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Abstract

We study a class of integral functionals known as nonlocal perimeters, which, intu-
itively, express a weighted interaction between a set and its complement. The weight is
provided by a positive kernelK , which might be singular.

In the first part of the paper, we show that these functionals are indeed perimeters
in an generalised sense and we establish existence of minimisers for the corresponding
Plateau’s problem; also, when K is radial and strictly decreasing, we prove that halfs-
paces are minimisers if we prescribe “flat” boundary conditions.

AΓ-convergence result is discussed in the second part of the work. We study the lim-
iting behaviour of the nonlocal perimeters associated with certain rescalings of a given
kernel that has faster-than-L1 decay at infinity and we show that the Γ-limit is the clas-
sical perimeter, up to a multiplicative constant that we compute explicitly.
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1 Introduction

In a qualitative way, we might think of the perimeter of a set in the Euclidean space Rd as a
measure of the locus that circumscribes the set itself. This intuition is captured by the ana-
lytical theory of finite perimeters sets in use nowadays, which is grounded on Caccioppoli’s
seminal works and on the ideas developed by De Giorgi in the 1950’s. In a sloppy manner,
we may summarise as follows the gist of this theory: identify a set with its characteristic
function, consider the distributional gradient of the latter and define its total variation as
perimeter of the given set. A fundamental result by De Giorgi and Federer shows that if
we retain this definition the perimeter coincides with the (d − 1)-dimensional Hausdorff
measure of a certain subset of the topological boundary, so that consistency with the naïve
idea is guaranteed. Besides, the class of sets such that their perimeter is finite has good
compactness properties, thus it is possible to tackle various problems that are formulated
in geometric terms via the direct method of calculus of variations; among all the possible
examples of this that could be listed, we cite only Plateau’s problem, because we shall deal
with it later on (see Theorem 2.10).

Going beyond this by now well-established theory, recently several authors have grown
interested in some set functionals that are globally referred to as nonlocal perimeters: for
instance, a prominent case is offered by fractional perimeters that were introduced by Caf-
farelli, Roquejoffre and Savin in [4] and that were later extended and largely investigated
(see for instance [2, 9, 5, 12, 15]). The study of nonlocal perimeters is motivated by both
theory and application, as described in the brief account given by Cinti, Serra and Valdinoci
in [9]. Moreover, although the definition of these functionals might seem distant from De
Giorgi’s one (confront (1.2) and (1.5)), nonlocal perimeters resemble the classical one from
various perspectives. Actually, one can prove that they are indeed perimeters in the sense
proposed in [8], where Chambolle, Morini and Ponsiglione collect some properties that a set
functional should have in order to deserve such label; up to minor changes, the axiomatic
definition they propose is this one:

1.1 - Definition. Let M be the collection of all Lebesgue measurable sets in Rd and let Ω ∈ M
be a fixed set with strictly positive Lebesgue measure. Choose arbitrarily E,F ∈ M . A functional
pΩ : M → [0,+∞] is a perimeter in Ω if

(i) pΩ(∅) = 0;

(ii) pΩ(E) = pΩ(F ) whenever |(E4F ) ∩ Ω| = 0;

(iii) it is invariant under translations, that is pΩ+h(E + h) = pΩ(E) for any h ∈ Rd;

(iv) it is finite on any set that is the closure of an open set with compactC2 boundary;

(v) it is lower semicontinuous w.r.t. L1
loc(Rd)-convergence;

(vi) it is submodular, that is

pΩ(E ∩ F ) + pΩ(E ∪ F ) ≤ pΩ(E) + pΩ(F ). (1.1)

The authors also provide examples of functionals that fit in this framework; naturally,
De Giorgi’s perimeter is one of them, but we also find the functional (2.7), which stands as
an instance of the analysis we carry out here. Indeed, this paper is devoted to the study of
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functionals of the form

PerK(E,Ω) :=

∫
E∩Ω

∫
Ec∩Ω

K(y − x)dydx

+

∫
E∩Ω

∫
Ec∩Ωc

K(y − x)dydx+

∫
E∩Ωc

∫
Ec∩Ω

K(y − x)dydx,

(1.2)

where E and Ω are Lebesgue measurable sets in Rd and K : Rd → [0,+∞] is a Lebesgue
measurable function on which we prescribe suitable conditions.

In Section 2, as a preliminary step, we consider a general interaction functional between
two sets:

LK(E,F ) =

∫
F

∫
E

K(y − x)dydx

and we describe some of its basic properties. We show that, when one of the sets of the
couple has finite classical perimeter the interaction is bounded by the BV norm of that set.
This, combined with the expression ofPerK( · ,Ω) in terms of suitable couplingsLK , comes
in handy to prove that the functional in (1.2) is a perimeter according to Definition 1.1.

Once we know that 1.2 defines a perimeter, in Subsection 2.2 we provide an existence
result for nonlocal minimal surfaces, i.e. sets that minimise PerK( · ,Ω) among all the sets
that coincide with a given one outsideΩ. The proof of this takes into account the extension
of the perimeter functional to measurable functions that range in [0, 1] and it exploits the
convexity of this extension; in turn, convexity relies on the submodularity of Per( · ,Ω) and
on the validity of a generalised Coarea Formula. Moreover, when the perimeter is built from
a radial, strictly decreasing kernel we are able to show thatminimisers for Plateau’s problem
with “flat” boundary conditions are halfspaces.

Section 3 is devoted to aΓ-convergence argument. We letΩ be an open bounded set with
Lipschitz boundary andwe focus on the family of perimeter functionals Jε( · ,Ω) induced by
mass preserving rescalings of a fixed kernelK , that is

Kε(h) :=
1

εd
K

(
h

ε

)
. (1.3)

We are interested in the limiting behaviour of the ratios 1
εJε( · ,Ω); precisely, our intent is

showing that they Γ-converge w.r.t. the L1
loc(Rd)-metric to the classical perimeter in Ω, up

to the multiplicative constant

cK :=
1

2

∫
Rd
K(h) |hd|dh (1.4)

(hd is the last component of the vectorh). Notice that the scaling factor 1
ε is necessary to rule

out trivial conclusions: indeed, we have limε→0 Jε(E,Ω) = 0. For the sake of completeness,
we recall the notion of Γ-convergence:

1.2 - Definition. Let (X,d) be ametric space. The family fε : X → [−∞,+∞] Γ-converges w.r.t.
the metric d to the function f0 : X → [−∞,+∞] as ε→ 0 if

(i) for any x0 ∈ X and for any {xε} ⊂ X such that xε → x0 it holds

f0(x0) ≤ lim inf
ε→0

fε(xε)

(ii) for any x0 ∈ X there exists {xε} ⊂ X such that xε → x0 and

lim sup
ε→0

fε(xε) ≤ f0(x0).
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The proofs of the inferior and of the superior limit inequality have very different na-
tures: in the first case (Subsection 3.3), we use a compactness criterion to reduce the desired
inequality to a density estimate, while in the second (Subsection 3.2)we give a pointwise con-
vergence result and then we conclude by a density lemma. In spite of this diversity, there is
a key point which is shared by the two arguments, namely the possibility of controlling the
rescaled interactions

1

ε

∫
F

∫
E

Kε(y − x)dydx

in the limit ε→ 0: whenE and F do not overlap, Proposition 3.2 shows that asymptotically
these functionals either vanish or they are uniformly bounded, depending on the mutual
position ofE and F .

Before setting off the analysis, we fix the notationwe adopt throughout the paper andwe
premise some reminders about the theory of finite perimeter sets. All the study is carried
out in the vector space Rd, d ≥ 1, endowed with the Euclidean inner product · and the
Euclidean norm | · | . We shall often consider a reference set Ω ⊂ Rd, assuming that it is
open, connected and bounded. When λ > 0, h ∈ Rd and E ⊂ Rd we write λE + h to
denote the set obtained fromE firstly by the dilation of factor λ and then by the translation
byh. For any setE ⊂ Rd,Ec is the complement ofE inRd andχE denotes its characteristic
function, while |E| stands as its d-dimensional Lebesgue measure. We use the symbolsL d

andH d−1 to denote respectively the d-dimensional Lebesgue and the (d− 1)-dimensional
Hausdorff measure. M is the collection of all Lebesgue measurable sets in Rd. We shall
systematically identify sets with their characteristic functions; in particular, by saying that a
sequence {En} converges inL1

loc(Rd) toE wemean that for any compact setC , themeasure
of the intersection (En4E) ∩ C tends to 0 as n diverges. There are two sets that play a
distinguished role in what follows: the halfspace

H :=
{
x = (x1, x2, . . . , xd) ∈ Rd : xd < 0

}
and the open unit cube

U :=

(
−1

2
,

1

2

)d
.

If u is a function, we use the symbols ∇u and Du to denote respectively the classical
and the distributional gradient of u; in particular, Du is a Rd-valued measure. If Ω ⊂ Rd is
open, we say that u is a function of bounded variation when it belongs to L1(Ω) and the total
variation of the distributional gradient |Du| is finite on Ω:

BV(Ω) :=
{
u ∈ L1(Ω) : |Du| (Ω) is finite

}
.

This space can be characterised in terms of the L1-norm of difference quotients:

1.3 - Proposition. Let Ω ⊂ Rd be an open subset. Then, u : Ω → R is a function of bounded
variation in Ω if and only if there exists a constant c ≥ 0 such that for any Ω′ compactly contained
inΩ and for any h ∈ Rd with |h| < dist(Ω′,Ωc) it holds

‖τhu− u‖L1(Ω′) ≤ c |h| ,

where τhu(x) := u(x+ h). In particular, it is possible to choose c = |Du| (Ω).

When E ⊂ Rd is a measurable set such that χE is a function of bounded variation in a
certain reference setΩ, we say thatE has finite perimeter inΩ or that it is a Caccioppoli set in
Ω and we put

Per(E,Ω) := |DχE | (Ω). (1.5)
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To recall the key result by De Giorgi and Federer, let us consider for any x ∈ supp |DχE | the
Radon-Nikodym derivative

n̂(x) :=
dDχE

d |DχE |
(x) = lim

r→0+

DχE(B(x, r))

|DχE | (B(x, r))
;

hereB(x, r) is the open ball of centre x and radius r > 0. We call the set

∂∗E :=
{
x ∈ Rd : n̂(x) exists and has norm 1

}
the reduced boundary ofE and when x ∈ ∂∗E we also say that n̂(x) is the measure theoretic
inner normal toE in x. Now, the cited theorem states that ifE is a measurable set, then ∂∗E
is (d− 1)-rectifiable andDχE = n̂χ∂∗EH d−1 so that

Per(E,Ω) = H d−1(∂∗E ∩ Ω); (1.6)

for this reason we shall call H d−1x∂∗E the perimeter measure of E. In addition, for any
x ∈ ∂∗E there existsRx ∈ SO(d) such that

E − x
r
→ RxH in L1

loc(Rd) as r → 0+. (1.7)

We shall invoke these propertieswhenproving the inferior limit inequality of theΓ-convergence
theorem.

For further details about the theory of functions of bounded variations andfinite perime-
ter sets we refer to the monographs by Ambrosio, Fusco and Pallara [3] and by Maggi [13].
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2 An overview of nonlocal perimeters

2.1 The nonlocal perimeter associated with an integral kernel

Let K : Rd → [0,+∞] be a measurable function and E, F be sets in M ; we define the
nonlocalK-interaction betweenE and F as

LK(E,F ) :=

∫
F

∫
E

K(y − x)dydx.

We can view this functional as the quantity of energy that is stored in the couple of sets
because of the interaction expressed by the kernelK .

Notice that by Tonelli’s Theorem

LK(E,F ) = LK(F,E) =

∫
E×F

K(y − x)dydx,
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thus it is not restrictive to assumeK to be even:

K(h) = K(−h) for any h ∈ Rd. (2.1)

The following facts can be derived in a straightforward manner:

2.1 - Lemma. LetK : Rd → [0,+∞] be a measurable function such that (2.1) is satisfied. Then,

(i) LK ranges in [0,+∞], and it vanishes if one its arguments has zero Lebesgue measure;

(ii) for anyE1, E2, F ∈M , we have

LK(E1, F ) = LK(E2, F ) if |E14E2| = 0 and
LK(E1 ∪ E2, F ) = LK(E1, F ) + LK(E2, F ) if |E1 ∩ E2| = 0;

(iii) for any λ > 0 and h ∈ Rd,

LK(λE + h, F ) = λ2d

∫
E

∫
1
λ (F−h)

K(λ(y − x))dydx;

in particular,LK is left unchanged if both arguments are translated by the same vector;

(iv) the following equality holds:

LK(E,F ) =

∫
Rd
K(h) |E ∩ (F − h)|dh. (2.2)

Onemay askwhen the interactionLK is finite; clearly, the answerheavily depends on the
summability assumptions onK . For instance, let us admit provisionally thatK is L1(Rd);
then, from (2.2) we see that LK(E,F ) is finite as soon as one of either E or F has finite
Lebesgue measure and it holds

LK(E,F ) ≤ ‖K‖L1(Rd) min {|E| , |F |} . (2.3)

Further, assume that the support ofK is contained in a ball of radius r: we get

LK(E,F ) =

∫
{x∈E:dist(x,F )<r}

∫
{y∈F :dist(y,E)<r}

K(y − x)dydx,

which shows that, for each set in the couple, the points that play a major role are the ones
that lie near to the other set; similarly, in the general case, we expect that points that are
separated by a large distance have smaller influence on the total interaction LK . We shall
come back to this point later on, when we consider the behaviour of functionals induced by
mass-preserving rescalings ofK .

From now on, we assume that

K : Rd → [0,+∞) is a measurable even function such that

h 7→ K(h) min {1, |h|} belongs to L1(Rd).
(2.4)

If (2.4) is fulfilled, we are in position to prove that the nonlocal interaction between a couple
of sets is finite provided we have some information on the mutual positions. Indeed, if two
sets overlap on a region of full Lebesgue measure, we cannot expect LK to be finite because
K might not be summable around the origin.
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2.2 - Proposition. Let E and F be sets with strictly positive Lebesgue measure and let us assume
thatE has finite perimeter inRd and that |E ∩ F | = 0. If (2.4) holds, then

LK(E,F ) ≤ c(E)

∫
Rd
K(h) min {1, |h|} dh, (2.5)

where c(E) := max
{
|E| , Per(E)

2

}
.

Proof. Up to Lebesgue negligible sets, F ⊂ Ec; therefore,

LK(E,F ) ≤LK(E,Ec) =
1

2

∫
Rd

∫
Rd
K(h) |χE(x+ h)− χE(x)|dxdh

=
1

2

∫
{|h|<1}

K(h)

∫
Rd
|χE(x+ h)− χE(x)|dxdh

+
1

2

∫
{|h|≥1}

K(h)

∫
Rd
|χE(x+ h)− χE(x)|dxdh;

we estimate the last integral by the triangle inequality, while the assumption that χE is a
function of bounded variation on Rd provides the upper bound∫

Rd
|χE(x+ h)− χE(x)|dx ≤ Per(E) |h|

(recall Proposition 1.3) and hence, on the whole, we get

LK(E,F ) ≤ 1

2
Per(E)

∫
{|h|<1}

K(h) |h|dh+ |E|
∫
{|h|≥1}

K(h)dh.

Now, we use the functional LK to recall the definition of nonlocal perimeter. We firstly
fix a reference set Ω ∈M and, to avoid trivialities, hereafter we always assume that it has
strictly positive measure. Let us define the nonlocal perimeter of a setE ∈M in Ω:

PerK(E,Ω) :=LK(E ∩ Ω, Ec ∩ Ω)

+ LK(E ∩ Ω, Ec ∩ Ωc) + LK(E ∩ Ωc, Ec ∩ Ω);
(2.6)

as a particular case, we set

PerK(E) := PerK(E,Rd) = LK(E,Ec) (2.7)

andwe observe thatPerK(E,Ω) = LK(E,Ec) = PerK(E)whenever |E ∩ Ω | = 0. These
positions rely on the intuitive notion of perimeter that we discussed in the introductory sec-
tion: we attempt to identify the locus that divides a set E from its complement and we do
this by considering suitable K-couplings between E and Ec. On one hand, this is evident
from Definition (2.7), on the other this is true for Definition (2.6) as well, the only difference
being the omission of the interactions that arise inside Ωc. More precisely, one can under-
stand the nonlocal perimeter of a setE inΩ as being made of two contributions: the former
is expressed by the summandLK(E∩Ω, Ec∩Ω) and it encodes the energy that is located in
Ω, while the latter is provided byLK(E∩Ω, Ec∩Ωc)+LK(E∩Ωc, Ec∩Ω) and it captures
the energy that “flows” through the portions of the boundaries that E and Ω share. When
treating the Γ-convergence of the perimeter, we shall see that these different natures give
birth to distinct asymptotics.

We gather here some examples of kernels that fulfil the assumptions in (2.4)
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2.3 - Examples. Of course, perimeters associated to L1 kernels fit into our theory. Outside
this class, a relevant example is given by fractional kernels ([4, 12]), that is

K(h) =
a(h)

|h|d+s
,

where s ∈ (0, 1) and a : Rd → R is a measurable even function such that 0 < m ≤ a(h) ≤
M for any h ∈ Rd for some positivem andM . A third case is represented by the kernels
we shall deal with most of the times in the sequel, namely the functionsK : Rd → [0,+∞)
such that the map h 7→ K(h) |h| is L1; observe that this summability assumption allows
for a fractional-type behaviour near the origin, but it also implies faster-than-L1 decay at
infinity.

By now, the literature concerning nonlocal-perimeter-like functionals is expanding. For
instance, the mentioned class fractional perimeters, i.e.

Pers(E,Ω) :=

∫
E∩Ω

∫
Ec∩Ω

dydx

|y − x|d+s

+

∫
E∩Ω

∫
Ec∩Ωc

dydx

|y − x|d+s
+

∫
E∩Ωc

∫
Ec∩Ω

dydx

|y − x|d+s

has been extensively studied; here, we wish to mention just [4], where existence and regu-
larity of solutions to Plateau’s problem are dealt with, and the papers [5] by Caffarelli and
Valdinoci and [2] by Ambrosio, De Philippis andMartinazzi, where the limiting behaviour as
s → 1− of Pers( · ,Ω) and of the related minimal surfaces are discussed. The analysis for
general kernelsK has been carried out in several directions as well and, as a short selection
of known results, we cite the flatness properties for minimal surfaces in [9], the existence of
isoperimetric profiles established by Cesaroni and Novaga in [6] and the study of nonlocal
curvatures by Mazón, Rossi and Toledo in [14].

We close this Subsection by proving that the functional PerK is a perimeter in the ax-
iomatic sense introduced in [8]. Starting from the properties ofLK that are shown in Lemma
2.1, it is easy to check that statements (i), (ii) and (iii) in Definition 1.1 hold true; in addition,
once one has observed that

PerK(E,Ω) =
1

2

∫
Ω

∫
Ω

K(y − x) |χE(y)− χE(x)|dydx

+

∫
Ω

∫
Ωc

K(y − x) |χE(y)− χE(x)|dydx,

(2.8)

semicontinuity (v) follows by Fatou’s Lemma. To prove submodularity (vi) it suffices to de-
compose the involved sets in a suitable manner: for instance, one can find

LK((E ∪ F ) ∩ Ω, Ec ∩ F c ∩ Ω)

= LK(E ∩ Ω, Ec ∩ Ω) + LK(F ∩ Ω, F c ∩ Ω)

− LK(E ∩ Ω, Ec ∩ F ∩ Ω)− LK(F ∩ Ω, E ∩ F c ∩ Ω)

− LK(E ∩ F ∩ Ω, Ec ∩ F c ∩ Ω)

and

LK(E ∩ F ∩ Ω, (Ec ∪ F c) ∩ Ω)

= LK(E ∩ F ∩ Ω, Ec ∩ F c ∩ Ω)

+ LK(E ∩ F ∩ Ω, Ec ∩ F ∩ Ω) + LK(E ∩ F ∩ Ω, E ∩ F c ∩ Ω),
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so that on the whole one gets

PerK(E,Ω)+ PerK(F,Ω)

= PerK(E ∩ F,Ω) + PerK(E ∪ F,Ω)

+ 2LK(E ∩ F c ∩ Ω, Ec ∩ F ∩ Ω) + 2LK(E ∩ F c ∩ Ω, Ec ∩ F ∩ Ωc)

+ 2LK(E ∩ F c ∩ Ωc, Ec ∩ F ∩ Ω).

Eventually, we are left to show that also (iv) is satisfied.

2.4 - Proposition. Let us assume that (2.4) holds and suppose that Ω is an open set with finite
Lebesgue measure. Then, ifE is a Caccioppoli set inRd,

PerK(E,Ω) ≤ c(E,Ω)

∫
Rd
K(h) min {1, |h|} dh,

where c(E) := max
{

Per(E)
2 , |Ω|

}
. In particular,E has finite nonlocalK-perimeter in Ω as well

andPerK( · ,Ω) is a perimeter in the sense of Definition 1.1.

Proof. The conclusion can be obtained imitating the proof of Proposition 2.2; see also Propo-
sition 2.5.

2.2 Extension to functions and nonlocal minimal surfaces

Of course one is led to consider the perimeter as a geometric property attached to a set;
nevertheless, we know that the classic notion by De Giorgi can be casted in the framework of
functions of bounded variation. Here, we present a construction of the same flavour, whose
aim is extending the functional PerK to functions. This can be achieved in a natural way:
grounding on identity (2.8), we are induced to set for any measurable u : Rd → R

J1
K(u,Ω) :=

∫
Ω

∫
Ω

K(y − x) |u(y)− u(x)|dxdy,

J2
K(u,Ω) :=

∫
Ω

∫
Ωc

K(y − x) |u(y)− u(x)|dxdy and

JK(u,Ω) :=
1

2
J1
K(u,Ω) + J2

K(u,Ω).

(2.9)

We shall refer to JK( · ,Ω) as nonlocalK-energy functional and it can be easily seen that it is
lower semicontinuous w.r.t. L1

loc(Rd)-converge. By a small abuse of notation, we shall write
J iK(E,Ω) for i = 1, 2 and JK(E,Ω) when the functionals are evaluated on the character-
istic function ofE, so that

1

2
J1
K(E,Ω) = LK(E ∩ Ω, Ec ∩ Ω)

J2
K(E,Ω) = LK(E ∩ Ω, Ec ∩ Ωc) + LK(Ec ∩ Ω, E ∩ Ωc) and

PerK(E,Ω) = JK(E,Ω) =
1

2
J1
K(E,Ω) + J2

K(E,Ω).

In view of these equalities, we shall informally say that the functional J1
K( · ,Ω) is the local

contribution to the perimeter, while J2
K( · ,Ω) is the nonlocal one.

In the previous subsection, we gave some heuristic justification to the definition of non-
local perimeter and then we also proved that this object owns certain “reasonable” proper-
ties; amongst them, there is the finiteness of theK-perimeter for regular sets. Actually, if
we suppose that
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C1 Ω is an open, connected and bounded subset ofRd with Lipschitz boundary and that

C2 K : Rd → [0,+∞) is a measurable even function such that the quantity

c′K :=

∫
Rd
K(h) |h|dh is finite, (2.10)

then not only the theory we have developed so far applies, but we can also prove a broader
result involving functions of bounded variation that yields a conclusion which is similar in
spirit to the one of Proposition 2.4.

2.5 - Proposition. Let us assume that conditions C1 and C2 are fulfilled.

(i) IfΩ is convex and u ∈ BV(Ω), then

J1
K(u,Ω) ≤ c′K |Du| (Ω). (2.11)

(ii) If u ∈ C1(Rd) ∩ BV(Rd), then

JK(u,Ω) ≤ c′K
∫
Rd
|∇u| . (2.12)

(iii) If u ∈ BV(Rd), (2.12) holds as well, on condition that one replaces the integral on the
right-hand side with |Du| (Rd).

Proof. Let us firstly assume that Ω is a convex open subset in Rd and that u ∈ BV(Ω). By
the change of variables h = y − x we find

J1
K(u,Ω) =

∫
Rd
K(h)

∫
{x∈Ω:x+h∈Ω}

|u(x+ h)− u(x)|dxdh

and, subsequently, by the characterisation of BV functions recalled in Proposition 1.3,

J1
K(u,Ω) ≤

(∫
Rd
K(h) |h|dh

)
|Du| (Ω),

that is (2.11).
Next, suppose that u ∈ C1(Rd) ∩ BV(Rd); similarly to the previous lines, we infer

JK(u,Ω) ≤
∫
Rd
K(h)

∫
Ω

|u(x+ h)− u(x)|dxdh,

but under the current hypotheses we can no longer localise the points of the segment from
x to x+ h and thus we integrate over the whole space:

JK(u,Ω) ≤
∫
Rd
K(h) |h|dh

∫
Rd
|∇u(ξ)|dξ.

Finally, recall that if u ∈ BV(Rd), then there exist a sequence {un} ⊂ C∞(Rd) ∩
BV(Rd) that converges to u in L1(Rd) and that satisfies

lim
n→∞

∫
Rd
|∇un| = |Du| (Rd).

Also, thanks to L1
loc(Rd)-lower semicontinuity, we deduce the last statement from the sec-

ond by an approximation argument.
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The functional JK and theK-perimeter are further linked by a coarea-type result (see
[9] and also [2, 6, 14] for analogous statements).

2.6 - Proposition (Coarea formula). IfK : Rd → [0,+∞) is measurable, then for any measur-
able function u : Rd → [0, 1]

J1
K(u,Ω) =

∫ 1

0

J1
K({u > t} ,Ω)dt and J2

K(u,Ω) =

∫ 1

0

J2
K({u > t} ,Ω)dt

and hence

JK(u,Ω) =

∫ 1

0

PerK({u > t} ,Ω)dt

Proof. Given x, y ∈ Ω, let us suppose without loss of generality that u(x) ≤ u(y); we con-
sider the function [0, 1] 3 t 7→ χ{u>t}(x)−χ{u>t}(y) and we notice that it is different from
0 exactly when t ∈ [u(x), u(y)]. Consequently,

|u(x)− u(y)| =
∫ 1

0

∣∣χ{u>t}(x)− χ{u>t}(y)
∣∣ dt

and, by Tonelli’s Theorem,

J1
K(u,Ω) :=

∫
Ω

∫
Ω

K(x− y) |u(x)− u(y)|dxdy

=

∫ 1

0

∫
Ω

∫
Ω

K(x− y)
∣∣χ{u>t}(x)− χ{u>t}(y)

∣∣ dxdydt

=

∫ 1

0

J1
K({u > t} ,Ω)dt

In a similar way, one also proves that the equality concerning J2
K(u,Ω) holds.

The validity of coarea formula is crucial for variational purposes. Indeed, it allows to
invoke two abstract results proved in [7] by Chambolle, Giacomini and Lussardi:

2.7 - Theorem. If J : L1(Ω)→ [0,+∞] is a proper lower semicontinuous functional such that

J(u) =

∫ +∞

−∞
J(χ{u>t})dt (2.13)

and that
J(χE∩F ) + J(χE∪F ) ≤ J(χE) + J(χF )

for any couple of measurable sets inΩ, then J is convex.

2.8 - Theorem. Let {Jn}n∈N be a sequence of convex functionals such that (2.13) holds and let us
suppose that there exists a functional J̃ defined on measurable sets of Ω such that the sequence ob-
tainedby restriction of the functionalsJn tomeasurable setsΓ-converges to J̃ w.r.t. theL1-convergence.
Then, the sequence {Jn} Γ-converges to J w.r.t. the same norm if we put

J(u) =

∫ +∞

−∞
J̃(χ{u>t})dt.

11



The latter of the two theorems above is relevant for the discussion contained in Section
3 concerning the limiting properties of nonlocal perimeters. For the moment being, we take
advantage of the former and we infer

2.9 - Corollary. If K : Rd → [0,+∞) is measurable, the functional JK( · ,Ω) is convex on
L1(Rd; [0, 1]).

At this stage, we are in position to solve a Plateau-type problem for nonlocal perime-
ters through the direct method of calculus of variations. Notice that strong convergence of
minimising sequences inL1 is not guaranteed in principle, because a uniform bound on the
nonlocal perimeter is very weak information; for example, if the kernel K is L1 and Ω is
bounded, then any measurable E satisfies PerK(E,Ω) ≤ 3 ‖K‖L1(Rd) |Ω|. We circumvent
this obstacle by making use of convexity, which permits to draw the conclusion from weak
compactness only.

2.10 - Theorem (Existence of solutions to Plateau’s problem). LetK : Rd → [0,+∞) be mea-
surable and let Ω ⊂ Rd be open and bounded. Suppose thatE0 ∈ M has finiteK-perimeter in Ω
and define

F := {F ∈M : PerK(F,Ω) < +∞ and F ∩ Ωc = E0 ∩ Ωc} .

Then, there existsE ∈ F such that

PerK(E,Ω) ≤ PerK(F,Ω) for any F ∈ F .

Also, any minimiser satisfies

LK(E,F ) ≤ LK(Ec ∩ F c, F ) whenever F ⊂ Ec ∩ Ω and (2.14)
LK(Ec, F ) ≤ LK(E ∩ F c, F ) whenever F ⊂ E ∩ Ω (2.15)

Proof. Let us consider a minimising sequence {un} for the more general minimisation prob-
lem

inf
{
JK(v,Ω) : v : Rd → [0, 1], v measurable, JK(v,Ω) < +∞ and v|Ωc = u0

}
,

where u0 := χE0∩Ωc ; notice that the set of competitors is non-empty, because it contains
at least χE0

. We also observe that, for any choice of p ∈ (1,+∞), {un} is bounded in
Lp(Ω; [0, 1]) and therefore there exists u ∈ Lp(Ω; [0, 1]) such that un|Ω weakly converges
to it, up to subsequences. We extend u outside Ω setting u|Ωc = u0 and with this choice we
get

lim
n→∞

JK(un,Ω) ≥ JK(u,Ω).

Indeed, JK is convex and lower semicontinuous w.r.t. strong convergence in L1(Rd; [0, 1])
and hence it is alsoweakly lower semicontinuous inLp(Ω; [0, 1]) for any p ∈ [1,+∞), which
implies immediately lim infn→∞ J1

K(un,Ω) ≥ J1
K(u,Ω); the analogous inequality for the

nonlocal term follows as well noticing that un = u = u0 in Ωc. Hence, u is a minimiser for
JK( · ,Ω).

At this stage, the statement concerning existence is proved once we show that from any
function that minimises JK( · ,Ω) one can recover a set E that minimises PerK( · ,Ω). To
this purpose, we apply the Coarea formula: given that

JK(u,Ω) =

∫ 1

0

PerK({u > t} ,Ω)dt,

12



for some t∗ ∈ (0, 1) it must hold JK(u,Ω) ≥ PerK({u > t∗} ,Ω); then, just set E =
χ{u>t∗}.

Eventually, we prove inequalities (2.14) and (2.15). Suppose thatEminimises the perime-
ter and that F ⊂ Ec ∩Ω; then, the inequalityPerK(E,Ω) ≤ PerK(E ∪F,Ω) holds and we
rewrite it as

LK(E∩Ω, Ec)+LK(E∩Ωc, Ec∩Ω) ≤ LK((E∪F )∩Ω, Ec∩F c)+LK(E∩Ωc, Ec∩F c∩Ω).

We decompose the first term in the left-hand side and we confront the second summands
on each side, getting

LK(E ∩ Ω, F ) + LK(E ∩ Ω, Ec ∩ F c) + LK(E ∩ Ωc, F ) ≤ LK((E ∪ F ) ∩ Ω, Ec ∩ F c)

and therefore we find

LK(E ∩ Ω, F ) + LK(E ∩ Ωc, F ) ≤ LK(F,Ec ∩ F c),

which is (2.14). The other inequality can be proved similarly starting from PerK(E,Ω) ≤
PerK(E ∩ F c,Ω).

We borrowed the proof of optimality conditions from [2, 4], where analogous results are
stated for fractional perimeters; notice that to the validity of (2.14) and (2.15) no restriction
on K is needed. On the contrary, to deduce some extra information on minimisers, still
following the same papers,we shall require that

C3 K̄ : [0,+∞)→ [0,+∞) is ameasurable function and for anyh ∈ Rd,K(h) := K̄(r)
if |h| = r;

C4 K̄ is strictly decreasing.

WhenK satisfies condition C3, the coupling LK is left unchanged by isometries:

LK(R(E), R(F )) =

∫
E

∫
F

K(R(y − x))dydx = LK(E,F ) for any isometryR (2.16)

2.11 - Proposition (Flatness of minimisers). Let us assume that C3 and C4 hold and letE ∈M .

(i) If (2.14) holds forE withΩ = U andH ∩ U c ⊂ E, thenH ⊂ E up to a set of measure
zero.

(ii) If (2.15) holds forE withΩ = U andE ∩ U c ⊂ H , thenE ⊂ H up to a set of measure
zero.

Also, the same statements hold true replacing H by Hc and if E is a minimiser for the problem
inf {PerK(F,U) : F ∩ U c = H ∩ U c}, then, |E4H| = 0.

Proof. Let us provisionally assume that (i) holds both for H and Hc; then (ii) follows. In-
deed, if E fulfils (2.15), then Ec satisfies (2.14) and hence, by applying (i) with Hc, we get
|Hc ∩ U ∩ E| = 0, as desired.

Consequently, ifE is a solution to Plateau’s problem

inf {PerK(F,U) : F ∩ U c = H ∩ U c} ,

by Theorem 2.10, (2.14) and (2.15) hold and thanks to the constraint E ∩ U c = H ∩ U c we
can invoke both (i) and (ii), thus concluding |E4H| = 0.
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Finally, we turn to the proof of (i). The idea is to apply (2.14) with a suitable competitor.
Since we suppose H ∩ U c ⊂ E, F− := H ∩ Ec is contained in Q. Let us put F+ :=
R(F−)∩Ec andF := F−∪F+, whereR(x1, . . . , xd−1, xd) = (x1, . . . , xd−1,−xd). Notice
that F ⊂ Ec ∩ U and hence, taking advantage of (2.16), we have

LK(E,F ) ≤ LK(Ec ∩ F c, F ) = LK(G,R(F )),

whereG := R(Ec ∩F c). F can be decomposed as the disjoint union of F ′ := F− \R(F+)
and F ′′ := F+ ∪R(F+), so that the inequality above becomes

LK(E,F ) ≤ LK(G,R(F ′))) + LK(G,F ′′)

= LK(G,R(F ′))− LK(G,F ′) + LK(G,F ),

that is
LK(E,F )− LK(G,F ) ≤ LK(G,R(F ′))− LK(G,F ′).

We observe that the left-hand side can be rewritten as LK(E ∩Gc, F ), yielding

0 ≤ LK(E ∩Gc, F ) ≤ LK(G,R(F ′))− LK(G,F ′).

Nevertheless, if F ′ is not negligible, the last quantity is always strictly negative because,
for any x ∈ G, |y − x| < |R(y)− x| if y ∈ F ′ ∩ {y : yd 6= 0} and K is a radially strictly
decreasing function; it follows that |F ′| = 0 and either |E ∩Gc| = 0 or |F | = 0. The latter
of these conditions immediately implies the conclusion sinceH ∩ Ec = F− ⊂ F .

Let us assume instead that |E ∩Gc| = 0. We repeat the argument that we have just
outlined above to a perturbation ofE; namely, for any ε > 0, we setEε := E+ (0, 0, . . . , ε)
and we observe thatEε satisfies (2.14) withΩ = Qε := Q+ (0, 0, . . . , ε) and thus also with
Ω = Q̃ε := Qε ∩ R(Qε). We next define F−ε , F

+
ε , Fε, F

′
ε and F

′′
ε in complete analogy with

the sets F−, F+, F, F ′ and F ′′ introduced in the previous lines and we infer that |F ′ε| = 0
and either |Eε ∩Gc

ε| = 0 or |Fε| = 0. The point is that now it holds |Eε ∩Gc
ε| = ∞, thus

Fε in necessarily negligible and |H ∩ Eε| = 0; finally, let ε tend to 0.
Similarly to the lines above, one can prove that the conclusions are not compromised if

H is replaced byHc and in this way the proof is concluded.

We shall exploit the flatness result for minimisers to prove a useful characterisation of
the constant cK appearing in Theorem 3.1, similarly to what is done in [2].

3 Γ-convergence of nonlocal perimeters

In this section we turn to a Γ-convergence result of mass preserving rescalings of the K-
perimeter. Hereafter we assume that C1 and C3 hold. Let us suppose in addition that

C2’ the quantity ∫ +∞

0

K̄(r)rddr is finite.

The combination of C2’ and C3 guarantees that C2 holds as well: indeed, the implication is
trivial when d = 1, while when d ≥ 2

c′K =

∫
Rd
K(h) |h|dh =

∫ +∞

0

∫
∂B(0,r)

K̄(r)rdH d−1(z)dr = dωd

∫ +∞

0

K̄(r)rddr.
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Besides, thanks to radial symmetry, if d ≥ 2, we have the following chain of equalities:∫
Rd
K(h) |hd|dh =

∫ +∞

0

∫
∂B(0,r)

K̄(r) |ed · z|dH d−1(z)dr

=

∫
∂B(0,1)

|ed · z|dH d−1(z)

∫ +∞

0

K̄(r)rddr

=

∫
∂B(0,1)

|ed · z|dH d−1(z)

dωd

∫
Rd
K(h) |h|dh;

thus, recalling (1.4), we have

cK =
α1,d

2
c′K , with α1,d :=

∫
∂B(0,1)

|ed · z|dH d−1(z)

dωd
. (3.1)

Summing up, if we assume the validity of C1, C2’ andC3, then the theory of Section 2 applies,
the only exception being Proposition 2.11, which also requires C4.

In view of the forthcoming analysis, it is convenient to fix some further notation. For
ε > 0 and h ∈ Rd recall position (1.3) and forE,F ∈M let us define the functionals

Lε(E,F ) := LKε(E,F ),

J1
ε (E,Ω) := J1

Kε(E,Ω), J2
ε (E,Ω) := J2

Kε(E,Ω) and

Jε(E,Ω) :=
1

2
J1
ε (E,Ω) + Jε(E,Ω).

Our main goal is proving the following result:

3.1 - Theorem. Let us suppose that C1, C2’ and C3 are fulfilled and letE ∈M ; then,

(i) there exist a family {Eε}ε>0 that converges toE inL
1
loc(Rd) with the property that

lim sup
ε→0

1

ε
Jε(Eε,Ω) ≤ cK Per(E,Ω);

(ii) if C4 holds too, for any family {Eε}ε>0 that converges toE inL
1
loc(Rd),

cK Per(E,Ω) ≤ lim inf
ε→0

1

ε
J1
ε (Eε,Ω).

The functionalsJ2
ε ( · ,Ω) are positive and thus, evidently, the Theorem above implies the

Γ-converge of the ratios 1
εJε( · ,Ω) to cK Per( · ,Ω) w.r.t. the L1

loc(Rd)-distance. The two
contributions J1

ε and J
2
ε that compound the rescaled perimeter functional Jε play different

roles: qualitatively, when ε is small, the former is concentrated near the portions of the
boundary ofE inside Ω, the latter instead gathers around the portions that are close to the
boundary ofΩ; this is made precise by Proposition3.4, which shows that the pointwise limit
and the Γ-limit do not agree in general.

The analogous of Theorem 3.1 for the case of fractional perimeters was established by
Ambrosio, De Philippis and Martinazzi in [2]; notice that, however, the scaling used in that
work is different, even if we can still adopt similar techniques. In particular, following [2]
and the work [1] by Alberti and Bellettini concerned with anisotropic phase transitions, we
prove the lower limit inequality via the strategy introduced by Fonseca and Müller in [11],
which amounts to turn the proof of (ii) into an inequality of Radon-Nikodym derivatives.
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On the other hand, proofs of upper limit inequalities are generally achieved through
density arguments. Here, we avoid this by invoking an approximation result of the total
variation due to Dávila [10], as it is also done by Mazón, Rossi and Toledo in [14].

Combining Theorems 2.8 and 3.1 we obtain a second Γ-convergence result:

3.1 - Corollary. Let us assume that C1, C2’, C3 and C4 hold. If for any measurable u : Rd → [0, 1]
we define the functionals

1

ε
Jε(u,Ω) :=

1

ε
JKε(u,Ω) and J0(u,Ω) := cK |Du| (Ω)

then, as ε approaches 0, the family
{

1
εJε( · ,Ω)

}
Γ-converges to J0( · ,Ω) w.r.t. the L1

loc(Rd) dis-
tance.

3.1 Rescaled nonlocal interactions and compactness

To deal with the proof of Theorem 3.1, we need some preliminary tools. One of them is a
compactness result which appears rather natural in a Γ-convergence framework; a second
one is in fact more related to the peculiarities of our problem and we discuss it in the lines
that follow.

We point out that the functional J1
K( · ,Ω) is not additive on disjoint subsets w.r.t. its

second argument and this missing property accounts exactly for nonlocality. Indeed, if F is
any measurable set and we split the domainΩ in the disjoint regionsΩ∩F andΩ∩F c, for
any measurable u : Ω→ R, we get

J1
K(u,Ω) =J1

K(u,Ω ∩ F ) + J1
K(u,Ω ∩ F c)

+ 2

∫
Ω∩F

∫
Ω∩F c

K(y − x) |u(y)− u(x)|dxdy.
(3.2)

The formula above shows that the energy that is stored in two disjoint sets is smaller than
the energy of their union and that the difference is precisely given by themutual interaction,
which, following the terminology suggested in [1], we shall call locality defect.

When one considers characteristic functions only, it can be easily seen that the locality
defect is the sumof certain nonlocal couplings; hence, we are induced to analyse the limiting
behaviour of nonlocal rescaled interactions. Intuitively, since the kernel K decays fast at
infinity and the operation of rescaling and letting the scaling parameter tend to 0 amounts
to “concentrate” the mass close to the origin, we expect some control of the limit in terms
of the portion of boundary shared by the two interacting sets. The next statement puts this
heuristic picture in precise terms:

3.2 - Proposition (Asymptotic behaviour of nonlocal interactions). Let us consider E,F ∈
M .

(i) If there exists a Caccioppoli setE′ inRd such thatE ⊂ E′ and F ⊂ (E′)c, then

lim sup
ε→0

1

ε
Lε(E,F ) ≤ c′K

2
Per(E′).

(ii) If δ := dist(E,F ) > 0, then

lim
ε→0

1

ε
Lε(E,F ) = 0.
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Proof. To prove the first estimate, we bound the interaction between E and F by means of
the interaction betweenE′ and its complement, that is, the nonlocalKε-perimeter ofE′:

1

ε
Lε(E,F ) ≤ 1

ε

∫
E′

∫
(E′)c

Kε(y − x)dydx

=
1

2ε

∫
Rd

∫
Rd
K(h) |χE′(x+ εh)− χE′(x)|dhdx

≤ 1

2

∫
Rd
K(h) |h|dhPer(E′),

where the last inequality is obtained by Proposition 1.3.
Now, let us suppose that δ := dist(E,F ) > 0. Then

1

ε
Lε(E,F ) ≤ 1

εδ

∫
E

∫
F

Kε(y − x) |y − x|dydx

=
1

δ

∫
E

∫
Rd
K(h) |h|χF (x+ εh)dhdx

and we draw the conclusion applying Lebesgue’s dominated convergence Theorem.

The other tool we mentioned is a compactness criterion. Before stating it, we premise a
Lemma, whose proof consists of direct computations:

3.3 - Lemma. LetG ∈ L1(Rd) be a positive function. Then, for any u ∈ L∞(Rd) it holds∫
Rd×Rd

(G ∗G)(h) |u(x+ h)− u(x)|dhdx ≤ 2 ‖G‖L1(Rd) JG(u,Rd).

In particular, when u is the characteristic function of a measurable setE,∫
Rd×Rd

(G ∗G)(h) |χE(x+ h)− χE(x)|dhdx ≤ 4 ‖G‖L1(Rd) PerG(E). (3.3)

3.2 - Theorem (Compactness criterion). For any n ∈ N, let us consider εn > 0 and a measurable
En ⊂ Ω. If εn → 0 and

1

εn
J1
εn(En,Ω) is uniformly bounded,

there exist a subsequence {Enk} and a setE with finite perimeter inΩ such that {Enk} converges to
E inL1(Ω).

Proof. To avoid inconvenient notation, in what follows we omit the index n and we writeEε
in place ofEn.

The idea is to build a second sequence {vε} that is asymptotically equivalent to {Eε} in
L1(Rd), i.e. ‖vε − χEε‖L1(Rd) = O(ε), but that in addition has better compactness proper-
ties. To this purpose, we consider a positive functionϕ ∈ C∞c (Rd) andwe set vε := ϕε∗χEε ,
where

ϕε(x) :=
1(∫

Rd ϕ(h)dh
)
εd
ϕ
(x
ε

)
.

Notice that any vε is supported in some ballB containing Ω. Easy computations show that∫
Rd
|vε(x)− χEε(x)|dx ≤

∫
Rd

∫
Rd
|ϕε(h)| |χEε(x+ h)− χEε(x)|dhdx (3.4)
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and ∫
B

|∇vε(x)|dx =

∫
Rd
|∇vε(x)|dx

≤
∫
Rd

∫
Rd
|∇ϕε(h)| |χEε(x+ h)− χEε(x)|dhdx

(3.5)

(to get the last bound we took advantage of the equality
∫
Rd |∇ϕε| = 0); we claim that it

is possible to choose ϕ in such a way that (3.4) yields asymptotic equivalence of the two
sequences and that (3.5) provides a uniform bound on the BV-norm of {vε}. If our claim is
true, on one hand, up to extraction of subsequences, vε converges to some v ∈ BV(B) in
L1(B); on the other, this v must be the characteristic function of someE ⊂ Ω, because it is
a L1(Rd) cluster point of χEε . This concludes the proof.

Now let us show that the claim holds. Define the truncation operator

T1(s) :=

{
s if |s| ≤ 1

1 otherwise

and the truncated kernelG := T1◦K ∈ L1(Rd)∩L∞(Rd). We observe that the convolution
G ∗G is positive and continuous and, therefore, we can build a positive ϕ ∈ C∞c (Rd) \ {0}
such that

ϕ ≤ G ∗G and |∇ϕ| ≤ G ∗G. (3.6)

Let us set

Gε(h) :=
1

εd
G

(
h

ε

)
.

With this choice, from (3.4) and (3.5) we obtain∫
Rd
|vε(x)− χEε(x)|dx ≤

∫
Rd

∫
Rd
|Gε ∗Gε(h)| |χEε(x+ h)− χEε(x)|dhdx (3.7)

and ∫
Rd
|∇vε(x)|dx ≤ 1

ε

∫
Rd

∫
Rd
|Gε ∗Gε(h)| |χEε(x+ h)− χEε(x)|dhdx.

Both the right-hand sides of these inequalities can be bounded above by Lemma3.3; we detail
the estimates for (3.7) only, the others being identical. Thanks to (3.3), we have∫

Rd

∫
Rd
|Gε ∗Gε(h)| |χEε(x+ h)− χEε(x)|dhdx

≤ 4 ‖G‖L1(Rd) PerGε(Eε)

≤ 4 ‖G‖L1(Rd) PerKε(Eε)

= 4 ‖G‖L1(Rd)

(
1

2
J1
ε (Eε,Ω) + J2

ε (Eε,Ω)

)
= 4 ‖G‖L1(Rd)

(
1

2
J1
ε (Eε,Ω) + Lε(Eε, E

c
ε ∩ Ωc)

)
and hence, in view of the current hypotheses and of Proposition 3.2, we deduce∫

Rd

∫
Rd
|Gε ∗Gε(h)| |χEε(x+ h)− χEε(x)|dhdx = O(ε),

as desired.
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3.2 Asymptotic behaviour on finite perimeter sets: the upper limit in-
equality

It is possible to describe the asymptotic behaviour of the functional Jε( · ,Ω)when it is eval-
uated on finite perimeter sets. This also provides an insight about the upper limit inequality
that is to be discussed later on in this subsection.

We extend a result by Mazón, Rossi and Toledo contained in [14]: differently from that
work, here we are able to cope also with unbounded domains.

3.4 - Proposition. Let Ω̃ be an open subset ofRd with Lipschitz boundary, not necessarily bounded,
or the whole spaceRd and let conditions C2’ and C3 be satisfied. Then, ifE is a finite perimeter set in
Ω̃ such thatE ∩ Ω̃ is bounded, it holds

lim
ε→0

1

2ε
J1
ε (E, Ω̃) = cK Per(E, Ω̃) (3.8)

and ifE is also a finite perimeter set inRd we have

lim
ε→0

1

ε
J2
ε (E, Ω̃) = cKH d−1(∂∗E ∩ ∂Ω̃). (3.9)

The proof of the analogous result proposed in [14] only relies on the approximation of the
total variation of the gradient of a function by means of weighted integrals of the difference
quotient. Precisely, for ε > 0, consider a collection of positive functions ρ̄ε : [0,+∞) →
[0,+∞) such that

lim
ε→0

∫ +∞

δ

ρ̄ε(r)r
d−1dr = 0 for all δ > 0;

also, define ρε(h) := ρ̄ε(r) whenever h ∈ Rd and |h| = r and assume that∫
Rd
ρε(h)dh = 1.

In [10], Dávila proved the following:

3.3 - Theorem. LetΩ and {ρε}ε>0 be as above. Then, for any u ∈ BV(Ω)

lim
ε→0

∫
Ω

∫
Ω

ρε(y − x)
|u(y)− u(x)|
|y − x|

dydx = α1,d |Du | (Ω). (3.10)

with α1,d as in (3.1).

Proof of Proposition 3.4. Since E ∩ Ω̃ is bounded, there exists an open ball B such that the
closure ofE ∩ Ω̃ is contained inB and in particular dist(E ∩ Ω̃, Bc) > 0. By (3.2),

1

ε
J1
ε (E, Ω̃) =

1

ε
J1
ε (E, Ω̃ ∩B) +

1

ε
Lε(E ∩ Ω̃, Ec ∩ Ω̃ ∩Bc);

and the second summand in the right-hand side is negligible when ε → 0 thanks to Propo-
sition 3.2.

The previous reasoning shows that, as far as J1
ε is concerned, we can always suppose that

Ω̃ is an open and bounded subset with Lipschitz boundary, so that we may invoke Theorem
3.3: if we set

ρε(h) =
α1,d

2cK
Kε(h)

∣∣∣∣hε
∣∣∣∣
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the conclusion of that result reads

lim
ε→0

α1,d

2cKε
J1
ε (E, Ω̃) = α1,d Per(E, Ω̃),

that is (3.8).
To show that (3.9) holds, we consider the nonlocal interaction associated with Kε be-

tweenE andEc and we decompose it according to the partition {Ω̃, Ω̃c}:∫
E

∫
Ec

Kε(y − x)dxdy = J1
ε (E, Ω̃) + J1

ε (E, Ω̃c) + 2J2
ε (E, Ω̃)

since the topological boundary of Ω̃ isL d-negligible, we are allowed to apply (3.8) to each
summand: we obtain

lim
ε→0

1

ε
J2
ε (E, Ω̃) = cK Per(E)− cK Per(E, Ω̃)− cK Per(E, Ω̃c)

and the conclusion follows.

3.5 - Remark. As an immediate corollary of the last result, we get the characterisation

cK = lim
ε→0

1

2ε
J1
ε (H,U). (3.11)

Actually, we shall need further equivalent descriptions of cK , see Lemma 3.8.

Now, we turn to the upper limit inequality. We need to show that whenever E is a mea-
surable set there exists a recovery family {Eε}, i.e. a family that converges toE inL1

loc(Rd)
such that

lim sup
ε→0

1

ε
Jε(Eε,Ω) ≤ cK Per(E,Ω).

First of all, we can assume that E has finite perimeter in Ω, otherwise any family that con-
verges toE is a recovery one. Secondly, let us assume thatE is a Caccioppoli set in thewhole
space Rd; if we retain a transversality condition for E and Ω, that isH d−1(∂∗E ∩ ∂Ω) = 0,
then we can invoke Proposition 3.4 to deduce that the choice Eε = E for all ε > 0 defines
a recovery family. Hence, the proof of statement (i) in Theorem 3.1 is concluded if we show
that the class of finite perimeter sets inRd that are transversal toΩ is dense in energy. This
is the content of the next Lemma:

3.6 - Lemma. Let E be a finite perimeter set in Ω. Then, there exists a family {Eε}ε>0 of sets
with smooth boundaries such that H d−1(∂Eε ∩ ∂Ω) = 0 and that Eε → E in L1

loc(Rd) and
Per(Eε,Ω)→ Per(E,Ω).

Proof. By standard approximation results forfinite perimeter sets, there exists a family{Fε}ε>0

of open setswith smoothboundaries such thatFε converges toE inL1(Rd) and thatPer(Fε, Ω̄)
converges to Per(E,Ω). Also, notice that in the family

Fε,t := {x : dist(x, Fε)− dist(x, F c
ε ) ≤ t}

there must be someEε := Fε,t∗ which is smooth, transversal toΩ and close to Fε in L1 and
in perimeter.
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3.3 Density estimates: the lower limit inequality

Let us focus on the proof of statement (ii) in Theorem 3.1. Given E ∈ M and any family
{Eε}ε>0 that converges toE in L

1
loc(Rd), we want to show that

cK Per(E,Ω) ≤ lim inf
ε→0

1

2ε
J1
ε (Eε,Ω). (3.12)

Observe that we can assume that the right-hand side is finite, otherwise the inequality holds
trivially, and that the lower limit is a limit. Therefore, the ratios 1

εJ
1
ε (Eε,Ω) are bounded

and, in view of Theorem 3.2,E is a Caccioppoli set in Ω.
The first step of the approach à la Fonseca-Müller amounts to reducing the proof of (3.12)

to the validity of a suitable density estimate. To this aim, we introduce a family of positive
measures such that the total variation onΩ of each of them is equal to 1

2εJ
1
ε (Eε,Ω). Namely,

when x ∈ Ω, let us set

fε(x) :=


1

2ε

∫
Ec
ε∩Ω

Kε(y − x)dy if x ∈ Eε

1

2ε

∫
Eε∩Ω

Kε(y − x)dy if x ∈ Ec
ε

and νε := fε L dxΩ. In this way,

‖νε‖ := |νε| (Ω) =
1

2ε
J1
ε (Eε,Ω);

since the right-hand side in the latter equality is uniformly bounded w.r.t. ε, we deduce that
there exists a finite positive measure ν on Ω such that νε ⇀∗ ν as ε→ 0 and hence

lim inf
ε→0

‖νε‖ ≥ ‖ν‖ .

Because of the inequality above, the conclusion (3.12) follows if we prove that

‖ν‖ ≥ cK Per(E,Ω); (3.13)

recalling (1.6), if we denote by µ the perimeter measure of E, we see that (3.13) in turn is
implied by

dν

dµ
(x) ≥ cK for µ-a.e. x ∈ Ω, (3.14)

where the left-hand side is the Radon-Nikodym derivative of ν w.r.t. µ. Summing up, the
proof is concluded if we show that (3.14) holds. This can be done by recovering at first a
“natural” bound for the derivative (Lemma3.7) and then byproving that this bound is indeed
the desired one (Lemmma 3.8).

3.7 - Lemma. Keeping the assumptions and the notation above, it holds

dν

dµ
(x) ≥ bK for every x ∈ ∂∗E ∩ Ω.

where

bK = inf

{
lim inf
ε→0

1

2ε
J1
ε (Eε, U) : Eε → H inL1(U)

}
. (3.15)
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Proof. Let us fix x ∈ ∂∗E. By (1.6), we have

dν

dµ
(x) = lim

r→0

ν(Q(x, r))

rd−1
,

whereQ(x, r) := x+ rRxU andRx is chosen as to satisfy (1.7). Also, since the sequence νε
weakly-∗ converges to ν, we have that ν(Q(x, r)) = limε→0 νε(Q(x, r)) for all r > 0 except
at most a countable set Z and hence

dν

dµ
(x) = lim

r→0,r /∈Z

[
lim
ε→0

νε(Q(x, r))

rd−1

]
.

Via a diagonal process, it is possible to choose two sequences {εn} and {rn} such that

lim
n→∞

rn = lim
n→∞

εn
rn

= 0

and that
dν

dµ
(x) = lim

n→∞

νεn(Q(x, rn))

rd−1
n

,

or, explicitly,

dν

dµ
(x) = lim

n→∞

1

2εnr
d−1
n

[∫
Eεn∩Q(x,rn)∩Ω

∫
Ec
εn
∩Ω

Kεn(y − x)dydx

+

∫
Ec
εn
∩Q(x,rn)∩Ω

∫
Eεn∩Ω

Kεn(y − x)dy.dx

]

From this equality we infer the lower bound

dν

dµ
(x) ≥ lim sup

n→∞

1

2εnr
d−1
n

J1
εn(Eεn , Q(x, rn) ∩ Ω)

= lim sup
n→∞

1

2εnr
d−1
n

J1
εn(Eεn , Q(x, rn))

(when rn is small enough,Q(x, rn) ⊂ Ω); moreover, by means of a change of variables and
(2.16), we find

J1
εn(Eεn , Q(x, rn)) = rdnJ

1
εn
rn

(
R−1
x

(
Eεn − x
rn

)
, U

)
and this, plugged in the last inequality, yields

dν

dµ
(x) ≥ lim sup

n→∞

rn
2εn

J1
εn
rn

(
R−1
x

(
Eεn − x
rn

)
, U

)
.

Now, thanks to our choice ofRx we have that

R−1
x

(
Eεn − x
rn

)
→ H in L1(U) as n→∞,

and by definition of bK we conclude.

To accomplish the proof of the inferior limit inequality in Theorem 3.1 we have to show
that cK = bK . Imitating the approach of [2], we do this by introducing a third constant b′K :
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3.8 - Lemma. For any δ > 0, setU δ := {x ∈ U,dist(x, U c) ≤ δ} and

b′K := inf

{
lim inf
ε→0

1

2ε
J1
ε (Eε, U) : Eε → H inL1(U) andEε ∩ U δ = H ∩ Uδ

}
.

Under the previous assumptions, cK = b′K = bK .

Because of (3.11), one clearly has cK ≥ b′K ≥ bK . The conclusion of Lemma 3.8 follows if
we prove that the reverse inequalities hold aswell; this can be achieved invoking Proposition
2.11 and the next result, which extends a similar one proved in [2] for s-perimeters:

3.9 - Proposition (Gluing). Let us considerE1, E2 ∈M and δ1, δ2 ∈ R such that δ1 > δ2 > 0.
For δ > 0, we set

Ωδ := {x ∈ Ω : dist(x,Ωc) ≤ δ} .

If J1
K(Ei,Ω) is finite for both i = 1, 2, then there exists F ∈M such that

(i) F ∩ (Ω \ Ωδ1) = E1 ∩ (Ω \ Ωδ1) and F ∩ Ωδ2 = E2 ∩ Ωδ2 ;

(ii) |(E14F ) ∩ Ω| ≤ |(E14E2) ∩ Ω|;

(iii) for all η > 0:

J1
ε (F,Ω) ≤J1

ε (E1,Ω) + J1
ε (E2,Ω

δ1+η) +
2εc′K
δ1 − δ2

| (E14E2) ∩ Ω |

+
2ε

η

∫
Ω\Ωδ1+η

∫
Rd
K(h) | h |χΩδ1 (x+ εh)dhdx.

(3.16)

Proof. Suppose that for some function w : Ω→ [0, 1] it holds

J1
ε (w,Ω) ≤J1

ε (E1,Ω) + J1
ε (E2,Ω

δ1+η) +
2εc′K
δ1 − δ2

| (E14E2) ∩ Ω |

+
2ε

η

∫
Ω\Ωδ1+η

∫
Rd
K(h) | h |χΩδ1 (x+ εh)dhdx;

(3.17)

then, thanks to Coarea formula there exists t∗ ∈ (0, 1) such that (3.16) holds for the super-
level F := {w > t∗}. Let us exhibit a function w that fulfils (3.17).

Loosely speaking, we choose w to be a convex combination of the data χE1
and χE2

.
Precisely, for any u, v : Ω → [0, 1] such that J1

K(u,Ω) and J1
K(v,Ω) are finite, let us set

w := ϕu+ (1− ϕ)v, where ϕ ∈ C∞c (Rd) satisfies

0 ≤ ϕ ≤ 1 in Ω, ϕ = 0 in Ωδ2 , ϕ = 1 in Ω \ Ωδ1 and |∇ϕ| ≤ 2

δ1 − δ2
.

We explicit the integrand appearing in J1
K(w,Ω) and for x, y ∈ Ω we get the bounds

| w(y)− w(x) | ≤ϕ(y) | u(y)− u(x) |+ (1− ϕ(y)) | v(y)− v(x) |
+ | ϕ(y)− ϕ(x) | | v(x)− u(x) |

≤χ{ϕ6=0}(y) | u(y)− u(x) |+ χ{ϕ6=1}(y) | v(y)− v(x) |
+ | ϕ(y)− ϕ(x) | | v(x)− u(x) | .
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By our choice of ϕ, {ϕ 6= 0} ⊂ Ω \ Ωδ2 and {ϕ 6= 1} ⊂ Ωδ1 , therefore

J1
ε (w,Ω) ≤

∫
Ω

∫
Ω\Ωδ2

Kε(y − x) | u(y)− u(x) |dydx

+

∫
Ω

∫
Ωδ1

Kε(y − x) | v(y)− v(x) |dydx

+

∫
Ω

∫
Ω

Kε(y − x) | ϕ(y)− ϕ(x) | | v(x)− u(x) |dydx

We treat each of the integrals appearing in the right-hand side separately. Of course one has∫
Ω

∫
Ω\Ωδ2

Kε(y − x) | u(y)− u(x) |dydx ≤ J1
ε (u,Ω). (3.18)

To estimate the second integral, we split the reference set Ω in the regions Ωδ1+η and Ω \
Ωδ1+η and this yields∫

Ω

∫
Ωδ1

Kε(y − x) | v(y)− v(x) |dydx =∫
Ωδ1+η

∫
Ωδ1

Kε(y − x) | v(y)− v(x) |dydx

+

∫
Ω\Ωδ1+η

∫
Ωδ1

Kε(y − x) | v(y)− v(x) |dydx;

evidently ∫
Ωδ1+η

∫
Ωδ1

Kε(y − x) | v(y)− v(x) |dydx ≤ J1
ε (v,Ωδ1+η)

and, further, ∫
Ω\Ωδ1+η

∫
Ωδ1

Kε(y − x) | v(y)− v(x) |dydx

≤2ε

η

∫
Ω\Ωδ1+η

∫
Ωδ1

Kε(y − x)
| y − x |

ε
dydx

≤2ε

η

∫
Ω\Ωδ1+η

∫
Rd
K(h) | h |χΩδ1 (x+ εh)dhdx,

so that, all in all,∫
Ω

∫
Ωδ1

Kε(y − x) | v(y)− v(x) |dydx

≤J1
ε (v,Ωδ1+η) +

2ε

η

∫
Ω\Ωδ1+η

∫
Rd
K(h) | h |χΩδ1 (x+ εh)dhdx.

(3.19)

Lastly, we observe that

| ϕ(y)− ϕ(x) | ≤ 2

δ1 − δ2
| y − x |

and hence∫
Ω

∫
Ω

Kε(y − x) | ϕ(y)− ϕ(x) | | v(x)− u(x) |dydx ≤ 2εc′K
δ1 − δ2

∫
Ω

| v(x)− u(x) |dx

(3.20)
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Combining (3.18), (3.19) and (3.20) we obtain

J1
ε (w,Ω) ≤J1

ε (u,Ω) + J1
ε (v,Ωδ1+η) +

2εc′K
δ1 − δ2

‖v − u‖L1(Ω)

+
2ε

η

∫
Ω\Ωδ1+η

∫
Rd
K(h) | h |χΩδ1 (x+ εh)dhdx;

thus, if we pick u = χE1 and v = χE2 we have (3.17).
It remains to check that conditions (i) and (ii) hold true for the set F defined above. As

for the former, it suffices to recall thatϕ is supported inΩ\Ωδ2 and that it is constantly 1 in
Ω \Ωδ1 . On the other hand, to prove the second condition we remark that x ∈ E1 ∩F c and
x ∈ Ec

1∩F imply respectively the equalitiesw(x) = ϕ(x)+(1−ϕ(x))χE2(x) ≤ t < 1 and
w(x) = (1− ϕ)χE2(x) > t > 0, which in turn entail x ∈ E1 ∩ Ec and x ∈ Ec

1 ∩ E2.

Proof of Lemma 3.8. We firstly show that cK ≤ b′K . Choose arbitrarily δ > 0 and consider a
family {Eε} such that Eε → H in L1(U) and Eε ∩ U δ = H ∩ Uδ . We may extend each Eε
outside the unit cube putting Eε ∩ U c = H ∩ U c. Then, we invoke the third statement of
Corollary 2.11 to infer Jε(H,U) ≤ Jε(Eε, U), which gets

1

2ε
J1
ε (H,U) ≤ 1

2ε
J1
ε (Eε, U) +

1

ε

(
J2
ε (Eε, U)− J2

ε (H,U)
)
.

The desired inequality follows if we show that the second summand in the right-hand side
vanishes as ε tends to 0. To this aim, we exploit our information about {Eε}, which provides
the equalities

J2
ε (Eε, U)− J2

ε (H,U)

=Lε(Eε ∩ U,Hc ∩ U c) + Lε(H ∩ U c, Ec
ε ∩ U)

− Lε(H ∩ U,Hc ∩ U c)− Lε(H ∩ U c, Hc ∩ U)

=Lε(Eε ∩ (U \ Uδ), Hc ∩ U c) + Lε(H ∩ U c, Ec
ε ∩ (U \ Uδ))

− Lε(H ∩ (U \ Uδ), Hc ∩ U c)− Lε(H ∩ U c, Hc ∩ (U \ U δ));

and from this, in view of Proposition 3.2, the claim is proved.
Now, we show that b′K ≤ bK . We let {Eε} be such thatEε → H inL1(U) as ε approaches

0 and, without loss of generality, that J1
ε (Eε, U) is finite. For any ε, we apply Proposition 3.9

to Eε andH and this yields a family {Fε} with the properties that it L1-converges toH in
U , that Fε ∩ U δ = H ∩ Uδ and that for any η > 0

1

2ε
J1
ε (Fε, U) ≤ 1

2ε
J1
ε (Eε, U) +

1

2ε
J1
ε (H,U δ+η) +

2c′K
η
| (Eε4H) ∩ U |

+
1

η

∫
U\Uδ1+η

∫
Rd
K(h) | h |χUδ1 (x+ εh)dhdx.

We notice that in view of (3.8) it holds

lim
ε→0

1

2ε
J1
ε (H,U δ+η) = cK Per(H,U δ+η)

and consequently, taking the limit as ε→ 0, we get

b′K ≤ lim inf
ε→0

1

2ε
J1
ε (Fε, U)

≤ lim inf
ε→0

1

2ε
J1
ε (Eε, U) + cK Per(H,U δ+η);
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next, we let η and δ vanish and, eventually, we take advantage of the arbitrariness of the
family {Eε} to conclude.

3.10 - Remark (Outlook). The Γ-convergence result of Theorem 3.1 might be extended to different
classes of kernels. The first step would be dropping the assumption of strict monotonicity; this entails
the use of a different strategy for the proof of the Γ-inferior limit inequality, but the same conclusions
would hold. Similarly, we expect an analogous result without the radial symmetry hypothesis; never-
theless, ifK is anisotropic, De Giorgi’s perimeter has to be replaced with the functional∫

∂∗E

σK(n̂(z))dH d−1,

where the function σK : ∂B(0, 1) → R is a weight that depends onK and that corresponds to the
constant cK appearing in this paper, see the analysis carried out in [1] for “localised” functionals.

The cases whenK changes sign or when it is substituted by a Radon measure µ are also possible
subjects of further study, but the conclusions of Theorem 3.1 might be affected..

Finally, it would be interesting to obtain a Γ-convergence result for multi-phase systems, i.e. for
functionals of the form

Jε(E1, . . . , EN ) :=
∑

0≤i<j≤N

ai,jLε(Ei, Ej),

where E1, . . . , EN are measurable sets such that |Ei | > 0 and |Ei ∩ Ei | = 0 for any i, j =

1, . . . , N ,E0 := (
⋃N
i=1Ei)

c and the coefficientsai,j are positive and they satisfyai,j ≤ ai,k+ak,j
for every i, j, k = 0, . . . , N . As a particular instance, if for any i = 0, . . . , N there exists ai ≥ 0
such that ai = ai,j for all j 6= i, we get

Jε(E1, . . . , EN ) =
1

2

N∑
i=0

aiJε(Ei,Rd);

in this case, it easy to recover a Γ-convergence result from the theory we developed in this paper.
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