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Abstract. In this paper we study the stochastic homogenisation of free-discontinuity func-
tionals. Assuming stationarity for the random volume and surface integrands, we prove the

existence of a homogenised random free-discontinuity functional, which is deterministic in the

ergodic case. Moreover, by establishing a connection between the deterministic convergence
of the functionals at any fixed realisation and the pointwise Subadditive Ergodic Theorem by

Akcoglou and Krengel, we characterise the limit volume and surface integrands in terms of
asymptotic cell formulas.
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1. Introduction

In this article we prove a stochastic homogenisation result for sequences of free-discontinuity functionals
of the form

Eε(ω)(u) =

∫
A

f
(
ω,
x

ε
,∇u

)
dx+

∫
Su∩A

g
(
ω,
x

ε
, u+ − u−, νu

)
dHn−1, (1.1)

where f and g are random integrands, ω is the random parameter, and ε > 0 is a small scale parameter.
The functionals Eε are defined in the space SBV (A,Rm) of special Rm-valued functions of bounded
variation on the open set A ⊂ Rn. This space was introduced by De Giorgi and Ambrosio in [22] to deal
with deterministic problems - e.g. in fracture mechanics, image segmentation, or in the study of liquid
crystals - where the variable u can have discontinuities on a hypersurface which is not known a priori,
hence the name free-discontinuity functionals [21]. In (1.1), Su denotes the discontinuity set of u, u+ and
u− are the “traces” of u on both sides of Su, νu denotes the (generalised) normal to Su, and ∇u denotes
the approximate differential of u.

Our main result is that, in the macroscopic limit ε→ 0, the functionals Eε homogenise to a stochastic
free-discontinuity functional of the same form, under the assumption that f and g are stationary with
respect to ω, and that each of the realisations f(ω, ·, ·) and g(ω, ·, ·, ·) satisfies the hypotheses considered
in the deterministic case studied in [16] (see Section 3 for details). Moreover, we show that under the
additional assumption of ergodicity of f and g the homogenised limit of Eε is deterministic. Therefore,
our qualitative homogenisation result extends to the SBV -setting the classical qualitative results by
Papanicolaou and Varadhan [31, 32], Kozlov [28], and Dal Maso and Modica [17, 18], which were formulated
in the more regular Sobolev setting.

1.1. A brief literature review. The study of variational limits of random free-discontinuity functionals
is very much at its infancy. To date, the only available results are limited to the special case of discrete
energies of spin systems [2, 14], where the authors consider purely surface integrals, and u is defined on a
discrete lattice and takes values in {±1}.

In the case of volume functionals in Sobolev spaces, classical qualitative results are provided by the work
by Papanicolaou and Varadhan [31, 32] and Kozlov [28] in the linear case, and by Dal Maso and Modica
[17, 18] in the nonlinear setting. The need to develop efficient methods to determine the homogenised
coefficients and to estimate the error in the homogenisation approximation, has recently motivated an
intense effort to build a quantitative theory of stochastic homogenisation in the regular Sobolev case.

The first results in this direction are due to Gloria and Otto in the discrete setting [26, 27]. In the
continuous setting, quantitative estimates for the convergence results are given by Armstrong and Smart
[8], who also study the regularity of the minimisers, and by Armstrong, Kuusi, and Mourrat [5, 6]. We also
mention [7], where Armstrong and Mourrat give Lipschitz regularity for the solutions of elliptic equations
with random coefficients, by directly studying certain functionals that are minimised by the solutions.
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The mathematical theory of deterministic homogenisation of free-discontinuity problems is well estab-
lished. When f and g are periodic in the spatial variable, the limit behaviour of Eε can be determined
by classical homogenisation theory. In this case, under mild assumptions on f and g, the deterministic
functionals Eε behave macroscopically like a homogeneous free-discontinuity functional. If, in addition,
the integrands f and g satisfy some standard growth and coercivity conditions, the limit behaviour of
Eε is given by the simple superposition of the limit behaviours of its volume and surface parts (see [13]).
This is, however, not always the case if f and g satisfy “degenerate” coercivity conditions. Indeed, while
in [10, 15, 25] the two terms in Eε do not interact, in [9, 11, 20, 33, 34, 35] they do interact and produce
rather complex limit effects. The study of the deterministic homogenisation of free-discontinuity func-
tionals without any periodicity condition, and under general assumptions ensuring that the volume and
surface terms do “not mix” in the limit, has been recently carried out in [16].

1.2. Stationary random integrands. Before giving the precise statement of our results, we need to
recall some definitions. The random environment is modelled by a probability space (Ω, T , P ) endowed
with a group τ = (τz)z∈Zn (resp. τ = (τz)z∈Rn) of T -measurable P -preserving transformations on Ω. That
is, the action of τ on Ω satisfies

P (τ(E)) = P (E) for every E ∈ T .

We say that f : Ω×Rn ×Rm×n → [0,+∞) and g : Ω×Rn × (Rm \ {0})× Sn−1 → [0,+∞) are stationary
random volume and surface integrands if they satisfy the assumptions introduced in the deterministic work
[16] (see Section 3 for the complete list of assumptions) for every realisation, and the following stationarity
condition with respect to τ : for every z ∈ Zn (resp. z ∈ Rn) we have

f(ω, x+ z, ξ) = f(τz(ω), x, ξ) for every (x, ξ) ∈ Rn × Rm×n,

g(ω, x+ z, ζ, ν) = g(τz(ω), x, ζ, ν) for every (x, ζ, ν) ∈ Rn × (Rm \ {0})× Sn−1.

When, in addition, τ is ergodic, namely when any τ -invariant set E ∈ T has probability zero or one, we
say that f and g are ergodic.

1.3. The main result: Method of proof and comparison with previous works. Under the as-
sumption that f and g are stationary random integrands, we prove the convergence of Eε to a random
homogenised functional Ehom (Theorem 3.13), and we provide representation formulas for the limit volume
and surface integrands (Theorem 3.12). The combination of these two results shows, in particular, that
the limit functional Ehom is a free-discontinuity functional of the same form as Eε. If, in addition, f and
g are ergodic, we show that Ehom is deterministic.

Our method of proof consists of two main steps: a purely deterministic step and a stochastic one, in the
spirit of the strategy introduced in [18] for integral functionals of volume type defined on Sobolev spaces.

In the deterministic step we fix ω ∈ Ω and we study the asymptotic behaviour of Eε(ω). Our recent re-
sult [16, Theorem 3.11] ensures that Eε(ω) converges (in the sense of Γ-convergence) to a free-discontinuity
functional of the form

Ehom(ω)(u) =

∫
A

fhom (ω,∇u) dx+

∫
Su∩A

ghom (ω, [u], νu) dHn−1,

with

fhom(ω, ξ) := lim
r→0+

1

rn
inf

∫
Qr(rx)

f(ω, y,∇u(y))dy, (1.2)

ghom(ω, ζ, ν) := lim
r→0+

1

rn−1
inf

∫
Su∩Qνr (rx)

g(ω, y, [u](y), νu(y))dHn−1(y), (1.3)

provided the limits in (1.2)-(1.3) exist and are independent of x. In (1.2) the infimum is taken among
Sobolev functions attaining the linear boundary datum ξx near ∂Qr(rx) (see (1.4) below), where Qr(rx) =
rQ(x) is the blow-up by r of the unit cube centred at x. In (1.3) the infimum is taken among all Caccioppoli
partitions (namely u ∈ SBVpc(Qνr (rx),Rm), see (f) in Section 2) attaining a piecewise constant boundary
datum near ∂Qνr (rx) (see (1.5)), and Qνr (rx) is obtained by rotating Qr(rx) in such a way that one face
is perpendicular to ν.

In the stochastic step we prove that the limits (1.2) and (1.3) exist almost surely and are independent
of x. To this end, it is crucial to show that we can apply the Subadditive Ergodic Theorem by Akcoglou
and Krengel [1]. Since our convergence result [16] ensures that there is no interaction between the volume
and surface terms in the limit, we can treat them separately.
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More precisely, for the volume term, proceeding as in [18] (see also [30]), one can show that the map

(ω,Q) 7→ inf

{∫
Q

f(ω, y,∇u(y))dy : u ∈W 1,p(Q,Rm), u(y) = ξy near ∂Q

}
(1.4)

defines a subadditive stochastic process for every fixed ξ ∈ Rm×n (see Definition 3.10). Then the almost
sure existence of the limit of (1.2) and its independence of x directly follow from the n-dimensional
pointwise Subadditive Ergodic Theorem, which also ensures that the limit is deterministic if f is ergodic.

For the surface term, however, applying this general programme presents several difficulties. One of
the obstacles is due to a nontrivial “mismatch” of dimensions: On the one hand the minimisation problem

inf

{∫
Su∩Qνr (rx)

g(ω, y, [u], νu)dHn−1 : u ∈ SBVpc(Qνr (rx),Rm), u = urx,ζ,ν on ∂Qνr (rx)

}
(1.5)

appearing in (1.3) is defined on the n-dimensional set Qνr (rx); on the other hand the integration is
performed on the (n−1)-dimensional set Su∩Qνr (rx) and the integral rescales in r like a surface measure.
In other words, the surface term is an (n − 1)-dimensional measure which is naturally defined on n-
dimensional sets. Understanding how to match these different dimensions is a key preliminary step to
define a suitable subadditive stochastic process for the application of the Subadditive Ergodic Theorem in
dimension n− 1.

To this end we first set x = 0. We want to consider the infimum in (1.5) as a function of (ω, I), where
I belongs to the class In−1 of (n− 1)-dimensional intervals (see (3.9)). To do so, we define a systematic
way to “complete” the missing dimension and to rotate the resulting n-dimensional interval. For this we
proceed as in [2], where the authors had to face a similar problem in the study of pure surface energies of
spin systems.

Once this preliminary problem is overcome, we prove in Proposition 5.3 that the infimum in (1.5)
with x = 0 and ν with rational coordinates is related to an (n − 1)-dimensional subadditive stochastic
process µζ,ν on Ω×In−1 with respect to a suitable group (τνz′)z′∈Zn−1 (resp. (τνz′)z′∈Rn−1) of P -preserving
transformations (see Proposition 5.3). A key difficulty in the proof is to establish the measurability in
ω of the infimum (1.5). Note that this is clearly not an issue in the case of volume integrals considered
in [17, 18]: The infimum in (1.4) is computed on a separable space, so it can be done over a countable
set of functions, and hence the measurability of the process follows directly from the measurability of f .
This is not an issue for the surface energies considered in [2] either: Since the problem is studied in a
discrete lattice, the minimisation is reduced to a countable collection of functions. The infimum in (1.5),
instead, cannot be reduced to a countable set, hence the proof of measurability is not straightforward (see
Proposition A.1 in the Appendix).

The next step is to apply the (n − 1)-dimensional Subadditive Ergodic Theorem to the subadditive
stochastic process µζ,ν , for fixed ζ and ν. This ensures that the limit

gζ,ν(ω) := lim
t→+∞

µζ,ν(ω)(tI)

tn−1Ln−1(I)
, (1.6)

exists for P -a.e. ω ∈ Ω and does not depend on I. The fact that the limit in (1.6) exists in a set of full
measure, common to every ζ and ν, requires some attention (see Proposition 5.1), and follows from the
continuity properties in ζ and ν of some auxiliary functions (see (5.10) and (5.11) in Lemma 5.5).

As a final step, we need to show that the limit in (1.3) is independent of x, namely that the choice
x = 0 is not restrictive. We remark that the analogous result for (1.2) follows directly by Γ-convergence
and by the Subadditive Ergodic Theorem (see also [18]). The surface case, however, is more subtle, since
the minimisation problem in (1.5) depends on x also through the boundary datum urx,ζ,ν . To prove
the x-independence of ghom we proceed in three steps. First, we exploit the stationarity of g to show
that (1.6) is τ -invariant. Then, we prove the result when x is integer, by combinining the Subadditive
Ergodic Theorem and the Birkhoff Ergodic Theorem, in the spirit of [2, Proof of Theorem 5.5] (see also
[14, Proposition 2.10]). Finally, we conclude the proof with a careful approximation argument.

1.4. Outline of the paper. The paper is organised as follows. In Section 2 we introduce some notation
used throughout the paper. In the first part of Section 3 we state the assumptions on f and g and we
introduce the stochastic setting of the problem; the second part is devoted to the statement of the main
results of the paper. The behaviour of the volume term is studied in the short Section 4, while Sections 5
and 6, as well as the Appendix, deal with the surface term.
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2. Notation

We introduce now some notation that will be used throughout the paper. For the convenience of the
reader we follow the ordering used in [16].

(a) m and n are fixed positive integers, with n ≥ 2, R is the set of real numbers, and Rm0 := Rm \{0},
while Q is the set of rational numbers and Qm0 := Qm \ {0}. The canonical basis of Rn is denoted
by e1, . . . , en. For a, b ∈ Rn, a · b denotes the Euclidean scalar product between a and b, and | · |
denotes the absolute value in R or the Euclidean norm in Rn, Rm, or Rm×n, depending on the
context.

(b) Sn−1 := {x = (x1, . . . , xn) ∈ Rn : x2
1 + · · · + x2

n = 1}, Sn−1
± := {x ∈ Sn−1 : ±xn > 0}, and

Ŝn−1
± := {x ∈ Sn−1 : ±xi(x) > 0}, where i(x) is the largest i ∈ {1, . . . , n} such that xi 6= 0. Note

that Sn−1
± ⊂ Ŝn−1

± , and that Sn−1 = Ŝn−1
+ ∪ Ŝn−1

− .

(c) Ln denotes the Lebesgue measure on Rn and Hn−1 the (n − 1)-dimensional Hausdorff measure
on Rn.

(d) A denotes the collection of all bounded open subsets of Rn; if A, B ∈ A , by A ⊂⊂ B we mean
that A is relatively compact in B.

(e) For u ∈ GSBV (A,Rm) (see [4, Section 4.5]), with A ∈ A , the jump of u across Su is defined by
[u] := u+ − u−.

(f) For A ∈ A we define

SBVpc(A,Rm) := {u ∈ SBV (A,Rm) : ∇u = 0 Ln-a.e., Hn−1(Su) < +∞}.
(g) For A ∈ A and p > 1 we define

SBV p(A,Rm) := {u ∈ SBV (A,Rm) : ∇u ∈ Lp(A,Rm×n), Hn−1(Su) < +∞}.
(h) For A ∈ A and p > 1 we define

GSBV p(A,Rm) := {u ∈ GSBV (A,Rm) : ∇u ∈ Lp(A,Rm×n), Hn−1(Su) < +∞};
it is known that GSBV p(A,Rm) is a vector space and that for every u ∈ GSBV p(A,Rm) and for
every ψ ∈ C1

c (Rm,Rm) we have ψ(u) ∈ SBV p(A,Rm) ∩ L∞(A,Rm) (see, e.g., [19, page 172]).
(i) For every Ln-measurable set A ⊂ Rn let L0(A,Rm) be the space of all (Ln-equivalence classes

of) Ln-measurable functions u : A→ Rm, endowed with the topology of convergence in measure
on bounded subsets of A; we observe that this topology is metrisable and separable.

(j) For x ∈ Rn and ρ > 0 we define

Bρ(x) := {y ∈ Rn : |y − x| < ρ},
Qρ(x) := {y ∈ Rn : |(y − x) · ei| < ρ/2 for i = 1, . . . , n}.

We omit the subscript ρ when ρ = 1.
(k) For every ν ∈ Sn−1 let Rν be an orthogonal n×n matrix such that Rνen = ν; we assume that

the restrictions of the function ν 7→ Rν to the sets Ŝn−1
± defined in (b) are continuous and that

R−νQ(0) = RνQ(0) for every ν ∈ Sn−1; moreover, we assume that Rν ∈ O(n) ∩ Qn×n for every
ν ∈ Qn ∩ Sn−1. A map ν 7→ Rν satisfying these properties is provided in [16, Example A.1 and
Remark A.2].

(l) For x ∈ Rn, ρ > 0, and ν ∈ Sn−1 we set

Qνρ(x) := RνQρ(0) + x;

we omit the subscript ρ when ρ = 1.
(m) For ξ ∈ Rm×n, the linear function from Rn to Rm with gradient ξ is denoted by `ξ; i.e., `ξ(x) := ξx,

where x is considered as an n×1 matrix.
(n) For x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1 we define the function ux,ζ,ν as

ux,ζ,ν(y) :=

{
ζ if (y − x) · ν ≥ 0,

0 if (y − x) · ν < 0.

(o) For x ∈ Rn and ν ∈ Sn−1, we set

Πν
0 := {y ∈ Rn : y · ν = 0} and Πν

x := {y ∈ Rn : (y − x) · ν = 0}.
(p) For a given topological space X, B(X) denotes the Borel σ-algebra on X. In particular, for every

integer k ≥ 1, Bk is the Borel σ-algebra on Rk, while Bn
S stands for the Borel σ-algebra on Sn−1.

(q) For every t ∈ R the integer part of t is denoted by btc; i.e., btc is the largest integer less than or
equal to t.
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3. Setting of the problem and statements of the main results

This section consists of two parts: in Section 3.1 we introduce the stochastic free-discontinuity func-
tionals and recall the Ergodic Subadditive Theorem; in Section 3.2 we state the main results of the paper.

3.1. Setting of the problem. Throughout the paper we fix six constants p, c1, . . . , c5, with 1 < p < +∞,
0 < c1 ≤ c2 < +∞, 1 ≤ c3 < +∞, and 0 < c4 ≤ c5 < +∞, and two nondecreasing continuous functions
σ1, σ2 : [0,+∞)→ [0,+∞) such that σ1(0) = σ2(0) = 0.

Definition 3.1 (Volume and surface integrands). Let F = F(p, c1, c2, σ1) be the collection of all functions
f : Rn×Rm×n → [0,+∞) satisfying the following conditions:

(f1) (measurability) f is Borel measurable on Rn×Rm×n;
(f2) (continuity in ξ) for every x ∈ Rn we have

|f(x, ξ1)− f(x, ξ2)| ≤ σ1(|ξ1 − ξ2|)
(
1 + f(x, ξ1) + f(x, ξ2)

)
for every ξ1, ξ2 ∈ Rm×n;

(f3) (lower bound) for every x ∈ Rn and every ξ ∈ Rm×n

c1|ξ|p ≤ f(x, ξ);

(f4) (upper bound) for every x ∈ Rn and every ξ ∈ Rm×n

f(x, ξ) ≤ c2(1 + |ξ|p).

Let G = G(c3, c4, c5, σ2) be the collection of all functions g : Rn×Rm0 ×Sn−1 → [0,+∞) satisfying the
following conditions:

(g1) (measurability) g is Borel measurable on Rn×Rm0 ×Sn−1;
(g2) (continuity in ζ) for every x ∈ Rn and every ν ∈ Sn−1 we have

|g(x, ζ2, ν)− g(x, ζ1, ν)| ≤ σ2(|ζ1 − ζ2|)
(
g(x, ζ1, ν) + g(x, ζ2, ν)

)
for every ζ1, ζ2 ∈ Rm0 ;

(g3) (estimate for |ζ1| ≤ |ζ2|) for every x ∈ Rn and every ν ∈ Sn−1 we have

g(x, ζ1, ν) ≤ c3 g(x, ζ2, ν)

for every ζ1, ζ2 ∈ Rm0 with |ζ1| ≤ |ζ2|;
(g4) (estimate for c3|ζ1| ≤ |ζ2|) for every x ∈ Rn and every ν ∈ Sn−1 we have

g(x, ζ1, ν) ≤ g(x, ζ2, ν)

for every ζ1, ζ2 ∈ Rm0 with c3|ζ1| ≤ |ζ2|;
(g5) (lower bound) for every x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1

c4 ≤ g(x, ζ, ν);

(g6) (upper bound) for every x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1

g(x, ζ, ν) ≤ c5(1 + |ζ|);

(g7) (symmetry) for every x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1

g(x, ζ, ν) = g(x,−ζ,−ν).

Remark 3.2. As observed in [16, Remark 3.2], assumptions (g3) and (g4) are strictly weaker than a
monotonicity condition in |ζ|. Indeed, if g : Rn×Rm0 ×Sn−1 → [0,+∞) satisfies

ζ1, ζ2 ∈ Rm0 with |ζ1| ≤ |ζ2| =⇒ g(x, ζ1, ν) ≤ g(x, ζ2, ν)

for every x ∈ Rn and every ν ∈ Sn−1, then g satisfies (g3) and (g4). On the other hand, (g3) and (g4) do
not imply monotonicity in |ζ|.

Given f ∈ F and g ∈ G, we consider the integral functionals F, G : L0(Rn,Rm)×A −→ [0,+∞] defined
as

F (u,A) :=


∫
A

f(x,∇u) dx if u|A ∈W 1,p(A,Rm),

+∞ otherwise in L0(Rn,Rm).
(3.1)

G(u,A) :=


∫
Su∩A

g(x, [u], νu)dHn−1 if u|A ∈ GSBV p(A,Rm),

+∞ otherwise in L0(Rn,Rm),
(3.2)
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Remark 3.3. Since [u] is reversed when the orientation of νu is reversed, the functional G is well defined
thanks to (g7).

Let A ∈ A . For F as in (3.1), and w ∈ L0(Rn,Rm) with w|A ∈W 1,p(A,Rm), we set

m1,p
F (w,A) := inf

{
F (u,A) : u ∈ L0(Rn,Rm), u|A ∈W 1,p(A,Rm), u = w near ∂A

}
. (3.3)

Moreover, for G as in (3.2), and w ∈ L0(Rn,Rm) with w|A ∈ SBVpc(A,Rm), we set

mpc
G (w,A) := inf

{
G(u,A) : u ∈ L0(Rn,Rm), u|A ∈ SBVpc(A,Rm), u = w near ∂A

}
. (3.4)

In (3.3) and (3.4), by “u = w near ∂A” we mean that there exists a neighbourhood U of ∂A such that
u = w Ln-a.e. in U .

If A is an arbitrary bounded subset of Rn, we set m1,p
F (w,A) := m1,p

F (w, intA) and mpc
G (w,A) :=

mpc
G (w, intA), where int denotes the interior of A.

Remark 3.4. Let u ∈ L0(Rn,Rm) be such that u|A ∈ SBVpc(A,Rm), and let k ∈ N. A careful inspection
of the proof of [16, Lemma 4.1] shows that there exist µk > k and vk ∈ L∞(Rn,Rm) with vk|A ∈
SBVpc(A,Rm) such that

‖vk‖L∞(A,Rm) ≤ µk, vk = u Ln-a.e. in {|u| ≤ k}, G(vk, A) ≤
(

1 +
1

k

)
G(u,A).

As a consequence we may readily deduce the following. Let w ∈ L0(Rn,Rm) be such that w|A ∈
SBVpc(A,Rm) ∩ L∞(A,Rm) and let k ∈ N, k > ‖w‖L∞(A,Rm) be fixed. Then

mpc
G (w,A) = inf

k
mk
G(w,A) = lim

k→+∞
mk
G(w,A), (3.5)

where

mk
G(w,A) := inf

{
G(u,A) : u ∈ L0(Rn,Rm), u|A ∈ SBVpc(A,Rm) ∩ L∞(A,Rm),

‖u‖L∞(A,Rm) ≤ k, Hn−1(Su ∩A) ≤ α, u = w near ∂A
}
, (3.6)

with α := c5/c4 (1+2‖w‖L∞(A,Rm))Hn−1(Sw∩A). The fact that the inequality Hn−1(Su∩A) ≤ α in (3.6)
is not restrictive follows from assumption (g6) by using w as a competitor in the minimisation problem
defining mk

G(w,A) for k > ‖w‖L∞(A,Rm).

We are now ready to introduce the probabilistic setting of our problem. In what follows (Ω, T , P )
denotes a fixed probability space.

Definition 3.5 (Random integrand). A function f : Ω×Rn×Rm×n → [0,+∞) is called a random volume
integrand if

(a) f is (T ⊗Bn ⊗Bm×n)-measurable;
(b) f(ω, ·, ·) ∈ F for every ω ∈ Ω.

A function g : Ω× Rn × Rm0 × Sn−1 → [0,+∞) is called a random surface integrand if

(c) g is (T ⊗Bn ⊗Bm ⊗Bn
S)-measurable;

(d) g(ω, ·, ·, ·) ∈ G for every ω ∈ Ω.

Let f be a random volume integrand. For ω ∈ Ω the integral functional F (ω) : L0(Rn,Rm) × A −→
[0,+∞] is defined by (3.1), with f(·, ·) replaced by f(ω, ·, ·). Let g be a random surface integrand. For
ω ∈ Ω the integral functional G(ω) : L0(Rn,Rm)×A −→ [0,+∞] is defined by (3.2), with g(·, ·, ·) replaced
by g(ω, ·, ·, ·). Finally, for every ε > 0 we consider the free-discontinuity functional Eε(ω) : L0(Rn,Rm)×
A −→ [0,+∞] defined by

Eε(ω)(u,A) :=


∫
A

f
(
ω,
x

ε
,∇u

)
dx+

∫
Su∩A

g
(
ω,
x

ε
, [u], νu

)
dHn−1 if u|A∈ GSBV p(A,Rm),

+∞ otherwise inL0(Rn,Rm).
(3.7)

In the study of stochastic homogenisation an important role is played by the notions introduced by the
following definitions.

Definition 3.6 (P -preserving transformation). A P -preserving transformation on (Ω, T , P ) is a map
T : Ω→ Ω satisfying the following properties:

(a) (measurability) T is T -measurable;
(b) (bijectivity) T is bijective;
(c) (invariance) P (T (E)) = P (E), for every E ∈ T .
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If, in addition, every set E ∈ T which satisfies P (T (E)4E) = 0 (called T -invariant set according to [24])
has probability 0 or 1, then T is called ergodic. Here and henceforth 4 denotes the symmetric difference
of sets.

Definition 3.7 (Group of P -preserving transformations). Let k be a positive integer. A group of P -
preserving transformations on (Ω, T , P ) is a family (τz)z∈Zk (resp. (τz)z∈Rk ) of mappings τz : Ω → Ω
satisfying the following properties:

(a) (measurability) τz is T -measurable for every z ∈ Zk (resp. z ∈ Rk);
(b) (bijectivity) τz is bijective for every z ∈ Zk (resp. z ∈ Rk);
(c) (invariance) P (τz(E)) = P (E), for every E ∈ T and every z ∈ Zk (resp. z ∈ Rk);
(d) (group property) τ0 = idΩ (the identity map on Ω) and τz+z′ = τz ◦ τz′ for every z, z′ ∈ Zk (resp.

z, z′ ∈ Rk);

If, in addition, every set E ∈ T which satisfies P (τz(E)4E) = 0 for every z ∈ Zk (resp. z ∈ Rk) has
probability 0 or 1, then (τz)z∈Zk (resp. (τz)z∈Rk ) is called ergodic.

Remark 3.8. In the case k = 1 a group of P -preserving transformations (τz)z∈Z has the form (T z)z∈Z,
where T := τ1 is a P -preserving transformation.

We are now in a position to define the notion of stationary random integrand.

Definition 3.9 (Stationary random integrand). A random volume integrand f is stationary with respect
to a group (τz)z∈Zn (resp. (τz)z∈Rn) of P -preserving transformations on (Ω, T , P ) if

f(ω, x+ z, ξ) = f(τz(ω), x, ξ)

for every ω ∈ Ω, x ∈ Rn, z ∈ Zn (resp. z ∈ Rn), and ξ ∈ Rm×n.
Similarly, a random surface integrand g is stationary with respect to (τz)z∈Zn (resp. (τz)z∈Rn) if

g(ω, x+ z, ζ, ν) = g(τz(ω), x, ζ, ν) (3.8)

for every ω ∈ Ω, x ∈ Rn, z ∈ Zn (resp. z ∈ Rn), ζ ∈ Rm0 , and ν ∈ Sn−1.

We now recall the notion of subadditive stochastic processes as well as the Subadditive Ergodic Theorem
by Akcoglu and Krengel [1, Theorem 2.7].

Let k be a positive integer. For every a, b ∈ Rk, with ai < bi for i = 1, . . . , k, we define

[a, b) := {x ∈ Rk : ai ≤ xi < bi for i = 1, . . . , k},
and we set

Ik := {[a, b) : a, b ∈ Rk, ai < bi for i = 1, . . . , k}. (3.9)

Definition 3.10 (Subadditive process). A subadditive process with respect to a group (τz)z∈Zk (resp.
(τz)z∈Rk ), k ≥ 1, of P -preserving transformations on (Ω, T , P ) is a function µ : Ω×Ik → R satisfying the
following properties:

(a) (measurability) for every A ∈ Ik the function ω 7→ µ(ω,A) is T -measurable;
(b) (covariance) for every ω ∈ Ω, A ∈ Ik, and z ∈ Zk (resp. z ∈ Rk) we have µ(ω,A+z) = µ(τz(ω), A);
(c) (subadditivity) for every A ∈ Ik and for every finite family (Ai)i∈I ⊂ Ik of pairwise disjoint sets

such that A = ∪i∈IAi, we have

µ(ω,A) ≤
∑
i∈I

µ(ω,Ai) for every ω ∈ Ω;

(d) (boundedness) there exists c > 0 such that 0 ≤ µ(ω,A) ≤ cLk(A) for every ω ∈ Ω and every
A ∈ Ik.

We now state a variant of the Pointwise Ergodic Theorem which is suitable for our purposes.

Theorem 3.11 (Subadditive Ergodic Theorem). Let k be a positive integer and let (τz)z∈Zk (resp.
(τz)z∈Rk) be a group of P -preserving transformations on (Ω, T , P ). Let µ : Ω×Ik → R be a subadditive pro-
cess with respect to (τz)z∈Zk (resp. (τz)z∈Rk). Then there exist a T -measurable function ϕ : Ω→ [0,+∞)
and a set Ω′ ∈ T with P (Ω′)=1 such that

lim
t→+∞

µ(ω, tQ)

Lk(tQ)
= ϕ(ω) (3.10)

for every ω ∈ Ω′ and for every cube Q ∈ Ik. If in addition (τz)z∈Zk (resp. (τz)z∈Rk) is ergodic, then ϕ is
constant P -a.e.
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Proof. If the set of indices is Zk, the proof can be found in [1, Theorem 2.7 and Remark p. 59] (see, e.g.,
[18, Proposition 1]). If the set of indices is Rk, the existence of ϕ and Ω′ satisfying (3.10) can be proved
by considering the restriction of the group to Zk. Since ergodicity for (τz)z∈Rk does not imply ergodicity

for (τz)z∈Zk , we have to prove the last sentence of the theorem when the set of indices is Rk.

Let Q be the set of all cubes Q ∈ Ik with vertices in Qk, let Ω′′ be the set of all ω ∈ Ω such that the
limit

lim
t→+∞
t∈Q

µ(ω, tQ)

Lk(tQ)
(3.11)

exists for every Q ∈ Q, and let Ω̂ be the set of all ω ∈ Ω′′ such that the above limits do not depend on
Q ∈ Q. Since ω 7→ µ(ω,Q) is T -measurable, we have Ω′′ ∈ T and the limit in (3.11) is a T -measurable

function of ω. This implies that Ω̂ ∈ T and that there exists a T -measurable function ϕ̂ : Ω̂ → R such
that

lim
t→+∞
t∈Q

µ(ω, tQ)

Lk(tQ)
= ϕ̂(ω) (3.12)

for every ω ∈ Ω̂ and Q ∈ Q. By (3.10) we have

P (Ω̂) = 1 and ϕ̂(ω) = ϕ(ω) for P -a.e. ω ∈ Ω̂. (3.13)

Fix ω ∈ Ω̂, z ∈ Rk, and Q ∈ Q. By covariance (condition (b) of Definition 3.10) we have

µ(τz(ω), tQ) = µ(ω, t(Q+ z
t
)) (3.14)

for every t > 0. Given Q′, Q′′ ∈ Q, with Q′ ⊂⊂ intQ ⊂ Q ⊂⊂ Q′′, for t large enough we have

Q′ ⊂ Q+ z
t

and Q+ z
t
⊂ Q′′.

By subadditivity and boundedness (conditions (c) and (d) of Definition 3.10) we have

µ(ω, t(Q+ z
t
)) ≤ µ(ω, tQ′) + ctkLk((Q+ z

t
) \Q′),

µ(ω, tQ′′) ≤ µ(ω, t(Q+ z
t
)) + ctkLk(Q′′ \ (Q+ z

t
)),

hence

µ(ω, t(Q+ z
t
))

Lk(tQ)
≤ µ(ω, tQ′)

Lk(tQ′)
+ c
Lk((Q+ z

t
) \Q′)

Lk(Q)
,

µ(ω, tQ′′)

Lk(tQ′′)
≤
µ(ω, t(Q+ z

t
))

Lk(tQ)
+ c
Lk(Q′′ \ (Q+ z

t
))

Lk(Q)
.

Therefore by (3.12) and (3.14) we obtain

lim sup
t→+∞
t∈Q

µ(τz(ω), tQ)

Lk(tQ)
≤ ϕ̂(ω) + c

Lk(Q \Q′)
Lk(Q)

,

ϕ̂(ω) ≤ lim inf
t→+∞
t∈Q

µ(τz(ω), tQ)

Lk(tQ)
+ c
Lk(Q′′ \Q)

Lk(Q)
.

Taking the limit as Q′ ↗ Q and Q′′ ↘ Q we obtain

ϕ̂(ω) ≤ lim inf
t→+∞
t∈Q

µ(τz(ω), tQ)

Lk(tQ)
≤ lim sup

t→+∞
t∈Q

µ(τz(ω), tQ)

Lk(tQ)
≤ ϕ̂(ω),

which implies that τz(ω) ∈ Ω′′ and

lim
t→+∞
t∈Q

µ(τz(ω), tQ)

Lk(tQ)
= ϕ̂(ω). (3.15)

Since the limit does not depend on Q ∈ Q we have also τz(ω) ∈ Ω̂. By (3.12) and (3.15) we have

ϕ̂(τz(ω)) = ϕ̂(ω) for every ω ∈ Ω̂ and every z ∈ Rk. This implies that, for every c ∈ R, the superlevel sets
of ϕ̂,

Ec := {ω ∈ Ω̂ : ϕ̂(ω) ≥ c},
are invariant for τz for every z ∈ Rk. Therefore, if (τz)z∈Rk is ergodic, we can only have

P (Ec) = 0 or P (Ec) = 1. (3.16)

Since Ec1 ⊃ Ec2 for c1 < c2, by (3.16) there exists c0 ∈ R such that P (Ec) = 0 for c > c0 and P (Ec) = 1
for c < c0. It then follows that ϕ̂ is constant P -a.e., and so is ϕ by (3.13).
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3.2. Statement of the main results. In this section we state the main result of the paper, Theorem 3.13,
which provides a Γ-convergence and integral representation result for the random functionals (Eε(ω))ε>0

introduced in (3.7), under the assumption that the volume and surface integrands f and g are stationary.
The volume and surface integrands of the Γ-limit are given in terms of separate asymptotic cell formulas,
showing that there is no interaction between volume and surface densities by stochastic Γ-convergence.

The next theorem proves the existence of the limits in the asymptotic cell formulas that will be used
in the statement of the main result. The proof will be given in Sections 4-6.

Theorem 3.12 (Homogenisation formulas). Let f be a stationary random volume integrand and let g be
a stationary random surface integrand with respect to a group (τz)z∈Zn (resp. (τz)z∈Rn) of P -preserving
transformations on (Ω, T , P ). For every ω ∈ Ω let F (ω) and G(ω) be defined by (3.1) and (3.2), with

f(·, ·) and g(·, ·, ·) replaced by f(ω, ·, ·) and g(ω, ·, ·, ·), respectively. Finally, let m1,p
F (ω) and mpc

G(ω) be defined

by (3.3) and (3.4), respectively. Then there exists Ω′ ∈ T , with P (Ω′) = 1, such that for every ω ∈ Ω′,
x ∈ Rn, ξ ∈ Rm×n, ζ ∈ Rm0 , and ν ∈ Sn−1 the limits

lim
t→+∞

m1,p
F (ω)(`ξ, Qt(tx))

tn
and lim

t→+∞

mpc
G(ω)(utx,ζ,ν , Q

ν
t (tx))

tn−1

exist and are independent of x. More precisely, there exist a random volume integrand fhom : Ω×Rm×n →
[0,+∞), and a random surface integrand ghom : Ω × Rm0 × Sn−1 → [0,+∞) such that for every ω ∈ Ω′,
x ∈ Rn, ξ ∈ Rm×n, ζ ∈ Rm0 , and ν ∈ Sn−1

fhom(ω, ξ) = lim
t→+∞

m1,p
F (ω)(`ξ, Qt(tx))

tn
= lim
t→+∞

m1,p
F (ω)(`ξ, Qt(0))

tn
, (3.17)

ghom(ω, ζ, ν) = lim
t→+∞

mpc
G(ω)(utx,ζ,ν , Q

ν
t (tx))

tn−1
= lim
t→+∞

mpc
G(ω)(u0,ζ,ν , Q

ν
t (0))

tn−1
. (3.18)

If, in addition, (τz)z∈Zn (resp. (τz)z∈Rn) is ergodic, then fhom and ghom are independent of ω and

fhom(ξ) = lim
t→+∞

1

tn

∫
Ω

m1,p
F (ω)(`ξ, Qt(0)) dP (ω),

ghom(ζ, ν) = lim
t→+∞

1

tn−1

∫
Ω

mpc
G(ω)(u0,ζ,ν , Q

ν
t (0)) dP (ω).

We are now ready to state the main result of this paper, namely the almost sure Γ-convergence of the
sequence of random functionals (Eε(ω))ε>0 introduced in (3.7).

Theorem 3.13 (Γ-convergence). Let f and g be stationary random volume and surface integrands with
respect to a group (τz)z∈Zn (resp. (τz)z∈Rn) of P -preserving transformations on (Ω, T , P ), let Eε(ω) be
as in (3.7), let Ω′ ∈ T (with P (Ω′) = 1), fhom, and ghom be as in Theorem 3.12, and let Ehom(ω) :
L0(Rn,Rm)×A −→ [0,+∞] be the free-discontinuity functional defined by

Ehom(ω)(u,A) =


∫
A

fhom(ω,∇u) dx+

∫
Su∩A

ghom(ω, [u], νu)dHn−1 if u|A ∈ GSBV p(A,Rm),

+∞ otherwise in L0(Rn,Rm).

Let moreover Epε (ω) and Ephom(ω) be the restrictions to Lploc(Rn,Rm)×A of Eε(ω) and Ehom(ω), respec-
tively. Then

Eε(ω)(·, A) Γ-converge to Ehom(ω)(·, A) in L0(Rn,Rm),

and

Epε (ω)(·, A) Γ-converge to Ephom(ω)(·, A) in Lploc(Rn,Rm),

for every ω ∈ Ω′ and every A ∈ A .
Further, if (τz)z∈Zn (resp. (τz)z∈Rn) is ergodic, then Ehom (resp. Ephom) is a deterministic functional;

i.e., it does not depend on ω.

Proof. Let Ω′ ∈ T be the set with P (Ω′) = 1 whose existence is established in Theorem 3.12 and let
ω ∈ Ω′ be fixed. Then, the functionals F (ω) and G(ω) defined by (3.1) and (3.2), respectively (with f(·, ·)
replaced by f(ω, ·, ·) and g(·, ·, ·) replaced by g(ω, ·, ·, ·)) satisfy all the assumptions of [16, Theorem 3.8].
Therefore, by combining Theorem 3.12 and [16, Theorem 3.8] the conclusion follows. �

Thanks to Theorem 3.13 we can also characterise the asymptotic behaviour of some minimisation
problems involving Eε(ω). An example is shown in the corollary below.
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Corollary 3.14 (Convergence of minimisation problems). Let f and g be stationary random volume and
surface integrands with respect to a group (τz)z∈Zn (resp. (τz)z∈Rn) of P -preserving transformations on
(Ω, T , P ), let Ω′ ∈ T (with P (Ω′) = 1), fhom, and ghom be as in Theorem 3.12. Let ω ∈ Ω′, A ∈ A ,
h ∈ Lp(A,Rm), and let (uε)ε>0 ⊂ GSBV p(A,Rm) ∩ Lp(A,Rm) be a sequence such that∫

A

f
(
ω,
x

ε
,∇uε

)
dx+

∫
Suε∩A

g
(
ω,
x

ε
, [uε], νuε

)
dHn−1 +

∫
A

|uε − h|pdx

≤ inf
u

(∫
A

f
(
ω,
x

ε
,∇u

)
dx+

∫
Su∩A

g
(
ω,
x

ε
, [u], νu

)
dHn−1 +

∫
A

|u− h|pdx
)

+ ηε

for some ηε → 0+, where the infimum is taken over all u ∈ GSBV p(A,Rm) ∩ Lp(A,Rm). Then there
exists a sequence εk → 0+ such that (uεk )k∈N converges in Lp(A,Rm) to a minimiser u0 of∫

A

fhom(ω,∇u) dx+

∫
Su∩A

ghom(ω, [u], νu)dHn−1 +

∫
A

|u− h|pdx

on GSBV p(A,Rm) ∩ Lp(A,Rm). Moreover∫
A

f
(
ω,
x

ε
,∇uε

)
dx+

∫
Suε∩A

g
(
ω,
x

ε
, [uε], νuε

)
dHn−1 +

∫
A

|uε − h|p dx

converges to ∫
A

fhom(ω,∇u0) dx+

∫
Su0∩A

ghom(ω, [u0], νu0)dHn−1 +

∫
A

|u0 − h|pdx

as ε→ 0+.

Proof. The proof follows from Theorem 3.13, arguing as in the proof of [16, Corollary 6.1]. �

4. Proof of the cell-formula for the volume integrand

In this section we prove (3.17).

Proposition 4.1 (Homogenised volume integrand). Let f be a stationary random volume integrand with
respect to a group (τz)z∈Zn (resp. (τz)z∈Rn) of P -preserving transformations on (Ω, T , P ). Then there
exists Ω′ ∈ T , with P (Ω′) = 1, such that for every ω ∈ Ω′, for every x ∈ Rn, and ξ ∈ Rm×n the limit

lim
t→+∞

m1,p
F (ω)(`ξ, Qt(tx))

tn

exists and is independent of x. More precisely, there exists a random volume integrand fhom : Ω×Rm×n →
[0,+∞), independent of x, such that

fhom(ω, ξ) = lim
t→+∞

m1,p
F (ω)(`ξ, Qt(tx))

tn
= lim
t→+∞

m1,p
F (ω)(`ξ, Qt(0))

tn
.

If, in addition, (τz)z∈Zn (resp. (τz)z∈Rn) is ergodic, then fhom is independent of ω and

fhom(ξ) = lim
t→+∞

1

tn

∫
Ω

m1,p
F (ω)(`ξ, Qt(0)) dP (ω) = inf

k∈N

1

kn

∫
Ω

m1,p
F (ω)(`ξ, Qk(0)) dP (ω).

The proof of Proposition 4.1 relies on the application of the Subadditive Ergodic Theorem 3.11 to the
function (ω,A) 7→ m1,p

F (ω)(`ξ, A), which is a subadditive process as shown below.

Proposition 4.2. Let f be a stationary random volume integrand with respect to a group (τz)z∈Zn (resp.
(τz)z∈Rn) of P -preserving transformations on (Ω, T , P ) and let F (ω) be as in (3.1) with f(·, ·) replaced by
f(ω, ·, ·). Let ξ ∈ Rm×n and set

µξ(ω,A) := m1,p
F (ω)(`ξ, A) for every ω ∈ Ω, A ∈ In,

where m1,p
F (ω) is as in (3.3) and In as in (3.9). Then µξ is a subadditive process with respect to (τz)z∈Zn

(resp. (τz)z∈Rn) and
0 ≤ µξ(ω,A) ≤ c2(1 + |ξ|p)Ln(A) for every ω ∈ Ω.

Proof. See [18] and also [30, Proposition 3.2]. �

We can now give the proof of Proposition 4.1.

Proof of Proposition 4.1. The existence of fhom and its independence of x follow from Proposition 4.2 and
[18, Theorem 1] (see also [30, Corollary 3.3]). The fact that fhom is a random volume integrand can be
shown arguing as in [16, Lemma A.5 and Lemma A.6], and this concludes the proof. �
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Figure 1. Construction of the oriented n-dimensional interval Tν(A
′).

A′

A′ × [−c, c) Tν(A′)

5. Proof of the cell-formula for the surface integrand: a special case

This section is devoted to the proof of (3.18) in the the special case x = 0. Namely, we prove the
following result.

Theorem 5.1. Let g be a stationary random surface integrand with respect to a group (τz)z∈Zn (resp.

(τz)z∈Rn) of P -preserving transformations on (Ω, T , P ) and let Ω̂ be the set of all ω ∈ Ω such that the
limit

lim
t→+∞
t∈Q

mpc
G(ω)(u0,ζ,ν , Q

ν
t (0))

tn−1
,

exists for every ζ ∈ Qm0 , and ν ∈ Qn ∩ Sn−1. Then there exist Ω̃ ∈ T , with Ω̃ ⊂ Ω̂ and P (Ω̃) = 1, and a
random surface integrand ghom : Ω× Rm0 × Sn−1 → R such that

ghom(ω, ζ, ν) = lim
t→+∞

mpc
G(ω)(u0,ζ,ν , Q

ν
t (0))

tn−1
, (5.1)

for every ω ∈ Ω̃, ζ ∈ Rm0 , and ν ∈ Sn−1.

Remark 5.2. We observe that in general the set Ω̂ defined in Theorem 5.1 is not T -measurable.

The proof of Theorem 5.1 will need several preliminary results. A key ingredient will be the application
of the Subadditive Ergodic Theorem 3.11 with k = n − 1. This is a nontrivial task, since it requires to
define an (n − 1)-dimensional subadditive process starting from the n-dimensional set function A 7→
mpc
G(ω)(u0,ζ,ν , A). To this end, we are now going to illustrate a systematic way to transform (n − 1)-

dimensional intervals (see (3.9)) into n-dimensional intervals oriented along a prescribed direction ν ∈
Sn−1.

For every ν ∈ Sn−1 let Rν be the orthogonal n × n matrix defined in point (k) of Section 2 (see also
[16, Example A.1]). Then, the following properties are satisfied:

• Rνen = ν for every ν ∈ Sn−1;

• the restrictions of the function ν 7→ Rν to the sets Ŝn−1
± are continuous;

• R−νQ(0) = RνQ(0) for every ν ∈ Sn−1.

Moreover, Rν ∈ O(n) ∩ Qn×n for every ν ∈ Qn ∩ Sn−1. Since Rνen = ν, we have that {Rνej}j=1,...,n−1

is an orthonormal basis of Πν
0 . Let now Mν be a positive integer such that MνRν ∈ Zn×n. Note that, in

particular, for every z′ ∈ Zn−1 we have that MνRν(z′, 0) ∈ Πν
0 ∩ Zn, namely MνRν maps integer vectors

perpendicular to en into integer vectors perpendicular to ν.
Let A′ ∈ In−1; we define the (rotated) n-dimensional interval Tν(A′) as

Tν(A′) := MνRν
(
A′ × [−c, c)

)
, c :=

1

2
max

1≤j≤n−1
(bj − aj), (MνRν ∈ Zn×n), (5.2)

see Figure 1.
The next proposition is the analogue of Proposition 4.2 for the surface energy, and will be crucial in the
proof Theorem 5.1.

Proposition 5.3. Let g be a stationary surface integrand with respect to a group (τz)z∈Zn (resp. (τz)z∈Rn)
of P -preserving transformations on (Ω, T , P ), let G(ω) be as in (3.2), with g(·, ·, ·) replaced by g(ω, ·, ·, ·),
let ζ ∈ Qm0 , and let ν ∈ Qn ∩ Sn−1. For every A′ ∈ In−1 and ω ∈ Ω set

µζ,ν(ω,A′) :=
1

Mn−1
ν

mpc
G(ω)(u0,ζ,ν , Tν(A′)), (5.3)
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where mpc
G(ω) is as in (3.4), while Mν and Tν(A′) are as in (5.2). Let (Ω, T̂ , P̂ ) denote the completion of

the probability space (Ω, T , P ). Then there exists a group (τνz′)z′∈Zn−1 (resp. (τνz′)z′∈Rn−1) of P̂ -preserving

transformations on (Ω, T̂ , P̂ ) such that µζ,ν is a subadditive process on (Ω, T̂ , P̂ ) with respect to (τνz′)z′∈Zn−1

(resp. (τνz′)z′∈Rn−1). Moreover

0 ≤ µζ,ν(ω)(A′) ≤ c4(1 + |ζ|)Ln−1(A′) for P̂ -a.e. ω ∈ Ω. (5.4)

Proof. The T̂ -measurability of the function ω 7→ µζ,ν(ω,A′) follows from the T̂ -measurability of ω 7→
mpc
G(ω)(u0,ζ,ν , A) for every A ∈ A . This is a delicate issue, which will be postponed to the Appendix.

Let now ζ ∈ Qm0 , and let ν ∈ Qn ∩ Sn−1. By Proposition A.1, for every A′ ∈ In−1 the function

ω 7→ µζ,ν(ω,A′) is T̂ -measurable. We are now going to prove that there exists a group (τνz′)z′∈Zn−1 (resp.

(τνz′)z′∈Rn−1) of P̂ -preserving transformations on (Ω, T̂ , P̂ ) such that

µζ,ν(ω,A′ + z′) = µζ,ν(τνz′(ω), A′), for every ω ∈ Ω, z′ ∈ Zn−1(resp. z′ ∈ Rn−1), and A′ ∈ In−1.

We first consider the case of g stationary with respect to a discrete group (τz)z∈Zn . To this end fix
z′ ∈ Zn−1 and A′ ∈ In−1. Note that, by (5.2),

Tν(A′ + z′) = MνRν((A′ + z′)× [−c, c)) = MνRν
(
A′ × [−c, c)

)
+MνRν(z′, 0) = Tν(A′) + z′ν ,

where z′ν := MνRν(z′, 0) ∈ Zn. Then, by (5.3)

µζ,ν(ω,A′ + z′) =
1

Mn−1
ν

mpc
G(ω)(u0,ζ,ν , Tν(A′ + z′)) =

1

Mn−1
ν

mpc
G(ω)(u0,ζ,ν , Tν(A′) + z′ν). (5.5)

Given u ∈ L0(Rn,Rm), let v ∈ L0(Rn,Rm) be defined by v(x) := u(x+ z′ν) for every x ∈ Rn. By a change
of variables we have∫

Su∩(Tν(A′)+z′ν)

g(ω, x, [u], νu)dHn−1(x) =

∫
Sv∩Tν(A′)

g(ω, y + z′ν , [v], νv)dHn−1(y).

Since z′ν ∈ Zn, by the stationarity of g we have also g(ω, y + z′ν , [v], νv) = g(τz′ν (ω), y, [v], νv). From these
equalities we obtain

G(ω)(u, intTν(A′) + z′ν) = G(τz′ν (ω))(v, intTν(A′)). (5.6)

Since z′ν is perpendicular to ν, we have u0,ζ,ν(x) = u0,ζ,ν(x+ z′ν) for every x ∈ Rn. Therefore, from (3.4),
(5.5), and (5.6) we obtain that µζ,ν(ω,A′ + z′) = µζ,ν(τz′ν (ω), A′). Thus, µζ,ν is covariant with respect to

the group
(
τνz′
)
z′∈Zn−1 of P̂ -preserving transformations on (Ω, T̂ , P̂ ) defined by(

τνz′
)
z′∈Zn−1 := (τz′ν )z′∈Zn−1 . (5.7)

Note that if g is stationary with respect to a continuous group (τz)z∈Rn , then the same construction as
above provides, for fixed z′ ∈ Rn−1, a vector z′ν ∈ Rn such that µζ,ν is covariant with respect to the group
of P -preserving transformations defined as in (5.7), with Zn−1 replaced by Rn−1. Moreover, in this case
one can simply define z′ν := Rν(z′, 0), namely the multiplication by the positive integer Mν is not needed.

We now show that µζ,ν is subadditive. To this end let A′ ∈ In−1 and let (A′i)1≤i≤N ⊂ In−1 be
a finite family of pairwise disjoint sets such that A′ =

⋃
iA
′
i. For fixed η > 0 and i = 1, . . . , N , let

ui ∈ SBVpc(intTν(A′i)) be such that ui = u0,ζ,ν in a neighbourhood of ∂Tν(A′i) and

G(ω)(ui, intTν(Ai)) ≤ mpc
G(ω)(u0,ζ,ν , Tν(A′i)) + η. (5.8)

Note that Tν(A′) can differ from
⋃
i Tν(A′i) but, by construction, we always have

⋃
i Tν(A′i) ⊂ Tν(A′) (see

Figure 2).
Now we define

u(y) :=

{
ui(y) if y ∈ Tν(A′i), i = 1, . . . , N,

u0,ζ,ν(y) if y ∈ Tν(A′) \
⋃
i Tν(A′i);

then u ∈ SBVpc(intTν(A′)) and u = u0,ζ,ν in a neighbourhood of ∂Tν(A′). Moreover, by the additivity
and the locality of G(ω) we have

G(ω)(u, intTν(A′)) =

N∑
i=1

G(ω)(ui, intTν(A′i)) +G(ω)
(
u0,ζ,ν , int(Tν(A′) \

⋃
i Tν(A′i))

)
, (5.9)

where we have also used the fact that Su ∩ ∂Tν(A′i) = Ø for every i = 1, . . . , N . Note that the last term
in (5.9) is equal to zero because the jump set of u0,ζ,ν is the hyperplane Πν

0 , which does not intersect
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A′

A′1

A′2

Tν(A′) Tν(A′1) ∪ Tν(A′2)

Figure 2. An example with N = 2 in which Tν(A
′) 6= Tν(A

′
1) ∪ Tν(A

′
2).

Tν(A′) \
⋃
i Tν(A′i); therefore

G(ω)(u, intTν(A′)) =

N∑
i=1

G(ω)(ui, intTν(A′i)).

As a consequence, by (5.8),

mpc
G(ω)(u0,ζ,ν , Tν(A′)) ≤

N∑
i=1

mpc
G(ω)(u0,ζ,ν , Tν(A′i)) +Nη,

thus the subadditivity of µζ,ν follows from (5.3) and from the arbitrariness of η.
Finally, in view of (g6) for every A′ ∈ In−1 we have

µζ,ν(ω,A′) ≤ 1

Mn−1
ν

G(ω)(u0,ζ,ν , intTν(A′))

≤ c5(1 + |ζ|)
Mn−1
ν

Hn−1(Πν
0 ∩ Tν(A′))

= c5(1 + |ζ|)Ln−1(A′),

and thus (5.4). �

To conclude the proof of Proposition 5.1 we need two preliminary lemmas.

Lemma 5.4. Let g ∈ G, let G be as in (3.2), and let mpc
G be as in (3.4). Let g, g : Rm0 ×Sn−1 → [−∞,+∞]

be the functions defined by

g(ζ, ν) := lim inf
t→+∞

mpc
G (u0,ζ,ν , Q

ν
t (0))

tn−1
and g(ζ, ν) := lim sup

t→+∞

mpc
G (u0,ζ,ν , Q

ν
t (0))

tn−1
.

Then g, g ∈ G.

Proof. It is enough to adapt the proof of [16, Lemma A.7]. �

We will also need the following result.

Lemma 5.5. Let g ∈ G, let G be as in (3.2), and let mpc
G be as in (3.4). Let g˜, g̃ : Rn × Rm0 × Sn−1 →

[−∞,+∞] be the functions defined by

g˜(x, ζ, ν) := lim inf
t→+∞

mpc
G (utx,ζ,ν , Q

ν
t (tx))

tn−1
(5.10)

and

g̃(x, ζ, ν) := lim sup
t→+∞

mpc
G (utx,ζ,ν , Q

ν
t (tx))

tn−1
. (5.11)

Then g˜ and g̃ satisfy (g2). Moreover for every x ∈ Rn and ζ ∈ Rm0 the restriction of the functions

ν 7→ g˜(x, ζ, ν) and ν 7→ g̃(x, ζ, ν) to the sets Ŝn−1
+ and Ŝn−1

− are continuous.



14

Proof. The proof of (g2) can be obtained by adapting the proof of [16, Lemma A.7].

To prove the continuity of ν 7→ g˜(x, ζ, ν) on Ŝn−1
+ , we fix x ∈ Rn, ζ ∈ Rm0 , ν ∈ Ŝn−1

+ , and a sequence

(νj) ⊂ Ŝn−1
+ such that νj → ν as j → +∞. Since the function ν 7→ Rν is continuous on Ŝn−1

+ , for every

δ ∈ (0, 1
2
) there exists an integer jδ such that

Q
νj
(1−δ)t(tx) ⊂⊂ Qνt (tx) ⊂⊂ Qνj(1+δ)t(tx), (5.12)

for every j ≥ jδ and every t > 0. Fix j ≥ jδ, t > 0, and η > 0. Let u ∈ SBVpc(Qνt (tx),Rm) be such that
u = utx,ζ,ν in a neighbourhood of ∂Qνt (tx), and

G(u,Qνt (tx)) ≤ mpc
G (utx,ζ,ν , Q

ν
t (tx)) + η.

We set

v(y) :=

{
u(y) if y ∈ Qνt (tx),

utx,ζ,νj (y) if y ∈ Qνj(1+δ)t(tx) \Qνt (tx).

Then v ∈ SBVpc(Q
νj
(1+δ)t(tx),Rm), v = utx,ζ,ν in a neighbourhood of ∂Q

νj
(1+δ)t(tx), and Sv ⊂ Su ∪ Σ,

where

Σ :=
{
y ∈ ∂Qνt (tx) :

(
(y − tx) · ν

)(
(y − tx) · νj

)
< 0
}
∪Π

νj
tx ∩ (Q

νj
(1+δ)t(tx) \Qνt (tx)).

By (5.12) there exists ς(δ) > 0, independent of j and t, with ς(δ) → 0 as δ → 0+, such that Hn−1(Σ) ≤
ς(δ)tn−1. Thanks to (g6) we then have

mpc
G (utx,ζ,νj , Q

νj
(1+δ)t(tx)) ≤ G(v,Q

νj
(1+δ)t(tx)) ≤ G(u,Qνt (tx)) + ς(δ)c5(1 + |ζ|)tn−1

≤ mpc
G (utx,ζ,ν , Q

ν
t (tx)) + η + ς(δ)c5(1 + |ζ|)tn−1.

By dividing the terms of the above estimate by tn−1 and passing to the liminf as t → +∞, from (5.10)
we obtain that

g˜(x, ζ, νj)(1 + δ)n−1 ≤ g˜(x, ζ, ν) + ς(δ)c5(1 + |ζ|).

Letting j → +∞ and then δ → 0+ we deduce that

lim sup
j→+∞

g˜(x, ζ, νj) ≤ g˜(ω, ζ, ν).

An analogous argument, now using the cube Q
νj
(1−δ)t(tx), yields

g˜(x, ζ, ν) ≤ lim inf
j→+∞

g˜(ω, ζ, νj),
and hence the continuity of g˜(x, ζ, ·) in Ŝn−1

+ . The proof of the continuity in Ŝn−1
− , as well as that of the

continuity of g̃ are similar. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let (Ω, T̂ , P̂ ) be the completion of the probability space (Ω, T , P ). By Proposi-
tion A.1 for ζ ∈ Qm0 and ν ∈ Qn ∩ Sn−1 fixed

the function ω 7→ mpc
G(ω)(u0,ζ,ν , Q

ν
t (0)) is T̂ -measurable for every t > 0, hence Ω̂ ∈ T̂ . We apply the

Subadditive Ergodic Theorem 3.11 to the subadditive process µζ,ν defined on (Ω, T̂ , P̂ ) by (5.3). Choosing

Q′ := [− 1
2
, 1

2
)n−1, we obtain the existence of a set Ω̂ζ,ν ∈ T̂ , with P̂ (Ω̂ζ,ν) = 1, and of a T̂ -measurable

function gζ,ν : Ω→ R such that

lim
t→+∞

µζ,ν(ω)(tQ′)

tn−1
= gζ,ν(ω) (5.13)

for every ω ∈ Ω̂ζ,ν . Then, by the properties of the completion there exist a set Ωζ,ν ∈ T , with P (Ωζ,ν) = 1,
and a T -measurable function, which we still denote by gζ,ν , such that (5.13) holds for every ω ∈ Ωζ,ν .
Using the definition of µζ,ν we then have

gζ,ν(ω) = lim
t→+∞

mpc
G(ω)(u0,ζ,ν , t Tν(Q′))

Mn−1
ν tn−1

= lim
t→+∞

mpc
G(ω)(u0,ζ,ν , tMνQ

ν(0))

(tMν)n−1

for every ω ∈ Ωζ,ν . Let Ω̃ be the intersection of the sets Ωζ,ν for ζ ∈ Qm0 and ν ∈ Qn ∩ Sn−1. Clearly

Ω̃ ∈ T and P (Ω̃) = 1.
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We now consider the auxiliary functions g, g : Ω̃× Rm0 × Sn−1 → [0,+∞] defined as

g(ω, ζ, ν) := lim inf
t→+∞

mpc
G(ω)(u0,ζ,ν , Q

ν
t (0))

tn−1
, (5.14)

g(ω, ζ, ν) := lim sup
t→+∞

mpc
G(ω)(u0,ζ,ν , Q

ν
t (0))

tn−1
, (5.15)

and note that g(ω, ζ, ν) = g(ω, ζ, ν) = gζ,ν(ω) for every ω ∈ Ω̃, ζ ∈ Qm0 , and ν ∈ Qn ∩ Sn−1, hence Ω̃ ⊂ Ω̂.

By Lemma 5.4 for every ω ∈ Ω̃ and every ν ∈ Sn−1 the functions ζ 7→ g(ω, ζ, ν) and ζ 7→ g(ω, ζ, ν) are
continuous on Rm0 , and their modulus of continuity does not depend on ω and ν. This implies that

g(ω, ζ, ν) = g(ω, ζ, ν) for every ω ∈ Ω̃, ζ ∈ Rm0 , and ν ∈ Qn ∩ Sn−1, (5.16)

and that the function ω 7→ g(ω, ζ, ν) is T -measurable on Ω̃ for every ζ ∈ Rm0 and ν ∈ Qn ∩ Sn−1.

Let Sn−1
± and Ŝn−1

± be the sets defined in (b), Section 2. It is known that Qn ∩ Sn−1 is dense in

Sn−1(see, e.g., [16, Remark A.2]). Since Sn−1
± is open in the relative topology of Sn−1 and is dense in

Ŝn−1
± , we conclude that Qn ∩ Sn−1

± is dense in Ŝn−1
± .

Since, for fixed ω ∈ Ω̃, the function g in (5.14) coincides with g˜ in (5.10) (for G = G(ω)) evaluated at

x = 0, while g in (5.15) coincides with g̃ in (5.11) (for G = G(ω)) evaluated at x = 0, by Lemma 5.5, for

every ω ∈ Ω̃ and ζ ∈ Rm0 the restrictions of the functions ν 7→ g(ω, ζ, ν) and ν 7→ g(ω, ζ, ν) to the sets

Ŝn−1
+ and Ŝn−1

− are continuous. Therefore (5.16) and the density of Qn ∩ Sn−1
± in Ŝn−1

± imply that

g(ω, ζ, ν) = g(ω, ζ, ν) for every ω ∈ Ω̃, ζ ∈ Rm0 , and ν ∈ Sn−1, (5.17)

and that the function ω 7→ g(ω, ζ, ν) is T -measurable on Ω̃ for every ζ ∈ Rm0 and ν ∈ Sn−1.
For every ω ∈ Ω, ζ ∈ Rm0 , and ν ∈ Sn−1 we define

ghom(ω, ζ, ν) =

{
g(ω, ζ, ν) if ω ∈ Ω̃,

c4 if ω ∈ Ω \ Ω̃.
(5.18)

By (5.17) we may deduce (5.1) for every ω ∈ Ω̃, ζ ∈ Rm0 , and ν ∈ Sn−1. Moreover, we have proved that

ω 7→ ḡ(ω, ζ, ν) is T -measurable in Ω̃ for every ζ ∈ Rm0 and ν ∈ Sn−1,

(ζ, ν) 7→ ḡ(ω, ζ, ν) is continuous in Rm0 × Ŝn−1
± for every ω ∈ Ω̃.

Therefore the T -measurability of the function ω 7→ g(ω, ζ, ν) in Ω̃ for every ζ ∈ Rm0 and ν ∈ Sn−1

implies that the restriction of g to Ω̃×Rm0 × Ŝn−1
± is measurable with respect to the σ-algebra induced in

Ω̃×Rm0 × Ŝn−1
± by T ⊗Bm⊗Bn

S . This implies the (T ⊗Bm⊗Bn
S)-measurability of ghom on Ω×Rm0 ×Sn−1,

thus showing that ghom satisfies property (c) of Definition 3.5.
Note now that for every ω ∈ Ω the function (x, ζ, ν) 7→ ghom(ω, ζ, ν) defined in (5.18) belongs to the

class G. Indeed, for ω ∈ Ω̃ this follows from Lemma 5.4 while for ω ∈ Ω\ Ω̃ this follows from the definition
of ghom. Thus, ghom satisfies property (d) of Definition 3.5, and this concludes the proof. �

6. Proof of the formula for the surface integrand: the general case

In this section we extend Theorem 5.1 to the case of arbitrary x ∈ Rn, thus concluding the proof of
(3.18). More precisely, we prove the following result.

Theorem 6.1. Let g be a stationary random surface integrand with respect to a group (τz)z∈Zn (resp.
(τz)z∈Rn) of P -preserving transformations on (Ω, T , P ). Then there exist Ω′ ∈ T , with P (Ω′) = 1, and a
random surface integrand ghom : Ω× Rm0 × Sn−1 → R, independent of x, such that

ghom(ω, ζ, ν) = lim
t→+∞

mpc
G(ω)(utx,ζ,ν , Q

ν
r(t)(tx))

r(t)n−1
, (6.1)

for every ω ∈ Ω′, x ∈ Rn, ζ ∈ Rm0 , ν ∈ Sn−1, and for every function r : (0,+∞)→ (0,+∞) with r(t) ≥ t
for t > 0. Moreover, if (τz)z∈Zn (resp. (τz)z∈Rn) is ergodic, then ghom does not depend on ω and

ghom(ζ, ν) = lim
t→+∞

1

r(t)n−1

∫
Ω

mpc
G(ω)(u0,ζ,ν , Q

ν
r(t)(0)) dP (ω). (6.2)

The first step in the proof of the above statement is the following invariance result. In the ergodic case
this implies that the function ghom does not depend on ω (see Corollary 6.3).
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Theorem 6.2. Let g be a stationary random surface integrand with respect to a group (τz)z∈Zn (resp.

(τz)z∈Rn) of P -preserving transformations on (Ω, T , P ), and let Ω̂, Ω̃, and ghom be as in Theorem 5.1.

Then for every z ∈ Zn (resp. z ∈ Rn) we have τz(Ω̂) = Ω̂, P (Ω̃ ∩ τ−z(Ω̃)) = 1, and

ghom(τz(ω), ζ, ν) = ghom(ω, ζ, ν) (6.3)

for every ω ∈ Ω̃ ∩ τ−z(Ω̃), ζ ∈ Rm0 , and ν ∈ Sn−1.

Proof. We prove the theorem when the set of indices is Rn, the other case being easier. To obtain the

equality τz(Ω̂) = Ω̂ it is enough to prove the inclusion τz(Ω̂) ⊂ Ω̂. The opposite one can be obtained by
using the group properties of (τz)z∈Rn .

Let z ∈ Rn, ω ∈ Ω, ζ ∈ Rm0 , and ν ∈ Sn−1 be fixed. Since g is stationary, using (3.8) and a change of
variables for every t > 0 we obtain

mpc
G(τz(ω))(u0,ζ,ν , Q

ν
t (0)) = mpc

G(ω)(uz,ζ,ν , Q
ν
t (z)). (6.4)

For every t > 3|z|, let ut ∈ SBVpc(Qνt (0),Rm) be such that ut = u0,ζ,ν in a neighbourhood of ∂Qνt (0),
and

G(ω)(ut, Q
ν
t (0)) ≤ mpc

G(ω)(u0,ζ,ν , Q
ν
t (0)) + 1. (6.5)

We now modify ut to obtain a competitor for a minimisation problem related to the right-hand side of
(6.4). Noting that Qνt (0) ⊂⊂ Qνt+3|z|(z) we define

vt(y) :=

{
ut(y) if y ∈ Qνt (0),

uz,ζ,ν(y) if y ∈ Qνt+3|z|(z) \Qνt (0).

Clearly vt ∈ SBVpc(Qνt+3|z|(z),Rm) and vt = uz,ζ,ν in a neighbourhood of ∂Qνt+3|z|(z). It is easy to see
that Svt = Sut ∪ Σ1 ∪ Σ2, where

Σ1 :=
{
y ∈ ∂Qνt (0) :

(
y · ν

)(
(y − z) · ν

)
< 0
}

and Σ2 := Πν
z ∩ (Qνt+3|z|(z) \Qνt (0)).

Moreover |[vt]| = |ζ| Hn−1-a.e. on Σ1 ∪ Σ2. Since 3|z| < t, we have Hn−1(Σ1) = 2(n − 1)|z · ν| tn−2 and
Hn−1(Σ2) = (t+ 3|z|)n−1 − tn−1 ≤ 3(n− 1)|z|(t+ 3|z|)n−2 < 2n(n− 1)|z| tn−2. Therefore (g6) gives

G(ω)(vt, Q
ν
t+3|z|(z)) ≤ G(ω)(ut, Q

ν
t (0)) +Mζ,z t

n−2,

where Mζ,z := c5(n− 1)(2 + 2n)|z|(1 + |ζ|). This inequality, combined with (6.5) and with the definition
of mpc

G(ω), gives

mpc
G(ω)(uz,ζ,ν , Q

ν
t+3|z|(z)) ≤ mpc

G(ω)(u0,ζ,ν , Q
ν
t (0)) + 1 +Mζ,z t

n−2.

Using (6.4), with t replaced by t+ 3|z|, from the inequality above we obtain

mpc
G(τz(ω))(u0,ζ,ν , Q

ν
t+3|z|(0)) ≤ mpc

G(ω)(u0,ζ,ν , Q
ν
t (0)) + 1 +Mζ,z t

n−2.

The same inequality, with ω replaced by τz(ω) and z replaced by −z, gives

mpc
G(ω)(u0,ζ,ν , Q

ν
t+3|z|(0)) ≤ mpc

G(τz(ω))(u0,ζ,ν , Q
ν
t (0)) + 1 +Mζ,z t

n−2.

Since tn−1/(t+ 3|z|)n−1 → 1 as t→ +∞, dividing by tn−1 we obtain

lim sup
t→+∞
t∈Q

mpc
G(τz(ω))(u0,ζ,ν , Q

ν
t (0))

tn−1
≤ lim sup

t→+∞
t∈Q

mpc
G(ω)(u0,ζ,ν , Q

ν
t (0))

tn−1
,

lim inf
t→+∞
t∈Q

mpc
G(ω)(u0,ζ,ν , Q

ν
t (0))

tn−1
≤ lim inf

t→+∞
t∈Q

mpc
G(τz(ω))(u0,ζ,ν , Q

ν
t (0))

tn−1
.

By the definition of Ω̂ (see Theorem 5.1), from these inequalities we deduce that, if ω ∈ Ω̂, then τz(ω) ∈ Ω̂
and

lim
t→+∞
t∈Q

mpc
G(τz(ω))(u0,ζ,ν , Q

ν
t (0))

tn−1
= lim
t→+∞
t∈Q

mpc
G(ω)(u0,ζ,ν , Q

ν
t (0))

tn−1
. (6.6)

This gives the desired inclusion τz(Ω̂) ⊂ Ω̂.
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The equality P (Ω̃∩τ−z(Ω̃)) = 1 follows from the fact that τ−z is measure perserving. If ω ∈ Ω̃∩τ−z(Ω̃),

then ω, τz(ω) ∈ Ω̃ and, by (5.1),

ghom(ω, ζ, ν) = lim
t→+∞

mpc
G(ω)(u0,ζ,ν , Q

ν
t (0))

tn−1
,

ghom(τz(ω), ζ, ν) = lim
t→+∞

mpc
G(τ(ω))(u0,ζ,ν , Q

ν
t (0))

tn−1
.

By (6.6) this implies (6.3) for every ω ∈ Ω̃ ∩ τ−z(Ω̃). �

The next result shows that, in the ergodic case, the function ghom is independent of ω.

Corollary 6.3. In addition to the assumptions of Theorem 6.2, suppose that the group (τz)z∈Zn (resp.

(τz)z∈Rn) of P -preserving transformations on (Ω, T , P ) is ergodic. Then there exist a set Ω̃0 ∈ T with

Ω̃0 ⊂ Ω̃ and P (Ω̃0) = 1, and a surface integrand g̃hom ∈ G, independent of x, such that ghom(ω, ζ, ν) =

g̃hom(ζ, ν) for every ω ∈ Ω̃0, ζ ∈ Rm0 , and ν ∈ Sn−1.

Proof. We start by showing that for every ζ ∈ Qm0 and ν ∈ Qn ∩ Sn−1 there exist ĝhom(ζ, ν) ∈ R and a

set Ω̃ζ,ν ∈ T , with Ω̃ζ,ν ⊂ Ω̃ and P (Ω̃ζ,ν) = 1, such that

ghom(ω, ζ, ν) = ĝhom(ζ, ν) for every ω ∈ Ω̃ζ,ν .

To this end we fix ζ ∈ Qm0 and ν ∈ Qn ∩ Sn−1 and for every c ∈ R we define

Eζ,νc := {ω ∈ Ω̃ : ghom(ω, ζ, ν) ≥ c}.

We now show that P (τz(E
ζ,ν
c )4Eζ,νc ) = 0 for every z ∈ Zn (resp. z ∈ Rn). Note that the invariance

follows by showing that ω ∈ τz(Eζ,νc ) for P -a.e. ω ∈ Eζ,νc , the other inclusion being analogous. To see

this, we first observe that for P -a.e. ω ∈ Eζ,νc we have that ω ∈ Eζ,νc ∩ τz(Ω̃). Hence, by (6.3), we have
that τ−zω ∈ Eζ,νc , and equivalently that ω ∈ τz(Eζ,νc ). Since (τz)z∈Zn (resp. (τz)z∈Rn) is ergodic, we can
only have

P (Eζ,νc ) = 0 or P (Eζ,νc ) = 1. (6.7)

Since Eζ,νc1 ⊃ Eζ,νc2 for c1 < c2, by (6.7) there exists c0(ζ, ν) ∈ R such that P (Eζ,νc ) = 0 for c > c0(ζ, ν)

and P (Eζ,νc ) = 1 for c < c0(ζ, ν). It follows that there exists Ω̃ζ,ν ⊂ Ω̃, with P (Ω̃ζ,ν) = 1, such that

ghom(ω, ζ, ν) = c0(ζ, ν) for every ω ∈ Ω̃ζ,ν . (6.8)

We define Ω̃0 as the intersection of all sets Ω̃ζ,ν for ζ ∈ Qm0 and ν ∈ Qn ∩ Sn−1. Then Ω̃0 ⊂ Ω̃ and

P (Ω̃0) = 1. We now fix ω0 ∈ Ω̃0 and define g̃hom(ζ, ν) := ghom(ω0, ζ, ν) for every ζ ∈ Rm0 and every
ν ∈ Qn ∩ Sn−1. By (6.8) we have

ghom(ω, ζ, ν) = g̃hom(ζ, ν) for every ω ∈ Ω̃0, ζ ∈ Qm0 , ν ∈ Qn ∩ Sn−1.

The conclusion now follows from the continuity of (ζ, ν) 7→ ghom(ω, ζ, ν) on Rm0 × Ŝn−1
± obtained in the

proof of Theorem 5.1. �

We now state some classical results from Probability Theory, which will be crucial for the proof of
Theorem 6.1. For every ψ ∈ L1(Ω, T , P ) and for every σ-algebra T ′ ⊂ T , we will denote by E[ψ|T ′] the
conditional expectation of ψ with respect to T ′. This is the unique random variable in L1(Ω, T ′, P ) with
the property that ∫

E

E[ψ|T ′](ω) dP (ω) =

∫
E

ψ(ω) dP (ω) for every E ∈ T ′.

We start by stating Birkhoff’s Ergodic Theorem (for a proof, see, e.g., [29, Theorem 2.1.5]).

Theorem 6.4 (Birkhoff’s Ergodic Theorem). Let (Ω, T , P ) be a probability space, let T : Ω → Ω be
a P -preserving transformation, and let IP (T ) be the σ-algebra of T -invariants sets. Then for every
ψ ∈ L1(Ω, T , P ) we have

lim
k→+∞

1

k

k∑
i=1

ψ(T i(ω)) = E[ψ|IP (T )](ω)

for P -a.e. ω ∈ Ω.

We also recall the Conditional Dominated Convergence Theorem, whose proof can be found in [12,
Theorem 2.7].



18

Theorem 6.5 (Conditional Dominated Convergence). Let T ′ ⊂ T be a σ-algebra and let (ϕk) be a
sequence of random variables in (Ω, T , P ) converging pointwise P -a.e. in Ω to a random variable ϕ.
Suppose that there exists ψ ∈ L1(Ω, T , P ) such that |ϕk| ≤ ψ P -a.e. in Ω for every k. Then E[ϕk|T ′](ω)→
E[ϕ|T ′](ω) for P -a.e. ω ∈ Ω.

We are now ready to prove the main result of this section.

Proof of Theorem 6.1. Let ghom and Ω̃ be as in Theorem 5.1. We will prove the existence of a set Ω′ ∈ T ,

with Ω′ ⊂ Ω̃ and P (Ω′) = 1, such that (6.1) holds for every ω ∈ Ω′.
We only prove (6.1) in the case of a discrete group (τz)z∈Zn . If the set of indices is Rn, the existence

of Ω′ such that (6.1) holds in Ω′ can be proved by considering the restriction of the group to Zn.
In the following, for every z ∈ Zn the sub-σ-algebra of invariant sets for the measure-preserving map

τz is denoted by Iz ⊂ T ; i.e., Iz := {E ∈ T : P (τz(E)4E) = 0}. Also, for given ζ ∈ Rm0 , ν ∈ Sn−1,

η > 0, we define the sequence of events (Eζ,ν,ηj )j∈N as

Eζ,ν,ηj :=
{
ω ∈ Ω̃ :

∣∣∣mpc
G(ω)(u0,ζ,ν , Q

ν
k(0))

kn−1
− ghom(ω, ζ, ν)

∣∣∣ ≤ η for every integer k ≥ j
}
.

We divide the proof into several steps. We use the notation for the integer part introduced in (q),
Section 2.

Step 1. Let us fix z ∈ Zn, ζ ∈ Rm0 , ν ∈ Sn−1, and η > 0. We prove that there exists a set Ω̃ζ,ν,ηz ∈ T ,

with Ω̃ζ,ν,ηz ⊂ Ω̃ and P (Ω̃ζ,ν,ηz ) = 1, satisfying the following property:

for every δ > 0 and every ω ∈ Ω̃ζ,ν,ηz there exists an integer j0 = j0(ζ, ν, η, z, ω, δ) such that

E[χ
E
ζ,ν,η
j0

|Iz](ω) > 1− δ. (6.9)

To prove (6.9) we apply Theorem 5.1 and we obtain

lim
j→+∞

χ
E
ζ,ν,η
j

(ω) = 1 for every ω ∈ Ω̃.

By the Conditional Dominated Convergence Theorem 6.5 there exists a set Ω̃ζ,ν,ηz ∈ T , with Ω̃ζ,ν,ηz ⊂ Ω̃

and P (Ω̃ζ,ν,ηz ) = 1, such that

lim
j→+∞

E[χ
E
ζ,ν,η
j
|Iz](ω) = E[1|Iz](ω) = 1 for every ω ∈ Ω̃ζ,ν,ηz . (6.10)

Given ω ∈ Ω̃ζ,ν,ηz and δ > 0, the existence of j0 satisfying (6.9) follows from (6.10).

Step 2. Let z, ζ, ν, and η be as in Step 1 and let 0 < δ < 1
4
. We prove that there exist a set Ωζ,ν,ηz ∈ T ,

with Ωζ,ν,ηz ⊂ Ω̃ζ,ν,ηz and P (Ωζ,ν,ηz ) = 1, and an integer m0 = m0(ζ, ν, η, z, ω, δ) > 1
δ

satisfying the following
property:

for every ω ∈ Ωζ,ν,ηz and for every integer m ≥ m0 there exists i = i(ζ, ν, η, z, ω, δ,m) ∈ {m+1, . . . ,m+
`}, with ` := b5mδc, such that∣∣∣∣mpc

G(ω)(uiz,ζ,ν , Q
ν
k(iz))

kn−1
− ghom(ω, ζ, ν)

∣∣∣∣ ≤ η for every k ≥ j0, (6.11)

where j0 = j0(ζ, ν, η, z, ω, δ) is the integer introduced in Step 1.
To prove (6.11) we apply Birkhoff Ergodic Theorem 6.4 with ψ := χ

E
ζ,ν,η
j

and T := τz, and we obtain

that there exists a set Ωζ,ν,ηz ∈ T , with Ωζ,ν,ηz ⊂ Ω̃ζ,ν,ηz and P (Ωζ,ν,ηz ) = 1, such that

lim
m→+∞

1

m

m∑
i=1

χ
E
ζ,ν,η
j

(τiz(ω)) = E[χ
E
ζ,ν,η
j
|Iz](ω) (6.12)

for every j ∈ N and every ω ∈ Ωζ,ν,ηz . In particular, for a given ω ∈ Ωζ,ν,ηz , equality (6.12) holds for the
index j0 = j0(ζ, ν, η, z, ω, δ) introduced in Step 1. Therefore, there exists an integer m̂ = m̂(ζ, ν, η, z, ω, δ)
such that

1

m

m∑
i=1

χ
E
ζ,ν,η
j0

(τiz(ω)) > E[χ
E
ζ,ν,η
j0

|Iz](ω)− δ for every m ≥ m̂. (6.13)

Fix now an integer m ≥ m0 := max{2m̂, 2j0, b 1
δ
c+ 1} and set ` := b5mδc. We claim that

there exists i = i(ζ, ν, η, z, ω, δ,m) ∈ {m+ 1, . . . ,m+ `} such that τiz(ω) ∈ Eζ,ν,ηj0
. (6.14)

Suppose, by contradiction, that (6.14) fails. Then, we have

˜̀ := #{i ∈ N, 1 ≤ i ≤ m : χ
E
ζ,ν,η
j0

(τiz(ω)) = 1} = #{i ∈ N, 1 ≤ i ≤ m+ ` : χ
E
ζ,ν,η
j0

(τiz(ω)) = 1}.
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So, (6.13) with m replaced by m+ ` gives

˜̀

m+ `
=

1

m+ `

m+∑̀
i=1

χ
E
ζ,ν,η
j0

(τiz(ω)) > E[χ
E
ζ,ν,η
j0

|Iz](ω)− δ. (6.15)

Therefore, using (6.9) and (6.15) we obtain

δ > E[χ
E
ζ,ν,η
j0

|Iz](ω)−
˜̀

m+ `
= E[χ

E
ζ,ν,η
j0

|Iz](ω)− 1 +
`+m− ˜̀

m+ `
>
`+m− ˜̀

m+ `
− δ. (6.16)

Since m − ˜̀ ≥ 0, from (6.16) we deduce that `(1 − 2δ) < 2mδ. This, using the fact that δ < 1
4
, gives

` < 4mδ. On the other hand, by definition ` = b5mδc ≥ 5mδ − 1 > 4mδ, since m > 1
δ
. This contradicts

the inequality ` < 4mδ and proves (6.14). As a consequence, by the definition of Eζ,ν,ηj0
,∣∣∣∣mpc

G(τiz(ω))(u0,ζ,ν , Q
ν
k(0))

kn−1
− ghom(τiz(ω), ζ, ν)

∣∣∣∣ ≤ η
for every integer k ≥ j0. Since ω ∈ Ωζ,ν,ηz ⊂ Ω̃, and τiz(ω) ∈ Eζ,ν,ηj0

⊂ Ω̃, thanks to (6.3) and (6.4) we get

(6.11).

Step 3. We show that the result we want to prove is true along integers. More precisely, we prove that
there exists Ω′ ∈ T , with Ω′ ⊂ Ω and P (Ω′) = 1, such that

lim
k→+∞
k∈N

mpc
G(ω)(ukz,ζ,ν , Q

ν
mk (kz))

mn−1
k

= ghom(ω, ζ, ν) (6.17)

for every ω ∈ Ω′, z ∈ Zn, ζ ∈ Qm0 , ν ∈ Qn ∩ Sn−1, and for every sequence of integers (mk) such that
mk ≥ k for every k.

To prove this property, we define Ω′ as the intersection of the sets Ωζ,ν,ηz (introduced in Step 2) for

ζ ∈ Qm0 , ν ∈ Qn ∩ Sn−1, η ∈ Q, with η > 0, and z ∈ Zn. It is clear that Ω′ ⊂ Ω̃ and P (Ω′) = 1. Let us fix
ω, z, ζ, ν and (mk) as required. Moreover, let us fix δ > 0, with 20 δ (|z|+ 1) < 1, and η ∈ Q, with η > 0.
Let m0 = m0(ζ, ν, η, z, ω, δ) be as in Step 2. For every k ≥ 2m0 let mk,mk ∈ Z be defined as

mk := mk − 2(ik − k)b|z|+ 1c and mk := mk + 2(ik − k)b|z|+ 1c,

where ik = i(ζ, ν, η, z, ω, δ, k) is the index introduced in Step 2 corresponding to m = k. Clearly mk ≤
mk ≤ mk. Moreover, since |z| < b|z|+ 1c, we have that

Qνmk (ikz) ⊂⊂ Qνmk (kz) ⊂⊂ Qνmk (ikz). (6.18)

Let us now compare the minimisation problems for G(ω) relative to the cubes in (6.18). For every k
let uk ∈ SBVpc(Qνmk (kz),Rm) be such that with uk = ukz,ζ,ν in a neighbourhood of ∂Qνmk (kz) and

G(ω)(uk, Q
ν
mk (kz)) ≤ mpc

G(ω)(ukz,ζ,ν , Q
ν
mk (kz)) + η; (6.19)

thanks to (6.18) the extension of uk defined as

vk(y) :=

{
uk(y) if y ∈ Qνmk (kz),

uikz,ζ,ν(y) if y ∈ Qνmk (ikz) \Qνmk (kz),

belongs to SBVpc(Qνmk (ikz),Rm) and satisfies vk = uikz,ζ,ν in a neighbourhood of ∂Qνmk (ikz). By the

definition of vk it follows that Svk ⊂ Suk ∪ Σ1
k ∪ Σ2

k, where

Σ1
k :=

{
y ∈ ∂Qνmk (kz) :

(
(y−kz) · ν

)(
(y−ikz) · ν

)
< 0
}
,

Σ2
k := Πν

−ikz ∩ (Qνmk (ikz) \Qνmk (kz)).

Moreover |[vk]| = |ζ| Hn−1-a.e. on Σ1
k ∪ Σ2

k. Since 20δ(|z|+ 1) < 1, k ≤ mk, and ik − k ≤ 5kδ by (6.14),
we obtain |kz − ikz| ≤ (ik − k)|z| ≤ 5kδ|z| ≤ 5mkδ|z| < mk

2
. Moreover, mk −mk = 2(ik − k)b|z| + 1c ≤

10kδb|z| + 1c ≤ 10mkδb|z| + 1c < mk
2

, hence mk < 2mk. From the previous inequalities we obtain

Hn−1(Σ1
k) ≤ 10(n− 1)δ|z|mn−1

k and Hn−1(Σ2
k) = mn−1

k −mn−1
k ≤ 5(n− 1)2n−1δb|z|+ 1cmn−1

k . Then by
the growth condition (g6) we have

G(ω)(vk, Q
ν
mk (ikz)) ≤ G(ω)(uk, Q

ν
mk (kz)) + Cζ,zδ m

n−1
k ,

where Cζ,z := c5 5(n− 1)(2 + 2n−1)b|z|+ 1c(1 + |ζ|). This inequality, combined with (6.19) and with the
definition of mpc

G(ω), gives

mpc
G(ω)(uikz,ζ,ν , Q

ν
mk (ikz)) ≤ mpc

G(ω)(ukz,ζ,ν , Q
ν
mk (kz)) + η + Cζ,zδ m

n−1
k . (6.20)
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Thus, dividing all terms in (6.20) by mn−1
k and recalling that mk ≥ mk, we get

mpc
G(ω)(uikz,ζ,ν , Q

ν
mk

(ikz))

mn−1
k

≤
mpc
G(ω)(ukz,ζ,ν , Q

ν
mk (kz))

mn−1
k

+
η

mn−1
k

+ Cζ,zδ. (6.21)

By the definition of mk and since mk ≥ mk, a similar argument yields

mpc
G(ω)(ukz,ζ,ν , Q

ν
mk (kz))

mn−1
k

≤
mpc
G(ω)(uikz,ζ,ν , Q

ν
mk

(ikz))

mn−1
k

+
η

mn−1
k

+ 2Cζ,zδ. (6.22)

Since mk → +∞ as k → +∞ and mk ≥ mk for every k, we have mk ≥ mk ≥ j0 for k large enough,

where j0 = j0(ζ, ν, η, z, ω, δ) is the integer introduced in Step 1. As ω ∈ Ωζ,ν,ηz , gathering (6.11), (6.21),
and (6.22) gives ∣∣∣∣mpc

G(ω)(ukz,ζ,ν , Q
ν
mk (kz))

mn−1
k

− ghom(ω, ζ, ν)

∣∣∣∣ ≤ η +
η

mn−1
k

+ 2Cζ,zδ

for k large enough. We conclude that

lim sup
k→+∞
k∈N

∣∣∣∣mpc
G(ω)(ukz,ζ,ν , Q

ν
mk (kz))

mn−1
k

− ghom(ω, ζ, ν)

∣∣∣∣ ≤ η + 2Cζ,zδ.

Since this inequality holds for every δ > 0, with 20δ(|z|+ 1) < 1, and every η ∈ Q, with η > 0, we obtain
(6.17).

Step 4. We show that (6.1) holds when ζ, and ν have rational coordinates. Namely, given ω ∈ Ω′ (the
set introduced in Step 3), x ∈ Rn, ζ ∈ Qm0 , ν ∈ Qn ∩ Sn−1, and a function r : (0,+∞) → (0,+∞), with
r(t) ≥ t for every t > 0, we prove that (6.1) holds.

To this aim, we fix η > 0. Then there exist q ∈ Qn such that |q − x| < η and h ∈ N such that
z := hq ∈ Zn.

Let (tk) be a sequence of real numbers with tk → +∞ and let sk := tk/h. By the definition of mpc
G(ω) for

every k there exists ûk ∈ SBVpc(Qνr(tk)(tkx),Rm), with ûk = utkx,ζ,ν in a neighbourhood of ∂Qνr(tk)(tkx),
such that

G(ω)(ûk, Q
ν
r(tk)(tkx)) ≤ mpc

G(ω)(utkx,ζ,ν , Q
ν
r(tk)(tkx)) + η. (6.23)

We fix an integer j > 2|z|+ 1 and define rk := br(tk) + 2ηtkc+ j. It is easy to check that

Qνr(tk)(tkx) ⊂⊂ Qνrk (bskcz).

As usual, we can extend ûk to Qνrk (bskcz) as

v̂k(y) :=

{
ûk(y) if y ∈ Qνr(tk)(tkx)

ubskcz,ζ,ν(y) if y ∈ Qνrk (bskcz) \Qνr(tk)(tkx).

Then v̂k ∈ SBVpc(Qνrk (bskcz),Rm) and v̂k = ubskcz,ζ,ν in a neighbourhood of ∂Qνrk (bskcz). By the

definition of v̂k it follows that Sv̂k = Sûk ∪ Σ̂1
k ∪ Σ̂2

k, where

Σ̂1
k :=

{
y ∈ ∂Qνr(tk)(tkx) :

(
(y − tkx) · ν

)(
(y − bskcz) · ν

)
< 0
}
,

Σ̂2
k := Πν

bskcz ∩ (Qνrk (bskcz) \Qνr(tk)(tkx)).

Moreover |[v̂k]| = |ζ| Hn−1-a.e. on Σ̂1
k∪ Σ̂2

k. Since |(tkx−bskcz) · ν| ≤ |tkx− tkq|+ |skz−bskcz| ≤ tkη+ |z|
we have Hn−1(Σ̂1

k) ≤ 2(n−1)r(tk)n−2(tkη+ |z|) and Hn−1(Σ̂2
k) = rn−1

k −r(tk)n−1 ≤ (n−1)(r(tk)+2ηtk+

j)n−2(2ηtk + j). Then by the growth conditions (g6) we have

G(ω)(v̂k, Q
ν
rk (bskcz)) ≤ G(ω)(ûk, Q

ν
r(tk)(tkx)) + Cζ(r(tk) + 2ηtk + j)n−2(2ηtk + j),

where Cζ := 2(n− 1)c5(1 + |ζ|). This inequality, combined with (6.23) and with the definition of mpc
G(ω),

gives

mpc
G(ω)(ubskcz,ζ,ν , Q

ν
rk (bskcz) ≤ mpc

G(ω)(utkx,ζ,ν , Q
ν
r(tk)(tkx)) + η + Cζ(1 + 3η)n−23η r(tk)n−1,

for k large enough so that 2ηtk + j ≤ 3ηr(tk). Dividing all terms of the previous inequality by r(tk)n−1

and recalling that rk ≥ r(tk) we get

mpc
G(ω)(ubskcz,ζ,ν , Q

ν
rk (bskcz)

rn−1
k

≤
mpc
G(ω)(utkx,ζ,ν , Q

ν
r(tk)(tkx))

r(tk)n−1
+

η

r(tk)n−1
+ Cζ(1 + 3η)n−23η.
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Finally, since ω ∈ Ω′, rk ∈ N, z ∈ Zn, and rk ≥ r(tk) ≥ tk ≥ sk ≥ bskc, we can apply (6.17): By taking
first the limit as k → +∞ and then as η → 0+ we obtain

ghom(ω, ζ, ν) ≤ lim inf
k→+∞

mpc
G(ω)(utkx,ζ,ν , Q

ν
r(tk)(tkx))

r(tk)n−1
. (6.24)

A similar argument leads to

lim sup
k→+∞

mpc
G(ω)(utkx,ζ,ν , Q

ν
r(tk)(tkx))

r(tk)n−1
≤ ghom(ω, ζ, ν),

which, combined with (6.24), proves that (6.1) holds for every ω ∈ Ω′, x ∈ Rn, ζ ∈ Qm0 , and ν ∈ Qn∩Sn−1.

Step 5. We conclude the proof. We now extend this result to the general case ζ ∈ Rm0 and ν ∈ Sn−1. To
this end we fix ω ∈ Ω′ and consider the functions g˜(ω, ·, ·, ·) and g̃(ω, ·, ·, ·) defined on Rn ×Rm0 × Sn−1 by

(5.10) and (5.11), with g(·, ·, ·) replaced by g(ω, ·, ·, ·). In view of Step 4 we have

g̃(ω, x, ζ, ν) = g˜(ω, x, ζ, ν) = ghom(ω, ζ, ν) (6.25)

for every x ∈ Rn, ζ ∈ Qm0 , and ν ∈ Qn ∩ Sn−1. By Lemma 5.5 and arguing as in the last part of the proof
of Theorem 5.1, we obtain that (6.25) holds for every x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1. This proves (6.1)
for every ω ∈ Ω′, x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1.

Moreover, if (τz)z∈Zn (resp. (τz)z∈Rn) is ergodic, then by Corollary 6.3 the function ghom does not
depend on ω and (6.2) can be obtained by integrating (5.1) on Ω, and using the Dominated Convergence
Theorem thanks to (5.4). �

Appendix. Measurability issues

The main result of this section is the following proposition, which gives the measurability of the function
ω 7→ mpc

G(ω)(w,A). This property was crucial in the proof of Proposition 5.3.

Proposition A.1. Let (Ω, T̂ , P̂ ) be the completion of the probability space (Ω, T , P ), let g be a random
surface integrand, and let A ∈ A . Let G(ω) be as in (3.2), with g(·, ·) replaced by g(ω, ·, ·, ·). Let w ∈
L0(Rn,Rm) be such that w|A ∈ SBVpc(A,Rm) ∩ L∞(A,Rm), and for every ω ∈ Ω let mpc

G(ω)(w,A) be as

in (3.4), with G replaced by G(ω). Then the function ω 7→ mpc
G(ω)(w,A) is T̂ -measurable.

The main difficulty in the proof of Proposition A.1 is that, although ω 7→ G(ω)(u,A) is clearly T -
measurable, mpc

G(ω)(w,A) is defined as an infimum on an uncountable set. This difficulty is usually solved

by means of the Projection Theorem, which requires the completeness of the probability space. It also
requires joint measurability in (ω, u) and some topological properties of the space on which the infimum
is taken, like separability and metrisability. In our case (see (3.4)) the infimum is taken on the space of
all functions u ∈ L0(Rn,Rm) such that u|A ∈ SBVpc(A,Rm) and u = w near ∂A, and it is not easy to
find a topology on this space with the above mentioned properties and such that (ω, u) 7→ G(ω)(u,A) is
jointly measurable. Therefore we have to attack the measurability problem in an indirect way, extending
(an approximation of) G(ω)(u,A) to a suitable subset of the space of bounded Radon measures, which
turns out to be compact and metrisable in the weak∗ topology.

We start by introducing some notation that will be used later. For every every A ∈ A we denote by
Mb(A,Rm×n) the Banach space of all Rm×n-valued Radon measures on A. This space is identified with

the dual of the space C0(A,Rm×n) of all Rm×n-valued continuous functions on A vanishing on ∂A. For
every R > 0 we set

MR
A := {µ ∈Mb(A,Rm×n) : |µ|(A) ≤ R},

where |µ| denotes the variation of µ with respect to the Euclidean norm on Rm×n. OnMR
A we consider the

topology induced by the weak∗ topology of Mb(A,Rm×n). Before starting the proof of Proposition A.1,
we need two preliminary results.

Lemma A.2. Let (Λ,S) be a measurable space, let A ∈ A , let R > 0, and let h : Λ×A→ R be a bounded
and S ⊗B(A)-measurable function. Let H : Λ×MR

A → R be defined by

H(λ, µ) :=

∫
A

h(λ, x) d|µ|(x). (A.26)

Then H is S ⊗B(MR
A)-measurable.
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Proof. Let H be the set of all bounded, S ⊗ B(A)-measurable functions h such that the function H
defined by (A.26) is S⊗B(MR

A)-measurable. Clearly H is a monotone class (see, e.g., [3, Definition 4.12])
which contains all the functions of the form h(λ, x) = ϕ(λ)ψ(x) with ϕ bounded and S-measurable and
ψ ∈ C0

c (A). Then the functional form of the Monotone Class Theorem (see, e.g., [23, Chapter I, Theorem
21]) implies that H coincides with the class of all bounded and S ⊗B(A)-measurable functions and this
concludes the proof. �

Corollary A.3. Let A ∈ A , let R > 0, and let h : Ω×A×MR
A → R be a bounded and T ⊗B(A)⊗B(MR

A)-
measurable function. Let H : Ω×MR

A → R be defined by

H(ω, µ) :=

∫
A

h(ω, x, µ) d|µ|(x).

Then H is T ⊗B(MR
A)-measurable.

Proof. As a preliminary step, we consider the augmented functional H̃ : Ω×MR
A ×MR

A → R defined by

H̃(ω, ν, µ) :=

∫
A

h(ω, x, ν) d|µ|(x).

By applying Lemma A.2 to H̃, with Λ = Ω×MR
A, λ = (ω, ν), and S = T ⊗B(MR

A), we deduce that H̃
is T ⊗B(MR

A)⊗B(MR
A)-measurable.

The claim then follows by noting that H(ω, µ) = H̃(ω, µ, µ) and by observing that (ω, µ) 7→ (ω, µ, µ)
is measurable for the σ-algebras T ⊗B(MR

A) and T ⊗B(MR
A)⊗B(MR

A). �

We are now ready to give the proof of Proposition A.1.

Proof of Proposition A.1. For every k ∈ N let mk
G(ω)(w,A) be as in (3.6), with G replaced by G(ω). In

view of (3.5), the function ω 7→ mG(ω)(w,A) is T̂ -measurable if

ω 7→ mk
G(ω)(w,A) is T̂ -measurable (A.27)

for k sufficiently large. To prove this property we fix k > ‖w‖L∞(A,Rm) and observe that there is a one-

to-one correspondence between the space of rank one m×n matrices and the quotient of Rm0 × Sn−1 with
respect to the equivalence relation (ζ, ν) ∼ (−ζ,−ν). Therefore, thanks to (g6) and (g7), for every k ∈ N
we can define a bounded T ⊗B(A)⊗Bm×n-measurable function g̃k : Ω×A× Rm×n → R such that

g̃k(ω, x, ζ ⊗ ν) = g(ω, x, ζ, ν) for every ω ∈ Ω, x ∈ A, ζ ∈ Rm0 with |ζ| ≤ 2k, ν ∈ Sn−1.

This implies that

G(ω)(u,A) =

∫
Su∩A

g(ω, x, [u], νu) dHn−1 =

∫
Su∩A

g̃k(ω, x, [u]⊗ νu) dHn−1 (A.28)

for every u ∈ SBV (A,Rm) ∩ L∞(A,Rm) with ‖u‖L∞(A,Rm) ≤ k.

Let α := c5/c4 (1 + 2‖w‖L∞(A,Rm))Hn−1(Sw ∩A) as in Remark 3.4. Given an increasing sequence (Aj)
of open sets, with Aj ⊂⊂ A and Aj ↗ A, we define

X kj := {u ∈ L0(Rn,Rm) : u|A ∈ SBVpc(A,Rm) ∩ L∞(A,Rm), ‖u‖L∞(A,Rm) ≤ k,

Hn−1(Su ∩A) ≤ α, u = w in A \Aj}.

By (3.6) we have

lim
j→+∞

inf
u∈Xkj

G(ω)(u,A) = mk
G(ω)(w,A).

Therefore, to prove (A.27), and hence the T̂ -measurability of ω 7→ mpc
G(ω)(w,A) it is enough to show that

ω 7→ inf
u∈Xkj

G(ω)(u,A) is T̂ -measurable. (A.29)

This will be obtained by using the Projection Theorem. To this end we consider X kj as a topological

space, with the topology induced by the weak∗-topology of BV (A,Rm), which is metrisable on X kj . Indeed

BV (A,Rm) is the dual of a separable space (see [4, Remark 3.12]), and X kj is bounded with respect to

the BV (A,Rm)-norm, since every u ∈ X kj satisfies

‖u‖BV (A,Rm) = ‖u‖L1(A,Rm) + |Du|(A) ≤ kLn(A) + 2kα.

Further, by virtue of Ambrosio’s Compactness Theorem for SBV (A,Rm) (see [4, Theorem 4.8]), the
topological space X kj is compact.
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Let πΩ : Ω×X kj → Ω be the canonical projection of Ω×X kj onto Ω. For every t ∈ R we have{
ω ∈ Ω : inf

u∈Xkj
G(ω)(u,A) < t

}
= πΩ

(
{(ω, u) ∈ Ω×X kj : G(ω)(u,A) < t}

)
.

By the Projection Theorem (see, e.g., [23, Theorem III.13 and 33(a)]), (A.29) follows if we show that

(ω, u) 7→ G(ω)(u,A) is T ⊗B(X kj )-measurable, (A.30)

hence T̂ ⊗B(X kj )-measurable.
To prove this property we shall use (A.28). By a Monotone Class argument (see the proof of Lemma A.2)

we can assume, without loss of generality, that for every ω ∈ Ω and every x ∈ Rn the function ξ 7→
g̃k(ω, x, ξ) is continuous.

In (A.28) it is convenient to express [u]⊗νu and the restriction of Hn−1 to Su by means of the measure
µ := Du. By [4, Theorems 3.77 and 3.78] for every B ∈ B(A) we have

µ(B) =

∫
Su∩B

[u]⊗ νu dHn−1 and |µ|(B) =

∫
Su∩B

|[u]| dHn−1, (A.31)

hence

Hn−1(B) =

∫
Su∩B

1

|[u]| d|µ|. (A.32)

To write (A.28) as a limit of measurable functions, for every µ ∈Mb(A,Rm×n) and ρ > 0 we consider
the measure µρ ∈Mb(A,Rm×n) defined by

µρ(B) :=
µ(B)

ωn−1ρn−1
for every B ∈ B(A),

where ωn−1 is the measure of the unit ball in Rn−1. If u ∈ SBVpc(A,Rm) and µ = Du, by the Besicovich
Derivation Theorem and by the rectifiability of Su (see [4, Theorems 2.22, 2.83, and 3.78]) we deduce from
(A.31) that, when ρ→ 0+,

µρ(Bρ(x) ∩A)→ ([u]⊗ νu)(x) for Hn−1-a.e. x ∈ Su ∩A , (A.33)

|µρ|(Bρ(x) ∩A)→ |[u](x)| for Hn−1-a.e. x ∈ Su ∩A . (A.34)

Since ξ 7→ g̃k(ω, x, ξ) is continuous and bounded uniformly with respect to x, by the Dominated
Convergence Theorem it follows from (A.32), (A.33), and (A.34) that for every u ∈ X kj we have

G(ω)(u,A) = lim
η→0+

lim
ρ→0+

∫
A

g̃k
(
ω, x, µρ(A ∩Bρ(x))

)
max{|µρ|(A ∩Bρ(x)), η} d|µ|(x), (A.35)

with µ := Du. Let R := 2kα. Since the map u 7→ Du from BV (A,Rm) into Mb(A,Rm×n) is continuous
for the weak∗ topologies and the image of X kj under this map is contained in MR

A, the claim in (A.30) is
an obvious consequence of (A.35) and of the following property: for every η > 0 and ρ > 0 the function

(ω, µ) 7→
∫
A

g̃k
(
ω, x, µρ(A ∩Bρ(x))

)
max{|µρ|(A ∩Bρ(x)), η} d|µ|(x) is T ⊗B(MR

A)-measurable. (A.36)

To prove this property we observe that

(x, µ) 7→ |µρ|(A ∩Bρ(x)) is (jointly) lower semicontinuous on A×MR
A . (A.37)

This is a consequence of the equality

|µ|(Bρ(x) ∩A) = sup

{∫
A

ϕ(y − x)dµ(y) : ϕ ∈ C1
c (Bρ(0),Rm×n), |ϕ| ≤ 1

}
and of the (joint) continuity of (x, µ) 7→

∫
A
ϕ(y − x)dµ(y) on A×MR

A.

We also observe that the Rm×n-valued function

(x, µ) 7→ µρ(A ∩Bρ(x)) is B(A)⊗B(MR
A)-measurable. (A.38)

Indeed, given a nondecreasing sequence (ϕj) of nonnegative functions in C1
c (Bρ(0)) converging to 1, we

have

µρ(A ∩Bρ(x)) =
1

ωn−1ρn−1
lim

j→+∞

∫
A

ϕj(y − x)dµ(y) ,
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and each function (x, µ) 7→
∫
A
ϕj(y− x)dµ(y) is (jointly) continuous on A×MR

A. Since g̃k is T ⊗B(A)⊗
Bm×n-measurable, from (A.37) and (A.38) we obtain that

(ω, x, µ) 7→
g̃k
(
ω, x, µρ(A ∩Bρ(x))

)
max{|µρ|(A ∩Bρ(x)), η} is T ⊗B(A)⊗B(MR

A)-measurable,

and (A.36) follows from Corollary A.3. This concludes the proof. �
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