such that µ ′ 6 µ, for all x, r and k ∈N

we can bound

Dkµ ′(x, r) 6 Dkµ(x, r) . (10.38)

Also, for all x,y, r such that |x− y| 6 r:

Dkµ(x, r) 6 2k+2Dkµ(y, 2r) . (10.39)

Proof. The proof follows immediately from the definition.

10.4.1 Quantitative Reifenberg Theorems

Assuming a sort of integral Carleson-type condition on the D numbers, we can obtain
uniform scale invariant properties on the measure µ. For the reader’s convenience, here
we quote two key theorems that we are going to use in order to get the final estimates on
the singular set of Q-valued minimizers. The first one is about upper Ahlfors bounds for
discrete measures, and is quoted from [NV17, Theorem 3.4]. This theorem is enough for
our purposes, but we mention that some generalizations have been obtained in [ENV16].
The second important theorem is about rectifiability properties for general µ, and is quoted
from [AT15, Theorem 1.1].

Theorem 10.4.3. [NV17, Theorem 3.4] For some constants δR(m) and CR(m) depending only
on the dimension m, the following holds. Let {Brx/10 (x)}x∈D ⊆ B3 (0) ⊂ Rm be a collection of
pairwise disjoint balls with their centers x ∈ B1 (0), and let µ ≡

∑
x∈D r

k
xδx be the associated

measure. Assume that for each Br(x) ⊆ B2ˆ
Br(x)

(ˆ r

0

Dkµ(y, s)
ds
s

)
dµ(y) < δ2Rr

k . (10.40)

Then, we have the uniform estimate ∑
x∈D

rkx < CR(m) . (10.41)
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Condition (10.40) prescribes some integral Carleson-type control over the quantityD(x, r).
If the measure µ is the k-dimensional Hausdorff measure restricted to some S, this bound
is enough to guarantee also the rectifiability of S, as seen in the following theorem. Note
that in [AT15] the theorem is presented in a more general form.

Theorem 10.4.4 ([AT15, Corollary 1.3]). Given a Borel measurable subset S of Rm, let µ :=

Hk S be the k-dimensional Hausdorff measure restricted to S. The set S is countably k-rectifiable
if and only if

ˆ 1

0

Dkµ(x, s)
ds
s
<∞ for µ-a.e. x . (10.42)

10.5 best approximating plane

In this section, we record the main technical lemma needed for the final proof of Theorem
10.2.17. Although several technical points need to be addressed, this lemma contains most
of the important estimates in the paper and provides an estimate on the D numbers using
the normalized energy θ(x, r).

The basic ideas behind the estimates in this section are similar to the ones in [NV17,
Theorem 7.1], however the new definition of (k, ε)-symmetries allows for more quantitative
and easier proofs.

For any f ∈W1,2(Ω,AQ(N)), and for all Br (x) ⊆ Ω, we introduce the following quantity

Pf(x, r) := r−m
ˆ
Br(x)

|Df(y) · (y− x)|2 dy . (10.43)

Note that in the case u is a Dirichlet minimizing Q-valued harmonic map we have by
(10.29):

Pu(x, r) 6 C(m) [θ(x, 2r) − θ(x, r)] . (10.44)

However, here we carry out the estimates in a very general setting, and we will exploit this
bound only at the very last step in our main proof.

Theorem 10.5.1. Let u ∈ W1,2(B2 (0) ,AQ(N)), and fix ε > 0, 0 < r 6 1 and some x ∈ B1 (0).
Let also µ be any positive Radon measure supported on B1 (0). Assuming that

inf
{
r2−m

ˆ
Br(x)

|DVu|
2 : V ⊂ Rm linear with dim(V) = k+ 1

}
> ε , (10.45)

we conclude

Dkµ(x, r) 6
(m− k)(k+ 1)2m

εrk

ˆ
Br(x)

Pu(y, 2r)dµ(y) . (10.46)

Remark 10.5.2. We remark that (10.46) does not change if µ is multiplied by a positive
constant, thus for convenience for the rest of this section we are going to assume without
loss of generality that µ is a probability measure. Moreover, we can also assume without
loss of generality that x = 0 and r = 1.
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Note that for this theorem we will not exploit any property specific to Dirichlet-minimizers.
For future convenience, we record a simple corollary that rephrases the previous theorem
with the language of Dirichlet-minimizers and quantitative stratification.

Corollary 10.5.3. Under Assumption 10.2.9, fix ε > 0, 0 < r 6 1 and some x ∈ B1 (0). Let also µ
be any positive Radon measure supported on B1 (0). Assuming that Br (x) is (k, ε)-symmetric but
NOT (k+ 1, ε)-symmetric, we conclude

Dkµ(x, r) 6
C(m)

εrk

ˆ
Br(x)

[θ(y, 4r) − θ(y, 2r)] dµ(y) . (10.47)

Proof. The proof follows immediately from the definition of (k+ 1, ε)-symmetric and the
bound in (10.44).

10.5.1 Properties of the best approximating plane

For fixed k, and given any probability measure µ, for all (x, r) we set V(x, r) to be the
k-dimensional affine subspace minimizing

ˆ
Br(x)

dist2(y,V)dµ(y) , (10.48)

so that, in particular,

Dkµ(x, r) = r−(k+2)

ˆ
Br(x)

dist2(y,V(x, r))dµ(y) . (10.49)

Since in this section we focus on x = 0 and r = 1, we will in fact mostly consider only the
k-dimensional subspace V(0, 1).

First of all, note that necessarily V(x, r) will pass through the center of mass of µ in Br(x),
defined as

xm(µ, x, r) = xm :=

ˆ
Br(x)

xdµ(x) . (10.50)

It will be convenient to phrase some of the estimates needed for theorem 10.5.1 in terms
of a suitable quadratic form on Rm, defined as

R(w) :=

ˆ
B1(0)

|〈x− xm,w〉|2 dµ(x) . (10.51)

By standard linear algebra, there exists an orthonormal basis {e1, · · · , em} of eigenvectors
for R with non-negative eigenvalues λ1, · · · , λm, which we will take for convenience in
decreasing order. Note that by the variational characterization of λk we have that

ek ∈ argmax
{ˆ
B1(0)

|〈x− xm, e〉|2 dµ(x) s.t. |e|2 = 1 and 〈e, ei〉 = 0 ∀i 6 k
}

, (10.52)

λk =

ˆ
B1(0)

|〈x− xm, ek〉|2 dµ(x) , (10.53)
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and so

Dkµ(0, 1) =
ˆ
B1(0)

dist2(x,V(0, 1))dµ(x) =
m∑

i=k+1

λi . (10.54)

Indeed, by minimality of V , V(0, 1) = xm + span [e1, · · · , ek], and thus
ˆ
B1(0)

dist2(x,V(0, 1))dµ(x) =
m∑

i=k+1

ˆ
B1(0)

|〈x− xm, ei〉|2 dµ(x) =
m∑

i=k+1

λi . (10.55)

Using simple geometry, it is possible to prove that for any map f ∈ W1,2 we have the
following estimate involving λk and Pf.

Lemma 10.5.4. Let f =
∑Q
`=1Jf`K ∈ W

1,2(B3r (x) ,AQ(N)), and let µ be a probability measure
on Br (x). Then

λk

ˆ
Br(x)

|Df(z) · ek|2 dz 6 2m
ˆ
Br(x)

Pf(y, 2r)dµ(y) for every k = 1, . . . ,m . (10.56)

Proof. For simplicity, we assume x = 0 and r = 1. Moreover, note that evidently we can
assume λk > 0, otherwise there is nothing to prove. Fix some z ∈ B1 (0). By definition of
eigenvectors ek, we have for every ` ∈ {1, . . . ,Q} thatˆ

B1(0)
〈x− xm, ek〉 (Df`(z) · (x− xm)) dµ(x) = λkDf`(z) · ek . (10.57)

By definition of center of mass, we can writeˆ
B1(0)

〈x− xm, ek〉 (z− xm) dµ(x) = 0 , (10.58)

and so

λkDf`(z) · ek =

ˆ
B1(0)

〈x− xm, ek〉 (Df`(z) · (x− z)) dµ(x) . (10.59)

By Cauchy-Schwartz and by (10.53), we have

λ2k|Df`(z) · ek|2 6 λk
ˆ
|Df`(z) · (x− z)|2 dµ(x) , (10.60)

and thus, summing over `,

λk|Df(z) · ek|2 6
ˆ
|Df(z) · (x− z)|2 dµ(x) . (10.61)

Taking the integral of this inequality in B1 (0) with respect to the volume measure in z,
we obtain the estimate

λk

ˆ
B1(0)

|Df(z) · ek|2 dz 6
¨
B1(0)×B1(0)

|Df(z) · (x− z)|2 dzdµ(x)

6
ˆ
B1(0)

ˆ
B2(x)

|Df(z) · (x− z)|2 dzdµ(x) 6 2m
ˆ
B1(0)

Pf(x, 2) dµ(x) .
(10.62)



10.6 proof of the main theorem via covering arguments 183

From this proposition, the proof of Theorem 10.5.1 follows as a simple corollary.

Proof of theorem 10.5.1. As before, we assume without loss of generality that x = 0 and r = 1.
Moreover, by (10.54) it is sufficient to prove that

λk+1 6
C(m)

ε

ˆ
B1(0)

Pu(y, 2)dµ(y) . (10.63)

By the previous lemma, we have

λk+1

k+1∑
j=1

ˆ
B1(0)

|Du · ej|2 6
k+1∑
j=1

λj

ˆ
B1(0)

|Du · ej|2 6 C(m)

ˆ
B1(0)

Pu(x, 2)dµ(x) . (10.64)

By the lower bound in (10.45), we must have

k+1∑
j=1

ˆ
B1(0)

|Du · ej|2 > ε , (10.65)

and this concludes the proof.

10.6 proof of the main theorem via covering arguments

This section is dedicated to the proof of the Theorem 10.2.17. We split it into two pieces,
one containing the uniform Minkowski bounds and one with the rectifiability part. Once
the Minkowski bounds are obtained, the rectifiability is almost an immediate corollary.

The Minkowski bounds will be obtained with a covering argument similar to the one in
[NV16].

Proposition 10.6.1. There exist a small constant δ = δ(m,N,Q,Λ, ε) > 0 and CIII(m) such
that the following holds. Let u satisfy assumption 10.2.9, let ε > 0, p ∈ B1(0), and 0 < r 6
R , 0 < R 6 1 be chosen in an arbitrary fashion. For any subset S ⊆ Skε,δr(u), setting E =

supx∈B2R(p)∩S θ(x, 3R), there exists a covering

S∩BR (p) ⊆
⋃
x∈D

Brx (x) , with rx > r and
∑
x∈D

rkx 6 2CIII(m)Rk . (10.66)

Moreover, for all x ∈ D, either rx = r, or for all y ∈ B2rx (x):

θ(y, 3rx) 6 E− δ . (10.67)

10.6.1 Proof of Theorem 10.2.17

Before we move to the proof of the proposition, we use it to prove the main theorem. This
proof is basically a corollary of the covering proposition 10.6.1. We will use this proposition
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inductively to produce a family of coverings of S = Skε,δr(u)∩B1 (0) indexed by a parameter
i ∈N of the form

S ⊆
⋃
x∈Di

Brx (x) ,
∑
x∈Di

rkx 6 (c(m)CF(m))i . (10.68)

Moreover, if E = supx∈Skε,δr(u)∩B2(0)
θ(x, 3), we have for all i

rx 6 r or ∀y ∈ S∩B2rx (x) , θ(y, 3rx) 6 E− iδ . (10.69)

Evidently, for i > bE/δc+ 1, the second condition cannot be verified, and so all the radii in
the covering are going to be equal to r. As a consequence, we have the Minkowski bound

Lm
(
Br
(
Skε,δr(u)

)
∩B1 (0)

)
6 (c(m)CF(m))bδ

−1Ec+1rm−k . (10.70)

Since δ = δ(m,Λ), it is clear that, up to enlarging the constant in the estimate, the same
bound holds also for Skε,r(u) in the place of Skε,δr(u), and this concludes the proof of the
Minkowski bounds in (10.24).

In order to produce the covering in (10.68), we will apply inductively the covering propo-
sition 10.6.1. For i = 1, we can apply this proposition to B1 (0) and obtain the desired
covering. Inductively, consider all the balls {Brx (x)}x∈Di and apply proposition 10.6.1 to
these balls. For each x ∈ Di, we obtain a covering of the form

S∩Brx (x) ⊆
⋃
y∈Dx

Bry (y) ,
∑
y∈Dx

rky 6 2CIII(m)rkx , (10.71)

ry 6 r or ∀z ∈ S∩B2ry (y) , θ(z, 3ry) 6 E− (i+ 1)δ . (10.72)

Set

Di+1 =
⋃
x∈Di

Dx , (10.73)

and the induction step is completed.

Proof of the rectifiability of Skε
As for the rectifiability, this is going to be a corollary of Theorem 10.4.4, the uniform

Minkowski bound (10.24) and the approximation theorem 10.5.1.
In particular, let µ = Hk

{
Skε(u)∩B1 (0)

}
. From (10.24) we deduce that this measure is

finite, as
µ(B1(0)) 6 C(m,Λ, ε).

In turn, by scaling this implies that for all x ∈ B1(0) and r > 0

µ (Br (x)) 6 C(m,Λ, ε)rk , (10.74)

and thus µ is Ahlfors upper k-regular.
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Now by the best approximation theorem 10.5.1 and a simple change of variables we can
write
ˆ
B1(0)

ˆ 1

0

Dkµ(x, r)
dr
r

dµ(x) 6 C(m, ε)
ˆ 1

0

ˆ
B1(0)

r−k
ˆ
Br(x)

Pu(y, 2r)dµ(y)dµ(x)
dr
r

6 C(m, ε)
ˆ 1

0

ˆ
B1(0)

Pu(y, 2r)
(
r−k

ˆ
Br(y)

dµ(x)
)

dµ(y)
dr
r

6 C(m, ε,Λ)
ˆ
B1(0)

ˆ 1

0

Pu(y, 2r)
dr
r

dµ(x)

6 C(m, ε,Λ)Λ ,
(10.75)

where the last inequality follows from
ˆ 1

0

Pu(y, 2r)
dr
r

(10.44)
6

ˆ 1

0

[θ(y, 4r) − θ(y, 2r)]
dr
r

= lim
t→0

ˆ 1

t

[θ(y, 4r) − θ(y, 2r)]
dr
r

(10.76)

=

ˆ 1

1/2

θ(y, 4r)
dr

r
+ lim
t→0

ˆ 1/2

t

θ(y, 4r)
dr

r
−

ˆ 1

2t

θ(y, 2r)
dr

r︸ ︷︷ ︸
=0

− lim
t→0

ˆ 2t

t

θ(y, 2r)
dr

r
6 C(m)Λ .

The rectifiability of Skε(u) is now a consequence of theorem 10.4.4.
By countable additivity, the rectifiability of Sk(u) is a corollary of the rectifiability of

Skε(u) for all ε > 0.
It is worth remarking that the uniform Ahlfors upper estimates obtained a priori for the

measure µ = Hk
{
Skε(u)∩B1 (0)

}
are essential to carry out this computation, and actually

they are the most difficult part of the estimate. This is why the proof of the rectifiability
property is so easy.

�

10.6.2 Proof of Proposition 10.6.1

Now we turn to the proof of the covering proposition. We split this proof in two pieces
by introducing a secondary covering proposition.

Proposition 10.6.2. Under the assumptions of proposition 10.6.1, for all 0 < ρ < 1/100, there
exist δ = δ(m,N,Q,Λ, ε, ρ) > 0 and CII(m) such that the following is true.

There exists a finite covering of S = Skε,δr(u)∩BR (p) of the form

S ⊆
⋃
x∈D

Brx (x) , with rx > r and
∑
x∈D

rkx 6 CII(m)Rk . (10.77)

Moreover, for each x ∈ D, either there exists a (k− 1)-dimensional space Wx such that

Fx,rx ≡ {y ∈ S∩B2rx (x) with θ(y, ρrx/20) > E− δ} ⊆ Bρrx/10 (Wx) , (10.78)

or rx = r.



186 rectifiability of the hölder singular strata

Assuming this proposition, we prove proposition 10.6.1. The idea is simple: we consider
this second covering, and refine it inductively on each ball with rx > r and no uniform
energy drop.

Proof of proposition 10.6.1. Let 0 < ρ < 1/100 to be fixed later, and let A ∈ N be the first
integer such that ρA < r. Also assume without loss of generality p = 0 and R = 1.

For all i = 1, · · · ,A, we construct a covering of S of the form

S∩B1 (0) ⊆
⋃
x∈Ri

Br (x)∪
⋃
x∈Fi

Brx (x)∪
⋃
x∈Bi

Brx (x) , (10.79)

where Ri are the balls of radius r in the covering, Fi are the balls where the uniform
energy drop condition (10.67) is satisfied, and Bi are the bad balls, where none of the
two conditions is verified. We want to obtain uniform packing bounds on Ri and Fi, and
exponentially small packing bounds on Bi. We will refine our covering only on bad balls
by re-applying the second covering lemma on those, and this is why we need smallness on
their packing bounds. In detail, we want

∑
x∈Ri∪Fi

rkx 6 CF(m)

 i∑
j=0

7−j

 ,
∑
x∈Bi

rkx 6 7
−i . (10.80)

Induction step

Pick a generic ball BR (p), and apply the second covering in Proposition 10.6.2 to it. We
obtain a covering of the form

S∩BR (p) ⊆
⋃
x∈D

Brx (x) , with rx > r and
∑
x∈D

rkx 6 CII(m)Rk . (10.81)

We split D into two disjoint sets: D = Dr ∪D+, where the first set is the one with rx 6
60ρ−1r. Observe that if x is in the second set then (10.78) is valid. For all x ∈ Dr, consider a
simple covering of Brx (x) by balls of radius r with number bounded by c(m)ρ−m, and let
Rp be the union of all centers in these coverings. Note that if rx = r, we can keep this ball
unchanged.

For all x ∈ D+, consider a covering of Brx (x) made of balls of radius ρrx/60 > r centered
inside this ball and such that the family of balls with half the radius are pairwise disjoint.
In particular, let

Brx (x) ⊆
⋃
y∈Bx

Bρrx/60 (y)∪
⋃
y∈Fx

Bρrx/60 (y) , (10.82)

where

Fx,rx ∩
⋃
y∈Fx

B2·(ρrx/60) (y) = ∅ , Bx ⊆ Bρrx (Wx) . (10.83)

Thus, the balls in Fx will have a uniform energy drop, in particular we have that for all
y ∈ Fx and z ∈ B2·(ρrx/60) (y) = B2ry (y),

θ(z, 3ry) < E− δ . (10.84)
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Moreover, the number of balls in Bx is well controlled. Indeed, since Bx ⊆ Bρrx (Wx),{
Bρrx/40 (y)

}
y∈Bx

are pairwise disjoint and Wx is a k-dimensional subspace, then

# {Fx} 6 c(m)ρ−m , # {Bx} 6 c(m)ρ1−k . (10.85)

Set Bp = ∪x∈DBx and Fp = ∪x∈DFx. We have∑
z∈Rp∪Fp

rkz 6 c(m)ρ−m+k
∑
x∈D

rkx 6 c(m)ρ−m+kCII(m)Rk , (10.86)

∑
z∈Bp

rkz 6 c(m)ρ1
∑
x∈D

rkx 6 c(m)ρCII(m)Rk . (10.87)

We choose ρ = ρ(m) 6 1/100 sufficiently small so that

c(m)ρCII(m) 6 1/7 . (10.88)

In this way, we have the estimates∑
z∈Rp∪Fp

rkz 6 CIII(m)Rk
∑
z∈Bp

rkz 6 7
−1Rk . (10.89)

Finishing the proof

With the induction step, the proof follows easily. For i = 1, apply the induction step to
B1 (0) and we obtain (10.79) for i = 1 with (10.80).

For generic i, we have by induction

S∩B1 (0) ⊆
⋃
x∈Ri

Br (x)∪
⋃
x∈Fi

Brx (x)∪
⋃
x∈Bi

Brx (x) . (10.90)

Apply the induction step on all the balls {Brx (x)}x∈Bi separately, and define

Ri+1 = Ri ∪
⋃
x∈Bi

Rx , Fi+1 = Fi ∪
⋃
x∈Bi

Fx , Bi+1 =
⋃
x∈Bi

Bx . (10.91)

By construction, we have the estimates

∑
z∈Ri+1∪Fi+1

rkz 6 CIII(m)

i∑
s=0

7−s
∑

z∈Bi+1

rkz 6 7
−i−1 . (10.92)

Note that at the step i = A all the balls in our covering will either have energy drop (if
they are in FA) or have radius = r (if they are in RA). Equation (10.92) for i = A gives the
desired bound on the final covering.

Now we turn our attention to the proof of proposition 10.6.2, which is the last one needed
to complete the main theorem.
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10.6.3 Proof of Proposition 10.6.2

For convenience, we assume p = 0 and R = 1. Fix ε, ρ > 0, and let A be such that
ρA 6 r < ρA−1. The proof is based on an inductive covering by balls, where the discrete
Reifenberg is applied in order to control the number of these balls.

Construction of the covering

We split the inductive covering in two parts: at first we simply construct the covering
inductively, and then we prove the packing bounds using Reifenberg’s theorem. Specifically,
we start by looking for an inductive (for i = 0, 1, · · · ,A) covering of the form

S ⊆
⋃
x∈Bi

Brx (x)∪
⋃
x∈Gi

Brx (x) , (10.93)

where the elements of Bi are the centers of the bad balls in our covering, and Gi are the
centers of the good balls. In particular, we want :

1. for all i and x ∈ Bi, rx > ρi and there exists a (k− 1)-dimensional subspace Wx such
that

Fx,rx ≡ {y ∈ S∩B2rx (x) such that θ(y, ρrx/20) > E− δ} ⊆ Bρrx/10 (Wx) , (10.94)

where δ > 0 is fixed, to be determined later;

2. for all i = 1, · · · ,A and x ∈ Gi, rx = ρi and the set Fx,rx defined above (ρrx/20)-
effectively spans some k-dimensional affine subspace Vx;

3. for i = A, we have the bound ∑
x∈BA∪GA

rkx 6 CII(m) . (10.95)

Moreover, we request some extra properties of the centers of the covering in order to apply
the discrete-Reifenberg theorem:

4. for all i, the balls in the collection
{
Brx/10 (x)

}
x∈Gi∪Bi

are pairwise disjoint;

5. for all i > 1 and x ∈ Gi, we have the energy bound

θ(x, rx) > E− η for some η > 0 ; (10.96)

6. there exists a constant c(m) such that for all i, the balls in the collection {Bs (x)}x∈Gi, s∈[rx,1]
are not (k+ 1, ε/c(m))-symmetric.

At each induction step, we will refine our covering on the good balls, while leaving the bad
balls untouched.

For i = 0, consider the set F0,1. If this set does NOT ρ/20-effectively span something
k-dimensional, then we call B1(0) a bad ball, set Gi = ∅ for all i and {0} = B0 = BA with
r0 = 1. This covering immediately satisfies all the properties of proposition 10.6.2.

In the other case, set G0 = {0} with r0 = 1.
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induction step Assuming by induction that all the properties listed above are valid up
to the index i, we want to produce the covering for i+ 1. In order to do so, we want to
refine our covering on good balls, and leave the previous bad balls intact.

Fix an arbitrary x ∈ Gi, and consider the set Fx,rx . Since Bρi (x) is a good ball, by defi-
nition this set [ρi+1/20]-effectively spans a k-dimensional affine subspace Vx. By applying
theorem 10.3.3 to the ball B4ρi (x), we find that there exists a δ(m,Λ, ε, ρ) sufficiently small
so that

Skε,δr(u)∩B2ρi (x) ⊂ Bρi+1/10 (Vx) (10.97)

Consider the set

K =
⋃
x∈Gi

(
Bρi (x)∩ Vx

)
\
⋃
x∈Bi

Brx (x) . (10.98)

Given the inclusion (10.97), and since we have chosen ρ 6 1/100, we have

S \
⋃
x∈Bi

Brx (x) ⊆ Bρi+1/5 (K) . (10.99)

Let DK ⊆ K be a maximal subset of points at least ρi+1/5 apart, so that the balls
{
Bρi+1/10 (x)

}
x∈DK

are pairwise disjoint. Note that these balls are also disjoint from
{
Brx/3 (x)

}
x∈Bi

by con-
struction. Moreover, by maximality of the subset

S \
⋃
x∈Bi

Brx (x) ⊆
⋃
x∈DK

B2ρi+1/5 (x) (10.100)

We can discard from this collection all the balls B2ρi+1/5 (x) that have empty intersection
with S. Now consider the collection {

Bρi+1 (x)
}
x∈DK

, (10.101)

and classify these points into good and bad balls according to whether or not (10.94) is
satisfied. In particular, if Fx,ρi+1 ρ

i+2/20-effectively spans a k-dimensional subspace Vx,
then we say that x ∈ G̃i+1, and x ∈ B̃i+1 otherwise. We set

Bi+1 = Bi ∪ B̃i+1 , Gi+1 = G̃i+1 . (10.102)

This takes care of properties 1 and 2 in the induction.
Now fix any x ∈ DK. By construction, there exists an x ′ ∈ Gi such that x ∈ Vx ′ ∩

Brx ′ (x
′). Hence, we can apply proposition 10.3.7, and prove that for all η > 0 there exists a

δ(m,N,Q,Λ, ρ,η) sufficiently small so that

θ
(
x, ρi+1/40

)
> E− η . (10.103)

Moreover, there also exists some x ′ ∈ S ∩ B2ρi+1/5 (x). By definition of S, this implies that
for every (k+ 1)-dimensional subspace T = Tx ′ :

c(m)ρ(2−m)(i+1)

ˆ
B
ρi+1

(x)
|DTu|

2 >
(
2ρi+1/5

)2−m ˆ
B
2ρi+1/5

(x ′)
|DTu|

2 > ε . (10.104)

In other words, Bρi+1 (x) is not (k+ 1, ε/c(m))-symmetric. Thus all the properties of our
inductive covering are satisfied.
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i=a For i = A, one can use the same construction as above, but with radius r instead of
radius ρA. At this stage, one also does not need to make any distinction between good and
bad balls.

At this stage, we also set

D = BA ∪ GA . (10.105)

We are left to prove the packing estimates (10.77).

Volume estimates

We will apply the discrete Reifenberg theorem to the measure

µD =
∑
x∈D

rkxδx . (10.106)

In order to do so, we need to check that (10.40) is satisfied for this µ, and we exploit the
best approximation theorem 10.5.1.

However, as it will be evident later on, we cannot apply this theorem directly. Instead,
we will prove the volume estimate with an upwards induction.

Inductive statement

For convenience, we define the one-parameter family of measures µt by setting

Dt = D∩ {rx 6 t} , µt = µ Dt 6 µ . (10.107)

Let T be such that 2T−1r < 1/70 6 2T r. We will prove by induction on j = 0, 1, · · · , T that
there exists a constant CI(m) such that for all x ∈ B1 (0) and s = 2jr:

µs (Bs (x)) =
∑

y∈D∩Bs(x) s.t. ry6s

rky 6 CI(m)sk . (10.108)

Once this has been proved, with a simple covering argument we can turn the estimates for
j = T into the estimates (10.77), replacing CI(m) with CII(m) = c(m)CI(m) if necessary.

base step in the induction, j = 0 . The first step of the induction is easy. Since by
construction rx > r for all x ∈ D, and since the balls

{
Brx/10 (x)

}
x∈D are pairwise disjoint,

a standard covering argument shows that for all x ∈ B1 (0),

µr (Br (x)) 6 C0(m)rk . (10.109)

Induction step

The induction step is divided into two parts: first we are going to prove a weak packing
bound for balls of radius 2j+1r. With this estimate, we will be able to apply the discrete
Reifenberg theorem, which gives us a uniform scale invariant upper bound for the measure
that lets us complete the induction.
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coarse bounds Assuming that the induction step j is proved, we can easily obtain a
rough bound for j+ 1. Indeed, let x ∈ B1 (0) be arbitrary, and consider the ball B2j+1r (x).
By covering this ball with c(m) balls of half the radius, and using the induction hypothesis,
we can estimate

µ2jr (B2j+1r (x)) 6 c(m)CI(m)(2j+1r)k . (10.110)

With a similar covering argument, we can estimate the “new contributions” in µ2j+1r. To be
precise, since

{
Brx/10 (x)

}
x∈D are all pairwise disjoint, we have

D̄ =
{
x ∈ D∩B2j+1r (x) with rx ∈ (2jr, 2j+1r]

} ∑
x∈D̄

rkx 6 C0(m)(2j+1r)k . (10.111)

Thus, choosing CI(m) > C0(m), we have

µ2j+1r (B2j+1r (x)) 6 c(m)CI(m)(2j+1r)k . (10.112)

refined estimate In order to refine this last estimate, we need to apply the discrete
Reifenberg 10.4.3. An essential tool is given by the estimates in corollary 10.5.3. Fix any
B2j+1r (x) for x ∈ D. For convenience, hereafter we will denote

µ2j+1r B2j+1r (x) ≡ µ . (10.113)

Set also for y ∈ D:

WD(y, s) =

{
θ(y, 4s) − θ(y, 2s) for s > ry/10 ,

0 for s < ry/10 .
(10.114)

By construction, and in particular by the estimate in (10.104) and (10.96), for η sufficiently
small we can apply Corollary 10.5.3 to µ and any ball Bs (x) with x ∈ D and s ∈ [rx, 1], and
obtain

Dkµ(x, s) 6 C1s−k
ˆ
Bs(x)

WD(y, s)dµ(y) . (10.115)

As a corollary of this and (10.39), we can extend this relation for all s ∈ [rx/10, 1], up to
enlarging C1 by c(m):

Dkµ(x, s) 6 c(m)C1s
−k

ˆ
B10s(x)

WD(y, 10s)dµ(y) . (10.116)

Note that this relation is trivially true also for s 6 rx/10, because in this case the support of
the measure µ inside the ball Brx/10 (x) is an isolated point.

We can use this estimate to prove (10.40) for the measure µ. Indeed, fix any y ∈ B2j+2r (x),
t ∈ (0, 2j+1r], and in turn choose any s ∈ [0, t]. For these parameters, we can bound:

ˆ
Bt(y)

Dkµ(z, s)dµ(z)
(10.116)
6 C1s

−k

ˆ
Bt(y)

[ˆ
B10s(z)

WD(p, 10s)dµ(p)
]

dµ(z) . (10.117)
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Considering that

{(p, z) s.t. |z− y| 6 t and |p− z| 6 10s} ⊂ {(p, z) s.t. |p− y| 6 t+ 10s and |p− z| 6 10s} ,
(10.118)

we can exchange the variables of integration and estimate
ˆ
Bt(y)

Dkµ(z, s)dµ(z) 6 C1
ˆ
B11t(y)

µ(B10s (p))

sk
WD(p, 10s) dµ(p)

6 c(m)C1CII

ˆ
B11t(y)

WD(p, 10s) dµ(p) .
(10.119)

Recall that by (10.113), µ(A) = µ(A ∩ B2rj+1r (x). Note that the induction hypothesis and
the coarse estimates have been used to obtain the last inequality.

By integrating this inequality on
´ t
0

ds
s , we get

ˆ
Bt(y)

(ˆ t

0

Dkµ(z, s)
ds
s

)
dµ(z) 6 c(m)C1CII

ˆ
B11t(y)

[ˆ t

0

WD(z, 10s)
ds
s

]
dµ(z) . (10.120)

Note that for all x ∈ D, θ(0, 1) − θ(0, rx) 6 η. Thus for t 6 1/70 we have
ˆ t

0

WD(x, 10s)
ds
s

=

ˆ t

rx

[θ(x, 40s) − θ(x, 20s)]
ds
s

(10.121)

=

ˆ t

t/2

θ(x, 40s)
ds
s

+

ˆ t/2

rx

θ(x, 40s)
ds
s

−

ˆ t/2

2rx

θ(x, 20s)
ds
s︸ ︷︷ ︸

=0

−

ˆ 2rx

rx

θ(x, 20s)
ds
s

(10.122)

=

ˆ t

t/2

[
θ(x, 40s) − θ

(
x, 40

rx

t
s
)] ds

s
6 cη . (10.123)

This in turn implies

ˆ
Bt(y)

(ˆ t

0

Dkµ(z, s)
ds
s

)
dµ(z) 6 c(m)C1(m, ε)CIIηtk . (10.124)

By picking η sufficiently small (in turn: by picking δ(m,N,Q,Λ, ε,η) sufficiently small),
we can apply the discrete Reifenberg theorem to µ and prove that

µ2j+1r (B2j+1r (x)) 6 CR(m)(2j+1r)k . (10.125)

By picking CII(m) = max {C0(m),CR(m)}, we complete the induction step, and in turn the
proof of this proposition.

�



11 C O N T I N U I T Y I N N O N - P O S I T I V E LY
C U R V E D S PA C E S

This chapter is devoted to the proof of the following result.

Theorem 11.0.1. Let N ↪→ Rd be a complete, simply connected manifold all of whose sectional
curvatures are non-positive. Then, every minimizing harmonic map u ∈W1,2(Ω,AQ(N)) satisfies

singH(u) = ∅.

The proof will be split into two parts. In the first part of the argument we will show a
general lemma, Lemma 11.1.1. Then, in Section 11.2 we will show how the lemma implies
the theorem.

Observe that in the single-valued case Q = 1 the hypothesis that π1(N) = {0} is not
necessary: indeed, in Section 11.3 we will show how the same result holds when Q = 1

under the weaker assumption that N is connected. The proof will follow from the simply
connected situation by means of lifting of Lipschitz continuous functions into covering
spaces. The hypothesis that N is simply connected, instead, is indispensable when Q > 1:
in Section 11.4 we will provide an example of a singular Q-valued minimizing harmonic
map in a flat target manifold N (cf. Proposition 11.4.1).

11.1 a technical lemma

Lemma 11.1.1. Let f : N → R be a C2-regular function such that ∇2f > 0 on TpN for all p ∈ N.
Then

f ◦ u =

Q∑
`=1

f(u`) = const.

for any 0-homogeneous Dirichlet minimizer u : Rm → AQ(N).

Proof. We will split the proof of the lemma into two steps:

claim 1: for any Dirichlet minimizer u : Ω→ AQ(N), Ω ⊂ Rm open, we have that f ◦ u : Ω→
R is subharmonic in the sense of distributions i.e.

∆(f ◦ u) > 0 ; (11.1)

claim 2: any 0-homogeneous subharmonic function is constant.

The lemma is an immediate consequence of claim 1 and claim 2.
Proof of claim 1: Let f̂ be any extension of f to Rd such that f̂ is C2 (for instance, take

f̂(p) := φ(p)f(Π(p)), where Π(p) : Uδ(N) → N is the nearest point projection from a δ-
tubular neighborhood Uδ(N) and φ is a non-negative smooth bump function supported in

193
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Uδ(N) and constantly equal to 1 in a small neighborhood of N). Observe that for every
p ∈ N we have ∇2f = (D(Df̂)Tp)Tp , where vTp denotes the orthogonal projection of v onto
TpN. In order to deduce the claim, let ϕ = ϕ(x) ∈ C1c(Ω) non-negative be given and define
the vector field

Y(x,p) := ϕ(x)∇f̂(p) = ϕ(x)(Df̂(p))TΠ(p) .

The outer variation formula (2.39) provides now

0 =

ˆ
Ω

m∑
i=1

Q∑
`=1

(
〈Diu`,∇f̂(u`)〉Diϕ+ 〈Diu`,D∇f̂ ·Diu`〉ϕ

)
=

ˆ
Ω

m∑
i=1

(
Di(f ◦ u)Diϕ+

Q∑
`=1

∇2f(u`)(Diu`,Diu`)ϕ

)
.

In the last line we have used thatDiu` ∈ Tu`N and so 〈Diu`,D∇f̂ ·Diu`〉 = ∇2f(u`)(Diu`,Diu`).
Since the last term is non-negative we deduce the claim:

ˆ
Ω

〈D(f ◦ u),Dϕ〉 6 0 for all ϕ ∈ C1c(Ω),ϕ > 0.

Proof of claim 2: Let h ∈ W1,2(Rm) be 0-homogeneous and subharmonic in the sense of
distributions i.e. ˆ

〈Dh,Dϕ〉 6 0 for all ϕ ∈ C1c(Rm),ϕ > 0. (11.2)

Suppose h is not constant. Then there exists a > 0 such that h is not constant on the
super-level set {x : h(x) > −a}, which in turn implies (h+a)+ is not constant. Take any non-
negative η(t),η(t) = 0 for t > R (possibly a smooth approximation of (R− t)+), and consider
the test function ϕ(x) = η(|x|2)(h+ a)+ in (11.2). Observe that Diϕ = η(|x|2)Di(h+ a)+ +

η ′(|x|2)2xi(h + a)+. But
∑
iDih(x)x

i = 0 for a.e. x in Rm because h is homogeneous.
Hence we deduce

0 >
ˆ
|D(h+ a)+|2η(|x|2).

But this contradicts the assumption that (h+ a)+ is not constant.

11.2 proof of theorem 11.0.1

In this section we conclude the proof of Theorem 11.0.1. Recall that the hypotheses on N

imply by the Cartan-Hadamard Theorem that expp : TpN → N is a covering map for every
p ∈ N. Furthermore, since N is assumed to be smooth we have distN(q,p) = |exp−1

p (q)|.
As a further consequence we deduce that for each p the map q 7→ d2p(q) := distN(q,p)2 is
smooth. By the second variation formula for length we deduce that ∇2d2p > 0.

Proof of theorem 11.0.1. Again we split the proof in two parts:

claim 1: every 0-homogeneous and locally minimizing u : Rm → AQ(N) is constant;
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claim 2: claim 1 implies that every locally minimizing map u ∈W1,2(Ω,AQ(N)) is continuous.

Obviously claim 2 is equivalent to the theorem. Let us first show how claim 2 follows from
claim 1:
Proof of claim 2: Let u ∈ W1,2(Ω,AQ(N)) be locally energy minimizing, and suppose by
contradiction that singH(u) 6= ∅. Due to the characterization of the Hölder regular set by
means of the tangent maps [Hir16b, Lemma 6.1], there is y ∈ singH(u) with a non-constant
tangent map Tuy at y. But every tangent map is 0-homogeneous and locally minimizing,
and thus constant by claim 1. This is the required contradiction.
Proof of claim 1: Let u ∈W1,2(Rm,AQ(N)) be any 0-homogeneous locally minimizing map.
As a consequence of the previous discussion, for every k > 1 and p ∈ N the function
q ∈ N 7→ f(q) := (dp(q)2)k is C2 regular and satisfying ∇2f > 0 on TqN since t 7→ tk is
convex. Hence, we can apply lemma 11.1.1 and deduce that for all p ∈ N, k > 1

d2kp ◦ u =

Q∑
`=1

d2kp (u`) (11.3)

is constant. To conclude we need the following small algebraic fact, whose proof we post-
pone and first show the end of the argument.

Lemma 11.2.1. Let {a`}
Q
`=1, {b`}

Q
`=1 be two families of non-negative real numbers. Suppose that for

some sequence ki →∞ we have
Q∑
`=1

aki` =

Q∑
`=1

bki` .

Then, {a`}
Q
`=1 = {b`}

Q
`=1.

In order to conclude the proof, fix any x,y ∈ Rm and let u(x) =
∑Q
`=1 Jp`K ,u(y) =∑Q

`=1 Jq`K. For a fixed pj we have by (11.3) that for all k > 1

Q∑
`=1

distN(p`,pj)2k =

Q∑
`=1

distN(q`,pj)2k.

But so the lemma 11.2.1 implies that the number of zeros of the left- and right-hand side
are the same. So we conclude that #{` : p` = pj} = #{` : q` = pj}. Since pj was arbitrary we
have u(x) = u(y), that is u is constant.
It remains to give the proof of the lemma.

Proof of lemma 11.2.1. This lemma follows by induction on Q. For Q = 1 the claim is obvi-
ous.
Suppose the claim is proven for Q ′ < Q. We may assume that the families are ordered, i.e.
a1 > a2 > · · · > aQ and b1 > b2 > · · ·bQ. If a1 = 0 the claim follows. Hence we may
assume a1 > 0. The hypothesis implies that for all ki

Q∑
`=1

(
a`
a1

)ki
=

Q∑
`=1

(
b`
a1

)ki
.
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If we consider the limits for ki →∞ we deduce that the LHS converges to #{` : a` = a1}. If
b1 > a1, the RHS converges to +∞. If b1 < a1, on the other hand, the RHS converges to
0. Hence, b1 = a1. Furthermore the RHS converges therefore to #{` : b` = b1 = a1} which
must be the same number as for the family {a`}

Q
`=1. Hence we conclude that the assumption

can now be written as∑
` : a`=a1

aki1 +
∑

` : a` 6=a1

aki` =
∑

` : b`=a1

bki1 +
∑

` : b` 6=a1

bki` .

As we have just shown the first sum on the left agrees with the first sum on the right, hence
we deduce equality for the second sums for all ki. The lemma follows now by induction
hypothesis.

11.3 the improved result when Q = 1

Although it is a known result we want to give a short proof of how the previous implies
the following theorem. The important fact to remark is that for the single-valued case the
topology of the target does not play a role.

Theorem 11.3.1. Let N be a complete, connected manifold all of whose sectional curvatures are
non-positive. Then, every locally energy minimizing map u ∈W1,2(Ω,N) is smooth.

Proof. It is classical that every continuous harmonic map is smooth (cf. § 2.3.1), hence it is
sufficient to prove the continuity of the harmonic map. We will show it by induction on the
dimension m of the base space Ω ⊂ Rm. In fact, we will proceed similarly to the simply
connected situation:

claim 1: every 0-homogeneous locally energy minimizer u : Rm → N is constant;

claim 2: every locally energy minimizing map u ∈W1,2(Ω,N) is continuous.

Proof of claim 1: Assume claim 1 is proven for m ′ < m. In a first step we want to show that
the map u|Sm−1 is continuous. For m 6 3 this holds true since Hm−2(sing(u)) = 0. Now
let u : Rm → N be 0-homogeneous and energy minimizing, but suppose by contradiction
that when restricted to the sphere Sm−1 u is not continuous, i.e. sing(u) ∩ Sm−1 6= ∅.
Hence we can find y ∈ sing(u) ∩ Sm−1. Since u is singular at both 0 and y, there is a
tangent map T to u at y with at least one line of symmetry, i.e. there is z ∈ Rm such
that T(x+ λz) = T(x) for all λ ∈ R, for all x. But this implies that T is a locally energy
minimizing 0-homogeneous map from Rm−1 to N. By induction hypothesis T must be
constant. Hence sing(u)∩ Sm−1 = ∅.
We have thus concluded that v := u|Sm−1 : Sm−1 → N is continuous and so smooth. Let
P : Ñ → N be an isometric covering map e.g. we can take P = expp : TpN → N by the
Cartan-Hadamard Theorem. Since Sm−1 is simply connected we have that u∗(π1(Sm−1)) ⊂
P∗(π1(R

n)) and hence there exists a lift ṽ : Sm−1 → Ñ of v, that is with P ◦ ṽ = v, compare
[Hat02, Proposition 1.33]. The 0-homogeneous extension ũ(x) := ṽ( x

|x|) must be locally
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energy minimizing since P is isometric (indeed, if w̃ is a local competitor for ũ then w := P ◦
w̃ is a local competitor for u, and

´
Ω|Dw|2 =

´
Ω|Dw̃|2; hence, ũ must be locally minimizing

if u is). But as proven in the simply connected situation every 0-homogeneous locally
energy minimizing map ũ : Rm → Ñ is constant, compare claim 1 in Section 11.2 with
Q = 1. This shows the claim.
Proof of claim 2: Assume sing(u) 6= ∅. Hence we can find y ∈ sing(u) at which there is a
non-trivial tangent map T . But the existence of T is ruled out by claim 1.

11.4 Q-valued counterexample

In this section we want to present an example that the continuity fails for Q-valued
functions if the target is not simply connected. Due to the results in Section 11.2 we already
know that the reason must be of topological nature.

Proposition 11.4.1. There is a 2-valued Dirichlet minimizing map u from B3 ⊂ R3 into the
flat torus T2 = C/Z2 with the property that u|S2 is Lipschitz continuous, singH(u) b B3 and
singH(u) 6= ∅.

Proof. The construction of the example proceeds as follows:

1. we present an explicit example of a branched covering π : V→ S2, where V is a torus.
V is constructed as a complex variety in Ĉ× Ĉ;

2. using π we construct a 2-valued, Lipschitz continuous map v from S2 into the flat
torus T2 = C/Z2 with finite energy;

3. let u be a minimizer of the Dirichlet energy with respect to g(x) := v( x
|x|). We will

show that u cannot be continuous.

Let us now present the details to the outlined steps:

step 1: Let Ĉ be the Riemann sphere. We fix two non zero, unequal complex numbers a,b
and define the meromorphic function m(z) := zz−az−b . Consider the complex variety

V :=

{
(w, z) ∈ Ĉ× Ĉ : w2 = z

z− a

z− b

}
.

Consider the projection π : Ĉ× Ĉ → Ĉ onto the second component. Restricted to V, we
obtain a ramified covering map

π : V→ Ĉ.

The map π by definition is a two valued covering with ramification points in P1 = (0, 0),
P2 = (0,a), P3 = (∞,b) and P4 = (∞,∞). We claim that π takes the form π(ζ) = ζ2 at each
of the ramifications points Pi. Furthermore this implies that V is smoothly embedded, i.e.
does not have any singular points.
Set p1 = 0 = p ′4 ,p2 = a ,p ′3 =

1
b (p3 = b = 1

p ′3
,p4 = +∞ = 1

p ′4
).

At P1,P2 we have m(z) = (z− pi)hi(z− pi) with hi holomorphic in a neighborhood Ui
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of 0 and hi(0) 6= 0. We deduce that ϕi(z) := (z− pi)hi(z− pi) = m(z) is locally a holo-
morphic diffeomorphism between pi + Ui and a neighborhood Vi ⊂ C of 0. Now it is
straightforward to check that

Φi : ζ ∈ Vi 7→ (ζ,ϕ−1
i (ζ2)),

is a local parametrization of V around Pi, i.e. ϕi ◦ π ◦Φi(ζ) = ζ2. Changing Ui we may
assume that Vi = Dri for each i = 1, 2, where Dr is the disc centered at 0 ∈ C with radius
r. Furthermore since Φi is a smooth regular map Pi is not a singular point of V.

To analyze the ramification points P3,P4 we use the inversion I : Ĉ → Ĉ with I(z) = 1
z .

Observe that (w, z) ∈ V if and only if (w ′ = I(w), z ′ = I(z)) is a solution of (w ′)2 = m ′(z ′)

with m ′(z) = I ◦m ◦ I = b
a z
′ z ′− 1

b

z ′− 1
a

or

I(V) =

{
(w ′, z ′) ∈ Ĉ× Ĉ : w ′2 =

b

a
z ′
z ′ − 1

b

z ′ − 1
a

}
.

Now we can argue for P3,P4 as for P1,P2 interchanging p1,p2 with p ′4 and p ′3 (and denote
withU ′i, i = 3, 4 the related neighborhoods of 0). As a conclusion we can apply the Riemann-
Hurwitz formula, and obtain

χ(V) = −4+

4∑
i=1

(2− 1) = 0.

Hence V is a torus.

step 2: In the following we equip V with the pullback metric g := ι∗δ of its immersion
ι : V ↪→ Ĉ × Ĉ. Observe that the metric g is compatible with the conformal structure
considered in step 1.
The construction of v will be done in two steps. First, since π : V → Ĉ is a branched
conformal covering of degree two there is a natural way to define 2-valued maps with finite
energy. These maps are not Lipschitz continuous, in fact only C0, 12 , but we are able to find
a Lipschitz continuous map with similar properties nearby.

Let f : V→ N be any smooth function from the Riemann surface V into a manifold N. We
define a two valued map u = uf : Ĉ → A2(N) using the branched covering map π : V → Ĉ

as follows
u(z) :=

∑
P∈π−1(z)

Jf(P)K ,

counting multiplicities i.e. u(pi) = 2 Jf(Pi)K for i = 1, · · · , 4.
We claim that u ∈W1,2(S2,A2(N)) withˆ

S2
|∇u|2 =

ˆ
V

|∇f|2. (11.4)

Let γ be a smooth path connecting p1,p2,p3,p4. We obtain a simply connected domain
Ω ⊂ C setting

Ω := Ĉ \

 ⋃
i=1,2

(pi +Ui)∪
⋃
i=3,4

I(p ′i +U
′
i)∪ γ

 .
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Hence there exist two holomorphic maps ψi : Ω→ π−1(Ω) with ψ1(Ω)∪ψ2(Ω) = π−1(Ω)

such that
u(z) = Jf ◦ψ1K+ Jf ◦ψ2K for every z ∈ Ω .

Since the Dirichlet energy is conformally invariant (cf. [DLS11, Lemma 3.12]), we have
ˆ
Ω

|∇u|2 =
ˆ
π−1(Ω)

|∇f|2.

Now we consider a ramification point, for instance P1 and the related neighborhood p1 +
U1. Using the previously introduced parameterization Φ1 we have

u ◦ϕ−1
1 (ζ) =

r
f ◦Φ1(ζ

1
2 )

z
+

r
f ◦Φ1(−ζ

1
2 )

z
.

The maps ζ ∈ Dr21
7→ ±ζ 12 both together parametrize Dr1 . Hence, as before, due to the

conformal invariance of Dirichlet energy we obtain
ˆ
ϕ−1
1 (D

r2
1
)
|∇u|2 =

ˆ
Φ1(Dr1

)
|∇f|2.

Summing up all the pieces and using that H2(γ) = 0 we obtain (11.4).
By step 1 V is a smoothly embedded torus in Ĉ× Ĉ; hence, there exists a smooth diffeo-
morphism Φ : V → T2. Apply the above construction with the specific choice f = Φ to
obtain

ṽ(z) :=
∑

P∈π−1(z)

JΦ(P)K ∈W1,2(Ĉ,A2(T2)).

It remains to show that there is v ∈ Lip(Ĉ,A2(T2)) nearby. This will be a consequence of
the following approximation lemma:

Lemma 11.4.2. Given w ∈ W1,2(Ω,AQ(N)) ∩ C0(Ω,AQ(N)), for every Ω ′ b Ω there exists
wj ∈W1,2(Ω,AQ(N))∩C0(Ω,AQ(N)) with

wj ∈ Lip(Ω ′,AQ(N)); wj = w in a neighborhood of ∂Ω∥∥G(wj,w)∥∥L∞(Ω ′) → 0;
ˆ
Ω ′

|Dwj|
2 →

ˆ
Ω ′

|Dw|2 as j→∞.

Before coming to the proof of this lemma let us present how to conclude. Apply the
lemma to the 0-homogeneous extension of ṽ in Ω := B32(0) \ B

3
1
4

(0) to obtain an approxi-

mating sequence vj ∈ W1,2(B32(0) \ B
3
1
4

(0),A2(T2))∩ Lip(B33
2

(0) \ B31
2

(0),A2(T2)). Choosing

j sufficiently large we can guarantee that for every p ∈ T2 \
⋃4
i=1 B2−2017(Φ(Pi)) there is

precisely one z ∈ Ĉ ' ∂B31(0) with p ∈ spt(vj(z)). Now fix such j sufficiently large and
set v := vj

∣∣
Ĉ

. The 0-homogeneous extension of v i.e. g(x) := v( x
|x|) for x ∈ B1 ⊂ R3 is an

element of W1,2(B1,A2(T2)) and Lipschitz continuous outside of 0. Now we may apply
the direct method to obtain a Dirichlet minimizing map u : B1 → A2(T

2) with u|S2 = g|S2 ,
compare [DLS11, Theorem 0.8].
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Proof of Lemma 11.4.2. Since N ↪→ Rd smooth isometrically there exists a smooth nearest
point projection Π : Uδ(N) → N for some δ > 0. Let ξξξBW : AQ(R

d) → RM be the lo-
cally isometric "improved" Almgren/B. White embedding of AQ(Rd), cf. [DLS11, Section
2]. We will denote with ρρρBW : RM → AQ(R

d) the related Lipschitz retraction, satisfying
ρρρBW ◦ξξξBW = id on AQ(R

d), [DLS11, Corollary 2.2].
Since w is assumed to be continuous, there exists w̃j with w̃j → ξξξBW ◦w in L∞(Ω, RM) ∩
W1,2(Ω, RM), w̃j ∈ Lip(Ω ′, RM) for every Ω ′ b Ω, and w̃j = ξξξBW ◦w in a neighborhood
of ∂Ω. For instance, one may take w̃j = (1− θ) ξξξBW ◦w+ θ ηεj ? (ξξξBW ◦w), for an appro-
priate cut-of-function θ and a sequence of mollifiers ηεj .
Since ρρρBW is a Lipschitz-retraction and ξξξBW is a local isometry we conclude that the se-
quence

ŵj := ρρρBW ◦ w̃j : Ω→ AQ(R
d)

has the claimed properties up to the fact that ŵj does not necessarily take values in N. But
for sufficient large j we have G(ŵj(x),w(x)) < 1

2δ for all x ∈ Ω hence

wj(x) := Π ◦ ŵj(x) =
Q∑
`=1

q
Π((ŵj(x))`)

y

is well-defined and has all the claimed properties. It is clearly Lipschitz continuous on Ω ′

since Π is smooth and Lipschitz. The sequence wj converges uniformly to w since Π is the
identity on N and finally

ˆ
Ω

|∇w|2 6 lim inf
j→∞

ˆ
Ω

|∇wj|2 6 lim inf
j→∞

ˆ
Ω

|∇ŵj|2

(1− dist(ŵj(x),N)C)2
=

ˆ
Ω

|∇w|2.

In the first inequality we used the lower-semicontinuity of the Dirichlet energy, in the sec-
ond an estimate on the derivative of the nearest point projection Π, compare [Hir16b, Re-
mark 2.1 (iv)].

step 3: That singH(u) b B
3 follows from the fact that u|S2 is Lipschitz continuous and

a boundary regularity result for Q-valued locally energy minimizing maps, which can be
obtained from the analogous result of [Hir16a] for “classical” Rd-valued Dir-minimizers
modulo slight modifications of the arguments: precisely, this is how to proceed in order to
obtain the boundary regularity result [Hir16a, Theorem 0.1] in the manifold valued setting
for s = 1. Only in the proof of Proposition 3.3, one replaces the application of Lemma
B.2. to obtain the interpolation ϕ(k ′) by the application of the Q-valued Luckhaus lemma,
[Hir16b, Lemma 3.1] to obtain ϕ(k ′). Due to the L∞-bound in the Luckhaus lemma one
can apply the nearest point projection Π : Uδ(N)→ N and obtain an interpolation function
Π ◦ϕ(k ′) that satisfies the same bounds.

To show that singH(u) 6= ∅ the idea is to use the "degree" of u|S2 to show that u cannot
be continuous. We will use the notion of "degree" suggested by the theory of Cartesian
currents. We will need the tools developed in Chapter 3 about push-forwards of integral
currents by Q-valued proper Lipschitz continuous functions. In particular, let Ω ⊂ Rm

be open (non necessarily connected) with smooth boundary ∂Ω, Σ ⊂ Ω any smooth k-
dimensional surface, and f : Ω→ AQ(N) Lipschitz and proper. Then, the following holds:
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• T := f] JΩK is an m-dimensional integer rectifiable current in N, S := f] JΣK is a k-
dimensional integer rectifiable current in N;

• it holds ∂T = f] J∂ΩK.

In case Ω is 3-dimensional, Σ and N are 2-dimensional without boundary, the constancy
theorem for integral currents, Theorem 2.1.6, implies that

(i) T = f] JΩK = 0 since T is a 3-dimensional current supported in a 2-dimensional
manifold;

(i) S = f] JΣK = θΣ JNK for some θΣ ∈ Z since S is a 2-dimensional integer rectifiable
current without boundary supported in a 2-dimensional manifold;

(iii) the following identity holds true

0 = ∂T = f] J∂ΩK =
J∑
j=1

θΣj JNK (11.5)

where Σj are the different components of ∂Ω i.e. ∂Ω =
⋃J
j=1 Σj.

Now we can conclude step 3. Assume by contradiction that u is continuous. First extend
u to B2 setting u(x) = u( x

|x|) for |x| > 1. Apply the approximation lemma 11.4.2 to u with
Ω = B 3

2
and Ω ′ = B1 to obtain a sequence uj ∈ W1,2(B 3

2
,A2(T2)) with uj|∂B 3

2

= u|∂B 3
2

for all j. Since u is Lipschitz continuous on B2 \ B1 we have that uj ∈ Lip(B 3
2
,A2(T2)).

Modifying uj slightly we can assume that uj is constant in a small ball Br(0). This can be
achieved for instance by composing uj with a Lipschitz function of the form

ψ(x) :=


x for |x| > 2r
|x|−r
r x for r 6 |x| < 2r

0 for |x| < r.

Now consider the set Ω = B 3
2
\ B r

2
with smooth boundary components Σ1,Σ2 given by

JΣ1K =
r
∂B 3

2

z
and JΣ2K = −

r
∂B r

2

z
in the sense of currents. Since uj is constant on Br we

have (uj)] JΣ2K = 0 by the very definition of push-forward. The identity (11.5) implies that

0 = (uj)] JΣ1K = u]
r
∂B 3

2

z
= u] J∂B1K .

We used that uj = u on ∂B 3
2

for all j and u is 0-homogeneous on B2 \ B1. But this is a
contradiction since u] J∂B1K 6= 0 by the way u was constructed, compare the choice of the
boundary datum in the approximation above.

11.5 concluding remarks: an example of a "non-classical"
tangent map

We want to conclude the chapter observing that tangent maps of Q-valued locally Dirich-
let minimizing maps may have different structures than "classical" one-valued tangent
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maps.
Following the classical scheme we make the following definition:

Definition 11.5.1. Let u ∈W1,2(Ω,AQ(N)) be energy minimizing. A point x ∈ singH(u) is
called a regular-singular point if for every tangent map T at x there are classical one-valued
tangent maps T` : Rm → N, i.e. 0-homogeneous locally energy minimizing maps, such that

T =

Q∑
`=1

JT`K .

It is worth noting that every continuity point of a locally energy minimizing map has the
property above, by the identification of regular points by the existence of a constant tangent
map, [Hir16b, Lemma 6.1 (iii)].

We will show the following

Proposition 11.5.2. Let u : B1(0) ⊂ R3 → A2(T
2) be the Dirichlet minimizing map constructed

in the previous section. Then, singH(u) does not contain any regular-singular point.

Proof. It was shown in step 3 of the previous section that singH(u) 6= ∅ and singH(u) b B
3,

hence at every point x ∈ singH(u) a tangent map exists. Let T : R3 → A2(T
2) be an

arbitrary tangent map at some some y ∈ singH(u). Assume by contradiction that there are
"classical" tangent maps T1, T2 : R3 → T2 such that

T = JT1K+ JT2K .

Each Ti is 0-homogeneous and locally energy minimizing. Since T2 is flat each Ti satisfies
the assumptions of claim 1 in the proof of Theorem 11.3.1, hence Ti must be constant.
But this contradicts that T is a non-constant tangent map and concludes the proof of the
proposition.
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12 R E L A X AT I O N O F F U N C T I O N A L S O N
R E A L P O LY H E D R A L C H A I N S

In this chapter we present the proof of the representation formula for the lower semi-
continuous envelope of a general class of functionals defined on real polyhedral chains
obtained in [CDMS17]. After a brief introduction to real currents in Section 12.1, we present
the main results of the chapter. The main theorem is Theorem 12.2.4, which is a simple
corollary of Proposition 12.2.6 and Proposition 12.2.7. The former is proved in Section
12.3, the latter in Section 12.4. Finally, in the last section we present a simple necessary
and sufficient condition on the function H so that the lower semi-continuous envelope FH
cannot be finite on a real flat chain T with finite mass if T is not rectifiable.

12.1 real currents

Let 0 6 m 6 d be integers, and assume that E b Rd is a (countably) m-rectifiable set
oriented by ~τ and carrying a multiplicity θ ∈ L1(Hm E). We know from § 2.1.1 that there
exists a current R = JE, ~τ, θK ∈ Dm(Rd) which is naturally associated to the triple (E, ~τ, θ),
whose action on forms is given by

R(ω) :=

ˆ
E

〈ω(x), ~τ(x)〉 θ(x)dHm(x) ∀ω ∈ Dm(Rd). (12.1)

We have called integer rectifiable all currents R which admit a representation formula as
above under the additional hypothesis that the multiplicity function θ is integer-valued. We
will simply call rectifiable any current R = JE, ~τ, θK as above, even when the last assumption
on the target of the multiplicity function θ fails to hold. Hence, rectifiable currents are
simply currents of finite mass which can be represented via integration over a rectifiable
set with orientation ~τ and (possibly) real-valued multiplicity θ according to formula (12.1).
Observe that the set of rectifiable m-currents in Rd, denoted Rm(Rd), can be naturally
endowed with the structure of real vector space, and that Rm(Rd) is a Z-submodule of
Rm(Rd). Also note that if R = JE, ~τ, θK is rectifiable then we can assume without loss of
generality, modulo changing the orientation ~τ, that θ > 0 Hm-a.e. on E. We will apply this
convention in this chapter.

An important subspace of Rm(Rd) consists of the real polyhedral m-chains Pm(Rd). Anal-
ogously to the integral case, but obviously allowing real multiplicities, we say that P ∈
Pm(Rd) if P can be written as a linear combination

P =

N∑
i=1

θiJσiK, (12.2)
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where θi ∈ (0,∞), the σi’s are non-overlapping, oriented,m-dimensional, convex polytopes
(finite unions of m-simplexes) in Rd and JσiK = Jσi, ~τi, 1K, ~τi being a constant m-vector
orienting σi. If P ∈ Pm(Rd), then its flat norm is defined by

F(P) := inf{M(S) + M(P− ∂S) : S ∈ Pm+1(R
d)}.

The F-completion of Pm(Rd) in Em(Rd) :=
{
T ∈ Dm(Rd) : spt(T) is compact

}
is the

space of real flat m-chains in Rd, denoted Fm(Rd).
We remark that for the spaces of currents considered above the following chain of inclu-

sions holds:

Pm(Rd) ⊂ Rm(Rd) ⊂ Fm(Rd)∩ {T ∈ Em(Rd) : M(T) <∞}. (12.3)

The flat norm F extends to a functional (still denoted F) on Em(Rd), which coincides on
Fm(Rd) with the completion of the flat norm on Pm(Rd), by setting:

F(T) := inf{M(S) + M(T − ∂S) : S ∈ Em+1(R
d)}. (12.4)

In the sequel, we will also use the following equivalent characterization of the flat norm
of a flat chain (cf. [Fed69, 4.1.12] and [Mor09, 4.5]). If T ∈ Fm(Rd) and K ⊂ Rd is a ball
such that spt(T) ⊂ K, then

F(T) = sup{〈T ,ω〉 : ω ∈ Dm(Rd) with ‖ω‖C0(K;Λm(Rd)) 6 1, ‖dω‖C0(K;Λm+1(Rd)) 6 1}.
(12.5)

Many of the results that we have presented in Section 2.1 in the context of currents with
integer multiplicities are still valid in the real multiplicities case, and in fact some of them
have way simpler proofs. For instance, the Compactness Theorem 2.1.3 for real currents
with finite mass and finite mass of the boundary (the so called normal currents) is evidently
a simple exercise in Functional Analysis. The slicing theory can be extended to normal
currents and real flat chains (see [Fed69, Sections 4.2.1 and 4.3]), and a deformation result
analogous to Theorem 2.1.10 is available in this context (see [Fed69, Theorem 4.2.9]). There
are as well some striking differences. For instance, we remark that a “real coefficients”
version of Theorem 2.1.8 does not hold: hence, real flat chains with finite mass need not be
rectifiable, and hence the last inclusion in (12.3) is strict. In the more general framework of
currents with coefficients in a normed abelian group G the remarkable work [Whi99b] by
White establishes a simple necessary and sufficient condition on the group G (which, by the
discussion above, is not satisfied when G = R) in order for every flat chain with finite mass
to be rectifiable: the condition being that G does not contain any non-constant continuous
path of finite length.

12.2 setting and main results

Assumption 12.2.1. We will consider a Borel function H : R → [0,∞) satisfying the follow-
ing hypotheses:

(H1) H(0) = 0 and H is even, namely H(−θ) = H(θ) for every θ ∈ R;
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(H2) H is subadditive, namely H(θ1 + θ2) 6 H(θ1) +H(θ2) for every θ1, θ2 ∈ R;

(H3) H is lower semi-continuous, namely H(θ) 6 lim infj→∞H(θj) whenever θj is a se-
quence of real numbers such that |θ− θj|↘ 0 when j ↑∞.

Remark 12.2.2. Observe that the hypotheses (H2) and (H3) imply that H is in fact countably
subadditive, namely

H

 ∞∑
j=1

θj

 6 ∞∑
j=1

H(θj),

for any sequence {θj}
∞
j=1 ⊂ R such that

∑∞
j=1 θj converges.

Remark 12.2.3. Let H̃ : [0,∞)→ [0,∞) be any Borel function satisfying:

(H̃1) H̃(0) = 0;

(H̃2) H̃ is subadditive and monotone non-decreasing, i.e. H̃(θ1) 6 H̃(θ2) for any 0 6 θ1 6
θ2;

(H̃3) H̃ is lower semi-continuous,

and let H : R→ [0,∞) be the even extension of H̃, that is set H(θ) := H̃(|θ|) for every θ ∈ R.
Then, the function H satisfies Assumption 12.2.1.

Let H be as in Assumptions 12.2.1. We define a functional ΦH : Pm(Rd) → [0,∞) as
follows. Assume P ∈ Pm(Rd) is as in (12.2). Then, we set

ΦH(P) :=

N∑
i=1

H(θi)H
m(σi). (12.6)

The functional ΦH naturally extends to a functional MH, called the H-mass, defined on
Rm(Rd) by

MH(R) :=

ˆ
E

H(θ(x))dHm(x), for every R = JE, ~τ, θK ∈ Rm(Rd). (12.7)

We also define the functional FH : Fm(Rd) → [0,∞] to be the lower semi-continuous
envelope of ΦH. More precisely, for every T ∈ Fm(Rd) we set

FH(T) := inf
{

lim inf
j→∞ ΦH(Pj) : Pj ∈ Pm(Rd) with F(T − Pj)↘ 0

}
. (12.8)

The main result of this chapter is the following theorem.

Theorem 12.2.4. Let H satisfy Assumption 12.2.1. Then, FH ≡MH on Rm(Rd).

Remark 12.2.5. The hypotheses in Assumption 12.2.1 are also necessary. Indeed, without
(H1) the functional ΦH would not be well-defined; moreover, without (H2) and (H3) Theo-
rem 12.2.4 would fail, in view of the following counterexamples.
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• Assume that (H2) is not satisfied, and let θ1, θ2 be such that H(θ1 + θ2) > H(θ1) +

H(θ2). Let σ be a line segment of unit length in Rd and

P∞ := (θ1 + θ2)JσK; Pj := θ1JσK+ θ2Jσ+ vjK,

where 0 6= vj ∈ Rd, vj is not parallel to σ and |vj| → 0. Then, since F(Pj − P∞) → 0,
we have

MH(P∞) = H(θ1 + θ2) > H(θ1) +H(θ2) = ΦH(Pj) > FH(P∞).
• Assume that (H3) is not satisfied, and let θ, θj be such that θj → θ and H(θ) >

lim infjH(θj). Let σ be as above and

P∞ := θJσK; Pj := θjJσK.

Then, since F(Pj − P∞)→ 0, we have

MH(P∞) = H(θ) > lim inf
j

H(θj) = lim inf
j

ΦH(Pj) > FH(P∞).
In order to prove Theorem 12.2.4, we adopt the following strategy. First, we show that

the functional MH is lower semi-continuous on rectifiable currents with respect to the flat
convergence, as in the following proposition with A = Rd.

Proposition 12.2.6. Let H satisfy Assumption 12.2.1, and let A ⊂ Rd be open. Let Tj, T ∈
Rm(Rd) be rectifiable m-currents such that F(T − Tj)↘ 0 as j→∞. Then

MH(T A) 6 lim inf
j→∞ MH(Tj A). (12.9)

Next, we observe that, as an immediate consequence of Proposition 12.2.6 and of the
properties of the lower semi-continuous envelope, it holds

MH(R) 6 FH(R) for every R ∈ Rm(Rd). (12.10)

The opposite inequality, which completes the proof of Theorem 12.2.4, is obtained as
a consequence of the following proposition, which provides the anticipated polyhedral
approximation in flat norm of any rectifiable m-current R with a real polyhedral chain
having H-mass and mass close to those of the given R.

Proposition 12.2.7. Let H be any Borel function satisfying (H1) in Assumption 12.2.1, and let
R ∈ Rm(Rd) be rectifiable. For every ε > 0 there exists a polyhedral m-chain P ∈ Pm(Rd) such
that

F(R− P) 6 ε, ΦH(P) 6MH(R) + ε and M(P) 6M(R) + ε. (12.11)

Theorem 12.2.4 characterizes the lower semi-continuous envelope FH on rectifiable cur-
rents to be the (possibly infinite) H-mass MH. Without further assumptions on H, the lower
semi-continuous envelope FH can have finite values on flat chains which are non-rectifiable
(for instance, the choice H(θ) := |θ| induces the mass functional FH = M). If instead we
add the natural hypothesis that H is monotone non-decreasing on [0,∞), then there is a
simple necessary and sufficient condition which prevents this to happen in the case of flat
chains with finite mass, thus allowing us to obtain an explicit representation for FH on all
flat chains with finite mass.
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Proposition 12.2.8. Let H be as in Assumption 12.2.1 and monotone non-decreasing on [0,∞).
The condition

lim
θ↘0+

H(θ)

θ
= +∞. (12.12)

holds if and only if

FH(T) =

{
MH(T) for T ∈ Rm(Rd),

+∞ for T ∈ (Fm(Rd)∩ {T ∈ Em(Rd) : M(T) <∞}) \ Rm(Rd).
(12.13)

12.3 proof of the lower semi-continuity

This section is devoted to the proof of Proposition 12.2.6. It is carried out by slicing the
rectifiable currents Tj and T and reducing the proposition to the lower semi-continuity of
0-dimensional currents. Some of the techniques here adopted are borrowed from [DPH03,
Lemma 3.2.14].

Given 1 6 m 6 d, let I(d,m) be the set of m-tuples (i1, . . . , im) with

1 6 i1 < . . . < im 6 d.

Let {e1, . . . , ed} be an orthonormal basis of Rd. For any I = (i1, . . . , im) ∈ I(d,m), let
VI be the m-plane spanned by {ei1 , . . . , eim}. Given an m-plane V , we will denote pV the
orthogonal projection onto V . If V = VI for some I, we write pI in place of pVI . Given a
current T ∈ Fm(Rd), a Lipschitz function f : Rd → Rk for some k 6 m and y ∈ Rk, recall
the notation 〈T , f,y〉 for the (m− k)-dimensional slice of T in f−1(y) (cf. § 2.1.2).

Let us denote by Gr(d,m) the Grassmannian of m-dimensional planes in Rd, and by
γd,m the Haar measure on Gr(d,m) (see [KP08, Section 2.1.4]).

In the following lemma, we prove a version of the integral-geometric equality for the
H-mass, which is a consequence of [Fed69, 3.2.26; 2.10.15] (see also [DPH03, (21)]). We
observe that the hypotheses (H2) and (H3) on the function H are not needed here, and
indeed Lemma 12.3.1 below is valid for any Borel function H for which the H-mass MH is
well defined.

Lemma 12.3.1. Let E ⊆ Rd be m-rectifiable. Then there exists c = c(d,m) such that the following
integral-geometric equality holds:

Hm(E) = c

ˆ
Gr(d,m)

ˆ
Rm

H0(p−1
V ({y})∩ E)dHm(y)dγd,m(V). (12.14)

In particular, if R ∈ Rm(Rd),

MH(R) = c

ˆ
Gr(d,m)×Rm

MH

(
〈R, pV ,y〉

)
d(γd,m ⊗Hm)(V ,y). (12.15)

Proof. The equality (12.14) is proved in [Fed69, 3.2.26; 2.10.15]. For any Borel set A ⊂ Rd,
denoting f = 1A, (12.14) implies thatˆ

E

f(x)dHm(x) = c

ˆ
Gr(d,m)

ˆ
Rm

ˆ
E

f(x) 1p−1
V ({y})(x)dH0(x)dHm(y)dγd,m(V). (12.16)
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Since the previous equality is linear in f, it holds also when f is piecewise constant. Since
the measure Hm E is σ-finite, the equality can be extended to any measurable function f ∈
L1(Hm E). The case f /∈ L1(Hm E) follows from the Monotone Convergence Theorem
via a simple truncation argument.

Taking R = JE, ~τ, θK, and applying (12.16) with f(x) = H(θ(x)), we deduce that

MH(R) = c

ˆ
Gr(d,m)

ˆ
Rm

ˆ
E∩p−1

V ({y})
H(θ(x))dH0(x)dHm(y)dγd,m(V).

We observe that the right-hand side coincides with the right-hand side in (12.15) since for
Hm-a.e. y ∈ Rm the 0-dimensional current 〈R, pV ,y〉 is concentrated on the set E∩ p−1

V (y)

and its density at any x ∈ E∩ p−1
V (y) is θ(x).

We prove the lower semi-continuity in (12.9) by an explicit computation in the casem = 0.
Then, by slicing, we get the proof for m > 0, too.

Proof of Proposition 12.2.6. Step 1: the case m = 0. Let Tj := JEj, τj, θjK, T := JE, τ, θK ∈ R0(Rd)
be such that F(T − Tj)↘ 0 as j→∞. Since T A is a signed, atomic measure, we write

T A =
∑
i∈N

τ(xi)θ(xi)δxi

for distinct points {xi}i∈N ⊆ E∩A, orientations τ(xi) ∈ {−1, 1}, and for θ(xi) > 0. Fix ε > 0
and let N = N(ε) ∈N be such that

MH(T A) −

N∑
i=1

H(θ(xi)) 6 ε if MH(T A) <∞ (12.17)

and
N∑
i=1

H(θ(xi)) >
1

ε
otherwise. (12.18)

Since H is positive, even, and lower semi-continuous, for every i ∈ {1, . . . ,N} it is possible
to determine ηi = ηi(ε, θ(xi)) > 0 such that

H(θ) > (1− ε)H(θ(xi)) for every |θ− τ(xi)θ(xi)| < ηi. (12.19)

Moreover, for every i ∈ {1, . . . ,N} there exists 0 < ri < min{dist(xi,∂A), 1} such that the
balls B(xi, ri) are pairwise disjoint, and moreover such that for every ρ 6 ri it holds∣∣∣∣∣∣τ(xi)θ(xi) −

∑
x∈E∩B(xi,ρ)

τ(x)θ(x)

∣∣∣∣∣∣ 6 ηi2 . (12.20)

Our next aim is to prove that in sufficiently small balls and for j large enough, the sum of
the multiplicities of Tj (with sign) is close to the sum of the multiplicities of T . In order
to do this, we would like to test the current T − Tj with the indicator function of each ball.
Since this test is not admissible, we have to consider a smooth and compactly supported
extension of it outside the ball, provided we can prove that the flat convergence of Tj to T
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localizes to the ball. From this, our claimed convergence of the signed multiplicities follows
by the characterization of the flat norm in (12.5).

To make this formal, we define η0 := min16i6N ηi and r0 := min16i6N ri. Let j0 be such
that

F(T − Tj) 6
η0r0
16

for every j > j0.

By the definition (12.4) of flat norm, there exist Rj ∈ E0(R
d), Sj ∈ E1(R

d) such that T − Tj =
Rj+∂Sj with M(Rj)+M(Sj) 6

η0r0
8 for every j > j0. Observe that the mass and the mass of

the boundary of both Rj and Sj are finite, and thus by [Fed69, 4.1.12] it holds Rj ∈ F0(Rd)
and Sj ∈ F1(Rd). We want to deduce that for every i ∈ {1, . . . ,N} there exists ρi ∈

(
r0
2 , r0

)
such that

F((T − Tj) B(xi, ρi)) 6
η0
2

.

Indeed, for any fixed i ∈ {1, . . . ,N} one has that for a.e. ρ ∈
(
r0
2 , r0

)
(T − Tj) B(xi, ρ) = Rj B(xi, ρ) + (∂Sj) B(xi, ρ)

= Rj B(xi, ρ) − 〈Sj, d(xi, ·), ρ〉+ ∂
(
Sj B(xi, ρ)

)
,

(12.21)

where d(xi, z) := |xi − z| and where the last identity holds by the definition of slicing
for normal currents (cf. [Fed69, 4.2.1] and observe that it is analogous to the identity in
Proposition 2.1.7 (ii)). On the other hand, by [Fed69, 4.2.1] we have

ˆ r0

r0
2

M(〈Sj, d(xi, ·), ρ〉)dρ 6M(Sj (B(xi, r0) \B(xi,
r0
2
))) 6

η0r0
8

.

Hence, there exists ρi ∈
(
r0
2 , r0

)
such that

M(〈Sj, d(xi, ·), ρi〉) 6
η0
4

. (12.22)

We conclude from (12.21) that

F((T − Tj) B(xi, ρi)) 6M(Rj B(xi, ρi)) + M(〈Sj, d(xi, ·), ρi〉) + M(Sj B(xi, ρi))
(12.22)
6

η0r0
4

+
η0
4
6
η0
2

.

(12.23)

Using the characterization of the flat norm in (12.5), and testing the currents (T − Tj)

B(xi, ρi) with any smooth and compactly supported function φi : Rd → R which is identi-
cally 1 on B(xi, ρi), we obtain∣∣∣∣∣∣

∑
x∈E∩B(xi,ρi)

τ(x)θ(x) −
∑

y∈Ej∩B(xi,ρi)

τj(y)θj(y)

∣∣∣∣∣∣ 6 η02 . (12.24)

Combining (12.24) with (12.20), we deduce by triangle inequality that∣∣∣∣∣∣τ(xi)θ(xi) −
∑

y∈Ej∩B(xi,ρi)

τj(y)θj(y)

∣∣∣∣∣∣ 6 ηi. (12.25)
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Finally, using (12.19) and the fact that H is countably subadditive (cf. Remark 12.2.2), we
conclude that for every j > j0

H(θ(xi)) 6
1

1− ε
H

 ∑
y∈Ej∩B(xi,ρi)

τj(y)θj(y)


6

1

1− ε

∑
y∈Ej∩B(xi,ρi)

H(θj(y))

=
1

1− ε
MH(Tj B(xi, ρi)).

Summing over i, since the balls B(xi, ρi) are pairwise disjoint, we get that

N∑
i=1

H(θ(xi)) 6
1

1− ε
lim inf
j→∞

N∑
i=1

MH(Tj B(xi, ρi)) 6
1

1− ε
lim inf
j→∞ MH(Tj A).

By (12.17) (or (12.18) in the case that MH(T A) =∞) and since ε is arbitrary, we find (12.9).

Step 2 (Reduction to m = 0 through integral-geometric equality). We prove now Proposi-
tion 12.2.6 for m > 0. Up to subsequences, we can assume

lim
j→∞MH(Tj A) = lim inf

j→∞ MH(Tj A).

By [Fed69, 4.3.1], for every V ∈ Gr(d,m) it holds

ˆ
Rm

F(〈Tj − T , pV ,y〉)dy 6 F(Tj − T), (12.26)

Integrating the inequality (12.26) in V ∈ Gr(d,m) and using that γd,m is a probability
measure on Gr(d,m) we get

lim
j→∞

ˆ
Gr(d,m)×Rm

F(〈Tj − T , pV ,y〉)d(γd,m ⊗Hm)(V ,y) 6 lim
j→∞F(Tj − T) = 0.

Since the integrand F(〈Tj − T , pV ,y〉) is converging to 0 in L1, up to subsequences, we get

lim
j→∞F(〈Tj − T , pV ,y〉) = 0 for γd,m ⊗Hm-a.e. (V ,y) ∈ Gr(d,m)×Rm.

We conclude from Step 1 that

MH(〈T , pV ,y〉 A) 6 lim inf
j→∞ MH(〈Tj, pV ,y〉 A) for γd,m ⊗Hm-a.e. (V ,y) ∈ Gr(d,m)×Rm.

(12.27)
By [AK00, (5.15)], for every V ∈ Gr(d,m) one has 〈T , pV ,y〉 A = 〈T A, pV ,y〉 for

Hm-a.e. y ∈ Rm.
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In order to conclude, we apply twice the integral-geometric equality (12.15). Indeed,
using (12.27) and Fatou’s lemma, we get

MH(T A) = c

ˆ
Gr(d,m)×Rm

MH

(
〈T A, pV ,y〉

)
d(γd,m ⊗Hm)(V ,y)

6 c
ˆ
Gr(d,m)×Rm

lim inf
j→∞ MH

(
〈Tj A, pV ,y〉

)
d(γd,m ⊗Hm)(V ,y)

6 c lim inf
d→∞

ˆ
Gr(d,m)×Rm

MH

(
〈Tj A, pV ,y〉

)
d(γd,m ⊗Hm)(V ,y)

= lim inf
j→∞ MH(Tj A).

(12.28)

This concludes the proof of Step 2, so the proof of Proposition 12.2.6 is complete.

12.4 proof of the polyhedral approximation

In order to prove Proposition 12.2.7, we will consider a family of pairwise disjoint balls
containing the entire mass of the current R, up to a small error. Then, we replace in every
ball the current R with an m-dimensional disc with constant multiplicity. Afterwards, we
further approximate each disc with polyhedral chains.

We begin with the following lemma, where we prove that, at many points x in the m-
rectifiable set supporting the current R and at sufficiently small scales (depending on the
point), R is close in the flat norm to the tangent m-plane at x weighted with the multiplicity
of R at x.

In this section, given the m-current R = JE, ~τ, θK, for a.e. x ∈ E we denote with πx the
affinem-plane through x spanned by the (simple)m-vector ~τ(x) and with Sx,ρ them-current

Sx,ρ := JB(x, ρ)∩ πx, ~τ(x), θ(x)K.

Lemma 12.4.1. Let ε > 0, and let R = JE, ~τ, θK be a rectifiable m-current in Rd. There exists a
subset E ′ ⊂ E such that the following holds:

(i) M(R (E \ E ′)) 6 ε;

(ii) for every x ∈ E ′ there exists r = r(x) > 0 such that for any 0 < ρ 6 r

F(R (E ′ ∩B(x, ρ)) − Sx,ρ) 6 εM(R B(x, ρ)). (12.29)

Proof. Since E is countably m-rectifiable, there exist countably many linear m-dimensional
planes Πi and C1 and globally Lipschitz maps fi : Πi → Π⊥i such that

E ⊂ E0 ∪
∞⋃
i=1

Graph(fi),

with Hm(E0) = 0. We will denote Σi := Graph(fi) ⊂ Rd. For every x ∈
⋃∞
i=1 Σi, we let

i(x) be the first index such that x ∈ Σi. Then, for every i > 1, we define Ri := JE∩ Σi, ~τ, θiK,
where

θi(x) :=

{
θ(x) if i = i(x)

0 otherwise.
(12.30)
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Clearly, R =
∑∞
i=1 Ri and M(R) =

∑∞
i=1M(Ri). Hence, there exists N = N(ε) such that∑
i>N+1

M(Ri) 6 ε. (12.31)

Now, recall that x is a Lebesgue point of the function θi with respect to the Radon
measure Hm Σi if

lim
r→0

1

Hm(Σi ∩B(x, r))

ˆ
Σi∩B(x,r)

|θi(y) − θi(x)|dHm(y) = 0.

We define the set E ′ ⊂ E by

E ′ :=

{
x ∈ E∩

N⋃
i=1

Σi such that x is a Lebesgue point of θi

with respect to Hm Σi for every i ∈ {1, . . . ,N}

}
,

(12.32)

and we observe that (i) follows from (12.31) and [AFP00, Corollary 2.23].
Let us set

L := max{Lip(fi) : i = 1, . . . ,N}. (12.33)

Fix i ∈ {1, . . . ,N}. For every x ∈ Σi there exists r > 0 such that whenever j ∈ {1, . . . ,N} is
such that Σj ∩B(x,

√
dr) 6= ∅, then x ∈ Σj.

Now, fix any point x ∈ E ′, and fix an index j ∈ {1, . . . ,N} such that x ∈ Σj. If j = i(x),
then θj(x) = θ(x) > 0. Since by the definition of E ′

lim
r→0

M(Rj (Σj ∩B(x, r)))
Hm(Σj ∩B(x, r))

= θj(x), (12.34)

then there exists r > 0 such that for any 0 < ρ 6
√
dr

M(Rj (Σj ∩B(x, ρ)))
Hm(Σj ∩B(x, ρ))

>
θj(x)

2
. (12.35)

Again by [AFP00, Corollary 2.23] applied with µ = Hm Σj and f = θj, there exists a
radius r > 0 (depending on x) such that

ˆ
Σj∩B(x,ρ)

|θj(y) − θj(x)|dHm(y) 6 ε
θj(x)

2
Hm(Σj ∩B(x, ρ))

6 ε
M(Rj (Σj ∩B(x, ρ)))

Hm(Σj ∩B(x, ρ))
Hm(Σj ∩B(x, ρ))

6 εM(Rj B(x, ρ)),

(12.36)

for every 0 < ρ 6
√
dr.
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If, instead, j 6= i(x), then θj(x) = 0 and therefore there exists a radius r > 0 (depending
on x) such that for every 0 < ρ 6

√
drˆ

Σj∩B(x,ρ)
θj(y)dHm(y) 6

εθi(x)(x)

N(1+ L)m
Hm(Σj ∩B(x, ρ))

6
ε

N
θi(x)(x)ωmρ

m

(12.35)
6 2

ε

N
M(Ri(x) B(x, ρ)),

(12.37)

where ωm denotes the volume of the unit ball in Rm.
Fix any point x ∈ E ′ and let i = i(x). By possibly reparametrizing fi|Πi∩B(x,r) from

the m-plane tangent to Σi at x, translating and tilting such a plane, we can assume that
x = 0, Πi = {xm+1 = · · · = xd = 0} and ∇fi(x) = 0. By possibly choosing a smaller radius
r = r(x) > 0, we may also assume that

|∇fi| 6 ε in Πi ∩B(x, r). (12.38)

With these conventions, the current Sx,ρ in the statement reads Sx,ρ = JB(0, ρ)∩Πi, ~τ(0), θi(0)K.
We let Fi : Πi × Π⊥i → Rd be given by Fi(z,w) := (z, fi(z)), and we set R̃i := (Fi)]Sx,ρ ∈
Rm(Rd).

By (12.38) and the homotopy formula (cf. formulae (2.5) and (2.6)) applied with g = Fi
and f(z,w) := (z, 0), we have, denoting C(x, ρ) := (B(x, ρ)∩Πi)×Π⊥i ,

F(R̃i − Sx,ρ) 6 C‖g− f‖L∞(C(x,ρ)) (M(Sx,ρ) + M(∂Sx,ρ))

6 Cερ (M(Sx,ρ) + M(∂Sx,ρ))

6 Cεθ(x)ωmρ
m

6 Cεθ(x)Hm(Σj ∩B(x, ρ))
(12.35)
6 CεM(Ri B(x, ρ)).

(12.39)

Now, observe that, if we denote by ξi the orientation of Σi induced by the orientation
of Πi ×Π⊥i via Fi, the rectifiable current R̃i reads R̃i = JΣi ∩C(x, ρ), ξi, θi(x)K (cf. [Sim83b,
27.2] or Section 3.1). Therefore, we can compute

M(Ri B(x, ρ) − R̃i) 6M(Ri B(x, ρ) − R̃i B(x, ρ)) + M(R̃i (C(x, ρ) \B(x, ρ)))
(12.36)
6 εM(Ri B(x, ρ)) + M(R̃i (C(x, ρ) \B(x, ρ)))

(12.38)
6 εM(Ri B(x, ρ)) +Cεθi(x)Hm(Σi ∩B(x, ρ))

(12.35)
6 CεM(Ri B(x, ρ)).

(12.40)

Hence, we conclude:

F(R E ′∩B(x, ρ) − Sx,ρ) 6 F(Ri(x) B(x, ρ) − Sx,ρ) +

N∑
j=1
j 6=i(x)

M(Rj B(x, ρ))

(12.37)
6 F(Ri(x) B(x, ρ) − R̃i) + F(R̃i − Sx,ρ) + 2εM(Ri(x) B(x, ρ))

(12.39),(12.40)
6 CεM(R B(x, ρ)).

(12.41)
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This proves (12.29).

A straightforward iteration argument yields the following corollary.

Corollary 12.4.2. Let R = JE, ~τ, θK be a rectifiable m-current in Rd. Then, for Hm-a.e. x ∈ E

lim
r→0

F(R B(x, r) − Sx,ρ)

M(R B(x, r))
= 0. (12.42)

Proof. For every i ∈ N define the set Ei to be the set E ′ given by Lemma 12.4.1 applied
to R with ε = 2−i−1, and let Fi ⊂ Ei be the set of Lebesgue points of 1Ei (inside Ei) with
respect to θHm E. By [AFP00, Corollary 2.23], the set Fi equals the set Ei up to a set of
Hm-measure 0 and for every x ∈ Fi and for ρ sufficiently small (possibly depending on x)
it holds

M(R B(x, ρ) − R (Ei ∩B(x, ρ))) =
ˆ
(E\Ei)∩B(x,ρ)

θdHm

6 2−i−1
ˆ
E∩B(x,ρ)

θdHm = 2−i−1M(R B(x, ρ)).

Hence by Lemma 12.4.1 for every x ∈ Fi there exists ri(x) > 0 such that for every 0 < ρ <
ri(x)

F(R B(x, ρ) − Sx,ρ) 6M(R B(x, ρ) − R (Ei ∩B(x, ρ))) + F(R (Ei ∩B(x, ρ)) − Sx,ρ)

6 2−iM(R B(x, ρ))

and
M(R (E \ Fi)) 6 2

−i−1.

Denoting F :=
⋃
i∈N

⋂
j>i Fj, and noticing that E \ F = E ∩ Fc = E ∩

⋂
i∈N

⋃
j>i F

c
j is con-

tained in
⋃
j>i F

c
j for every i ∈N, we have

M(R (E \ F)) 6 lim
i→∞

∞∑
j=i

M(R (E \ Fj)) 6 lim
i→∞

∞∑
j=i

1

2j
= 0

and this implies that Hm(E \ F) = 0. Since every x ∈ F belongs definitively to every Fj
(namely, for every x ∈ F there exists i0(x) ∈ N such that x ∈ Fi for every i > i0(x)), we
obtain (12.42).

Proof of Proposition 12.2.7. Let R be represented by R = JE, ~τ, θK with θ ∈ L1(Hm E; (0,∞)).
We denote

µ := θHm E.

Moreover, if MH(R) < +∞, we define the positive finite measure

ν := H(θ)Hm E.

Fix ε > 0. We make the following
Claim: There exists a finite family of mutually disjoint balls {Bi}

N
i=1 with Bi := B(xi, ri),

such that the following properties are satisfied:
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(i)

ri 6 ε ∀ i = 1, . . . ,N and µ(Rd \ (∪Ni=1Bi)) 6 ε;

(ii) if we denote Ri := R Bi and Si := Sxi,ri , then

F(Ri − Si) 6 εµ(Bi);

(iii)

|µ(Bi) − θ(xi)ωmr
m
i | 6 εµ(Bi), ∀ i = 1, . . . ,N;

(iv) if MH(R) < +∞, then

H(θ(xi))ωmr
m
i 6 (1+ ε)ν(Bi), ∀ i = 1, . . . ,N.

Let us for the moment assume the validity of the claim and see how to conclude the proof
of the proposition.

By point (iii) in the claim we deduce

M(Si) 6 (1+ ε)M(Ri). (12.43)

and by point (iv) we get
MH(Si) 6 (1+ ε)MH(Ri). (12.44)

On the other hand, we can find a polyhedral chain Pi ∈ Pm(Rd) (supported on πi ∩ Bi,
πi := πxi), such that

F(Pi − Si) 6 εµ(Bi), MH(Pi) 6MH(Si) and M(Pi) 6M(Si). (12.45)

Indeed, it is enough to approximate the m-dimensional current Si with simplexes with
constant multiplicity and supported in Bi ∩ πi.

To conclude, we denote P :=
∑N
i=1 Pi and we estimate

F(R− P) 6
N∑
i=1

F(Ri − Pi) + M(R (Rd \ (∪Ni=1Bi)))

(i)

6 ε+
N∑
i=1

F(Ri − Si) +

N∑
i=1

F(Si − Pi)
(ii),(12.45)
6 ε+ 2

N∑
i=1

εµ(Bi) 6 ε+ 2εM(R).

(12.46)

Moreover

MH(P) =

N∑
i=1

MH(Pi)
(12.45)
6

N∑
i=1

MH(Si)
(12.44)
6 (1+ ε)

N∑
i=1

MH(Ri) 6 (1+ ε)MH(R) (12.47)

and

M(P) =

N∑
i=1

M(Pi)
(12.45)
6

N∑
i=1

M(Si)
(12.43)
6 (1+ ε)

N∑
i=1

M(Ri) 6 (1+ ε)M(R). (12.48)

Proof of the Claim: Consider the set F of points x ∈ E such that the following properties
hold:
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1. x satisfies

lim
r→0

F(R B(x, r) − Sx,r)

M(R B(x, r))
= 0;

2. denoting ηx,r : Rd → Rd the map y 7→ y−x
r , we have the following convergences of

measures for r→ 0:

µx,r := r
−m(ηx,r)#(µ B(x, r)) ⇀ θ(x)Hm ((x+ span(~τ(x)))∩B(0, 1)), (12.49)

and

νx,r := r
−m(ηx,r)#(ν B(x, r)) ⇀ H(θ(x))Hm ((x+ span(~τ(x)))∩B(0, 1)). (12.50)

We observe that properties (1) and (2) hold for µ-a.e. point. Indeed the fact that (1) holds
for µ-a.e. x follows from Corollary 12.4.2, while the fact that (2) holds for µ-a.e. x is a
consequence of [DL08, Theorem 4.8]. Moreover, by (12.49) and by (12.50), for every x ∈ F
there exists a radius r(x) < ε such that

|µx,r(B(0, 1)) − θ(x)ωm| 6
ε

2
θ(x)ωm, for a.e. r < r(x).

This inequality implies that

|µ(B(x, r)) − θ(x)ωmrm| 6
ε

2
θ(x)ωmr

m, for a.e. r < r(x), (12.51)

so that in particular

θ(x)
(
1−

ε

2

)
ωmr

m 6 µ(B(x, r)), for a.e. r < r(x).

Plugging the last inequality in the right-hand side of (12.51), we get

|µ(B(x, r)) − θ(x)ωmrm| 6
ε

2− ε
µ(B(x, r)) 6 εµ(B(x, r)), for a.e. r < r(x).

which gives condition (iii) of the Claim.
Analogously, we get that

|ν(B(x, r)) −H(θ(x))ωmrm| 6 εν(B(x, r)), for a.e. r < r(x).

The validity of the claim is then obtained via the Vitali-Besicovitch covering theorem
([AFP00, Theorem 2.19]).

12.5 proof of proposition 12.2.8

We first observe that the condition (12.12) is necessary for the validity of (12.13). Indeed,
consider a map H as in Assumption 12.2.1 for which (12.12) does not hold. It means that
there exists a constant C > 0 and a sequence {θi}i∈N converging to 0 such that H(θi) 6 Cθi
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for every i ∈N. We consider now the sequence of polyhedral m-chains {Pi}i∈N supported
in the unit cube [0, 1]d and defined as

Pi :=

Ni∑
j=1

Jπji ∩ [0, 1]
d, ~τ, θiK,

where for i fixed, πji are m-planes parallel to {xm+1 = . . . = xd = 0} whose last (d−m)

coordinates are “uniformly distributed” in [0, 1]d−m, ~τ is a fixed orientation for all the m-
planes πji not depending on i or j and Ni := min{N ∈ N : Nθi > 1}. Since θi → 0, then
Ni →∞. For i large enough, so that θiNi 6 2, we can compute

ΦH(Pi) =

Ni∑
j=1

ΦH(Jπ
j
i ∩ [0, 1]

d, ~τ, θiK) = NiH(θi) 6 CNiθi 6 2C.

Nevertheless, since θiNi → 1, then the sequence {Pi}i∈N converges in flat norm to the
m-current T , acting on m-forms as

〈T ,ω〉 =
ˆ
[0,1]d

〈ω(x), ~τ〉dLd(x),

which belongs to (Fm(Rd)∩ {T ∈ Em(Rd) : M(T) <∞}) \ Rm(Rd). Clearly, FH(T) 6 2C.

We show now that, if H is also monotone non-decreasing on [0,∞), then condition (12.12)
is also sufficient to the validity of (12.13). The proof is a consequence of the definition of
FH in (12.8) and the following Lemma (see also [CDM17, Lemma 4.5]):

Lemma 12.5.1. Assume H is as in Assumption 12.2.1, is monotone non-decreasing on [0,∞), and
satisfies (12.12). Let {Rj}j∈N ⊂ Rm(Rd) and let us assume that

sup
j∈N

MH(Rj) 6 C < +∞.

If limj→∞ F(Rj − T) = 0 for some T ∈ Fm(Rd) with finite mass, then T is in fact rectifiable.

Proof. Step 1. We prove the lemma for m = 0, recalling that a 0-dimensional rectifiable
current R = JE, τ, θK, with τ(x) = ±1 and θ > 0, is an atomic signed measure (i.e. a measure
supported on a countable set).

We observe that (12.12) implies that there exists δ0 > 0 such that H(θ) > 0 for every
θ ∈ (0, δ0). We define the monotone non-decreasing function f : [0, δ0)→ [0,+∞) given by

f(θ) :=

supt∈(0,θ]
t

H(t)
if 0 < θ < δ0,

0 if θ = 0.

By assumption (12.12), f is continuous in 0 and H(θ)f(θ) > θ. Fix any δ ∈ (0, δ0). For any
j ∈N

M(Rj {x : θj(x) < δ}) =

ˆ
Ej∩{θj<δ}

θj(x)dH0(x) 6
ˆ
Ej∩{θj<δ}

f(θj(x))H(θj(x))dH0(x)

6 f(δ)
ˆ
Ej∩{θj<δ}

H(θj(x))dH0(x) 6 f(δ)MH(Rj) 6 Cf(δ).
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Therefore, up to subsequences the sequence {Rj {x : θj(x) < δ}}j∈N converges to a signed
measure R2 of mass less than or equal to Cf(δ). On the other hand, using the upper bound
on MH(Rj) and the monotonicity of H, we deduce that the measures Rj {x : θj(x) > δ}
are supported on a uniformly (with respect to j) bounded number of points, and converge
to a discrete measure R1. Hence, for any ε > 0, the limit T can be written as the sum of a
discrete measure R1 and of an error R2 with mass less than or equal to ε. Since ε is arbitrary,
the statement follows.

Step 2. We prove the claim for m > 0.
We apply [Fed69, 4.3.1] to the sequence {Rj}j∈N to deduce that for any I ∈ I(d,m)

lim
j→∞

ˆ
Rm

F(〈Rj − T , pI,y〉)dy 6 lim
j→∞F(Rj − T) = 0.

Since the sequence of non-negative functions {F(〈Rj − T , pI, ·〉)}j∈N converges in L1(Rm) to
0, up to a (not relabeled) subsequence, we get the pointwise convergence

lim
j→∞F(〈Rj − T , pI,y〉) = 0 for Hm-a.e. y ∈ Rm, for every I ∈ I(d,m).

We apply the Fatou lemma and [DPH03, Corollary 3.2.5(5)] to the sequence {Rj}j∈N to
deduce

ˆ
Rm

lim inf
j→∞ MH(〈Rj, pI,y〉)dy 6 lim inf

j→∞
ˆ

Rm
MH(〈Rj, pI,y〉)dy 6 lim inf

j→∞ MH(Rj) 6 C.

(12.52)
Hence the integrand in the left-hand side is finite a.e., namely lim infj→∞MH(〈Rj, pI,y〉) <∞ for Hm-a.e. y ∈ Rm, for every I ∈ I(d,m). Hence we are can apply Step 1 to a.e. slice
〈Rj, pI,y〉 to a y-dependent subsequence and deduce that

〈T , pI,y〉 is 0-rectifiable for Hm-a.e. y ∈ Rm, for every I ∈ I(d,m). (12.53)

To conclude the proof we employ Theorem [Whi99b, Rectifiable slices theorem, pp. 166-
167], which ensures that a finite mass flat chain T is rectifiable if and only if property (12.53)
holds.



13 T H E S T R U C T U R E O F F L AT C H A I N S
M O D U LO p

In this chapter, we turn our attention to the structure of flat chains and integral currents
modulo p. In Section 13.1 we provide an introduction to currents modulo p, and, most
importantly, we identify two open questions related to their structure. After collecting the
known partial answers from the literature, we present in Section 13.2 our contribution to
the solution of the aforementioned questions.

13.1 flat chains modulo p

In this section, we recall the definitions of the sets of currents with coefficients in Zp, and
collect some of the most relevant open questions regarding their structure.

13.1.1 Definitions and basic properties

Let p > 2 be a positive integer. Assume 0 6 m 6 d, and let K ⊂ Rd be a compact set. For
any T ∈ Fm,K(R

d), we define

F
p
K(T) := inf{M(R) + M(S) : R ∈ Rm,K(R

d),S ∈ Rm+1,K(R
d) s.t.

T = R+ ∂S+ pQ for some Q ∈ Fm,K(R
d)}.

(13.1)

Observe that, since Im,K(R
d) is flat-dense in Fm,K(R

d), the infimum is unchanged if
we let Q run in Im,K(R

d). Also notice that the inequality F
p
K(T) 6 FK(T) holds for any

T ∈ Fm,K(R
d).

Now, we introduce the equivalence relation mod(p) in Fm,K(R
d): given T , T̃ ∈ Fm,K(R

d),
we say that T = T̃ mod(p) in Fm,K(R

d) if and only if F
p
K(T − T̃) = 0. The corresponding

quotient group will be denoted Fp
m,K(R

d). As in the classical case, F
p
K induces a distance

dF
p
K

which makes Fp
m,K(R

d) a complete metric space.
It is evident that if T − T̃ = pQ for someQ ∈ Fm,K(R

d), then T = T̃ mod(p) in Fm,K(R
d),

but the converse implication is not known (see Question 13.1.5 below).
We say that two flat m-chains T , T̃ ∈ Fm(Rd) are equivalent mod(p) in Fm(Rd), and we

write T = T̃ mod(p) in Fm(Rd) if there exists a compact K ⊂ Rd such that F
p
K(T − T̃) = 0.

The elements of the corresponding quotient group Fp
m(Rd) are called flat m-chains modulo

p and they will be denoted by [T ].

Remark 13.1.1. (i) Note that if T ∈ Fm(Rd) and spt(T) ⊂ K, then it is false in general
that T ∈ Fm,K(R

d). The simplest counterexample being the 0-dimensional current
obtained as the boundary of (the rectifiable 1-current associated to) a countable union
of disjoint intervals Si contained in [0, 1] and clustering only at the origin, when
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K = {0} ∪
⋃
i ∂Si. Nevertheless, it is a consequence of the polyhedral approximation

theorem 2.1.12 that if spt(T) ⊂ intK, then indeed T ∈ Fm,K(R
d) (see also [Fed69,

Theorem 4.2.22]).

(ii) One would expect that the following property holds. If T = T̃ mod(p) in Fm(Rd),
then T = T̃ mod(p) in Fm,K(R

d), whenever K is a compact set which contains spt(T)
and spt(T̃), and T , T̃ ∈ Fm,K(R

d). Nevertheless, the validity of this property does
not appear to be obvious for a general compact set K. On the other hand, if K is also
convex, the validity of the property is immediate. Indeed, let K ′ be a compact set such
that T − T̃ = Rj+∂Sj+pQj with Rj ∈ Rm,K ′(R

d),Sj ∈ Rm+1,K ′(R
d),Qj ∈ Fm,K ′(R

d)

and M(Rj)+M(Sj) 6
1
j . Then, denoting by π the (1-Lipschitz) closest-point projection

on K, and by π] the push-forward operator through π, we have that

T − T̃ = π]T − π]T̃ = π]Rj + ∂π]Sj + pπ]Qj,

where π]Rj ∈ Rm,K(R
d),π]Sj ∈ Rm+1,K(R

d) and π]Qj ∈ Fm,K(R
d). Moreover

M(π]Rj) + M(π]Sj) 6M(Rj) + M(Sj), hence T = T̃ mod(p) in Fm,K(R
d).

(iii) Observe that, using the same argument as in (ii), we are able to conclude that if
T ∈ Fm(Rd) and spt(T) ⊂ K then T ∈ Fm,K(R

d) when K is convex (or, more in
general, whenever there exists a Lipschitz projection onto K).

13.1.2 Boundary, mass and support modulo p

It is immediate to see that if T = T̃ mod(p) in Fm(Rd) (resp. in Fm,K(R
d)), then also

∂T = ∂T̃ mod(p) in Fm−1(R
d) (resp. in Fm−1,K(R

d)), and therefore a boundary operator
∂ can be defined also in the quotient groups Fp

m(Rd) (resp. in Fp
m,K(R

d)) in such a way
that

∂ [T ] = [∂T ] for every T ∈ Fm(Rd). (13.2)

For T ∈ Fm(Rd), we also define its mass modulo p, or simply p-mass Mp(T), as the least
t ∈ R ∪ {+∞} such that for every ε > 0 there exists a compact K ⊂ Rd and a rectifiable
current R ∈ Rm,K(R

d) satisfying

F
p
K(T − R) < ε and M(R) 6 t+ ε. (13.3)

One has that Mp(T1 + T2) 6Mp(T1) + Mp(T2) and Mp(T) = Mp(T̃) if T = T̃ mod(p) in
Fm(Rd). This allows to regard Mp as a functional on the quotient group Fp

m(Rd). Such
functional is lower semi-continuous with respect to the F

p
K-convergence for every K.

Finally, we denote by sptp([T ]) the support modulo p of [T ] ∈ Fp
m(Rd), given by

sptp([T ]) :=
⋂

{spt(T̃) : T̃ ∈ Fm(Rd), T̃ = T mod(p) in Fm(Rd)}. (13.4)

13.1.3 Rectifiable and integral currents modulo p

We define now the group Rpm(Rd) of the integer rectifiable currents modulo p by setting

Rpm,K(R
d) := {[T ] ∈ Fp

m,K(R
d) : T ∈ Rm,K(R

d)}. (13.5)
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As usual, Rpm(Rd) is the union over K compact of Rpm,K(R
d). Clearly, not all the ele-

ments in a class [T ] ∈ Rpm,K(R
d) are classical rectifiable currents, but whenever we write

[T ] ∈ Rpm,K(R
d) we will always implicitly intend that T is a rectifiable representative of its

class.

A current R = JE, ~τ, θK ∈ Rm,K(R
d) is called representative modulo p if and only if

‖R‖(A) 6 p
2
Hm(E∩A) for every Borel set A ⊂ Rd.

Evidently, this condition is equivalent to ask that

|θ(x)| 6
p

2
for ‖R‖-a.e. x.

Since obviously for any integer z there exists a (unique) integer −p2 < z̃ 6
p
2 with z ≡ z̃ (modp),

then for any T ∈ Rm,K(R
d) there exists an integer rectifiable current R ∈ Rm,K(R

d) such
that R = T mod(p) in Fm,K(R

d) and R is representative modulo p. We immediately con-
clude that any T ∈ Rm,K(R

d) can be written as

T = R+ pQ, (13.6)

where R,Q ∈ Rm,K(R
d) and R is representative modulo p. It is proved in [Fed69, 4.2.26, p.

430] that
Mp(T) = M(R), sptp([T ]) = spt(R), (13.7)

if R is representative modulo p of the current T .
A modulo p version of Theorem 2.1.8 is contained in [Fed69, (4.2.16)ν, p. 431]:

Theorem 13.1.2 (Rectifiability of flat chains modulo p).

Rpm,K(R
d) = {[T ] ∈ Fp

m,K(R
d) : Mp([T ]) <∞}. (13.8)

Hence, if [T ] ∈ Fp
m,K(R

d) has finite Mp mass, then there exists R ∈ Rm,K(R
d) such that

R = T mod(p) in Fm,K(R
d), M(R) = Mp([T ]), and spt(R) = sptp([T ]).

Next, we define the group I p
m(Rd) of the integral currents modulo p as the union of the

groups
I p
m,K(R

d) := {[T ] ∈ Rpm,K(R
d) : ∂ [T ] ∈ Rpm−1,K(R

d)}.

The conclusions about integer rectifiable currents modulo p deriving from the above
discussion allow us to say that if [T ] ∈ I p

m,K(R
d) then Mp([T ]) < ∞, Mp(∂ [T ]) < ∞ and

that there are currents R ∈ Rm,K(R
d) and S ∈ Rm−1,K(R

d) such that R = T mod(p) in
Fm,K(R

d) and S = ∂T mod(p) in Fm−1,K(R
d). In particular, R and S may be chosen to

be representative modulo p, so that M(R) = Mp(T) and M(S) = Mp(∂T). It is not known
whether it is possible to choose I ∈ Im,K(R

d) such that T = Imod(p) in Fm,K(R
d) (see

Question 13.1.7 below).
A modulo p version of the Boundary Rectifiability Theorem can be straightforwardly

deduced from Theorem 13.1.2, as we have:
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Theorem 13.1.3 (Boundary Rectifiability modulo p, cf. [Fed69, (4.2.16)ν]).

I p
m,K(R

d) = {[T ] ∈ Rpm,K(R
d) : Mp(∂ [T ]) <∞}. (13.9)

We conclude with the following modulo p version of the Polyhedral approximation The-
orem 2.1.11, which can be deduced from [Fed69, (4.2.20)ν]. Since the statement does not
appear in [Fed69], for the reader’s convenience we include here the proof.

Theorem 13.1.4 (Polyhedral approximation modulo p). If [T ] ∈ I p
m(Rd), ε > 0, K ⊂ Rd is

a compact set such that sptp([T ]) ⊂ intK, then there exists P ∈ Pm(Rd), with spt(P) ⊂ K, such
that

F
p
K(T − P) < ε, Mp(P) 6Mp(T) + ε, Mp(∂P) 6Mp(∂T) + ε. (13.10)

Proof. Let T ∈ Rm(Rd) be a (rectifiable) representative modulo p of [T ]. In particular, by
formula (13.7), T satisfies spt(T) = sptp([T ]) ⊂ intK and M(T) = Mp(T). Fix ε > 0, and let
0 < δ 6 ε be such that {x ∈ Rd : dist(x, spt(T)) < δ} ⊂ K. By [Fed69, Theorem (4.2.20)ν],
there exist P ∈Pm(Rd) with spt(P) ⊂ K and a diffeomorphism f ∈ C1(Rd, Rd) such that:

(i) Mp(P− f]T) + Mp(∂P− f]∂T) 6 δ;

(ii) Lip(f) 6 1+ δ, and Lip(f−1) 6 1+ δ;

(iii) |f(x) − x| 6 δ for x ∈ Rd, and f(x) = x if dist(x, spt(T)) > δ.

From (i) it readily follows that

Mp(P) 6 δ+ Mp(f]T) 6 δ+ (1+ δ)mMp(T), (13.11)

and analogously

Mp(∂P) 6 δ+ Mp(f]∂T) 6 δ+ (1+ δ)m−1Mp(∂T). (13.12)

In order to prove the estimate on the F
p
K distance, let h be the affine homotopy from the

identity map to f, i.e. h(t, x) := (1− t)x+ tf(x), and observe that the homotopy formula
(2.5) yields

P− T = P− f]T + ∂
(
h](J(0, 1)K× T)

)
+ h](J(0, 1)K× ∂T). (13.13)

Now, since Mp(∂T) <∞, there exists a rectifiable current Z ∈ Rm−1,K(R
d) such that

F
p
K(∂T −Z) 6 δ and M(Z) 6Mp(∂T) + δ. (13.14)

In particular, this implies the existence of R ∈ Rm−1,K(R
d), S ∈ Rm,K(R

d) and Q ∈
Im−1,K(R

d) with M(R) + M(S) 6 2δ such that ∂T − Z = R+ ∂S+ pQ. If combined with
(13.13), this gives

P− T = P− f]T + ∂h](J(0, 1)K× T) + h](J(0, 1)K×Z) + h](J(0, 1)K× (R+ ∂S+ pQ)). (13.15)

Since, again by the homotopy formula,

h](J(0, 1)K× ∂S) = f]S− S− ∂h](J(0, 1)K× S),
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we can finally re-write equation (13.15) as follows:

P− T =P− f]T

+ h](J(0, 1)K× (Z+ R)) + f]S− S

+ ∂h](J(0, 1)K× (T − S))

+ ph](J(0, 1)K×Q).

(13.16)

Therefore, we can finally estimate

F
p
K(P− T) 6F

p
K(P− f]T)

+ M(h](J(0, 1)K× (Z+ R))) + M(f]S) + M(S)

+ M(h](J(0, 1)K× (T − S)))

63δ+ 2δ(1+ δ)m + δ(2+ δ)(Mp(T) + Mp(∂T) + 3δ),

(13.17)

where we have used (2.6) to estimate the first and last addenda in the second line.
The conclusion, formula (13.10), clearly follows from (13.11), (13.12) and (13.17) for a

suitable choice of δ = δ(ε,m, Mp(T), Mp(∂T)).

13.1.4 Questions on the structure of flat chains and integral currents modulo p

As already anticipated, two very natural questions arise about the structure of flat chains
and integral currents modulo p (see [Fed69, 4.2.26]).

We fix a compact subset K ⊂ Rd.

Question 13.1.5. Given T , T̃ ∈ Fm,K(R
d), is it true that T = T̃ mod(p) in Fm,K(R

d) if
and only if T − T̃ = pQ for some Q ∈ Fm,K(R

d)? In other words, using the density
of Im,K(R

d) in Fm,K(R
d), the problem is to prove or disprove the following statement.

Given three sequences {Rj} ⊂ Rm,K(R
d), {Sj} ⊂ Rm+1,K(R

d), {Qj} ⊂ Im,K(R
d) such that

T − T̃ = Rj + ∂Sj + pQj ∀j, (13.18)

and
lim
j→∞

(
M(Rj) + M(Sj)

)
= 0, (13.19)

then T − T̃ = pQ for some Q ∈ Fm,K(R
d).

Remark 13.1.6. As we shall soon see, the answer to the above question is affirmative if the
class Fm,K(R

d) is replaced by the class Rm,K(R
d): in other words, given integer rectifiable

currents T , T̃ one has that T = T̃ mod(p) in Fm,K(R
d) if and only if T − T̃ = pQ for some

Q ∈ Rm,K(R
d). As a corollary, Question 13.1.5 admits affirmative answer for m = d, since

Fd,K(R
d) = Rd,K(R

d). For 0 6 m 6 d− 1, the question is widely open.

Question 13.1.7. Given [T ] ∈ I p
m,K(R

d), does there exist an integral current I ∈ Im,K(R
d)

such that I = T mod(p) in Fm,K(R
d)? In other words: is it true that

I p
m,K(R

d) = {[T ] : T ∈ Im,K(R
d)}?
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Remark 13.1.8. The answer is trivial for m = 0, since integral and integer rectifiable 0-
dimensional currents are the same class. In [Fed69, 4.2.26, p. 426], Federer does not really
present this issue as a “question”, but he rather claims that the answer is negative, in
general dimension and codimension. Nevertheless, the counterexample he suggests (an
infinite sum of disjoint RP2 in R6 with the property that the sum of the areas is finite but
the sum of the lengths of the bounding projective lines is infinite) is not fully satisfactory
(cf. [ope86, Problem 3.3]). Indeed, it allows one to negatively answer the question only
for very special choices of the set K (in particular, the question remains open when K is a
convex set).

13.1.5 Some partial answers from the literature

An immediate consequence of (13.7) is the following: if T , T̃ ∈ Rm,K(R
d) are such that

T = T̃ mod(p) in Fm,K(R
d), then evidently Mp(T − T̃) = Mp(0) = 0, and hence the rep-

resentative modulo p of T − T̃ is R = 0 because of (13.7). Therefore, equation (13.6) yields
T − T̃ = pQ for some integer rectifiable current Q ∈ Rm,K(R

d). In conclusion, we have the
following

Proposition 13.1.9. The answer to Question 13.1.5 is affirmative in the class of integer rectifiable
currents. Therefore:

Rm,K(R
d)∩ {T ∈ Fm,K(R

d) : T = 0mod(p) in Fm,K(R
d)} = {pR : R ∈ Rm,K(R

d)}.
(13.20)

In particular, the following corollary holds true:

Corollary 13.1.10. Let T , T̃ ∈ Rm(Rd). Then, T = T̃ mod(p) in Fm(Rd) if and only if T =

T̃ mod(p) in Fm,K(R
d) for every K compact with spt(T)∪ spt(T̃) ⊂ K.

Proof. The “if” implication is trivial. For the converse, assume T = T̃ mod(p) in Fm(Rd)

and fix any compact set K such that spt(T) ∪ spt(T̃) ⊂ K. By definition, there exists a
compact set K ′ such that F

p
K ′(T − T̃) = 0, which, by the above proposition, implies

T − T̃ = pQ

for some Q ∈ Rm,K ′(R
d). Note that since T − T̃ is supported in K, so is Q, and thus

FK(T − T̃) = 0, i.e. T = T̃ mod(p) in Fm,K(R
d).

From now on, by virtue of the previous corollary, for rectifiable currents T and T̃ in
Fm(Rd) which are equivalent modulo p we will just write T = T̃ mod(p) without specify-
ing in which class the equivalence relation is meant.

In codimension 0, B. White [Whi79] gave an affirmative answer to Question 13.1.7.

Theorem 13.1.11 (cf. [Whi79, Proposition 2.3]). Let T ∈ Rd,K(R
d). Then, [T ] ∈ I p

d,K(R
d) if

and only if the select representative modulo p of T is an integral current.
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The select representative modulo p of a rectifiable current T = JE, ~τ, θK is the unique
T ′ = JE, ~τ, θ ′K representative modulo p of T with multiplicity θ ′ ∈

(
−p2 , p2

]
.

White’s proof relies on the following:

Proposition 13.1.12. If T ∈ Rd,K(R
d) is a select representative modulo p, then

M(∂T) 6 (p− 1)Mp(∂T). (13.21)

We sketch the proof of Theorem 13.1.11, having shown Proposition 13.1.12. Take [T ] ∈
I p
d,K(R

d), and let T ′ be the unique select representative modulo p of T . A priori, T ′ is just
an integer rectifiable current. On the other hand, since [T ] is integral, Mp(∂T) is finite by
(13.8). Then Proposition 13.1.12 implies that M(∂T ′) is finite. Hence, T ′ is integral because
of (2.1).

Unfortunately, in order to carry on the argument that White uses to prove Proposition
13.1.12, the codimension 0 assumption is indispensable. The idea is the following. Firstly,
Theorem 13.1.4 allows one to reduce the problem to the case of polyhedral chains. Now,
for any given polyhedral chain T which is a select representative modulo p one writes
T = JRd,~ed, θK, where ~ed is the constant standard orientation of Rd and θ is a summable,
piecewise constant, integer-valued function with values in

(
−p2 , p2

]
. Then, White makes the

following key observation: since the codimension is 0, if Z is a polyhedron in ∂T then for
Hd−1-a.e. x ∈ Z the multiplicity at x is the difference of the values that the function θ takes
on the two sides of Z (with the correct sign), whose absolute value is in fact bounded by
p− 1 (because T is a select representative modulo p).

In the next section, we will show that the validity of a statement like the one in Proposi-
tion 13.1.12 is in fact the key not only for giving an affirmative answer to Question 13.1.7,
but also for positively answering Question 13.1.5. Furthermore, we will answer Question
13.1.7 in dimension m = 1.

13.2 main results

In this section, we will further analyze Questions 13.1.5 and 13.1.7. First, we point out
that the two questions are, in fact, connected.

13.2.1 Connection between Questions 13.1.5 and 13.1.7

For every K ⊂ Rd compact, consider the following family of statements Sm, for m =

1, . . . ,d.

Statement Sm. There exists a constant C = C(m,d,p,K) with the following property. For any
[S] ∈ Rpm,K(R

d) there exists a current S̃ ∈ Rm,K(R
d) with S̃ = Smod(p) and such that

M(∂S̃) 6 CMp(∂S).
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Using Theorem 13.1.4, it is easy to see that the validity of Statement Sm follows from
the validity of a slightly stronger property for polyhedral chains, which, on the other hand,
might be easier to check.

Statement Pm. There exists a constant C = C(m,d,p) independent of K with the following
property. For any P ∈ Pm(Rd) with spt(P) ⊂ K, there exists a current P̃ ∈ Pm(Rd), with
P̃ = Pmod(p) and spt(P̃) ⊂ K such that

M(∂P̃) 6 CMp(∂P); M(P̃) 6 CMp(P).

Proposition 13.2.1. The validity of Statement Pm implies that of Statement Sm.

Proof. Let [S] ∈ Rpm,K(R
d). We can assume that Mp([∂S]) is finite, otherwise the conclusion

of Statement Sm is trivial. By Theorem 13.1.4, for every j = 1, 2, . . . there exists Pj ∈
Pm(Rd) such that, denoting

Kj :=

{
x ∈ Rd : dist(x,K) 6

1

j

}
,

one has spt(Pj) ⊂ Kj and

F
p
Kj
(S− Pj) <

1

j
, Mp(Pj) 6Mp(S) +

1

j
, Mp(∂Pj) 6Mp(∂S) +

1

j
. (13.22)

Now, by Statement Pm there exist a constant C (which does not depend on j) and a sequence
{P̃j} of polyhedral chains with P̃j = Pjmod(p) and spt(P̃j) ⊂ Kj such that

M(∂P̃j) 6 CMp(∂Pj); M(P̃j) 6 CMp(Pj).

Combining this with (13.22), we get

sup
j>1

{M(P̃j) + M(∂P̃j)} 6 C(M
p(S) + Mp(∂S) + 2) <∞.

Then, by the Compactness Theorem 2.1.3 there exist S̃ ∈ Im,K1(R
d) and a subsequence

{P̃jh} such that
lim
h→∞FK1(S̃− P̃jh) = 0. (13.23)

Moreover by the lower semi-continuity of the mass, it holds

M(∂S̃) 6 CMp(∂S); M(S̃) 6 CMp(S)

and we claim that spt(S̃) ⊂ K. Indeed, take x ∈ Rd \ K. We will prove that there exists
a closed set C such that x 6∈ C and 〈S̃,ω〉 = 0 whenever ω ≡ 0 on C, which implies that
x 6∈ spt(S̃). Fix ` such that x 6∈ Kj` and let C := Kj` . Let ω be an m-form with ω ≡ 0 on C.
Since for every h > ` it holds spt(P̃jh) ⊂ C, we have

〈P̃jh ,ω〉 = 0, for every h > `. (13.24)
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On the other hand, by (13.23), for every ε > 0 there exists h > ` such that we can write
S̃− P̃jh = R+ ∂Q for some R ∈ Rm,K1(R

d) and Q ∈ Rm+1,K1(R
d) with M(R) + M(Q) 6 ε.

Hence it holds

〈S̃− P̃jh ,ω〉 = 〈R,ω〉+ 〈∂Q,ω〉 6M(R)‖ω‖∞ + M(Q)‖dω‖∞ 6 ε(‖ω‖∞ + ‖dω‖∞).
Hence by (13.24) 〈S̃,ω〉 = 0, which completes the proof of the claim.

Finally, we show that S̃ = Smod(p). To this aim, for every h = 1, 2, . . ., we compute

F
p
K1

(S̃− S) 6 F
p
K1

(S̃− P̃jh) + F
p
K1

(P̃jh − S) 6 FK1(S̃− P̃jh) + F
p
Kjh

(P̃jh − S),

which by (13.22) and (13.23) tends to 0 when h tends to∞.

Remark 13.2.2. It follows from the above proof that if the Statement Pm holds true then the
Statement Sm holds true with the same constant C. In particular, the constant would not
depend on the compact set K.

Clearly, if the Statement Sm is true then every m-dimensional integral current modulo p
in K has an integral representative in K, and thus the answer to Question 13.1.7 is affirmative
in dimension m. The next theorem shows that, in fact, the validity of Sm has important
consequences on Question 13.1.5 as well.

Theorem 13.2.3. If Sm holds true, then Question 13.1.5 has affirmative answer in Fm−1,K(R
d).

Proof. It is sufficient to prove that if T ∈ Fm−1,K(R
d) is a flat (m− 1)-chain such that T =

0mod(p) in Fm−1,K(R
d), then T = pQ for someQ ∈ Fm−1,K(R

d). Let {Rj} ⊂ Rm−1,K(R
d),

{Sj} ⊂ Rm,K(R
d) and {Qj} ⊂ Im−1,K(R

d) be such that

T = Rj + ∂Sj + pQj ∀j (13.25)

and
lim
j→∞

(
M(Rj) + M(Sj)

)
= 0. (13.26)

Conditions (13.25) and (13.26) are equivalent to say that the currents pQj converge to T in
flat norm FK. We want to conclude from this that T = pQ for some Q ∈ Fm−1,K(R

d).
In other words, we are looking for a result of closedness of the currents of the form pQ

with respect to flat convergence. Now, observe the following. For every j, the current Rj is
rectifiable. Therefore, we can write

Rj = R̃j + pVj, (13.27)

with Vj ∈ Rm−1,K(R
d) and R̃j representative modulo p. In particular, this implies that

M(R̃j) = Mp(Rj) 6M(Rj)→ 0. (13.28)

Also the currents Sj are rectifiable, and of dimension m. Since Sm holds true, for every j
we can let S̃j be the representative of

[
Sj
]

given in there, so that

Sj = S̃j + pZj (13.29)
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with S̃j,Zj ∈ Rm,K(R
d), and

M(∂S̃j) 6 C(m,d,p,K)Mp(∂Sj). (13.30)

Now, since Mp(T −pQj) = Mp(T) = 0 for every j and Mp(Rj)→ 0, we deduce from (13.25)
that also Mp(∂Sj)→ 0, and therefore also M(∂S̃j)→ 0.

Thus, the above argument produces the following: modulo replacing Qj ∈ Im−1,K(R
d)

with Q̃j := Qj + Vj + ∂Zj ∈ Fm−1,K(R
d), we can replace (13.25) with

T = R̃j + ∂S̃j + pQ̃j ∀j, (13.31)

and (13.26) with the stronger

lim
j→∞

(
M(R̃j) + M(∂S̃j)

)
= 0, (13.32)

that is the currents pQ̃j are now approximating T in mass.
The problem, now, reduces to proving that the subset of flat chains in Fm−1,K(R

d) of the
form pQ is closed with respect to convergence in mass: this question, though, is evidently
much easier than the previous one, and it turns out to always have affirmative answer.
Indeed, let {Qj}∞j=1 ⊂ Fm−1,K(R

d) be a sequence of flat chains such that M(T − pQj)→ 0.
In particular, this would imply that the sequence {pQj} is a Cauchy sequence in mass.
Therefore, the sequence {Qj} is also a Cauchy sequence in mass, and in fact also in the flat
norm FK, since FK(T) 6 M(T) for any T ∈ Fm−1,K(R

d).1 So, by completeness there is
Q ∈ Fm−1,K(R

d) such that FK(Q−Qj) → 0. This also implies FK(pQ− pQj) → 0, since
FK(nT) 6 nFK(T) in general. So, pQ is a flat limit of the sequence pQj. By uniqueness of
the limit, one therefore has to conclude T = pQ.

Corollary 13.2.4. The answer to Question 13.1.5 is positive for m = d− 1.

Proof. It immediately follows from Theorem 13.2.3, since Sd is Proposition 13.1.12.

13.2.2 Answer to Question 13.1.7 in dimension m = 1

Theorem 13.2.5. The answer to Question 13.1.7 is positive for m = 1.

In the proof, we will use the following elementary fact.

Lemma 13.2.6. Let P ∈ P1(R
d) have positive multiplicities. Let z be a point in spt(∂P). Then

one can select a finite sequence of oriented segments S1, . . . ,SN supported in the support of P such
that:

1. the orientation of each segment Si coincides with the orientation of P on Si;

2. the second extreme of Si coincides with the first extreme of Si+1, for i = 1, . . . ,N− 1;

1 If M(T) = ∞ there is of course nothing to prove. On the other hand, if M(T) < ∞ then T is integer rectifiable,
and hence it is a competitor for the decomposition in the definition of the flat norm.
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3. If the multiplicity of ∂P at z is negative, then the first extreme of S1 is z and the second
extreme of SN is a point x of the support of ∂P with positive multiplicity. Vice versa, if the
multiplicity of ∂P at z is positive, then the first extreme of S1 is a point x of the support of ∂P
with negative multiplicity and the second extreme of SN is z;

4. Si 6= Sj for i 6= j.

Proof. Assume without loss of generality that the multiplicity of ∂P at z is negative. Since
the multiplicities on P are all positive, then among the (finitely many) segments defining
the support of P there is at least a segment S1 whose first extreme is z such that

M(P) = M(P− JS1K) + M(JS1K), (13.33)

If the second extreme y of S1 is not a point with positive multiplicity of ∂P, it is a point of
negative multiplicity of ∂(P − JS1K), hence the procedure can be repeated with P − JS1K in
place of P and y in place of z. The procedure has to terminate in a finite number of steps,
because of (13.33) and the fact that the mass of each JSiK is bounded from below. When
the procedure ends, one can easily see that the ordered sequence of segments collected
satisfies properties (1) − (3). Property (4) is not necessarily satisfied. If a certain segment
S ′ is repeated in the procedure, it is sufficient to eliminate from the sequence one copy of
S ′ and all the segments appearing between two repetitions of S ′. After this elimination, the
sequence satisfies also property (4).

Proof of Theorem 13.2.5. By Proposition 13.2.1 it is sufficient to prove Statement P1. Con-
sider P ∈ P1(R

d). Firstly we choose a representative Q ∈ P1(R
d) modulo p of P with

multiplicities in {1, . . . ,p− 1}. Clearly we have M(Q) 6 (p− 1)Mp(P), but at the moment
we have no control on M(∂Q). Hence, we want to replace Q with another representative
P̃ ∈ P1(R

d) of P, for which we can control both the mass and the mass of the boundary.
More precisely, we want to find a representative P̃ with multiplicities in {1, . . . ,p− 1} and
with the multiplicities of ∂P̃ in {−(p− 1), . . . ,p− 1}.

Consider a point z ∈ spt(∂Q) with multiplicity θz such that |θz| > p. Without loss of
generality, we can assume θz < 0. Given that the multiplicities on Q are all positive, we can
use Lemma 13.2.6 to select a finite sequence of oriented segments S1, . . . ,SN supported in
the support of Q, satisfying properties (1) − (4) (with Q in place of P).

Once we have found such a sequence of segments, denote by Q1 the polyhedral current
obtained from Q by changing on every segment Si both the orientation and the multiplicity
from θi to θ1i := (p− θi). Clearly Q1 has still multiplicities in {1, . . . ,p− 1}. Moreover, if
θ1z denotes the multiplicity of ∂Q1 at z then one has |θ1z | = |θz|− p. On the other hand, if
x denotes the other endpoint of the chain of segments as in (3) of Lemma 13.2.6 and θx,
θ1x are the multiplicities of ∂Q and ∂Q1 at x respectively, then it holds θ1x = θx − p. Now,
since by Lemma 13.2.6(3) it holds θx > 1, it follows that θ1x = (θx − p) ∈ [1− p, θx]. Hence,
|θ1x| 6 |θx|+ p− 2.

Therefore, one has
M(∂Q1) 6M(∂Q) − 2. (13.34)

If possible, we repeat the procedure above with Q1 in place of Q, producing a new poly-
hedral current Q2. By formula (13.34), the procedure can be iterated only a finite number
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M of times. The corresponding P̃ := QM has the required property, because any point
z ∈ spt(∂QM) has multiplicity |θz| 6 p− 1. Obviously we have

M(P̃) 6 (p− 1)Mp(P) and M(∂P̃) 6 (p− 1)Mp(∂P),

and the proof is complete.

Since we have actually proved the Statement P1, it follows from Proposition 13.2.1 that
the Statement S1 holds true. By virtue of Theorem 13.2.3, we can therefore deduce the
following

Corollary 13.2.7. The answer to Question 13.1.5 is positive for m = 0.

13.2.3 Negative answer to Question 13.1.7 in general dimension

It is evident that the choice of the compact set K could be crucial for establishing an
answer to Question 13.1.7. In the spirit of the counterexample suggested by Federer in
[Fed69, 4.2.26, p. 426] (see Remark 13.1.6 above), we provide a negative answer to the
question, proving the existence of a compact subset K ⊂ R5 and a current [T ] ∈ I 2

2,K(R
5)

with ∂T = 0mod(2) such that there exists no I ∈ I2,K(R
5) with I = T mod(2). Nevertheless,

for a different choice of a compact K ′ ⊃ K we can exhibit an integral current I ′ ∈ I2,K ′(R
5)

with ∂I ′ = 0 and I ′ = T mod(2).
In what follows, we will let K be the embedded Klein bottle in R4 (in particular, K

is a non-orientable compact two dimensional surface without boundary in R4). There
exist a closed curve γ and an integral current S := JK, ~τ, 1K ∈ I2,K(R4) such that the
set of discontinuity points of ~τ coincides with γ. In particular, ∂S is the integral current
Jγ, ~τγ, 2K, ~τγ being the orientation of γ naturally induced by ~τ. We let [S] ∈ I 2

2,K(R4) be
the associated current mod(2). In particular, ∂ [S] = 0 and M2([S]) = H2(K). We have the
following, elementary

Lemma 13.2.8. There exists a constant c = c(K) with the following property. If R ∈ I2,K(R4) is
such that R ∈ [S], one has

M(∂R) > c.

Proof. By contradiction, let {αj}
∞
j=1 be a sequence of positive numbers with αj ↘ 0, and

{Rj}
∞
j=1 ⊂ I2,K(R4) be such that

Rj ∈ [S] ∀j,
and

M(∂Rj) 6 αj.

We write Rj = JK, ~τ, θjK, and we observe that, since Rj = Smod(2), from (13.20) and from
the definition of S it follows that

θj(x) ≡ 1 (mod 2) for H2-a.e. x ∈ K. (13.35)

We replace every Rj with the integral current R̃j = JK, ~τ, θ̃jK, where θ̃j := sign(θj). Clearly,
by (13.35) and the definition of θ̃j, R̃j = Rjmod(2), and thus R̃j ∈ [S] for every j. Notice,
furthermore, that M(R̃j) = H2(K) for every j, and that

M(∂R̃j) 6M(∂Rj) 6 αj. (13.36)



13.2 main results 233

In order to show (13.36), let U be any open set in K homeomorphic to a two-dimensional
disc. Let also ~σ be a fixed continuous orientation on U. We have that Rj U = JU,~σ,ΘjK,
where Θj is the function defined by

Θj(x) :=

{
θj(x) if ~τ(x) = ~σ(x)

−θj(x) if ~τ(x) = −~σ(x).

As a consequence of [Sim83b, Remark 27.7], it holds

M((∂Rj) U) = |DΘj|(U),

where |DΘj| is the variation of the BV function Θj. Analogously, R̃j U = JU,~σ, Θ̃jK, where
Θ̃j is the function defined by

Θ̃j(x) :=

{
θ̃j(x) if ~τ(x) = ~σ(x)

−θ̃j(x) if ~τ(x) = −~σ(x).

Observe that Θ̃j ≡ sign(Θj), and hence

M((∂R̃j) U) = |DΘ̃j|(U) 6 |DΘj|(U) = M((∂Rj) U),

which completes the proof of (13.36).
Now, by the Compactness Theorem 2.1.3 there exists a current R̃ ∈ I2,K(R4) and a

subsequence (not relabeled) such that

lim
j→∞FK(R̃− R̃j) = 0.

Moreover, by the lower semi-continuity of the mass one has ∂R̃ = 0. Since the equivalence
classes mod(2) are closed with respect to the flat convergence, R̃ ∈ [S], which contradicts
the fact that K is not orientable.

Remark 13.2.9. Observe that if Kλ is a homothetic copy of K with homothety ratio λ, then
c(Kλ) = λc(K).

We finally define the compact set K ⊂ R5 and the current [T ] ∈ I 2
2,K(R

5) as follows.

For every i = 1, 2, . . . , we let Λi be the homothety on R4 defined by Λi(x) :=
x

i
, and

πi : R4 → R5 be the isometry πi(x) :=
(
1

i
, x
)

. We set

K := {0}∪
∞⋃
i=1

πi ◦Λi(K),

which is evidently compact, and

T :=

∞∑
i=1

(πi ◦Λi)]S.

We let [T ] denote the equivalence class of T modulo 2. Since M2((πi ◦Λi)]S) =
1

i2
H2(K),

then [T ] is well defined, and in particular ∂ [T ] = 0. In the following proposition, we show
that the choice of K and [T ] provides a negative answer to Question 13.1.7.
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Proposition 13.2.10. In general, the answer to Question 13.1.7 is negative.

Proof. Let K and [T ] be as above, and assume by contradiction that there exists I ∈ I2,K(R
5)

with I ∈ [T ]. Then, the restriction of I to each plane x1 =
1

i
belongs to the class

[
(πi ◦Λi)]S

]
,

and thus by Lemma 13.2.8 and Remark 13.2.9 one has

M(∂I) = c(K)

∞∑
i=1

1

i
=∞,

which gives the desired contradiction.

Remark 13.2.11. Observe that if we replace K with K ′ := K∪D, where D is a suitable two-
dimensional disc, then Lemma 13.2.8 fails, as there exists R ∈ I2,K ′(R

4) such that R ∈ [S]

and ∂R = 0. Hence, it is possible to construct an integral representative of [T ] with support
in

K ′ := {0}∪
∞⋃
i=1

πi ◦Λi(K ′).

13.2.4 Concluding remarks

Ambrosio and Wenger proved in [AW11, Theorem 4.1] a statement similar to our Theo-
rem 13.2.5, under the hypothesis that ∂ [T ] = 0. They were motivated by the will to prove
the analogue of Theorem 13.1.2 above when the ambient space is a compact convex sub-
set of a Banach space with mild additional assumptions. Even though our theorem covers
also the case with boundary, our proof is considerably simpler than theirs, essentially be-
cause we can rely on the polyhedral approximation theorem, which is not available in their
context. Actually, our result would follow directly from theirs if one could independently
guarantee the validity of the following proposition. However, we were not able to devise a
proof independent of Theorem 13.2.5.

Proposition 13.2.12. Let [T ] ∈ I p
1,K(R

d). Then, for any R =
∑q
i=1 θiδxi ∈ R0,K(R

d) such that
R = ∂T mod(p) one has:

q∑
i=1

θi ≡ 0 (modp). (13.37)

Assume the validity of the Proposition. An alternative proof of our Theorem 13.2.5 can
be obtained as follows. Let [T ] ∈ I p

1,K(R
m) and let R =

∑q
i=1 θiδxi ∈ R0,K(R

d) be such
that R = ∂T mod(p). Fix x0 /∈ {x1, . . . , xq} and consider the cone C with vertex x0 over R, i.e.
the integral 1-current

C :=

q∑
i=1

JSi, ~τi, θiK, (13.38)

where Si is the segment joining xi to x0 and ~τi :=
x0 − xi
|x0 − xi|

. By (13.37), the multiplicity of

∂C at x0 is an integer multiple of p, and thus via a simple computation ∂(T +C) = 0mod(p).
Applying the result of Ambrosio and Wenger, we finally obtain that there exists an integral
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current J ∈ I1,K(R
d) such that J = T +Cmod(p). Hence, I := J−C is an integral current

with I = T mod(p).

Although the analogue of Proposition 13.2.12 for classical currents is a well known fact
(i.e. the sum of the multiplicities in the boundary of an integral 1-current is zero), the
validity of Proposition 13.2.12 does not follow trivially. Nevertheless, it can in fact be
deduced as a consequence of our Corollary 13.2.7.

Proof of Proposition 13.2.12. Let T and R be as in the statement. Then, since F
p
K(∂T − R) = 0,

Corollary 13.2.7 implies the existence of currents Q ∈ R0,K(R
d) and S ∈ R1,K(R

d) such
that

∂T − R = p(Q+ ∂S),

that is
∂(T − pS) = R+ pQ.

In particular, T − pS is a classical integral current, and thus the sum of the multiplicities in
R must equal that of −pQ, which concludes the proof.
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