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Introduction

Dans les derniers dix ans, l’intéresse pour les espaces métriques mesurés est augmenté de
manière considérable, comme témoigné par la littérature riche et florissante. Pour une liste
non exhaustive des résultats les plus importants sur le sujet, le lecteur peut s’adresser à [87],
[115], [116], [60], [6], [7], [58], [8], [105], [106], [61], [55], [57], [73], [10], [98], [26], [25]. Les
points de départ de cette recherche si active et prospère ont été les travaux-phare [87] et
[115], [116], qui ont lié pour la première fois des bornes inférieures sur la courbure de Ricci
sur des espaces métriques mesurés à des propriétés de fonctionnelles de type ‘entropie’ en
connexion avec la géométrie de l’espace de Wasserstein. Successivement ([6]) on s’est aperçu
que l’analyse de Sobolev est aussi associée à la géométrie Wasserstein et donc, en construisant
sur ces considérations, la définition originelle d’espace CD à la Lott-Sturm-Villani a evolué
vers celle d’espace RCD ([7], [58]).

Un exemple de lien entre l’analyse de Sobolev et la géométrie de l’espace de Wasserstein
est donné par l’énoncé suivant, montré dans [55] :

Theorem 0.0.1 (Formule de dérivation du premier ordre). Soient

- (X, d,m) un espace RCD(K,∞), avec K ∈ R

- (µt) une géodésique Wasserstein constituée par des mesures à support borné telles que
µt ≤ Cm pour tout t ∈ [0, 1] et une certaine constante C > 0

- f ∈W 1,2(X).

Alors la fonction

[0, 1] 3 t 7→
ˆ
f dµt

est C1 et l’identité suivante est satisfaite

d

dt

ˆ
f dµt|t=0

= −
ˆ

df(∇ϕ) dµ0,

où ϕ est un potentiel de Kantorovich localement lipschitzien de µ0 à µ1.

Rappelons que sur un espace RCD(K,∞) toute géodésique Wasserstein (µt) entre deux
mesures à support et densité bornés a elle-même densité bornée de manière uniforme, c’est
à dire µt ≤ Cm pour tout t ∈ [0, 1] et une certaine constante C > 0 ([106]), de sorte que le
théorème implique l’existence de plusieurs fonctions C1 sur les espaces RCD. Il est important
de remarquer que la régularité C1 - qui a été crucial dans [55] – n’est pas du tout triviale,
même si la fonction f est supposée lipschitzienne. En plus, les énoncés concernant la régularité
C1 sont assez rares en géométrie métrique.

vii



viii INTRODUCTION

Le Théorème 0.0.1 peut être vu comme une version intégrée de la formule de base

d

dt
f(γt)|t=0

= df(γ′0)

qui est valable dans le cadre lisse ; d’un point de vue strictement technique, la preuve de cette
affirmation est liée au fait que la géodésique (µt) résout l’équation de continuité

(0.0.1)
d

dt
µt + div(∇(−ϕt)µt) = 0,

où les ϕt sont des choix convenables de potentiels de Kantorovich (voir aussi [59] dans cette
direction).

Dans [56], Gigli a développé le calcul du deuxième ordre sur les espaces RCD, en définissant
en particulier l’espace H2,2(X) et, pour toute fonction f ∈ H2,2(X) la Hessienne Hess(f), voir
[56] et la section préliminaire de la thèse (Section 1.2). Il est ensuite naturel de se poser la
question si une version ‘intégrée’ de la formule de dérivation du deuxième ordre

d2

dt2
f(γt)|t=0

= Hess(f)(γ′0, γ
′
0) pour toute géodésique γ

est satisfaite dans ce contexte. Dans ce manuscrit, et plus précisément dans le Chapitre 7,
on donne une réponse affirmative à cette question et le résultat les plus important que l’on
établira est le suivant.

Theorem 0.0.2 (Formule de dérivation du deuxième ordre). Soient

- (X, d,m) un espace RCD∗(K,N), avec K ∈ R et N <∞

- (µt) une géodésique Wasserstein telle que µt ≤ Cm et µt a support compact pour tout
t ∈ [0, 1] et une certaine constante C > 0

- f ∈ H2,2(X).

Alors la fonction

[0, 1] 3 t 7→
ˆ
f dµt

est C2 et l’identité suivante est satisfaite

(0.0.2)
d2

dt2

ˆ
f dµt|t=0

=

ˆ
Hess(f)(∇ϕ,∇ϕ) dµ0,

où ϕ est un potentiel de Kantorovich de µ0 à µ1.

Le lecteur peut voir aussi le Théorème 7.1.2 pour une formulation alternative mais tout à
fait équivalente du résultat. Ce résultat a été prouvé en premier lieu dans [63] sous l’hypothèse
supplémentaire de compacité, mais comme l’on expliquera dans la suite cette supposition peut
être ôtée par le biais de techniques de localisation. Par contre, l’hypothèse de dimension finie
joue un rôle clé, parce que par exemple on invoque à plusieurs reprises l’inégalité de Li-Yau.

Avoir à disposition une telle formule de dérivation du deuxième ordre, c’est intéressant
non seulement d’un point de vue purement théorique, mais aussi pour les applications dans
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l’étude de la géométrie des espaces RCD. Par exemple, les preuves des théorèmes de splitting
et ‘from volume cone to metric cone’ peuvent être simplifiées à l’aide de cette formule. En
plus, un aspect de la théorie des espaces RCD qui n’est pas encore clair est le suivant : est-ce
que leur dimension est constante ? Pour les espaces qui sont des ‘Ricci limits’ la réponse est
connue et positive, grâce au résultat de Colding-Naber [32], qui utilise de manière cruciale
la dérivation du deuxième ordre le long des géodésiques. Donc, notre résultat est nécessaire
afin de répliquer la preuve de Colding et Naber dans le cadre non lisse (toutefois, il n’est
pas suffisant : ils utilisent aussi des techniques de calcul avec les champs de Jacobi qui, pour
l’instant, n’admettent pas encore des analogues non lisses).

Stratégie de la preuve

Le point de départ est une formule de dérivation du deuxième ordre obtenue dans [56], valable
sous certaines hypothèse de régularité :

Theorem 0.0.3. Soit (µt) une courbeW2-absolument continue solution de l’équation de conti-
nuité

d

dt
µt + div(Xtµt) = 0,

pour un certain champ de vecteurs (Xt) ⊂ L2(TX) au sens suivant : pour toute f ∈ W 1,2(X)
la fonction t 7→

´
f dµt est absolument continue et l’identité

d

dt

ˆ
f dµt =

ˆ
〈∇f,Xt〉 dµt

est vérifiée. Supposons que

(i) t 7→ Xt ∈ L2(TX) est absolument continue,

(ii) supt{‖Xt‖L2 + ‖Xt‖L∞ + ‖∇Xt‖L2} < +∞.

Alors pour toute f ∈ H2,2(X) la fonction t 7→
´
f dµt est C1,1 et la formule

(0.0.3)
d2

dt2

ˆ
fdµt =

ˆ
Hess(f)(Xt, Xt) +

〈
∇f, d

dtXt +∇XtXt

〉
dµt

est satisfaite pour p.t. t ∈ [0, 1].

Si les champs de vecteurs Xt sont du type gradient, c’est à dire Xt = ∇φt pour tout t et
l’‘accélération’ at est définie comme étant

d

dt
φt +

|∇φt|2

2
=: at

alors (0.0.3) devient

(0.0.4)
d2

dt2

ˆ
fdµt =

ˆ
Hess(f)(∇φt,∇φt) dµt +

ˆ
〈∇f,∇at〉 dµt.

Dans le cas des géodésiques, les fonctions ϕt qui apparaissent dans (0.0.1) résolvent (en un
sens qui ne sera pas précisé ici) l’équation de Hamilton-Jacobi

(0.0.5)
d

dt
ϕt =

|∇ϕt|2

2
,
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et donc dans ce cas l’accélération at est identiquement nulle (observons le signe moins dans
(0.0.1)). Pour cette raison, si les champs de vecteurs (∇ϕt) satisfaisaient les conditions de
régularité (i), (ii) du dernier théorème, on serait facilement capable d’obtenir le Théorème
0.0.2. Pourtant ceci n’est pas le cas en général ; de manière informelle, le problème est lié
au fait que pour les solutions de l’équation de Hamilton-Jacobi on n’a pas d’estimations du
deuxième ordre suffisamment fortes.

Afin de montrer le Théorème 0.0.2 il est donc naturel de chercher des approximations
‘lisses’ appropriées des géodésiques, auxquelles on peut appliquer le Théorème 0.0.3 précédent
et puis passer à la limite dans la formule (0.0.3). Étant donné que le manque de régularité des
géodésiques Wasserstein est conséquence du manque de régularité des solutions de (0.0.5), en
parallèle avec la théorie classique de l’approximation visqueuse pour l’équation de Hamilton-
Jacobi, il y a une approche assez naturelle à essayer : résoudre, pour ε > 0, l’équation

d

dt
ϕεt =

|∇ϕεt |2

2
+
ε

2
∆ϕεt , ϕε0 := ϕ,

où ϕ est un potentiel de Kantorovich donné et fixé, associé à la géodésique (µt), et ensuite
résoudre

d

dt
µεt − div(∇ϕεtµεt ) = 0, µε0 := µ0.

Ce projet peut effectivement être mis en place et, en suivant les idées présentées dans ce
manuscrit, on peut montrer que si (X, d,m) est un espace RCD∗(K,N) et la géodésique (µt)
est constituée par des mesures ayant densités uniformément bornées, alors lorsque ε ↓ 0 :

i) les courbes (µεt ) convergent de façon W2-uniforme à la géodésique (µt) et les mesures µεt
ont densités uniformément bornées ;

ii) les fonctions ϕεt sont uniformément lipschitziennes et convergent de manière localement
uniforme aussi bien que dans la topologie W 1,2

loc vers l’unique solution visqueuse (ϕt) de
(0.0.5) avec ϕ comme donnée initiale ; en particulier, l’équation de continuité (0.0.1) est
satisfaite par la courbe limite.

Ces résultats de convergence sont basés sur les estimations de Hamilton pour le gradient et
sur l’inégalité de Li-Yau et ils sont suffisants pour passer à la limite dans le terme avec la
Hessienne dans (0.0.4). Pour ces courbes l’accélération est donnée par aεt = − ε

2∆ϕεt et donc il
ne reste à prouver que la quantité

ε

ˆ
〈∇f,∇∆ϕεt 〉 dµεt

disparaît à la limite en un certain sens. Cependant, il se trouve qu’il n’y a pas d’espoir d’obtenir
cela à travers des techniques fondées sur les EDP. Le problème est dû au fait que ce type
d’approximation visqueuse peut produire à la limite une courbe qui n’est pas une géodésique
si ϕ n’est pas c-concave : en peu de mots, cela arrive dès qu’un choc se produit dans l’équation
de Hamilton-Jacobi. Comme on ne peut pas espérer que la formule (0.0.2) est vraie pour des
courbes qui ne sont pas géodésiques, on voit bien que très difficilement il est possible d’obtenir
le résultat souhaité à travers des telles approximations visqueuses.

Pour cette raison on va utiliser une façon différente de se rapprocher aux géodésiques : le
ralentissement des interpolations entropiques. Décrivons brièvement en quoi cela consiste, en
se plaçant dans le plus familier cadre euclidien.
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Fixons deux mesures de probabilité µ0 = ρ0L
d, µ1 = ρ1L

d sur Rd. Les équations fonction-
nelles de Schrödinger sont les suivantes

(0.0.6) ρ0 = f h1g ρ1 = g h1f,

les inconnues étant les fonctions boreliennes f, g : Rd → [0,∞), où htf est le flot de la chaleur
démarrant en f et évalué à l’instant t. En grande généralité, ces équations admettent une
solution, qui est unique à la transformtion triviale (f, g) 7→ (cf, g/c) près, pour une certaine
constante c > 0. Cette solution peut être trouvée de la manière suivante : soit R la mesure sur
(Rd)2 dont la densité par rapport à L2d est donnée par le noyau de la chaleur rt(x, y) à l’instant
t = 1 et minimisons l’entropie de Boltzmann-Shannon H(γ |R) parmi tous les couplages γ de
µ0 à µ1. L’équation d’Euler pour le minimiseur force celui-ci à avoir la forme f ⊗ g R pour des
fonctions boreliennes f, g : Rd → [0,∞) appropriées, où f ⊗ g(x, y) := f(x)g(y) (on montrera
à nouveau ce résultat déjà connu dans la Proposition 4.1.5).

Une fois que l’on a trouvé la solution de (0.0.6) on peut l’utiliser conjointement avec le flot
de la chaleur, afin d’interpoler de ρ0 à ρ1 en définissant

ρt := htf h1−tg.

Ceci est appelé interpolation entropique. Maintenant on ralentit le flot de la chaleur : fixons
ε > 0 et en imitant ce que l’on vient de présenter trouvons f ε, gε telles que

(0.0.7) ρ0 = f ε hε/2g
ε ρ1 = gε hε/2f

ε,

(le facteur 1/2 ne joue aucun rôle special, mais il est utile pour les calculs). Puis, définissons

ρεt := htε/2f
ε h(1−t)ε/2g

ε.

Ce qui est remarquable et non trivial, c’est que lorsque ε ↓ 0 les courbes de mesures (ρεtL
d)

convergent à la géodésique Wasserstein de µ0 à µ1.
Les premiers liens entre les équations de Schrödinger et le transport optimal ont été dé-

couverts par Mikami dans [91] pour le coût quadratique sur Rd ; ensuite, Mikami et Thieullen
[97] ont montré que le lien persiste même pour des coûts plus généraux. L’énoncé qu’on vient
de présenter au sujet de la convergence des interpolations entropiques à celles par déplacement
a été prouvé par Léonard dans [79]. En fait, Léonard a travaillé dans un cadre beaucoup plus
abstrait et général : comme c’est peut-être évident à en juger par la présentation, la construc-
tion des interpolations entropiques peut être mise en œuvre en grande généralité, parce qu’il
suffit d’avoir un noyau de la chaleur. Il a aussi fourni une intuition élémentaire pour expliquer
pourquoi cette convergence a lieu : l’idée essentielle est que si le noyau de la chaleur admet
l’expansion asymptotique ε log rε(x, y) ∼ −d2(x,y)

2 (au sens des grandes déviations), alors les
fonctionnelles d’entropie rééchelonnées εH(· |Rε) convergent à 1

2

´
d2(x, y) d· (au sens de la Γ-

convergence). Le lecteur est adressé à [81] pour une dissertation plus profonde de cet argument,
pour des remarques historiques et tout renseignement complémentaire.

En partant de ces intuitions et résultats et travaillant dans le cadre des espaces RCD∗(K,N)
on obtient des nouvelles informations sur la convergence des interpolations entropiques vers
celles par déplacement. Afin d’énoncer nos résultats, il est plus pratique d’introduire les po-
tentiels de Schrödinger ϕεt , ψεt comme étant

ϕεt := ε log htε/2f
ε ψεt := ε log h(1−t)ε/2g

ε.
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À la limite pour ε ↓ 0, ils convergent vers des potentiels de Kantorovich ‘forward’ et ‘backward’
le long de la géodésique limite (µt), voir aussi en bas. Dans cette direction, il vaut la peine de
noter que, alors que pour ε > 0 il y a un lien étroit entre les potentiels et les densités, car

ϕεt + ψεt = ε log ρεt ,

à la limite cela devient la célèbre (et plus faible) relation entre les potentiels ‘forward’ et
‘backward’ et les mesures (µt) :

ϕt + ψt = 0 on supp(µt),

ϕt + ψt ≤ 0 on X,

voir par exemple la Remark 7.37 dans [121] (en faisant attention aux signes différents). Par
des calculs directs on peut verifier que (ϕεt ), (ψ

ε
t ) résolvent les équations de Hamilton-Jacobi-

Bellman

(0.0.8)
d

dt
ϕεt =

1

2
|∇ϕεt |2 +

ε

2
∆ϕεt − d

dt
ψεt =

1

2
|∇ψεt |2 +

ε

2
∆ψεt ,

donc, en introduisant les fonctions

ϑεt :=
ψεt − ϕεt

2

il n’est pas difficile de contrôler que

(0.0.9)
d

dt
ρεt + div(∇ϑεt ρεt) = 0

est satisfait et

d

dt
ϑεt +

|∇ϑεt |2

2
= aεt , where aεt := −ε

2

8

(
2∆ log ρεt + |∇ log ρεt |2

)
.

Ceci dit, nos résultats principaux concernant les interpolations entropiques peuvent être résu-
més de la façon suivante. Sous les hypothèses que l’espace métrique mesuré est RCD∗(K,N),
N <∞, et ρ0, ρ1 appartiennent à L∞(X) on a :

- Ordre zéro

– borne Pour quelque C > 0 on a ρεt ≤ C pour tout ε ∈ (0, 1) et t ∈ [0, 1] (Proposition
5.2.2).

– convergence Les courbes (ρεtm) convergent de manière W2-uniforme vers l’unique
géodésique Wasserstein (µt) de µ0 à µ1 (Propositions 6.1.1 and 6.2.2).

- Premier ordre

– borne Pour tout t ∈ (0, 1] les fonctions {ϕεt}ε∈(0,1) sont localement uniformément
lipschitziennes (Proposition 5.2.3). Le même pour les ψ.

– convergence Pour toute suite εn ↓ 0 il existe une sous-suite – non réétiquetée – telle
que pour tout t ∈ (0, 1] les fonctions ϕεt convergent de manière localement uniforme
aussi bien que dans la topologie W 1,2

loc (X) vers une fonction ϕt telle que −tϕt est un
potentiel de Kantorovich de µt à µ0 (voir les Propositions 6.1.1, 6.2.2 et 6.2.6 pour
la formulation précise des résultats). De même pour les ψ.
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- Deuxième ordre Pour tout δ ∈ (0, 1/2) on a

– borne

sup
ε∈(0,1)

¨ 1−δ

δ

(
|Hess(ϑεt )|2HS + ε2|Hess(log ρεt )|2HS

)
ρεt dt dm <∞,

sup
ε∈(0,1)

¨ 1−δ

δ

(
|∆ϑεt |2 + ε2|∆log ρεt |2

)
ρεt dtdm <∞,

(0.0.10)

(Lemme 5.3.4). Observons que, puisque en général le laplacien n’est pas la trace de
la Hessienne, il n’y a pas de liens directs entre ces deux bornes.

– convergence Pour toute fonction h ∈W 1,2(X) avec ∆h ∈ L∞(X) on a

(0.0.11) lim
ε↓0

¨ 1−δ

δ
〈∇h,∇aεt 〉 ρεt dt dm = 0,

(Theorem 7.1.2).

À l’exception de la convergence ρεtm → µt, tous ces résultats sont nouveaux, même sur
les variétés lisses compactes (même sur le tore plat). Les bornes d’ordre zéro et du premier
ordre sont conséquences des équations de Hamilton-Jacobi-Bellman (0.0.8) satisfaites par les
ϕ et les ψ et peuvent être obtenues à partir de l’estimation de Hamilton pour le gradient et
de l’inégalité de Li-Yau. Les faits que la courbe limite est la géodésique Wasserstein entre µ0

et µ1 et que les potentiels limite sont des potentiels de Kantorovich, ce sont conséquences du
fait que l’on peut passer à la limite dans l’équation de continuité (0.0.9) et que les potentiels
limite satisfont l’équation de Hamilton-Jacobi. À cet égard, il est crucial que l’on se rapproche
au même instant du potentiel ‘forward’ ψ et de celui ‘backward’ ϕ : le lecteur peut regarder la
preuve de la Proposition 6.2.2 et se souvenir du fait que les approximations visqueuses ‘simples’
(non pas entropiques) peuvent bien converger vers des courbes qui ne sont pas géodésiques
Wasserstein.

Ces résultat de convergence d’ordre zéro et un sont suffisants pour passer à la limite dans
le terme avec la Hessienne dans (0.0.4).

Comme on l’a déjà remarqué avant, l’approximation visqueuse peut produire le même type
de convergence. L’avantage principal et caractéristique provenant du fait que l’on s’appuie sur
les interpolations entropiques apparaît dans le résultat de convergence du deuxième ordre
(0.0.11), qui montre en quel sens le terme avec l’accélération dans (0.0.4) disparaît à la limite.
Par conséquent, cela nous permettra de montrer le résultat principal, c’est à dire le Théorème
7.1.2. Dans cette direction, signalons de manière informelle que, étant l’équation des géodé-
siques une équation du deuxième ordre, quand on cherche une procédure d’approximation il
est naturel de tâcher d’en trouver une qui produise une convergence jusqu’au deuxième ordre.

La propriété de convergence (0.0.11) est pour la plupart une conséquence – bien que non
triviale – de la borne (0.0.10) (voir en particulier le Lemme 5.3.5 et la preuve du Théorème
7.1.2), donc concentrons-nous sur la manière pour obtenir (0.0.10). Le point de démarrage
est une formule montrée par Léonard dans [76] ; il s’est aperçu de la connexion qui existe
entre interpolations entropiques et bornes inférieures sur la courbure de Ricci : il a calculé
explicitement la dérivée d’ordre deux de l’entropie le long des interpolations entropiques, en
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obtenant

(0.0.12)
d2

dt2
H(ρεtm |m) =

ˆ (
Γ2(ϑεt ) + ε2

4 Γ2(log ρεt )
)
ρεt dm,

où Γ2 est l’opérateur carré du champ itéré, défini comme étant

Γ2(f) := ∆
|∇f |2

2
− 〈∇f,∇∆f〉

(dans le cadre des espaces RCD il faut faire attention dans le traitement de cet objet, parce
qu’en général Γ2(f) est seulement une mesure, mais pour l’instant oublions cet aspect).

Donc, si l’on est sur une variété avec courbure de Ricci non négative, alors l’inégalité de
Bochner

(0.0.13) Γ2(f) ≥ |Hess(f)|2HS

assure que l’entropie est convexe le long des interpolations entropiques.
Maintenant observons que si f : [0, 1]→ [0,∞) est convexe, alors pour t ∈ (0, 1) la quantité

|f ′(t)| peut être contrôlée en termes de f(0), f(1) et t seulement. Pour cette raison, comme
la valeur de H(ρεtm |m) aux instants t = 0, 1 est indépendante de ε > 0, on obtient la borne
uniforme

sup
ε>0

ˆ 1−δ

δ

d2

dt2
H(µεt |m) dt = sup

ε>0

(
d

dt
H(µεt |m)|t=1−δ −

d

dt
H(µεt |m)|t=δ

)
<∞

qui par (0.0.13) et (0.0.12) garantit la première borne dans (0.0.10). La deuxième est déduite
de manière similaire, en utilisant l’inégalité de Bochner suivante

Γ2(f) ≥ (∆f)2

N

à la place de (0.0.13).

Structure de la thèse

Bien qu’elle soit très importante, la formule de dérivation du deuxième ordre n’est pas le seul
aspect saillant auquel on s’est intéressé et c’est pourquoi il vaut la peine d’ajouter quelques
mots sur l’organisation de la thèse, les différents thèmes envisagés et tous les résultats sécon-
daires que l’on n’a pas encore mentionnés.

La thèse est divisée en trois parties, trois étant aussi les domaines mathématiques princi-
paux qui interviennent de manière plus ou moins assidue dans le cours des pages suivantes :
l’analyse, la géométrie et les probabilités. Bien que très liées entre elles, les trois parties sont
caractérisées par la prédominance d’un domain sur les autres et cela est bien évident à en juger
par les titres choisis pour chaque partie. Il vaut la peine de dire quelques mots sur les moti-
vations derrière un tel choix et, surtout, sur l’organisation du manuscrit. Comme on l’a déjà
remarqué avant, la motivation originelle qui est à la base du présent travail de recherche est
essentiellement géométrique, mais il est évident que pour sa preuve l’analyse est un ingrédient
incontournable. Pour cette raison dans la première partie, après une introduction préliminaire
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ayant comme but celui de donner au lecteur tous les notions et résultats sur le transport opti-
mal et la théorie des espaces RCD nécessaires pour la compréhension de l’œuvre, on s’occupe
de l’approche basée sur des techniques EDP et suggéré toute à l’heure : il n’est pas surprenant
de voir qu’un rôle clé est joué par le logarithme des solutions de l’équation de la chaleur (parce
que cela donne une solution de l’équation de Hamilton-Jacobi-Bellman) et par la manière dont
on peut l’estimer. Dans la deuxième partie on traite le problème de Schr »odinger et donc
on aborde le thème des grandes déviations ; bien que le langage adopté soit analytique, parce
qu’il s’adapte mieux au contexte des espaces RCD, le sujet est spécifiquement probabiliste
dans l’esprit et nous donne les outils corrects pour approximer les géodésiques Wasserstein :
interpolations entropiques et potentiels de Schrödinger. Finalement, dans la troisième par-
tie on fusionne les résultats des chapitres précédents, ce qui aboutit à donner une réponse
affirmative au problème de départ, c’est à dire :

Est-ce que l’on peut établir la formule de dérivation du deuxième ordre le long des
géodésiques ?

En plus, on examine les informations analytiques et géométriques cachées dans les interpo-
lations entropiques et fournit des applications géométriques de la formule de dérivation du
deuxième ordre. Ainsi, les trois domaines sur lesquels cette thèse est fondée résulteront liés
entre eux de manière encore plus stricte et forte.

Maintenant on va détailler avec plus de précision les trois parties surmentionnés

Partie I.
La théorie du transport optimal tire son origine des travaux d’ingénieur de Gaspard Monge,
dans le XVIIIe siècle, et à travers les décennies l’intérêt pour ce domaine ne s’est jamais
épuisé ; par contre, il s’est de plus en plus enrichi, avec les contributions de Kantorovich dans
les Années Quarante du XXe siècle et il a progressé jusqu’à nos jours. Par contre, beaucoup
plus récent est l’étude des bornes synthétiques sur la courbure et la dimension, une branche
des mathématiques qui s’intéresse à caractériser la structure géométrique des variétés rieman-
niennes en termes de géométrie métrique et théorie de la mesure, ce qui permet d’étendre les
notions de (bornes sur la) courbure de Ricci à des cadres beaucoup plus généraux et abstraits
que les variétés riemanniennes.

Comme on l’a déjà remarqué, les deux domaines sont liés entre eux et pour cette raison dans
le Chapitre 1 le lecteur peut trouver un guide aux définitions et résultats incontournables pour
la compréhension du manuscrit. Dans un crescendo, on passera de la structure différentielle
du premier ordre dont les espaces polonais peuvent être munis à celle du deuxième ordre, qui
par contre nécessite de la condition RCD, à travers des énoncés de plus en plus détaillés sur
le transport optimal.

Le Chapitre 2 est par contre entièrement consacré à l’analyse sur les espaces RCD et un rôle
clé y est joué par les estimations gaussiennes sur le noyau de la chaleur, qui interviennent à
plusieurs reprises pour montrer les inégalités de Hamilton et de Li-Yau. Ces théorèmes étaient
déjà connus, même sur les espaces RCD, mais on en donne la preuve dans le cas compact
parce que presque la même stratégie du cas lisse peut être adopté ; en plus, on en déduit des
résultats qui, eux, sont nouveaux et nécessaires pour la suite.

Partie II.
En 1931 Erwin Schrödinger proposa un nouveau problème d’interpolation qui, dès son ap-
parition, montra des analogies frappantes avec la mécanique ondulatoire, qui venait d’être
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découverte, et l’équation de Schrödinger ; des analogies beaucoup plus marquées et évidentes
que celles encodées dans l’équation de Fokker-Planck et dans les études de Smoluchowski sur
le mouvement brownien. Cependant, malgré les nombreux défis proposés par Schrödinger dans
[110], ils ne devinrent pas aussi célèbres que l’équation nommée d’après lui ; au contraire, le pro-
blème d’interpolation fut presque entièrement oublié, même redécouvert plusieurs ans après,
et ce n’est que récemment qu’un intérêt diffus pour la thématique a apparu. Cette deuxième
partie veut donc être en premier lieu une présentation historique du problème, avec fréquents
aperçus sur son interprétation physique, et en deuxième instance un guide d’utilisation pour
les non probabilistes ; en fait, tout le langage probabiliste traditionnellement employé dans la
description du problème est ici traduit dans un langage analytique, de sorte qu’un plus vaste
public puisse en bénéficier.

Pour cette raison dans le Chapitre 3 on éclaircira les décennies écoulées entre 1931 et nos
jours. En ce qui concerne l’histoire du problème, le point de départ est donné par la formulation
originelle, la motivation et l’interprétation physiques du phénomène (voir [110], [111], l’étude
[81] et les monographies [100], [102]). Souvent, on utilisera les mots de Schrödinger à cause
de leur puissance enrichissante, éclairante et suggestive et, à travers un raisonnement informel
enraciné dans la physique statistique, les équations fonctionnelles de Schrödinger se traduiront
dans la formulation de Föllmer, où un problème de minimisation entropique apparaît. Comme
remarque finale, plusieurs développements et applications importants sont rappelés.

Une discussion mathématique sur le problème de Schrödinger est au centre des Chapitre
4 et 5. Dans le premier, la version de Föllmer du problème, ébauchée de manière informelle
précédemment, est déduite rigoureusement et énoncée proprement sur un espace polonais quel-
conque. En plus, les versions dynamique et duale du problème sont aussi introduites. Pour
elles, les résultats classiques d’existence sont énoncés et les liens entre les trois formulations
différentes sont abordés. En outre, bien que moins général que les résultats déjà connus dans
la littérature, on fournit un théorème d’existence qui est partiellement nouveau ; la spécificité
du résultat consiste en la caractérisation de l’unique minimiseur du problème de Schrödinger
parmi tous les couplages associés aux contraints marginales. Dans la dernière partie du cha-
pitre, en imitant certains résultats classiques de la théorie du transport optimal, comme par
exemple la convexité du coût de transport, la propriété de restriction et la stabilité, on met en
place une boîte à outils pour le problème de Schrödinger qui, à notre connaissance, est encore
manquante.

Dans le Chapitre 5 on abandonne le cadre des espaces polonais pour se placer dans celui
des espaces RCD, où les bornes sur la courbure et la dimension déterminent une connaissance
plus profonde des interpolations entropiques. Pierres angulaires de ce chapitre, ce sont les
suivantes : une borne uniforme pour les densités des interpolations entropiques (Proposition
5.2.2), la lipschitzianité localement uniforme des potentiels de Schrödinger leur associés (Pro-
position 5.2.3), des formules explicites pour les dérivées première et seconde de l’entropie le
long des interpolations entropiques (Proposition 5.3.3) et, par conséquent, un contrôle L2 à
poids uniforme pour les Hessiennes de ces potentiels (Lemme 5.3.4). Tous ces résultats, sauf
les formules des dérivées du premier et deuxième ordre, sont nouveaux même dans le cas lisse.

Partie III.
Après une première partie d’inspiration analytique et une deuxième d’esprit probabiliste, la
troisième et dernière partie du manuscrit est dédiée à la preuve de la formule de dérivation
du deuxième ordre et aux applications géométriques des outils que l’on a développés dans
les chapitres précédents, notamment les inégalités de Hamilton et de Li-Yau pour le côté
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analytique et tous les bornes (localement) uniformes au sujet des interpolations entropiques
et des potentiels de Schrödinger leur associés pour le côté à priori probabiliste. En montrant
de quelle manière les interpolations entropiques et les potentiels de Schrödinger convergent
vers les géodésiques Wasserstein et les potentiels de Kantorovich respectivement, on bâtira
un pont solide entre le problème de Schrödinger et le transport optimal qui nous permettra
non seulement de franchir la cible principale de ce projet de recherche, mais encore de pousser
plus loin les analogies entre les deux problèmes de minimisation, découvrant ainsi des liens
inespérés, dont on va parler bientôt.

Le Chapitre 6 s’ouvre avec l’application directe et immédiate des Propositions 5.2.2 et
5.2.3 : grâce aux bornes uniformes y énoncées on a assez de compacité à disposition pour
montrer l’existence d’une courbe limite de mesures et des potentiels limite. Ensuite, la question
naturelle qui se présente est la suivante : qu’est-ce que l’on peut dire de ces trajectoires limite ?
Est-ce que l’on peut les caractériser ? La réponse est affirmative et l’on voit que la courbe de
mesures limite est une géodésique W2 et donc elle est unique, étant uniques les géodésiques
dans l’espace de Wasserstein bâti sur un espace RCD ; en ce qui concerne les potentiels, ils
convergent vers les solutions visqueuses de l’équation de Hamilton-Jacobi, par analogie avec
le cas lisse, ce qui donne un aperçu des possibles développements de la théorie de la viscosité
sur les espaces métriques. Les résultats de convergence qu’on vient de présenter permettent
d’obtenir, d’une manière qu’on peut dire ‘entropique’, des faits déjà connus (par exemple la
(K,N)-convexité de l’entropie le long des interpolations par déplacement et l’inégalité HWI)
sur les espaces RCD ; pourtant, il vaut la peine de donner ces application, parce qu’elles
sont déduites avec peu d’effort, ce qui est une conséquence directe des bonnes propriétés de
régularité des interpolations entropiques.

Dans le Chapitre 7, en s’appuyant sur tous les résultats précédents on donne la preuve du
théorème principal, c’est à dire la formule de dérivation du deuxième ordre pour les géodésiques
Wasserstein. Une première conséquence du résultat est une formule de dérivation du premier
ordre pour des champs de vecteurs (voir Corollaire 7.1.3), mais d’autres applications surgissent
dans le domaine de l’analyse géométrique : on expliquera comment la formule de dérivation du
deuxième ordre intervient dans le théorème de splitting, en simplifiant la stratégie de preuve.
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Introduction

In the last ten years there has been a great interest in the study of metric measure spaces
with Ricci curvature bounded from below, as witnessed by the flourishing literature. For a non
exhaustive list of the most important results on the subject, the reader can see for instance
[87], [115], [116], [60], [6], [7], [58], [8], [105], [106], [61], [55], [57], [73], [10], [98], [26], [25]. The
starting points of this research line have been the seminal papers [87] and [115], [116] which
linked lower Ricci bounds on metric measure spaces to properties of entropy-like functionals
in connection with W2-geometry. Later ([6]) it emerged that also Sobolev calculus is linked to
W2-geometry and building on top of this the original definition of CD spaces by Lott-Sturm-
Villani has evolved into that of RCD spaces ([7], [58]).

An example of link between Sobolev calculus and W2-geometry is the following statement,
proved in [55]:

Theorem 0.0.4 (First order differentiation formula). Let (X, d,m) be a RCD(K,∞) space,
(µt) a W2-geodesic made of measures with bounded support and such that µt ≤ Cm for every
t ∈ [0, 1] and some C > 0. Then for every f ∈W 1,2(X) the map

[0, 1] 3 t 7→
ˆ
f dµt

is C1 and we have
d

dt

ˆ
f dµt|t=0

= −
ˆ

df(∇ϕ) dµ0,

where ϕ is any locally Lipschitz Kantorovich potential from µ0 to µ1.

Recall that on RCD(K,∞) spaces every W2-geodesic (µt) between measures with bounded
density and support is such that µt ≤ Cm for every t ∈ [0, 1] and some C > 0 ([106]), so that
the theorem also says that we can find ‘many’ C1 functions on RCD spaces. We remark that
such C1 regularity - which was crucial in [55] - is non-trivial even if the function f is assumed
to be Lipschitz and that statements about C1 smoothness are quite rare in metric geometry.

One might think at Theorem 0.0.4 as an ‘integrated’ version of the basic formula

d

dt
f(γt)|t=0

= df(γ′0)

valid in the smooth framework; at the technical level the proof of the claim has to do with
the fact that the geodesic (µt) solves the continuity equation

(0.0.14)
d

dt
µt + div(∇(−ϕt)µt) = 0,

where the ϕt’s are appropriate choices of Kantorovich potentials (see also [59] in this direction).

xix
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In [56], Gigli developed a second-order calculus on RCD spaces, in particular defining the
space H2,2(X) and for f ∈ H2,2(X) the Hessian Hess(f), see [56] and the preliminary section
(Section 1.2). It is then natural to ask whether an ‘integrated’ version of the second order
differentiation formula

d2

dt2
f(γt)|t=0

= Hess(f)(γ′0, γ
′
0) for γ geodesic

holds in this framework. In this manuscript, and more precisely in Chapter 7, we provide
affirmative answer to this question, our main result being:

Theorem 0.0.5 (Second order differentiation formula). Let (X, d,m) be a RCD∗(K,N) space,
with K ∈ R and N < ∞, (µt) a W2-geodesic such that µt ≤ Cm and µt has compact support
for every t ∈ [0, 1] and some C > 0 and f ∈ H2,2(X).

Then the function

[0, 1] 3 t 7→
ˆ
f dµt

is C2 and we have

(0.0.15)
d2

dt2

ˆ
f dµt|t=0

=

ˆ
Hess(f)(∇ϕ,∇ϕ) dµ0,

where ϕ is any Kantorovich potential from µ0 to µ1.

See also Theorem 7.1.2 for an alternative, but equivalent, formulation of the result. This has
been first proved in [63] under an additional compactness assumption on the space (X, d,m),
but as we shall see in what follows such hypothesis can be removed by means of localization
techniques. On the other hand the finite dimensionality plays a key role (e.g. because we use
the Li-Yau inequality).

Having at disposal such second order differentiation formula is interesting not only at the
theoretical level, but also for applications to the study of the geometry of RCD spaces. For
instance, the proofs of both the splitting theorem and of the ‘volume cone implies metric cone’
in this setting can be greatly simplified by using such formula. Also, one aspect of the theory
of RCD spaces which is not yet clear is whether they have constant dimension: for Ricci-limit
spaces this is known to be true by a result of Colding-Naber [32] which uses second order
derivatives along geodesics in a crucial way. Thus our result is necessary to replicate Colding-
Naber argument in the non-smooth setting (but not sufficient: they also use a calculus with
Jacobi fields which as of today does not have a non-smooth counterpart).

Strategy of the proof

Our starting point is a related second order differentiation formula obtained in [56], available
under proper regularity assumptions:

Theorem 0.0.6. Let (µt) be a W2-absolutely continuous curve solving the continuity equation

d

dt
µt + div(Xtµt) = 0,
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for some vector fields (Xt) ⊂ L2(TX) in the following sense: for every f ∈ W 1,2(X) the map
t 7→
´
f dµt is absolutely continuous and it holds

d

dt

ˆ
f dµt =

ˆ
〈∇f,Xt〉 dµt.

Assume that

(i) t 7→ Xt ∈ L2(TX) is absolutely continuous,

(ii) supt{‖Xt‖L2 + ‖Xt‖L∞ + ‖∇Xt‖L2} < +∞.

Then for f ∈ H2,2(X) the map t 7→
´
f dµt is C1,1 and the formula

(0.0.16)
d2

dt2

ˆ
fdµt =

ˆ
Hess(f)(Xt, Xt) +

〈
∇f, d

dtXt +∇XtXt

〉
dµt

holds for a.e. t ∈ [0, 1].

If the vector fields Xt are of gradient type, so that Xt = ∇φt for every t and the ‘acceler-
ation’ at is defined as

d

dt
φt +

|∇φt|2

2
=: at

then (0.0.16) reads as

(0.0.17)
d2

dt2

ˆ
fdµt =

ˆ
Hess(f)(∇φt,∇φt) dµt +

ˆ
〈∇f,∇at〉 dµt.

In the case of geodesics, the functions ϕt appearing in (0.0.14) solve (in a sense which we will
not make precise here) the Hamilton-Jacobi equation

(0.0.18)
d

dt
ϕt =

|∇ϕt|2

2
,

thus in this case the acceleration at is identically 0 (notice the minus sign in (0.0.14)). Hence if
the vector fields (∇ϕt) satisfy the regularity requirements (i), (ii) in the last theorem we would
easily be able to establish Theorem 0.0.5. However in general this is not the case; informally
speaking this has to do with the fact that for solutions of the Hamilton-Jacobi equations we
do not have sufficiently strong second order estimates.

In order to establish Theorem 0.0.5 it is therefore natural to look for suitable ‘smooth’
approximation of geodesics for which we can apply Theorem 0.0.6 above and then pass to the
limit in formula (0.0.16). Given that the lack of smoothness of W2-geodesic is related to the
lack of smoothness of solutions of (0.0.18), also in line with the classical theory of viscous
approximation for the Hamilton-Jacobi equation there is a quite natural thing to try: solve,
for ε > 0, the equation

d

dt
ϕεt =

|∇ϕεt |2

2
+
ε

2
∆ϕεt , ϕε0 := ϕ,

where ϕ is a given, fixed, Kantorovich potential for the geodesic (µt), and then solve

d

dt
µεt − div(∇ϕεtµεt ) = 0, µε0 := µ0.

This plan can actually be pursued and following the ideas in this paper one can show that if
the space (X, d,m) is RCD∗(K,N) and the geodesic (µt) is made of measures with equibounded
densities, then as ε ↓ 0:
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i) the curves (µεt ) W2-uniformly converge to the geodesic (µt) and the measures µεt have
equibounded densities.

ii) the functions ϕεt are equi-Lipschitz and converge both uniformly and in the W 1,2-
topology to the only viscous solution (ϕt) of (0.0.18) with ϕ as initial datum; in particular
the continuity equation (0.0.14) for the limit curve holds.

These convergence results are based on Hamilton’s gradient estimates and the Li-Yau inequal-
ity and are sufficient to pass to the limit in the term with the Hessian in (0.0.17). For these
curves the acceleration is given by aεt = − ε

2∆ϕεt and thus we are left to prove that the quantity

ε

ˆ
〈∇f,∇∆ϕεt 〉 dµεt

goes to 0 in some sense. However, there appears to be no hope of obtaining this by PDE
estimates. The problem is that this kind of viscous approximation can produce in the limit
a curve which is not a geodesic if ϕ is not c-concave: shortly said, this happens as soon as a
shock appears in Hamilton-Jacobi. Since there is no hope for formula (0.0.15) to be true for
non-geodesics, we see that there is little chance of obtaining it via such viscous approximation.

We therefore use another way of approximating geodesics: the slowing down of entropic
interpolations. Let us briefly describe what this is in the familiar Euclidean setting.

Fix two probability measures µ0 = ρ0L
d, µ1 = ρ1L

d on Rd. The Schrödinger functional
equations are

(0.0.19) ρ0 = f h1g ρ1 = g h1f,

the unknown being the Borel functions f, g : Rd → [0,∞), where htf is the heat flow starting
at f evaluated at time t. It turns out that in great generality these equations admit a solution
which is unique up to the trivial transformation (f, g) 7→ (cf, g/c) for some constant c > 0.
Such solution can be found in the following way: let R be the measure on (Rd)2 whose density
w.r.t. L2d is given by the heat kernel rt(x, y) at time t = 1 and minimize the Boltzmann-
Shannon entropy H(γ |R) among all transport plans γ from µ0 to µ1. The Euler equation for
the minimizer forces it to be of the form f ⊗ g R for some Borel functions f, g : Rd → [0,∞),
where f ⊗ g(x, y) := f(x)g(y) (we shall reprove this known result in Proposition 4.1.5). Then
the fact that f ⊗ g R is a transport plan from µ0 to µ1 is equivalent to (f, g) solving (0.0.19).

Once we have found the solution of (0.0.19) we can use it in conjunction with the heat
flow to interpolate from ρ0 to ρ1 by defining

ρt := htf h1−tg.

This is called entropic interpolation. Now we slow down the heat flow: fix ε > 0 and by
mimicking the above find f ε, gε such that

(0.0.20) ρ0 = f ε hε/2g
ε ρ1 = gε hε/2f

ε,

(the factor 1/2 plays no special role, but is convenient in computations). Then define

ρεt := htε/2f
ε h(1−t)ε/2g

ε.
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The remarkable and non-trivial fact here is that as ε ↓ 0 the curves of measures (ρεtL
d)

converge to the W2-geodesic from µ0 to µ1.
The first connections between Schrödinger equations and optimal transport have been ob-

tained by Mikami in [91] for the quadratic cost on Rd; later Mikami-Thieullen [97] showed that
a link persists even for more general cost functions. The statement we have just made about
convergence of entropic interpolations to displacement ones has been proved by Léonard in
[79]. Actually, Léonard worked in much higher generality: as it is perhaps clear from the presen-
tation, the construction of entropic interpolation can be done in great generality, as only a heat
kernel is needed. He also provided a basic intuition about why such convergence is in place: the
basic idea is that if the heat kernel admits the asymptotic expansion ε log rε(x, y) ∼ −d2(x,y)

2
(in the sense of Large Deviations), then the rescaled entropy functionals εH(· |Rε) converge
to 1

2

´
d2(x, y) d· (in the sense of Γ-convergence). We refer to [81] for a deeper discussion of

this topic, historical remarks and much more.

Starting from these intuitions and results, working in the setting of RCD∗(K,N) spaces we
gain new information about the convergence of entropic interpolations to displacement ones.
In order to state our results, it is convenient to introduce the Schrödinger potentials ϕεt , ψεt as

ϕεt := ε log htε/2f
ε ψεt := ε log h(1−t)ε/2g

ε.

In the limit ε ↓ 0 these will converge to forward and backward Kantorovich potentials along
the limit geodesic (µt) (see below). In this direction, it is worth to notice that while for ε > 0
there is a tight link between potentials and densities, as we trivially have

ϕεt + ψεt = ε log ρεt ,

in the limit this becomes the well known (weaker) relation that is in place between for-
ward/backward Kantorovich potentials and measures (µt):

ϕt + ψt = 0 on supp(µt),

ϕt + ψt ≤ 0 on X,

see e.g. Remark 7.37 in [121] (paying attention to the different sign convention). By direct
computation one can verify that (ϕεt ), (ψ

ε
t ) solve the Hamilton-Jacobi-Bellman equations

(0.0.21)
d

dt
ϕεt =

1

2
|∇ϕεt |2 +

ε

2
∆ϕεt − d

dt
ψεt =

1

2
|∇ψεt |2 +

ε

2
∆ψεt ,

thus introducing the functions

ϑεt :=
ψεt − ϕεt

2

it is not hard to check that it holds

(0.0.22)
d

dt
ρεt + div(∇ϑεt ρεt) = 0

and
d

dt
ϑεt +

|∇ϑεt |2

2
= aεt , where aεt := −ε

2

8

(
2∆ log ρεt + |∇ log ρεt |2

)
.

With this said, our main results about entropic interpolations can be summarized as follows.
Under the assumptions that the metric measure space is RCD∗(K,N), N <∞, and that ρ0, ρ1

belong to L∞(X) we have:
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- Zeroth order

– bound For some C > 0 we have ρεt ≤ C for every ε ∈ (0, 1) and t ∈ [0, 1] (Proposition
5.2.2).

– convergence The curves (ρεtm) W2-uniformly converge to the unique W2-geodesic
(µt) from µ0 to µ1 (Propositions 6.1.1 and 6.2.1).

- First order

– bound For any t ∈ (0, 1] the functions {ϕεt}ε∈(0,1) are locally equi-Lipschitz (Propo-
sition 5.2.3). Similarly for the ψ’s.

– convergence For every sequence εn ↓ 0 there is a subsequence - not relabeled -
such that for any t ∈ (0, 1] the functions ϕεt converge both locally uniformly and in
W 1,2
loc (X) to a function ϕt such that −tϕt is a Kantorovich potential from µt to µ0

(see Propositions 6.1.1, 6.2.1 and 6.2.5 for the precise formulation of the results).
Similarly for the ψ’s.

- Second order For every δ ∈ (0, 1/2) we have

– bound

sup
ε∈(0,1)

¨ 1−δ

δ

(
|Hess(ϑεt )|2HS + ε2|Hess(log ρεt )|2HS

)
ρεt dt dm <∞,

sup
ε∈(0,1)

¨ 1−δ

δ

(
|∆ϑεt |2 + ε2|∆log ρεt |2

)
ρεt dtdm <∞,

(0.0.23)

(Lemma 5.3.4). Notice that since in general the Laplacian is not the trace of the
Hessian, there is no direct link between these two bounds.

– convergence For every function h ∈W 1,2(X) with ∆h ∈ L∞(X) it holds

(0.0.24) lim
ε↓0

¨ 1−δ

δ
〈∇h,∇aεt 〉 ρεt dt dm = 0,

(Theorem 7.1.2).

With the exception of the convergence ρεtm→ µt, all these results are new even on compact
smooth manifolds (in fact, even in the flat torus). The zeroth and first order bounds are both
consequences of the Hamilton-Jacobi-Bellman equations (0.0.21) satisfied by the ϕ’s and ψ’s
and can be obtained from Hamilton’s gradient estimate and the Li-Yau inequality. The facts
that the limit curve is theW2-geodesic and that the limit potentials are Kantorovich potentials
are consequence of the fact that we can pass to the limit in the continuity equation (0.0.22)
and that the limit potentials satisfy the Hamilton-Jacobi equation. In this regard it is key
that we approximate at the same time both the ‘forward’ potentials ψ and the ‘backward’ one
ϕ: see the proof of Proposition 6.2.1 and recall that the simple viscous approximation may
converge to curves which are not W2-geodesics.

These zeroth and first order convergences are sufficient to pass to the limit in the term
with the Hessian in (0.0.17).
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As said, also the viscous approximation could produce the same kind of convergence.
The crucial advantage of dealing with entropic interpolations is thus in the second order
convergence result (0.0.24) which shows that the term with the acceleration in (0.0.17) vanishes
in the limit and thus eventually allows us to prove our main result Theorem 0.0.5. In this
direction, we informally point out that being the geodesic equation a second order one, in
searching for an approximation procedure it is natural to look for one producing some sort of
second order convergence.

The limiting property (0.0.24) is mostly a consequence - although perhaps non-trivial - of
the bound (0.0.23) (see in particular Lemma 5.3.5 and the proof of Theorem 7.1.2), thus let
us focus on how to get (0.0.23). The starting point here is a formula due to Léonard [76], who
realized that there is a connection between entropic interpolation and lower Ricci bounds: he
computed the second order derivative of the entropy along entropic interpolations obtaining

(0.0.25)
d2

dt2
H(ρεtm |m) =

ˆ (
Γ2(ϑεt ) + ε2

4 Γ2(log ρεt )
)
ρεt dm,

where Γ2 is the ‘iterated carré du champ’ operator defined as

Γ2(f) := ∆
|∇f |2

2
− 〈∇f,∇∆f〉

(in the setting of RCD spaces some care is needed when handling this object, because Γ2(f)
is in general only a measure, but let us neglect this issue here).

Thus if, say, we are on a manifold with non-negative Ricci curvature, then the Bochner
inequality

(0.0.26) Γ2(f) ≥ |Hess(f)|2HS

grants that the entropy is convex along entropic interpolations.
Now notice that if f : [0, 1]→ [0,∞) is convex, then for t ∈ (0, 1) the quantity |f ′(t)| can

be bounded in terms of f(0), f(1) and t only. Thus since the value of H(ρεtm |m) at t = 0, 1 is
independent on ε > 0, we have the uniform bound

sup
ε>0

ˆ 1−δ

δ

d2

dt2
H(µεt |m) dt = sup

ε>0

(
d

dt
H(µεt |m)|t=1−δ −

d

dt
H(µεt |m)|t=δ

)
<∞

which by (0.0.26) and (0.0.25) grants the first in (0.0.23). The second is obtained in a similar
way using the Bochner inequality in the form

Γ2(f) ≥ (∆f)2

N

in place of (0.0.26).

Structure of the thesis

Although very important, the second order differentiation formula is not the only prominent
aspect we have been working on and for this reason it is worth spending some words on the
organization of the thesis, on the different topics and all the secondary results that we have
not mentioned yet.
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The thesis is divided into three parts, as three are the main mathematical areas more or
less involved: analysis, geometry and probability. Although deeply linked together, all the parts
are characterized by the predominance of one domain over the others and this is made evident
by the choice of the titles. It is worth spending some words on such a choice and, most of all,
on the organization of the three parts. As already discussed above, the original motivation
that gave rise to the present manuscript is geometric in spirit, but clearly relies on analysis
for its proof. For this reason in the first part, after a preliminary introduction providing the
reader with all the required notions and results on optimal transport and RCD spaces, we
deal with the ‘PDE’ approach to the problem previously suggested: not surprisingly, a key
role is played by the logarithm of solutions to the heat equation (since it is a solution to the
Hamilton-Jacobi-Bellman equation) and how to estimate it. In the second part we move to the
Schrödinger problem and thus to large deviations; even if an analytical language is adopted,
because it better fits the RCD framework, the topic is probabilistic in spirit and provides us
with the correct tools for approximating Wasserstein geodesics: entropic interpolations and
Schrödinger potentials. Finally, in the third part we merge the results of the previous chapters
and succeed to give a positive answer to our main problem, that is:

Can we establish the second order differentiation formula along geodesics?

Besides, we investigate the analytical and geometric information encoded in entropic interpo-
lations and provide geometric applications of the second order differentiation formula, thus
linking even more the three already cited domains this thesis is based on.

We now give a more accurate description of the three parts that we have just cited.

Part I. Optimal transport is rooted in Gaspard Monge’s seminal works, thus it is a very
longstanding theory that dates back to the 18th century and through the decades the interest
towards it has never decreased; on the contrary, it has considerably grown thanks to the
contribution of Kantorovich in the 1940s and still nowadays is a very active and flourishing
research topic. On the contrary, the study of synthetic curvature-dimension bounds is much
more recent. Main aim in this field is the characterization of the intrinsic geometric structure
of smooth Riemannian manifolds in terms of metric geometry and measure theory via non-
differential conditions, thus allowing to extend the notion of Ricci curvature (lower bounds)
to abstract and non-smooth framework.

As already said, the two domains are deeply linked together and for this reason in Chapter
1 the reader can find all those definitions and results that are necessary for the understanding
of the manuscript. In a crescendo, we will pass from the first order differential structure
available on Polish spaces to the second order one, which instead requires the RCD condition;
in doing so, we will also provide a plethora of optimal transport tools getting more and more
sophisticated along with the refinement of the framework we will work within.

On the other hand, Chapter 2 is entirely devoted to analysis on RCD spaces, where a
key role is played by the Gaussian estimated on the heat kernel: they come into play several
times, especially in the proof of Hamilton’s gradient estimate and Li-Yau inequality. These
results were already known in the literature, even on RCD spaces, but we give the proof in the
compact case because the strategy of the smooth case applies almost verbatim. In addition,
we deduce from them some related estimates that on the contrary are new and needed for
what follows.
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Part II. In 1931 Erwin Schrödinger addressed a new interpolation problem which immediately
showed shocking analogies with recently born wave mechanics and the Schrödinger equation,
analogies that are much stronger than the ones encoded in the Fokker-Planck equation and
in the studies of Smoluchowski on the Brownian motion. However, in spite of the several
mathematical challenges proposed by Schrödinger in [110], they did not become as famous as
the equation named after him; on the contrary, the interpolation problem was almost forgotten,
even rediscovered many years after, and only recently a widespread interest for the topic has
spotted. This part aims to be a historical presentation of the problem with physical insights
and a user’s guide for non-probabilists; in fact, all the probabilistic terminology commonly
adopted in the literature is here translated into an analytic language.

For this reason in Chapter 3 we shed light on the decades passed between 1931 and the
recent years. As regards the history of the problem, we start with the original formulation, the
motivation and the physical interpretation lying behind (see [110], [111], the survey [81] and
the monographs [100], [102]). We often quote Schrödinger’s words, because of their suggestive
and enlightening power, and moving from them and following a statistical physics approach
we sketch how Föllmer’s formulation as an entropy minimization problem can be deduced. As
a concluding remark, various developments and relevant applications are recalled.

A mathematical dissertation about the Schrödinger problem is carried out in Chapter 4
and Chapter 5. In the former, Föllmer’s version of the problem is established in a precise way
on general Polish spaces as well as a dual and a dynamical formulation. For them we present
the basic existence theorems and stress the relationship between static, dynamic and dual
solutions; moreover, although less general than the results already known in the literature,
we provide the reader with a partially new existence theorem, whose peculiarity is the char-
acterization of the (unique) minimizer of the Schrödinger problem among all transport plans
between the marginal constraints. In the last part of the section, mimicking some classical
results of optimal transport theory (convexity of the cost, restriction property and stability)
we build a toolbox for the Schrödinger problem that, to the best of our knowledge, is still
missing in the literature.

In Chapter 5 we move to the RCD framework, where the bounds on both the curvature
and the dimension entail a deeper knowledge of the so called entropic interpolations and of the
behaviour of the entropy along them. Main achievements of this chapter are equiboundedness
of the densities of the entropic interpolations (Proposition 5.2.2), local equi-Lipschitz conti-
nuity of the Schrödinger potentials associated to them (Proposition 5.2.3), explicit formulas
for the first and second derivative of the entropy along them (Proposition 5.3.3) and, as a
byproduct, a uniform weighted L2 control of the Hessian of such potentials (Lemma 5.3.4).
All these results, except for first and second derivative formulas, are new even in the smooth
setting.

Part III. After the first part, where analysis was predominant, and the second one with prob-
abilistic insights, in the the third and last part of the manuscript we focus our attention on
the proof of the second order differentiation formula and on the geometric applications of the
tools we developed throughout the previous chapters (in particular, Hamilton’s gradient esti-
mate and Li-Yau inequality on the analytical side and the locally uniform bounds on entropic
interpolations and Schrödinger potentials as regards the ‘probabilistic’ side). By showing that
entropic interpolations and Schrödinger potentials converge to Wasserstein geodesics and Kan-
torovich potentials respectively (making precise in which sense the convergence happens), we
are able to build a solid bridge between Schrödinger problem and optimal transport; as a first
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outcome, we overcome all the difficulties in proving the second order differentiation formula,
thus giving a positive answer to the main question of this research project, and secondly
we deeply investigate the analogies between the two minimization problems, discovering new
connections.

The ouverture of Chapter 6 immediately provides the reader with an application of Propo-
sitions 5.2.2 and 5.2.3: thanks to the uniform bounds stated therein we have indeed enough
compactness for showing the existence of a limit curve of measures and limit potentials. The
question that naturally arises is then the following: what can we say about these limit tra-
jectories? Can we characterize them? The answer is positive: we actually prove that the limit
curve of measures is a Wasserstein geodesic, hence unique, being unique the geodesics in
(P2(X),W2) where X is a RCD space; about the potentials, they converge to the viscosity so-
lutions of the Hamilton-Jacobi equation, in complete analogy with the smooth case: this could
suggest some possible developments in the theory of viscosity solutions on metric spaces. The
convergence results just stated have interesting byproducts, as they allow to deduce in an
‘entropic’ and thus alternative way some already known facts on RCD spaces, for instance the
(K,N)-displacement convexity of the entropy and the HWI inequality; moreover, the proofs
are light, as a direct consequence of the regularity features of entropic interpolations.

In Chapter 7, relying on all the previous results we finally show the validity of the second
order differentiation formula for W2-geodesics. A first consequence is a closely related first
order differentiation formula for vector fields (see Corollary 7.1.3 for the precise statement),
but other applications arise in geometric analysis: we shall explain where and how our main
result can be used in the proof of the splitting theorem to simplify the strategy.



Basic notations

(X, d,m) metric measure space (from Chapter 5 always assumed to be
RCD∗(K,N)

Adm(µ, ν) set of admissible plans for the couple (µ, ν)

d differential

∆, ∆ Laplacian and measure-valued Laplacian

Geo(X) space of constant speed geodesics with values in the metric space
(X, d)

Γ2 measure-valued iterated carré du champ operator

OptGeo(µ, ν) set of optimal plans for the couple (µ, ν) representing a geodesic

Hess(f) Hessian of f

ht heat semigroup in L2(X)

rt[x] heat kernel at time t starting in x

Lip(f) Lipschitz constant of f

lip(f) local Lipschitz constant of f

ht mollified heat semigroup

B(X) Borel σ-algebra over X

Opt(µ, ν) set of optimal plans for the couple (µ, ν)

R the extended real line

P(X) space of Borel probability measures over X

P2(X) space of Borel probability measures over X with finite second mo-
ment

supp support of (a function or a measure)

Test(X) test functions over (X, d,m)

TestV(X) test vector fields over (X, d,m)

xxix
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ϕc c-transform of ϕ

AC([0, 1],X) space of absolutely continuous curves on [0, 1] with values in the
metric space (X, d)

AC2([0, 1],X) space of absolutely continuous curves on [0, 1] with values in the
metric space (X, d) and 2-integrable metric derivative

ACloc([0,∞), H) space of locally absolutely continuous curves on [0,∞) with values
in the Hilbert space H

C(X) space of continuos functions over X

Cb(X) space of continuos and bounded functions over X

D(Φ) domain of the functional Φ : X→ R ∪ {+∞}

E Cheeger’s energy functional

L2(TX), L2(T ∗X) tangent and cotangent module

L2(T⊗2X), L2((T ∗)⊗2X) tensor product of tangent/cotangent module with itself

Lp(X), Lp(m), Lp(X,m) space of p-integrable functions on X w.r.t. m

Qt Hopf-Lax semigroup

S2(X) Sobolev class over (X, d,m)

W 1,2(X), W 2,2(X) Sobolev spaces over (X, d,m)

W2 Wasserstein distance

xn ↓ x̄ decreasing convergence of xn to x̄

xn ⇀ x̄ weak convergence of xn to x̄

xn → x̄ convergence of xn to x̄

xn ↑ x̄ increasing convergence of xn to x̄

LIP(X) space of Lipschitz continuos functions over X



Part I

Analysis of RCD spaces

1





Chapter 1

Preliminaries

Aim of this chapter is twofold: on the one hand, for the reader’s sake we introduce the basic
metric, topological, measure-theoretic and differential concepts used in the thesis; on the other
one, we recall some preliminary results involving these notions that will be extensively invoked
throughout the manuscript.

In Section 1.1 we begin with purely metric definitions and we progressively enrich the
structure of our framework, up to the notion of infinitesimal Hilbertianity. More precisely, we
start with the well-understood concepts of test plan and minimal weak upper gradient until
we reach the sophisticated machinery of L2(m)-normed modules, which is the key ingredient
for the understanding of the first order differential structure of general metric measure spaces.
We conclude the section with a quick overview of the Monge-Kantorovich optimal transport
problem and a first look at absolutely continuous curves in the Wasserstein space, pointing
out the connection with the continuity equation.

The (reduced) curvature-dimension condition is the main feature of Section 1.2, because
the introduction of this purely synthetic notion in an infinitesimally Hilbertian space (thus
leading to the definition of RCD∗ space) enables a wide discussion on the geometric information
encoded therein, on the regularization properties of the heat flow and on the second order
differential structure, whose cornerstones are the Sobolev space W 2,2(X) and the notion of
Hessian. As a final remark, we provide some further results in optimal transport under the
RCD∗ assumption.

1.1 Infinitesimally Hilbertian spaces

1.1.1 First order calculus

Let us first present those notions that only need a metric structure to be defined. For this
reason, let (X, d) be a metric space; by P(X) we denote the space of Borel probability measures
on it and by P2(X) ⊂P(X) the subclass of those with finite second moment, i.e. µ ∈P2(X)
if and only if ˆ

d2(x, x0)dµ(x) <∞

for some, and thus any, x0 ∈ X. The first notion we recall is the following: if µ ∈ P(X) and
T : X→ Y is a µ-measurable map taking values in the topological space Y, the push-forward
measure T#µ ∈P(Y) is defined by T#µ(B) := µ(T−1(B)) for all Borel set B ⊂ Y. In many

3
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occasions, the map T will be given by the projection from a product space on one of its
factors or by the evaluation map et : C([0, 1], (X, d)) → X defined by et(γ) := γt, where
C([0, 1], (X, d)), or simply C([0, 1],X), denotes the space of continuous curves with values on
the metric space (X, d).

A curve γ : [0, 1] → X is said to be absolutely continuous provided there exists a
function f ∈ L1(0, 1) such that

d(γt, γs) ≤
ˆ t

s
f(r)dr ∀s, t ∈ [0, 1], s < t

and the collection of such curves will be denoted by AC([0, 1], (X, d)) or simply AC([0, 1],X).
The metric speed t 7→ |γ̇t| ∈ L1(0, 1) of an absolutely continuous curve γ is defined as the
essential infimum of all the functions f ∈ L1(0, 1) such that the inequality above holds but it
can be equivalently seen as limit of incremental ratios, namely

|γ̇t| = lim
h→0

d(γt+h, γt)

|h|
for a.e. t ∈ [0, 1],

where the a.e. existence of the limit is part of the statement (see for instance Theorem 1.1.2
of [5] for a proof). In what follows we will write

´ 1
0 |γ̇t|

2dt even if γ ∈ C([0, 1],X): in the
case γ is not absolutely continuous, the integral is set equal to +∞ by definition. In the
case the metric speed |γ̇t| belongs to Lp(0, 1) (resp. Lploc(0, 1)), the curve γ is said p-absolutely
continuous (resp. locally p-absolutely continuous) and the family of such curves will be denoted
by AC2([0, 1],X) (resp. ACloc([0, 1],X)).

A (constant speed) geodesic is a curve γ : [0, 1]→ X such that

d(γs, γt) = |t− s|d(γ0, γ1) ∀s, t ∈ [0, 1].

We will denote by Geo(X) the set made up by all of them and say that (X, d) is a geodesic
space if for any x0, x1 ∈ X there exists a constant speed geodesic γ satisfying γ0 = x0 and
γ1 = x1. A weaker property is the one of length space: for any x0, x1 ∈ X and ε > 0 there
exists γ ∈ AC([0, 1],X) such that γ0 = x0, γ1 = x1 and

`(γ) :=

ˆ 1

0
|γ̇t|dt ≤ d(x0, x1) + ε.

Finally, recall that given f : X→ R the upper and lower slopes |D+f |, |D−f | : X→ [0,∞]
are defined as 0 on isolated points and otherwise

|D+f |(x) := lim
y→x

(f(y)− f(x))+

d(x, y)
|D−f |(x) := lim

y→x

(f(y)− f(x))−

d(x, y)
.

Similarly, the local Lipschitz constant lip(f) : X→ [0,∞] is defined as 0 on isolated points
and otherwise as

lipf(x) := max{|D+f |(x), |D−f |(x)} = lim sup
y→x

|f(x)− f(y)|
d(x, y)

.

This allows us to single out some properties of the Hopf-Lax semigroup in metric spaces.
For f : X→ R ∪ {+∞} and t > 0 we define the function Qtf : X→ R ∪ {−∞} as

(1.1.1) Qtf(x) := inf
y∈X

d2(x, y)

2t
+ f(y)
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and set t∗ := sup{t > 0 : Qtf(x) > −∞ for some x ∈ X}; it is worth saying that t∗ does not
actually depend on x, since if Qtf(x) > −∞, then Qsf(y) > −∞ for all s ∈ (0, t) and all
y ∈ X. With this premise we have the following result, whose proof can be found in [6] (see
Theorems 3.5 and 3.6 therein) and [85] :

Proposition 1.1.1. Let (X, d) be a metric space and f : X→ R∪ {+∞}. Then for all x ∈ X
the following facts hold:

(i) Qtf(x) ↑ f(x) as t ↓ 0;

(ii) Qt(Qsf(x)) ≥ Qt+sf(x) for all t, s ≥ 0;

(iii) the map (0, t∗) 3 t 7→ Qtf(x) is locally Lipschitz and

(1.1.2)
d

dt
Qtf(x) +

1

2

(
lipQtf(x)

)2
= 0

for all but countably many t ∈ (0, t∗).

In the case we further assume (X, d) to be geodesic, (ii) and (iv) are true with equality.

As a next step, let us assume from now on (X, d) to be complete and separable and let us
endow it with a Borel non-negative measure m which is finite on bounded sets and with full
support (this last assumption is not really needed, but allows to avoid some technicalities). For
the forthcoming definitions of test plans, Sobolev class and of minimal weak upper gradient
we draw from [6], but the interested reader can also refer to the previous works [28], [112] for
alternative - but equivalent - definitions of Sobolev functions and to [66] for a wide dissertation
on the topic.

A path measure π ∈ P(C([0, 1],X)) is a test plan if it has bounded compression and
finite 2-action, namely there exists a constant C = C(π) > 0 such that

(et)∗π ≤ Cm ∀t ∈ [0, 1],¨ 1

0
|γ̇t|2dtdπ < +∞.

Recall that
´ 1

0 |γ̇t|
2dt := +∞ if γ is not absolutely continuous; thus, a fortiori any test plan

must be concentrated on AC2([0, 1],X).
The Sobolev class S2(X, d,m), also denoted by S2(X) when no ambiguity arises, is defined

as the space of all Borel functions f : X → R for which there exists a non-negative function
G ∈ L2(m), called weak upper gradient, such that

(1.1.3)
ˆ
|f(γ1)− f(γ0)|dπ(γ) ≤

¨ 1

0
G(γt)|γ̇t|dtdπ(γ)

for all test plan π. It turns out that there exists a minimal G in the m-a.e. sense satisfying
the inequality above: such minimal function will be called minimal weak upper gradient
(although defined in duality with distance, so that it should rather be called minimal weak
upper differential) and denoted by |Df |. It is not difficult to see that (1.1.3) implies a localized
version of the same inequality: for all 0 ≤ s ≤ t ≤ 1 it holds

(1.1.4)
ˆ
|f(γt)− f(γs)|dπ(γ) ≤

¨ t

s
G(γr)|γ̇r|drdπ(γ).
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Moreover, minimal weak upper gradients enjoy the following important locality property:

|Df | = |Dg| m-a.e. on {f = g} ∀f, g ∈ S2(X).

The Sobolev spaceW 1,2(X) is then defined as L2(X)∩S2(X) and it turns out to be a Banach
space when endowed with the norm

‖f‖2W 1,2(X) := ‖f‖2L2(X) + ‖|Df |‖2L2(X).

However in general W 1,2(X) is not Hilbert and this motivates a further step.

Along with [58], the space (X, d,m) is said infinitesimally Hilbertian provided W 1,2(X)
is a Hilbert space. Introducing the Cheeger energy as the convex and lower-semicontinuous
functional E : L2(X)→ [0,∞] given by

E(f) :=


1

2

ˆ
|Df |2 dm for f ∈W 1,2(X)

+∞ otherwise

it is well known that infinitesimal Hilbertianity is equivalent to the fact that E is a Dirichlet
form. Its infinitesimal generator ∆, which is a closed self-adjoint linear operator on L2(X), is
called Laplacian on (X, d,m) and its domain denoted by D(∆) ⊂ W 1,2(X). Relying on the
classical theory of gradient flows of convex functions on Hilbert spaces, whose main results
can be found in [5] with detailed bibliographical references or in [6], we deduce existence and
uniqueness of a 1-parameter semigroup (ht) of continuous operators from L2(X) to itself such
that for any f ∈ L2(X) the curve t 7→ htf ∈ L2(X) is continuous on [0,∞), locally absolutely
continuous on (0,∞) and the only solution of

d

dt
htf = ∆htf a.e. t > 0, htf

L2

→ f as t ↓ 0

where it is part of the statement the fact that htf ∈ D(∆) for every f ∈ L2(X) and t > 0.
Such 1-parameter semigroup is called heat flow.

Beside this notion of L2-valued Laplacian, we shall also need that of measure-valued Lapla-
cian ([58]). A function f ∈W 1,2(X) is said to have measure-valued Laplacian, and in this
case we write f ∈ D(∆), provided there exists a Borel (signed) measure µ whose total variation
is finite on bounded sets and such that

(1.1.5)
ˆ
g dµ = −

ˆ
〈∇g,∇f〉 dm, ∀g Lipschitz with bounded support.

In this case µ is unique and denoted ∆f . This notion is compatible with the previous one in
the sense that

f ∈ D(∆), ∆f � m and
d∆f

dm
∈ L2(m) ⇔ f ∈ D(∆) and in this case ∆f =

d∆f

dm
.

Finally, let us provide a quick overview about tangent and cotangent modules and some of
the differential objects that, more or less naturally, come along with them; all the forthcoming
definitions and observations are taken from [56], unless otherwise specified.
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Recall that a L2(X)-normed L∞(X)-module, or simply an L2(X)-normed module, is a
Banach space (M , ‖ · ‖M ) endowed with a bilinear map

L∞(X)×M → M

(f, v) 7→ f · v

called multiplication by L∞(X) functions, and a map | · | : M → L2(X) with non-negative
values, called pointwise L2(X)-norm, such that:

(i) for every v ∈M and f, g ∈ L∞(X)

f · (g · v) = (fg) · v, 1 · v = v, ‖f · v‖M ≤ ‖f‖L∞(X)‖v‖M

where 1 denotes the function identically equal to 1;

(ii) for every v ∈M and f ∈ L∞(X,m) it holds

‖|v|‖L2(X) = ‖v‖M , |f · v| = |f | |v| m-a.e.

An isomorphism between two L2(X)-normed modules is a linear bijection which preserves the
norm, the product with L∞(X) functions and the pointwise norm.

When (M , ‖ · ‖M ) is a Hilbert space, we shall say that M as L2(X)-normed module is a
Hilbert module. The dual module M ∗ of M is defined as Hom(M , L1(X)) and it is an L2(X)-
normed module too. With these premises, we can state the following existence theorem, thus
defining the cotangent module.

Theorem 1.1.2 (Definition of cotangent module). There exists a unique couple (L2(T ∗X), d),
where L2(T ∗X) is an L2(X)-normed module and d : S2(X)→ L2(T ∗X) is a linear and contin-
uous map, such that:

(i) |df | = |Df | m-a.e. for every f ∈ S2(X);

(ii) the space {df : f ∈ S2(X)} generates L2(T ∗X) in the sense of modules.

Uniqueness is meant up to unique isomorphism, namely if (M ,d′) satisfies the same properties,
then there is a unique isomorphism Φ : L2(T ∗X) → M such that Φ(df) = d′f for all f ∈
S2(X).

The L2(X)-normed module L2(T ∗X) is called cotangent module and d is the differen-
tial, which is a closed operator when seen as unbounded operator on L2(X) (see the forth-
coming Lemma 1.1.3). The tangent module L2(TX) is defined as the dual of L2(T ∗X). The
elements of L2(T ∗X) will be called cotangent vector fields or 1-forms, while the elements of
L2(TX) vector fields. If (X, d,m) is infinitesimally Hilbertian, as it is now and shall always
be the case, the cotangent and tangent modules are canonically isomorphic both as Hilbert
modules and as Hilbert spaces via the Riesz theorem. Thus, if we denote by 〈· , ·〉 the scalar
product associated to the pointwise norm of L2(TX), we can introduce the (musical) isomor-
phisms [ : L2(TX)→ L2(T ∗X) and ] : L2(T ∗X)→ L2(TX) as

(1.1.6) V [(W ) := 〈V,W 〉, 〈ω],W 〉 := ω(W )

m-a.e. for every V,W ∈ L2(TX) and ω ∈ L2(T ∗X). This allows to define the gradient of
f ∈ S2(X) as ∇f := (df)]; equivalently, it can be defined as the unique W ∈ L2(TX) such
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that df(W ) = |W |2 = |df |2 m-a.e., this definition being in line with the one used in Finsler
geometry (see e.g. [16]).

The divergence of a vector field is defined as (minus) the adjoint of the differential, i.e. we
say that W ∈ L2(TX) has a divergence, and write W ∈ D(div), provided there is a function
g ∈ L2(X) such that

ˆ
fg dm = −

ˆ
df(W ) dm ∀f ∈W 1,2(X).

In this case g is unique and is denoted div(W ). It can also be verified that

f ∈ D(∆) if and only if ∇f ∈ D(div) and in this case ∆f = div(∇f),

in accordance with the smooth case and this immediately implies that f ∈ D(∆) and h = ∆f
if and only if ˆ

ghdm = −
ˆ
〈∇g,∇f〉dm, ∀g ∈W 1,2(X).

We conclude this first introductory part with a lemma collecting all the calculus rules for
differential, gradient, divergence and Laplacian which we shall use extensively throughout the
whole thesis without further notice.

Lemma 1.1.3 (Calculus rules 1). Let (X, d,m) be an infinitesimally Hilbertian space. Then:

(i) (Differential and gradient) d satisfies the following calculus rules:

|df | = |Df | m-a.e. ∀f ∈ S2(X)

df = dg m-a.e. on {f = g} ∀f, g ∈ S2(X)

d(ϕ ◦ f) = ϕ′ ◦ f df ∀f ∈ S2(X), ϕ : R→ R Lipschitz

d(fg) = g df + f dg ∀f, g ∈ L∞ ∩ S2(X)

where it is part of the properties the fact that ϕ ◦ f, fg ∈ S2(X) for ϕ, f, g as above;
analogous statements hold for the gradient.

(ii) (Divergence) for all f ∈W 1,2(X),W ∈ D(div) such that |f |, |W | ∈ L∞(X) it holds

div(fW ) = df(W ) + fdiv(W ),

where it is part of the statement that fW ∈ D(div) for f,W as above.

(iii) (Laplacian) ∆ enjoys the chain and Leibniz rules:

∆(ϕ ◦ f) = ϕ′′ ◦ f |df |2 + ϕ′ ◦ f∆f(1.1.7a)
∆(fg) = g∆f + f∆g + 2 〈∇f,∇g〉(1.1.7b)

where in the first equality we assume that f ∈ D(∆), ϕ ∈ C2(R) are such that f, |df | ∈
L∞(X) and ϕ′, ϕ′′ ∈ L∞(R) and in the second that f, g ∈ D(∆)∩L∞(X) and |df |, |dg| ∈
L∞(X) and it is part of the claims that ϕ ◦ f, fg are in D(∆).
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proof See [56] for properties (i), (ii) and (1.1.7b). As regards (1.1.7a), the proof is in the same
spirit of the Leibniz rule for ∆, but for sake of completeness we prefer to present it, since not
present in [56]. First notice that the assumptions on f, ϕ grant that for any h ∈ W 1,2(X) we
have ϕ ◦ f, ϕ′ ◦ f, hϕ′ ◦ f ∈ W 1,2(X) and also that the right-hand side of (1.1.7a) belongs to
L2(X). Hence, using the integration by parts characterization of the Laplacian and the chain
and Leibniz rules for gradients just stated we see that

−
ˆ
〈∇h,∇(ϕ ◦ f)〉dm = −

ˆ
〈∇h, ϕ′ ◦ f∇f〉dm

= −
ˆ (
〈∇(hϕ′ ◦ f),∇f〉+ h〈∇(ϕ′ ◦ f),∇f〉

)
dm

=

ˆ
h
(
ϕ′ ◦ f∆f + ϕ′′ ◦ f |∇f |2

)
dm

whence the conclusion. �

It is worth saying that the properties of the differential actually hold even if the space is
not assumed infinitesimally Hilbertian.

1.1.2 A first glance at optimal transport

Following the standard terminology (see for instance [3] or [121]), on a complete and sepa-
rable metric space (X, d) the Monge-Kantorovich or optimal transport problem with
quadratic cost and marginal constraints µ0, µ1 ∈P2(X) is the minimization problem

(1.1.8) inf

ˆ
X2

d2(x, y)dγ(x, y)

the infimum being taken among all γ ∈ P(X2) such that π0
∗γ = µ0 and π1

∗γ = µ1, where
π0, π1 : X2 → X are the canonical projections. The set of all such γ will be denoted by
Adm(µ0, µ1) and its elements will be called admissible plans or, more frequently, transport
plans for the couple (µ0, µ1). It is well known that the infimum is actually attained: the
Wasserstein distance W2 between µ0 and µ1 is then defined as the square root of (1.1.8), any
minimizer is called optimal and their collection is denoted by Opt(µ0, µ1). The set P2(X)
equipped with W2 turns out to be a complete and separable metric space and if (X, d) is a
length (resp. geodesic) space, then so is (P2(X),W2).

Passing to the dual formulation of (1.1.8), given by

sup
{ˆ

ϕdµ0 +

ˆ
ψ dµ1

}
,

where the supremum runs over all functions ϕ ∈ L1(X, µ0) and ψ ∈ L1(X, µ1), we recall that
the c-transform ϕc : X → R ∪ {−∞} of a function ϕ : X→ R ∪ {−∞} is defined as

ϕc(x) := inf
y∈X

{d2(x, y)

2
− ϕ(y)

}
and that ϕ is said to be c-concave provided ϕ = ψc for some ψ. With this premise, given
µ0, µ1 ∈P2(X) a function ϕ : X→ R ∪ {−∞} is called Kantorovich potential from µ0 to
µ1 provided it is c-concave andˆ

ϕdµ0 +

ˆ
ϕc dµ1 =

1

2
W 2

2 (µ0, µ1),
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which implies in particular that the supremum in the dual problem is attained by the couple
(ϕ,ϕc). By the classical theory of optimal transport, existence for potentials is granted under
very mild assumptions (which in particular hold for the quadratic cost), but it is worth recalling
that on general complete and separable metric spaces (X, d) we have that for µ0, µ1 ∈P2(X)
with bounded support there exists a Kantorovich potential from µ0 to µ1 which is Lipschitz
and bounded.

This can be obtained starting from an arbitrary Kantorovich potential ψ and then defining

ϕ(x) := min
{
C, inf

y∈X

d2(x, y)

2
− ψc(y)

}
for C sufficiently big.

Looking back at (1.1.8), given µ0, µ1 ∈P2(X) it is well known that the optimal transport
problem admits a dynamical version, namely

(1.1.9) inf

¨ 1

0
|γ̇t|2dπ(γ)

where the infimum is taken among all π ∈P(C([0, 1],X)) such that (e0)∗π = µ0, (e1)∗π = µ1.
Moreover, if a dynamical minimizer π exists, then its marginal flow ((et)∗π) is a Wasserstein
geodesic in (P2(X),W2) and (e0, e1)∗π ∈ Opt(µ0, µ1). These considerations suggest that a
helpful approach to (1.1.8) may come from a better understanding of W2-geodesics and, more
generally, W2-absolutely continuous curves.

In this direction, it is well known that on Rd, curves of measures which are W2-absolutely
continuous are in correspondence with appropriate solutions of the continuity equation, as
proved in Sections 8.1 and 8.2 of [5]. It has been later shown in [59] that the same connection
holds on arbitrary metric measure spaces (X, d,m), provided the measures are controlled by
Cm for some C > 0; the formulation of such result and the good notion of solution of the
continuity equation which we shall need are the following, where Lisini’s superposition result
[84] is taken into account too.

Theorem 1.1.4 (Continuity equation and W2-AC curves). Let (X, d,m) be infinitesimally
Hilbertian, (µt) ⊂ P2(X) be weakly continuous and t 7→ Xt ∈ L0(TX) be a family of vector
fields, possibly defined only for a.e. t ∈ [0, 1]. Assume that the map t 7→

´
|Xt|2dµt is Borel

and:

µt ≤ Cm ∀t ∈ [0, 1] for some C > 0(1.1.10a) ˆ 1

0

ˆ
|Xt|2 dµt dt <∞(1.1.10b)

and that the continuity equation

d

dt
µt + div(Xtµt) = 0,

is satisfied in the following sense: for any f ∈ W 1,2(X) the map [0, 1] 3 t 7→
´
f dµt is

absolutely continuous and it holds

d

dt

ˆ
f dµt =

ˆ
df(Xt) dµt a.e. t.
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Then (µt) ∈ AC([0, 1], (P2(X),W2)) and there exists a lifting π of it, i.e. a measure π ∈
P(C([0, 1],X)) such that (et)∗π = µt for every t ∈ [0, 1], in such a way that

|µ̇t|2 =

ˆ
|Xt|2 dµt =

ˆ
|γ̇t|2 dπ(γ) a.e. t ∈ [0, 1].

The correspondence between W2-absolutely continuous curves and solutions of the conti-
nuity equation also allows to recover the following version of the Benamou-Brenier formula
(see [56]).

Theorem 1.1.5. Let (X, d,m) be infinitesimally Hilbertian and µ, ν ∈ P2(X) be such that
there exists a W2-geodesic (µt) connecting them such that µt ≤ Cm for all t ∈ [0, 1] for some
C > 0. Then

W 2
2 (µ, ν) = min

ˆ 1

0

ˆ
|Xt|2dµtdt,

where the minimum is taken among all solutions (µt, Xt) of the continuity equation such that
µ0 = µ and µ1 = ν.

For a more exhaustive picture of the matter, including the relevant case of Wasserstein
geodesics, further assumptions on (X, d,m) have to be required and this is going to be realized
in the next section.

1.2 The RCD condition

Let us begin with the very definition of CD(K,∞) space, independently proposed by Sturm
in [115], [116] and by Lott-Villani in [87]. Such definition has been the starting point of an
extremely rich and fruitful investigation, as already said in the introduction, but rephrasing
Bernard of Chartres’ words this has been possible by standing on the shoulders of seminal
(and completely different) papers appeared before.

On the one hand, motivated by the study of hypercontractivity for diffusion processes, in
[13] and [14] D. Bakry and V. Émery formulated a curvature-dimension condition in terms of
the iterated carré du champ operator associated to a given Dirichlet form and this approach
boosted in an impressive way the study of functional inequalities (such as Li-Yau-Harnack and
logarithmic Sobolev ones) and concentration estimates, especially in the infinite-dimensional
case (see also [75] and [15] for the subsequent developments and further references).

On the other hand, inspired by the works of F. Otto and C. Villani [104] and of D. Cordero-
Erausquin, R. McCann and M. Schmuckenschläger [33], in [122] K.-T. Sturm and M. K. von
Renesse were able to characterize Ricci lower bounds in several different ways, e.g. contraction
and gradient estimates for the heat flow, for the gradient flow of the relative entropy and
for couplings of Brownian motions; however, their most famous characterization involved K-
displacement convexity of the relative entropy functional and thus optimal transport: the
CD(K,∞) condition à la Lott-Sturm-Villani precisely relies on this convexity requirement
and reads as follows.

Definition 1.2.1. A complete and separable metric measure space (X, d,m) is a CD(K,∞)
space or has Ricci curvature bounded below by K with K ∈ R, if for any µ0, µ1 ∈ D(H(· |m))
there exists a constant speed W2-geodesic (νt) such that ν0 = µ0, ν1 = µ1 and

H(νt |m) ≤ (1− t)H(µ0 |m) + tH(µ1 |m)− K

2
t(1− t)W 2

2 (µ0, µ1)
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for all t ∈ [0, 1].

After a fruitful investigation of the heat flow in non-smooth setting and its role in bridging
Wasserstein geometry and contraction estimates (see [53], [60] and [6]), the relationship be-
tween the optimal transport-oriented approach à la Lott-Sturm-Villani and the Bakry-Émery
one was made clear in [8], where equivalence is established under the assumption of infinites-
imal Hilbertianity.

In order to take also the dimension into account, we adopt the CD∗(K,N) condition, due
to K. Bacher and K.-T. Sturm [12]. To this aim, let us first define the Rényi entropy functional
and the distortion coefficients. For N ≥ 1 and for µ ∈P(X) with µ� m, the former is given
by

(1.2.1) HN (µ |m) := −
ˆ
X

(
dµ

dm

)1−1/N

dm.

For θ ≥ 0 and t ∈ [0, 1] we then introduce

Sk(θ) :=



sin(
√
kθ)√
kθ

if k > 0

1 if k = 0

sinh(
√
−kθ)√
−kθ

if k < 0

and set the latter equal to

σ
(t)
K,N (θ) :=


+∞ if Kθ2 ≥ Nπ2

t
SK/N (tθ)

SK/N (θ)
otherwise

.

Hence, given K ∈ R and N ∈ [1,∞), a complete and separable metric measure space (X, d,m)
is said to be a CD∗(K,N) space or satisfies the reduced curvature-dimension condi-
tion CD∗(K,N) if, for every µ0, µ1 ∈ P2(X) absolutely continuous w.r.t. m, there exist
γ ∈ Opt(µ0, µ1) and a constant speed W2-geodesic (νt) such that ν0 = µ0, ν1 = µ1 and

HN ′(νt |m) ≤ −
ˆ

X2

(
σ

(1−t)
K,N ′ (d(x0, x1))ρ

−1/N ′

0 (x0) + σ
(t)
K,N ′(d(x0, x1))ρ

−1/N ′

1 (x1)
)

dγ(x0, x1)

for all t ∈ [0, 1] and all N ′ ≥ N , where ρ0, ρ1 are the Radon-Nikodym derivatives of µ0, µ1

w.r.t. m respectively. Let us point out that

CD∗(K,N) ⇒ CD(K,∞).

Combining this condition and the CD(K,∞) one with infinitesimal Hilbertianity, the notions
of RCD∗(K,N) and RCD(K,∞) space follow.

Definition 1.2.2. Given K ∈ R and N ∈ [1,∞), a complete and separable metric measure
space (X, d,m) is said to be a RCD∗(K,N) space (resp. RCD(K,∞) space) provided it is an
infinitesimally Hilbertian CD∗(K,N) space (resp. CD(K,∞) space).
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This definition was originally proposed in the case N =∞ in [7] and [4] (for finite reference
measures in the former and for σ-finite ones in the latter) and in the finite-dimensional case
in [58], after having noticed that not only lower Ricci bounds but also Sobolev calculus is
linked to W2-geometry thanks to the understanding of the crucial role played by the heat
flow, as done in the already cited works [53], [60] and [6]. Truth to be told, in [58] the notion
of RCD(K,N) space, and not the one of RCD∗(K,N), was introduced:

RCD(K,N) := CD(K,N) + infinitesimally Hilbertian

thus relying on Lott-Sturm-Villani’s CD(K,N) condition. However, in this theory there is an
important and longstanding open problem: does a CD(K,N) space satisfy the globalization
(or local-to-global) property? Up to technical assumptions, the answer was known to be af-
firmative for the cases N = ∞ and K = 0, as shown in [115] and [121] respectively. The
recent advancements of Cavalletti and Milman (see [25]) suggest that this is actually true on
every essentially non-branching geodesic CD(K,N) space for K ∈ R and N ∈ (1,∞); the
case N = 1 is excluded because of critical pathologies. Nevertheless, in [25] the reference
measure m is assumed to have finite mass and although this hypothesis seems to be only
technical, it has not been removed yet. On the other hand, the CD∗(K,N) condition has the
local-to-global property (it was exactly for this reason that Bacher and Sturm proposed it
as an alternative to CD) and this explains the success of this subsequent definition. Thus,
throughout the whole manuscript the CD∗(K,N) condition will be more common than other
synthetic curvature-dimension conditions.

One of the main advantages of the RCD condition w.r.t. the CD one is the fact that it
generalizes Riemannian geometry ruling out Finsler-like structures and this enables to get the
stability results already cited in the Introduction as well as heat kernel bounds and Laplacian
estimates.

As regards the geometric features of finite-dimensional RCD∗(K,N) spaces, we first recall
the Bishop-Gromov inequality (see [115], [116]), since it actually holds true on finite-
dimensional CD∗(K,N) spaces: for any x ∈ supp(m) and

• for any 0 < r ≤ R <∞ if K ≤ 0

• for any 0 < r ≤ R ≤
√

N−1
K π if K > 0 (because of the Bonnet-Myers maximal diameter

theorem, see [116])

it holds

(1.2.2)
m(Br(x))

m(BR(x))
≥



´ r
0 sin(t

√
K/(N − 1))N−1dt´ R

0 sin(t
√
K/(N − 1))N−1dt

if K > 0

(
r

R

)N
if K = 0

´ r
0 sinh(t

√
−K/(N − 1))N−1dt´ R

0 sinh(t
√
−K/(N − 1))N−1dt

if K < 0

.
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It is also worth recalling its spherical version, which reads as

(1.2.3)
sr(x)

sR(x)
≥



(
sin(r

√
K/(N − 1))

sin(R
√
K/(N − 1))

)N−1

if K > 0(
r

R

)N−1

if K = 0(
sinh(r

√
−K/(N − 1))

sinh(R
√
−K/(N − 1))

)N−1

if K < 0

where
sr(x) := lim sup

δ↓0

1

δ
m(Br+δ(x) \Br(x)).

Such result has a couple of interesting consequences. First of all, it implies that m is uniformly
locally doubling with an explicit expression for the local doubling costant, i.e. for all x ∈ X
and r > 0 it holds

(1.2.4) m(B2r(x)) ≤ 2N cosh
(

2

√
−K
N − 1

r
)N−1

m(Br(x));

in the case K ≥ 0, m is doubling with doubling constant given by 2N , that is for all x ∈ X
and r > 0 we have

m(B2r(x)) ≤ 2Nm(Br(x)).

Analogous to (1.2.4) is the following volume growth condition: for all x ∈ X there exists a
positive constant C depending on K,N, x only such that

(1.2.5) m(Br(x)) ≤ CeCr, ∀r > 0

and this ensures that if m is Radon (as it is always assumed), then it is finite on every bounded
set.

In the case of RCD(K,∞) spaces all these properties are no longer true, but a volume
growth control (worse than (1.2.5), of course) is still available, as proved in [115] (see Theorem
4.24 therein); namely, for all x ∈ X there exists a positive constant C depending on K,x only
such that

(1.2.6) m(Br(x)) ≤ CeCr2
, ∀r > 0

and thus m is still finite on bounded sets, provided it is Radon. It also implies that

(1.2.7)
ˆ
e−Md2(·,x̄)dm < +∞

for some x̄ ∈ X and M > 0 sufficiently large and this is crucial for the Boltzmann-Shannon
entropy to be well defined, as we will see in Chapter 5. In the case of finite-dimensional
RCD∗(K,N) spaces, where (1.2.5) holds, d2(·, x̄) can be replaced by d(·, x̄) or M can be any
positive constant.
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1.2.1 Second order calculus

After this first bit of information, let us review the analytical properties of RCD spaces and
sketch how a second order differential structure can be introduced over them.

If (X, d,m) is a RCD(K,∞) space, it has been proved in [7] and [4] that there exists the
heat kernel, namely a function

(1.2.8) (0,∞)×X2 3 (t, x, y) 7→ rt[x](y) ∈ (0,∞)

which is symmetric, satisfies the Chapman-Kolmogorov formula and provides an integral rep-
resentation of the heat flow, i.e.

rt[x](y) = rt[y](x) for m⊗m-a.e. (x, y) ∈ X2, ∀t > 0,(1.2.9a)

rt+s[x](y) =

ˆ
rt[x](z)rs[z](y)dm(z) for m⊗m-a.e. (x, y) ∈ X2, ∀t, s ≥ 0,(1.2.9b)

htf(x) =

ˆ
f(y)rt[x](y) dm(y) ∀t > 0, ∀f ∈ L2(X).(1.2.9c)

For every x ∈ X and t > 0, rt[x] is a probability density and thus (1.2.9c) can be used to
extend the heat flow to L1(X) and shows that the flow is mass preserving and satisfies the
maximum principle, i.e.

(1.2.10) f ≤ c m-a.e. ⇒ htf ≤ c m-a.e., ∀t > 0.

One of the advantages of a finite-dimensionality assumption is that for RCD∗(K,N) spaces
with N < ∞ it has been recently proved that (see [71], where the approach of [113], [114]
is adapted to the RCD setting) the heat kernel satisfies Gaussian estimates, i.e. for every
δ > 0 there are positive constants C1 = C1(K,N, δ) and C2 = C2(K,N, δ) such that for every
x, y ∈ X and t > 0 it holds
(1.2.11)

1

C1m(B√t(y))
exp

(
− d2(x, y)

(4− δ)t
− C2t

)
≤ rt[x](y) ≤ C1

m(B√t(y))
exp

(
− d2(x, y)

(4 + δ)t
+ C2t

)
.

Passing to the regularization features of the heat semigroup, if (X, d,m) is a RCD(K,∞)
space then it is well known that ht is a contraction from L2(X) into itself and a bounded
operator from L2(X) into W 1,2(X); furthermore, the following a priori estimates hold true for
every f ∈ L2(X) and t > 0:

E(htf) ≤ 1

4t
‖f‖2L2(X),(1.2.12a)

‖∆htf‖2L2(X) ≤
1

2t2
‖f‖2L2(X).(1.2.12b)

The proof can be found for instance in [56], following the arguments in Section 3.4.4.
A further important property is the Bakry-Émery contraction estimate (see [7] and

[60]):

(1.2.13) |dhtf |2 ≤ e−2Ktht(|df |2) ∀f ∈W 1,2(X), t ≥ 0.
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We also recall that RCD(K,∞) spaces have the Sobolev-to-Lipschitz property, as pointed
out in [7] and [55], i.e.

(1.2.14) f ∈W 1,2(X), |df | ∈ L∞(X) ⇒ ∃f̃ = f m-a.e. with Lip(f̃) ≤ ‖|df |‖L∞ ,

and thus we shall typically identify Sobolev functions with bounded differentials with their
Lipschitz representative; in particular this will be the case for functions in Test(X), whose
definition is going to be immediately provided. Still from [7] we know that

(1.2.15) f ∈ L2 ∩ L∞(X), t > 0 ⇒ ht(f) ∈ Test(X).

Since already appeared twice, let us introduce the vector space Test(X) of ‘test functions’
on RCD(K,∞) spaces: relying on the results of [109], this can be done as follows

Test(X) :=
{
f ∈ D(∆) ∩ L∞(X) : |∇f | ∈ L∞(X), ∆f ∈W 1,2(X)

}
and notice that this is an algebra dense inW 1,2(X). We shall also make use of the vector space

Test∞(X) :=
{
f ∈ D(∆) ∩ L∞(X) : |∇f | ∈ L∞(X), ∆f ∈ L∞ ∩W 1,2(X)

}
which is an algebra dense in W 1,2(X) too. The fact that Test(X),Test∞(X) are algebras is
based on the following property, proved in [109] (see Lemma 3.2 therein)

f ∈ Test(X) ⇒ |df |2 ∈W 1,2(X) withˆ
|d(|df |2)|2 dm ≤ ‖|df |‖2L∞

(
‖|df |‖L2‖|d∆f |‖L2 + |K|‖|df |‖2L2

)
(1.2.16)

and actually a further regularity property of test functions, stated in Lemma 3.2 of [109] too,
is that

(1.2.17) f ∈ Test(X) ⇒ |df |2 ∈ D(∆),

so that it is possible to introduce the measure-valued Γ2 operator as

Γ2(f) := ∆
|df |2

2
− 〈∇f,∇∆f〉m ∀f ∈ Test(X).

By construction, the assignment f 7→ Γ2(f) is a quadratic form.

The existence of the space of test functions and the language of L2(X)-normed L∞(X)-
modules allow to introduce the spaceW 2,2(X) andW 1,2

C (TX), following the procedure depicted
in [56], and thus the notions of Hessian and covariant derivative. We first consider the tensor
product L2((T ∗)⊗2X) of the cotangent module L2(T ∗X) with itself. Roughly speaking, this
is built in the following way: consider the algebraic tensor product, namely the space of formal
finite sums of objects of the kind ω1⊗ω2 with ω1, ω2 ∈ L2(T ∗X) having the bilinearity property
and satisfying f(ω1 ⊗ ω2) = (fω1) ⊗ ω2 = ω1 ⊗ (fω2) for all f ∈ L∞(X); endow it with the
bilinear form : defined by

(ω1 ⊗ ω2) : (ω̃1 ⊗ ω̃2) := 〈ω1, ω̃1〉〈ω2, ω̃2〉, ∀ω1, ω2, ω̃1, ω̃2 ∈ L2(T ∗X),
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where 〈· , ·〉 is the scalar product of L2(T ∗X), and taking values in L0(X) equipped with
the topology of m-a.e. convergence. Then the tensor product L2((T ∗)⊗2X) is defined as the
completion of the space of A’s belonging to the algebraic tensor product such that A : A ∈
L1(X) equipped with the norm

‖A‖L2((T ∗)⊗2X) :=

√ˆ
A : Adm.

Introducing the pointwise norm | · |HS : L2((T ∗)⊗2X) → L0(X) as |A|HS :=
√
A : A, denoted

in this way to remind that in the smooth case it coincides with the Hilbert-Schmidt one, it
is not difficult to see that L2((T ∗)⊗2X) has a canonical structure of L2(X)-normed module.
In the same way it is possible to build the tensor product of L2(TX) with itself, denoted by
L2(T⊗2X).

After this premise, we say that a function f ∈W 1,2(X) belongs to W 2,2(X) provided there
exists A ∈ L2((T ∗)⊗2X) symmetric, i.e. such that A(W1,W2) = A(W2,W1) m-a.e. for every
W1,W2 ∈ L2(TX), for which it holds

ˆ
hA(∇g,∇g) dm =

ˆ
−〈∇f,∇g〉 div(h∇g)− h〈∇f,∇|∇g|

2

2
〉dm ∀g, h ∈ Test(X).

In this case A is unique, called Hessian of f and denoted by Hess(f). The space W 2,2(X)
endowed with the norm

‖f‖2W 2,2(X) := ‖f‖2L2(X) + ‖df‖2L2(T ∗X) + ‖Hess(f)‖2L2((T ∗)⊗2X)

is a separable Hilbert space which contains Test(X) and in particular is dense in W 1,2(X). It
is proved in [56] that D(∆) ⊂W 2,2(X) with

(1.2.18)
ˆ
|Hess(f)|2HS dm ≤

ˆ
(∆f)2 −K|∇f |2 dm ∀f ∈ D(∆).

However, it is unknown whether D(∆) is dense inW 2,2(X): for this reason we define the space
H2,2(X) as itsW 2,2(X)-closure. The Hessian is a local operator, in a sense which is more subtle
than the one already discussed for the differential; indeed, for given f, g ∈W 2,2(X) we have

(1.2.19) Hess(f) = Hess(g), m-a.e. on the interior of {f = g}

whereas if f, g ∈ H2,2(X), then

(1.2.20) Hess(f) = Hess(g), m-a.e. on {f = g}

holds.
On the other hand, a vector W ∈ L2(TX) belongs to W 1,2

C (TX) if there exists T ∈
L2(T⊗2X) such that

ˆ
hT : (∇g1 ⊗∇g2) dm =

ˆ
−〈W,∇g2〉div(h∇g1)−hHess(g2)(W,∇g1) dm

∀g1, g2, h ∈ Test(X).
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In this case T is unique, called covariant derivative of W and denoted by ∇W . The space
W 1,2
C (TX) endowed with the norm

‖W‖2
W 1,2
C (TX)

:= ‖W‖2L2(TX) + ‖∇W‖2L2(T⊗2X)

is a separable Hilbert space which contains the class of ‘test vector fields’ TestV(X), given by

TestV(X) :=
{ n∑
i=1

gi∇fi : n ∈ N, fi, gi ∈ Test(X) i = 1, ..., n
}
.

By the properties of Test(X) it is not difficult to see that TestV(X) is dense in L2(TX),
so that W 1,2

C (TX) is dense in L2(TX) as well; in addition, TestV(X) ⊂ L1 ∩ L∞(X) and
TestV(X) ⊂ D(div). However, it is not known yet whether TestV(X) is dense in W 1,2

C (TX)

or not: this motivates the introduction of the space H1,2
C (TX) as the W 1,2

C (TX)-closure of
TestV(X).

As for cotangent and tangent modules, L2((T ∗)⊗2X) and L2(T⊗2X) are canonically isomor-
phic both as Hilbert modules and as Hilbert spaces via the Riesz theorem. Thus, with a little
abuse of notation, we introduce the (musical) isomorphisms [ : L2(T⊗2X) → L2((T ∗)⊗2X)
and ] : L2((T ∗)⊗2X)→ L2(T⊗2X) as

T [(S) := T : S, A] : T := A(T )

m-a.e. for every T, S ∈ L2(T⊗2X) and A ∈ L2((T ∗)⊗2X).
As regards the calculus tools directly linked to the notions we have just introduced, they

are collected in the following lemma. The proof can be found in [56] (Proposition 3.3.22 and
Theorem 3.4.2 therein).

Lemma 1.2.3 (Calculus rules 2). Let (X, d,m) be a RCD∗(K,N) with K ∈ R and N ∈ [1,∞).
Then:

(i) (Leibniz rule) for all f, g ∈ Test(X) it holds

(1.2.21) d 〈∇f,∇g〉 = Hess(f)(∇g, ·) + Hess(g)(∇f, ·) m-a.e.

(ii) for all W =
∑

i gi∇fi ∈ TestV(X) we have

(1.2.22) ∇W =
∑
i

∇gi ⊗∇fi + gi(Hess(fi))
].

The second order structure of RCD spaces also allows to talk about the Bochner inequal-
ity: on RCD(K,∞) spaces it takes the form of an inequality between measures ([56] - see also
the previous contributions [109], [118]):

(1.2.23) Γ2(f) ≥
(
|Hess(f)|2HS +K|df |2

)
m ∀f ∈ Test(X),

and if the space is RCD∗(K,N) for some finite N it also holds ([8]):

(1.2.24) Γ2(f) ≥
((∆f)2

N
+K|df |2

)
m ∀f ∈ Test(X).
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Notice that since the Laplacian is in general not the trace of the Hessian, the former does
not trivially imply the latter (in connection to this, see [65]). Furthermore (1.2.24) is the RCD
analogue of the Bakry-Émery curvature-dimension condition with dimension term introduced
in [14]; the relationship between the theory of CD∗(K,N) and RCD∗(K,N) spaces on the one
hand and the Γ-calculus approach on the other one is fully described in [45] and [10].

We conclude the section recalling the notion of Regular Lagrangian Flow, introduced by
Ambrosio-Trevisan in [11] as the generalization to RCD spaces of the analogous concept ex-
isting on Rd as proposed by Ambrosio in [1]:

Definition 1.2.4 (Regular Lagrangian Flow). Given (vt) ∈ L1([0, 1], L2(TX)), the function
F : [0, 1]×X→ X is a Regular Lagrangian Flow for (vt) provided:

i) [0, 1] 3 t 7→ Ft(x) is continuous for every x ∈ X

ii) for every f ∈ Test∞(X) and m-a.e. x the map t 7→ f(Ft(x)) belongs to W 1,1([0, 1]) and

d

dt
f(Ft(x)) = df(vt)(Ft(x)) a.e. t ∈ [0, 1].

iii) it holds
(Ft)∗m ≤ Cm ∀t ∈ [0, 1]

for some constant C > 0.

In [11] the authors prove that under suitable assumptions on the vt’s, Regular Lagrangian
Flows exist and are unique. We shall use the following formulation of their result (weaker than
the one provided in [11]):

Theorem 1.2.5. Let (X, d,m) be a RCD(K,∞) space and (vt) ∈ L1([0, 1], L2(TX)) be such
that vt ∈ D(div) for a.e. t and

div(vt) ∈ L1([0, 1], L2(X)) (div(vt))
− ∈ L1([0, 1], L∞(X)).

Then there exists a unique, up to m-a.e. equality, Regular Lagrangian Flow F for (vt).
For such flow, the quantitative bound

(1.2.25) (Ft)∗m ≤ exp
(ˆ 1

0
‖(div(vt))

−‖L∞(X) dt
)
m

holds for every t ∈ [0, 1] and for m-a.e. x the curve t 7→ Ft(x) is absolutely continuous and its
metric speed mst(F·(x)) at time t satisfies

(1.2.26) mst(F·(x)) = |vt|(Ft(x)) a.e. t ∈ [0, 1].

To be precise, (1.2.26) is not explicitly stated in [11]; its proof is anyway not hard and can
be obtained, for instance, following the arguments in [56].
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1.2.2 A second glance at optimal transport

With this said, we can come back to optimal transport theory and resume the discussion
about W2-absolutely continuous curves and the continuity equation. As we are going to no-
tice immediately, the curvature-dimension assumption has a deep impact on the structure of
Wasserstein geodesics. We first recall the following version of Brenier-McCann theorem on
RCD spaces ((i) comes from [54] and [106], (ii) from [7] and [58], (iii) from [6] and (iv) from
[62]).

Theorem 1.2.6. Let (X, d,m) be a RCD(K,∞) space and µ0, µ1 ∈ P2(X) with bounded
support and such that µ0, µ1 ≤ Cm for some C > 0. Also, let ϕ be a Kantorovich potential for
the couple (µ0, µ1) which is locally Lipschitz on a neighbourhood of supp(µ0). Then:

(i) There exists a unique geodesic (µt) from µ0 to µ1, it satifies

(1.2.27) µt ≤ C ′m ∀t ∈ [0, 1] for some C ′ > 0

and there is a unique lifting π of it, i.e. a unique measure π ∈P(C([0, 1],X)) such that
(et)∗π = µt for every t ∈ [0, 1] and

¨ 1

0
|γ̇t|2 dtdπ(γ) = W 2

2 (µ0, µ1).

(ii) For every f ∈W 1,2(X) the map t 7→
´
f dµt is differentiable at t = 0 and

d

dt

ˆ
f dµt|t=0

= −
ˆ

df(∇ϕ) dµ0.

(iii) The identity
|dϕ|(γ0) = |D+ϕ|(γ0) = d(γ0, γ1)

holds for π-a.e. γ.

(iv) If the space is RCD∗(K,N) for some N < ∞, then (i), (ii), (iii) holds with µ1 only
assumed to be with bounded support, with the caveat that (1.2.27) holds in the form: for
every δ ∈ (0, 1/2) there is Cδ > 0 so that µt ≤ C ′δm for every t ∈ [0, 1− δ]. In addition,
for every x ∈ X the following holds: for m-a.e. y there is a unique geodesic connecting y
to x.

A property related to the above is the fact that although the Kantorovich potentials are not
uniquely determined by the initial and final measures, their gradients are. This is expressed by
the following result, which also says that if we sit in the intermediate point of a geodesic and
move to one extreme or the other, then the two corresponding velocities are one the opposite
of the other (see Lemma 5.8 and Lemma 5.9 in [55] for the proof):

Lemma 1.2.7. Let (X, d,m) be a RCD(K,∞) space with K ∈ R and (µt) ⊂ P2(X) a W2-
geodesic such that µt ≤ Cm for every t ∈ [0, 1] for some C > 0. For t ∈ [0, 1] let φt, φ′t : X→ R
be locally Lipschitz functions such that for some s, s′ 6= t the functions −(s−t)φt and −(s′−t)φ′t
are Kantorovich potentials from µt to µs and from µt to µs′ respectively.

Then
∇φt = ∇φ′t µt-a.e..
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On RCD spaces, W2-geodesics made of measures with bounded density also have the weak
continuity property of the densities expressed by the following lemma. The proof follows by
a simple argument involving Young’s measures and the continuity of the entropy along a
geodesic (see Corollary 5.7 in [55]):

Lemma 1.2.8. Let (X, d,m) be a RCD(K,∞) space with K ∈ R and (µt) ⊂ P2(X) a W2-
geodesic such that µt ≤ Cm for every t ∈ [0, 1] for some C > 0. Let ρt be the density of
µt.

Then for any t ∈ [0, 1] and any sequence (tn)n∈N ⊂ [0, 1] converging to t there exists a
subsequence (tnk)k∈N such that

ρtnk → ρt, m-a.e.

as k →∞.
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Chapter 2

Old estimates in a new setting

In this chapter we carry on the dissertation of the regularizing properties of the heat flow on
RCD spaces, focusing the attention on gradient and Laplacian estimates for log htu. The former,
also known as Hamilton’s gradient estimate and singled out in [64] for compact Riemannian
manifolds and later extended in [74] to non-compact ones, says that for any u0 ∈ Lp ∩L∞(X)
positive with p ∈ [1,∞) it holds

t|∇ log ut|2 ≤ (1 + 2K−t) log

(‖u0‖L∞(m)

ut

)
, m-a.e.

for all t > 0, where ut := htu0, K is a lower bound on the Ricci curvature and K− :=
max{0,−K}. The latter was proved in the seminal paper [83] by P. Li and S.-T. Yau, whence
its name, for Riemannian manifolds with non-negative Ricci curvature, where it reads as

(2.0.1) ∆ log ut ≥ −
N

2t
, m-a.e.

for all t > 0, N being the dimension of the manifold, or by trivial manipulations

|∇ log ut|2 −
∆ut
ut
≤ N

2t
, m-a.e.

During the last years many efforts have been done in order to generalize such inequalities to
the metric framework and the results are very recent. As we learnt while working on [63],
Hamilton’s gradient estimate has already been proved on proper RCD(K,∞) spaces by Jiang
and Zhang in [72] but, as we will later point out, the assumption for the space to be proper can
be removed. On the other hand, the Li-Yau inequality as stated above is known on RCD∗(0, N)
spaces from [51] and [70]; in the same papers, the case of negative curvature is treated too,
thus establishing the following Baudoin-Garofalo inequality

|∇ log ut|2 ≤ e−2Kt/3 ∆ut
ut

+
NK

3

e−4Kt/3

1− e−2Kt/3
, m-a.e.

Section 2.1 is based on [63] and entirely devoted to old and new results for compact RCD
spaces. We present the proof of Hamilton’s gradient estimate, although already known by
[72] on proper RCD(K,∞) spaces, because the original proof of [64] can be adapted almost
verbatim and the additional compactness assumption allows to avoid the technicalities of the

23
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non-compact case. In this direction, we also prove a bound which seems new in the non-
smooth context, namely a uniform bound on |∇ log htu| in the special case |∇ log u| ∈ L∞(X),
see Proposition 2.1.5. We conclude with a version of the Li-Yau inequality because, even if K
is possibly negative, under the compactness hypothesis we get an estimate closer to (2.0.1)
rather than to Baudoin-Garofalo inequality.

In Section 2.2 we extend the differential notions of the previous chapter to locally integrable
objects and we show that on RCD(K,∞) spaces there exist ‘good’ cut-off functions; this result
is not new in the literature, but we point out some bounds on the cut-off functions in terms
of the relative position of the sets they divide that have not been explicitly written yet. As a
consequence, we prove that log htu is locally well behaved.

Finally, in Section 2.3 we start from the already cited Hamilton’s gradient estimate and
Li-Yau inequality and modify them to make them fit to our purposes, stressing also the differ-
ences w.r.t. the compact case. In particular, on finite-dimensional RCD spaces we remove the
dependence on the L∞ norm of the initial datum present on the right-hand side of Hamilton’s
estimate.

2.1 Comments on the compact case

Throughout the whole section (X, d,m) will be a compact RCD space equipped with a proba-
bility measure (this is not restrictive, because by the Bishop-Gromov inequality m has to be
finite). This allows to define a further (and slightly different) class of test functions as follows

Test∞>0(X) :=
{
f ∈ Test∞(X) : f ≥ c m-a.e. for some c > 0

}
and combining the Gaussian estimates on compact RCD∗(K,N) spaces, N < ∞, with the
results in [109] we see that

f ∈ L1(X), t > 0 ⇒ ht(f) ∈ Test∞(X),

f ∈ L1(X), f ≥ 0,

ˆ
f dm > 0, t > 0 ⇒ ht(f) ∈ Test∞>0(X).

(2.1.1)

2.1.1 Comparison principles

The proofs of Hamilton’s gradient estimate and of the Li-Yau inequality are based on the fol-
lowing two comparison principles, valid in general infinitesimally Hilbertian spaces (Y, dY,mY).

To formulate the result we need to introduce the dual of W 1,2(Y), which we shall denote
W−1,2(Y). As usual, the fact that W 1,2(Y) embeds in L2(Y) with dense image allows to
see L2(Y) as a dense subset of W−1,2(Y), where f ∈ L2(Y) is identified with the mapping
W 1,2(Y) 3 g 7→

´
fg dmY.

Notice also that even in this generality, a regularization via the heat flow shows that D(∆)
is dense in W 1,2(Y) and, with the use of the maximum principle (1.2.10), that non-negative
functions in D(∆) are W 1,2-dense in the space of non-negative functions in W 1,2.

Proposition 2.1.1. Let (Y, dY,mY) be an infinitesimally Hilbertian space. Then the following
two comparison principles hold:
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(i) let (Ft), (Gt) ∈ ACloc([0,∞), L2(Y)) be respectively a weak super- and weak sub- solution
of the heat equation, i.e. such that for all h ∈ D(∆) non-negative and a.e. t > 0 it holds

d

dt

ˆ
hFtdmY ≥

ˆ
∆hFtdmY,

d

dt

ˆ
hGtdmY ≤

ˆ
∆hGtdmY.

Assume that F0 ≥ G0 m-a.e. Then Ft ≥ Gt m-a.e. for every t > 0.

(ii) Let a0, a1, a2 ∈ R and (vt) ∈ L1
loc([0,∞),W 1,2(Y)) with vt ∈ D(∆) for a.e. t and

‖∆vt‖L∞ ∈ L1
loc([0,∞)) and let (Ft), (Gt) ∈ L∞loc([0,∞), L∞(Y))∩L∞loc([0,∞),W 1,2(Y))∩

ACloc([0,∞),W−1,2(Y)) be respectively a weak super- and weak sub- solution of

(2.1.2)
d

dt
ut = ∆ut + a0u

2
t + a1ut + 〈∇ut,∇vt〉+ a2

in the following sense: for all h ∈ D(∆) non-negative and a.e. t > 0 it holds

d

dt

ˆ
hFtdmY ≥

ˆ
∆hFtdmY +

ˆ
h
(
a0F

2
t + a1Ft + 〈∇Ft,∇vt〉+ a2

)
dmY,

d

dt

ˆ
hGtdmY ≤

ˆ
∆hGtdmY +

ˆ
h
(
a0G

2
t + a1Gt + 〈∇Gt,∇vt〉+ a2

)
dmY.

Assume that F0 ≥ G0 mY-a.e. Then Ft ≥ Gt mY-a.e. for every t > 0.

proof
(i) By linearity it is not restrictive to assume Gt ≡ 0 for all t ≥ 0. Fix ε > 0, notice that
t 7→ hεFt belongs to ACloc([0,∞), L2(Y)) with values in D(∆). Then pick h ∈ D(∆) non-
negative, notice that hεh is non-negative as well to get
ˆ
h

d

dt
hεFtdmY =

d

dt

ˆ
hhεFtdmY =

d

dt

ˆ
(hεh)FtdmY ≥

ˆ
∆hεhFtdmY =

ˆ
h∆hεFtdmY.

Since this is true for all h ∈ D(∆) non-negative and, by what we said before, this class of
functions is L2-dense in the set of non-negative L2-functions, we deduce that for a.e. t > 0 it
holds

(2.1.3)
d

dt
hεFt ≥ ∆hεFt, mY -a.e..

Now notice that being F0 ≥ 0, by the maximum principle (1.2.10) we see that hεF0 ≥ 0 too
and we claim that from this fact and (2.1.3) it follows that hε(Ft) ≥ 0 for every t ≥ 0. Thus
let us consider

Φ(t) :=
1

2

ˆ
|φ(hεFt)|2dmY,

where φ(z) := z− = max{0,−z}. Observe that Φ ∈ ACloc([0,∞)), that Φ(0) = 0 and compute

Φ′(t) =

ˆ
φ(hεFt)

d

dt
φ(hεFt) dmY =

ˆ
φ′(hεFt)φ(hεFt)

d

dt
hεFt dmY

= −
ˆ
φ(hεFt)

d

dt
hεFt dmY
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and therefore taking (2.1.3) into account we see that

Φ′(t) ≤ −
ˆ

φ(hεFt)∆hεFt dmY =

ˆ
〈∇φ(hεFt),∇hεFt〉 dmY

= −
ˆ
|∇φ(hεFt)|2 dmY ≤ 0.

Thus Φ(t) = 0 for every t ≥ 0, i.e. hεFt ≥ 0 for all t ≥ 0. Letting ε ↓ 0 we conclude.
(ii) Since (Ft) ∈ L∞loc([0,∞),W 1,2(Y)), the fact that it is a supersolution of (2.1.2) can be
written as

(2.1.4)
d

dt

ˆ
hFtdmY ≥ −

ˆ
〈∇h,∇Ft〉dmY +

ˆ
h
(
a0F

2
t + a1Ft + 〈∇Ft,∇vt〉+ a2

)
dmY

for every h ∈ D(∆) non-negative. Recalling that the class of such functions is W 1,2-dense in
the one of non-negative W 1,2 functions, passing through the integral formulation - in time -
of (2.1.4) it is immediate to see that (2.1.4) also holds for any h ∈ W 1,2(Y) non-negative.
Using the fact that W−1,2(Y) has the Radon-Nikodym property (because it is Hilbert) we see
that (Ft) seen as curve with values in W−1,2(Y) must be differentiable at a.e. t and it is then
clear that for any point of differentiability t, the inequality (2.1.4) holds for any h ∈W 1,2(Y)
non-negative, i.e. that the set of t’s for which (2.1.4) holds is independent on h. The analogous
property holds for (Gt).

Now we apply Lemma 2.1.2 below to ht := Gt−Ft to get that Φ(t) := 1
2

´
|(Gt−Ft)+|2 dmY

is absolutely continuous and

Φ′(t) =

ˆ
(Gt − Ft)+ d

dt
(Gt − Ft) dmY ,

where the right hand side is intended as the coupling of d
dt(Gt − Ft) ∈ W−1,2(Y) and the

function (Gt − Ft)+ ∈W 1,2(Y). Fix t which is a differentiability point of both (Ft) and (Gt),
pick h := (Gt − Ft)+ in (2.1.4) and in the analogous inequality for (Gt) to obtain

Φ′(t) ≤
ˆ
−
〈
∇((Gt − Ft)+),∇(Gt − Ft)

〉
+ (Gt − Ft)+

(
a0(G2

t − F 2
t ) + a1(Gt − Ft) + 〈∇(Gt − Ft),∇vt〉

)
dmY

and since 〈∇h+,∇h〉 = |∇h+|2 and h+∇h = 1
2∇(h+)2 for any h ∈W 1,2, we have

Φ′(t) ≤
ˆ
−|∇((Gt − Ft)+)|2 + |(Gt − Ft)+|2

(
a0(Gt + Ft) + a1 − 1

2∆vt
)

dmY

≤ 2Φ(t)
(
|a0|‖Gt + Ft‖L∞ + |a1|+ 1

2‖∆vt‖L∞
)
.

Since the assumption F0 ≥ G0 gives Φ(0) = 0, by Gronwall’s lemma we conclude that Φ(t) = 0
for any t ≥ 0, which is the thesis. �

Lemma 2.1.2. Let (ht) ∈ L∞loc([0,∞),W 1,2(Y)) ∩ACloc([0,∞),W−1,2(Y)).
Then t 7→ 1

2

´
|(ht)+|2 dmY is locally absolutely continuous on [0,∞) and it holds

(2.1.5)
d

dt

1

2

ˆ
|(ht)+|2 dmY =

ˆ
(ht)

+ d

dt
ht dmY, a.e. t,

where the integral in the right hand side is intended as the coupling of (ht)
+ ∈ W 1,2(Y) with

d
dtht ∈W

−1,2(Y).
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proof If (ht) ∈ ACloc([0,∞), L2(Y)), the claim follows easily with the same computations
done in (2.1.4). The general case follows by approximation via the heat flow. Fix ε > 0 and
notice that the fact that hε is a contraction in W 1,2 and a bounded operator from L2 to W 1,2

yield the inequalities

‖hεf‖L2 = sup
‖g‖L2≤1

ˆ
hεf g dmY ≤ sup

‖g‖L2≤1
‖hεg‖W 1,2‖f‖W−1,2 ≤ Cε‖f‖W−1,2

‖hεf‖W−1,2 = sup
‖g‖W1,2≤1

ˆ
hεf g dmY ≤ sup

‖g‖W1,2≤1
‖hεg‖W 1,2‖f‖W−1,2 ≤ ‖f‖W−1,2 ,

for all f ∈ L2, which together with the density of L2 in W−1,2 ensures that hε can be uniquely
extended to a linear bounded operator from W−1,2 to L2 which is also a contraction when
seen with values in W−1,2. It is then clear that hεf → f in W−1,2 as ε ↓ 0 for any f ∈W−1,2.
It follows that for (ht) as in the assumption, (hεht) ∈ ACloc([0,∞), L2(Y)), so that by what
previously said the thesis holds for such curve and writing the identity (2.1.5) in integral form
we have

1

2

ˆ
|(hεht1)+|2 − |(hεht0)+|2 dmY =

ˆ t1

t0

ˆ (
hεht

)+
hε
( d

dt
ht

)
dmY dt ∀0 ≤ t0 ≤ t1.

Letting ε ↓ 0, using the continuity at ε = 0 of hε seen as operator on all the spaces
W 1,2, L2,W−1,2 and the continuity of h 7→ h+ as map from W 1,2 with the strong topol-
ogy to W 1,2 with the weak one (which follows from the continuity of the same operator in L2

together with the fact that it decreases the W 1,2 norm), we obtain

(2.1.6)
1

2

ˆ
|h+
t1
|2 − |h+

t0
|2 dmY =

ˆ t1

t0

ˆ
(ht)

+ d

dt
ht dmY dt ∀0 ≤ t0 ≤ t1.

Now the bound∣∣∣∣ ˆ t1

t0

ˆ
(ht)

+ d

dt
ht dmY dt

∣∣∣∣ ≤ ‖(ht)‖L∞([t0,t1],W 1,2)

ˆ t1

t0

∥∥∥ d

dt
ht

∥∥∥
W−1,2

dt

grants the local absolute continuity of t 7→ 1
2

´
|h+
t |2 dmY and the conclusion follows by differ-

entiating (2.1.6). �

2.1.2 Hamilton’s gradient estimates and related inequalities

We start proving Hamilton’s gradient estimate on compact RCD(K,∞) spaces, with a proof
which closely follows the original one in [64]. As already said, in fact the same result is known
to be true - from [72] - on the more general class of RCD(K,∞) spaces, but given that the
compactness assumption slightly simplifies the argument, we provide the proof. A key tool for
the forthcoming computations is the following:

(2.1.7) ϕ ◦ f ∈ Test∞(X) ∀f ∈ Test∞(X), ϕ : R→ R which is C∞ on the image of f

(see [109]). We shall extensively make use of it without further notice in the case ϕ(z) := log(z)
and f has bounded image.



28 CHAPTER 2. OLD ESTIMATES IN A NEW SETTING

Proposition 2.1.3. Let (X, d,m) be a compact RCD(K,∞) space with K ∈ R and let u0 ∈
L∞(m) be such that u0 ≥ c for some positive constant c. Put ut := htu0 for all t > 0. Then

(2.1.8) t|∇ log ut|2 ≤ (1 + 2K−t) log

(‖u0‖L∞(m)

ut

)
, m-a.e.

for all t > 0, where K− := max{0,−K}.

proof Let us assume for the moment that u0 ∈ Test∞>0(X). Set M := ‖u0‖L∞(m) and define
for t ≥ 0

vt := ϕt
|∇ut|2

ut
− ut log

M

ut
, with ϕt :=

t

1 + 2K−t
.

Notice that by the maximum principle (1.2.10) we know that c ≤ ut ≤ M for all t ≥ 0, thus
the definition of vt is well posed.

Our thesis is equivalent to the fact that vt ≤ 0 and we shall prove this via the com-
parison principle for the heat flow stated in point (i) of Proposition 2.1.1. The fact that
(ut) ∈ ACloc([0,∞),W 1,2(X)) and - by the maximum principle (1.2.10) and the Bakry-
Émery inequality (1.2.13) - that (log(ut)), (|∇ut|) ∈ L∞loc([0,∞), L∞(X)) grant that (vt) ∈
ACloc([0,∞), L2(X)). Since by construction we have v0 ≤ 0, we are left to prove that for any
h ∈ D(∆) non-negative it holds

ˆ
h

d

dt
vt dm ≤

ˆ
vt∆hdm a.e. t.

We have ut ∈ D(∆) and, by (1.2.17), that |∇ut|2 ∈ D(∆) for any t ≥ 0, thus since as said
0 < c ≤ ut ≤ M for all t ≥ 0, we deduce that vt ∈ D(∆) for any t ≥ 0. Hence our thesis can
be rewritten as ( d

dt
vt

)
m ≤∆vt a.e. t.

The conclusion now follows by direct computation. We have

(2.1.9)
d

dt
vt = ϕ′t

|∇ut|2

ut
+ ϕt

( 2

ut
〈∇ut,∇∆ut〉 −∆ut

|∇ut|2

u2
t

)
−∆ut log

M

ut
+ ∆ut

and

(2.1.10) ∆
(
ut log

M

ut

)
= (∆ut) log

M

ut
−∆ut −

|∇ut|2

ut
.

Moreover

∆
|∇ut|2

ut
=

1

ut
∆|∇ut|2 +

(
|∇ut|2∆(u−1

t ) + 2
〈
∇|∇ut|2,∇(u−1

t )
〉 )

m

so that using the Bochner inequality (1.2.23) we obtain

∆
|∇ut|2

ut
≥
( 2

ut
|Hess(ut)|2HS +

2

ut
〈∇ut,∇∆ut〉+

2K

ut
|∇ut|2

−∆ut
|∇ut|2

u2
t

+ 2
|∇ut|4

u3
t

− 2

u2
t

〈
∇ut,∇|∇ut|2

〉 )
m.

(2.1.11)
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Putting together (2.1.9), (2.1.10) and (2.1.11) and using the identity∣∣∣Hess(ut)−
∇ut ⊗∇ut

ut

∣∣∣2
HS

= |Hess(ut)|2HS +
|∇ut|4

u2
t

−
〈
∇ut,∇|∇ut|2

〉
ut

we obtain( d

dt
vt

)
m−∆vt ≤

( |∇ut|2
ut

(
ϕ′t − 2Kϕ− 1

)
− 2

ut

∣∣∣Hess(ut)−
∇ut ⊗∇ut

ut

∣∣∣2
HS

)
m

and the conclusion follows noticing that by the definition of ϕt we have

ϕ′t − 2Kϕt − 1 ≤ 0 ∀t ≥ 0.

For the general case, recall that by (1.2.15) and our assumption on u0 we have that uε ∈
Test∞>0(X) for every ε > 0 and notice that what we have just proved grants that

t|∇ log ut+ε|2 ≤ (1 + 2K−t) log
(‖uε‖L∞

ut+ε

)
, m-a.e., ∀t ≥ 0.

By the maximum principle (1.2.10) we have that ‖uε‖L∞ ≤ ‖u0‖L∞ , then the conclusion easily
follows letting ε ↓ 0 and using the continuity of ε 7→ uε, |∇uε| ∈ L2(m). �

In the compact finite-dimensional case, thanks to the Gaussian estimates for the heat
kernel we can now easily obtain a bound independent on the L∞ norm of the initial datum
present in inequality (2.1.8):

Theorem 2.1.4. Let (X, d,m) be a compact RCD∗(K,N) space with K ∈ R and N ∈ [1,∞).
Then there is a constant C depending on K,N and D := diam(X) only such that for any
u0 ∈ L1(X) non-negative and not identically 0 the inequality

(2.1.12) |∇ log(ut)|2 ≤ C
(

1 +
1

t2

)
, m-a.e.

holds for all t > 0, where ut := htu. In particular, for every δ > 0 there is a constant Cδ > 0
depending on K,N,D, δ only such that

(2.1.13) sup
ε∈(0,1)

ε‖∇ log(uεt)‖L∞ ≤ Cδ ∀t ≥ δ.

proof Recall the representation formula (1.2.9c):

ut(x) =

ˆ
u(y)rt[y](x) dm(y) ∀x ∈ X

and that for the transition probability densities rt[y](x) we have the Gaussian estimates (1.2.11)

C0

m(B√t(y))
e−C1

D2

t ≤ rt[y](x) ≤ C2

m(B√t(y))
∀x, y ∈ X,

for appropriate constants C0, C1, C2 depending only on K,N . Therefore we have

‖ut‖L∞ = sup
x
ut(x) ≤ C2

ˆ
u(y)

m(B√t(y))
dm(y),

inf
x
u2t(x) ≥ C0e

−C1
D2

t

ˆ
u(y)

m(B√2t(y))
dm(y) > 0.



30 CHAPTER 2. OLD ESTIMATES IN A NEW SETTING

By the Bishop-Gromov inequality we know that for some constant C3 > 0 it holds

m(B√2t(y)) ≤ C3m(B√t(y)) ∀y ∈ X, t > 0,

hence the above yields

‖ut‖L∞
u2t(x)

≤ C2C3

C0
eC1

D2

t ∀x ∈ X, t > 0.

We now apply Proposition 2.1.3 with ut in place of u0 (notice that the assumptions are fulfilled)
to get

t|∇ log(u2t)|2 ≤ (1 + 2K−t) log
(‖ut‖L∞

u2t

)
≤ (1 + 2K−t)

(
log
(C2C3

C0

)
+ C1

D2

t

)
m-a.e.,

which is (equivalent to) the bound (2.1.12). The last statement is now obvious. �

In inequality (2.1.12), the right hand side blows-up at t = 0 and thus it gives no control
for small t’s. In the next simple proposition we show that if the initial datum is good enough,
then we have a control for all t’s:

Proposition 2.1.5. Let (X, d,m) be a compact RCD(K,∞) space with K ∈ R and let u0 :
X→ (0,∞) be such that log u0 is Lipschitz. Put ut := htu0 for all t > 0. Then

|∇ log ut| ≤ e−Kt‖|∇ log u0|‖L∞ m-a.e..

proof Assume for a moment that u0 ∈ Test∞>0(X) and put ϕt := log ut ∈ Test∞(X) so
that, also recalling the calculus rules stated in the preliminary section, we have (ϕt) ∈
ACloc([0,∞), L2(X)) and

(2.1.14)
d

dt
ϕt = |∇ϕt|2 + ∆ϕt.

By the maximum principle (1.2.10) we know that ut(x) ∈ [c, C] for any t, x, for some [c, C] ⊂
(0,∞) and from this fact and the chain rule for the differential and Laplacian it easily follows
that (∆ϕt) ∈ L∞loc([0,∞),W 1,2(X)) and (|∇ϕt|) ∈ L∞loc([0,∞), L∞(X)). Hence taking (1.2.16)
into account we see that |∇ϕt|2 ∈ L∞loc([0,∞),W 1,2(X)) as well. Therefore from (2.1.14) we
deduce that (ϕt) ∈ ACloc([0,∞),W 1,2(X)) so that putting

Ft := |∇ϕt|2,

we have that (Ft) satisfies the regularity assumptions needed in point (ii) of Proposition
2.1.1 (notice that trivially ACloc([0,∞), L2(X)) ⊂ ACloc([0,∞),W−1,2(X))). Moreover, from
(2.1.14) we get

d

dt
Ft = 2 〈∇ϕt,∇Ft〉+ 2 〈∇ϕt,∇∆ϕt〉

and therefore from the Bochner inequality (1.2.23) written for ϕt - neglecting the term with
the Hessian - we see that for any h ∈ Test∞(X) it holds

d

dt

ˆ
hFt dm ≤

ˆ
∆hFt + 2h

(
〈∇ϕt,∇Ft〉 −KFt

)
dm,
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showing that (Ft) is a weak subsolution of (2.1.2) with

a0 = 0 a1 = −2K a2 = 0 vt = 2ϕt.

On the other hand, the function

Gt(x) := e−2Kt‖F0‖L∞

is a solution of (2.1.2) and F0 ≤ G0 m-a.e. Since from the chain rule for the Laplacian and
the maximum principle (1.2.10) we have ∆ϕt ∈ L∞loc([0,∞), L∞(X)), we see that we are in
position to apply point (ii) of Proposition 2.1.1 and deduce that Ft ≤ Gt m-a.e. for every
t > 0, which is the thesis.

For the case of general u0 as in the assumptions, we put uε0 := ehε(log(u0)) and notice that
by the Bakry-Émery estimate (1.2.13), it holds

lim
ε↓0
‖|∇ log uε0|‖L∞ ≤ ‖|∇ log u0|‖L∞ .

Then put ϕεt := log htu
ε
0 and notice that this last inequality together with what previously

proved grants that
lim
ε↓0
‖|∇ϕεt |‖L∞ ≤ e−Kt‖|∇ log u0|‖L∞ .

Conclude noticing that ϕεt → log ut m-a.e. as ε ↓ 0 and use the closure of the differential.
�

2.1.3 A Li-Yau type inequality

We now prove a version of Li-Yau inequality valid on general compact RCD∗(K,N) spaces,
where K is possibly negative: the bound (2.1.15) that we obtain is not sharp (as it is seen
by letting K ↑ 0 in the estimate (2.1.16) provided in the proof) but we decide to present it
because the idea of the proof is simple and the compactness assumption

Theorem 2.1.6. Let (X, d,m) be a compact RCD∗(K,N) space with K ∈ R and N ∈ [1,∞).
Then for every δ > 0 there exists a constant Cδ > 0 depending on K,N , Diam(X) and δ only
such that the following holds.

For any u0 ∈ L1(X) non-negative and non-zero and ε ∈ (0, 1) it holds

(2.1.15) ε∆ log(hεt(u0)) ≥ −Cδ ∀t ≥ δ.

proof We can, and will, assume K < 0. Let C be the constant given by Theorem 2.3.2 (which
only depends on K,N and Diam(X)) and put

α(t) := −KC
(

1 +
4

t2

)
> 0.

We shall prove that for u0 as in the assumptions we have

(2.1.16) ∆ log ut ≥ −
√
Nα(t) coth

(√α(t)

N
t
)

∀t > 0.



32 CHAPTER 2. OLD ESTIMATES IN A NEW SETTING

From this the thesis easily follows as the function φ(t, ε) := ε
√
Nα(εt) coth

(√
α(εt)
N εt

)
is

decreasing in t - as seen by direct computation - so that (2.1.15) follows from (2.1.16) and

lim
ε↓0

φ(δ, ε) =

√
−4KCN

δ2
coth

(√−4KC

N

)
< +∞.

Thus fix u0 as in the statement and notice that ut ∈ Test∞>0(X) for every t > 0, so that
ft := log ut ∈ Test∞(X) for every t > 0. Arguing as in the proof of Proposition 2.1.5 we see
that (ft) ∈ ACloc((0,∞),W 1,2(X)) with

(2.1.17)
d

dt
ft = ∆ft + |∇ft|2, for a.e. t > 0.

Let η > 0 to be fixed later and put Ft := ∆ft+η. From the chain rules for the gradient and
Laplacian it is readily verified that (Ft) ∈ L∞loc([0,∞), L∞(X)) ∩ L∞loc([0,∞),W 1,2(X))

Now, as in the proof of Lemma 2.1.2, the trivial estimate

‖∆f‖W−1,2 = sup
‖g‖W1,2=1

ˆ
g∆f dm = sup

‖g‖W1,2=1
−
ˆ
〈∇g,∇f〉 dm ≤ ‖f‖W 1,2

grants that ∆ : D(∆)→ L2(X) can be uniquely extended to a linear bounded functional, still
denoted by ∆, fromW 1,2(X) toW−1,2(X). It is then clear that (Ft) ∈ ACloc([0,∞),W−1,2(X)).

We want to show that (Ft) is a weak supersolution of (2.1.2) for an appropriate choice of
the parameters and to this aim we fix h ∈ Test∞+ (X) and notice that

d

dt

ˆ
hFt dm =

d

dt

ˆ
∆hft+η dm

(2.1.17)
=

ˆ
∆h(Ft + |∇ft+η|2) dm.

Using first the Bochner inequality (1.2.24) and then the gradient estimate (2.3.2) we obtain

d

dt

ˆ
hFt dm ≥

ˆ
∆hFt + h

(
2 〈∇ft+η,∇Ft〉+

2

N
F 2
t + 2K|∇ft+η|2

)
dm

≥
ˆ

∆hFt + h
(

2 〈∇ft+η,∇Ft〉+
2

N
F 2
t + 2KC

(
1 +

1

η2

))
dm,

thus indeed (Ft) is a weak supersolution of (2.1.2) for

a0 :=
2

N
a1 := 0 a2(η) := 2KC

(
1 +

1

η2

)
vt := 2ft+η.

Noticing that α2(η) < 0, it is trivial to check that the function

yt := −
√
−a2(η)N

2
coth

(√
−2a2(η)

N
(t+ t0)

)
is the only solution of

y′t =
2

N
y2
t + a2(η)

with y0 = −
√
−a2(η)N

2 coth
(√
−2a2(η)

N t0

)
. Now recall that F0 = ∆fη ∈ L∞, so that choosing

t0 > 0 sufficiently small we have that F0 ≥ y0 m-a.e.
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Defining Gt(x) := yt it is then clear that (Gt) is a weak (sub)solution of (2.1.2), and
since F0 ≥ G0 holds m-a.e. and, as already argued in the proof of Proposition 2.1.5, ∆vt ∈
L∞loc([0,∞), L∞(X)), Proposition 2.1.1 grants that for any t > 0 it holds Ft ≥ Gt m-a.e., that
is:

∆ log(ut+η) ≥ −
√
−α2(η)N

2
coth

(√
−2α2(η)

N
(t+ t0)

)
≥ −

√
−α2(η)N

2
coth

(√
−2α2(η)

N
t
)
.

Picking η := t we obtain (an equivalent version of) (2.1.16). �

2.2 Local calculus

As noticed and widely used in the previous section, when (X, d,m) is a compact RCD∗(K,N)
and u ∈ L1(X) is a non-zero non-negative function, by the regularization properties of the
heat semigroup it follows that htu ∈ Test(X) and htu ≥ c for some constant c > 0, so that
log htu ∈ Test(X) as well.

In the non-compact case, the lower bound on htu is no longer true and thus in general
log htu /∈ L2(X). As a consequence, in order to give a meaning to Hamilton’s gradient estimates
and Li-Yau inequality one needs to introduce local Sobolev spaces and related differential
operators; this will allow us also to investigate those local regularity features that fail to be true
on a global scale. A possible approach to the problem consists in generalizing the machinery
of L2(X)-normed modules introduced in Section 1.1 through the definition of L0(X)-normed
modules (for a detailed presentation, the reader is addressed to [56]).

A L0(X)-normed module is a complete topological space (M , τ) endowed with a bilinear
map

L0(X)×M → M

(f, v) 7→ f · v

called multiplication by L0(X) functions, and a map | · | : M → L0(X) with non-negative
values, called pointwise norm, such that:

(i) for every v ∈M and f, g ∈ L0(X)

f · (g · v) = (fg) · v, 1 · v = v

where 1 denotes the function identically equal to 1;

(ii) for every v ∈M and f ∈ L0(X) it holds |f · v| = |f | |v| m-a.e.

(iii) for some Borel partition (Ei) of X into sets of finite m-measure, M is complete w.r.t.
the distance

d0(v, w) :=
∑
i∈N

1

2im(Ei)

ˆ
Ei

min{1, |v − w|}dm

and τ is the topology induced by the distance.
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An isomorphism between two L0(X)-normed modules is a linear homeomorphism which pre-
serves the pointwise norm and the product with L0(X) functions.

It is not difficult to see that the choice of the partition (Ei) in (iii) affects the distance, but
not the completeness of M nor the topology τ . Moreover, if M is a L2(X)-normed module,
then there exist a unique L0(X)-normed module M 0 and a unique map ι : M →M 0 which is
linear, preserves the pointwise norm and has dense image. Here uniqueness is intended up to
unique isomorphism, in the following sense: if M̃ 0 and ι̃ have the same properties, then there
exists a unique isomorphism Φ : M → M̃ 0 such that ι̃ = Φ ◦ ι.

For our discussion it is also helpful to recall that on RCD∗(K,N) spaces very regular cut-
off functions can be built. Although already known in the literature (see [9]), we give the full
proof of the following result, because the estimates (2.2.1) will be widely exploited in Chapter
5 and Chapter 6 and have not been explicitly pointed out in [9].

Lemma 2.2.1. Let (X, d,m) be a RCD(K,∞) space with K ∈ R endowed with a Borel non-
negative measure m which is finite on bounded sets.

Then for all B ⊂ B′ ⊂ X with B compact and B′ open and relatively compact there exists
a function χ : X→ R satisfying:

(i) 0 ≤ χ ≤ 1, χ ≡ 1 on a neighbourhood of B and supp(χ) ⊂ B′;

(ii) χ ∈ Test∞(X).

Moreover, the following estimates hold

(2.2.1) ‖|∇χ|‖L∞(m) ≤ C ‖∆χ‖L∞(m) ≤ C ′

where the constants C,C ′ > 0 only depend on K and the distance between B and X \B′.

proof Let η ∈ Lip(R) with bounded support and introduce the following notation:

d(x,B) := inf
y∈B

d(x, y) Br := {x ∈ X : d(x,B) ≤ r}.

If we define ξ := η ◦d(·, B), then it is easy to see that ξ has bounded support and ξ ∈W 1,2(X)
with |∇ξ| ≤ |η′(d(·, B))| m-a.e. Thus, since ε := infx/∈B′ d(x,B) > 0, we can choose η in such
a way that 0 ≤ ξ ≤ 1, ξ ≡ 1 on Bε/3 and supp(ξ) ⊂ B2ε/3, i.e. (i) holds.

In order to gain further regularity and build a function satisfying also (ii), let us first
introduce the mollified heat flow ht as

(2.2.2) htf :=
1

t

ˆ ∞
0

hrfκ(r/t)dr,

where κ ∈ C∞c (0,∞) is a probability density, and observe that if f ∈ L2 ∩ L∞(m) then
htf ∈ Test∞(X): indeed, by (1.2.15) and the a priori estimates (1.2.12a) and (1.2.12b) we see
that htf ∈ Test(X) for every t > 0 and its Laplacian is explicitly given by

∆htf =
1

t

ˆ ∞
0

∆hrfκ(r/t)dr =
1

t

ˆ ∞
0

( d

dt
hrf
)
κ(r/t)dr

= − 1

t2

ˆ ∞
0

hrfκ
′(r/t)dr = −1

t

ˆ ∞
0

hstfκ
′(s)ds
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whence, by the maximum principle,

(2.2.3) ‖∆htf‖L∞(m) ≤
1

t
‖f‖L∞(m)‖κ′‖L1(0,∞).

An explicit bound can be found for |∇htf | too, provided |∇f | ∈ L∞(m): by the Bakry-Émery
contraction estimate (1.2.13) we have

|∇htf | ≤
1

t

ˆ ∞
0
|∇hrf |κ(r/t)dr =

ˆ ∞
0
|∇hstf |κ(s)ds ≤

ˆ ∞
0

e−Kst
√

hst(|∇f |2)κ(s)ds

whence, again by the maximum principle,

(2.2.4) ‖|∇htf |‖L∞(m) ≤ ‖|∇f |‖L∞(m)

ˆ ∞
0

e−Kstκ(s)ds ≤ C‖|∇f |‖L∞(m).

Now let us regularize ξ by means of the mollified heat flow, setting ξt := htξ. The maximum
principle, (2.2.4) and the Sobolev-to-Lipschitz property imply that {ξt}t∈[0,T ] is a uniformly
Lipschitz and uniformly bounded family for any T > 0. By the Ascoli-Arzelà theorem together
with the fact that ξt → ξ in L2(m) as t ↓ 0 we deduce that ξt → ξ uniformly. As a consequence,
again by the maximum principle there exists δ = δ(ε) > 0 sufficiently small so that

3

4
≤ ξδ ≤ 1 on Bε/3 and 0 ≤ ξδ ≤

1

4
on X \B2ε/3.

Then pick ζ ∈ C2([0, 1], [0, 1]) such that ζ([0, 1/4]) = {0} and ζ([3/4, 1]) = {1} and set
χ := ζ ◦ ξδ. By the chain rule for the gradient and the Laplacian, we finally deduce that χ
satisfies both (i) and (ii).

The estimates (2.2.1) follow from (2.2.3) and (2.2.4), noticing that the choice of κ and ζ
is completely arbitrary, whereas η and δ only depend on ε. �

With this said, L2
loc(X) is defined as the space of functions f ∈ L0(X) such that for all

compact set Ω ⊂ X there exists a function g ∈ L2(X) such that f = g m-a.e. in Ω. Analogously,
it is possible to introduce Lploc(X) for all p ∈ [1,∞]. The local Sobolev class S2

loc(X) is then
defined as

(2.2.5) S2
loc(X) := {f ∈ L0(X) : ∀Ω ⊂⊂ X ∃g ∈ S2(X) s.t. f = g m-a.e. in Ω}

and the local minimal weak upper gradient of a function f ∈ S2
loc(X) is denoted by |Df |,

omitting the locality feature, and defined for all Ω ⊂⊂ X as

|Df | := |Dg| m-a.e. in Ω

where g is as in (2.2.5). The definition does depend neither on Ω nor on the choice of g
associated to it by locality of the minimal weak upper gradient; the definition of the local
Sobolev space W 1,2(X) follows naturally as L2

loc ∩ S2
loc(X).

As already seen in Section 1.1 for the global analogue, the notion of local minimal weak
upper gradient enables the definition of the local differential through the following result.

Theorem 2.2.2 (Definition of L0(T ∗X)). There exists a unique couple (L0(T ∗X),d), where
L0(T ∗X) is a L0(X)-normed module and d : S2

loc(X)→ L0(T ∗X) is a linear map, such that:
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(i) |df | = |Df | m-a.e. for every f ∈ S2
loc(X);

(ii) the space {df : f ∈ S2
loc(X)} generates L0(T ∗X) in the sense of modules, namely L0(X)-

linear combinations of objects of the form df are dense in L0(T ∗X).

Uniqueness is meant up to unique isomorphism, namely if (M ,d′) satisfies the same properties,
then there is a unique isomorphism Φ : L0(T ∗X) → M such that Φ(df) = d′f for all f ∈
S2
loc(X).

It is worth saying that (L0(T ∗X),d) can be fully identified with the L0(X)-completion of
L2(T ∗X) in the sense that, if we denote by d′ the differential associated to L2(T ∗X) to avoid
ambiguity, there is a unique linear map ι : L2(T ∗X)→ L0(T ∗X) sending d′f to df , preserving
the pointwise norm and with dense image. For this reason, we shall use the same notation for
both the differentials of L2(T ∗X) and L0(T ∗X).

The space of vector fields L0(TX) can be now defined in two equivalent ways: as the dual of
L0(T ∗X) as L0(X)-normed module or as the L0(X)-completion of L2(TX). Then L2

loc(T
∗X) ⊂

L0(T ∗X) (resp. L2
loc(TX) ⊂ L0(TX)) is defined as the collection of the 1-forms ω such that

|ω| ∈ L2
loc(X) (resp. the vector fields W such that |W | ∈ L2

loc(X)); with this definition, we can
observe that in (L0(T ∗X), d) the differential d actually takes values in L2

loc(T
∗X). Furhermore,

since L0(T ∗X) and L0(TX) are canonically isomorphic via the (musical) isomorphisms

[ : L0(TX)→ L0(T ∗X) ] : L0(T ∗X)→ L0(TX),

extensions of the ones introduced in (1.1.6), we can define the gradient of f ∈ W 1,2
loc (X) as

∇f := (df)] ∈ L2
loc(TX).

Remark 2.2.3. By a simple cut-off argument, one can show that f ∈ S2
loc(X) if and only if

χf ∈ S2(X) for every Lipschitz function χ with bounded support. An analogous statement
holds for W 1,2

loc (X). �

As regards the divergence, we say that W ∈ L2
loc(TX) has divergence in L2

loc(X), and write
W ∈ D(divloc), provided there exists h ∈ L2

loc(X) such that
ˆ
φhdm = −

ˆ
dφ(W ) dm, ∀φ Lipschitz with bounded support.

In this case φ is unique and denoted by div(W ). Arguing in the same manner, we say that
a function f ∈ W 1,2

loc (X) has Laplacian in L2
loc(X), and write f ∈ D(∆loc), if there exists

g ∈ L2
loc(X) such that

ˆ
φgdm = −

ˆ
〈∇φ,∇f〉dm, ∀φ Lipschitz with bounded support

and in this case, since g is unique, we set ∆f := g. In addition, a function f ∈W 1,2
loc (X) belongs

to the domain of the (local) measure-valued Laplacian, and we write f ∈ D(∆loc), if there
exists a set function µ : Bbd(X)→ R, Bbd(X) being the family of bounded Borel subsets of X,
which is a Borel (signed) measure with finite total variation when restricted to an element of
Bbd(X) and such that (1.1.5) holds. Finally, let us introduce the local Sobolev space W 2,2

loc (X)
and the vector space of ‘local test functions’ Testloc(X) as

W 2,2
loc (X) := {f ∈ L2

loc(X) : ∀Ω ⊂⊂ X ∃g ∈W 2,2(X) s.t. f = g m-a.e. in Ω}
Testloc(X) := {f ∈ L2

loc(X) : ∀Ω ⊂⊂ X ∃g ∈ Test(X) s.t. f = g m-a.e. in Ω}
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and, for a function f ∈W 2,2
loc (X), denote the (local) Hessian of f as the global one and define it

by locality, namely Hess(f) := Hess(g) m-a.e. in Ω provided Ω has non-empty interior (because
of the locality property (1.2.19)) where g is as in the definition above.

It is easy to see that the local definitions we have just provided are consistent with the
global ones, in the sense that

• if f ∈ W 1,2(X), then its local minimal weak upper gradient coincides m-a.e. with the
global one;

• if f ∈ W 1,2
loc (X) with f, |Df | ∈ L2(X), then f ∈ W 1,2(X) and the local minimal weak

upper radient turns out to be the global one;

thus motivating the same notation. Analogous statements hold for the divergence, the L2-
valued Laplacian, the measure-valued one and the Hessian. It is also worth saying that these
local objects enjoy the same calculus rules of the corresponding global ones, up to slight
adaptations; we collect them below.

Lemma 2.2.4 (Local calculus rules). Let (X, d,m) be a RCD∗(K,N) with K ∈ R and N ∈
[1,∞). Then:

(i) (Differential and gradient) d satisfies the following calculus rules:

|df | = |Df | m-a.e. ∀f ∈ S2
loc(X)

df = dg m-a.e. on {f = g} ∀f, g ∈ S2
loc(X)

d(fg) = g df + f dg ∀f, g ∈ L∞loc ∩ S2
loc(X)

and for all f ∈ S2
loc(X) and ϕ : R→ R such that for all K ⊂⊂ X there exists IK ⊂⊂ R

in such a way that L 1(f(K) \ IK) = 0 and f |IK is Lipschitz it holds

d(ϕ ◦ f) = ϕ′ ◦ f,

where it is part of the properties the fact that ϕ ◦ f, fg ∈ S2
loc(X) for ϕ, f, g as above;

analogous statements hold for the gradient.

(ii) (Divergence) for all f ∈W 1,2
loc (X),W ∈ D(divloc) such that |f |, |W | ∈ L∞loc(X) it holds

div(fW ) = df(W ) + fdiv(W ),

where it is part of the statement that fW ∈ D(divloc) for f,W as above.

(iii) (Laplacian) ∆ enjoys the chain and Leibniz rules:

∆(ϕ ◦ f) = ϕ′′ ◦ f |df |2 + ϕ′ ◦ f∆f(2.2.6a)
∆(fg) = g∆f + f∆g + 2 〈∇f,∇g〉(2.2.6b)

where in the first equality we assume that f ∈ D(∆loc), ϕ : R → R are such that
f, |df | ∈ L∞loc(X) and ϕ′, ϕ′′ ∈ L∞(R) and in the second that f, g ∈ D(∆loc) ∩ L∞loc(X)
and |df |, |dg| ∈ L∞loc(X) and it is part of the claims that ϕ ◦ f, fg are in D(∆loc).
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(iv) (Hessian) for all f, g ∈ Testloc(X) it holds

Hess(f) = Hess(g), m-a.e. on {f = g}

and the following Leibniz rule is satisfied

(2.2.7) d 〈∇f,∇g〉 = Hess(f)(∇g, ·) + Hess(g)(∇f, ·) m-a.e.

proof All the locality properties are straightforward consequences of the definitions and of the
analogous properties valid for the global objects. The Leibniz rules are also easy to obtain;
for (2.2.7) it is sufficient to observe that Test(X) ⊂ W 2,2(X) entails Testloc(X) ⊂ W 2,2

loc (X),
so that Hess(f) is locally well defined for any f ∈ Testloc(X) and the locality of the Hessian
together with (1.2.21) give the conclusion.

As regards the chain rule, let us prove the one for the differential; the other one follows along
the same lines. Let f ∈ S2

loc(X), K ⊂ X be a compact set, fK a Sobolev function coinciding
with f m-a.e. on K and ϕK a Lipschitz extension of ϕ|IK to R. Then ϕK ◦ fK ∈ S2(X) by
Lemma 1.1.3, whence d(ϕK ◦fK) = ϕ′K ◦fK dfK , and ϕK ◦fK = ϕ◦f m-a.e. in K; by locality
of the differential and the fact that df = 0 m-a.e. on f−1(N) for any L 1-negligible set N ⊂ R
(thus getting rid of the points where ϕ and ϕK may be different) the thesis follows. �

Let us stress that Test(X) ⊂ W 2,2(X) entails Testloc(X) ⊂ W 2,2
loc (X). Hence, taking also

(1.2.16) and (1.2.17) into account, for any f ∈ Testloc(X) we already know that Hess(f)
is locally well defined and |∇f |2 ∈ D(∆loc) ∩ W 1,2

loc (X). However, there is a flipside: given
f ∈ L2

loc(X), how can we check if f ∈ Testloc(X)? Far from investigating the question in its
full generality, as already anticipated we are mostly interested in the case f = log htu and to
answer the question in this particular case we will rely on Lemma 2.2.1, which implies that

(2.2.8) Testloc(X) =
{
f ∈ D(∆loc) ∩ L∞loc(X) : |∇f | ∈ L∞loc(X), ∆f ∈W 1,2

loc (X)
}
.

The ‘⊂’ inclusion is obvious, while for the opposite one if f belongs to the set on the right-
hand side of (2.2.8) and Ω ⊂ X is a compact set, it is sufficient to take a cut-off function
χ ∈ Test∞(X) with bounded support and χ ≡ 1 on Ω: then χf ∈ Test(X) and χf ≡ f on Ω.
This follows by Remark 2.2.3, the fact that χf still belongs to the set on the right-hand side
of (2.2.8) and the calculus rules of Lemma 2.2.4.

The existence of a regular extension is not a trivial task. Thus, the advantage of (2.2.8) is
clear: it characterizes Testloc(X) in terms of L∞loc(X),W 1,2

loc (X), D(∆loc) and checking whether a
function belongs to these spaces requires a distributional or cut-off approach, which is easier.

The fact that log htu ∈ Testloc(X) is now a matter of direct computation.

Proposition 2.2.5. Let (X, d,m) be a RCD∗(K,N) space with K ∈ R and N ∈ [1,∞) endowed
with a Borel non-negative measure m and let u0 ∈ L2 ∩L∞(X) be non-negative not identically
zero. Put ut := htu0 for all t > 0. Then log ut ∈ Testloc(X).

proof Fix t > 0 and notice that by (1.2.15) ut ∈ Test(X) and by (1.2.11) ut is locally away
from 0. Taking into account the fact that log is smooth on (0,∞), this information implies
that log ut is well defined, belongs to L2

loc ∩ L∞loc(X) and by the chain rule for the differential
and the Laplacian stated in Lemma 2.2.4 log ut ∈W 1,2

loc (X) ∩D(∆loc) with

(2.2.9) ∇ log ut =
∇ut
ut

, ∆ log ut =
∆ut
ut
− |∇ut|

2

u2
t

.
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The first expression, ut ∈ Test(X) and the fact that ut is locally bounded away from 0 also
entail that |∇ log ut| ∈ L∞loc(X). Looking at the second expression, taking into account the
local chain rule (which grant that 1/ut, 1/u

2
t ∈W

1,2
loc (X)) and the Leibniz one, we deduce that

∆ log ut ∈W 1,2
loc (X) and it is easy to check that

(2.2.10) |∇∆ log ut| ≤
|∇∆ut|
ut

+
∆ut|∇ut|

u2
t

+
2|∇ut|
u2
t

|Hess(ut)|HS +
2|∇ut|3

u3
t

.

By (2.2.8) this is sufficient to conclude. �

2.3 Hamilton and Li-Yau estimates

We start recalling Hamilton’s gradient estimate on RCD(K,∞) spaces, which is known to be
true from [72]. In this work Jiang and Zhang proved the inequality on the class of proper
RCD(K,∞) spaces, but we would like to point out that it is not actually needed for (X, d,m)
to be proper. In fact, in Section 2 of [72] the authors never use explicitly the fact that X is
proper, but refer to [58], [4], [7] and [109]: in the last three papers m is just a non-negative
Radon measure, while only in the first one m is assumed to be finite on bounded sets (see
Proposition 4.24) and this is always the case on RCD(K,∞) spaces because of (1.2.6). Hence
we are going to state Hamilton’s gradient estimate in a framework which is slightly better
than the one of [72].

Proposition 2.3.1. Let (X, d,m) be a RCD(K,∞) space with K ∈ R endowed with a Borel
non-negative measure m and let u0 ∈ Lp ∩ L∞(m) be positive with p ∈ [1,∞). Put ut := htu0

for all t > 0. Then

(2.3.1) t|∇ log ut|2 ≤ (1 + 2K−t) log

(‖u0‖L∞(m)

ut

)
, m-a.e.

for all t > 0, where K− := max{0,−K}.

In the finite-dimensional case, thanks to the Gaussian estimates for the heat kernel we
can easily obtain a bound independent of the L∞ norm of the initial datum (provided it has
bounded support) present in inequality (2.3.1):

Theorem 2.3.2. Let (X, d,m) be a RCD∗(K,N) space with K ≤ 0 and N ∈ [1,∞) endowed
with a Borel non-negative measure m which is finite on bounded sets. Then there is a constant
C depending on K,N only such that for any u0 ∈ L1(m) non-negative, not identically 0 and
with bounded support the inequality

(2.3.2) |∇ log(ut)|2 ≤ C
(

1 +
1

t

)(
1 + t+

D2
0(x)

t

)
, m-a.e.

holds for all t > 0, where ut := htu and

D0(x) := sup
y∈supp(u0)

d(x, y).

In particular, for every 0 < δ ≤ T <∞ and x̄ ∈ X there is a constant Cδ,T > 0 depending on
K,N, δ, T, x̄ and the diameter of supp(u0) such that for every ε ∈ (0, 1) it holds

(2.3.3) ε|∇ log(uεt)| ≤ Cδ,T
(
1 + d(·, x̄)

)
∀t ∈ [δ, T ].
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proof As a first remark, by the compactness of supp(u0) we see that D0 is always finite and
thus the inequality (2.3.2) is meaningful. Recall the representation formula (1.2.9c)

ut(x) =

ˆ
u0(y)rt[y](x) dm(y) =

ˆ
supp(u0)

u0(y)rt[y](x) dm(y) ∀x ∈ X

and that for the transition probability densities rt[y](x) we have the Gaussian estimates
(1.2.11), which can be simplified as

C0

m(B√t(y))
exp

(
− d2(x, y)

3t
− C2t

)
≤ rt[x](y) ≤ C1

m(B√t(y))
eC2t ∀x, y ∈ X,

for appropriate constants C0, C1, C2 depending only on K,N . Therefore, we have

‖ut‖L∞ = sup
x
ut(x) ≤ C1e

C2t

ˆ
supp(u0)

u(y)

m(B√t(y))
dm(y),

inf
x
u2t(x) ≥ C0e

−2C2te−
D2

0(x)

t

ˆ
supp(u0)

u(y)

m(B√2t(y))
dm(y) > 0.

By the uniformly local doubling condition (1.2.4) we know that it holds

m(B√2t(y)) ≤ m(B√t(y))C3e
C4

√
t ∀y ∈ X, t > 0,

where C3, C4 only depend on K,N . As a consequence, the above yields

‖ut‖L∞
u2t(x)

≤ C5e
3C2t+C4

√
t+

D2
0(x)

t ∀x ∈ X, t > 0.

We now apply Proposition 2.3.1 with ut in place of u0 (notice that the assumptions are fulfilled)
to get

t|∇ log(u2t)|2 ≤ (1 + 2K−t) log
(‖ut‖L∞

u2t

)
≤ (1 + 2K−t)

(
logC5 + 3C2t+ C4

√
t+

D2
0(x)

t

)
m-a.e.,

which is (equivalent to) the bound (2.3.2), becauseD0 is uniformly bounded away from 0; more
precisely, since supp(u0) is compact, we can say that D0 ≥ diam(supp(u0))/2 > 0. Indeed, if
this were not the case, then there would exist a sufficiently small constant η > 0 such that
d(x, y) ≤ diam(supp(u0))/2 − η for all y ∈ supp(u0), whence d(y, y′) ≤ diam(supp(u0)) − 2η
for all y, y′ ∈ supp(u0) by trinagle inequality and thus diam(supp(u0)) ≤ diam(supp(u0))−2η.
The last statement is now obvious, noticing that

(2.3.4) D0(x) ≤ D0(x̄) + d(x, x̄)

for any x̄ ∈ supp(u0). �

This result is the extension of Theorem 2.1.4 to the non-compact case, but while (2.1.12)
provides a uniform (in space) control on |∇ log(ut)| which improves as t→∞, (2.3.2) is only
a local boundedness condition, both in space and in time. The same difference exists between
(2.1.13) and (2.3.3). However, since we are only be interested in small-time behaviour, (2.3.3)
will be enough for our purposes.

A further result that we shall need soon is the Baudoin-Garofalo inequality (see [51] for
the case of finite mass and [70] for the general one).
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Theorem 2.3.3 (Baudoin-Garofalo inequality). Let (X, d,m) be a RCD∗(K,N) space with
K ∈ R and N ∈ [1,∞) endowed with a non-negative Radon measure m and let u0 ∈ Lp(m)
for some p ∈ [1,∞) be non-negative. Put ut := htu0 for all t > 0. Then

(2.3.5) |∇ log ut|2 ≤ e−2Kt/3 ∆ut
ut

+
NK

3

e−4Kt/3

1− e−2Kt/3
, m-a.e.

for all t > 0, where NK
3

e−4Kt/3

1−e−2Kt/3 is understood as N
2t when K = 0.

It is worth stressing that in the case K = 0 (2.3.5) reduces to the well known Li-Yau
inequality

∆ log ut, ∀t > 0, m-a.e.

which thus reads as in the smooth setting. The theorem above allows us to prove a version of
the Li-Yau inequality valid on general RCD∗(K,N) spaces, where K is possibly negative. The
bound (2.3.6) that we obtain is valid only locally in time but sufficient for our needs since it
makes explicit the dependence on the distance.

Theorem 2.3.4. Let (X, d,m) be a RCD∗(K,N) space with K ≤ 0 and N ∈ [1,∞) endowed
with a non-negative Radon measure m. Then for every 0 < δ ≤ T <∞ and x̄ ∈ X there exists
a constant Cδ,T > 0 depending on K,N, δ, T, x̄ and the diameter of supp(u0) such that the
following holds.

For any u0 ∈ L1(m) non-negative, not identically zero and with bounded support and for
any ε ∈ (0, 1) it holds

(2.3.6) ε∆ log(hεt(u0)) ≥ −Cδ,T
(
1 + d2(·, x̄)

)
∀t ∈ [δ, T ].

proof As a first step, rewrite the Baudoin-Garofalo inequality (2.3.5) as

e−2Kt/3

(
∆ut
ut
− |∇ log ut|2

)
≥ (1− e−2Kt/3)|∇ log ut|2 −

NK

3

e−4Kt/3

1− e−2Kt/3
.

Then, dividing both sides by e−2Kt/3, using Hamilton’s gradient estimate (2.3.2) and the fact
that log ut ∈ Testloc(X) (Proposition 2.2.5), which allows us to use all the calculus rules we
need and thus to say that

∆ log ut =
∆ut
ut
− |∇ log ut|2,

the inequality above becomes

∆ log ut ≥ C(e2Kt/3 − 1)

(
1 +

1

t

)(
1 + t+

D2
0

t

)
− NK

3

e−2Kt/3

1− e−2Kt/3
,

whence by trivial manipulations

∆ log ut ≥ −
2K−C

3
(1 + t)

(
1 + t+

D2
0

t

)
− N

2t
e2K−t/3.

From (2.3.4) the conclusion is now immediate. �

As remarked for Theorem 2.3.2, also (2.3.6) is a generalization of (2.1.15) to the non-
compact case with the ‘disadvantage’ of being only a local estimate (both in time and space);
such disadvantage is just a consequence of (2.3.2), because if we could use (2.1.12) instead
of (2.3.2) in the proof above, then the outcome would be a true Li-Yau type inequality: a
space-independent lower bound on ∆ log ut which improves as t→∞.
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Chapter 3

From Schrödinger equation to entropy
minimization

In 1931 Erwin Schrödinger addressed a new interpolation problem which immediately showed
shocking analogies with recently born wave mechanics and the Schrödinger equation, analo-
gies that are much stronger than the ones encoded in the Fokker-Planck equation and are in
line with the studies of Smoluchowski on the Brownian motion and on rare events in diffu-
sive particles systems. However, in spite of the several mathematical challenges proposed by
Schrödinger in [110], they did not become as famous as the equation named after him; on the
contrary, the interpolation problem was almost forgotten, even rediscovered many years after,
and only recently a widespread interest for the topic has spotted. This chapter aims to be a
historical presentation of the problem with several physical insights.

For this reason we shed light on the decades passed between 1931 and the recent years.
As regards the history of the problem, we start with the original formulation, the motiva-
tion and the physical interpretation lying behind (see [110], [111], the survey [81] and the
monographs [100], [102], whence most of the considerations are taken from). We often quote
Schrödinger’s words, because of their suggestive and enlightening power, and moving from
them and following a statistical physics approach we sketch how Föllmer’s formulation as an
entropy minimization problem can be deduced. As a concluding remark, various developments
and relevant applications are recalled.

3.1 A bridge between quantum mechanics and diffusion pro-
cesses

In the origin it was the wave equation. Indeed, it was 1926 when Schrödinger invented what
he called wave equation and became later known as (linear) Schrödinger equation, namely the
following linear PDE

i
∂ψ

∂t
+

1

2
∆ψ + ib(t, x) · ∇ψ − V (t, x)ψ = 0

which describes the non-relativistic evolution of a single particle in an electric field with
potential energy V , as it is nowadays commonly understood. However the physical meaning
lying behind the solutions of such equation had been remaining mysterious for a long time and
had been triggering many people, before satisfactory interpretations appeared, one of them

45
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proposed by Max Born (see [21]). He proposed a statistical interpretation of wave functions,
observing that

|ψ(t, x)|2 = ψ(t, x)ψ(t, x)

can be regarded as the probability density describing the position of something, e.g. an elec-
tron, where ψ is a solution to the Schrödinger equation and ψ its complex conjugate. This
observation was coherent with experiments, explained them well and thus became a pillar of
the Copenhagen interpretation of quantum mechanics. Yet, physicists like Einstein [44] and
Planck were still quite suspicious towards such a perspective; famous is Einstein’s remark
about quantum mechanics in a letter to Born, dated 4 December 1926:

Die Quantenmechanik ist sehr achtung-gebietend. Aber eine innere Stimme sagt
mir, daß das doch nicht der wahre Jakob ist. Die Theorie liefert viel, aber dem
Geheimnis des Alten bringt sie uns kaum näher. Jedenfalls bin ich überzeugt, daß
der nicht würfelt.12

Schrödinger himself struggled to find a satisfactory physical meaning, but in a different
way: from these efforts (although they did not give a positive answer to the problem) and his
peculiar formulation of Brownian motion the Schrödinger problem arose.

In order to explain the results of the German physicist, first and foremost one has to
observe that the Schrödinger equation is a diffusion equation, as witnessed by the Laplacian,
but unlike the heat equation it is also a wave equation because of the imaginary unit appearing
in front of the time derivative, whence the name chosen by Schrödinger. Thus no particle notion
should be encoded in it, but with Born’s statistical interpretation this came along and this
contributed to the growth and strengthening of the wave-particle duality. However, together
with the particle notion, a particle theory for quantum mechanics should be developed, whence
the following question:

Which particle should be attached to a solution of the Schrödinger equation?

Since in the quantum world position and velocity can not be equally well determined because
of Heisenberg’s uncertainty principle, no classical particle driven by Newton’s law can be
considered. On the contrary, the irregularity feature of Brownian motion trajectories (Hölder
continuity but no absolute continuity) exactly leads to an interpretation of Brownian particles
as objects with position but no velocity. For this reason the first attempt of a particle model
for quantum mechanics was addressed towards the Brownian motion. As already mentioned
above, there is a formal resemblance between the Schrödinger equation and a diffusion one,
because the couple (ψ,ψ) given by the wave function and its complex conjugate solve the
following system of Schrödinger equations

i
∂ψ

∂t
+

1

2
∆ψ + ib(t, x) · ∇ψ − V (t, x)ψ = 0(3.1.1a)

−i∂ψ
∂t

+
1

2
∆ψ + ib(t, x) · ∇ψ − V (t, x)ψ = 0(3.1.1b)

1Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing.
The theory says a lot, but does not really bring us any closer to the secret of the ‘old one’. I, at any rate, am
convinced that He is not playing at dice.

2Born, M.; Born, M. E. H. & Einstein, A. (1971). The Born–Einstein Letters: Correspondence between
Albert Einstein and Max and Hedwig Born from 1916 to 1955, with commentaries by Max Born. I. Born,
trans. London, UK: Macmillan. ISBN 978-0-8027-0326-2



3.1. A BRIDGE BETWEEN QUANTUM MECHANICS AND DIFFUSION PROCESSES47

while a diffusive system can be described via the following couple of PDEs

∂u

∂t
+

1

2
∆u+ b(t, x) · ∇u− c(t, x)u = 0(3.1.2a)

−∂v
∂t

+
1

2
∆v − b(t, x) · ∇v − c(t, x)v = 0(3.1.2b)

where c represents a creation and killing term, and the appearance of the two systems is
very similar. However the resemblance is very superficial, because mathematical properties
of solutions to one system can not be transferred to solutions to the other one; for instance,
a group of unitary operators is naturally associated to (3.1.1a) and (3.1.1b), while diffusion
equations induce semigroups of non-negative operators. Furthermore, from a physical point of
view, wave equations describe essentially reversible phenomena, while phenomena described
by diffusion equations have an irreversible nature.

Nevertheless, can Schrödinger equations be put within the framework of diffusion processes
and the other way round? Is there an alternative way to get a particle theory for quantum
mechanics via Brownian motions? Although it does not fully answer these questions, a problem
arising in classical physics with much stronger analogies to quantum mechanics was proposed
by Schrödinger in 1931 in [110] (a French translation of the original German paper appeared
the year after, see [111]).

Let us present it by quoting Schrödinger himself [111], who in turn cites Eddington’s point
of view on Born’s statistical interpretation:

Il s’agit d’un problème classique: problème de probabilités dans la théorie du mou-
vement brownien. Mais en fin de compte, il ressortira une analogie avec la mé-
canique ondulatoire, qui fut si frappante pour moi lorsque je l’eus trouvée, qu’il
m’est difficile de la croire purement accidentelle.

À titre d’introduction, je voudrais vous citer une remarque que j’ai trouvée dans les
“Gifford lectures” de A. S. Eddington (Cambridge, 1928, p. 216 et sqq). Eddington,
en parlant de l’interprétation de la mécanique ondulatoire, fait dans une note au
bas de la page la remarque suivante:3

“The whole interpretation is very obscure, but it seems to depend on whether you
are considering the probability after you know what has happened or the probability
for the purposes of prediction. The ψψ is obtained by introducing two symmetrical
systems of ψ waves travelling in opposite directions in time; one of these must
presumably correspond to probable inference from what is known (or is stated) to
have been the condition at a later time.”

Eddington’s remark is intriguing, because one could be tempted to read between the lines
that information from the future is available. However this is impossible and a possible way to
explain that relies on Schrödinger’s work [110]. For sake of simplicity and in line with [110],

3This is a classical problem: a probability problem in the Brownian motion theory. But eventually, an
analogy with wave mechanics will come out, which was so shocking for me when I discovered it that it is
difficult for me to believe that it is purely accidental.
As an introduction, I would like to quote a remark that I found in the “Gifford lectures” of A. S. Eddington

(Cambridge, 1928, p. 216 et sqq). Speaking about the interpretation of wave mechanics, Eddington points out
the following remark in a footnote:
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Figure 3.1: First page of [110]

assume that b ≡ 0 and c ≡ 0 in (3.1.2a) (and in (3.1.2b) too), so that (3.1.2a) reduces to the
heat equation: this corresponds to the evolution of a single particle, whose motion is driven
only by molecular shocks with other particles. Now suppose that

... wir hätten das Teilchen zur Zeit t0 bei x0, zur Zeit t1 bei x1 angetroffen [...]
Ein Hilfsbeobachter hat die Lage des Teilchens zur Zeit t beobachtet, jedoch ohne
uns sein Ergebnis mitzuteilen. Die Frage lautet dann: welche Wahrscheinlichkeitss-
chlüsse können wir aus unseren zwei Beobachtungen auf die Zwischenbeobachtung
unseres Helfers ziehen?4

4... at time t0 we find the particle in x0, at time t1 in x1 [...] An assistant observer has monitored the particle
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In a slightly different way, we can imagine that we do not exactly know the particle position
at times t0 and t1. Instead, we are given an initial probability distribution ρ0 as well as a final
one ρ1. How can we deduce the distribution ρt = ρ(·, t) for the position at intermediate times?
With just one boundary datum, the problem would trivialize: indeed, if only ρ0 is assigned
then ρt is the solution of the (forward) heat equation with ρ(·, 0) = ρ0 while in the case only
ρ1 is assigned then ρt solves its adjoint, namely

−∂ρ
∂t

=
1

2
∆ρ

with ρ(·, 1) = ρ1. On the contrary, with both boundary data the problem is more difficult but
also much more interesting. In addition, a part from determining ρt, a further question arises,
which already suggests a large deviation approach to the problem, as we will see later on.

Imaginez que vous observez un système de particules en diffusion, qui soient en
équilibre thermodynamique. Admettons qu’à un instant donné t0 vous les ayez
trouvées en répartition à peu près uniforme et qu’à t1 > t0 vous ayez trouvé un
écart spontané et considérable par rapport à cette uniformité. On vous demande de
quelle manière cet écart s’est produit. Quelle en est la manière la plus probable?5

As regards the first question, namely the determination of ρt, for sake of simplicity let
us consider a 1-dimensional situation, so that x0, x1 ∈ R, and let p(x, t) be the fundamental
solution of the heat equation, namely

p(x, t) :=
1√
2πt

exp
(
− x2

2t

)
.

Then consider a large number N of independent particles that at t0 are in x0 and whose
movement is described by a standard Brownian motion. We are interested in those particles
that at t1 are near x1, say belong to [x1 − ε, x1 + ε]: their number amounts to

n1 = N

ˆ x1+ε

x1−ε
p(x− x0, t1 − t0)dx.

On the other hand, among the N particles, those belonging to [x1 − ε, x1 + ε] at t1 and to
[xt − ε, xt + ε] at the intermediate time t0 < t < t1 are given by

n = N

ˆ xt+ε

xt−ε

ˆ x1+ε

x1−ε
p(y − x0, t− t0)g(x− y, t1 − t)dxdy

= N

ˆ xt+ε

xt−ε
p(y − x0, t− t0)dy

ˆ x1+ε

x1−ε
p(x− xt, t1 − t)dx

where the second identity comes from the independence of Brownian increments. The answer
to the question is the ratio n/n1 and thus

(3.1.3) ρt(x) =
p(x− x0, t− t0)p(x1 − x, t1 − t)

p(x1 − x0, t1 − t0)

position at time t, but without telling us his result. The question reads then as follows: which probabilistic
inference on the intermediate observation of our assistant can we deduce from the two observations?

5Imagine that you observe a system of diffusing particles, which are in thermodynamical equilibrium. Let
us admit that at a given time t0 you find them with almost uniform repartition and that at t1 > t0 you observe
a spontaneous and significant deviation from this uniformity. You are asked to explain how this deviation
occurred. What is its most likely behaviour?
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This is the solution to the first question in the case the position of the particle at times t0
and t1 is exactly known. Let us now discuss the general situation with probability densities ρ0

and ρ1. In this case we consider a large number N of independent particles: we let them free
to move at t0 and approximately

(3.1.4) N

ˆ x0+ε

x0−ε
ρ0(x)dx

start from [x0 − ε, x0 + ε]. Then we observe that at time t1 more or less

(3.1.5) N

ˆ x1+ε

x1−ε
ρ1(y)dy

particles belong to [x1 − ε, x1 + ε] and this is surprising, because the expected value (based
on the assumption that particles move according to a standard Brownian motion) is

N

ˆ x1+ε

x1−ε

ˆ +∞

−∞
ρ0(x)p(y − x, t1 − t0)dxdy.

If we knew how many particles started from [x0− ε, x0 + ε] actually arrived in [x1− ε, x1 + ε],
then it would be sufficient to multiply this number by (3.1.3) to conclude. Thus, in order to
estimate such a number let us partition R in unit intervals {Ik}k∈N, define

ak := N

ˆ
Ik

ρ0(x)dx and bk := N

ˆ
Ik

ρ1(y)dy,

denote by pjk the probability for a particle to start from Ij and arrive in Ik (by symmetry
it holds pjk = pkj) and finally introduce cjk as the number of particles starting from Ij and
arriving in Ik. From these considerations we deduce that

(3.1.6)
∑
k∈N

cjk = aj ,
∑
j∈N

cjk = bk,
∑
j∈N

aj =
∑
k∈N

bk = N.

Of course the numbers cjk are not known, any choice satisfying the conditions above is accept-
able, but as N →∞ it is reasonable to choose those cjk such that the associated evolution is
the most probable one. To this aim, if we consider a single possible realization of the system,
then the probability that such realization actually happens is given by∏

j∈N

∏
k∈N

p
cjk
jk .

However, notice that there are many other realizations with the same probability: indeed the
aj particles coming from Ij can be permuted aj !/Πk∈Ncjk! times and this is true for all j ∈ N,
whence ∏

j∈N

aj !∏
k∈N cjk!

different possible realizations. By multiplying the number of all the possible rearrangements
associated to a certain admissible family {cjk} with its probability we get

∏
j∈N

aj !
∏
j∈N

∏
k∈N

p
cjk
jk

cjk!
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and now we have to look for those solutions {cjk} of (3.1.6) maximizing this quantity. We
omit the computation (if interested, the reader can find it in [111], Section 7) and directly
state Schrödinger’s conclusion: it holds

(3.1.7) cjk = pjkfjgk

where fj and gk are Lagrange multipliers determined by
aj = fj

∑
k∈N

pjkgk ∀j ∈ N

bk = gk
∑
j∈N

pjkfj ∀k ∈ N
.

In order to come back to the continuum case, observe that aj and bk are given by (3.1.4) and
(3.1.5) respectively, fj and gk become functions f, g so that

fj =
√
N

ˆ
Ij

f(x)dx gk =
√
N

ˆ
Ik

g(y)dy

and finally pjk is replaced by p(x1 − x0, t1 − t0). Putting all together we finally get the
Schrödinger system

ρ0(x0) = f(x0)

ˆ +∞

−∞
p(x1 − x0, t1 − t0)g(x1)dx1

ρ1(x1) = g(x1)

ˆ +∞

−∞
p(x1 − x0, t1 − t0)f(x0)dx0

using the terminology adopted in [49] and [20] or, in a more concise way,

(3.1.8)
{
ρ0 = fht1−t0g
ρ1 = ght1−t0f

where ht is the heat semigroup associated to the kernel p(x, t). On the other hand, since the
cjk’s are replced by a function too, called c, (3.1.7) becomes

c(x0, x1) = Np(x1 − x0, t1 − t0)f(x0)g(x1)

and if integrated on [x0 − ε, x0 + ε]× [x1 − ε, x1 + ε], this quantity represents the number of
particles moving from [x0− ε, x0 + ε] to [x1− ε, x1 + ε], as desired; multiplying the expression
above by (3.1.3) and integrating w.r.t. x0 and x1 over R2 (in order to take all possible starting
points and destinations into account) we get

(3.1.9) ρt(x) =

ˆ +∞

−∞
p(x−x0, t− t0)f(x0)dx0

ˆ +∞

−∞
p(x1−x, t1− t)g(x1)dx1 = ht−t0fht1−tg.

Concerning the first question we have thus shown that

... die Antwort nicht durch eine Lösung der fokkerschen Gleichung geliefert wird,
sondern [...] durch das Produkt der Lösungen zweier adjungierter Gleichungen,
wobei nicht der einzelnen Lösung, sondern dem Produkt zeitliche Grenzbedingun-
gen auferlegt sind.6

6...the answer is not given by a solution of the Fokker equation, but by the product of two adjoint equation,
where the time boundary conditions are not imposed on the single solutions but on their product.
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Therefore, the problem addressed by Schrödinger is a classical physics example that is much
closer to quantum mechanics than the diffusion picture described by (3.1.2a) and (3.1.2b).
Indeed (3.1.9) is the Euclidean analogue of Born’s statistical interpretation of the (L2-norm of
the) wave function; moreover since ρt is the product of two functions ht−t0f and ht1−tg solving
the heat equation and its adjoint respectively, we gain a time symmetry which is commonly
absent in diffusion models and on the contrary is typical in oscillatory phenomena (as quantum
mechanics).

Nevertheless, this is not sufficient for concluding the equivalence between the system
(3.1.1a)-(3.1.1b) and (3.1.2a)-(3.1.2b), because the evolution of ρt is not oscillatory at all.
Secondly, the wave function ψ corresponds to two real-valued functions and therefore it is
sufficient to provide the value of ψ at a single instant, while in the framework of Schrödinger’s
system we do not look at the values of f and g at the same time but at the values of their
product at two different times. For this reason [111] finishes with the following question:

Doit-on interpréter la remarque d’Eddington, citée plus haut, comme signalant la
nécessité de modifier cette manière de voir en mécanique ondulatoire et prendre
comme conditions aux limites les valeurs d’une seule probabilité réelle à deux
instants différents?7

Besides, the assignment of f and g at the same time is completely meaningless from a
physical point of view, because f and g are not probabilities, they are not observable, just
a fictitious representation; but if we multiply them, then we recover the description of a real
diffusion process. It is tempting to transfer this consideration to quantum mechanics and thus
claim that ψ and ψ are fictitious representation for the real world description encoded in |ψ|2.
Although Schrödinger did not achieve to overcome the discrepancies between quantum world
and the model described by (3.1.8), the fictitious character of the wave function puzzled many
physicists and is nowadays shared by many different interpretations of quantum mechanics, e.g.
the Copenhagen interpretation, Quantum Bayesianism and Stochastic Quantum Mechanics.
Nagasawa’s contribution is in the vein of the last quantum theory cited and in his monograph
[100] the equivalence between Schrödinger’s equation and diffusion processes is established in
Theorem 4.1 (the reader is addressed to it for a rigorous discussion), by providing a direct
correspondence between solutions of the former and the latter. Forgetting about regularity
issues, such correspondence reads as:

(i) If the couple (f, g) of real valued functions satisfies the system (3.1.2a)-(3.1.2b) and we
define

R :=
1

2
log(fg) S :=

1

2
log(g/f),

then the complex-valued function given by

(3.1.10) ψ(t, x) := eR(t,x)+iS(t,x)

is a solution to (3.1.1a) with potential

(3.1.11) V = −c− 2
∂S

∂t
− |∇S|2 − 2b · ∇S.

7Shall one interpret previously quoted Eddington’s remark as a hint for the necessity of modifying the usual
way of looking at quantum mechanics and taking instead the values of a single real probability at two different
times as boundary conditions?
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(ii) If the complex-valued function ψ is a solution to (3.1.1a) in the form (3.1.10), then the
functions

f(t, x) := eR(t,x)−S(t,x) g(t, x) := eR(t,x)+S(t,x)

are solutions to (3.1.2a)-(3.1.2b) with creation and killing

c = −V − 2
∂S

∂t
− |∇S|2 − 2b · ∇S.

We shall not investigate any further the parallelism between Schrödinger’s equation and diffu-
sion processes (a part from a final consideration in Section 5.5), as it is not the purpose of the
manuscript, but we believe that, after the presentation of Schrödinger’s physical motivations
behind [110], it was our duty towards the reader to give an exhaustive and self-contained
presentation of the topic, thus including Nagasawa’s solution.

3.2 Existence problems and statistical physics

After having established the equivalence between the Schrödinger equations (3.1.1a) and
(3.1.1b) and the system of diffusion equations (3.1.2a) and (3.1.2b), let us come back to
(3.1.9): the intermediate probability densities ρt are fully determined once we know f and g,
i.e. once we have solved (3.1.8). However existence and uniqueness of solutions for (3.1.8) are
very delicate issues, because if in 1931’s paper Schrödinger did not investigate the problem,
suggesting that it was evident

Die Existenz und Eindeutigkeit der Lösung (abgesehen vielleicht von besonders
tückisch vorgegebenen ρ0, ρ1

8) halte ich wegen der Vernünftigkeit der Fragestel-
lung, die ganz eindeutig und scharf auf diese Gleichungen führt, für ausgemacht.9

in 1932’s subsequent paper he backed off

Je n’ai pas pu réussir à prouver ni qu’il existe toujours de telles solutions, ni qu’elles
sont uniques. Mais j’en suis tout à fait convaincu.10

A first partial solution was given by Fortet in [49], later generalized by Beurling in [20]
and finally solved by [69]. Jamison’s argument relies on reciprocal processes, a particular class
of stochastic processes whose definition was proposed by Bernstein in [19] and then deeply
investigated by Jamison himself in [68]. However, for the existence and uniqueness results
we will present in Chapter 4 a different approach is preferable and passes through Föllmer
formulation of (3.1.8) as an entropy minimization problem. For this reason we shall now sketch
how the large deviation feature hidden in the problem addressed by Schrödinger leads to a
variational problem, following [81].

The heuristic described by the German physicist is already a statistical physics approach,
hence the involvement of large deviations should not be surprising, but it is worth spending

8With the notation of the present manuscript.
9I give for free existence and uniqueness of the solution (maybe excluding particularly treacherous ρ0, ρ1)

because of the reasonable formulation of the problem, which leads in a unique and clear way to these equations.
10I couldn’t manage to prove either that there always exist solutions, nor that they are unique. But I am

absolutely sure about that.
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some words about it because it enables to make rigorous the passage from the discrete to the
continuum case that we performed before in order to get (3.1.8). As a first step, we have to
restate Schrödinger experiment within a probabilistic language: consider a large number N
of independent particles moving in Rd and describe their evolution via a family B1, ..., BN of
independent Brownian motions starting at x1

0, ..., x
N
0 respectively. Then introduce the empirical

probability measure

ZN :=
1

N

N∑
k=1

δBk ,

because it is an equivalent description of our system, define as well the empirical measure at
time t as

ZNt :=
1

N

N∑
k=1

δBkt

and assume that the initial positions are a (finer and finer) discretization of a certain proba-
bility distribution, namely

ZN0 =
1

N

N∑
k=1

δxk0
⇀ µ0

for some µ0 ∈ P(R)d. By the law of large numbers, ZN converges in law to the Brownian
motion Bµ0 with µ0 as initial distribution as N →∞, so that in particular at time t = 1

ZN1 ⇀ (Bµ0)1 :=

(ˆ
Rd
p(· − x, 1)dµ0(x)

)
Ld(dy)

where p(x, t) is the fundamental solution of the heat equation. Schrödinger’s example now
reads as follows: assume that the observation at t = 1 of the empirical measure is different
from the expected profile (Bµ0)1 for all N , so that we can say that there exists µ1 ∈ P(R)d

such that ZN1 belongs to a neighbourhood of it not including (Bµ0)1; although little probable,
this is actually possible because N is always finite and thus we can condition with respect
to this rare event and, knowing ZN0 and ZN1 , ask: what is the most plausible evolution from
the initial configuration to the final one?. And what happens as N → ∞? While the first
question received an exhaustive answer in [110], for the second one the situation is more
delicate; if one relies on Schrödinger’s computations (see [111]) then a key role is played by
Stirling’s formula, but for a different approach which better fits to more general situations (non
Gaussian evolution, abstract framework, etc.) Sanov’s theorem is recommended, as pointed
out by Föllmer in [47]. Such theorem ensures that for any family (Y k) of i.i.d. random variables
with common law R ∈ P(C([0, 1],Rd)), then the empirical measures (Zk) associated to it
satisfy the large deviation principle

Prob(Zk ∈ A)
k→∞� exp

(
− k inf

Q∈A
H(Q |R)

)
,

where A belongs to some large class of measurable subsets of P(C([0, 1],Rd)) and H(· | ·) is
the Boltzmann-Shannon entropy functional, set equal to

H(σ | ν̃) :=

ˆ
ρ log(ρ) dν̃
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if σ = ρν and +∞ otherwise (see Chapter 4 for the precise definition). In our case we deal
with i.i.d. Brownian motions such that Zk0 ⇀ µ0 as k → ∞: as a consequence the statement
of Sanov’s theorem is modified in the following way

(3.2.1) Prob(Zn ∈ A)
n→∞� exp

(
− n inf

Q∈A
(e0)∗Q=µ0

(
H(Q |R)−H(µ0 | (e0)∗R)

))
.

The proof of it can be found in [40] and [24]. With this result at our disposal, choose a distance
dP on P(R)d consistent with the weak topology (for instance Prokhorov’s one) and look at
Prob(Zk ∈ · |Zk ∈ Uε), where

Uε := {Q ∈P(C([0, 1],Rd)) : (e0)∗Q = µ0, dP ((e1)∗Q, µ1) < ε}

and by Zk ∈ Uε we mean that its law belongs to Uε. From (3.2.1) we see that for all ε > 0
and many A ∈P(C([0, 1],Rd)) it holds

Prob(Zk ∈ · |Zk ∈ Uε)
k→∞� exp

(
− k
(

inf
Q∈A∩Uε

H(Q |R)− inf
Q∈Uε

H(Q |R)
))

whence, with some technical work,

lim
k→∞

Prob(Zk ∈ · |Zk ∈ Uε) = δPε ,

Pε being the (unique) solution of the minimization problem

inf
Q∈Uε

H(Q |R).

Uniqueness is trivial by the strict convexity of the entropy functional, while existence follows
by standard arguments in calculus of variations (see the forthcoming Proposition 4.1.2). The
passage to the limit as ε ↓ 0 can be handled by means of Γ-convergence: it is not difficult to
see that the previous minimization problem converges to

(3.2.2) inf
Q∈P(C([0,1],Rd))

(e0)∗Q=µ0, (e1)∗Q=µ1

H(P |R)

and Pε ⇀ P, where P is the unique solution to (3.2.2).

We have thus provided a physical motivation for (3.1.8) and a large deviation explanation
about how to pass from (3.1.8) to (3.2.2).

3.3 An inspiring problem: applications and developments

We conclude the chapter with a non-exhaustive list of the different domains which have been
influenced by Schrödinger’s seminal works [110] and [111] throughout the decades until now.
We have already cited the theory of reciprocal processes: the birth with Bernstein in [19] and
the deep investigation performed by Jamison in [67], [68] and [69]; we add the survey [82] for
the references therein and for a fresh revisitation of [68].

Passing to more recent developments, let us recall the following research fields:
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• Euclidean quantum mechanics: see [123], [35], [34], [31] and also [99], [101]; exploiting
the parallelism between quantum mechanics and (diffusion) stochastic processes, it aims
to transfer results by analogy from one domain to the other.

• Stochastic optimal control: starting with the seminal papers [88] and [38], where the
Schrödinger problem is translated in terms of stochastic control, and passing through
the several contributions of Mikami [89], [90], [91], [92], [94], [95] and the crucial works
[96] (later generalized by X. Tan and N. Touzi [119]) and [97], we conclude with a useful
insight provided by the survey [93].

• Penalized Monge-Kantorovich problem: since in many cases the solutions of the optimal
transport problem with cost c are not regular enough, a possible way to overcome this
obstacle is by adding an entropic penalization, namely

inf
γ∈Adm(µ0,µ1)

{ˆ
X2

cdγ +
1

k
H(γ |R)

}
,

the advantage being that the solutions of this new problem are regular perturbations of
the optimal transport one; see [107], [108] and the recent advancements [37], [17], [18],
[103] and [23].

Further historical remarks as well as more bibliographical details can be found in the survey
[81].



Chapter 4

On a Polish space

Let (X, τ) be a Polish space (as shall always be throughout the whole chapter), µ0, µ1 ∈P(X)
and R be a non-negative Radon measure on X2, i.e. for every point z ∈ X2 there exists a
neighbourhood with finite mass w.r.t. R. Recall that γ ∈ P(X2) is called transport plan for
µ0, µ1 provided π0

∗γ = µ0 and π1
∗γ = µ1, where π0, π1 : X2 → X are the canonical projections.

Motivated by the Schrödinger system (3.1.8), we are interested in finding a transport plan of
the form

γ = f ⊗ g R

for certain Borel functions f, g : X → [0,∞), where f ⊗ g(x, y) := f(x)g(y), because in the
RCD setting (f, g) is a solution to (3.1.8) if and only if f ⊗ g R ∈ Adm(µ0, µ1), provided we
choose R as r1m ⊗ m, where r1 is the heat kernel at time t = 1. The advantage of this new
perspective is the great generality, since it does not require the existence of heat kernels, and
as we shall see in the forthcoming subsection this problem can be solved in a unique way in
very abstract frameworks. Moreover the plan γ can be found as the minimum of

γ ′ 7→ H(γ ′ |R)

among all transport plans from µ0 to µ1, where H( · | ·) is the Boltzmann-Shannon entropy.
Hence, to resume the situation, at the end of Chapter 3 we have seen, at least formally, how
the Schrödinger system leads to an entropy minimization problem, which is dynamical in
spirit; now a static entropy minimization problem has just spotted. The link between all these
different facets of the same topic is formally clear, or at least not difficult to guess, but our
purpose is to make it rigorous. This is going to be performed in this chapter, which aims to
be the first part of a user’s guide for non-probabilists to the Schrödinger problem; in fact, all
the probabilistic terminology commonly adopted in the literature is here translated into an
analytic language.

As regards the structure of the chapter, in Section 4.1 Föllmer’s version of the problem
is established in a precise way on general Polish spaces as well as a dual and a dynamical
formulation. For them we present the basic existence theorems and stress the relationship
between static, dynamic and dual solutions; moreover, although less general than the results
already known in the literature, we provide the reader with a partially new existence theorem,
whose peculiarity is the characterization of the (unique) minimizer of the Schrödinger problem
among all transport plans between the marginal constraints.

In Section 4.2, mimicking some classical results of optimal transport theory (convexity of
the cost, restriction property and stability) we build a toolbox for the Schrödinger problem

57
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that, to the best of our knowledge, is still missing in the literature and hopefully might be
used by the working mathematician.

4.1 Statement of the problem and first results

On the road to show the equivalence of the three problems, the first obstacle is the correct
definition of the Boltzmann-Shannon entropy on a Polish space (see [80] for more details).

Given a σ-finite measure ν on a Polish space (Y, τ ′), there exists a measurable function
W : Y → [0,∞) such that

zW :=

ˆ
e−Wdν < +∞.

Introducing the probability measure νW := z−1
W e−W ν, for any σ ∈P(Y) such that

´
Wdσ <

+∞ the Boltzmann-Shannon entropy is defined as

(4.1.1) H(σ | ν) := H(σ | νW )−
ˆ
Wdσ − log zW

where H(σ | νW ) is in turn defined as

H(σ | ν̃) :=


ˆ
ρ log(ρ) dν̃ if σ = ρν̃

+∞ if σ 6� ν̃

for all ν̃ ∈P(Y). The definition is meaningful, because if
´
W ′dσ < +∞ for another function

W ′ such that zW ′ < +∞, then

H(σ | νW )−
ˆ
Wdσ − log zW = H(σ | νW ′)−

ˆ
W ′dσ − log zW ′ .

Hence H( · | ν) is well-defined for all σ ∈ P(Y) such that
´
Wdσ < +∞ for some non-

negative measurable functionW with zW < +∞. We shall denote this set by PH(Y, ν), while
the family of probability measures with finite entropy w.r.t. ν will be denoted by D(H(· | ν)),
namely the domain of the relative entropy w.r.t. ν. The next lemma shows that measures
belonging to PH(Y, ν) or D(H(· | ν)) enjoy some integrability properties.

Lemma 4.1.1. Given a σ-finite measure ν on a Polish space (Y, τ ′), the following hold true:

(i) if σ ∈PH(Y, ν), then either σ 6� ν or (log(ρ))− ∈ L1(σ), where ρ := dσ
dν ;

(ii) if σ ∈ D(H(· | ν)), then σ = ρν and log(ρ) ∈ L1(σ).

proof
(i) Let σ ∈PH(Y, ν) and assume that σ � ν. Then, using the same notation as in (4.1.1),

ˆ (
log

dσ

dν

)−
dσ =

ˆ (
log

dσ

dνW
−W − log zW

)−
dσ

≤
ˆ

dσ

dνW

(
log

dσ

dνW

)−
dνW + ‖W‖L1(σ) + | log zW |.

Since z(log z)− ≤ e−1 and νW is a probability measure by construction, the thesis follows.
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(ii) Let σ ∈ D(H(· | ν)), σ = ρν and argue as above to get
ˆ (

log(ρ)
)+

dσ ≤
ˆ (

log
dσ

dνW

)+

dσ + ‖W‖L1(σ) + | log zW |.

The fact that H(σ | ν) is finite implies in particular that so is H(σ | νW ) and since νW is a
probability measure, this entails log(ρW ) ∈ L1(σ), where ρW is the Radon-Nikodym derivative
of σ w.r.t. νW . Therefore (log ρ)+ ∈ L1(σ) and by (i) this is sufficient to conclude. �

With this said, let (X, τ) be a Polish space, R a non-negative Radon measure on the path
space C([0, 1],X) and µ0, µ1 ∈ P(X). Since C([0, 1],X) is Polish too, R turns out to be a
σ-finite measure. Then the dynamical Schrödinger problem associated to R with initial
and final marginals respectively given by µ0 and µ1 is the minimization problem

(Sdyn) inf{H(Q |R) : Q ∈PH(C([0, 1],X),R), (e0)∗Q = µ0, (e1)∗Q = µ1}

which is precisely the one obtained from the Schrödinger system via a large deviations argu-
ment. The minimal value is called dynamical entropic cost and denoted by Id(µ0, µ1).

If we define R := (e0, e1)∗R, then (Sdyn) gives rise to a static version of the same problem,
analogously to (1.1.9) and (1.1.8): we will refer to it as (static) Schrödinger problem and
it is defined, for the marginal constraints µ0 and µ1, in the following way

(S) inf{H(γ ′ |R) : γ ′ ∈PH(X2,R), π0
∗γ
′ = µ0, π

1
∗γ
′ = µ1}.

Its minimal value is called static entropic cost and denoted by Is(µ0, µ1). The link between
(Sdyn) and (S) is very strong and can be understood in terms of disintegration, because on the
one hand the static Schrödinger problem is a projected version of the dynamical one and on
the other hand the solution of the dynamical problem can be regarded as a superposition of
R-bridges weighted with the solution of the static problem, as proved in [47]. In more precise
terms:

• if P is a solution to (Sdyn), then (e0, e1)∗P is a solution to (S);

• if γ is a solution to (S), then

(4.1.2) P(·) :=

ˆ
X2

Rxy(·)dγ(x, y)

is a solution to (Sdyn), where Rxy denotes the disintegration of R w.r.t. (e0, e1), which
in particular implies that γ = (e0, e1)∗P by construction.

This is a consequence of the following identity, which is a particular case of (A.2.2),

H(P |R) = H(γ |R) +

ˆ
X2

H(Pxy |Rxy)dγ(x, y),

where Pxy is the disintegration of P w.r.t. (e0, e1) and γ = (e0, e1)∗P. From this identity and
the fact that disintegrations are probability measures it follows that H(P |R) ≥ H(γ |R) with
equality if and only if P and R share γ-almost the same bridges. Namely, for a solution P to
(Sdyn) Pxy = Rxy for γ-a.e. (x, y) ∈ X2, which means that P and R have γ-almost the same
disintegration. This also tells us that

inf H(Q |R) = inf H(γ ′ |R),



60 CHAPTER 4. ON A POLISH SPACE

where the infima are taken as in (Sdyn) and (S) respectively. As a byproduct, dynamical and
static entropic costs coincide, thus we can lighten the notation and define the entropic cost
tout court as

I (µ0, µ1) := Id(µ0, µ1) = Is(µ0, µ1).

Hence the relationship between static and dynamical Schrödinger problem is clear and the
existence of a solution for the former provides a solution for the latter and viceversa. However,
how can we decide if a solution actually exists? A preliminary and rough answer is given by
the following result, which only relies on Weierstrass’ theorem.

Proposition 4.1.2. Let (X, τ) be a Polish space, R a non-negative Radon measure on X2 and
µ0, µ1 ∈P(X). Assume that there exists a Borel function B : X→ [0,∞) such that

ˆ
X2

e−B(x)−B(y)dR(x, y) <∞
ˆ
B dµ0 <∞

ˆ
B dµ1 <∞.

Then (Sdyn) and (S) admit a unique solution if and only if there exists γ ∈ Adm(µ0, µ1) with
finite entropy w.r.t. R.

proof Existence follows by the direct method of calculus of variations: the class of transport
plans is not empty, narrowly compact (see e.g. [5]) and H( · |R) is well-defined therein; indeed
by assumption

´
Wdσ < +∞ with W (x, y) := B(x) + B(y) for all transport plan σ. More-

over H( · |R) is narrowly lower semicontinuous on the whole set where it is well defined (see
Corollary 2.3 in [80]), hence in particular on the class of transport plans.

Since H( · |R) is strictly convex, uniqueness is equivalent to D(H(· |R)) 6= ∅. �

A natural question now arises: under which necessary and sufficient conditions can we find
a transport plan as above, thus granting existence and uniqueness of the solution to (S)? First
of all, still using (A.2.2) we see that for any γ ∈ Adm(µ0, µ1)

H(µ0 |R0) ≤ H(γ |R) H(µ1 |R1) ≤ H(γ |R)

where R0 := π0
∗R and R1 := π1

∗R, so that H(µ0 |R0) <∞ and H(µ1 |R1) <∞ are preliminary
necessary conditions for the problem to be non-trivial. As regards sufficiency, the answer is
not so clear, at least in terms of minimal set of assumptions; following [81], a possible choice
is the one below.

Proposition 4.1.3. Let (X, τ) be a Polish space, R a non-negative Radon measure on X2 and
µ0, µ1 ∈ P(X). Assume that R0 = R1 =: m and that there exist some measurable functions
α, β : X→ [0,∞) such that dR(x, y) ≥ e−α(x)−α(y)d(m⊗m)(x, y) and

ˆ
X2

e−β(x)−β(y)dR(x, y) <∞.

Suppose in addition that the constraints µ0, µ1 are such that H(µ0 |m), H(µ1 |m) <∞ and
ˆ

(α+ β)dµ0 <∞
ˆ

(α+ β)dµ1 <∞.

Then (Sdyn) and (S) admit a unique solution.
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Of course, the same conclusion can be obtained from a different set of hypotheses, because
a sufficiently large degree of freedom on them is possible. Indeed, as it will be clear from
the proof of Proposition 4.1.5, all sufficient conditions for existence are formulated in order
to grant the existence of a transport plan γ ′ ∈ Adm(µ0, µ1) with finite entropy: a natural
candidate is γ ′ = µ0 ⊗ µ1. For this reason, a strengthening of the assumptions on R (resp. on
µ0, µ1) allows to weaken those on µ0, µ1 (resp. R), for instance.

However, the result above is not completely satisfactory, because it does not fully describe
the structure of the minimizers of (S). In fact, as shown in [78] (in the paper R is a probability
measure but using (4.1.1) this assumption can be removed) when a solution γ to (S) exists,
then there always exist two functions f, g : X→ [0,∞) such that

dγ

dR
= f ⊗ g, γ-a.e.

and f ⊗ g is Borel. Nevertheless, we do not know yet whether γ = f ⊗ g R and f, g are Borel
themselves. Counterexamples actually may exist, as shown in [48] and [78]. A possible way to
overcome this obstacle is proposed in [81] and it is the following.

Proposition 4.1.4. Let (X, τ) be a Polish space, R a non-negative Radon measure on X2 and
µ0, µ1 ∈ P(X). Assume that the same hypotheses of Proposition 4.1.3 hold true and suppose
in addition that:

(i) m⊗m� R or R� m⊗m;

(ii) (µ0, µ1) belongs to the intrinsic core of the set of all admissible constraints, i.e. the
ones for which (S) has finite value; this means that there exist two (different) admissible
constraints (ν0, ν1) and (ν ′0, ν

′
1) such that

(µ0, µ1) = (1− t)(ν0, ν1) + t(ν ′0, ν
′
1)

for some t ∈ (0, 1).

Then (S) admits a unique solution γ and γ = f⊗g R for suitable positive Borel functions f, g,
which are uniquely determined up to the transformation (f, g) 7→ (cf, g/c) for some c > 0.

From (4.1.2) it follows that the unique solution to (Sdyn) is then given by

dP(γ) = f(γ0)g(γ1)dR(γ),

which is a time-symmetric version of Doob’s h-transform (see [41] and the monograph [42]).
As we will better see in the next chapter, this representation of the dynamical minimizer as
doubly conditioned process is perfectly in line with the physical interpretation we pointed out
in the historical introduction.

Yet, for our purposes we prefer to present a different point of view, because assumption
(ii) implies that dγ

dR > 0 R-a.e. and this is too restrictive, because it rules out the case of
marginals with bounded supports.

The following proposition collects the basic properties of the minimizer of the Schrödinger
problem: points (i) and (ii) of the statement are already known in the literature on the subject
(see in particular [78], [22] and [107]), but we provide the proof for reader’s sake; points (iii)
and (iv) are actually new, because even if an analogous result can be found in [36] (cf. Theorem
3.1 therein) the strategy is different and our (local) L∞ control is new. A complete proof has
already been presented in [63] for the compact case; here we adapt the same argument with
slight modifications, which will be pointed out.
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Proposition 4.1.5. Let (X, τ,m) be a Polish space equipped with a non-negative Radon mea-
sure m and let R be a non-negative Radon measure on X2 such that R0 = R1 = m and

m⊗m� R� m⊗m.

Let µ0 = ρ0m and µ1 = ρ1m be Borel probability measures and assume that there exists a Borel
function B : X→ [0,∞) such that

(4.1.3)
ˆ

X2

e−B(x)−B(y)dR(x, y) <∞
ˆ
B dµ0 <∞

ˆ
B dµ1 <∞.

Suppose in addition that

(4.1.4) H(µ0 ⊗ µ1 |R) < +∞.

Then:

(i) There exists a unique minimizer γ of H( · |R) among all transport plans from µ0 to µ1.

(ii) γ = f ⊗ gR for appropriate Borel functions f, g : X→ [0,∞) which are unique up to the
trivial transformation (f, g) 7→ (cf, g/c) for some c > 0.

(iii) Assume that

(4.1.5) R ≥ (αm)⊗ (αm)

for a suitable Borel function α : X → (0,∞) locally bounded away from 0 and ∞, i.e.
for every point x ∈ X there exist a neighbourhood Ux and constants 0 < cx ≤ Cx < ∞
such that

cx ≤ α ≤ Cx m-a.e. in Ux.

Suppose also that (logα)− ∈ L1(µ0), (logα)− ∈ L1(µ1) and µ0, µ1 ∈ D(H(· |m)) with
ρ0, ρ1 ∈ L∞loc(m). Then:

(a) (4.1.4) holds;

(b) f, g ∈ L∞loc(m) and γ is the only transport plan which can be written as f ′⊗ g′R for
Borel functions f ′, g′ : X→ [0,∞).

(iv) Instead of (iii), assume that

(4.1.6) R ≥ cm⊗m

in P0 × P1, where P0 := {ρ0 > 0} and P1 := {ρ1 > 0}, for a suitable constant c > 0.
Suppose also that µ0, µ1 ∈PH(X,m) with ρ0, ρ1 ∈ L∞(m). Then:

(a) (4.1.4) holds;

(b) f, g ∈ L∞(m) and γ is the only transport plan which can be written as f ′ ⊗ g′R for
Borel functions f ′, g′ : X→ [0,∞).
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Let us mention that, with minor adaptations, the proof of claim (a) of point (iii) also pro-
vides a demonstration of Proposition 4.1.3. As regards the necessary conditions H(µ0 |R0) <
∞ and H(µ1 |R1) <∞, they are already included in (4.1.4) and they are not asked in state-
ments (iii) and (iv) Furthermore, the assumption R0 = R1 = m is only needed for claim (b)
of points (iii) and (iv).

proof As already pointed out, the fact that (X, τ) is Polish implies that m and R are σ-finite,
so that it is possible to give a meaning to H(· |m) and H(· |R) as discussed above.

(i) See Proposition 4.1.2. In particular, from its proof we know that H(· |R) is well defined in
Adm(µ0, µ1).

(ii) The uniqueness part of the claim is trivial, so we concentrate on existence. Finiteness of the
entropy in particular grants that γ � R. Put p := dγ

dR and let P0 := {ρ0 > 0}, P1 := {ρ1 > 0}.
We start claiming that

(4.1.7) p > 0 m⊗m-a.e. on P0 × P1.

Notice that since m⊗m and R are mutually absolutely continuous, the claim makes sense and
arguing by contradiction we shall assume that R(Z) > 0, where Z := (P0 × P1) ∩ {p = 0}.

Let s := d(µ0⊗µ1)
dR and for λ ∈ (0, 1) let us define Φ(λ) : X2 → R by

Φ(λ) :=
u(p+ λ(s− p))− u(p)

λ
, where u(z) := z log(z).

The convexity of u grants that Φ(λ) ≤ u(s)−u(p) ∈ L1(X2,R) (recall that H(µ0⊗µ1 |R) <∞
by assumption and Lemma 4.1.1 implies the desired integrability) and that Φ(λ) is monotone
decreasing as λ ↓ 0. Moreover, on Z we have Φ(λ) ↓ −∞ R-a.e. as λ ↓ 0, thus the monotone
convergence theorem ensures that

lim
λ↓0

H(γ + λ(µ0 ⊗ µ1 − γ) |R)−H(γ |R)

λ
= −∞.

Since γ+λ(µ0⊗µ1−γ) is a transport plan from µ0 to µ1 for λ ∈ (0, 1), this is in contradiction
with the minimality of γ which grants that the left hand side is non-negative, hence Z is R-
negligible, as desired.

Let us now pick h ∈ L∞(X2,γ) such that π0
∗(hγ) = π1

∗(hγ) = 0 and ε ∈ (0, ‖h‖−1
L∞(γ)).

Then (1 + εh)γ is a transport plan from µ0 to µ1 and noticing that hp is well defined R-a.e.
we have

‖u((1 + εh)p)‖L1(R) =

ˆ
|(1 + εh)p log((1 + εh)p)| dR

≤
ˆ

(1 + εh)p | log p|dR +

ˆ
(1 + εh) | log(1 + εh)| dγ

≤ ‖1 + εh‖L∞(γ)‖p log p‖L1(R) + ‖(1 + εh) log(1 + εh)‖L∞(γ),

so that u((1 + εh)p) ∈ L1(R). Then again by the monotone convergence theorem we get

lim
ε↓0

H((1 + εh)γ |R)−H(γ |R)

ε
=

ˆ
lim
ε↓0

u((1 + εh)p)− u(p)

ε
dR =

ˆ
hp(log p+ 1) dR.
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By the minimality of γ we know that the left hand side in this last identity is non-negative,
thus after running the same computation with −h in place of h and noticing that the choice
of h grants that

´
hpdR =

´
hdγ = 0 we obtain

(4.1.8)
ˆ
hp log(p) dR = 0 ∀h ∈ L∞(γ) such that π0

∗(hγ) = π1
∗(hγ) = 0.

The rest of the argument is better understood by introducing the spaces V,⊥W ⊂ L1(γ) and
V ⊥,W ⊂ L∞(γ) as follows

V :=
{
f ∈ L1(γ) : f = ϕ⊕ ψ for some ϕ ∈ L0(m|P0

), ψ ∈ L0(m|P1
)
}
,

W :=
{
h ∈ L∞(γ) : π0

∗(hγ) = π1
∗(hγ) = 0

}
,

V ⊥ :=
{
h ∈ L∞(γ) :

ˆ
fhdγ = 0 ∀f ∈ V

}
,

⊥W :=
{
f ∈ L1(γ) :

ˆ
fhdγ = 0 ∀h ∈W

}
,

where here and in the following the function ϕ⊕ ψ is defined as ϕ⊕ ψ(x, y) := ϕ(x) + ψ(y).
Notice that the Euler equation (4.1.8) reads as log(p) ∈ ⊥W and our thesis as log(p) ∈ V ;
hence to conclude it is sufficient to show that ⊥W ⊂ V .
Claim 1: V is a closed subspace of L1(γ).

We start claiming that f ∈ V if and only if f ∈ L1(γ) and

(4.1.9) f(x, y) + f(x′, y′) = f(x, y′) + f(x′, y) m⊗m⊗m⊗m-a.e. (x, x′, y, y′) ∈ P 2
0 × P 2

1 .

Indeed the ‘only if’ follows trivially from γ � m⊗ m and the definition of V . For the ‘if’ we
apply Fubini’s theorem to get the existence of x′ ∈ P0 and y′ ∈ P1 such that

f(x, y) + f(x′, y′) = f(x, y′) + f(x′, y) m⊗m-a.e. x, y ∈ P0 × P1.

Thus f = f(·, y′)⊕ (f(x′, ·)− f(x′, y′)), as desired.
Now notice that since (4.1.7) grants that (m ⊗ m)|P0×P1

� γ, we see that the condition
(4.1.9) is closed w.r.t. L1(γ)-convergence.
Claim 2: V ⊥ ⊂W .

Let h ∈ L∞(γ) \W , so that either the first or second marginal of hγ is non-zero. Say the
first. Thus since π0

∗γ = µ0 we have π0
∗(hγ) = f0µ0 for some f0 ∈ L∞(µ0) \ {0}. Then the

function f := f0 ⊕ 0 = f0 ◦ π0 belongs to V and we have
ˆ
hf dγ =

ˆ
f0 ◦ π0 d(hγ) =

ˆ
f0 dπ0

∗(hγ) =

ˆ
f2

0 dµ0 > 0,

so that h /∈ V ⊥.
Claim 3: ⊥W ⊂ V .

Let f ∈ L1(γ) \ V , use the fact that V is closed and the Hahn-Banach theorem to find
h ∈ L∞(γ) ∼ L1(γ)∗ such that

´
fhdγ 6= 0 and

´
f̃hdγ = 0 for every f̃ ∈ V . Thus h ∈ V ⊥

and hence by the previous step h ∈ W . The fact that
´
fhdγ 6= 0 shows that f /∈ ⊥W , as

desired.



4.1. STATEMENT OF THE PROBLEM AND FIRST RESULTS 65

(iii) Starting with (a), observe that by direct computations we have

H(µ0 ⊗ µ1 |R) = H(µ0 |m) +H(µ1 |m) +

ˆ
log

(
d(m⊗m)

dR

)
ρ0 ⊗ ρ1d(m⊗m)

≤ H(µ0 |m) +H(µ1 |m)−
ˆ

log(α)dµ0 −
ˆ

log(α)dµ1

and recalling that µ0, µ1 ∈ D(H(· |m)), our assumptions grant that the right hand side is
finite.

Passing to (b), let σ be a transport plan from µ0 to µ1 such that σ = f ′ ⊗ g′R for suitable
non-negative Borel functions f ′, g′. We claim that in this case it holds f ′, g′ ∈ L∞loc(m), leading
in particular to the claim in the statement about γ.

By disintegrating R w.r.t. π0, from π0
∗(f
′ ⊗ g′R) = ρ0m and R0 = m we get that

(4.1.10) f ′(x)

ˆ
g′(y) dRx(y) = ρ0(x) < +∞, for m-a.e. x

whence g′ ∈ L1(Rx) for m-a.e. x. Since from (4.1.5) we have that Rx ≥ α(x)(αm) for m-a.e.
x ∈ X, we see that g′ ∈ L1(αm) with

α(x)‖g′‖L1(αm) ≤
ˆ
g′(y) dRx(y) for m-a.e. x ∈ X

and thus (4.1.10) yields
f ′ ≤ ρ0

α‖g′‖L1(αm)
, m-a.e.,

which is the desired local L∞ bound on f ′, since α is locally bounded away from 0. By
interchanging the roles of f ′ and g′, the same conclusion follows for g′.

For the uniqueness of γ, put ϕ := log f ′, ψ := log g′, notice that by what we have just
proved ˆ

ϕdσ =

ˆ
ϕdµ0 ≤ H(µ0 |m)−

ˆ
log(α)dµ0 − log ‖g′‖L1(αm)

and our assumptions grant that the right-hand side is finite. On the other hand

(4.1.11)
ˆ
ϕ⊕ ψ dσ = H(σ |R) > −∞

because, as already remarked in Proposition 4.1.2, (4.1.3) implies that H(· |R) is well-defined
on Adm(µ0, µ1). From these two facts we infer that

(4.1.12) ϕ ◦ π0, ψ ◦ π1 ∈ L1(σ).

Putting for brevity p′ := f ′⊗g′ and arguing as before to justify the passage to the limit inside
the integral we get

d

dλ
H
(
(1− λ)σ + λγ |R

)
|λ=0+

=

ˆ
(p− p′) log(p′) dR

=

ˆ
ϕ⊕ ψ d(γ − σ)

(by (4.1.12)) =

ˆ
ϕdπ0

∗(γ − σ) +

ˆ
ψ dπ1

∗(γ − σ)

(because σ and γ have the same marginals) = 0.
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This equality and the convexity of H( · |R) yield H(σ |R) ≤ H(γ |R) and being γ the unique
minimum of H( · |R) among transport plans from µ0 to µ1, we conclude that σ = γ.

(iv) Arguing as for point (iii), it is easy to see that

H(µ0 ⊗ µ1 |R) ≤ H(µ0 |m) +H(µ1 |m)− log(c) < +∞.

For (b) let σ be a transport plan from µ0 to µ1 such that σ = f ′⊗g′R for suitable non-negative
Borel functions f ′, g′. We claim that in this case it holds f ′, g′ ∈ L∞(m), leading in particular
to the claim in the statement about γ.

By disintegrating R w.r.t. π0, from π0
∗(f
′ ⊗ g′R) = ρ0m and R0 = m we get (4.1.10) again,

whence g′ ∈ L1(Rx) for m-a.e. x. Notice then that the sets where f ′ and g′ are positive
must coincide with P0 and P1 respectively, up to m-negligible sets, so that nothing changes in
(4.1.10) if we restrict the integral to P1. Moreover, since from (4.1.6) we have that Rx ≥ cm
in P1 for m-a.e. x ∈ P0, we see that g′ ∈ L1(m) with

c‖g′‖L1(m) ≤
ˆ
g′(y) dRx(y) for m-a.e. x ∈ P0

and thus (4.1.10) yields

f ′ ≤
‖ρ0‖L∞(m)

c‖g′‖L1(m)
, m-a.e. in P0,

which is the desired L∞ bound on f ′, because in X \ P0 we already know that f ′ vanishes
m-a.e. By interchanging the roles of f ′ and g′, the same conclusion follows for g′.

For the uniqueness of γ, put ϕ := log f ′, ψ := log g′ and notice that, by what we have just
proved, they are bounded from above. Together with (4.1.11), this implies that (4.1.12) holds
also in this case and thus, arguing as in (iii), the conclusion follows. �

Although pretty artificial in a Polish space, controls (4.1.5) and (4.1.6) become natural
when moving to the RCD framework, as it will be better understood in the next chapter (see
Theorem 5.1.1).

From the proof of (iii), and more precisely from (4.1.10) and the analogous identity for
ρ1, we see that

f(x)

ˆ
g(y) dRx(y) = ρ0(x) for m-a.e. x

g(y)

ˆ
f(x) dRy(x) = ρ1(y) for m-a.e. y

and this is the way (3.1.8) has to be interpreted in a Polish space. This means that the
couple (f, g) provided by the minimizer γ of (S) is a solution to the Schrödinger system.
As the passage from (3.1.8) to (S) is trivial, the circle is now closed: under a suitable set
of assumptions granting existence of a solution for (S) (e.g. those of Proposition 4.1.4 or
Proposition 4.1.5) (3.1.8), (S) and (Sdyn) are all equivalent.

For sake of information, let us mention that (S) and (Sdyn) admit dual formulations. Under
the same assumptions of Proposition 4.1.4 and using the same notations introduced therein,
they read as follows

sup
ϕ,ψ∈CB(X)

{ˆ
ϕdµ0 +

ˆ
ψ dµ1 − log

ˆ
X2

eϕ⊕ψdR

}
(D)
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sup
ϕ,ψ∈CB(X)

{ˆ
ϕdµ0 +

ˆ
ψ dµ1 − log

ˆ
eϕ(γ0)+ψ(γ1)dR

}
(Ddyn)

where CB(X) denotes the space of continuous functions φ : X→ R such that φ/max{B, 1} ∈
L∞(m). The nature of both maximization problems is strongly connected with the variational
representation of the relative entropy, namely

(4.1.14) H(µ | ν) = sup

{ˆ
u dµ− log

ˆ
eu dν : u ∈ CB(X)

}
valid for any σ-finite measure ν and for any probability measure µ for which H(µ | ν) is well
defined.

It is proved in [77] that (S) and (D) have the same value (in the paper R is a probability
measure but taking (4.1.1) into account we can handle the case of a reference measure with
infinite mass), hence (Sdyn) and (Ddyn) too but in general there is no reason for the dual
attainment to be realized within CB(X)×CB(X). Nevertheless, the fact that primal and dual
problem have the same value allows to completely describe the maximizing couples, because
via a heuristic argument if the maximal value of (D) is attained at (ϕ,ψ) and γ is the minimizer
of (S), then

H(γ |R) =

ˆ
X2

ϕ⊕ ψ dγ − log

ˆ
X2

eϕ⊕ψdR

and this identity together with the case of equality in (4.1.14) entails that γ = exp(ϕ⊕ ψ)R.
On the other hand we know that γ = f ⊗ gR with f, g uniquely determined up to the trivial
transformation (f, g) 7→ (cf, g/c) for some c > 0. Therefore also ϕ,ψ are uniquely determined
up to (ϕ,ψ) 7→ (ϕ+ c′, ψ − c′) and they must be of the form ϕ = log(f), ψ = log(g).

The only defect is that, as already pointed out, in general (D) has no solutions in CB(X).
Yet, when a solution to (S) exists and can be written with a factorized density, as in Proposition
4.1.4, it is still meaningful to set

ϕ := log(f) ψ := log(g)

where f and g are positive and −∞ otherwise. By analogy with the optimal transport case,
ϕ and ψ are called Schrödinger potentials.

4.2 A toolbox for the Schrödinger problem

Aim of this part is to look at those basic properties which are known to be true for solutions
of the optimal transport problem and wonder if, up to suitable adaptations, they hold for
the minimizers of the Schrödinger problem too. Some examples are the convexity of the cost,
the restriction property and, most of all, the stability, which is fundamental from an applica-
tive/algorithmic point of view. The investigation, as in the previous section, is carried out in
the abstract framework of Polish spaces.

Let us begin with the proof of the convexity of the entropic cost, seen as a function of the
marginal constraints.

Proposition 4.2.1 (Convexity of the entropic cost). Let R be a non-negative Radon measure
on X2 such that R0 = R1 =: m, let (Θ, λ) be a probability space and ϑ 7→ µϑ, ϑ 7→ νϑ be two
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measurable functions from Θ to D(H(· |m)), the space of probability measures on X with finite
entropy w.r.t. m. Define

µ :=

ˆ
Θ
µϑdλ(ϑ), ν :=

ˆ
Θ
νϑdλ(ϑ).

If we assume that R satisfies the same assumptions as in Proposition 4.1.3 and, using the
notation introduced therein, µ, ν are such that

(4.2.1)
ˆ

(α+ β)dµ <∞
ˆ

(α+ β)dν <∞

then
I (µ, ν) ≤

ˆ
Θ

I (µϑ, νϑ)λ(dϑ)

where I denotes the entropic cost w.r.t. R.

proof As a first step, notice that (4.2.1) implies

(4.2.2)
ˆ

(α+ β)dµϑ < +∞,
ˆ

(α+ β)dνϑ < +∞

for λ-a.e. ϑ ∈ Θ and, on the other hand, the entropy of µϑ and νϑ w.r.t. m is finite by
construction. Hence, for λ-a.e. ϑ ∈ Θ all the assumptions of Proposition 4.1.3 are satisfied by
R, µϑ, νϑ: denote by γϑ the unique solution of the Schrödinger problem associated to them.
Let us then define

γ :=

ˆ
Θ
γϑdλ(ϑ)

and observe that it is a competitor in the Schrödinger problem, because π0
∗γ = µ and π1

∗γ = ν;
in addition γ � R, because γϑ � R for λ-a.e. ϑ ∈ Θ, so that we can consider the Radon-
Nikodym derivative of γ w.r.t. R. As a consequence,

I (µ, ν) ≤ H(γ |R) =

ˆ
X2

( ˆ
Θ

dγϑ
dR

dλ(ϑ)

)
log

(ˆ
Θ

dγϑ
dR

dλ(ϑ)

)
dR

and if we now use Jensen’s inequality we get

I (µ, ν) ≤
ˆ

X2

ˆ
Θ

dγϑ
dR

log

(
dγϑ
dR

)
dλ(ϑ)dR =

ˆ
Θ

ˆ
X2

dγϑ
dR

log

(
dγϑ
dR

)
dRdλ(ϑ)

=

ˆ
Θ
H(γϑ |R)dλ(ϑ) =

ˆ
Θ

I (µϑ, νϑ)dλ(ϑ)

where the last identity comes from the fact that γϑ is optimal for the constraint (µϑ, νϑ) and
the reference measure R for λ-a.e. ϑ ∈ Θ, thus concluding. �

It is worth mentioning a couple of further remarks about the proposition that we have just
shown. First of all, while (4.2.1) implies (4.2.2), we can not say that the finiteness of H(µ |m)
and H(ν |m) entails the finiteness of H(µϑ |m) and H(νϑ |m) for λ-a.e. ϑ ∈ Θ, whence the
necessity of the hypothesis µϑ, νϑ ∈ D(H(· |m)). Let us also point out that we did not assume
H(µ |m) and H(ν |m) to be finite; however, one can observe that

H(µ |m) =

ˆ (ˆ
Θ

dµϑ
dm

dλ(ϑ)

)
log

( ˆ
Θ

dµϑ
dm

dλ(ϑ)

)
dm

≤
ˆ

Θ

ˆ
dµϑ
dm

log
(dµϑ

dm

)
dmdλ(ϑ) =

ˆ
Θ
H(µϑ |m)dλ(ϑ)

(4.2.3)



4.2. A TOOLBOX FOR THE SCHRÖDINGER PROBLEM 69

where the inequality is due again to Jensen’s inequality and in a completely analogous way

(4.2.4) H(ν |m) ≤
ˆ

Θ
H(νϑ |m)dλ(ϑ).

Hence, if we assume the right-hand sides of (4.2.3) and (4.2.4) to be finite, then H(µ |m) and
H(ν |m) are finite too, which in particular yields finiteness of the entropic cost and existence
of a (unique) solution to (S). The opposite implication is false in general, as we have already
said, but it turns out to be true if Θ is a countable set and the proof goes as follows.

Let Θ = (ϑi)i∈N and λ =
∑

i∈N αiδϑi with αi > 0 for every i ∈ N and
∑

i∈N αi = 1. Then
observe that

H(µ |m) =

¨
Θ

dµϑ
dm

log
( dµ

dm

)
λ(dϑ)dm =

ˆ
Θ

ˆ (
dµϑ
dm

log
( dµ

dm

)
dm

)
λ(dϑ)

and since H(µ |m) is finite, we deduce that
ˆ

log
( dµ

dm

)
dµϑ < +∞, λ-a.e.

whence ˆ
log
( dµ

dm

)
dµϑ < +∞, ∀ϑ ∈ Θ

By applying Jensen’s inequality to z 7→ − log z we deduce, for any ϑ ∈ Θ,
ˆ

log
( dµ

dm

)
dµϑ =

ˆ
log

(ˆ
Θ

dµϕ
dm

dλ(ϕ)

)
dµϑ ≥

¨
Θ

log
(dµϕ

dm

)
dλ(ϕ)dµϑ

=

ˆ
Θ

ˆ
dµϑ
dm

log
(dµϕ

dm

)
dmdλ(ϕ)

and combining this inequality with previous information we get

(4.2.5)
ˆ

dµϑ
dm

log
(dµϕ

dm

)
dm < +∞, ∀ϑ, ϕ ∈ Θ

and in particular, for ϕ = ϑ, H(µϑ |m) < +∞. A completely analogous argument works for ν.
If Θ were not countable, then (4.2.5) would be true for λ⊗ λ-a.e. (ϑ, ϕ) ∈ Θ2 and this is

not enough to conclude, because there could exist a set Θ′ of λ-positive measure such that
(4.2.5) fails everywhere on {(ϑ, ϑ) : ϑ ∈ Θ′}.

The second good news about minimizers of (S) and (Sdyn) is that they are locally optimal,
in analogy with optimal transport. The rough idea is the following: if γ represents the most
likely coupling from µ0 to µ1 according to R, namely the most likely way to transfer particles
from the initial distribution µ0 onto the final one µ1 knowing that they should move according
to R, then also partial transfers of mass are optimally described by γ. The precise statement
is the following.

Proposition 4.2.2 (Space restriction property). Let R be a non-negative Radon measure on
C([0, 1],X) and µ0, µ1 ∈ P(X) be such that R := (e0, e1)∗R, µ0, µ1 satisfy the assumption of
Proposition 4.1.3. Let γ and P be the unique solutions to (S) and (Sdyn) respectively. Then
the following hold:
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(i) (dynamical version) if Ω ⊂ C([0, 1],X) is a Borel set of curves such that P(Ω) > 0, then
the probability measure P′ defined by

P′(A) :=
1

P(Ω)
P(A ∩ Ω) ∀A ∈ B(C([0, 1],X))

is the unique solution to the Schrödinger problem with constraints (e0)∗P
′, (e1)∗P

′ and
reference measure R′(·) := R(· ∩ Ω);

(ii) (static version) if Ω ⊂ X2 is a Borel set such that γ(Ω) > 0, then the probability measure
γ ′ defined by

γ ′(A) :=
1

γ(Ω)
γ(A ∩ Ω) ∀A ∈ B(X2)

is the unique solution to the Schrödinger problem with constraints π0
∗γ
′, π1
∗γ
′ and refer-

ence measure R′(·) := R(· ∩ Ω).

proof
(i) Let Ω be as in the statement. As a first remark, as a byproduct of Lemma 4.1.1 we haveˆ (

log
dP

dR

)−
dP < +∞

and this implies that H(P′ |R′) is finite, because

H(P′ |R′) =

ˆ
Ω

log

(
1

P(Ω)

dP

dR

)
1

P(Ω)
dP = log

1

P(Ω)
+

1

P(Ω)

ˆ
Ω

log
dP

dR
dP

≤ log
1

P(Ω)
+

1

P(Ω)

ˆ
Ω

(
log

dP

dR

)+

dP < +∞.

By Proposition 4.1.2 existence for the restricted Schrödinger problem is thus ensured. Now
assume by contradiction that the thesis is false. Then there exists a probability measure P′′

(concentrated on Ω) such that

(4.2.6)
ˆ

Ω
log

dP′′

dR′
dP′′ = H(P′′ |R′) < H(P′ |R′) =

ˆ
Ω

log
dP′

dR′
dP′

and P′′0 = P′0, P′′1 = P′1. Now, let us consider

P̂ := (P−P|Ω) + P(Ω)P′′ = P|Ωc + P(Ω)P′′

and observe that P̂ is a probability measure on C([0, 1],X); such a measure can be equivalently
rewritten as

P̂ = P + P(Ω)(P′′ −P′)

and this shows that P̂ has the same marginals as P, so that it is a competitor in (Sdyn). In
addition, by the very definition of P̂ we also deduce that P̂ = P(Ω)P′′ on Ω and P̂ = P on
Ωc, so that

H(P̂ |R) =

ˆ
Ω

log
dP̂

dR
dP̂ +

ˆ
Ωc

log
dP̂

dR
dP̂

=

ˆ
Ω

log

(
P(Ω)

dP′′

dR

)
P(Ω)dP′′ +

ˆ
Ωc

log
dP

dR
dP

= P(Ω) log P(Ω) + P(Ω)

ˆ
Ω

log
dP′′

dR
dP′′︸ ︷︷ ︸

α

+

ˆ
Ωc

log
dP

dR
dP
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Now observe that ˆ
Ω

log
dP′′

dR
dP′′ =

ˆ
Ω

log
dP′′

dR′
dP′′

and the same identity holds with P′ in place of P′′. Hence, by this fact and by (4.2.6) we
deduce

α = P(Ω) log P(Ω) + P(Ω)

ˆ
Ω

log
dP′′

dR′
dP′′ < P(Ω) log P(Ω) + P(Ω)

ˆ
Ω

log
dP′

dR′
dP′

= P(Ω) log P(Ω) + P(Ω)

ˆ
Ω

log
dP′

dR
dP′ =

ˆ
Ω

log
dP

dR
dP.

In conclusion
H(P̂ |R) <

ˆ
Ω

log
dP

dR
dP +

ˆ
Ωc

log
dP

dR
dP = H(P |R)

and this is impossible by the minimality of P.
(ii) As the proof of (i) is purely set-theoretic and the dynamic aspect of R is not involved, we
can obviously restate this result for the static Schrödinger problem. �

This result admits a natural interpretation in terms of conditioning. In fact, if we look at
γ as the joint law of a random vector (Z0, Z1) and Ω ⊂ X2 is such that γ(Ω) > 0, then the
law of (Z0, Z1) conditioned to lie in Ω is optimal for the Schrödinger problem with reference
measure R′ and constraint (µ′0, µ

′
1), where µ′0 (resp. µ′1) is the law of Z0 (resp. Z1) conditioned

by the event (Z0, Z1) ∈ Ω. For the dynamical problem an analogous explanation is possible
and a standard conditioning is Zt ∈ A with A ⊂ X, where (Zt)t∈[0,1] is a stochastic process
whose law is P (existence of such a process is possible under precise assumptions on R, see
[81]).

We conclude the section with a stability result. Although quite ad hoc assumptions are
formulated in order to overcome the difficulty of working in a Polish space, the conclusion is
still useful, as witnessed by the applications provided in Section 6.3.

Theorem 4.2.3 (Stability). Let (X, τ,m) be a Polish space equipped with a non-negative Radon
measure, R a non-negative Radon measure on X2 such that R0 = R1 = m and α, β : X→ (0,∞)
Borel functions locally bounded away from 0 and ∞ (in the sense of Proposition 4.1.5) such
that

(4.2.7) (αm)⊗ (αm) ≤ R ≤ (βm)⊗ (βm).

Let µk0 = ρk0m and µk1 = ρk1m be Borel probability measures such that ρk0, ρ
k
1 are uniformly

locally bounded. Assume that the Schrödinger problem associated to µk0, µ
k
1 and R admits a

unique solution, denoted by γk. Assume that µk0 ⇀ µ0 and µk1 ⇀ µ1 as k → ∞ for suitable
µ0, µ1 ∈P(X).

Then:

(i) there exists γ ∈ Adm(µ0, µ1) which can be written as γ = f ⊗ gR for suitable Borel
functions f, g ∈ L∞loc(m) such that γk ⇀ γ as k →∞, up to extract a subsequence;

(ii) if we further suppose that µ0, µ1 are such that (4.1.3) holds, (logα)− ∈ L1(µ0), (logα)− ∈
L1(µ1) and

(4.2.8) lim inf
k→∞

H(γk |R) < +∞,
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then the entropic cost I (µ0, µ1) is finite, γ is the unique solution to the Schrödinger
problem relative to µ0, µ1,R and the whole sequence (γk) converges to it;

(iii) given a non-negative Radon measure R on C([0, 1],X) such that (e0, e1)∗R = R, if we
denote by Pk the unique solution to (Sdyn) associated to µk0, µ

k
1,R and assume (together

with all the hypotheses of point (ii)) that

X2 3 (x, y) 7→ Rxy ∈P(C([0, 1],X))

is continuous, where {Rxy}x,y∈X is the disintegration of R w.r.t. (e0, e1) and the target
is endowed with the narrow topology, then Pk ⇀ P as k → ∞, where P is the unique
solution to the Schrödinger problem relative to µ0, µ1,R.

proof First of all {γk} is a tight family, thus there exists γ ∈ Adm(µ0, µ1) such that, up
to extract a subsequence, γk ⇀ γ. On the other hand, by point (ii) of Proposition 4.1.5 we
know that γk = fk ⊗ gkR for all k ∈ N for uniquely (up to normalization) determined Borel
functions fk, gk : X → [0,∞); by the proof of point (iii) of the same proposition we also see
that the present assumptions are sufficient to get

fk ≤ ρk0
α‖gk‖L1(αm)

, gk ≤ ρk1
α‖fk‖L1(αm)

, m-a.e.

Thus let us normalize (fk, gk) in such a way that ‖gk‖L1(αm) = 1. This immediately yields
that the sequence (fk) is uniformly locally bounded: for all x ∈ X there exist a neighbourhood
Ux of x and Cx > 0 such that fk ≤ Cx m-a.e. in Ux for all k ∈ N. Since X is separable, a
diagonalization argument ensures the existence of a locally bounded Borel function f and a
subsequence (not relabeled) such that, for all x ∈ X and Ux as above,

fk
∗
⇀ f in L∞(Ux,m) as k →∞.

In order to get the same information on (gk), we need to show that there exists c > 0 such that
‖fk‖L1(αm) ≥ c for all k ∈ N. If this were not the case, then there would exist a subsequence,
not relabeled, such that ‖fk‖L1(αm) → 0 as k →∞; given a neighbourhood U where α is away
from 0, say α ≥ δ > 0, this implies ‖fk‖L1(U,m) → 0. Now take φ ∈ Cb(X) non-negative, not
identically zero, supported in U and define ξ(x, y) := φ(x)φ(y), ξ ∈ Cb(X2). On the one hand

ˆ
X2

ξ dγk →
ˆ

X2

ξ dγ as k →∞

since γk ⇀ γ. On the other hand, from ‖gk‖L1(αm) = 1 we deduce that ‖gk‖L1(U,m) ≤ δ−1;
together with the second inequality in (4.2.7), the boundedness of β in U (up to restrict U , if
necessary) and the uniform boundedness of (fk), this fact entails

ˆ
X2

ξ dγk ≤
ˆ
φfkβ dm

ˆ
φgkβ dm ≤M

ˆ
U
fk dm→ 0 as k →∞

whence a contradiction, because
´

X2 ξ dγ > 0. Thus (gk) is uniformly locally bounded too and
there exist a locally bounded Borel function g as well as a subsequence (not relabeled) such
that gk converges to g in the sense already discussed above for fk.
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Now we claim that γ = f ⊗ gR. To this aim, let U, V be two neighbourhoods where
(fk), (gk) respectively are uniformly bounded; without loss of generality, we can also assume
that α, β are bounded away from 0 and ∞ therein and m(U),m(V ) are finite; furthermore,
let φ1, φ2 ∈ Cb(X) be non-negative, not identically zero and supported in U, V respectively.
Notice that

(4.2.9)
ˆ

X2

φ1 ⊗ φ2 dγk =

ˆ
φ1(x)fk(x)

( ˆ
φ2(y)gk(y)dRx(y)︸ ︷︷ ︸

=:Φk(x)

)
dm(x)

and Φk → Φ in L1(U,m), where

Φ(x) :=

ˆ
φ2(y)g(y)dRx(y).

In fact, α, β are bounded away from 0 and ∞ in V and from (4.2.7) we see that α(x)(αm) ≤
Rx ≤ β(x)(βm) for m-a.e. x ∈ X, so that weak-* convergence in L∞(V,m) and in L∞(V,Rx)
are equivalent for m-a.e. x ∈ X; since φ2 ∈ L1(Rx) for m-a.e. x ∈ X, we deduce that Φk → Φ
m-a.e. in U . Moreover, the functions Φk are uniformly bounded in U and m(U) <∞, whence
the desired L1-convergence by the dominated convergence theorem. Now it is not difficult to
prove the claim, because∣∣∣∣ ˆ φ1f

kΦk dm−
ˆ
φ1fΦ dm

∣∣∣∣
≤
∣∣∣∣ˆ φ1f

kΦk dm−
ˆ
φ1f

kΦ dm

∣∣∣∣+

∣∣∣∣ ˆ φ1f
kΦ dm−

ˆ
φ1fΦ dm

∣∣∣∣
≤ ‖φ1‖L∞(m) sup

k∈N
‖fk‖L∞(U,m)‖Φk − Φ‖L1(U,m) +

∣∣∣∣ˆ φ1Φ
(
fk − f

)
dm

∣∣∣∣
and φ1Φ ∈ L1(U,m), so that also the second term on the right-hand side vanishes as k →∞
because of fk ∗⇀ f in L∞(U,m). Recalling (4.2.9), this means that

lim
k→∞

ˆ
X2

φ1 ⊗ φ2 dγk =

ˆ
φ1fΦ dm =

ˆ
X2

φ1 ⊗ φ2 d(f ⊗ gR).

Coupling this information with γk ⇀ γ and the arbitrariness of φ1, φ2 the claim and thus the
conclusion follow.

As regards (ii), by lower semicontinuity of the entropy and by definition of the entropic
cost

I (µ0, µ1) ≤ H(γ |R) < +∞.

By Proposition 4.1.2 this grants existence and uniqueness of the solution for the Schrödinger
problem associated to µ0, µ1,R and by point (iii) of Proposition 4.1.5 such a solution must be
γ: indeed, by (A.2.2) we see that µ0, µ1 have finite entropy w.r.t. m, so that all the assumptions
of point (iii) are fulfilled.

Finally, point (iii) is nothing but a straightforward consequence of the definition of weak
convergence and of the disintegration R =

´
X2 R

xydR(x, y). �
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Chapter 5

On a RCD∗(K,N) space

As a continuation of the previous one, this chapter is the second part of the user’s guide for
non-probabilists to the Schrödinger problem. We now move to the RCD framework, where the
bounds on both the curvature and the dimension allow a better investigation of the dynamical
Schrödinger problem and entail a deeper knowledge of the so called entropic interpolations
and of the behaviour of the entropy along them.

In Section 5.1 we fix the setting we work within and introduce the main dynamical ob-
jects we shall consider from that moment on throughout the whole manuscript. The idea
is the following: given a minimizer of (Sdyn), we associate to it a curve of measures which
is an interpolation between the marginal constraints and a curve of functions linked to the
dual problem, in complete analogy with optimal transport, where such dynamical objects are
Wasserstein geodesics and interpolated Kantorovich potentials. Then, inspired by the formal
considerations of [81], we endeavour the time evolution of these measures and functions by
indicating the ‘PDEs’ they solve.

On the contrary the results of Section 5.2 are completely new, even in the smooth setting,
and strongly rely on the functional inequalities investigated in Chapter 2, namely Hamilton’s
gradient estimate and Li-Yau inequality. Main achievements of this part are:

- a uniform Gaussian control of the densities along entropic interpolations;

- local equi-Lipschitz continuity of the Schrödinger potentials with explicit control of the
local Lipschitz constant.

As regards Section 5.3, we show that Schrödinger potentials satisfy Bochner inequality
in a suitable sense and this technical result is essential for the computation of the first and
second derivatives of the relative entropy along entropic interpolations. Such computation had
already been performed in [76] by formal arguments; here we verify that the same procedure
is fully justifiable also in the case of RCD∗(K,N) spaces. As a byproduct we obtain crucial
uniform estimates, in particular a uniform weighted L2 control of the Hessian of Schrödinger
potentials (see Lemma 5.3.4), and the vanishing of certain quantities (see Lemma 5.3.5): all
these results will play a key role in Chapter 6 and Chapter 7.

Aim of Section 5.4 is to establish a further parallelism between optimal transport and
Schrödinger problem, inspired by the Benamou-Brenier formula for the Wasserstein distance.
Our contribution is an analogous dynamical representation for the entropic cost in compact
RCD∗(K,N) spaces, which was still missing in the non-smooth framework; the proof relies on
purely analytical arguments.

75
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We conclude with a physical perspective: in Section 5.5 all the interpolating quantities we
have introduced at the beginning of the chapter are reinterpreted as physical objects with a
precise meaning, thus adopting Nelson’s stochastic mechanics point of view (for a detailed
dissertation on the subject, we suggest the monograph [102]).

5.1 The setting

The properties we stated in Proposition 4.1.5 are valid in the very general framework of Polish
spaces. We shall now restate them in the form we shall need in the context of RCD spaces.

Recall that on a finite-dimensional RCD∗(K,N) space (X, d,m) the reference measure m
satisfies (1.2.7) and because of (1.2.5) M can be any positive constant, so that we can choose
W = d2(·, x̄) for any x̄ ∈ X in (4.1.1). Setting z :=

´
e−d

2(·,x̄)dm and

(5.1.1) m̃ := z−1e−d
2(·,x̄)m,

definition (4.1.1) then becomes

(5.1.2) H(µ |m) = H(µ | m̃)−
ˆ

d2(·, x̄)dµ− log z

and this shows that H( · |m) is well defined on P2(X). Let us also remind that on RCD spaces
there is a well defined heat kernel rε[x](y) (see (1.2.8), (1.2.9a), (1.2.9b) and (1.2.9c)). The
choice of working with rε/2 in the theorem below is convenient for the computations we will
do later on.

Theorem 5.1.1. Let (X, d,m) be a RCD∗(K,N) space with K ∈ R and N ∈ [1,∞) endowed
with a non-negative Radon measure m. For ε > 0 define the measure Rε/2 on X2 as

dRε/2(x, y) := rε/2[x](y) dm(x) dm(y).

Also, let µ0, µ1 ∈P2(X) be Borel probability measures with bounded densities.
Then there exist and are uniquely m-a.e. determined (up to multiplicative constants) two

Borel non-negative functions f ε, gε : X→ [0,∞) such that f ε⊗gεRε/2 is a transport plan from
µ0 to µ1. In addition, f ε, gε belong to L∞loc(X) and their supports are included in supp(µ0) and
supp(µ1) respectively.

If µ0, µ1 also have bounded supports, then f ε, gε belong to L∞(X).
Finally, if the densities of µ0, µ1 also belong to Test(X), then f ε, gε ∈ Test(X) as well.

proof It follows from point (iii) of Proposition 4.1.5 and the Gaussian estimates: indeed, start
observing that R0 = R1 = m and if we set B := d2(·, x̄) with x̄ ∈ X arbitrarily fixed, then the
second and third in (4.1.3) are authomatically satisfied; for the first one

ˆ
X2

e−B⊕BdR =

ˆ (
e−d

2(y,x̄)dRx(y)

)
e−d

2(x,x̄)dm(x),

thus it is now sufficient to use the fact that e−d2(y,x̄) ≤ 1, Rx is a probability measure and (1.2.7)
to conclude. Furthermore from the left-hand side of (1.2.11) together with the symmetry of
the heat kernel we know that

rε/2[x](y) ≥ C

min{mx,my}
exp

(
− d2(x, y)

ε

)



5.1. THE SETTING 77

where mx := m(B√
ε/2

(x)) and analogously for my; fixing x̄ ∈ X and using the triangle
inequality we get

rε/2[x](y) ≥
√

C

mx
exp

(
− 2d2(x, x̄)

ε

)
︸ ︷︷ ︸

:=α(x)

√
C

my
exp

(
− 2d2(y, x̄)

ε

)
,

thus obtaining α satisfying (4.1.5). It is also not difficult to see that (logα)− ∈ L1(µ0) and
(logα)− ∈ L1(µ1), because

(
logα(x)

)− ≤ 1

2
(logC)− +

1

2
(− logmx)− +

2

ε
d2(x, x̄)

and (1.2.5) allows to handle the second term: in fact, for any x̄ ∈ X a priori fixed we have
mx ≤ m(B

d(x,x̄)+
√
ε/2

(x̄)) and m(B
d(x,x̄)+

√
ε/2

(x̄)) can be estimated by means of (1.2.5). Since
all the assumptions required by Proposition 4.1.5 (iii) are verified, the conclusion follows.

For the case of compactly supported marginals, still the Gaussian estimates (1.2.11) on
the heat kernel grant that there are constants 0 < cε ≤ Cε < +∞ such that

cεm⊗m ≤ Rε ≤ Cεm⊗m

in supp(µ0)× supp(µ1) and thus point (iv) of Proposition 4.1.5 applies.
For the last part of the statement, notice that thanks to the representation formula (1.2.9c),

the fact that π0
∗(f

ε ⊗ gεRε/2) = ρ0m reads as

f εhε/2(gε) = ρ0.

Now notice that by (1.2.15) we have hε/2(gε) ∈ Test(X) and by (1.2.11) hε/2(gε) is locally
bounded away from 0, so that 1

hε/2(gε) ∈ Testloc(X). Since Testloc(X) is an algebra we conclude
that f ε = ρ0

hε(gε)
∈ Testloc(X) and since ρ0 has compact support f ε ∈ Test(X) tout court. The

same applies to gε. �

We also present an analogous result in the compact setting, since it will be useful for some
applications and remarks pointed out in Section 6.3.

Theorem 5.1.2. Let (X, d,m) be a compact RCD∗(K,N) space with K ∈ R, N ∈ [1,∞) and
m ∈ P(X). For ε > 0 define Rε/2 ∈ P(X2) as in Theorem 5.1.1. Also, let µ0, µ1 ∈ P(X) be
Borel probability measures with bounded densities.

Then there exist and are uniquely m-a.e. determined (up to multiplicative constants) two
Borel non-negative functions f ε, gε : X→ [0,∞) such that f ε⊗gεRε/2 is a transport plan from
µ0 to µ1. In addition, f ε, gε belong to L∞(m).

Moreover, if the densities of µ0, µ1 belong to Test∞>0(X), then f ε, gε ∈ Test∞>0(X) as well.

proof For the first part of the statement no comments are required. For the second one,
we argue as for the last part of Theorem 5.1.1: indeed, π0

∗(f
ε ⊗ gεRε/2) = ρ0m reads as

f εhε/2(gε) = ρ0; thus by (2.1.1) we have hε/2(gε) ∈ Test∞>0(X), and therefore from (2.1.7)
applied with ϕ(z) := z−1 we deduce that 1

hε/2(gε) ∈ Test∞>0(X). Since Test∞(X) is an algebra
we conclude that f ε = ρ0

hε(gε)
∈ Test∞>0(X). The same applies to gε. �
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With this said, let us fix once for all the assumptions and notations which we shall use
from now on.

Setting 5.1.3. (X,d,m) is a RCD∗(K,N) space withK ∈ R and N ∈ [1,∞), m is a Borel non-
negative measure and µ0 = ρ0m, µ1 = ρ1m are two absolutely continuous Borel probability
measures with bounded densities and supports.

For any ε > 0 we consider the couple (f ε, gε) given by Theorem 5.1.1 normalized in such
a way that ˆ

log(h ε
2
f ε)ρ1 dm = 0,

then we set ρε0 := ρ0, ρε1 := ρ1, µε0 := µ0, µε1 := µ1 and


f εt := hεt/2f

ε

ϕεt := ε log f εt

for t ∈ (0, 1]


gεt := hε(1−t)/2g

ε

ψεt := ε log gεt

for t ∈ [0, 1)



ρεt := f εt g
ε
t

µεt := ρεtm

ϑεt := 1
2(ψεt − ϕεt )

for t ∈ (0, 1)

In order to investigate the time behaviour of the functions just defined, besides the notions
of local calculus introduced in Section 2.2 we also need the corresponding weighted ones. The
weight we will always consider is e−V with V : X→ [0,∞) a continuous map such that e−Vm
is a finite measure; thanks to (1.2.5) and (1.2.7) V = Md2(·, x̄) is an admissible choice for
any M > 0 and x̄ ∈ X. For L2(e−Vm) no comments are required. The weighted Sobolev space
and the weighted domains of the (local) divergence and Laplacian are denoted and defined as
follows:

W 1,2(X, e−Vm) := {f ∈W 1,2
loc (X) : f, |Df | ∈ L2(e−Vm)}

D(div, e−Vm) := {W ∈ Dloc(div) : div(W ) ∈ L2(e−Vm)}
D(∆, e−Vm) := {f ∈ Dloc(∆) : ∆f ∈ L2(e−Vm)}

where |Df |,div,∆ are the local objects already introduced in Section 2.2. In order to avoid
possible confusion, it is worth stressing that the definitions above are not the ones built
over the metric measure space (X, d, e−Vm): we always work within (X, d,m) and we ask
|Df |,div(v),∆f to be 2-integrable w.r.t. e−Vm, the advantage being the fact that L2(e−Vm)
and W 1,2(X, e−Vm) are Hilbert spaces, unlike L2

loc(m) and W 1,2
loc (X).

The following proposition collects the basic properties of the functions defined in Setting
5.1.3 and the respective ‘PDEs’ solved. The proof is intentionally naïf and rough: we argue
by direct computations and only rely on the Gaussian estimates (1.2.11) for the heat kernel.
We choose this approach because on the one hand it is sufficient for our purposes, at least for
the moment, and on the other hand it makes clearer the importance of the results carried out
in Chapter 2. A comparison between the forthcoming estimates (5.1.3), (5.1.4) and those of
Section 5.2 and Section 5.3 is a bright evidence.

Proposition 5.1.4. With the same assumptions and notation as in Setting 5.1.3, the following
holds.

All the functions are well defined and for any ε > 0:
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a) f εt , gεt , ρεt belong to Test(X) for all t ∈ I, where I is the respective domain of definition
(for (ρεt ) we pick I = (0, 1));

b) ϕεt , ψεt , ϑεt belong to Testloc(X) for all t ∈ I, where I is the respective domain of definition.

For any ε > 0 and C ⊂ I compact all the curves (f εt ), (gεt ), (ρ
ε
t ) belong to AC(C,W 1,2(X)) and

(ϕεt ), (ψ
ε
t ), (ϑ

ε
t ) to AC(C,W 1,2(X, e−Vm)), where I is the respective domain of definition (for

(ρεt ) we pick I = (0, 1)) and V = Md2(·, x̄) with x̄ ∈ X and M = M(K,N, ρ0, ρ1, C, x̄) > 0;
their time derivatives are given by the following expressions for a.e. t ∈ [0, 1]:

d

dt
f εt =

ε

2
∆f εt

d

dt
gεt = −ε

2
∆gεt

d

dt
ϕεt =

1

2
|∇ϕεt |2 +

ε

2
∆ϕεt − d

dt
ψεt =

1

2
|∇ψεt |2 +

ε

2
∆ψεt

d

dt
ρεt + div(ρεt∇ϑεt ) = 0

d

dt
ϑεt +

|∇ϑεt |2

2
= −ε

2

8

(
2∆ log ρεt + |∇ log ρεt |2

)
.

Moreover, for every ε > 0 we have:

i)

(5.1.3) sup
t∈C
‖hεt‖L∞(X) + Lip(hεt ) + ‖∆hεt‖W 1,2(X) <∞

if (hεt ) is equal to any of (f εt ), (gεt ), (ρ
ε
t ) and

(5.1.4) sup
t∈C
‖e−V hεt‖L∞(X) + ‖e−V lip(hεt )‖L∞(X) + ‖∆hεt‖W 1,2(X,e−V m) <∞

if (hεt ) is equal to any of (ϕεt ), (ψ
ε
t ), (ϑ

ε
t ); in both cases, C is a compact subset of the

respective domain of definition (for (ρεt ) we pick I = (0, 1)),

ii) µεt ∈P2(X) for every t ∈ [0, 1] and (ρεt ) ∈ C([0, 1], L2(X)),

iii) we have f εt → f ε and gεt → gε in L2(X) as t ↓ 0 and t ↑ 1 respectively.

proof Recalling (1.2.15) we see that f εt0 ∈ Test(X) for any t0 > 0. Then the maximum principle
for the heat flow, the fact that it is a contraction in W 1,2(X) and the Bakry-Émery gradient
estimates (1.2.13) together with the Sobolev-to-Lipschitz property grant that (5.1.3) holds for
(f εt ). The same arguments apply to (gεt ). Then the bound (5.1.3) for (ρεt ) follows from the
Leibniz rules for the gradient and Laplacian and thanks to this bound we see that the curves
(f εt ), (gεt ), (ρ

ε
t ) belong to AC(C,L2(X)). As regards ϕεt , ψεt , ϑεt , let us fix ε > 0: by Proposition

2.2.5 b) is true. Then use the representation formula (1.2.9c), the Gaussian estimates (1.2.11)
and the fact that ρ0 and f ε have the same support to get

C1

Vεt/2
‖f ε‖L1(m) exp

(
− C2d

2(·, x̄)

εt
− C3

εt

)
≤

≤ f εt ≤
C4

vεt/2
‖f ε‖L1(m) exp

(
− C5d

2(·, x̄)

εt
+
C6

εt

)(5.1.5)

for all t ∈ (0, 1], where x̄ ∈ X is arbitrary, all the constants C1, ..., C6 are positive and only
depend on K,N , supp(ρ0), supp(ρ1), x̄ and

(5.1.6) vs := inf
y∈supp(ρ0)

m(B√s(y)) Vs := sup
y∈supp(ρ0)

m(B√s(y)),
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paying attention to the fact that for any s > 0 it holds 0 < vs ≤ Vs < ∞. This two-sided
bound implies that e−V ϕεt ∈ L∞(m) and ϕεt ∈ L2(e−Vm) with V = Md2(·, x̄) for any x̄ ∈ X
and M > 0. Moreover, taking into account (2.2.9) and (2.2.10) and the fact that |∇f εt |2 ∈
W 1,2(X) by (1.2.16), the same bound implies that e−V |∇ϕεt | ∈ L∞(m), |∇ϕεt | ∈ L2(e−Vm),
ϕεt ∈ D(∆, e−Vm) and ∆ϕεt ∈ W 1,2(X, e−Vm) with V as above and M > 3C2

εt− , C2 being the
constant appearing in (5.1.5). In fact

∇ϕεt = ε
∇f εt
f εt

, ∆ϕεt = ε

(
∆f εt
f εt
− |∇f

ε
t |2

(f εt )2

)
,

|∇∆ϕεt | ≤ ε
(
|∇∆f εt |
f εt

+
∆f εt |∇f εt |

(f εt )2
+
|∇|∇f εt |2|

(f εt )2
+

2|∇f εt |3

(f εt )3

)
,

(5.1.7)

whence the claim. Thus all the norms appearing in (5.1.4) exist and the bound makes sense.
In order to prove it, just look at (5.1.7), use (5.1.3) for (f εt ), notice that (1.2.16) gives us a
locally (in t) uniform control on the L2(m)-norm of |∇|∇f εt |2| while (5.1.5) entails a locally
(in t) uniform two-sided bound for (f εt ), i.e.

C1

Vεt+/2
‖f ε‖L1(m) exp

(
− C2d

2(·, x̄)

εt−
− C3

εt−

)
≤ f εt ≤

C4

vεt−/2
‖f ε‖L1(m) exp

(
− C5d

2(·, x̄)

εt+
+
C6

εt−

)
where t− := infC t and t+ := supC t. For the same reason we also deduce that (ϕεt ) belongs to
AC(C,L2(e−Vm)) with V as above. The same arguments apply to (gεt ) and thus we get the
same conclusions for (ψεt ) and (ϑεt ).

The equations for d
dtϕ

ε
t and

d
dtψ

ε
t are easily derived, for d

dtρ
ε
t we notice that ε log ρεt = ϕεt+ψ

ε
t

and thus

d

dt
ρεt = ρεt

d

dt
log ρεt = ρεt

1

ε

( |∇ϕεt |2
2

− |∇ψ
ε
t |2

2
+
ε

2
∆ϕεt −

ε

2
∆ψεt

)
= ρεt

(
− 〈∇ϑεt ,∇ log ρεt 〉 −∆ϑεt

)
= −〈∇ϑεt ,∇ρεt 〉 − ρεt∆ϑεt = −div(ρεt∇ϑεt )

and for d
dtϑ

ε
t we observe that

d

dt
ϑεt +

|∇ϑεt |2

2
= −|∇ψ

ε
t |2

4
− ε

4
∆ψεt −

|∇ϕεt |2

4
− ε

4
∆ϕεt +

|∇ψεt |2

8
+
|∇ϕεt |2

8
− 〈∇ψ

ε
t ,∇ϕεt 〉
4

= −ε
2

4
∆ log ρεt −

1

8

(
|∇ψεt |2 + |∇ϕεt |2 + 2 〈∇ϕεt ,∇ψεt 〉

)
= −ε

2

8

(
2∆ log ρεt + |∇ log ρεt |2

)
.

The fact that (ρεt ) is absolutely continuous with values in W 1,2(X) then follows by rewriting
its derivative as

d

dt
ρεt =

ε

2
gεt∆f

ε
t −

ε

2
f εt ∆gεt

and using the bound (5.1.3) for f εt , gεt . The absolute continuity of (ϕεt ), (ψ
ε
t ), (ϑ

ε
t ) when seen

with values in W 1,2(X, e−Vm) is a direct consequence of the expressions for their derivatives,
rewritten as

d

dt
ϕεt =

ε

2

∆f εt
f εt

d

dt
ψεt = −ε

2

∆gεt
gεt

d

dt
ϑεt = −ε

4

∆f εt
f εt
− ε

4

∆gεt
gεt

,
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and the bounds (5.1.3), (5.1.5) for f εt , gεt in conjunction with (1.2.16).
It is clear that ρεt ≥ 0 for every ε, t, hence the identity

ˆ
ρεt dm =

ˆ
hεt/2f

εhε(1−t)/2g
ε dm =

ˆ
f εhε/2g

ε dm =

ˆ
ρε0 dm = 1

shows that µεt ∈ P(X). The fact that µεt has finite second moment then follows from (5.1.5)
written for f εt , gεt for t ∈ (0, 1), while it is trivial for t = 0, 1.

Due to the continuity of [0,∞) 3 t 7→ hth ∈ L2(X) for every h ∈ L2(X), the claimed
continuities in L2 for the f ’s and g’s follow. Then for what concerns the ρ’s, we need to check
that for every ε > 0 we have

(5.1.8) ρ0 = f εhε/2g
ε ρ1 = gεhε/2f

ε.

As already noticed in the proof of Theorem 5.1.1, these are equivalent to the fact that f ε ⊗
gε Rε/2 is a transport plan from µ0 to µ1; hence, (5.1.8) holds by the very choice of (f ε, gε)
made. �

Using the terminology adopted in the literature (see [81]) we shall refer to:

• ϕεt and ψεt as Schrödinger potentials, in connection with Kantorovich ones;

• (µεt )t∈[0,1] as entropic interpolation, in analogy with displacement one.

However the motivation behind the definition of (µεt ) is not clear yet. Is there any link with
the dynamical Schrödinger problem? The answer is affirmative and relies on the classical
mechanics version of Born’s formula (3.1.9) anticipated in Chapter 3.

Within the RCD setting and relying on Theorem 5.1.1 and Proposition 5.1.4 we can prove
it in a rigorous way, but first let us briefly review the notion of ‘Brownian motion’ (or more
precisely diffusion process) in a RCD(K,∞) space and interpret in probabilistic terms the
analytical properties of the heat kernel presented in Section 1.2. By [7] we know that there
exists a unique (in law) Markov family {Rx}x∈supp(m) of probability measures on C([0,∞),X)
such that

htf(x) =

ˆ
f(γt)dRx(γ) ∀t ≥ 0

for all f ∈ Cb(X) and m-a.e. x ∈ supp(m). Looking at (1.2.9c) this tells us that (et)∗R
x =

rt[x]m and if we set R :=
´

Rxdm(x), then the canonical process Z = (Zt)t≥0, Zt(γ) := γt, is
the unique (in law) Markov process concentrated on C([0,∞),X) with Z0 ∼ m and transition
probabilities given by the heat kernel, i.e.

R(Zs+t ∈ A |Zs = x) =

ˆ
A
rt[x](y)dm(y) ∀s, t ≥ 0, A ∈ B(X)

for m-a.e. x ∈ supp(m): such a process is called Brownian motion. This allows to rewrite
the representation formula (1.2.9c) in probabilistic terms, namely

(5.1.9) htf(x) = ERxf(Zt) = ER[f(Zt) |Z0 = x],

see also Appendix A.2 for an overview on the probabilistic notations here adopted. Now let us
show the Euclidean analogue of Born’s formula; since the Schrödinger problem is formulated
on C([0, 1],X) instead of C([0,∞),X), from now on R (resp. Rε/2) shall denote the law of
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(Zt)t∈[0,1] (resp. (Zεt/2)t∈[0,1]) instead of Z’s one: this does not change the fact that (et)∗R = m

and (et)∗R
x = rt[x]m for all t ∈ (0, 1] (resp. (et)∗R

ε/2 = m and (et)∗(R
ε/2)x = rεt/2[x]m).

Recalling that the unique solution to (Sdyn) with Rε/2 as reference measure is given by

dPε/2(γ) = f ε(γ0)gε(γ1)dRε/2(γ),

from these facts and the Markov property of Rε/2 (see Appendix A.4 and (A.4.1)) we deduce
that

dPε
t

dm
(x) =

dPε
t

dRε
t

(x)
(A.2.1)

= ER

[
dPε

dRε

∣∣∣∣Zt = x

]
= ER[f ε(Z0)gε(Z1) |Zt = x]

= ER[f ε(Z0) |Zt = x]ER[gε(Z1) |Zt = x]
(5.1.9)

= f εt (x)gεt (x)

whence (3.1.9). This tells us that the entropic interpolation (µεt ) is the marginal flow of the
solution to the dynamical Schrödinger problem associated to µ0, µ1 and Rε/2, namely µεt =
(et)∗P

ε/2 for all t ∈ [0, 1], thus renforcing the connection between the analytic and probabilistic
approaches to the topic.

5.2 Uniform estimates for the densities and the potentials

We start investigating the continuity of several functions defined in terms of Schrödinger
potentials and densities of entropic interpolations.

Lemma 5.2.1. With the same assumptions and notation as in Setting 5.1.3, the following
holds.

For any ε > 0 and for any p <∞ the maps

(0, 1) 3 t 7→ ρεt |hεt |p ∈ L1(m) (0, 1) 3 t 7→ ρεt |∇hεt |p ∈ L1(m)

(0, 1) 3 t 7→ f εt |∇hεt |p ∈ L1(m) (0, 1) 3 t 7→ gεt |∇hεt |p ∈ L1(m)

(0, 1) 3 t 7→ |∇ρεt ||∇hεt |p ∈ L1(m) (0, 1) 3 t 7→ ∆ρεt ||∇hεt |p ∈ L1(m)

are all continuous w.r.t. the strong topology, where hεt is equal to any of ϕεt , ψεt , ϑεt , log ρεt .

proof Fix ε > 0 and recall that by Proposition 5.1.4 we know that (f εt ), (gεt ), (ρ
ε
t ) belong

to C([0, 1], L2(X)) ∩ ACloc((0, 1),W 1,2(X)) and (hεt ) ∈ ACloc(I,W
1,2(X, e−Vm)) with V =

Md2(·, x̄) for some x̄ ∈ X and M > 0 sufficiently large. This means that for any t ∈ [0, 1] and
any sequence (tn)n∈N ⊂ [0, 1] converging to t there exists a subsequence (tnk)k∈N such that

f εtnk
→ f εt gεtnk

→ gεt ρεtnk
→ ρεt m-a.e.

as k →∞; if t ∈ I then

hεtnk
→ hεt |∇hεtnk | → |∇h

ε
t | ∆hεtnk

→ ∆hεt m-a.e.

and if t ∈ (0, 1) then we also have

|∇ρεtnk | → |∇ρ
ε
t | ∆ρεtnk

→ ∆ρεt m-a.e.

Therefore, it is sufficient to show that all the functions appearing in the statement belong to
L∞loc((0, 1), L1(X)). To this aim, consider t 7→ ρεt |∇ϕεt |p and start observing that by (2.3.3) we
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know that for any δ ∈ (0, 1] and x̄ ∈ X it holds |∇ϕεt | ≤ Cδ(1 + d(·, x̄)) for all t ∈ [δ, 1 − δ],
whence

(5.2.1) |∇ϕεt |p ≤ Cδ,p(1 + dp(·, x̄))

for any p <∞. On the other hand, the estimate for ρεt is more difficult. Let

vs := inf
y∈supp(ρ0)∪supp(ρ1)

m(B√s(y)) Vs := sup
y∈supp(ρ0)∪supp(ρ1)

m(B√s(y))

and observe that for any s > 0 we have 0 < vs ≤ Vs < ∞. By means of the representation
formula (1.2.9c), the Gaussian estimates (1.2.11) and since t ∈ [δ, 1− δ], we get

ρεt (x) ≤
ˆ
f ε(y)

C1

m(B√
εt/2

(y))
exp

(
− d2(x, y)

3εt
+
C2εt

2

)
dm(y)

×
ˆ
gε(y)

C1

m(B√
ε(1−t)/2(y))

exp
(
− d2(x, y)

3ε(1− t)
+
C2ε(1− t)

2

)
dm(y)

≤ C3

v2
εδ/2

(ˆ
f εdm

ˆ
gεdm

)
eC4(1+d2(x,x̄))

with C3, C4 depending on K,N, ε, δ, x̄, supp(ρ0) and supp(ρ1). Using the first inequality in
(1.2.11) and the fact that f ε ⊗ gεRε/2 is a probability measure (by construction - recall our
Setting 5.1.3) we then obtain

(5.2.2)
ˆ
f εdm

ˆ
gεdm ≤ C1Vε/2e

D2

ε

ˆ
f ε ⊗ gεRε/2 = C1Vε/2e

D2

ε

where D is the diameter of supp(ρ0)∪ supp(ρ1). Plugging these pieces of information together
we deduce that

(5.2.3) ρεt (x) ≤
C1C3Vε/2

v2
εδ/2

exp
(D2

ε
+ C4(1 + d2(x, x̄))

)
and coupling this inequality with (5.2.1) we see that

ˆ
|∇ϕεt |pρεtdm ≤ Cδ,pM

ˆ
e−Cd2(·,x̄)(1 + dp(·, x̄))dm ∀t ∈ [δ, 1− δ].

The integral on the right-hand side can be written as
ˆ ∞

0
e−Cr

2
(1 + rp)dT∗m,

where T : X→ [0,∞) is defined as T = d(·, x̄), and by the Bishop-Gromov inequality in spher-
ical form (1.2.3) such integral is finite. By the arbitrariness of δ ∈ (0, 1] we have thus shown
that t 7→ ρεt |∇ϕεt |p is in L∞loc((0, 1), L1(X)) and the same argument applies to ψεt , ϑεt , log ρεt .

With slight modifications we can also handle the case of t 7→ f εt |∇hεt |p and t 7→ gεt |∇hεt |p:
in fact, fixing [t0, t1] ⊂ (0, 1), it is sufficient to replace (5.2.3) with the second inequality in
(5.1.5) and couple it with (5.2.1) so that

(5.2.4) sup
t∈[t0,t1]

ˆ
|∇ϕεt |pf εt dm ≤ sup

t∈[t0,t1]
C1

ˆ
e
C2
εt
−C3d

2(·,x̄)
εt (1 + dp(·, x̄))dm <∞



84 CHAPTER 5. ON A RCD∗(K,N) SPACE

for suitable positive constants C1, C2, C3 independent of t ∈ [t0, t1]. The arbitrariness of t0, t1 ∈
(0, 1) gives the conclusion and the same holds for ψεt , ϑεt , log ρεt ; for gεt use the analogous of
(5.1.5).

Passing to t 7→ ρεt |ϕεt |p, fix again δ ∈ (0, 1) and use both the first and the second inequality
in (5.1.5) to deduce that

|ϕεt |p ≤ C(1 + dp(·, x̄)) ∀t ∈ [δ, 1]

for a suitable positive constant C independent of t ∈ [δ, 1]; from this inequality, (5.2.3) and
arguing as for t 7→ ρεt |∇ϕεt |p we conclude. The same holds for ψεt , ϑεt , log ρεt .

Finally, for t 7→ |∇ρεt ||∇hεt |p and t 7→ ∆ρεt |∇hεt |p notice that

|∇ρεt ||∇hεt |p =ρεt |∇ log ρεt ||∇hεt |p ≤
1

2
ρεt |∇ log ρεt |2 +

1

2
ρεt |∇hεt |2p

∆ρεt |∇hεt |p =(∆f εt )gεt |∇hεt |p + (∆gεt )f
ε
t |∇hεt |p + 2ε−2ρεt 〈∇ϕεt ,∇ψεt 〉|∇hεt |p

≤(∆f εt )gεt |∇hεt |p + (∆gεt )f
ε
t |∇hεt |p +

1

2ε2
ρεt |∇ϕεt |4

+
1

2ε2
ρεt |∇ψεt |4 +

1

ε2
ρεt |∇hεt |2p,

use the a priori estimate (1.2.12b) to deduce that ∆f εt ,∆g
ε
t ∈ L∞loc((0, 1), L2(m)) and point

out that t 7→ f εt |∇hεt |p and t 7→ gεt |∇hεt |p also belong to L∞loc((0, 1), L2(m)). This last claim is
a straightforward generalization of (5.2.4) from L1 to any Lp-norm. �

Now let us collect information about quantities which remain bounded as ε ↓ 0. The first
result is a great improvement of (5.1.3) and could not be fully appreciated in the compact
case considered in [63].

Proposition 5.2.2 (uniform L∞ bound on the densities). With the same assumptions and
notations as in Setting 5.1.3 the following holds.

For every x̄ ∈ X there exist constants C,M > 0 which depends on K,N, x̄, ρ0, ρ1 such that

(5.2.5) ρεt ≤Me−Cd2(·,x̄) m-a.e.

for every t ∈ [0, 1] and for every ε ∈ (0, 1).

proof We claim that there exists a constantM ′ > 0 which depends on K,N and the diameters
of the supports of ρ0, ρ1 such that

(5.2.6) ‖ρεt‖L∞(X) ≤M ′max{‖ρ0‖L∞(X), ‖ρ1‖L∞(X)}

for every t ∈ [0, 1] and for every ε ∈ (0, 1).
Fix ε > 0. We know that (ρεt ) ∈ C([0, 1], L2(X)) ∩ ACloc((0, 1), L2(X)) from Proposition

5.1.4 and ρεt ≤ Cε for all t ∈ [0, 1] by the maximum principle, thus for any p ≥ 2 the function
Ep : [0, 1]→ [0,∞) defined by

Ep(t) :=

ˆ
(ρεt )

p dm,

belongs to C([0, 1]) ∩ ACloc((0, 1)). An application of the dominated convergence theorem
grants that its derivative can be computed passing the limit inside the integral, obtaining

(5.2.7)
d

dt
Ep(t) = p

ˆ
(ρεt )

p−1 d

dt
ρεtdm = −p

ˆ
(ρεt )

p−1div(ρεt∇ϑεt ) dm.
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However, integration by parts formula can not be applied now, because |∇ϑεt | is only locally
integrable. To overcome the problem, let x̄ ∈ X, R > 0 and χR ∈ Test∞(X) be a cut-off
function with support in BR+1(x̄) such that χR ≡ 1 in BR(x̄); then

p

ˆ
χR(ρεt )

p−1div(ρεt∇ϑεt ) dm = −p
ˆ
〈∇(ρεt )

p−1,∇ϑεt 〉χRρεt dm− p
ˆ
〈∇χR,∇ϑεt 〉(ρεt )p dm

= −(p− 1)

ˆ
〈∇(ρεt )

p,∇ϑεt 〉χR dm− p
ˆ
〈∇χR,∇ϑεt 〉(ρεt )p dm

= (p− 1)

ˆ
χR(ρεt )

p∆ϑεt dm−
ˆ

(ρεt )
p〈∇ϑεt ,∇χR〉dm.

On the one hand, (ρεt )
p−1div(ρεt∇ϑεt ) ∈ L1(X) because div(ρεt∇ϑεt ) ∈ L2(X) by Proposition

5.1.4 and thus, by the dominated convergence theorem, the left-hand side converges to itself
without χR as R→∞. On the other hand, the uniform boundedness of ‖|∇χR|‖L∞(X) w.r.t.
R and the fact that (ρεt )

p|∇ϑεt | ∈ L1(X) by Lemma 5.2.1 imply that the second term on the
right-hand side vanishes in the limit. As regards the first one, we claim that (ρεt )

p∆ϑεt ∈ L1(X):
indeed

∆ϑεt =
ε

2

(∆gεt
gεt
− ∆f εt

f εt

)
− 1

2ε

(
|∇ψεt |2 − |∇ϕεt |2

)
and by the fact that ∆f εt ,∆g

ε
t ∈ L2(X) together with (2.3.3) and (5.2.3), the conclusion follows

along the same lines pointed out in Lemma 5.2.1. Hence, the claim ensures that the first term
on the right-hand side converges to itself without χR as R→∞, so that all in all

p

ˆ
(ρεt )

p−1div(ρεt∇ϑεt ) dm = (p− 1)

ˆ
(ρεt )

p∆ϑεt dm

and plugging this identity into (5.2.7) we get

d

dt
Ep(t) = −(p− 1)

ˆ
(ρεt )

p∆ϑεt dm.

Now notice that ϑεt = ψεt − ε
2 log ρεt to get

(5.2.8)
d

dt
Ep(t) = −(p− 1)

ˆ
(ρεt )

p∆ψεtdm +
ε

2
(p− 1)

ˆ
(ρεt )

p∆ log ρεtdm.

On the one hand, using again the same cut-off technique to motivate integration by parts,
ˆ

(ρεt )
p∆ log ρεtdm = −p

ˆ
(ρεt )

p−1〈∇ρεt ,∇ log ρεt 〉dm = −p
ˆ

(ρεt )
p−2|∇ρεt |2dm ≤ 0

and on the other one, choosing δ := 1
2 and T = 1 in (2.3.6) and any point x̄ ∈ X we get

the existence of a constant C > 0 depending on K,N, x̄ and the diameters of the supports of
ρ0, ρ1 such that ∆ψεt ≥ −C(1 + d2(·, x̄)) for any t ∈ [0, 1/2], so that we have

d

dt
Ep(t) ≤ C(p− 1)Ep(t) + C(p− 1)

ˆ
(ρεt )

pd2(·, x̄)dm

= C(p− 1)Ep(t) + C(p− 1)

( ˆ
BR(x̄)

(ρεt )
pd2(·, x̄)dm +

ˆ
X\BR(x̄)

(ρεt )
pd2(·, x̄)dm

)
≤ C(p− 1)(1 +R2)Ep(t) + C(p− 1)

ˆ
X\BR(x̄)

(ρεt )
pd2(·, x̄)dm, ∀t ∈ [0, 1/2]



86 CHAPTER 5. ON A RCD∗(K,N) SPACE

where R > 0 is to be fixed later. Now let us handle the rightmost term above. To this aim, we
can follow the argument already adopted in the proof of Lemma 5.2.1 for the upper bound on
ρεt , but the previous rough estimate has to be made more precise: the dependence on t, ε shall
be explicit. Keeping the same notations introduced in the lemma, notice that by means of the
representation formula (1.2.9c), the Gaussian estimates (1.2.11) and since t ∈ [0, 1/2], we get

ρεt (x) ≤
ˆ
f ε(y)

C1

m(B√
εt/2

(y))
exp

(
− d2(x, y)

3εt
+
C2εt

2

)
dm(y)

×
ˆ
gε(y)

C1

m(B√
ε(1−t)/2(y))

exp
(
− d2(x, y)

3ε(1− t)
+
C2ε(1− t)

2

)
dm(y)

≤ C3

vεt/2vε/4

ˆ
f εdm

ˆ
gεdm exp

(C4

εt
− C5d

2(x, x̄)

εt

)
with C3, C4, C5 depending on K,N, x̄, supp(ρ0) and supp(ρ1). Plugging (5.2.2) in the inequal-
ity above we deduce that

ρεt (x) ≤
C1C3Vε/2

vεt/2vε/4
exp

(D2

ε
+
C4

εt
− C5d

2(x, x̄)

εt

)
.

Now observe that by the Bishop-Gromov inequality (1.2.2) with R = 1 vs ≥ C6s
N for s ∈

(0, 1), with C6 depending on K,N and D, while by the compactness of the supports of ρ0 and
ρ1 we have Vε/2 ≤ C7 with C7 depending on the same parameters as C6. Hence

(5.2.9) ρεt (x) ≤ C8

εN tN/2
exp

(D2

ε
+
C4

εt
− C5d

2(x, x̄)

εt

)
and if we raise the inequality to the power p, multiply both sides by d2(·, x̄), integrate over
X \BR(x̄), rewrite the integral in terms of the push-forward measure T∗m (where T = d(·, x̄))
and use the Bishop-Gromov inequality in spherical form (1.2.3) to control T∗m, then we get

ˆ
X\BR(x̄)

(ρεt )
pd2(·, x̄)dm ≤ Cp8

εNptNp/2
e
pD2

ε
+
pC4
εt

ˆ ∞
R

C9r
2e−

pC5r
2

εt eC9rdr

with C9 depending on K,N, supp(ρ0) and supp(ρ1). With explicit manipulations this yields
ˆ

X\BR(x̄)
(ρεt )

pd2(·, x̄)dm ≤
(

C10

(ε2t)N/2
e
D2

ε
+
C4
εt
−C5R

2

εt

)p
where C10 continuously depends on R. If we choose R >

√
(D2 + C4)/C5, then there exists

a constant c independent of ε, t ∈ (0, 1) such that the right-hand side is bounded from above
by cp. We have thus obtained E′p ≤ C ′(p− 1)Ep + cp for all t ∈ [0, 1/2], whence by Gronwall’s
inequality

Ep(t) ≤
(
Ep(0) +

cp

C ′(p− 1)

)
eC
′(p−1)t − cp

C ′(p− 1)
≤
(
Ep(0) +

cp

C ′(p− 1)

)
eC
′(p−1)

for all t ∈ [0, 1/2]. Passing to the p-th roots, writing Ep(t) = ‖ρεt‖
p−1
Lp−1(µεt )

and observing that,
being µεt a probability measure, we have ‖h‖Lp(µεt )

↑ ‖h‖L∞(µεt )
as p→∞, we obtain

‖ρεt‖L∞ ≤ eC
′‖ρ0‖L∞ , ∀t ∈ [0, 1/2].
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Switching the roles of ρ0 and ρ1 we get the analogous control for t ∈ [1
2 , 1], whence the claim

(5.2.6) with M ′ := eC̃ . As regards (5.2.5), for t = 0, 1 there is nothing to prove; for t ∈ (0, 1)
let us look back at (5.2.9) and observe that

C8

εN tN/2
e
D2

ε
+
C4
εt e−

C5d
2(x,x̄)
εt ≤ C ′′e−C̃d2(x,x̄) m-a.e. in X \BR(x̄)

with C ′′, C̃ independent of ε, t ∈ (0, 1). This bound together with (5.2.6) gives (5.2.5) with
C = C̃ and

M := max{M ′eC̃R2
max{‖ρ0‖L∞(m), ‖ρ1‖L∞(m)}, C ′′}.

�

The second result we present is mostly an easy consequence or a rewriting of the estimates
obtained in Chapter 2, but it is worth a second statement because it improves (5.1.4) in a
quantitative sense.

Proposition 5.2.3 (Locally uniform Lipschitz and Laplacian controls for the potentials).
With the same assumptions and notations as in Setting 5.1.3 the following holds.

For all δ ∈ (0, 1) and x̄ ∈ X there exists C > 0 which only depends on K,N, δ, x̄ such that

lip(ϕεt ) ≤ C
(
1 + d(·, x̄)

)
, m-a.e.(5.2.10a)

∆ϕεt ≥ −C
(
1 + d2(·, x̄)

)
, m-a.e.(5.2.10b)

and for all δ ∈ (0, 1) and bounded Borel set B there exists C ′ > 0 which only depends on
K,N, δ,B such that

(5.2.11) ‖∆ϕεt‖L1(B,m) ≤ C ′

for every t ∈ [δ, 1] and ε ∈ (0, 1). Analogous bounds hold for the ψεt ’s in the time interval
[0, 1− δ].

proof Fix δ ∈ (0, 1) and x̄ ∈ X as in the statement and notice that the bound (2.3.3) yields

|∇ϕεt | = ε|∇ log h εt
2
f ε| ≤ C

(
1 + d(·, x̄)

)
∀t ∈ [δ, 1], ε ∈ (0, 1).

Thus recalling the Sobolev-to-Lipschitz property (1.2.14) we obtain the bound (5.2.10a). The
bound (5.2.10b) is a restatement of (2.3.6). Finally, let B be as in the statement and χB a
Lipschitz cut-off function identically equal to 1 on B and with bounded support, notice that
|h| = h+ 2h− whence
ˆ
B
|∆ϕεt | dm =

ˆ
B
χB|∆ϕεt |dm ≤

ˆ
χB|∆ϕεt | dm =

ˆ
χB∆ϕεt dm + 2

ˆ
χB(∆ϕεt )

− dm

= −
ˆ
〈∇χB,∇ϕεt 〉dm + 2

ˆ
χB(∆ϕεt )

− dm

and take into account (5.2.10a) to estimate the first term in the final expression and (5.2.10b)
for the second one: (5.2.11) then follows.

The bounds for ψεt are obtained in the same way. �
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5.3 The entropy along entropic interpolations

In [76] Léonard computed the first and second derivatives of the relative entropy along entropic
interpolations and in [63] we verified that his computations are fully justifiable in the case of
compact RCD∗(K,N) spaces. Here we would like to show that the same holds true also in
the non-compact setting. As we shall see later on, these formulas will be the crucial tool for
showing that the acceleration of the entropic interpolation goes to 0 in a suitable sense.

As a first step, let us slightly improve the statement of Lemma 5.2.1.

Lemma 5.3.1. With the same assumptions and notation as in Setting 5.1.3, the following
holds.

For any ε > 0 and for any p <∞ the maps

I 3 t 7→ ρεt |hεt |p ∈ L1(m) I 3 t 7→ ρεt |∇hεt |p ∈ L1(m)

(0, 1) 3 t 7→ f εt |∇hεt |p ∈ L1(m) (0, 1) 3 t 7→ gεt |∇hεt |p ∈ L1(m)

(0, 1) 3 t 7→ |∇ρεt ||∇hεt |p ∈ L1(m) (0, 1) 3 t 7→ ∆ρεt ||∇hεt |p ∈ L1(m)

are all continuous w.r.t. the strong topology, where hεt is equal to any of ϕεt , ψεt , ϑεt , log ρεt and
I is the respective domain of definition (for (log ρεt ) we pick I = (0, 1)).

proof The only change w.r.t. Lemma 5.2.1 regards ρεt |hεt |p and ρεt |∇hεt |p: for the proof it is
sufficient to follow the same argument, just using (5.2.5) instead of (5.2.3). �

Secondly, although ∆|∇ϕεt |2 is not a Radon measure in general because of lack of integra-
bility (and the same is true for ψεt , ϑεt , log ρεt ), it turns out that ρεt∆|∇ϕεt |2 is a finite measure
and ρεtΓ2(ϕεt ) too, so that a weighted Bochner inequality for the Schrödinger potentials can
be deduced.

Lemma 5.3.2. With the same assumptions and notations as in Setting 5.1.3, the following
holds.

For any ε > 0 and t ∈ (0, 1) the set functions

ρεt∆|∇ϕεt |2, ρεt∆|∇ψεt |2, ρεt∆|∇ϑεt |2, ρεt∆|∇ log ρεt |2

ρεtΓ2(ϕεt ), ρ
ε
tΓ2(ψεt ), ρ

ε
tΓ2(ϑεt ), ρ

ε
tΓ2(log ρεt )

are well defined finite Borel measures on X and the following integration by parts identity
holds:

(5.3.1)
ˆ
ρεtd∆|∇hεt |2 =

ˆ
∆ρεt |∇hεt |2dm

where hεt is equal to any of ϕεt , ψεt , ϑεt , log ρεt .
Finally, the following weighted Bochner inequalities are satisfied:

ρεtΓ2(hεt ) ≥ ρεt
(
|Hess(hεt )|2HS +K|dhεt |2

)
m(5.3.2a)

ρεtΓ2(hεt ) ≥ ρεt
((∆hεt )

2

N
+K|dhεt |2

)
m(5.3.2b)

where hεt is as above.
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proof Fix ε > 0, t ∈ (0, 1), recall that f εt , ρεt ∈ Test(X) and ϕεt ∈ Testloc(X) by Proposition
5.1.4: as a consequence, |∇ϕεt |2 ∈ Dloc(∆) with

(5.3.3) ∆|∇ϕεt |2 = ε2ρεt
∆|∇f εt |2

(f εt )2
+ ε2ρεt |∇f εt |2∆

( 1

(f εt )2

)
+ 2ε2ρεt 〈∇|∇f εt |2,∇

( 1

(f εt )2

)
〉

so that ∆|∇ϕεt |2 and Γ2(ϕεt ) have a meaning, in the sense provided in Section 2.2. Secondly,
define α1, α2, α3 as the first, the second and the third term on the right-hand side of (5.3.3)
respectively. By (1.2.23) applied to f εt we get

α1 ≥ 2
ε2ρεt
(f εt )2

(
K|∇f εt |2 + 〈∇f εt ,∇∆f εt 〉

)
= 2Kρεt |∇ϕεt |2 + 2εgεt 〈∇ϕεt ,∇∆f εt 〉

≥ 2Kρεt |∇ϕεt |2 − εgεt |∇ϕεt |2 − εgεt |∇∆f εt |2

and by Lemma 5.3.1 together with gεt ∈ Test(X) the right-hand side is integrable. As regards
α2, by the following computations

α2 = 2ε2ρεt

(
3
|∇f εt |4

(f εt )4
− |∇f

ε
t |2∆f εt

(f εt )3

)
= 6ε−2ρεt |∇ϕεt |4 − 2gεt∆f

ε
t |∇ϕεt |4

≥ 6ε−2ρεt |∇ϕεt |4 − gεt |∆f εt |2 − gεt |∇ϕεt |8

and still by Lemma 5.3.1 we see that it is integrable and the same holds for α3, because

α3 = −4ε2 ρεt
(f εt )3

〈∇|∇f εt |2,∇f εt 〉 = −8gεtHess(f εt )(∇ϕεt ,∇ϕεt )

≥ −4gεt |Hess(f εt )|2HS − 4gεt |∇ϕεt |4.

Hence the negative part of ρεt∆|∇ϕεt |2 is a finite measure on X. As regards the positive one,
let x̄ ∈ X, R > 0 and χR ∈ Test∞(X) be a cut-off function with support in BR+1(x̄) such that
χR ≡ 1 in BR(x̄); thenˆ

χRρ
ε
td∆|∇ϕεt |2 =

ˆ
∆(χRρ

ε
t )|∇ϕεt |2dm

=

ˆ
∆χRρ

ε
t |∇ϕεt |2dm +

ˆ
χR∆ρεt |∇ϕεt |2dm + 2

ˆ
〈∇χR,∇ρεt 〉|∇ϕεt |2dm

and by Fatou’s lemmaˆ
ρεtd(∆|∇ϕεt |2)+ ≤ lim inf

R→∞

ˆ
χRρ

ε
td(∆|∇ϕεt |2)+

while by Lebesgue’s dominated convergence theorem χR → 1 in L1(ρεt (∆|∇ϕεt |2)−), whence

(5.3.4)
ˆ
ρεtd∆|∇ϕεt |2 ≤ lim inf

R→∞

ˆ
χRρ

ε
td∆|∇ϕεt |2.

On the other hand, the fact that ‖|∇χR|‖L∞(m), ‖∆χR‖L∞(m) are uniformly bounded as R→
∞ by Lemma 2.2.1 and ρεt |∇ϕεt |2,∆ρεt |∇ϕεt |2, |∇ρεt ||∇ϕεt |2 ∈ L1(m) by Lemma 5.3.1 allows us
to apply the dominated convergence theorem and infer that

lim
R→∞

(ˆ
∆χRρ

ε
t |∇ϕεt |2dm +

ˆ
χR∆ρεt |∇ϕεt |2dm + 2

ˆ
〈∇χR,∇ρεt 〉|∇ϕεt |2dm

)
=

ˆ
∆ρεt |∇ϕεt |2dm < +∞.
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Coupling this information with (5.3.4) we finally get that ρεt∆|∇ϕεt |2 is a finite measure and
this information implies that χR → 1 in L1(ρεt∆|∇ϕεt |2). Hence equality actually holds in
(5.3.4) with the limit in place of the lim inf and (5.3.1) is satisfied. Taking (5.1.7) into account,
we notice that

ρεt |〈∇ϕεt ,∇∆ϕεt 〉| ≤ ερεt |∇ϕεt |
(
|∇∆f εt |
f εt

+
∆f εt |∇f εt |

(f εt )2
+
|∇|∇f εt |2|

(f εt )2
+

2|∇f εt |3

(f εt )3

)
= εgεt |∇ϕεt ||∇∆f εt |+ gεt∆f

ε
t |∇ϕεt |2 + 2ε−1ρεt |Hess(f εt )|HS|∇ϕ

ε
t |3 + 2ε−2ρεt |∇ϕεt |4

≤ 1

2
εgεt |∇ϕεt |2 +

1

2
εgεt |∇∆f εt |2 + ε−1ρεt |Hess(f εt )|2HS + ε−1ρεt |∇ϕεt |6 + 2ε−2ρεt |∇ϕεt |4

(5.3.5)

and since all the terms appearing on the right-hand side are integrable, we have just proved
that ρεtΓ2(ϕεt ) is a finite measure too.

Now let us look at (5.3.2a) and observe that it can not be trivially deduced from (1.2.23)
applied to ϕεt , because ϕεt /∈ Test(X). To overcome this problem let E ⊂ X be a bounded
Borel set and let χ ∈ Test∞(X) be a cut-off function with bounded support such that χ ≡ 1
in E. Then, as already remarked in Proposition 2.2.5, χϕεt ∈ Test(X) and (1.2.23) holds for
it, whence

Γ2(ϕεt )(E) ≥
ˆ
E

(
|Hess(ϕεt )|2HS +K|dϕεt |2

)
dm

because χ ≡ 1 in E. Hence ϕεt satisfies (1.2.23) on all bounded Borel sets. By multiplying both
sides of the inequality above by ρεt , using the fact that ρεtΓ2(ϕεt ) is a measure and arguing by
σ-additivity, (5.3.2a) then follows and an analogous argument provides us with (5.3.2b).

The claim for ψεt , ϑεt , log ρεt are obtained following the same lines. �

Now we are in the position for motivating Léonard’s computations, thus getting the for-
mulas for the first and second dervative of the entropy along entropic interpolations.

Proposition 5.3.3. With the same assumptions and notations as in Setting 5.1.3 the following
holds.

For any ε > 0 the map t 7→ H(µεt |m) belongs to C([0, 1])∩C2(0, 1) and for every t ∈ (0, 1)
it holds

d

dt
H(µεt |m) =

ˆ
〈∇ρεt ,∇ϑεt 〉 dm =

1

2ε

ˆ (
|∇ψεt |2 − |∇ϕεt |2

)
ρεt dm,(5.3.6a)

d2

dt2
H(µεt |m) =

ˆ
ρεt d

(
Γ2(ϑεt ) + ε2

4 Γ2(log(ρεt ))
)

=
1

2

ˆ
ρεt d

(
Γ2(ϕεt ) + Γ2(ψεt )

)
.(5.3.6b)

proof All the integrals in (5.3.6a) and (5.3.6b) make sense by Lemma 5.3.1 and Lemma 5.3.2
and the equality of the two expressions for both the first and second derivative follows from
ϑεt =

ψεt−ϕεt
2 , ε log ρεt = ψεt + ϕεt and the fact that Γ2(·) is a quadratic form. In addition, recall

(5.1.1) and the fact that (ρεt ) ∈ C([0, 1], L2(m)) by Proposition 5.1.4: from these facts we see
that [0, 1] 3 t 7→ H(µεt | m̃) is continuous; moreover, (5.2.5) and (ρεt ) ∈ C([0, 1], L2(m)) imply
that

[0, 1] 3 t 7→
ˆ

d2(·, x̄)dµεt

is continuous too for any x̄ ∈ X, whence by (5.1.2) the continuity of [0, 1] 3 t 7→ H(µεt |m).
Now fix ε > 0 and recall from Proposition 5.1.4 that (ρεt ) ∈ ACloc((0, 1), L2(X)) and that it

is, locally in t ∈ (0, 1) and in space, uniformly bounded away from 0 and∞. Therefore, for given
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x̄ ∈ X and R > 0, if we pick a cut-off function χR ∈ Test∞(X) with support in BR+1(x̄) and
such that χR ≡ 1 in BR(x̄), then for u(z) := z log z we have that (0, 1) 3 t 7→ χRu(ρεt ) ∈ L2(X)
is absolutely continuous. In particular, so is

´
χRu(ρεt ) dm and it is then clear that

d

dt

ˆ
χRu(ρεt )dm =

ˆ
χR(log(ρεt ) + 1)

d

dt
ρεt dm, a.e. t.

Using the formula for d
dtρ

ε
t provided by Proposition 5.1.4 we then get

d

dt

ˆ
χRu(ρεt ) dm = −

ˆ
χR(log(ρεt ) + 1)div(ρεt∇ϑεt )dm =

ˆ
〈∇(χR(log(ρεt ) + 1),∇ϑεt 〉ρεtdm

=

ˆ
χR 〈∇ρεt ,∇ϑεt 〉 dm +

ˆ
〈∇χR,∇ϑεt 〉 (log ρεt + 1)ρεtdm

and integrating this identity over [t0, t1] ⊂ (0, 1) yieldsˆ
χRu(ρεt1)dm−

ˆ
χRu(ρεt0)dm

=

¨ t1

t0

χR 〈∇ρεt ,∇ϑεt 〉dtdm +

¨ t1

t0

〈∇χR,∇ϑεt 〉 (log ρεt + 1)ρεtdtdm.

(5.3.7)

On the one hand ρεt log ρεt ∈ L1(m) by Lemma 5.3.1 if t ∈ (0, 1) and trivially if t = 0, 1, thus
by the dominated convergence theorem the left-hand side converges to itself without χR as
R→∞. On the other hand, |∇ρεt ||∇ϑεt | ∈ L∞loc((0, 1), L1(X)) by Lemma 5.3.1, so that again by
the dominated convergence theorem the first integral on the right-hand side of (5.3.7) converges
to itself without χR as R→∞. Moreover, the fact that ρεt (log ρεt+1)|∇ϑεt | ∈ L∞loc((0, 1), L1(X))
(as a byproduct of Lemma 5.3.1), ‖|∇χR|‖L∞(m) is uniformly bounded as R → ∞ (Lemma
2.2.1) and |∇χR| is supported in BR+1(x̄)\BR(x̄) entail that the second integral on the right-
hand side of (5.3.7) vanishes in the limit. Therefore, plugging all these pieces of information
together we get

H(µεt1 |m)−H(µεt0 |m) =

¨ t1

t0

〈∇ρεt ,∇ϑεt 〉 dtdm

and the fact that |∇ρεt ||∇ϑεt | ∈ C((0, 1), L1(X)) by Lemma 5.3.1 implies that t 7→ H(µεt |m) is
C1 and the formula for the first derivative holds for all t ∈ (0, 1).

For (5.3.6b), recall that from Proposition 5.1.4 we know that (ρεt ) ∈ ACloc((0, 1),W 1,2(X))
and (ϑεt ) ∈ ACloc((0, 1),W 1,2(X, e−Vm)) with V = Md2(·, x̄), for some x̄ ∈ X and M > 0
sufficiently large. Hence, for such x̄ and for R > 0 pick a cut-off function χR ∈ Test∞(X)
with the same properties as above and observe that (0, 1) 3 t 7→ χR 〈∇ρεt ,∇ϑεt 〉 ∈ L2(X) is
absolutely continuous. In particular, so is

´
χR 〈∇ρεt ,∇ϑεt 〉 dm and

d

dt

ˆ
χR〈∇ρεt ,∇ϑεt 〉dm =

ˆ
χR

(
〈∇ d

dt
ρεt ,∇ϑεt 〉+ 〈∇ρεt ,∇

d

dt
ϑεt 〉
)

dm, a.e. t.

Thus from the formulas for d
dtρ

ε
t ,

d
dtϑ

ε
t provided in Proposition 5.1.4 and integrating over

[t0, t1] ⊂ (0, 1) we obtainˆ
χR〈∇ρεt1 ,∇ϑ

ε
t1〉dm−

ˆ
χR〈∇ρεt0 ,∇ϑ

ε
t0〉dm =

¨ t1

t0

−χR 〈∇(div(ρεt∇ϑεt )),∇ϑεt 〉 dtdm︸ ︷︷ ︸
A

+

¨ t1

t0

χR〈∇ρεt ,∇
(
− 1

2 |∇ϑ
ε
t |2 − ε2

4 ∆ log(ρεt )− ε2

8 |∇ log(ρεt )|2
)
〉dtdm︸ ︷︷ ︸

B

.
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From 〈∇ρεt ,∇ϑεt 〉 ∈ L1(m) (Lemma 5.3.1) it is easy to see that the left-hand side converges to
itself without χR as R →∞. As regards A, integration by parts and Leibniz rule imply that
it can be rewritten as

A =

¨ t1

t0

div(ρεt∇ϑεt )〈∇χR,∇ϑεt 〉dtdm +

¨ t1

t0

χRdiv(ρεt∇ϑεt )∆ϑεtdtdm

=

¨ t1

t0

〈∇ρεt ,∇ϑεt 〉〈∇χR,∇ϑεt 〉dtdm +

¨ t1

t0

ρεt∆ϑ
ε
t 〈∇χR,∇ϑεt 〉dtdm

−
¨ t1

t0

χRρ
ε
t 〈∇ϑεt ,∇∆ϑεt 〉dtdm−

¨ t1

t0

ρεt∆ϑ
ε
t 〈∇ϑεt ,∇χR〉dtdm

=

¨ t1

t0

〈∇ρεt ,∇ϑεt 〉〈∇χR,∇ϑεt 〉dtdm−
¨ t1

t0

χRρ
ε
t 〈∇ϑεt ,∇∆ϑεt 〉dtdm.

Thanks to (5.3.5), which also tells us that t 7→ ρεt 〈∇ϑεt ,∇∆ϑεt 〉 belongs to L∞loc((0, 1), L1(m)),
the second integral on the right-hand side converges to itself without χR as R→∞, while for
the first one notice that∣∣∣∣¨ t1

t0

〈∇ρεt ,∇ϑεt 〉〈∇χR,∇ϑεt 〉dtdm
∣∣∣∣ ≤ ¨ t1

t0

|∇χR||∇ρεt ||∇ϑεt |2dtdm.

Since |∇ρεt ||∇ϑεt |2 ∈ L∞loc((0, 1), L1(m)) (Lemma 5.3.1), ‖|∇χR|‖L∞(m) is uniformly bounded
as R → ∞ (Lemma 2.2.1) and |∇χR| → 0 m-a.e. as R → ∞, by the dominated convergence
theorem we deduce that this integral vanishes in the limit. Passing to B, let us rewrite it as

B =

¨ t1

t0

1

2
|∇ϑεt |2div(χR∇ρεt )−

ε2

4
χR〈∇ρεt ,∇∆ log ρεt 〉+

ε2

8
|∇ log ρεt |2div(χR∇ρεt )dm

=

¨ t1

t0

1

2
χR∆ρεt |∇ϑεt |2 −

ε2

4
χRρ

ε
t 〈∇ log ρεt ,∇∆ log ρεt 〉+

ε2

8
χR∆ρεt |∇ log ρεt |2dm(5.3.8a)

+

¨ t1

t0

1

2
|∇ϑεt |2〈∇χR,∇ρεt 〉+

ε2

8
|∇ log ρεt |2〈∇χR,∇ρεt 〉dm.(5.3.8b)

On the one hand, observe that ∆ρεt |∇ϑεt |2,∆ρεt |∇ log ρεt |2 ∈ L∞loc((0, 1), L1(m)) by Lemma 5.3.1
and ρεt 〈∇ log ρεt ,∇∆ log ρεt 〉 ∈ L∞loc((0, 1), L1(m)) by (5.3.5): these facts and the dominated
convergence theorem entail that (5.3.8a) converges to itself without χR as R → ∞. On the
other hand, the fact that |∇ρεt ||∇ϑεt |2, |∇ρεt ||∇ log ρεt |2 ∈ L∞loc((0, 1), L1(m)) by Lemma 5.3.1
and the aforementioned properties of χR imply that (5.3.8b) vanishes. Therefore

ˆ
〈∇ρεt1 ,∇ϑ

ε
t1〉dm −

ˆ
〈∇ρεt0 ,∇ϑ

ε
t0〉dm

=

¨ t1

t0

1

2
∆ρεt |∇ϑεt |2 − ρεt 〈∇ϑεt ,∇∆ϑεt 〉dtdm

+

¨ t1

t0

ε2

8
∆ρεt |∇ log ρεt |2 −

ε2

4
ρεt 〈∇ log ρεt ,∇∆ log ρεt 〉dtdm

(5.3.1)
=

¨ t1

t0

ρεt dtd
(
Γ2(ϑεt ) + ε2

4 Γ2(log(ρεt ))
)
.

To obtain C2 regularity and that the formula for the second derivative is valid for any t ∈ (0, 1)
it is sufficient to check the continuity of t 7→

´
ρεt dΓ2(ϑεt ), as the continuity of the other term
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follows along the same lines. To this aim, by Lemma 5.3.1 and (5.3.1) we deduce the continuity
of t 7→

´
ρεt d∆(ϑεt ); for t 7→ ρεt 〈∇ϑεt ,∇∆ϑεt 〉 use (5.3.5) and argue in the same way as in the

proof of Lemma 5.3.1. �

As a first consequence of the formulas just obtained, we show that some quantities remain
bounded as ε ↓ 0:

Lemma 5.3.4 (Bounded quantities). With the same assumptions and notations of Setting
5.1.3 we have

sup
ε∈(0,1), t∈[0,1]

ˆ
d2(·, x̄)ρεtdm <∞,(5.3.9a)

sup
ε∈(0,1), t∈[0,1]

|H(µεt |m)| <∞,(5.3.9b)

sup
ε∈(0,1)

¨ 1

0

(
|∇ϑεt |2 + ε2|∇ log ρεt |2

)
ρεt dtdm <∞,(5.3.9c)

x̄ ∈ X being completely arbitrary in (5.3.9a), and for any δ ∈ (0, 1
2)

sup
ε∈(0,1)

¨ 1−δ

δ

(
|Hess(ϑεt )|2HS + ε2|Hess(log ρεt )|2HS

)
ρεt dtdm <∞,(5.3.10a)

sup
ε∈(0,1)

¨ 1−δ

δ

(
|∆ϑεt |2 + ε2|∆log ρεt |2

)
ρεt dt dm <∞.(5.3.10b)

proof We start with (5.3.9a) and observe that it immediately follows from (5.2.5). As regards
(5.3.9b), argue as in the proof of Proposition 5.3.3: taking into account (5.1.2) and the no-
tations used therein with µ = µεt and V = d2(·, x̄) (where x̄ is any point of X), H(µεt | m̃)
is bounded from below uniformly in t ∈ [0, 1] and ε ∈ (0, 1), whereas by Proposition 5.2.2
H(µεt | m̃) is also bounded from above uniformly in t ∈ [0, 1] and ε ∈ (0, 1). Moreover, (5.3.9a)
ensures that

´
V dµεt is uniformly bounded too, whence the desired (5.3.9b).

Let us now pass to (5.3.9c) and observe that Proposition 5.2.3 together with (5.3.9a) grants

(5.3.11) sup
ε∈(0,1)

¨ 1

1
2

|∇ϕεt |2ρεt dt dm +

¨ 1
2

0
|∇ψεt |2ρεt dtdm <∞.

As a second step, notice that (5.3.6a) gives

¨ 1
2

0
|∇ϕεt |2ρεt dtdm =

¨ 1
2

0
|∇ψεt |2ρεt dtdm− 2ε

ˆ 1
2

0

d

dt
H(µεt |m) dt

=

¨ 1
2

0
|∇ψεt |2ρεt dtdm + 2ε

(
H(µ0 |m)−H(µεt |m)

)
so that taking into account (5.3.9b) and (5.3.11) we see that the right hand side is uniformly
bounded for ε ∈ (0, 1). Using again (5.3.11) we deduce that

sup
ε∈(0,1)

¨ 1

0
|∇ϕεt |2ρεt dt dm <∞.
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A symmetric argument provides the analogous bound for (ψεt ) and thus recalling that ϑεt =
1
2(ψεt − ϕεt ) and ε log ρεt = ψεt + ϕεt we obtain (5.3.9c).

Now use the fact that ϑεt = −ϕεt + ε
2 log ρεt in conjunction with (5.3.6a) to get

d

dt
H(µεt |m)|t=δ = −

ˆ
〈∇ρεδ,∇ϕεδ〉dm +

ε

2

ˆ
〈∇ρεδ,∇ log ρεδ〉dm

=

ˆ
ρεδ∆ϕ

ε
δdm +

ε

2

ˆ |∇ρεδ|2
ρεδ

dm ≥
ˆ
ρεδ∆ϕ

ε
δdm.

Recalling the lower bound (5.2.10b) and (5.3.9a), we get that for some constant Cδ independent
on ε it holds

d

dt
H(µεt |m)|t=δ ≥ −Cδ ∀ε ∈ (0, 1)

and an analogous argument starting from ϑεt = ψεt − ε
2 log ρεt yields

d
dtH(µεt |m)|t=1−δ ≤ Cδ for

every ε ∈ (0, 1). Therefore

sup
ε∈(0,1)

ˆ 1−δ

δ

d2

dt2
H(µεt |m) = sup

ε∈(0,1)

(
d

dt
H(µεt |m)|t=1−δ −

d

dt
H(µεt |m)|t=δ

)
<∞.

The bounds (5.3.10a) and (5.3.10b) then come from this last inequality used in conjunction
with (5.3.9c) and the weighted Bochner inequalities (5.3.2a) and (5.3.2b) respectively. �

With the help of the previous lemma we can now prove that some crucial quantities vanish
in the limit ε ↓ 0; as we shall see in the proof of our main theorem 7.1.2, this is what we
will need to prove that the acceleration of the entropic interpolations goes to 0 (in a suitable
sense) as ε goes to zero.

Lemma 5.3.5 (Vanishing quantities). With the same assumptions and notations of Setting
5.1.3, for any δ ∈ (0, 1

2) we have

lim
ε↓0

ε2

¨ 1−δ

δ
ρεt |∆ log ρεt |dtdm = 0,(5.3.12a)

lim
ε↓0

ε2

¨ 1−δ

δ
ρεt |∇ log ρεt |2 dt dm = 0,(5.3.12b)

lim
ε↓0

ε2

¨ 1−δ

δ
ρεt |∆ log ρεt ||∇ log ρεt | dt dm = 0,(5.3.12c)

lim
ε↓0

ε2

¨ 1−δ

δ
ρεt |∇ log ρεt |3 dt dm = 0.(5.3.12d)

proof For (5.3.12a) we notice that

ε2

¨ 1−δ

δ
ρεt |∆ log ρεt |dt dm ≤ ε

√
1− 2δ

√
ε2

¨ 1−δ

δ
ρεt |∆ log ρεt |2 dt dm

and the fact that, by (5.3.10b), the last square root is uniformly bounded in ε ∈ (0, 1).
For (5.3.12b) we start observing that Lemma 5.3.6 below applies to ρεt , because by Propo-

sition 5.1.4 ρεt ∈ Test(X) ∩ L1(m) and

∆ρεt = f εt ∆gεt + gεt∆f
ε
t + 2〈∇f εt ,∇gεt 〉 ∈ L1(m).
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Hence, from the identity ρεt |∇ log ρεt |2 = −ρεt∆ log ρεt + ∆ρεt and the fact that
´

∆ρεt dm = 0
we get

ε2

¨ 1−δ

δ
ρεt |∇ log ρεt |2 dtdm = −ε2

¨ 1−δ

δ
ρεt∆ log ρεt dtdm ≤ ε2

¨ 1−δ

δ
ρεt |∆ log ρεt |dtdm

and then conclude by (5.3.12a).
For (5.3.12c) we observe that

ε2

¨ 1−δ

δ
ρεt |∆ log ρεt ||∇ log ρεt | dtdm

≤

√
ε2

¨ 1−δ

δ
ρεt |∆ log ρεt |2 dtdm

√
ε2

¨ 1−δ

δ
ρεt |∇ log ρεt |2 dtdm,

and use the fact that the first square root in the right hand side is bounded (by (5.3.10b))
and the second one goes to 0 (by (5.3.12b)).

To prove (5.3.12d) we start again from the identity ρεt |∇ log ρεt |2 = −ρεt∆ log ρεt + ∆ρεt to
get¨ 1−δ

δ
ρεt |∇ log ρεt |3 dt dm = −

¨ 1−δ

δ
ρεt∆ log ρεt |∇ log ρεt | dt dm +

¨ 1−δ

δ
∆ρεt |∇ log ρεt |dtdm.

After a multiplication by ε2 we see that the first integral on the right-hand side vanishes as
ε ↓ 0 thanks to (5.3.12c). For the second we start noticing that an application of the dominated
convergence theorem ensures that

(5.3.13)
¨ 1−δ

δ
∆ρεt |∇ log ρεt | dtdm = lim

η↓0

¨ 1−δ

δ
∆ρεt

√
η + |∇ log ρεt |2 dt dm,

then we observe that for every η > 0 the map z 7→
√
η + z is in C1([0,∞)) and since

|∇ log ρεt |2 ∈ W 1,2(X) we deduce that
√
η + |∇ log ρεt |2 ∈ W 1,2(X) as well. Thus by the chain

rule for gradients and the Leibniz rule (1.2.21) it holds∣∣∣∣¨ 1−δ

δ
∆ρεt

√
η + |∇ log ρεt |2 dtdm

∣∣∣∣
=

∣∣∣∣¨ 1−δ

δ

ρεt

2
√
η + |∇ log ρεt |2

〈∇ log ρεt ,∇|∇ log ρεt |2〉 dt dm

∣∣∣∣
=

∣∣∣∣¨ 1−δ

δ

ρεt√
η + |∇ log ρεt |2

Hess(log ρεt )(∇ log ρεt ,∇ log ρεt ) dtdm

∣∣∣∣
≤
¨ 1−δ

δ
ρεt |Hess(log ρεt )|HS |∇ log ρεt |dtdm

and being this true for any η > 0, from (5.3.13) we obtain

ε2

∣∣∣∣¨ 1−δ

δ
∆ρεt |∇ log ρεt | dt dm

∣∣∣∣ ≤ ε2

¨ 1−δ

δ
ρεt |Hess(log ρεt )|HS|∇ log ρεt | dt dm

≤

√
ε2

¨ 1−δ

δ
ρεt |Hess(log ρεt )|2HS dtdm

×

√
ε2

¨ 1−δ

δ
ρεt |∇ log ρεt |2 dt dm.
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In this last expression the first square root is uniformly bounded in ε ∈ (0, 1) by (5.3.10a),
while the second one vanishes as ε ↓ 0 thanks to (5.3.12b). �

Lemma 5.3.6. Let (X, d,m) be a RCD(K,∞) space with K ∈ R endowed with a Borel non-
negative measure m which is finite on bounded sets and h ∈ D(∆) ∩ L1(m) with ∆h ∈ L1(m).
Then ˆ

∆hdm = 0

proof Let x̄ ∈ X, R > 0 and χR ∈ Test∞(X) be a cut-off function built as in Lemma 2.2.1
such that χR ≡ 1 in BR(x̄) and χR ≡ 0 in X \BR+1(x̄). Then∣∣∣∣ ˆ χR∆hdm

∣∣∣∣ =

∣∣∣∣ ˆ ∆χRhdm

∣∣∣∣ =

∣∣∣∣ ˆ
X\BR+1(x̄)

∆χRhdm

∣∣∣∣
≤ ‖∆χR‖L∞(m)

ˆ
X\BR+1(x̄)

hdm

(5.3.14)

and by Lemma 2.2.1 ‖∆χR‖L∞(m) is uniformly bounded in R, whileˆ
X\BR+1(x̄)

hdm→ 0 as R→∞

since h ∈ L1(m). As a consequence, the last term in (5.3.14) vanishes as R → ∞, while the
left hand side converges to |

´
∆hdm| by the dominated convergence theorem and this gives

us the conclusion. �

5.4 A Benamou-Brenier formula for the entropic cost

We conclude the section with an interesting application of the ‘PDE’ viewpoint provided in
Proposition 5.1.4: a Benamou-Brenier-type formula for the Schrödinger problem. To this aim
let us first define

ϕε0 := ε log(f ε) in supp(µ0)

ψε1 := ε log(gε) in supp(µ1)
(5.4.1)

and, recalling the definition of the entropic cost given in Chapter 4, introduce the slowed down
entropic cost Iε relative to Rε/2 as

Iε(µ0, µ1) := inf
γ ′∈Adm(µ0,µ1)

H(γ ′ |Rε/2).

With this said we are now in the position to give a threefold dynamic representation of the
entropic cost.

Proposition 5.4.1. With the same assumptions and notations as in Setting 5.1.3 and here
above, for any ε > 0 the following holds:

εIε(µ0, µ1) =
ε

2

(
H(µ0 |m) +H(µ1 |m)

)
+

¨ 1

0

( |∇ϑεt |2
2

+
ε2

8
|∇ log ρεt |2

)
ρεtdtdm

= εH(µ0 |m) +

¨ 1

0

|∇ψεt |2

2
ρεtdtdm

= εH(µ1 |m) +

¨ 1

0

|∇ϕεt |2

2
ρεtdtdm.

(5.4.2)
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proof Fix ε > 0 and let us prove the first identity in (5.4.2). To this aim fix x̄ ∈ X, R > 0 and
let χR ∈ Test∞(X) be a cut-off function as in Lemma 2.2.1 with support in BR+1(x̄) such that
χR ≡ 1 on BR(x̄); using the notations of Setting 5.1.3, by Proposition 5.1.4 t 7→

´
χRϑ

ε
tρ
ε
t dm

belongs to ACloc((0, 1)) with

d

dt

ˆ
χRϑ

ε
tρ
ε
t dm =

ˆ
χR

(
− |∇ϑ

ε
t |2

2
− ε2

4
∆ log ρεt −

ε2

8
|∇ log ρεt |2

)
ρεt dm

−
ˆ
χRϑ

ε
tdiv(ρεt∇ϑεt )dm a.e. t ∈ (0, 1).

Integration by parts formula and integration in time on [δ, 1− δ] then yield
ˆ
χRϑ

ε
1−δρ

ε
1−δ dm−

ˆ
χRϑ

ε
δρ
ε
δ dm

=

¨ 1−δ

δ
χR

( |∇ϑεt |2
2

+
ε2

8
|∇ log ρεt |2

)
ρεt dm +

¨ 1−δ

δ
〈∇χR,∇ρεt 〉dm

+

¨ 1−δ

δ
ϑεt 〈∇χR,∇ϑεt 〉ρεtdm a.e. t ∈ (0, 1)

and the arguments by dominated convergence theorem already explained in the proof of Propo-
sition 5.3.3 enable the passage to the limit as R→∞, thus getting

ˆ
ϑε1−δρ

ε
1−δ dm−

ˆ
ϑεδρ

ε
δ dm =

¨ 1−δ

δ

( |∇ϑεt |2
2

+
ε2

8
|∇ log ρεt |2

)
ρεt dm.

Now let δ ↓ 0: convergence of the right-hand side is trivial by monotonicity. For the left-hand
side consider t 7→

´
ϑεtρ

ε
t dm, use the identity ϑεt = ψεt − ε

2 log ρεt and observe that

t 7→
ˆ
ψεt ρ

ε
t dm and t 7→ −ε

2
H(µεt |m)

are both continuous at t = 0, the former by Lemma 5.3.1 and the latter by Proposition 5.3.3.
This implies that

lim
δ↓0

ˆ
ϑεδρ

ε
δ dm =

ˆ
ψε0ρ0 dm− ε

2
H(µ0 |m).

The same argument with the identity ϑεt = −ϕεt + ε
2 log ρεt allows us to handle

´
ϑε1−δρ

ε
1−δ dm

too, so that

−
ˆ
ψε0ρ0 dm−

ˆ
ϕε1ρ1 dm +

ε

2

(
H(µ0 |m) +H(µ1 |m)

)
=

¨ 1

0

( |∇ϑεt |2
2

+
ε2

8
|∇ log ρεt |2

)
ρεt dm.

Thanks to the identity ϕε0 + ψε0 = ε log ρ0 in supp(µ0) and the analogous one in t = 1, this is
in turn equivalent to

ˆ
ϕε0ρ0 dm +

ˆ
ψε1ρ1 dm− ε

2

(
H(µ0 |m) +H(µ1 |m)

)
=

¨ 1

0

( |∇ϑεt |2
2

+
ε2

8
|∇ log ρεt |2

)
ρεt dm
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and now it is sufficient to observe that by (5.4.1)

εIε(µ0, µ1) = εH
(
f ε ⊗ gεRε/2 |Rε/2

)
=

ˆ
ϕε0dµ0 +

ˆ
ψε1dµ1.

For the second and third identities in (5.4.2), the argument closely follows the one we have
just presented. Indeed, it is just a matter of computation to rewrite the continuity equation
solved by (ρεt , ϑ

ε
t ) as forward and backward Fokker-Planck equations with velocity fields given

by ∇ψεt and ∇ϕεt respectively, i.e.

d

dt
ρεt + div(ρεt∇ψεt ) =

ε

2
∆ρεt

− d

dt
ρεt + div(ρεt∇ϕεt ) =

ε

2
∆ρεt

where the time derivatives are meant as in Proposition 5.1.4. Therefore, arguing as above it
is not difficult to see that

ˆ
ϕε1dµ1 −

ˆ
ϕε0dµ0 = −

¨ 1

0

|∇ϕεt |2

2
ρεtdtdm

and an analogous identity holds true for ψεt . Finally using the identities ϕε0 + ψε0 = ε log ρ0 in
supp(µ0) and ϕε1 + ψε1 = ε log ρ1 in supp(µ1), the entropic cost can be rewritten as

εIε(µ0, µ1) = εH(µ0 |m) +

ˆ
ψε1dµ1 −

ˆ
ψε0dµ0 = εH(µ1 |m) +

ˆ
ϕε0dµ0 −

ˆ
ϕε1dµ1,

whence the conclusion. �

Thus the entropic cost can be expressed as an action functional in three different ways:
in terms of (ρεt , ϑ

ε
t ), (ρεt , ψ

ε
t ) and (ρεt , ϕ

ε
t ). As we have just seen, three different ‘PDEs’ are

associated to these couples, so that three different minimization problems can be introduced,
namely

ε

2

(
H(µ0 |m) +H(µ1 |m)

)
+ inf

(ν,v)

{¨ 1

0

( |vt|2
2

+
ε2

8
|∇ log νt|2

)
νtdtdm

}
εH(µ0 |m) + inf

(ν,v)

¨ 1

0

|vt|2

2
νtdtdm

εH(µ1 |m) + inf
(ν,v)

¨ 1

0

|vt|2

2
νtdtdm

(5.4.3)

the infima being taken among all suitable solutions of the corresponding ‘PDEs’. In line with
the smooth theory, a natural guess is that all the infima coincide and they are attained if and
only if (νt, vt) = (ρεt ,∇ϑεt ), (νt, vt) = (ρεt ,∇ψεt ) and (νt, vt) = (ρεt ,∇ϕεt ) respectively.

We shall now investigate the first minimization problem and for sake of simplicity we will
assume the space (X, d,m) to be compact and ρ0, ρ1 ∈ Test∞>0(X). In this framework, from
Theorem 5.1.2 we know that f ε, gε ∈ Test∞>0(X) for all ε > 0 as well; arguing as in Proposition
5.1.4 together with the compactness of X, which ensures that all the objects defined in Setting
5.1.3 belong to Test∞>0(X), it is not difficult to see that all the curves

(5.4.4) (f εt ), (gεt ), (ρ
ε
t ), (ϕ

ε
t ), (ψ

ε
t ), (ϑ

ε
t ) ∈ AC([0, 1],W 1,2(X))
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after having defined ϕε0 := ε log(f ε), ψε1 := ε log(gε) (unlike (5.4.1), now these definitions make
sense on the whole X) and set ϑεt := (ψεt − ϕεt )/2 on the whole [0, 1]. In particular this means
that the time derivatives of (f εt ), (gεt ), (ρ

ε
t ), (ϕ

ε
t ), (ψ

ε
t ), (ϑ

ε
t ), explicitly written in Proposition

5.1.4, have to be understood as the strong W 1,2-limit of the incremental ratios. Furthermore

sup
t∈[0,1]

‖hεt‖L∞ + Lip(hεt ) + ‖∆hεt‖W 1,2 + ‖∆hεt‖L∞ <∞,

where (hεt ) is equal to any of (f εt ), (gεt ), (ρ
ε
t ), (ϕ

ε
t ), (ψ

ε
t ), (ϑ

ε
t ). The details of the proof can be

found in [63].
We shall also make use of the following simple lemma valid on general metric measure

spaces.

Lemma 5.4.2. Let (Y, dY,mY) be a complete separable metric measure space endowed with a
non-negative measure mY which is finite on bounded sets and assume thatW 1,2(Y) is separable.
Let π be a test plan and f ∈W 1,2(Y). Then t 7→

´
f ◦ et dπ is absolutely continuous and

(5.4.5)
∣∣∣ d

dt

ˆ
f ◦ et dπ

∣∣∣ ≤ ˆ |df |(γt)|γ̇t|dπ(γ) a.e. t ∈ [0, 1],

where the exceptional set can be chosen to be independent on f .
Moreover, if (ft) ∈ AC([0, 1], L2(Y)) ∩ L∞([0, 1],W 1,2(Y)), then the map t 7→

´
ft ◦ et dπ

is also absolutely continuous and

d

ds

(ˆ
fs ◦ es dπ

)
|s=t =

ˆ ( d

ds
fs|s=t

)
◦ et dπ +

d

ds

(ˆ
ft ◦ es dπ

)
|s=t a.e. t ∈ [0, 1].

proof The absolute continuity of t 7→
´
f ◦et dπ and the bound (5.4.5) are trivial consequences

of the definitions of test plans and Sobolev functions, see in particular (1.1.4). The fact that
the exceptional set can be chosen independently on f follows from the separability of W 1,2(Y)
and standard approximation procedures, carried out, for instance, in [56].

For the second part, we start noticing that the second derivative in the right hand side
exists for a.e. t thanks to what we have just proved, so that the claim makes sense. The
absolute continuity follows from the fact that for any t0, t1 ∈ [0, 1], t0 < t1 it holds∣∣∣ˆ ft1 ◦ et1 − ft0 ◦ et0 dπ

∣∣∣ ≤ ∣∣∣ ˆ ft1 ◦ et1 − ft1 ◦ et0 dπ
∣∣∣+
∣∣∣ ˆ ft1 − ft0 d(et0)∗π

∣∣∣
≤
¨ t1

t0

|dft1 |(γt)|γ̇t|dtdπ(γ) +

¨ t1

t0

∣∣∣ d

dt
ft

∣∣∣dt d(et0)∗π

and our assumptions on (ft) and π. Now fix a point t of differentiability for (ft) and observe
that the fact that ft+h−ft

h strongly converges in L2(Y) to d
dtft and (et+h)∗π weakly converges

to (et)∗π as h→ 0 and the densities are equibounded is sufficient to get

lim
h→0

ˆ
ft+h − ft

h
◦ et+h dπ =

ˆ
d

dt
ft ◦ et dπ = lim

h→0

ˆ
ft+h − ft

h
◦ et dπ.

Hence the conclusion comes dividing by h the trivial identityˆ
ft+h ◦ et+h − ft ◦ et dπ =

ˆ
ft ◦ et+h − ft ◦ et dπ +

ˆ
ft+h ◦ et − ft ◦ et dπ+

+

ˆ
(ft+h − ft) ◦ et+h − (ft+h − ft) ◦ et dπ

and letting h→ 0. �



100 CHAPTER 5. ON A RCD∗(K,N) SPACE

We are now able to prove that the first minimization problem in (5.4.3) provides a further
variational representation of the entropic cost and (ρεt ,∇ϑεt ) is the unique minimizer.

Theorem 5.4.3 (Benamou-Brenier formula for the entropic cost). Let (X, d,m) be a compact
RCD∗(K,N) space with K ∈ R, N ∈ [1,∞) and m ∈ P(X) and let µ0, µ1 ∈ P(X) be Borel
probability measures whose densities belong to Test∞>0(X).

Then

(5.4.6) εIε(µ0, µ1) =
ε

2

(
H(µ0 |m)+H(µ1 |m)

)
+ inf

(ν,v)

{¨ 1

0

( |vt|2
2

+
ε2

8
|∇ log νt|2

)
νtdtdm

}
where the entropic cost is relative to Rε/2 defined as in Theorem 5.1.1 and the infimum is
taken among all couples (νm, v) solving the continuity equation in the sense of Theorem 1.1.4
under the constraint ν0m = µ0 and ν1m = µ1.

proof As a preliminary remark, By Theorem 5.1.2 Iε(µ0, µ1) is finite. Thus, given a solution
(ν, v) of the continuity equation in the sense of the statement, without loss of generality we
can assume that ¨ 1

0

( |vt|2
2

+
ε2

8
|∇ log νt|2

)
νtdtdm < +∞.

By Theorem 1.1.4 (νt) isW2-absolutely continuous and the lifting π of (νt) is a test plan; more-
over, (ϑεt ) ∈ AC([0, 1], L2(X)) ∩ L∞([0, 1],W 1,2(X)) by what explained before. Thus Lemma
5.4.2 applies to π and t 7→ ϑεt , whence

d

ds

(ˆ
ϑεsνsdm

)
|s=t =

ˆ ( d

ds
ϑεs|s=t

)
νtdm +

d

ds

( ˆ
ϑεtνsdm

)
|s=t

for a.e. t ∈ [0, 1]. For the first term on the right-hand side, the fact that ϑεt = (ψεt −ϕεt )/2 and
the ‘PDEs’ solved by ψεt , ϕεt yield

ˆ ( d

ds
ϑεs|s=t

)
νtdm = −

ˆ ( |∇ψεt |2
4

+
ε

4
∆ψεt +

|∇ϕεt |2

4
+
ε

4
∆ϕεt

)
νtdm

=

ˆ (
− |∇ψ

ε
t |2

4
− |∇ϕ

ε
t |2

4
+
ε

4
〈∇(ψεt + ϕεt ),∇ log νt〉

)
νtdm

and by Young’s inequality

ε〈∇(ψεt + ϕεt ),∇ log νt〉 ≤
1

2
|∇(ψεt + ϕεt )|2 +

ε2

2
|∇ log νt|2

with equality if and only if ∇(ψεt + ϕεt ) = ε∇ log νt m-a.e. On the other hand, the fact that
(ν, v) is a solution of the continuity equation and ϑεt ∈W 1,2(X) imply that

d

ds

(ˆ
ϑεtνsdm

)
|s=t =

1

2

ˆ
〈∇(ψεt − ϕεt ), vt〉νtdm

and by Young’s inequality

〈∇(ψεt − ϕεt ), vt〉 ≤
1

4
|∇(ψεt − ϕεt )|2 + |vt|2
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with equality if and only if vt = ∇(ψεt − ϕεt )/2 m-a.e. Plugging these observations together
and integrating over [0, 1] (here the fact that (ϑεt ) is absolutely continuous on [0, 1], and not
only locally on (0, 1), is crucial) we deduce that

ˆ
ϑε1 dµ1 −

ˆ
ϑε0 dµ0 ≤

¨ 1

0

( |vt|2
2

+
ε2

8
|∇ log νt|2

)
νtdtdm

Thanks to the identities ϑε1 = ψε1 − ε
2 log ρ1 and ϑε0 = −ϕε0 + ε

2 log ρ0 the left-hand side can be
rewritten as in Proposition 5.4.1, thus getting

εIε(µ0, µ1) =
ε

2

(
H(µ0 |m) +H(µ1 |m)

)
+ inf

(ν,v)

{¨ 1

0

( |vt|2
2

+
ε2

8
|∇ log νt|2

)
νtdtdm

}
and the infimum is attained if and only if

∇(ψεt + ϕεt ) = ε∇ log νt and vt =
1

2
∇(ψεt − ϕεt )

and this concludes the proof. �

We have thus obtained a dynamical representation for the entropic cost, which is in line
with the celebrated Benamou-Brenier formula because the infimum is taken among all solu-
tions to the continuity equation. However, because of the entropic nature of the problem, the
standard kinetic energy functional is penalized by the Fisher information and this implicitly
forces to consider in (5.4.6) solutions of the continuity equation that are not just integrable
(as a genuinely weak solution should be) but also somehow regular, namely log νt ∈W 1,2

loc (X).
In order to remove such penalization from the functional and in analogy with the smooth

case (see for instance Proposition 4.1 in [81] and Theorem 5.1 in [52]), one could wonder
whether the entropic cost can be also represented in terms of the second or third minimization
problem in (5.4.3), namely

εIε(µ0, µ1) = εH(µ0 |m) + inf
(ν,v)

¨ 1

0

|vt|2

2
νtdtdm

= εH(µ1 |m) + inf
(ν,v)

¨ 1

0

|vt|2

2
νtdtdm

(5.4.7)

where the infima are taken among all couples (ν, v) such that the map t 7→ |vt|2νtdm is Borel,
belongs to L1(0, 1), νt ≤ C for all t ∈ [0, 1] for some C > 0 and, respectively,

(i) the forward Fokker-Planck equation

d

dt
νt + div(vtνt) =

ε

2
∆νt

is satisfied in the following sense: for any f ∈ D(∆) the map [0, 1] 3 t 7→
´
fνt dm is

absolutely continuous and it holds

d

dt

ˆ
fνt dm =

ˆ (
df(vt) +

ε

2
∆f
)
νtdm -a.e. t;

(ii) the backward Fokker-Planck equation

− d

dt
νt + div(vtνt) =

ε

2
∆νt

is satisfied as in the forward sense, up to a change of sign.
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In this direction, the ‘≥’ inequalities in (5.4.7) are easily satisfied because of (5.4.2) and the
fact that (ρεt , ψ

ε
t ), (ρεt , ϕ

ε
t ) are solutions to the forward and backward Fokker-Planck equation

respectively in the sense described above. For the converse inequalities, if we further assume
that log νt ∈W 1,2

loc (X) with ¨ 1

0
|∇ log νt|2νtdtdm <∞,

then the problem trivializes, because a solution (ν, v) to the forward Fokker-Planck equation
satisfying this condition can be seen as a solution (ν, w) to the continuity equation with
w = v− ε

2∇ log ν and t 7→ |wt|2νtdm belonging to L1(0, 1), so that the same strategy adopted
in Theorem 5.4.3 can be set up. Without this further assumption, the problem seems to be
still open in the RCD setting.

Remark 5.4.4. In the smooth case, both in the already cited Proposition 4.1 in [81] and
Theorem 5.1 in [52], in order to establish the analogue (5.4.7) of the Benamou-Brenier formula
a key role is played by a lifting result for solutions of the Fokker-Planck equation (see Mik90
and CL95) and by Girsanov’s theorem. By the former to any distributional solution (ν, v) of
the Fokker-Planck equation with

¨ 1

0

|vt|2

2
νtdtdm <∞

we can associate a path measure Q such that (et)∗Q = νtm for all t ∈ [0, 1] and Q solves the
martingale problem with forward stochastic derivative ∂t + ε

2∆ + vt · ∇. The latter together
with uniqueness of solutions to such martingale problem implies that

H(Q |Rε/2) = H(µ0 |m) +

¨ 1

0

|vt|2

2
νtdtdm,

where Rε/2 is the law of the slowed down Brownian motion (see also the end of Section 5.1)
and m is the Lebesgue measure in [81] or Rε/2 is the law of a diffusion Markov process on Rd
and m is its invariant measure in [52]. Taking into account the dynamical formulation (Sdyn),
this is sufficient to deduce the ‘≤’ inequality in (5.4.7).

In the metric framework, to the best of our knowledge these two ingredients are not
available yet. Partial results for the lifting of solutions to the Fokker-Planck equation have
been obtained by Trevisan in [120], relying on a superposition principle, but this requires
further regularity assumptions on (vt), more precisely some integrability condition on ∆vt.

�

5.5 A physical digression

In the already cited Nagasawa’s monograph [100], a crucial step in the proof of the equivalence
between Schrödinger’s equation and diffusion processes is the fact that the stochastic process
associated to (3.1.2a)-(3.1.2b) can be equivalently represented by two diffusion equations of a
different kind:

∂u

∂t
+

1

2
∆u+

(
b(t, x) + a(t, x)

)
· ∇u = 0(5.5.1a)

−∂v
∂t

+
1

2
∆v +

(
− b(t, x) + â(t, x)

)
· ∇v = 0(5.5.1b)
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where the creation and killing term c has disappeared and on the contrary additional drifts a
and â have spotted, linked together by the relationship

a + â

2
= ∇R a− â

2
= ∇S,

R, S being suitable functions (cf. with the end of Section 3.1). The advantage of this change of
perspective is the fact that the solutions of (5.5.1a)-(5.5.1b) are the transition probabilities of
the stochastic process lying behind, while this is not true for the solutions of (3.1.2a)-(3.1.2b);
this also means that the physical meaning is encoded in this new system of diffusion equations
and not in the old one, as already suggested. Furthermore the distribution density µ = fg
solve a pair of Fokker-Planck equations

−∂µ
∂t

+
1

2
∆µ− div(b(t, x) + a(t, x))µ

)
= 0

∂µ

∂t
+

1

2
∆µ− div(−b(t, x) + â(t, x))µ

)
= 0

and a continuity equation
∂µ

∂t
+ div

((
b +

a− â

2

)
µ

)
= 0.

This is perfectly in line with what we have seen in this chapter, in particular in Proposition
5.1.4 and Proposition 5.4.1, up to set b ≡ 0, rescale properly and replace a, â by ∇ψε,∇ϕε
respectively and R,S by log ρε, ϑε respectively.

Still concerning Schrödinger’s equation, the PDE framework provided in Proposition 5.1.4
and describing the evolution of entropic interpolations allows us to check, at least formally,
that

Ψt := eR+iS =
√
ρεte

iϑεt

is a solution to the linear Schrödinger equation (3.1.1a) without drift, as claimed at the end
of Section 3.1. Indeed, assuming for sake of simplicity ε = 1 (whence the drop of the apex ε
in the notation), deriving Ψt in time and using

d

dt
ρt + div(ρt∇ϑt) = 0

d

dt
ϑt +

|∇ϑt|2

2
= −1

8

(
2∆ log ρt + |∇ log ρt|2

)
we see that, on the one hand,

∆Ψt = eiϑt
(

∆
√
ρt + i

〈∇ρt,∇ϑt〉√
ρt

+ i
√
ρt∆ϑt −

√
ρt|∇ϑt|2

)
and on the other hand

∂Ψt

∂t
= −e

iϑt

2

( 1
√
ρt

div(ρt∇ϑt) + i
√
ρt|∇ϑt|2 +

i

2

√
ρt∆ log ρt +

i

4

√
ρt|∇ log ρt|2

)
= −e

iϑt

2

(〈∇ρt,∇ϑt〉√
ρt

+
√
ρt∆ϑt + i

√
ρt|∇ϑt|2 + i∆

√
ρt

)
.
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Putting the two identities together we deduce that

(5.5.2) i
∂Ψt

∂t
+

1

2
∆Ψt −

∆
√
ρt√
ρt

Ψt = 0.

According to Nagasawa’s monograph [100], the potential V that has to be considered in (3.1.1a)
in such a way that Ψ is a solution is given by (3.1.11), which in this case reads as

V = −2
∂S

∂t
− |∇S|2

and since S = ϑ, this yields

V =
1

2
∆ log ρt +

1

4
|∇ log ρt|2 =

∆
√
ρt√
ρt

.

For sake of information, physicists refer to this functional as Bohm potential. Hence (5.5.2) is
precisely the linear Schrödinger equation (3.1.1a) without drift.

As a concluding remark, it is worth recalling that in Nelson’s monograph [102] the gradients
of the functions R,S (or log ρε and ϑε within our language) have a precise nomenclature,
because of their physical meaning:

vε,cut :=
1

2
∇
(
ψεt − ϕεt

)
= ∇ϑεt

is called current velocity because it is the velocity field driving the evolution of ρεt , while

vε,ost :=
1

2
∇
(
ψεt + ϕεt

)
=
ε

2
∇ log ρεt

is the osmotic velocity, since it describes the diffusion effects of Brownian motion; this is clear
when one integrates the squared norm of the osmotic velocity w.r.t. µεt , the result being the
Fisher information. Looking at the results of this chapter from this physical point of view, we
see that (5.3.9c) becomes

sup
ε∈(0,1)

¨ 1

0
|vε,cut |2ρεtdtdm <∞

and provides a uniform control on the kinetic energy of the system during the slowing down
procedure (i.e. as ε ↓ 0 and the Brownian motion described by Rε is progressively freezed),
while (5.3.12b), which reads as

lim
ε↓0

¨ 1−δ

δ
|vε,ost |2ρεtdtdm = 0,

suggests that the diffusion effect disappears in the limit, in line with the physical interpretation;
the mathematical proof is postponed to the next chapter (cf. Lemma 6.3.5).
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Chapter 6

From entropic to displacement
interpolations

In this chapter the uniform estimates on interpolations and potentials as well as the infor-
mation on the behaviour of the entropy along entropic interpolations obtained in Chapter 5
are widely exploited. The purpose is to understand what happens as ε ↓ 0 and investigate
the limit case. Inspired by the abstract results pointed out by Léonard in [79], we establish
strong links between Schrödinger problem and optimal transport, a deep relationship that in
many aspects had not been conjectured yet. Indeed, not only do we link entropic interpola-
tions to displacement ones (in line with [79]), but we also pass from Schrödinger potentials
to Kantorovich ones and explore the geometric information hidden in (5.3.6a) and (5.3.6b),
underlying some remarkable consequences.

In Section 6.1 a compactness result is proved: we show that Schrödinger potentials and
entropic interpolations converge in a suitable sense, up to subsequences, to limit real-valued
functions and curves of measures respectively.

Aim of Section 6.2 is then to characterize these limits. On the one hand, we show that
the limit potentials are not only Kantorovich potentials but also that their evolution is given
by the Hopf-Lax semigroup, thus proving that the viscous solution of the Hamilton-Jacobi
equation can be obtained via a vanishing viscosity method, in accordance with the smooth
case. On the other hand, the limit interpolation is the (unique) Wasserstein geodesic between
the marginal constraints. We also discuss Γ-convergence of the rescaled Schrödinger problems
to Monge-Kantorovich one.

The formulas for first and second derivatives of the entropy along entropic interpolations
are the core of Section 6.3. From (5.3.6b) one can guess that the Boltzmann entropy along
entropic interpolations is more convex than along displacement ones; more precisely, it is
(K,N)-convex in the sense of Erbar-Kuwada-Sturm ([45]). By means of the compactness and
characterization results of the first two sections, this allows us to recover in a simple way some
well known results in the theory of RCD∗ spaces: for instance, the HWI inequality and the
CDe(K,N) condition.

6.1 Compactness

Starting from the uniform estimates discussed in Section 5.2, let us first prove that when we
pass to the limit as ε ↓ 0, up to subsequences Schrödinger potentials and entropic interpolations
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converge in a suitable sense to limit potentials and interpolations.

Proposition 6.1.1 (Compactness). With the same assumptions and notations as in Setting
5.1.3 the following holds.

For any sequence εn ↓ 0 there exists a subsequence, not relabeled, so that:

(i) the curves (µεnt ) uniformly converge in (P2(X),W2) to a limit curve (µt) which belongs
to AC([0, 1], (P2(X),W2)). Moreover, there is M > 0 so that

(6.1.1) µt ≤Mm ∀t ∈ [0, 1]

and setting ρt := dµt
dm it holds

(6.1.2) ρεnt
∗
⇀ ρt in L∞(m) ∀t ∈ [0, 1].

(ii) for all t ∈ I the functions ϕεnt , ψ
εn
t converge locally uniformly on X to locally Lipschitz

limit functions ϕt, ψt respectively and, for any Lipschitz cut-off function χ with bounded
support, the curves (χϕεnt ), (χψεnt ) converge locally uniformly on I with values in L1(X)
to limit curves (χϕt), (χψt) ∈ ACloc(I, L1(X)) with Lip(χϕt),Lip(χψt) locally bounded
for t ∈ I, where I := (0, 1] for the ϕ’s and I := [0, 1) for the ψ’s. Moreover for every
t ∈ (0, 1) it holds

ϕt + ψt ≤ 0 on X,

ϕt + ψt = 0 on supp(µt).
(6.1.3)

Similarly, the curves (ϑεnt ) converge in (0, 1) to the limit curve t 7→ ϑt := 1
2(ψt − ϕt) in

the same sense as above.

proof
(i) Fix ε ∈ (0, 1); we want to apply Theorem 1.1.4 to (µεt ) and (∇ϑεt ). The continuity of
t 7→ ρεt ∈ L2(X) granted by Proposition 5.1.4 yields weak continuity of (µt) and (1.1.10a) is a
consequence of (5.2.5). From the bound (5.3.9c) it follows (1.1.10b) and from the formula for
d
dtρ

ε
t given in Proposition 5.1.4 and again the L2-continuity of (ρεt ) on [0, 1] it easily follows

that (µεt ) and (ϑεt ) solve the continuity equation in the sense of Theorem 1.1.4. The conclusion
of such theorem ensures that (µεt ) is W2-absolutely continuous with

ˆ 1

0
|µ̇εt |2 dt =

¨ 1

0
|∇ϑεt |2ρεt dtdm.

The bound (5.3.9c) grants that the right hand side is uniformly bounded in ε ∈ (0, 1) and
since {(µεt )}ε is tight and 2-uniformly integrable by (5.2.5) (hence W2-compact), this is suf-
ficient to ensure the compactness of the family {(µεt )}ε in C([0, 1], (P2(X),W2)) and, by the
lower semicontinuity of the kinetic energy, the fact that any limit curve (µt) is absolutely
continuous. The bound (6.1.1) is then a direct consequence of the uniform bound (5.2.6) and
the convergence property (6.1.2) comes from the weak convergence of the measures and the
uniform bound on the densities.
(ii) Let B be a countable family of increasing nested closed balls covering X. From the formula
for d

dtϕ
ε
t provided in Proposition 5.1.4, for any B ∈ B and Lipschitz cut-off function χ with

bounded support such that χ ≡ 1 in B we obtain

‖χ(ϕεt − ϕεs)‖L1(m) ≤
¨ s

t
χ

(
|∇ϕεr|2

2
+
ε

2
|∆ϕεr|

)
dr dm ∀ε > 0, ∀t, s ∈ (0, 1], t < s.
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Thus for δ ∈ (0, 1) the estimates (5.2.10a) and (5.2.11) give

(6.1.4) ‖χ(ϕεt − ϕεs)‖L1(m) ≤ C ′δ|s− t| ∀ε ∈ (0, 1), ∀t, s ∈ [δ, 1], t < s.

Now notice that for h ∈ LIPc(X) and µ ∈P(X), integrating in y w.r.t. µ the trivial inequality
h(x) ≤ h(y) + d(x, y) Lip(h) yields

h(x)+ ≤
(ˆ

hdµ+D Lip(h)
)+
≤
∣∣∣ ˆ hdµ

∣∣∣+D Lip(h)

where D is the diameter of supp(h) and since a similar bound can be obtained for h(x)− we
get

(6.1.5) ‖h‖L∞(m) ≤
∣∣∣ ˆ hdµ

∣∣∣+D Lip(h) ≤ ‖h‖L1(µ) +D Lip(h).

Choosing µ := µ1 and h := χϕε1 and recalling that the normalization chosen for (f ε, gε) in
Setting 5.1.3 reads as

´
ϕε1 dµ1 = 0, we see that if supp(µ1) ⊂ B (which is always the case,

up to choose B sufficiently large), then
´
χϕε1 dµ1 = 0 too and thus from the first inequality

above we deduce that {χϕε1}ε∈(0,1) is uniformly bounded in L∞(m). Using this information
together with (5.2.10a), (6.1.4) and the second inequality in (6.1.5) with µ := αm|supp(χ)

(α
being the normalization constant) we conclude that

(6.1.6) sup
ε∈(0,1)

sup
t∈[δ,1]

‖χϕεt‖L∞(m) <∞.

By Ascoli-Arzelà’s theorem, this uniform bound and the equi-Lipschitz continuity in space
(given by (5.2.10a) and the fact that χ has bounded support) together with the equi-Lipschitz
continuity in time given by (6.1.4) give compactness in C([δ, 1], L1(X)); it is clear then that
any limit curve (ζt) belongs to LIP([δ, 1], L1(X)) and that supt∈[δ,1] Lip(ζt) <∞. By repeating
the same argument for all B ∈ B, a diagonalization argument provides us with a family of
curves {(ζit)}i∈N ⊂ LIP([δ, 1], L1(X)) such that ζit = ζjt m-a.e. in Bi∩Bj for all t ∈ [δ, 1]. Hence,
putting ϕt := ζit in Bi for all i ∈ N, it is easy to see that (ϕt) ∈ LIP([δ, 1], L1(Y)) for any
bounded Borel set Y ⊂ X. A further diagonalization argument (in time) and the arbitrariness
of δ ∈ (0, 1) provide us the required results on (0, 1].

The argument for the ψεt ’s follows the same lines provided we are able to show that for
some t ∈ [0, 1) the functions χψεt are uniformly bounded, which is the same as to prove that
ψεt are locally uniformly bounded. To see this, observe that from the estimate (5.2.6) it follows
that on a given bounded Borel set B

−e−1m(B) ≤
ˆ
B
ρεt log ρεtdm ≤M logMm(B) ∀ε ∈ (0, 1), t ∈ [0, 1],

thus multiplying the identity

(6.1.7) ϕεt + ψεt = ε log ρεt ∀t ∈ (0, 1)

by ρεt and integrating on B we get

(6.1.8) − εe−1m(B) ≤
ˆ
B
ϕεt + ψεt dµεt ≤ εM logMm(B) ∀t ∈ (0, 1).
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Since we know that ϕε1/2 is locally uniformly bounded, this yields a uniform control on´
B ψ

ε
1/2 dµε1/2 and then we can proceed as before starting from the first inequality in (6.1.5)

with h := ψε1/2 and µ := αεµ
ε
1/2|B, αε being the normalization constant. The fact that µ has

compact support (although not h) and the tightness of {µε1/2}ε∈(0,1), which follows from (5.2.5)
and grants that αε is uniformly bounded (provided B has been chosen sufficiently large), entail
the desired locally uniform bound for ψε1/2.

The claim for the (ϑεt ) is now obvious.
Finally, to prove the first in (6.1.3) we pass to the limit in (6.1.7) recalling the uniform

bound (5.2.6), then passing to the limit in (6.1.8) (by uniform convergence of functions and
weak convergence of measures) we deduce thatˆ

B
ϕt + ψt dµt = 0,

which forces the second in (6.1.3) by the arbitrariness of B. �

6.2 Identification of the limit curve and potentials

We now show that the limit interpolation is the geodesic from µ0 to µ1 and the limit potentials
are Kantorovich potentials that evolve according to the Hopf-Lax semigroup (recall formula
(1.1.1)).

Proposition 6.2.1 (Limit curve and potentials). With the same assumptions and notations
as in Setting 5.1.3 the following holds.

The limit curve (µt) given by Proposition 6.1.1 is unique (i.e. independent on the sequence
εn ↓ 0) and is the only W2-geodesic connecting µ0 to µ1.

For any Lipschitz cut-off function χ with bounded support and any limit curve (ϕt) given
by Proposition 6.1.1, (χϕt) is in ACloc((0, 1], C(X))∩L∞loc((0, 1],W 1,2(X)) and for any t0, t1 ∈
(0, 1], t0 < t1 we have

−ϕt1 = Qt1−t0(−ϕt0)(6.2.1a) ˆ
ϕt0 dµt0 −

ˆ
ϕt1 dµt1 =

1

2(t1 − t0)
W 2

2 (µt0 , µt1)(6.2.1b)

and −(t1 − t0)ϕt1 is a Kantorovich potential from µt1 to µt0.
Similarly, for any cut-off function χ as above and any limit curve (ψt) given by Proposition

6.1.1, (χψt) belongs to ACloc([0, 1), C(X)) ∩ L∞loc([0, 1),W 1,2(X)) and for every t0, t1 ∈ [0, 1),
t0 < t1 we have

−ψt0 = Qt1−t0(−ψt1)(6.2.2a) ˆ
ψt1 dµt1 −

ˆ
ψt0 dµt0 =

1

2(t1 − t0)
W 2

2 (µt0 , µt1)(6.2.2b)

and −(t1 − t0)ψt0 is a Kantorovich potential from µt0 to µt1.

proof
Inequality ≤ in (6.2.1a). Pick x, y ∈ X, r > 0, define

νrx :=
1

m(Br(x))
m|Br(x)

νry :=
1

m(Br(y))
m|Br(y)
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and πr as the only lifting of the only W2-geodesic from νrx to νry (recall point (i) of Theorem
1.2.6). Since νrx, νry have compact support and πr ∈ OptGeo(νrx, ν

r
y), there exist x̄ ∈ X and

R > 0 sufficiently large such that

(6.2.3) supp((et)∗π
r) ⊂ BR(x̄), ∀t ∈ [0, 1].

Hence let χ be a Lipschitz cut-off function with bounded support such that χ ≡ 1 in
BR(x̄). Then, let ε ∈ (0, 1) and 0 < t0 < t1 ≤ 1, define ϕ̃εt := χϕεt and observe that
(ϕ̃εt ) ∈ ACloc((0, 1], L2(m)) ∩ L∞loc((0, 1],W 1,2(X)) by Proposition 5.1.4 and the compactness
of the support of χ; thus, by Lemma 5.4.2 applied to πr and t 7→ ϕ̃ε(1−t)t0+tt1

, we get

d

dt

ˆ
ϕ̃ε(1−t)t0+tt1

◦ et dπr ≥
ˆ

(t1 − t0)
d

ds
ϕ̃εs|s=(1−t)t0+tt1

(γt)− |dϕ̃ε(1−t)t0+tt1
|(γt)|γ̇t| dπr(γ).

As (6.2.3) implies that χ(γt) = 1 for all t ∈ [0, 1] for πr-a.e. γ, ϕ̃ε can be replaced by ϕε in
the inequality above and, recalling the expression for d

dtϕ
ε
t and using Young’s inequality, we

obtain

d

dt

ˆ
ϕε(1−t)t0+tt1

◦ et dπr ≥
ˆ
ε
t1 − t0

2
∆ϕε(1−t)t0+tt1

(γt)−
1

2(t1 − t0)
|γ̇t|2 dπr(γ).

Integrating in time and using property i) of Theorem 1.2.6 (indeed, recall that πr is optimal),
we get
ˆ
ϕεt1 dνry −

ˆ
ϕεt0 dνrx ≥ −

1

2(t1 − t0)
W 2

2 (νry , ν
r
x) +

¨ 1

0
ε
t1 − t0

2
∆ϕε(1−t)t0+tt1

◦ et dt dπr.

Let ε ↓ 0 along the sequence (εn) for which (ϕεnt ) converges to our given (ϕt) in the sense of
Proposition 6.1.1 and use the uniform bound (5.2.11) with B = BR(x̄) and the fact that πr

has bounded compression to deduce that
ˆ
ϕt1 dνry −

ˆ
ϕt0 dνrx ≥ −

1

2(t1 − t0)
W 2

2 (νry , ν
r
x)

and finally letting r ↓ 0 we conclude from the arbitrariness of x ∈ X that

(6.2.4) − ϕt1(y) ≤ Qt1−t0(−ϕt0)(y) ∀y ∈ X.

Inequality ≥ in (6.2.1a). To prove the opposite inequality we fix x̄ ∈ X, R > 1, again
0 < t0 < t1 ≤ 1 and we take a cut-off function χ ∈ Test∞(X) with support in BR+1(x̄)
such that χ ≡ 1 in BR(x̄). Define the vector field Xε

t := χ∇ϕεt and apply Theorem 1.2.5 to
((t1 − t0)Xε

(1−t)t1+tt0
): the inequality

divXε
t ≥ χ∆ϕεt − |∇χ||∇ϕεt |

and the bounds (5.2.10a), (5.2.10b) on ∇ϕεt ,∆ϕεt ensure that the theorem is applicable and
we obtain existence of the regular Lagrangian flow F ε. Put πε := (F ε· )∗m|BR/2(x̄)

, where

F ε· : X→ C([0, 1],X) is the m-a.e. defined map which sends x to F εt (x), and observe that the
bound (1.2.25) and the identity (1.2.26) provided by Theorem 1.2.5 coupled with the estimates
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(5.2.10a), (5.2.10b) on ∇ϕεt ,∆ϕεt and the fact that χ ∈ Test∞(X) ensure that πε is a test plan
with

(6.2.5) sup
ε∈(0,1)

¨ 1

0
|γ̇t|2 dt dπε(γ) <∞ and (et)∗π

ε ≤ Cm ∀t ∈ [0, 1], ε ∈ (0, 1),

for some C < ∞. Moreover, from (5.2.10a) we know that |Xε
t | ≤ C ′(R + 2) for all t ∈ [t0, 1]

for some C ′ <∞ which only depends on t0, x̄ and together with (1.2.26) this implies that for
πε-a.e. γ if γ0 ∈ Br(x̄), then γt ∈ Br+(t1−t0)C′(R+2)(x̄) for all t ∈ [0, 1]. Take r = R/2 and
suppose for the moment that

(6.2.6) t1 − t0 ≤
1

6C ′
≤ R− r
C ′(R+ 2)

=
R

2C ′(R+ 2)
,

the second inequality being true because R > 1. This means that the measures (et)∗π
ε are

supported in BR(x̄) for all t ∈ [0, 1] and χ(γt) = 1 for all t ∈ [0, 1] for πε-a.e. γ. Thus, choosing
a further cut-off function χ̃ ∈ Test∞(X) with bounded support such that χ̃ ≡ 1 in BR(x̄) and
defining ϕ̃εt := χ̃ϕεt , in such a way that (ϕ̃εt ) ∈ ACloc((0, 1], L2(m)) ∩ L∞loc((0, 1],W 1,2(X)), by
Lemma 5.4.2 applied to πε and t 7→ ϕ̃ε(1−t)t1+tt0

and by the fact that χ̃(γt) = 1 for all t ∈ [0, 1]
for πε-a.e. γ we obtain

d

dt

ˆ
ϕε(1−t)t1+tt0

◦ et dπε =
d

dt

ˆ
ϕ̃ε(1−t)t1+tt0

◦ et dπε

=

ˆ
(t0 − t1)

d

ds
ϕ̃εs|s=(1−t)t1+tt0

◦ et dπε +
d

ds

ˆ
ϕ̃ε(1−t)t1+tt0

◦ es dπε|s=t

=

ˆ
(t0 − t1)

d

ds
ϕεs|s=(1−t)t1+tt0

◦ et dπε + (t1 − t0)

ˆ
dϕ̃ε(1−t)t1+tt0

(Xε
t ) ◦ et dπε

=

ˆ ( t0 − t1
2
|dϕε(1−t)t1+tt0

|2 + ε
t0 − t1

2
∆ϕε(1−t)t1+tt0

+ (t1 − t0)|dϕε(1−t)t1+tt0
|2
)
◦ et dπε

=

ˆ ( t1 − t0
2
|dϕε(1−t)t1+tt0

|2 + ε
t0 − t1

2
∆ϕε(1−t)t1+tt0

)
◦ et dπε.

Integrating in time and recalling (1.2.26) we deduce

(6.2.7)
ˆ
ϕεt0 ◦ e1 − ϕεt1 ◦ e0 dπε =

¨ 1

0

1

2(t1 − t0)
|γ̇t|2 + ε

t0 − t1
2

∆ϕε(1−t)t1+tt0
(γt) dt dπε(γ).

Now, as before, we let ε ↓ 0 along the sequence (εn) for which (ϕεnt ) converges to our given (ϕt)
in the sense of Proposition 6.1.1: the first in (6.2.5) grants that (πε) is tight in P(C([0, 1],X))
(because γ 7→

´ 1
0 |γ̇t|

2 dt has compact sublevels) and thus up to pass to a subsequence, not
relabeled, we can assume that (πεn) weakly converges to some π ∈P(C([0, 1],X)). The second
in (6.2.5) and the bound (5.2.11) with B = BR(x̄) grant that the term with the Laplacian
in (6.2.7) vanishes in the limit and thus taking into account the lower semicontinuity of the
2-energy we deduce that
ˆ
ϕt0 ◦ e1 − ϕt1 ◦ e0 dπ ≥ 1

2(t1 − t0)

¨ 1

0
|γ̇t|2 dt dπ ≥ 1

2(t1 − t0)

ˆ
d2(γ0, γ1) dπ(γ).

Now notice that (6.2.4) implies that

(6.2.8)
d2(γ0, γ1)

2(t1 − t0)
≥ ϕt0(γ1)− ϕt1(γ0)
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for any curve γ, hence the above givesˆ
ϕt0 ◦ e1 − ϕt1 ◦ e0 dπ ≥ 1

2(t1 − t0)

ˆ
d2(γ0, γ1) dπ(γ) ≥

ˆ
ϕt0 ◦ e1 − ϕt1 ◦ e0 dπ

thus forcing the inequalities to be equalities. In particular, equality in (6.2.8) holds for π-a.e.
γ and since (e0)∗π = m|BR/2(x̄)

, this is the same as to say that for m-a.e. y ∈ BR/2(x̄) equality

holds in (6.2.4). Since both sides of (6.2.4) are continuous in y, we deduce that equality holds
for any y ∈ BR/2(x̄) and the arbitrariness of R in (6.2.6) allows us to say that equality actually
holds for any y ∈ X.

In order to get rid of (6.2.6), it is sufficient to take a partition t0 = s0 < s1 < ... < sn = t1
such that si+1 − si ≤ (6C ′)−1 for all i = 0, ..., n− 1 and use the fact that Qt is a semigroup.
More precisely

−ϕt1 = Qt1−sn−1(−ϕsn−1) = (Qt1−sn−1 ◦Qsn−1−sn−2)(−ϕsn−2)

= (Qt1−sn−1 ◦Qsn−1−sn−2 ◦ ... ◦Qs1−t0)(−ϕt0) = Qt1−t0(−ϕt0)

whence (6.2.1a) for all t0, t1 ∈ (0, 1], t0 < t1.
Other properties of ϕt. From Proposition 6.1.1 we already know that, for any Lipschitz
cut-off function χ with bounded support, (χϕt) ∈ ACloc((0, 1], L1(X)) ∩ L∞loc((0, 1],W 1,2(X)).
Since ϕt is a real-valued function for all t ∈ (0, 1], (6.2.1a) tells us that for all x ∈ X t 7→ ϕt(x)
satisfies (1.1.2) for a.e. t ∈ (0, 1] and since by Proposition 6.1.1 we know that lip(ϕt) is locally
bounded in space and in t ∈ (0, 1], this implies that for all t0, t1 ∈ (0, 1] with t0 < t1

‖χ(ϕt1 − ϕt0)‖∞ ≤ sup
x∈supp(χ)

|ϕt1(x)− ϕt0(x)| ≤
(

sup
t∈[t0,t1]

Lip(ϕεt |supp(χ)
)
)
|t1 − t0|

whence (χϕt) ∈ ACloc((0, 1], C(X)) ∩ L∞loc((0, 1],W 1,2(X)).
Up to extract a further subsequence - not relabeled - we can assume that the curves (µεnt )

converge to a limit curve (µt) as in Proposition 6.1.1. We claim that for any t0, t1 ∈ (0, 1],
t0 < t1 it holds

(6.2.9) −
ˆ
ϕt1 dµt1 +

ˆ
ϕt0 dµt0 ≥

1

2(t1 − t0)
W 2

2 (µt0 , µt1).

To see this, fix x̄ ∈ X and R > 0, let χR ∈ Test∞(X) be a cut-off function with support in
BR+1(x̄) such that χR ≡ 1 on BR(x̄) and observe that by Proposition 5.1.4 t 7→

´
χRϕ

ε
tρ
ε
t dm

belongs to C((0, 1]) ∩ACloc((0, 1)) with

− d

dt

ˆ
χRϕ

ε
tρ
ε
t dm =

ˆ
χR

(
− |∇ϕ

ε
t |2

2
− ε

2
∆ϕεt − 〈∇ϕεt ,∇ϑεt 〉

)
ρεt dm

+

ˆ
ϕεt 〈∇χR,∇ϑεt 〉ρεt dm a.e. t ∈ (0, 1).

Integrating and recalling that ϕεt = ε
2 log ρεt − ϑεt we deduce

−
ˆ
χRϕ

ε
t1 dµεt1 +

ˆ
χRϕ

ε
t0 dµεt0 =

¨ t1

t0

χR

( |∇ϑεt |2
2
− ε2

8
|∇ log ρεt |2 −

ε

2
∆ϕεt

)
ρεt dtdm

+

¨ t1

t0

ϕεt 〈∇χR,∇ϑεt 〉ρεt dtdm

(6.2.10)
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and an application of the dominated convergence theorem allows us to pass to the limit as
R → ∞. Indeed, by Proposition 5.1.4, (5.2.5) and the fact that µεt ∈ P(X) it follows that
ϕεt ∈ L1(µεt ), so that the left-hand side converges to itself without χR as R→∞. By (5.3.9c)
we can handle the terms with |∇ϑεt | and |∇ log ρεt | on the right-hand side, while for the one
with ∆ϕεt notice that

ρεt∆ϕ
ε
t = εgεt∆f

ε
t − ε−1ρεt |∇ϕεt |2

and take into account that (gεt ) ∈ C([0, 1], L2(m)), (∆f εt ) ∈ C((0, 1], L2(m)) by Proposition
5.1.4 and t 7→ ρεt |∇ϕεt |2 belongs to C((0, 1], L1(m)) by Lemma 5.3.1. Finally

|ϕεt 〈∇χR,∇ϑεt 〉 ρεt | ≤
1

2
ρεt |ϕεt |2|∇χR|+

1

2
ρεt |∇ϑεt |2|∇χR|

and again by Lemma 5.3.1, (5.3.9c) and the fact that ‖|∇χR|‖L∞(m) is bounded as R → ∞
we can pass to the limit also in the last term on the right-hand side of (6.2.10). Hence we get

−
ˆ
ϕεt1 dµεt1 +

ˆ
ϕεt0 dµεt0 =

¨ t1

t0

( |∇ϑεt |2
2
− ε2

8
|∇ log ρεt |2 −

ε

2
∆ϕεt

)
ρεt dt dm

As already noticed in the proof of point (i) of Proposition 6.1.1, (µεt ) and (∇ϑεt ) satisfy the
assumptions of Theorem 1.1.4, thus from such theorem we deduce that

¨ t1

t0

|∇ϑεt |2

2
ρεt dtdm =

1

2

ˆ t1

t0

|µ̇εt |2 dt ≥ 1

2(t1 − t0)
W 2

2 (µεt0 , µ
ε
t1).

Therefore

−
ˆ
ϕεt1 dµεt1 +

ˆ
ϕεt0 dµεt0 ≥

1

2(t1 − t0)
W 2

2 (µεt0 , µ
ε
t1)+

¨ t1

t0

(
− ε

2

8
|∇ log ρεt |2−

ε

2
∆ϕεt

)
ρεt dtdm.

We now pass to the limit in ε = εn ↓ 0: the left hand side trivially converges to the left hand
side of (6.2.9) while W 2

2 (µεnt0 , µ
εn
t1

)→W 2
2 (µt0 , µt1), the contribution of the term with |∇ log ρεt |

vanishes by (5.3.12b) and so does the one with ∆ϕεt , the reason being the following: arguing
as for (5.3.12a), note that for any δ ∈ (0, 1]

ε

¨ 1

δ
ρεt |∆ϕεt |dtdm ≤ ε

√
1− δ

√¨ 1

δ
ρεt |∆ϕεt |2 dt dm

and the last square root is uniformly bounded in ε ∈ (0, 1) thanks to (5.3.10b) and (5.3.9c).
Hence (6.2.9) is proved.

Now notice that (6.2.1a) can be rewritten as

−(t1 − t0)ϕt1 =
(
(t1 − t0)ϕt0

)c
,

so that in particular −(t1− t0)ϕt1 is c-concave and (−(t1− t0)ϕt1)c ≥ (t1− t0)ϕt0 . Hence both
(6.2.1b) and the fact that −(t1 − t0)ϕt1 is a Kantorovich potential follow from

1

2
W 2

2 (µt0 , µt1) ≥
ˆ
−(t1 − t0)ϕt1 dµt1 +

ˆ
(−(t1 − t0)ϕt1)c dµt0

≥
ˆ
−(t1 − t0)ϕt1 dµt1 +

ˆ
(t1 − t0)ϕt0 dµt0

(6.2.9)
≥ 1

2
W 2

2 (µt0 , µt1)
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The claims about (ψt) are proved in the same way.
(µt) is a geodesic. Let [t0, t1] ⊂ (0, 1), pick t ∈ [0, 1] and put t′0 := (1− t)t1 + tt0. We know
that −(t1− t0)ϕt1 and −t(t1− t0)ϕt1 are Kantorovich potentials from µt1 to µt0 and from µt1
to µt′0 respectively and thus by point (ii) of Theorem 1.2.6 we deduce

W 2
2 (µt0 , µt1) =

ˆ
|d((t1 − t0)ϕt1)|2 dµt1 =

1

t2

ˆ
|d((t1 − t′0)ϕt1)|2 dµt1

=
(t1 − t0)2

(t1 − t′0)2
W 2

2 (µt1 , µt′0).

Swapping the roles of t0, t1 and using the ψ’s in place of the ϕ’s we then get

W2(µt′1 , µt′0) =
t′1 − t′0
t1 − t0

W2(µt1 , µt0) ∀[t′0, t′1] ⊂ [t0, t1] ⊂ (0, 1).

This grants that the restriction of (µt) to any interval [t0, t1] ⊂ (0, 1) is a constant speed
geodesic. Since (µt) is continuous on the whole [0, 1], this gives the conclusion. Since in this
situation the W2-geodesic connecting µ0 to µ1 is unique (recall point (i) of Theorem 1.2.6), by
the arbitrariness of the subsequences chosen we also proved the uniqueness of the limit curve
(µt). �

Remark 6.2.2 (The vanishing viscosity limit). The part of this last proposition concerning
the properties of the ϕεt ’s is valid in a context wider than the one provided by Schrödinger
problem: we could restate the result by saying that if (ϕεt ) solves

(6.2.11)
d

dt
ϕεt =

1

2
|∇ϕεt |2 +

ε

2
∆ϕεt

and ϕε0 uniformly converges to some ϕ0, then ϕεt uniformly converges to ϕt := −Qt(−ϕ0).
In this direction, it is worth recalling that in [2] and [50] it has been developed a theory

of viscosity solutions for some first-order Hamilton-Jacobi equations on metric spaces. This
theory applies in particular to the equation

(6.2.12)
d

dt
ϕt =

1

2
lip(ϕt)

2

whose only viscosity solution is given by the formula ϕt := −Qt(−ϕ0).
Therefore, we have just proved that if one works not only on a metric space, but on a metric

measure space which is a RCD∗(K,N) space, then the solutions of the viscous approximation
(6.2.11) converge to the unique viscosity solution of (6.2.12), in accordance with the classical
case. �

Remark 6.2.3. It is not clear whether the ‘full’ families ϕεt , ψεt converge as ε ↓ 0 to a unique
limit. This is related to the non-uniqueness of the Kantorovich potentials in the classical
optimal transport problem. �

We shall now make use of the following lemma. It could be directly deduced from the
results obtained by Cheeger in [28]; however, the additional regularity assumptions on both
the space and the function allow for a ‘softer’ argument based on the metric Brenier’s theorem,
which we propose and is new to our knowledge.



116 CHAPTER 6. FROM ENTROPIC TO DISPLACEMENT INTERPOLATIONS

Lemma 6.2.4. Let (Y, dY,mY) be a RCD∗(K,N) space with K ∈ R and N ∈ [1,∞) and let
φ : X → R ∪ {−∞} be a c-concave function not identically −∞. Let Ω be the interior of the
set {φ > −∞}. Then φ is locally Lipschitz on Ω and

lipφ = |dφ|, m-a.e. on Ω.

proof Lemma 3.3 in [62] grants that φ is locally Lipschitz on Ω and that ∂cφ(x) 6= ∅ for every
x ∈ Ω. The same lemma also grants that for K ⊂ Ω compact, the set ∪x∈K∂cφ(x) is bounded.
Recalling that ∂cφ is the set of (x, y) ∈ Y2 such that

φ(x) + φc(y) =
1

2
d2(x, y)

and that φ, φc are upper semicontinuous, we see that ∂cφ is closed. Hence for K ⊂ Ω compact
the set ∪x∈K∂cφ(x) is compact and not empty and thus by the Kuratowski-Ryll-Nardzewski
Borel selection theorem (see Theorem A.2.1) we deduce the existence of a Borel map T : Ω→ Y
such that T (x) ∈ ∂cφ(x) for every x ∈ Ω.

Pick µ ∈ P2(Y) with supp(µ) ⊂⊂ Ω and µ ≤ Cm for some C > 0 and set ν := T∗µ. By
construction, µ, ν have both bounded support, T is an optimal map and φ is a Kantorovich
potential from µ to ν.

Hence point (iii) of Theorem 1.2.6 applies and since lipφ = max{|D+φ|, |D−φ|}, by the
arbitrariness of µ to conclude it is sufficient to show that |D+φ| = |D−φ| m-a.e. This easily
follows from the fact that m is doubling and φ Lipschitz, see Proposition 2.7 in [6]. �

With this said, we can now show that the energies of the Schrödinger potentials converge
in a localized sense to the energy of the limit ones:

Proposition 6.2.5. With the same assumptions and notations as in Setting 5.1.3 the following
holds.

Let εn ↓ 0 be a sequence such that (ϕεnt ), (ψεnt ) converge to limit curves (ϕt), (ψt) as in
Proposition 6.1.1 and let χ be a cut-off function with bounded support. Then for every δ ∈ (0, 1)
we have

lim
n→∞

¨ 1

δ
χ|dϕεnt |2 dt dm =

¨ 1

δ
χ|dϕt|2 dtdm,

lim
n→∞

¨ 1−δ

0
χ|dψεnt |2 dt dm =

¨ 1−δ

0
χ|dψt|2 dt dm.

(6.2.13)

proof Fix δ ∈ (0, 1), let χ be a cut-off function with bounded support, so that t 7→
´
χϕεt dm

is in AC([δ, 1]), and notice that from the formula for d
dtϕ

ε
t we get

ˆ
χ
(
ϕε1 − ϕεδ

)
dm =

1

2

¨ 1

δ
χ
(
|dϕεt |2 + ε∆ϕεt

)
dt dm.

Choosing ε := εn, letting n→∞ and using the uniform bound (5.2.11) with B = supp(χ) we
obtain that

(6.2.14) lim
n→∞

1

2

¨ 1

δ
χ|dϕεnt |2 dtdm = lim

n→∞

ˆ
χ
(
ϕεn1 − ϕ

εn
δ

)
dm =

ˆ
χ
(
ϕ1 − ϕδ

)
dm.

Combining (1.1.2) and (6.2.1a) we see that for any x ∈ X it holds

d

dt
ϕt(x) =

1

2

(
(lipϕt)(x)

)2
a.e. t ∈ [0, 1].
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By Fubini’s theorem we see that the same identity holds for L 1 × m-a.e. (t, x) ∈ [δ, 1] × X.
The identity (6.2.1a) also grants that ϕt is a multiple of a c-concave function, thus the thesis
of Lemma 6.2.4 is valid for ϕt and recalling that (χϕt) ∈ ACloc((0, 1], L1(X)) by Proposition
6.1.1 we deduce that

ˆ
χ
(
ϕ1 − ϕδ

)
dm =

ˆ 1

δ

d

dt

ˆ
χϕtdmdt =

¨ 1

δ
χ
|dϕt|2

2
dt dm,

which together with (6.2.14) gives the first in (6.2.13). The second is proved in the same way.
�

Corollary 6.2.6. With the same assumptions and notations as in Setting 5.1.3 the following
holds.

Let εn ↓ 0 be a sequence such that (ϕεnt ), (ψεnt ) converge to limit curves (ϕt), (ψt) as in
Proposition 6.1.1. Then for every δ ∈ (0, 1) and for every continuous cut-off function χ with
bounded support we have

(6.2.15)

(χdϕεnt ) → (χdϕt) in L2([δ, 1], L2(T ∗X))
(χdψεnt ) → (χdψt) in L2([0, 1− δ], L2(T ∗X))

(χdϕεnt ⊗ dϕεnt ) → (χdϕt ⊗ dϕt) in L2([δ, 1], L2((T ∗)⊗2X))
(χdψεnt ⊗ dψεnt ) → (χdψt ⊗ dψt) in L2([0, 1− δ], L2((T ∗)⊗2X))
(χdϕεnt ⊗ dψεnt ) → (χdϕt ⊗ dψt) in L2([δ, 1− δ], L2((T ∗)⊗2X))

proof Let χ be as in the statement and start noticing that the closure of the differential
grants that χdϕεnt ⇀ χdϕt in L2(T ∗X) for all t ∈ (0, 1]. This and the fact that (χdϕεnt )
is equibounded in L2([δ, 1], L2(T ∗X)), as a direct consequence of (5.2.10a), are sufficient to
ensure that (χdϕεnt ) ⇀ (χdϕt) in L2([δ, 1], L2(T ∗X)). Given that the first in (6.2.13) grants
(local) convergence of the L2([δ, 1], L2(T ∗X))-norms, we deduce (local) strong convergence.
This establishes the first limit.

Now observe that for every ω ∈ L2([δ, 1], L2(T ∗X)) the fact that √χ|dϕεnt | is uniformly
bounded in L∞([δ, 1]×X) and the strong L2-convergence just proved ensure that

〈√χdϕεnt , ωt〉 → 〈√χdϕt, ωt〉 in L2([δ, 1]×X).

It follows that for any ω1, ω2 ∈ L2([δ, 1], L2(T ∗X)) we have

¨ 1

δ
〈√χdϕεnt , ω1,t〉 〈

√
χdϕεnt , ω2,t〉 dt dm →

¨ 1

δ
〈√χdϕt, ω1,t〉 〈

√
χdϕt, ω2,t〉 dtdm

and thus to conclude it remains to prove that

¨ 1

δ
|χdϕεnt ⊗ dϕεnt |2HS dt dm →

¨ 1

δ
|χdϕt ⊗ dϕt|2HS dt dm.

Since |v ⊗ v|2HS = |v|4 this is a direct consequence of the fact that √χ|dϕεnt | are uniformly
bounded and converge to √χ|dϕt| in L2([δ, 1]×X). Hence also the third limit is established.

The other claims follow by analogous arguments. �
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The estimates that we have for the functions ϕ’s tell nothing about their regularity as t ↓ 0
and similarly little we know so far about the ψ’s for t ↑ 1. We now see in which sense limit
functions ϕ0, ψ1 exist. This is not needed for the proof of our main result, but we believe it is
relevant in its own.

Thus let us fix εn ↓ 0 so that ϕεnt → ϕt for t ∈ (0, 1] and ψεnt → ψt for t ∈ [0, 1) as in
Proposition 6.1.1. Then define the functions ϕ0, ψ1 : X→ R ∪ {−∞} as

ϕ0(x) := inf
t∈(0,1]

ϕt(x) = lim
t↓0

ϕt(x),

ψ1(x) := inf
t∈[0,1)

ψt(x) = lim
t↑1

ψt(x).
(6.2.16)

Notice that the fact that the inf are equal to the stated limits is a consequence of formulas
(6.2.1a), (6.2.2a), which directly imply that for every x ∈ X the maps t 7→ ϕt(x) and t 7→
ψ1−t(x) are non-decreasing.

The main properties of ϕ0, ψ1 are collected in the following proposition:

Proposition 6.2.7. With the same assumptions and notations as in Setting 5.1.3 and for
ϕ0, ψ1 defined by (6.2.16) the following holds.

i) The functions −ϕt (resp. −ψt) Γ-converge to −ϕ0 (resp. −ψ1) as t ↓ 0 (resp. t ↑ 1).

ii) For every t ∈ (0, 1] we have

Qt(−ϕ0) = −ϕt Qt(−ψ1) = −ψ1−t.

iii) It holds

ϕ0(x) =

{
−ψ0(x) if x ∈ supp(ρ0)
−∞ otherwise ψ1(x) =

{
−ϕ1(x) if x ∈ supp(ρ1)
−∞ otherwise

iv) We have ˆ
ϕ0ρ0 dm +

ˆ
ψ1ρ1 dm =

1

2
W 2

2 (µ0, µ1).

v) Define ϕε0 on supp(ρ0) as ϕε0 := ε log(f ε) and let εn ↓ 0 be such that ϕεnt , ψ
εn
t converge

to ϕt, ψt as n→∞ as in Proposition 6.1.1.

Then the functions ρ0ϕ
εn
0 , set to be 0 on X \ supp(ρ0), converge to ρ0ϕ0 in L∞(m) as

n→∞.

With the analogous definition of ρ1ψ
εn
1 we have that these converge to ρ1ψ1 in L∞(m)

as n→∞.

proof We shall prove the claims for ϕ0 only, as those for ψ1 follow along similar lines.
(i) For the Γ − lim inequality we simply observe that by definition −ϕ0(x) = limt↓0−ϕt(x).
To prove the Γ− lim inequality, use the fact that −ϕt ≥ −ϕs for 0 < t ≤ s and the continuity
of ϕs: for given (xt) converging to x we have

lim
t↓0
−ϕt(xt) ≥ lim

t↓0
−ϕs(xt) = −ϕs(x) ∀s > 0.

The conclusion follows letting s ↓ 0.



6.2. IDENTIFICATION OF THE LIMIT CURVE AND POTENTIALS 119

(ii) This claim follows from the general properties of Γ-convergence and fine manipulations of
the Gaussian estimates (1.2.11). From −ϕ0 ≥ −ϕs we deduce that

Qt(−ϕ0) ≥ Qt(−ϕs)
(6.2.1a)

= −ϕt+s ∀s ∈ (0, 1]

and thus letting s ↓ 0 and using the continuity of (0, 1] 3 t 7→ ϕt(x) for all x ∈ X we obtain
Qt(−ϕ0)(x) ≥ −ϕt(x) for all x ∈ X. For the opposite inequality, use the representation formula
(1.2.9c), the Gaussian estimates (1.2.11) and the fact that ρ0 and f ε have the same support
to get

C1

Vεt/2
‖f ε‖L1(m) exp

(
− C2D

2
0(·)
εt

)
≤ f εt ≤

C3

vεt/2
‖f ε‖L1(m) exp

(
− C4d

2
0(·)
εt

)
for all t ∈ (0, 1], where vεt/2, Vεt/2 are defined as in (5.1.6), the constants C1, ..., C4 are positive
and only depend on K,N, supp(ρ0) and

d0(x) := inf
y∈supp(ρ0)

d(x, y) D0(x) := sup
y∈supp(ρ0)

d(x, y).

From this two-sided bound we deduce the following one

ε logC1 − ε log Vεt/2 + ε log ‖f ε‖L1(m) −
C2D

2
0(·)
t

≤ ϕεt

≤ ε logC3 − ε log vεt/2 + ε log ‖f ε‖L1(m) −
C4d

2
0(·)
t

for all t ∈ (0, 1]. We start claiming that

(6.2.17) lim
ε↓0

ε log vε = lim
ε↓0

ε log Vε = 0.

Indeed on one side since supp(ρ0) is compact, we have ε log vε ≤ ε log Vε ≤ ε logm(B), where
B is a sufficiently large set containing all the ε-enlargements of supp(ρ0) for ε ∈ (0, 1), so that
lim supε ε log Vε ≤ 0. On the other one, letting C be the local doubling constant of B and D
its diameter we have

m(B√ε(y)) ≥ C log2(D/
√
ε)+1m(B) ∀y ∈ supp(ρ0).

Thus vε ≥ C log2(D/
√
ε)+1m(B) from which it follows that limε ε log vε ≥ 0 and thus (6.2.17) is

proved. Secondly, we claim that there exists a constant M > 0 such that

(6.2.18) ε| log ‖f ε‖L1(m)| ≤M ∀ε ∈ (0, 1).

To this aim start observing that by (5.2.2)

ε log
(
‖f ε‖L1(m)‖gε‖L1(m)

)
≤ ε logC + ε log Vε/2 +D2

where C is a positive constant independent of ε and D is the diameter of supp(ρ0)∪ supp(ρ1).
On the other hand, taking into account the normalization choice for (f ε, gε) (see Setting 5.1.3),
Jensen’s inequality for − log and the L1-contractivity of the heat flow it holds

0 =

ˆ
log(h ε

2
f ε)ρ1 dm ≤ log

ˆ
h ε

2
f ερ1 dm ≤ log

(
‖f ε‖L1(m)‖ρ1‖L∞(m)

)
,
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whence log ‖f ε‖L1(m) ≥ − log ‖ρ1‖L∞(m) for all ε ∈ (0, 1). Arguing in an analogous way for gε

and recalling that ρ1 = gεhε/2f
ε we have

H(µ1 |m) =

ˆ
ρ1 log ρ1 dm =

ˆ
log(gε)ρ1 dm ≤ log

ˆ
gερ1 dm ≤ log

(
‖gε‖L1(m)‖ρ1‖L∞(m)

)
,

whence log ‖gε‖L1(m) ≥ H(µ1 |m) − log ‖ρ1‖L∞(m) for all ε ∈ (0, 1). Putting all these pieces
of information together with (6.2.17), we see that (6.2.18) follows. Therefore, passing to the
limit as ε ↓ 0 in the previous two-sided bound and recalling the locally uniform convergence
of ϕεt to ϕt for all t ∈ (0, 1], we get

C4d
2
0(·)
t

−M ≤ −ϕt ≤
C2D

2
0(·)
t

+M.

Hence if we fix x ∈ X and a sequence tn ↓ 0, by coercivity we can find yn ∈ X such that

Qt(−ϕtn)(x) =
d2(x, yn)

2t
− ϕtn(yn).

Actually, the functions (−ϕtn)n∈N are equi-coercive and thus, by compactness, up to pass to
a subsequence we can assume that yn → y for some y ∈ X, so that taking into account the
Γ− lim inequality previously proved we get

d2(x, y)

2t
− ϕ0(y) ≤ lim

n→∞

d2(x, yn)

2t
− ϕtn(yn) = lim

n→∞
Qt(−ϕtn)(x)

(6.2.1a)
= lim

n→∞
−ϕtn+t(x) = −ϕt(x)

which shows that Qt(−ϕ0)(x) ≤ −ϕt(x), as desired.
(iii) For any t ∈ (0, 1] we have

ϕ0 ≤ ϕt
(6.1.3)
≤ −ψt

so that letting t ↓ 0 and using the continuity of [0, 1) 3 t 7→ ψt(x) for all x ∈ X we deduce
that

ϕ0 ≤ −ψ0 on X.

Now notice that the fact that −ϕ0 ≤ Γ− lim(−ϕt) implies that

(6.2.19) ϕ0(γ0) ≥ lim
t↓0

ϕt(γt) ∀γ ∈ C([0, 1],X).

Let π be the lifting of the W2-geodesic (µt) (recall point (i) of Theorem 1.2.6); taking into
account that the evaluation maps et : C([0, 1],X) → X are continuous and that supp(π) is a
compact subset of C([0, 1],X), because given by constant speed geodesics running from the
compact set supp(ρ0) to the compact supp(ρ1), it is easy to see that for every γ ∈ supp(π)
and t ∈ [0, 1] we have γt ∈ supp(µt) and viceversa for every x ∈ supp(µt) there is γ ∈ supp(π)
with γt = x.

Thus let x ∈ supp(ρ0) = supp(µ0) and find γ ∈ supp(π) with γ0 = x: from the fact that
γt ∈ supp(µt) and (6.1.3) we get

ϕ0(x)
(6.2.19)
≥ lim

t↓0
ϕt(γt) = lim

t↓0
−ψt(γt) = −ψ0(x).
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Thus to conclude it remains to prove that ϕ0 = −∞ outside supp(ρ0) and to this aim we shall
use the Gaussian estimates (1.2.11). First notice that (6.2.17) still holds if we slightly change
the definition of vs and Vs as follows

vs := inf
y∈supp(ρ0)∪supp(ρ1)

m(B√s(y)) Vs := sup
y∈supp(ρ0)∪supp(ρ1)

m(B√s(y)).

Then, observing that by construction we have supp(f ε) = supp(ρ0) for every ε > 0, the second
in (1.2.11) yields

f εt (x) = hεt/2f
ε(x) =

ˆ
f ε(y)rεt/2(x, y) dm(y) ≤ C2

vεt/2
e−

d2(x,supp(ρ0))
3εt

ˆ
f ε dm,

gεt (x) = hε(1−t)/2g
ε(x) =

ˆ
gε(y)rε(1−t)/2(x, y) dm(y) ≤ C2

vε(1−t)/2

ˆ
gε dm,

for every t ∈ (0, 1) and thus coupling these bounds with (5.2.2) we obtain

ρεt (x) = f εt (x)gεt (x) ≤ C1C
2
2Vε

vε(1−t)/2vεt/2
e
C1D

2

ε e−
d2(x,supp(ρ0))

3εt ∀x ∈ X, t ∈ (0, 1).

Therefore recalling (6.2.17) we obtain

(6.2.20) lim
ε↓0

ε log(ρεt (x)) ≤ C1D
2 − d2(x, supp(ρ0))

3t
∀x ∈ X, t ∈ (0, 1).

Now let εn ↓ 0 be the sequence such that ϕεnt , ψ
εn
t converge to ϕt, ψt as in Proposition 6.1.1

and put S(x) := supε∈(0,1),t∈[0,1/2] |ψεt (x)| <∞. The inequality

ϕt(x) = lim
n→∞

ϕεnt (x) ≤ lim
n→∞

εn log(ρεnt (x))− lim
n→∞

ψεnt (x)
(6.2.20)
≤ S(x)+C1D

2− d2(x, supp(ρ0))

3t

shows that if x /∈ supp(ρ0) we have ϕ0(x) = limt↓0 ϕt(x) = −∞, as desired.
(iv) By the point (iii) just proven we have

ˆ
ϕ0ρ0 dm +

ˆ
ψ1ρ1 dm = −

ˆ
ψ0ρ0 dm−

ˆ
ϕ1ρ1 dm

so that taking into account the weak continuity of t 7→ µt, the fact that the measures µt have
equibounded supports and the uniform continuity of t 7→ χϕt (resp. t 7→ χψt) for t close to 1
(resp. close to 0), where χ is a cut-off function with bounded support and identically equal to
1 on a set containing supp(µt) for all t ∈ [0, 1], we get

ˆ
ϕ0ρ0 dm +

ˆ
ψ1ρ1 dm = lim

t↓0
−
ˆ
ψtρt dm−

ˆ
ϕ1−tρ1−t dm

(6.1.3)
= lim

t↓0

ˆ
ϕtρt dm−

ˆ
ϕ1−tρ1−t dm

(6.2.1b)
=

1

2
W 2

2 (µ0, µ1).

(v) Since ρ0 ∈ L∞(m), we also have ρ0 log(ρ0) ∈ L∞(m). The claim then follows from the
identity ρ0ϕ

ε
0 = ερ0 log ρ0−ρ0ψ

ε
0, the compactness of supp(ρ0), the local uniform convergence

of ψεn0 to ψ0 as n→∞ and the fact that ψ0 = −ϕ0 on supp(ρ0). �
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Remark 6.2.8 (Entropic and transportation cost). For ε > 0 the entropic cost from ρ0 to ρ1

is defined as
Iε(ρ0, ρ1) := inf H(γ |Rε),

the infimum being taken among all transport plans γ from µ0 := ρ0m to µ1 := ρ1m. Hence
with our notation

Iε(ρ0, ρ1) = H
(
f ε ⊗ gεRε |Rε

)
=

1

ε

ˆ
ϕε0 ⊕ ψε1f ε ⊗ gε dRε =

1

ε

(ˆ
ϕε0ρ0 dm +

ˆ
ψε1ρ1 dm

)
and by (iv), (v) of the previous proposition we get

(6.2.21) lim
ε↓0

εIε(ρ0, ρ1) =
1

2
W 2

2 (µ0, µ1).

In other words, after the natural rescaling the entropic cost converges to the quadratic trans-
portation cost, thus establishing another link between the Schrödinger problem and the trans-
port one.

We would like to emphasize that although this argument is new, the result is not, not even
on RCD∗(K,N) spaces: Léonard proved in [79] that the same limit holds in a very abstract
setting provided the heat kernel satisfies the appropriate large deviation principle

ε log rεt (x, y) ∼ −d2(x, y)

2
.

Since recently such asymptotic behaviour for the heat kernel on RCD∗(K,N) spaces has been
proved by Jiang-Li-Zhang in [71], Léonard’s result applies. Thus in this remark we simply
wanted to show an alternative proof of such limiting property.

The next step could be the investigation of the first order expansion of (6.2.21), namely
the asymptotic behaviour as ε ↓ 0 of

Iε(ρ0, ρ1)− 1

2ε
W 2

2 (µ0, µ1)

or its Γ-limit when µ0, µ1 are not fixed. Concerning this second perspective, in the smooth case
of Rd equipped with the Euclidean distance and the weighted measure ν := e−V L d, where V
is a C2-regular K-convex function with K ∈ R, the answer is known from [43] and [46]. There
it reads as

Iε(·, ρ1)− 1

2ε
W 2

2 (·, µ1)
Γ→ 1

2
H(· | ν)− 1

2
H(µ0 | ν)

for ε ↓ 0, where the Γ-limit is understood w.r.t.W2-convergence. Pay attention to the fact that
Rε is associated to the metric measure space (Rd, dEucl, ν), hence it is the joint law (e0, eε)∗R,
where R is the law of a solution (Zt)t≥0 to the Fokker-Planck equation

dZt = −∇V (Zt)dt+
√

2dWt

with Z0 ∼ ν and (Wt)t≥0 a standard Rd-valued Brownian motion. It would be interesting to
generalize such result to Riemannian manifolds and possibly to the RCD framework. �
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6.3 Some consequences of the entropic approximation

As shown in [45], the RCD∗(K,N) condition is equivalent to the (K,N)-convexity of the
Boltzmann entropy H(· |m) on P2(X) ∩ D(H(· |m)), i.e. given any two measures µ0, µ1 ∈
P2(X) with finite entropy w.r.t. m there exists a constant speed geodesic (µt)t∈[0,1] connecting
them such that the function H(t) := H(µt |m) satisfies

(6.3.1) H ′′ ≥ KW 2
2 (µ0, µ1) +

1

N
(H ′)2

in distribution sense on [0, 1]. This is also called entropic curvature-dimension condition
and denoted by CDe(K,N). It is a matter of computation (see Lemma 2.2 in [45]) to show
that this in turn equivalent to ask

(6.3.2) UN (µt) ≥ σ(1−t)
K,N (W2(µ0, µ1))UN (µ0) + σ

(t)
K,N (W2(µ0, µ1))UN (µ1)

for all t ∈ [0, 1], where the distortion coefficients σ(t)
K,N are the ones already introduced in

(1.2.2) and

UN (µ) := exp

(
− 1

N
H(µ |m)

)
.

This new curvature-dimension condition will play a crucial role throughout the whole section
and, relying on the results of Chapters 5 and 6, we are going to study its connection with
entropic interpolations.

Let us begin with a warm-up example, that enables the reader to understand the strategy
that will be adopted with slight modifications in the subsequent applications; it also explains
why (6.3.2) is more natural for Wasserstein geodesics, while (6.3.1) can be directly checked
for entropic interpolations and better fits them.

For K = 0 (6.3.1) becomes the following ODE

y′ =
1

N
y2

so that by a comparison argument and the fact that y(t) = −N/t is an exact solution to it we
deduce that H ′ ≥ −N/t for all t ∈ (0, 1], whence by integration

(6.3.3) H(µ1 |m)−H(µt |m) ≥ N log t

for all t ∈ (0, 1]. The interest in this inequality could be the following: if m is a probability mea-
sure and we choose µ1 = m, then 0 ≤ H(µt |m) ≤ −N log t for all t ∈ (0, 1], regardless of the
initial condition µ0; in this sense (6.3.3) shows a behaviour analogous to the Li-Yau inequality.
A simpler way to deduce (6.3.3) is the following: for K = 0 the term σ

(1−t)
K,N (W2(µ0, µ1))UN (µ0)

is positive and thus can be neglected in (6.3.2), which then becomes

UN (µt) ≥ tUN (µ1)

and this is completely equivalent to (6.3.3) as long as t ∈ (0, 1].
As we are going to see below, the same inequality holds true along entropic interpolations

too, for any slowing-down parameter ε, and it is for this reason that we have also presented
the ODE approach, although less immediate. It is worth stressing that, unlike all the previous
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results, here µ0, µ1 need not have bounded supports: we manage to remove this assumption
by means of the stability of the Schrödinger problem (see Theorem 4.2.3). As a consequence,
the entropic interpolation can not be defined as in Setting 5.1.3, but the problem can be easily
overcome since by (4.1.2) and Theorem 5.1.1 the existence of a dynamical solution associated
to µ0, µ1 and Rε/2 is granted and thus (µεt ) can and shall be defined as the marginal flow of
such solution.

Proposition 6.3.1. Let (X, d,m) be a RCD∗(0, N) space where N ∈ [1,∞) and m is a non-
negative Radon measure; let µ0 = ρ0m and µ1 = ρ1m be two absolutely continuous Borel
probability measures belonging to P2(X) with bounded densities.

Then
H(µ1 |m)−H(µεt |m) ≥ N log t

for all t ∈ (0, 1] and for all ε > 0, where µεt := (et)∗P
ε/2, Pε/2 being the (unique) dynamical

solution of the Schrödinger problem associated to µ0, µ1,R
ε/2 (see the end of Section 5.1 for

the definition of Rε/2).

proof Fix ε > 0, assume that ρ0, ρ1 also have bounded supports (so that the definition of µεt
coincides with the one provided in Setting 5.1.3), set H(t) := H(µεt |m) and observe that by
Proposition 5.3.3 H ∈ C([0, 1]) ∩ACloc((0, 1)) with

H(t)−H(1) = −
ˆ 1

t
H ′(s)ds = −

¨ 1

t
〈∇ρεs,∇ϑεs〉dsdm.

Using a cut-off argument analogous to the one adopted in Proposition 5.2.2 to handle (5.2.7)
it is not difficult to see that ˆ

〈∇ρεt ,∇ϑεt 〉dm = −
ˆ
ρεt∆ϑ

ε
tdm,

thus plugging this identity into the previous line and recalling that ϑεt = ε
2 log ρεt − ϕεt , we get

H(t)−H(1) =
ε

2

¨ 1

t
ρεs∆ log ρεsdsdm−

¨ 1

t
ρεs∆ϕ

ε
sdsdm.

Now observe that Li-Yau inequality for ϕεt reads as ∆ϕεt ≥ −N/t (because we have assumed
K = 0), while the first term on the right-hand side can be integrated by parts arguing as
above. This yields

H(t)−H(1) ≤ −
¨ 1

t
ρεs|∇ log ρεs|2dsdm +N

¨ 1

t
s−1ρεsdsdm ≤ −N log t

and thus the conclusion. In order to get rid of the boundedness assumption on supp(µ0) and
supp(µ1), take µ0, µ1 ∈P2(X) with bounded densities; then fix x̄ ∈ X, define

µki :=
( ˆ

ρki dm
)−1

ρkim, ρki := χkρi for i = 0, 1

where χk is a Lipschitz cut-off function supported in Bk+1(x̄) and identically equal to 1 on
Bk(x̄), and invoke Theorem 5.1.1 together with part (iii) of Theorem 4.2.3. The latter can
actually be applied because if we disintegrate Rε/2 w.r.t. (e0, e1) as

Rε/2(·) =

ˆ
X2

(Rε/2)xy(·)dRε/2(x, y),
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then by [27] (see Theorem 1 therein) (x, y) 7→ (Rε/2)xy is continuous.
This grants that for all k ∈ N the dynamical Schrödinger problem associated to µk0, µk1,Rε/2

has a unique solution Pk,ε/2 and (Pk,ε/2) weakly converges to the unique solution of the
dynamical Schrödinger problem associated to µ0, µ1,R

ε/2, say Pε/2. This implies that

(et)∗P
k,ε/2 ⇀ (et)∗P

ε/2 as k →∞, ∀t ∈ [0, 1]

and by lower semicontinuity of the entropy together with H(µk1 |m)→ H(µ1 |m) this is suffi-
cient to conclude. �

From this result it is now easy to recover (6.3.3).

Corollary 6.3.2. Let (X, d,m) be a RCD∗(0, N) space where N ∈ [1,∞) and m is a non-
negative Radon measure; let µ0, µ1 ∈P2(X) have finite entropy w.r.t. m.

Then
H(µ1 |m)−H(µt |m) ≥ N log t

for all t ∈ (0, 1].

proof Denote by ρ0, ρ1 the densities of µ0, µ1 respectively and assume for the moment that
they are bounded and with bounded support. Then, using the same notation of Setting 5.1.3,
Proposition 6.3.1 applies to (µεt ) and by Proposition 6.2.1 we know that µεt ⇀ µt as ε ↓ 0,
where (µt) is the unique Wasserstein geodesic between µ0 and µ1. By lower semicontinuity of
the entropy, this yields (6.3.3).

To get rid of the compactness and boundedness assumptions on the densities, it is sufficient
to argue by standard cut-off arguments: given µ0, µ1 ∈P2(X) ∩D(H(· |m)), whose densities
are denoted by ρ0, ρ1 respectively, define

µki :=
(ˆ

ρki dm
)−1

ρkim, ρki := max{k, χkρi} for i = 0, 1

where χk is a Lipschitz cut-off function supported in Bk+1(x̄) and identically equal to 1 on
Bk(x̄), x̄ being arbitrarily fixed. If we denote by (µkt ) (resp. (µt)) the unique W2-geodesic
between µk0 and µk1 (resp. µ0 and µ1), then it is well known that µkt ⇀ µt as k →∞ and since
H(µk1 |m) → H(µ1 |m), by lower semicontinuity of the entropy this is enough to get (6.3.3)
and thus conclude. �

After this warm-up example, let us show that the entropy is (K,N)-convex along entropic
interpolations on RCD∗(K,N) spaces, provided K ≥ 0, thus generalizing to the non-smooth
framework the result of a forthcoming paper by I. Gentil, C. Léonard and L. Ripani. As in
Proposition 6.3.1 and still relying on Theorem 4.2.3, in the following statement we allow µ0, µ1

to have possibly unbounded supports.

Proposition 6.3.3. Let (X, d,m) be a RCD∗(K,N) space with K ≥ 0 and N ∈ [1,∞) and
let µ0, µ1 ∈ P2(X) ∩D(H(· |m)) with bounded densities. Then the entropy is (K,N)-convex
along (µεt ) for all ε > 0, where µεt is defined as in Proposition 6.3.1.

proof Fix ε > 0, assume that µ0, µ1 also have bounded supports and observe that from (5.3.6b)
and (5.3.2b) we know that for all t ∈ (0, 1) it holds

d2

dt2
H(µεt |m) ≥ K

ˆ
|∇ϑεt |2ρεtdm +

1

N

ˆ (
∆ϑεt

)2
ρεtdm

+
ε2

4

(
K

ˆ
|∇ log ρεt |2ρεtdm +

1

N

ˆ (
∆ log ρεt

)2
ρεtdm

)
.

(6.3.4)
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The term with ∆ log ρεt on the right-hand side as well as those with K can be neglected,
because positive, while the remaining one can be estimated by Cauchy-Schwarz inequality as
follows ˆ (

∆ϑεt
)2
ρεtdm ≥

( ˆ
ρεt∆ϑ

ε
tdm

)2

and now a cut-off argument completely analogous to the one adopted in the proof of Propo-
sition 5.2.2 motivates the following integration by partsˆ

ρεt∆ϑ
ε
tdm = −

ˆ
〈∇ρεt ,∇ϑεt 〉 dm.

Comparing this expression with (5.3.6a), we see that (6.3.1) along the entropic interpolation
from µ0 to µ1 is established pointwise for all t ∈ (0, 1) and since t 7→ H(µεt |m) is continuous
on [0, 1] by Proposition 5.3.3 it follows that (6.3.1) holds in the distribution sense on the
whole [0, 1]. This is in turn equivalent to the integrated version (6.3.2) and the advantage of
the latter formulation is the stability w.r.t. W2-convergence, which allows to get rid of the
compactness assumption on the support of the densities. In fact, rewriting (6.3.2) as

H(µεt |m) ≤ −N log
(
σ

(1−t)
K,N (W2(µ0, µ1))UN (µ0) + σ

(t)
K,N (W2(µ0, µ1))UN (µ1)

)
and arguing as in the last part of Proposition 6.3.1, the conclusion follows because the same
approximation procedure also entails that W2(µk0, µ

k
1) → W2(µ0, µ1) as k → ∞, besides

H(µk0 |m)→ H(µ0 |m) and H(µk1 |m)→ H(µ1 |m). �

As a byproduct, this immediately yields an ‘entropic’ and alternative proof of the fact that
the CD∗(K,N) condition implies CDe(K,N) on infinitesimally Hilbertian spaces, at least for
K ≥ 0.

Corollary 6.3.4. Let (X, d,m) be a RCD∗(K,N) space with K ≥ 0 and N ∈ [1,∞). Then
CDe(K,N) holds.

proof Let µ0 = ρ0m and µ1 = ρ1m be two absolutely continuous Borel probability measures
with bounded densities and supports and for any ε > 0 introduce the notations of Setting
5.1.3. Proposition 6.3.3 applies to (µεt ) and by Proposition 6.2.1 we know that µεt ⇀ µt as
ε ↓ 0, where (µt) is the unique Wasserstein geodesic between µ0 and µ1. Thus, rewriting
(6.3.2) as in the proof of Proposition 6.3.3 and by lower semicontinuity of the entropy, this
yields (6.3.2) along (µt).

To get rid of the compactness and boundedness assumptions on the densities, adopt the
same approximation procedure described in the proof of Corollary 6.3.2 and notice that it also
ensures W2(µk0, µ

k
1)→W2(µ0, µ1) as k →∞. �

A further interesting consequence of (5.3.6a) and (5.3.6b) is the HWI inequality and it is
worth recalling how it is deduced. In a RCD(K,∞) space (X, d,m) it is well known that the
Boltzmann entropy H(· |m) is geodesicallyK-convex, which means that for all µ0, µ1 ∈P2(X)
with finite entropy w.r.t. m there exists a W2-geodesic (µt) connecting them such that

H(µt |m) ≤ (1− t)H(µ0 |m) + tH(µ1 |m)− K

2
t(1− t)W 2

2 (µ0, µ1)

for all t ∈ [0, 1]. This inequality can be rewritten as

H(µt |m)−H(µ0 |m)

t
≤ H(µ1 |m)−H(µ0 |m)− K

2
(1− t)W 2

2 (µ0, µ1)
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and denoting by ρ0 the Radon-Nikodym derivative of µ0 w.r.t. m (without loss of generality
we can assume that µ0 � m), choosing γ ∈ Opt(µ0, µ1) and assuming that we can pass to the
limit as t ↓ 0, this implies

−
ˆ
|∇ρ0|(x)

ρ0(x)
d(x, y)dγ(x, y) ≤ H(µ1 |m)−H(µ0 |m)− K

2
W 2

2 (µ0, µ1)

whence, by the Cauchy-Schwarz inequality,

H(µ0 |m)−H(µ1 |m) ≤W2(µ0, µ1)

√ˆ
|∇ρ0|2
ρ0

dm− K

2
W 2

2 (µ0, µ1).

This is the celebrated HWI inequality, so called because expressed in terms of the entropy
functional H(· |m), the Wasserstein distance W2 and the Fisher information I(· |m), defined
by

I(µ |m) :=

 4

ˆ
|∇√ρ|2 dm =

ˆ
{ρ>0}

|∇ρ|2

ρ
dm if µ = ρm,

√
ρ ∈W 1,2(X)

+∞ otherwise

(see Lemma 4.10 in [6] for the equality of the two expressions in the case √ρ ∈ W 1,2(X)). It
is a very powerful tool that allows to deduce with very little effort the logarithmic Sobolev
inequality (if K > 0) and Talagrand inequality, provided m is a probability measure.

However, the passage to the limit as t ↓ 0 is a delicate step (see for instance Theorem 20.10
and Corollary 20.13 in [121] or Proposition 7.18 in [3] together with Section 7 of [6] or also
Proposition 5.10 in [58]). Here we propose an ‘entropic’ approach that strongly relies on (5.3.6a)
and (5.3.6b) in order to get an analogue of the HWI inequality for entropic interpolations,
before passing to the limit as ε ↓ 0. As a first tool we need the following lemma, whose main
features are the discovery of a quantity which is preserved along the entropic evolution and
the convergence of (the integrals of) current and osmotic velocities (see Section 5.5) to the
squared Wasserstein distance and 0 respectively.

Lemma 6.3.5. With the same assumptions and notations as in Setting 5.1.3 we have that,
for any ε > 0, the map

(6.3.5) (0, 1) 3 t 7→
ˆ (
|∇ϑεt |2 −

ε2

4
|∇ log ρεt |2

)
ρεtdm

is real-valued and constant. Moreover the following hold:

lim
ε↓0

¨ 1

0
|∇ϑεt |2ρεtdtdm = 2 lim

ε↓0

¨ 1

0
t|∇ϑεt |2ρεtdtdm = W 2

2 (µ0, µ1),(6.3.6a)

lim
ε↓0

ε2

¨ 1

0
|∇ log ρεt |2ρεtdtdm = 0.(6.3.6b)

proof The map is real-valued because by Lemma 5.2.1 t 7→ ρεt |∇ϑεt |2 and t 7→ ρεt |∇ log ρεt |2
belong to L∞loc((0, 1), L1(X)). To prove that it is constant, by the regularizing properties of the
heat flow we have that t 7→

´
〈∇f εt ,∇gεt 〉 dm belongs to ACloc((0, 1)) with

d

dt

ˆ
〈∇f εt ,∇gεt 〉dm =

ε

2

ˆ (
〈∇∆f εt ,∇gεt 〉 − 〈∇f εt ,∇∆gεt 〉

)
dm, a.e. t
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and integration by parts shows that the derivative vanishes a.e. It is now sufficient to recall
the definition of ϑεt and the identity ϕεt + ψεt = ε log ρεt to infer that

ε2

ˆ
〈∇f εt ,∇gεt 〉 dm =

ˆ
〈∇ϕεt ,∇ψεt 〉ρεtdm = −

ˆ (
|∇ϑεt |2 −

ε2

4
|∇ log ρεt |2

)
ρεtdm.

As regards (6.3.6a) and (6.3.6b), start observing that (µεt , ϑ
ε
t ) solves the continuity equation in

the sense of Theorem 1.1.4, as already remarked in Proposition 6.1.1, so that by the Benamou-
Brenier formula (Theorem 1.1.5)

¨ 1

0
|∇ϑεt |2ρεt dtdm ≥W 2

2 (µ0, µ1).

On the other hand, from the first identity in (5.4.2) and (6.2.21) we know that

lim
ε↓0

¨ 1

0

(
|∇ϑεt |2 +

ε2

4
|∇ log ρεt |2

)
ρεtdtdm = W 2

2 (µ0, µ1).

Hence

lim
ε↓0

¨ 1

0
|∇ϑεt |2ρεtdtdm = W 2

2 (µ0, µ1) and lim
ε↓0

ε2

¨ 1

0
|∇ log ρεt |2ρεtdtdm = 0.

To conclude the proof, denote by Qε the value of the constant function defined in (6.3.5) and
integrate it on [0, 1]: on the one hand, by what we have just written above

(6.3.7) lim
ε↓0

Qε = W 2
2 (µ0, µ1);

on the other hand

0 ≤ lim
ε↓0

ε2

¨ 1

0
t|∇ log ρεt |2ρεtdtdm ≤ lim

ε↓0
ε2

¨ 1

0
|∇ log ρεt |2ρεtdtdm = 0.

Thus multiplying Qε by t and integrating in time we get

lim
ε↓0

¨ 1

0
t|∇ϑεt |2ρεtdtdm = lim

ε↓0

¨ 1

0
t
(
|∇ϑεt |2 −

ε2

4
|∇ log ρεt |2

)
ρεtdtdm

= lim
ε↓0

ˆ 1

0
tQεdt =

1

2
W 2

2 (µ0, µ1).

�

We are now ready to prove the HWI inequality. For sake of simplicity we shall assume the
space (X, d,m) to be compact and ρ0, ρ1 ∈ Test∞>0(X), but we do not believe these assumptions
to be crucial. As a consequence, the conclusion of Proposition 5.3.3 is reinforced: t 7→ H(µεt |m)
is C2([0, 1]), which means that (5.3.6a) and (5.3.6b) hold for all t ∈ [0, 1]. This is a consequence
of the enhanced regularity of Schrödinger potentials (5.4.4) in the present framework; see also
Proposition 5.5 in [63] for more details.

Proposition 6.3.6. Let (X, d,m) be a compact RCD∗(K,N) space with K ∈ R, N ∈ [1,∞)
and m ∈P(X); let µ0, µ1 ∈P(X) and assume that H(µ0 |m) <∞.

Then

(6.3.8) H(µ1 |m)−H(µ0 |m) ≤W2(µ0, µ1)
√
I(µ1 |m)− K

2
W 2

2 (µ0, µ1).
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proof Fix ε > 0 and assume for the moment that µ0 = ρ0m, µ1 = ρ1m with ρ0, ρ1 ∈ Test∞>0(X).
By Proposition 5.3.3 in the compact case we know that t 7→ H(µεt |m) belongs to C2([0, 1]),
so that if we apply the standard calculus identity (valid for any C2-regular function h)

h(1)− h(0) = h′(1)−
ˆ 1

0
th′′(t)dt

to h(t) = H(µεt |m) and use (5.3.6a), (5.3.6b), (5.3.2a) neglecting the Hessian term in the last
one, we get

(6.3.9) H(µε1 |m)−H(µε0 |m) ≤
ˆ
〈∇ρε1,∇ϑε1〉dm−K

¨ 1

0
t
(
|∇ϑεt |2 +

ε2

4
|∇ log ρεt |2

)
ρεtdtdm.

By the Cauchy-Schwarz inequality and the definition of Fisher information, the first term on
the right-hand side can be estimated as

ˆ
〈∇ρε1,∇ϑε1〉 dm ≤

√ˆ
|∇ϑε1|2dµ1

√
I(µ1 |m)

and, under the additional regularity assumptions on X and ρ0, ρ1, Lemma 6.3.5 can be
strengthened as follows:

t 7→
ˆ (
|∇ϑεt |2 −

ε2

4
|∇ log ρεt |2

)
ρεtdm

is well defined on [0, 1] and constant therein; this is immediately seen by observing that
t 7→
´
〈∇f εt ,∇gεt 〉 dm now belongs to AC([0, 1]). Therefore

ˆ
|∇ϑε1|2dµ1 = Qε +

ε2

4
I(µ1 |m),

Qε being defined as the constant value of (6.3.5), and by (6.3.7) together with the finiteness
of I(µ1 |m) we deduce that

(6.3.10) lim
ε↓0

ˆ
|∇ϑε1|2dµ1 = W 2

2 (µ0, µ1).

For the second integral on the right-hand side in (6.3.9), by Lemma 6.3.5 we are allowed to
pass to the limit as ε ↓ 0 and we get −K

2 W
2
2 (µ0, µ1). This fact and (6.3.10) entail (6.3.8).

It remains to remove the regularity assumptions on ρ0 and ρ1. To this aim, let us first
assume that ρ0, ρ1 are bounded away from 0 and define

µki :=
(
h1/kρi

)
m for i = 0, 1,

noticing that (6.3.8) applies to µk0, µ
k
1. It is easy to see that W2(µk0, µ

k
1) → W2(µ0, µ1),

H(µk0 |m) → H(µ0 |m) and H(µk1 |m) → H(µ1 |m) as k → ∞; as regards the Fisher in-
formation, if µ1 /∈ D(I(· |m)) there is nothing to prove, so that without loss of generality we
can assume I(µ1 |m) < ∞ and by the regularizing properties of the heat semigroup together
with the fact that ρ1 ≥ c for some c > 0 we get I(µk1 |m)→ I(µ1 |m) as k →∞.
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In order to get rid of the fact that ρ0, ρ1 are bounded away from 0 too, define

µki :=
(ˆ

ρki dm
)−1

ρkim, ρki := ρi +
1

k
for i = 0, 1

and observe that the converge of the Wasserstein distance and of the entropies are clear; for
the Fisher information, still assuming that I(µ1 |m) is finite, it is sufficient to observe that

lim sup
k→∞

I(µk1 |m) = lim sup
k→∞

ˆ
|∇ρ1|2

ρ1 + 1/k
dm ≤

ˆ
|∇ρ1|2

ρ1
dm = I(µ1 |m) ≤ lim inf

k→∞
I(µk1 |m)

where the second inequality is motivated by the lower semicontinuity of Fisher information
w.r.t. L1 convergence. �

Remark 6.3.7 (Lagrangian and Hamiltonian interpretation). From a heuristic point of view,
the expression of the constant quantity Qε (Lemma 6.3.5) can be deduced by standard argu-
ments in Lagrangian and Hamiltonian formalism. Indeed, motivated by the Benamou-Brenier
formula for the entropic cost provided by Theorem 5.4.3 let us consider the action functional

(6.3.11) A(ν, v) =

¨ 1

0

( |vt|2
2

+
ε2

8
|∇ log νt|2

)
νtdtdm

associated to the Lagrangian

L(ν, v) =

ˆ ( |v|2
2
ν +

ε2

8

|∇ν|2

ν

)
dm.

By means of Legendre’s transform, the corresponding Hamiltonian is given by

H(ν, p) =

ˆ ( |p|2
2ν
− ε2

8

|∇ν|2

ν

)
dm

and, at least formally, H is constant along the critical points of A. Since ρ0 and ρ1 are
prescribed, the Euler-Lagrange equation for (6.3.11) reads as

d

dt
νt + div(νtvt) = 0

d

dt
vt +

|vt|2

2
= −ε

2

8

(
2∆ log νt + |∇ log νt|2

)
and by Proposition 5.1.4 we know that these ‘PDEs’ are satisfied along (ρεt , ϑ

ε
t ). Finally, as in

the Hamiltonian p represents a momentum density, it is natural to set pt := νtvt. From these
considerations, the guess on the existence of a constant quantity and on its expression follows.

�

Remark 6.3.8. As regards Lemma 6.3.5 some further comments are worthwhile. First of
all, let us stress that by means of the newly discovered constant quantity Qε we are able to
improve (5.3.12b) to (6.3.6b). Secondly, by (6.2.21) and the first dynamic representation of
the entropic cost provided in Proposition 5.4.1 we already knew that

lim
ε↓0

¨ 1

0

(
|∇ϑεt |2 +

ε2

4
|∇ log ρεt |2

)
ρεtdtdm = W 2

2 (µ0, µ1).
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Lemma 6.3.5 is a refinement, because it separately determines the behaviour of current and
osmotic velocities as ε ↓ 0. From a different viewpoint, starting with the first dynamic repre-
sentation of the entropic cost provided in Proposition 5.4.1 and (6.3.6a), (6.3.6b) we get

lim
ε↓0

εIε(ρ0, ρ1) =
1

2
W 2

2 (µ0, µ1)

again, but with a different argument w.r.t. the one adopted in Remark 6.2.8. �
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Chapter 7

Second order differentiation formula
and applications

In this chapter the uniform estimates obtained in Chapter 5 and Lemma 5.3.5 on the vanishing
quantities are diffusely invoked once more together with the convergence results of Section 6.1
and 6.2, in order to establish the second order differentiation formula anticipated in the Intro-
duction (see Theorem 0.0.5 and the forthcoming Theorem 7.1.2 for an equivalent statement).
Some consequences and applications of it are then provided.

The second order differentiation formula is obtained in Section 7.1. This reads as a first
order differentiation formula for t 7→

´
〈∇f,∇φt〉 dµt, so that it is completely natural to ask

whether ∇f can be replaced by a general vector field: the answer is affirmative and this is
done in Corollary 7.1.3 along the same lines of Theorem 7.1.2.

As regards the applications of Theorem 7.1.2, we present where and how our main result
can be used in the proof of the splitting theorem to simplify the strategy, after having recalled
the various achievements on the subject and the structure of the paper [55].

7.1 Proof of the main theorem

We start with the following simple continuity statement:

Lemma 7.1.1. With the same assumptions and notation as in Setting 5.1.3, let t 7→ µt = ρtm
be the W2-geodesic from µ0 to µ1 and (ϕt)t∈(0,1] and (ψt)t∈[0,1) any couple of limit functions
given by Proposition 6.1.1.

Then the maps

(0, 1] 3 t 7→ ρt dϕt ∈ L2(T ∗X)
[0, 1) 3 t 7→ ρt dψt ∈ L2(T ∗X)
(0, 1] 3 t 7→ ρt dϕt ⊗ dϕt ∈ L2((T ∗)⊗2X)
[0, 1) 3 t 7→ ρt dψt ⊗ dψt ∈ L2((T ∗)⊗2X)

are all continuous w.r.t. the strong topologies.

proof By Lemma 1.2.8 we know that for any p <∞ we have ρs → ρt in Lp(m) as s→ t and
thus in particular √ρs →

√
ρt as s→ t. Moreover, the compactness of the supports of ρ0 and

ρ1 implies that there exist x̄ ∈ X and R > 0 such that supp(ρt) ⊂ BR(x̄) for all t ∈ [0, 1].
Recalling Lemma 2.2.1, consider a cut-off function χ ∈ Test∞(X) with support in BR+1(x̄)
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such that χ ≡ 1 in BR(x̄). The closure of the differential and the fact that χϕs → χϕt weakly
in W 1,2(X) as s→ t > 0 (as a consequence of (χϕt) ∈ C((0, 1], C(X)) ∩ L∞loc((0, 1),W 1,2(X)),
see Proposition 6.2.1) grant that d(χϕs) → d(χϕt) weakly in L2(T ∗X) and thus χdϕs →
χdϕt too. Together with the previous claim about the densities, the fact that the latter are
uniformly bounded in L∞(m) and how χ is constructed, this is sufficient to conclude that
t 7→ √ρtdϕt ∈ L2(T ∗X) is weakly continuous.

We now claim that t 7→ √ρtdϕt ∈ L2(T ∗X) is strongly continuous and to this aim we show
that their L2(T ∗X)-norms are constant. To see this, recall that by Proposition 6.2.1 we know
that for t ∈ (0, 1] the function −(1− t)ψt is a Kantorovich potential from µt to µ1 while from
(6.1.3) and the locality of the differential we get that |dϕt| = |dψt| µt-a.e., thus by point (iii)
in Theorem 1.2.6 we have that

ˆ
|dϕt|2ρt dm =

1

(1− t)2

ˆ
|d(1− t)ψt|2ρt dm =

1

(1− t)2
W 2

2 (µt, µ1) = W 2
2 (µ0, µ1).

Multiplying the √ρtdϕt’s by √ρt and using again the L2(m)-strong continuity of √ρt and
the uniform L∞(m)-bound we conclude that t 7→ ρtdϕt ∈ L2(T ∗X) is strongly continuous, as
desired.

To prove the strong continuity of t 7→ ρt dϕt⊗dϕt ∈ L2((T ∗)⊗2X) we argue as in Corollary
6.2.6: the strong continuity of t 7→ √ρtdϕt ∈ L2(T ∗X) and the fact that these are, locally in
t ∈ (0, 1], uniformly bounded (thanks again to supp(ρt) ⊂ BR(x̄) for all t ∈ [0, 1]), grant both
that t 7→ ‖ρtdϕt ⊗ dϕt‖L2((T ∗)⊗2X) is continuous and that t 7→ ρtdϕt ⊗ dϕt ∈ L2((T ∗)⊗2X) is
weakly continuous.

The claims about the ψt’s follow in the same way. �

We now have all the tools needed to prove our main result. Notice that we shall not make
explicit use of Theorem 0.0.6 but rather reprove it for (the restriction to [δ, 1− δ] of) entropic
interpolations.

Theorem 7.1.2. Let (X, d,m) be a RCD∗(K,N) space with K ∈ R and N ∈ [1,∞). Let
µ0, µ1 ∈P2(X) be such that µ0, µ1 ≤ Cm for some C > 0, with compact supports and let (µt)
be the unique W2-geodesic connecting µ0 to µ1. Also, let h ∈ H2,2(X).

Then the map

[0, 1] 3 t 7→
ˆ
hdµt ∈ R

belongs to C2([0, 1]) and the following formulas hold for every t ∈ [0, 1]:

d

dt

ˆ
hdµt =

ˆ
〈∇h,∇φt〉 dµt,

d2

dt2

ˆ
hdµt =

ˆ
Hess(h)(∇φt,∇φt) dµt,

(7.1.1)

where φt is any function such that for some s 6= t, s ∈ [0, 1], the function −(s − t)φt is a
Kantorovich potential from µt to µs.

proof For the given µ0, µ1 introduce the notation of Setting 5.1.3 and then find εn ↓ 0 such
that (ϕεnt ), (ψεnt ) converge to limit curves (ϕt), (ψt) as in Proposition 6.1.1.

By Lemma 1.2.7 we know that the particular choice of the φt’s as in the statement does
not affect the right hand sides in (7.1.1), we shall therefore prove that such formulas hold for
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the choice φt := ψt, which is admissible thanks to Proposition 6.2.1 whenever t < 1. The case
t = 1 can be achieved swapping the roles of µ0, µ1 or, equivalently, with the choice φt = −ϕt
which is admissible for t > 0.

Fix h ∈ H2,2(X) with compact support and for t ∈ [0, 1] set

In(t) :=

ˆ
hdµεnt I(t) :=

ˆ
hdµt.

The bound (5.2.6) grants that the In’s are uniformly bounded and the convergence in (6.1.2)
that In(t)→ I(t) for any t ∈ [0, 1].

Since (ρεnt ) ∈ ACloc((0, 1),W 1,2(X)) we have that In ∈ ACloc((0, 1)) and, recalling the
formula for d

dtρ
ε
t given by Proposition 5.1.4, that

(7.1.2)
d

dt
In(t) =

ˆ
h

d

dt
ρεnt dm = −

ˆ
hdiv(ρεnt ∇ϑ

εn
t )dm =

ˆ
〈∇h,∇ϑεnt 〉 ρ

εn
t dm.

The fact that ϑt = ψt−ϕt
2 , the compactness of supp(h) and the bounds (5.2.6) and (5.2.10a)

ensure that
∣∣ d

dtIn(t)
∣∣ is uniformly bounded in n and t ∈ [t0, t1] ⊂ (0, 1) and the compactness

of supp(h) also allows us to use the convergence properties (6.2.15) and (6.1.2), which grant
that ¨ t1

t0

〈∇h,∇ϑεnt 〉 ρ
εn
t dt dm →

¨ t1

t0

〈∇h,∇ϑt〉 ρt dtdm.

This is sufficient to pass to the limit in the distributional formulation of d
dtIn(t) and taking

into account that I ∈ C([0, 1]) we have just proved that I ∈ ACloc((0, 1)) with

(7.1.3)
d

dt
I(t) =

ˆ
〈∇h,∇ϑt〉 ρt dm

for a.e. t ∈ [0, 1]. Recalling that ϑt = ψt−ϕt
2 , (6.1.3) and the locality of the differential we see

that

(7.1.4) ∇ϑt = ∇ψt ρtm-a.e. ∀t ∈ [0, 1),

and thus by Lemma 7.1.1 we see that the right hand side of (7.1.3) has a continuous repre-
sentative in t ∈ [0, 1), which then implies that I ∈ C1([0, 1)) and that the first in (7.1.1) holds
for any t ∈ [0, 1).

For the second derivative we assume in addition that h ∈ Test∞(X). Then we recall that
(ρεnt ) ∈ ACloc((0, 1),W 1,2(X)) and (ϑεnt ) ∈ ACloc((0, 1),W 1,2(X, e−Vm)) with V = Md2(·, x̄)
for some x̄ ∈ X and M > 0 sufficiently large. Consider the rightmost side of (7.1.2) to get
that d

dtIn(t) ∈ ACloc((0, 1)) and

d2

dt2
In(t) =

ˆ
〈∇h,∇ d

dt
ϑεnt 〉ρ

εn
t + 〈∇h,∇ϑεnt 〉

d

dt
ρεnt dm

for a.e. t, so that defining the ‘acceleration’ aεt as

(7.1.5) aεt := −
(ε2

4
∆ log ρεt +

ε2

8
|∇ log ρεt |2

)
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and recalling the formula for d
dtϑ

ε
t given by Proposition 5.1.4 we have

d2

dt2
In(t) =

ˆ
〈∇h,∇

(
− 1

2
|∇ϑεnt |2 + aεnt

)
〉ρεnt − 〈∇h,∇ϑ

εn
t 〉 div(ρεnt ∇ϑ

εn
t ) dm

=

ˆ (
− 1

2
〈∇h,∇|∇ϑεnt |2〉+ 〈∇(〈∇h,∇ϑεnt 〉),∇ϑ

εn
t 〉+ 〈∇h,∇aεnt 〉

)
ρεnt dm

(by (1.2.21)) =

ˆ
Hess(h)(∇ϑεnt ,∇ϑ

εn
t )ρεnt dm−

ˆ (
∆h+ 〈∇h,∇ log ρεnt 〉

)
aεnt ρ

εn
t dm.

Since ϑεt =
ψεt−ϕεt

2 and Hess(h) ∈ L2(T ∗⊗2X) with compact support, up to multiply ∇ϑεt by a
cut-off function χ identically equal to 1 on supp(h) we can apply the limiting property (6.2.15)
and thus, taking also (6.1.2) into account, we see that
ˆ

Hess(h)(∇ϑεnt ,∇ϑ
εn
t )ρεnt dm

n→∞→
ˆ

Hess(h)(∇ϑt,∇ϑt)ρt dm in L1
loc(0, 1)

and since |∇h|,∆h ∈ L∞(X), by Lemma 5.3.5 we deduce that
ˆ (

∆h+ 〈∇h,∇ log ρεnt 〉
)
aεnt ρ

εn
t dm → 0 in L1

loc(0, 1).

Hence we can pass to the limit in the distributional formulation of d2

dt2
In to obtain that

d
dtI ∈ ACloc((0, 1)) and

(7.1.6)
d2

dt2
I(t) =

ˆ
Hess(h)(∇ϑt,∇ϑt)ρt dm

for a.e. t. Using again (7.1.4) and Lemma 7.1.1 we conclude that the right hand side of (7.1.6)
is continuous on [0, 1), so that I ∈ C2([0, 1)) and the second in (7.1.1) holds for every t ∈ [0, 1).

It remains to remove the assumptions that h has compact support and h ∈ Test∞(X).
Starting with the former, pick h ∈ Test∞(X) and a cut-off function χR ∈ Test∞(X) with
support in BR+1(x̄) and such that χR ≡ 1 in BR(x̄) for some x̄ ∈ X. Set hR := χRh and
observe that the boundedness of ‖|∇χR|‖L∞(m) and ‖∆χR‖L∞(m) w.r.t. R implies that hR → h
in W 1,2(X) and ∆hR → ∆h in L2(m), so that the bound (1.2.18) grants that hR → h in
W 2,2(X). Since Test∞(X) is an algebra, hR ∈ Test∞(X) for every R > 0, thus the conclusion
of the theorem holds for the hR’s.

Now notice that we can choose the φt’s to be uniformly Lipschitz (e.g. by taking φt := ψt
for t ≥ 1/2 and φt := −ϕt for t < 1/2). The uniform L∞ estimates (1.2.27), the fact that all
the densities ρt are supported in a compact set B independent of t ∈ [0, 1], the equi-Lipschitz
continuity of φt therein (Proposition 5.2.3) and the L2-convergence of hR,∇hR,Hess(hR) to
h,∇h,Hess(h) respectively grant that as R→∞ we have that

ˆ
hR dµt →

ˆ
hdµtˆ

〈∇hR,∇φt〉 dµt →
ˆ
〈∇h,∇φt〉 dµtˆ

Hess(hR)(∇φt,∇φt) dµt →
ˆ

Hess(h)(∇φt,∇φt) dµt

uniformly in t ∈ [0, 1]. This is sufficient to overcome the first assumption.
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In order to remove also the second one, i.e. the fact that h ∈ Test∞(X), pick h ∈ H2,2(X)
and put hs := hsh, where hs is the mollified heat flow introduced in (2.2.2). As already
remarked in the proof of Lemma 2.2.1, as s ↓ 0 we have hs → h in W 1,2(X) and ∆hs → ∆h
in L2(m). Thus the bound (1.2.18) grants that hs → h in W 2,2(X). Furthermore, still by
what pointed out in Lemma 2.2.1 we know that hs ∈ Test∞(X) for every s > 0, so that the
conclusion of the theorem hold for the hs’s. Now it is sufficient to argue as just done above
and the conclusion follows. �

A natural generalization of (7.1.1) is then given by the following result.

Corollary 7.1.3. Let (X, d,m) be a RCD∗(K,N) space with K ∈ R and N ∈ [1,∞). Let
µ0, µ1 ∈P2(X) be such that µ0, µ1 ≤ Cm for some C > 0, with compact supports and let (µt)
be the unique W2-geodesic connecting µ0 to µ1. Let (φt) be any curve of functions such that
for some s 6= t, s ∈ [0, 1], the function −(s − t)φt is a Kantorovich potential from µt to µs.
Also, let W ∈ H1,2

C (TX).
Then the map

[0, 1] 3 t 7→
ˆ
〈W,∇φt〉dµt ∈ R

belongs to C1([0, 1]) and the following formula holds for every t ∈ [0, 1]:

(7.1.7)
d

dt

ˆ
〈W,∇φt〉dµt =

ˆ
〈∇∇φtW,∇φt〉dµt.

proof As in the proof of Theorem 7.1.2, for the given µ0, µ1 introduce the notation of Setting
5.1.3 and then find εn ↓ 0 such that (ϕεnt ), (ψεnt ) converge to limit curves (ϕt), (ψt) as in
Proposition 6.1.1. Furthermore, we know that it is enough to show that (7.1.7) holds for the
choice φt := ψt, which is admissible thanks to Proposition 6.2.1 whenever t < 1. The case
t = 1 can be achieved swapping the roles of µ0, µ1 or, equivalently, with the choice φt = −ϕt
which is admissible for t > 0.

Suppose for the moment that W = g∇h for some g, h ∈ Test∞(X) with h compactly
supported and, in analogy with the proof of Theorem 7.1.2, define

Jn(t) :=

ˆ
g〈∇h,∇ϑεnt 〉dµ

εn
t J(t) :=

ˆ
g〈∇h,∇φt〉dµt.

For the same reasons explained above for d
dtIn, Jn ∈ ACloc((0, 1)) with

d

dt
Jn(t) =

ˆ
g〈∇h,∇ d

dt
ϑεnt 〉ρ

εn
t + g 〈∇h,∇ϑεnt 〉

d

dt
ρεnt dm

for a.e. t, so that defining the ‘acceleration’ aεt as in (7.1.5) and recalling the formula for d
dtϑ

ε
t

given by Proposition 5.1.4 we have
d

dt
Jn(t) =

ˆ
g〈∇h,∇

(
− 1

2
|∇ϑεnt |2 + aεnt

)
〉ρεnt − g 〈∇h,∇ϑ

εn
t 〉 div(ρεnt ∇ϑ

εn
t ) dm

=

ˆ (
− 1

2
g〈∇h,∇|∇ϑεnt |2〉+ 〈∇(g 〈∇h,∇ϑεnt 〉),∇ϑ

εn
t 〉
)
ρεnt dm

+

ˆ
g 〈∇h,∇aεnt 〉 ρ

εn
t dm

(by (1.2.21)) =

ˆ (
Hess(h)(∇ϑεnt ,∇ϑ

εn
t ) + 〈∇g,∇ϑεnt 〉 〈∇h,∇ϑ

εn
t 〉
)
ρεnt dm

−
ˆ (

g∆h+ g 〈∇h,∇ log ρεnt 〉+ 〈∇g,∇h〉
)
aεnt ρ

εn
t dm.
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Arguing as in Theorem 7.1.2 (since |∇h|,∆h, g, |∇g| ∈ L∞(m)) and taking into account that
by (1.2.22) the covariant derivative ofW = g∇h is given by ∇W = ∇g⊗∇h+g(Hess(h))], we
can pass to the limit in the distributional formulation of d

dtJn to obtain that J ∈ ACloc((0, 1))
and

d

dt
J(t) =

ˆ
〈∇∇ϑtW,∇ϑt〉dµt

for a.e. t. Using (7.1.4) and Lemma 7.1.1 we conclude that the right hand side above is
continuous on [0, 1), so that J ∈ C1([0, 1)) and (7.1.7) holds for every t ∈ [0, 1).

The compactness assumption on supp(h) can be removed as in Theorem 7.1.2 as well as
∆g,∆h ∈ L∞(m), thus only assuming g, h ∈ Test(X). By linearity, (7.1.7) now holds for any
W ∈ TestV(X).

For the general case, pick W ∈ H1,2
C (TX) and notice that by definition of H1,2

C (TX) there
exists a sequence (Wn)n ⊂ TestV(X) converging to W in W 1,2

C (TX) such that (7.1.7) holds
for the Wn’s. Therefore, arguing as in the end of Theorem 7.1.2 we have that

ˆ
〈Wn,∇φt〉 dµt →

ˆ
〈W,∇φt〉 dµtˆ

〈∇∇φtWn,∇φt〉 dµt →
ˆ
〈∇∇φtW,∇φt〉 dµt

uniformly in t ∈ [0, 1] and this is sufficient to conclude. �

As a concluding remark, in the proof of Theorem 7.1.2 the final part shows that H2,2(X)
can also be defined as theW 2,2(X)-closure of the functions in Test∞(X) with compact support.
Similarly, by Corollary 7.1.3 H1,2

C (X) can be equivalently introduced as theW 1,2
C (X) closure of

all finite sums of objects of the following kind: gi∇fi with fi, gi ∈ Test∞(X) and fi compactly
supported.

7.2 The splitting theorem

For the understanding of this section, only two new notions need to be introduced: line and
Busemann function. Although they are meaningful in a purely metric setting, we shall present
them in the case of a RCD∗(0, N) space (X, d,m).

A curve γ : R→ X is a line provided

d(γt, γs) = |t− s|, ∀t, s ∈ R

and to a line we can associate the Busemann function b : X→ R as follows

b(x) := lim
t→+∞

t− d(x, γt).

At a first sight only the forward time direction is involved in this definition and b seems to
be associated only to the positive half-line (γt)t≥0, but thanks to the RCD∗(0, N) assumption
b ≡ −b− on supp(m) (see Theorem 4.11 of [55]), where

b−(x) := lim
t→+∞

t− d(x, γ−t),

so that the geometric information of b− is encoded in b.
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7.2.1 Overview of the paper

In [30] Cheeger and Gromoll proved the celebrated splitting theorem in its original Riemannian
version, which was later generalized by Cheeger and Colding (see [29]) to the class of spaces
which are measured Gromov-Hausdorff limits of smooth Riemannian manifolds. After the
introduction of Lott-Sturm-Villani’s synthetic curvature-dimension condition CD(K,N) ([86],
[115], [116]) and Ambrosio-Gigli-Savaré’s RCD(K,∞) condition ([7]), the question became
whether the splitting theorem would hold in the new framework of CD(0, N) and RCD(0, N)
spaces too. In the former a counter-example was built by Cordero-Erausquin, Sturm and
Villani (see the last theorem in [121]) while the answer is affirmative for the RCD case, as
stated in the theorem below, and was given by Gigli in [55].

Theorem 7.2.1. Let (X, d,m) be a RCD∗(0, N) space with N <∞ and assume that supp(m)
contains a line. Then (X, d,m) is isomorphic (that is, there exists a measure preserving isom-
etry) to the product of the Euclidean line (R, dEucl,L

1) and another space (X′, d′,m′), where
the product distance d′ × dEucl is defined as

(7.2.1) d′ × dEucl((x
′, t), (y′, s)) :=

√
d′(x′, y′)2 + |t− s|2, ∀x′, y′ ∈ X′, t′, s′ ∈ R.

Moreover:

- if N ≥ 2, then (X′, d′,m′) is a RCD∗(0, N − 1) space,

- if N ∈ [1, 2), then X′ is just a point.

We address the reader to [55] for a detailed overview on the history of the splitting theorem,
its several variants and generalizations and the literature on the subject. Here we focus our
attention on the proof of Theorem 7.2.1 and how Theorem 7.1.2 can simplify it. To this aim,
let us quickly sketch the strategy adopted in [55] and stress the fact that at that time second
order differential calculus on RCD spaces had not been developed yet, so that a notion of
Hessian was not available nor the Bochner identity. Main steps in the non-smooth approach
to the splitting theorem are the following, which actually coincide with the chapters of [55]:

(i) Multiples of b are Kantorovich potentials: thanks to this first step a bridge between the
gradient flow of b and optimal transport is created, because Wasserstein geodesics can
be built via the push-forward of any measure µ ∈P2(X) through the gradient flow of b
and this makes possible to use the RCD∗(0, N) condition.

(ii) The gradient flow of b is measure-preserving: if we denote by t 7→ Ft a gradient flow
of b, then by the previous step t 7→ (Ft)∗µ is a W2-geodesic. Using the fact that the
Rényi entropy (1.2.1) is geodescally convex on (P2(X),W2) together with the first order
differentiation formula contained in Theorem 0.0.4 and showing that ∆b = 0, it follows
that HN (µ |m) ≤ HN ((Ft)∗µ |m). Noticing that t 7→ F−t is a gradient flow of −b the
opposite inequality then follows and by the arbitrariness of µ ∈ P2(X) we get that
(Ft)∗m = m for every t ∈ R.

(iii) The gradient flow of b preserves the distance: arguing as in the previous step and keeping
the same notation, we deduce that for all f ∈W 1,2(X) and t ∈ R it holds f◦Ft ∈W 1,2(X)
with |∇(f ◦ Ft)| ≤ |∇f | ◦ Ft m-a.e. Then the Sobolev-to-Lipschitz property allows to
translate this Sobolev information into a metric one.
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(iv) The quotient space isometrically embeds into the original one: having a well defined
gradient flow of b on the whole supp(m) allows to consider the quotient X′ of X w.r.t.
the orbits t 7→ Ft; the quotient distance d′ and measure m′ follow naturally. In this
part the crucial result is the fact that the natural projection π : supp(m) → X′ has an
isometric embedding ι as right inverse.

(v) “Pythagoras’ theorem” holds: by means of ι and arguing in duality with Sobolev functions
it is possible to show that d splits according to (7.2.1).

(vi) The quotient space has dimension N−1: by all the previous steps we know that (X, d,m)
splits as the product of (R, dEucl,L

1) and a RCD∗(0, N) space (X′, d′,m′), so that it
remains to prove that (X′, d′,m′) is actually a RCD∗(0, N − 1) space if N ≥ 2 or is just
a point if N ∈ [1, 2).

7.2.2 Application of the main theorem

The second order differentiation formula comes into play in the third chapter of [55], enabling a
direct proof of the fact that the gradient flow of the Busemann function preserves the distance.
In fact, using an argument which closely follows the first step in the proof of Proposition 6.2.1,
we can describe the behaviour of the Busemann function along geodesics.

Theorem 7.2.2. Let (X, d,m) be a RCD∗(0, N) space with N ∈ [1,∞). Then b is geodesically
affine, i.e. for all x, y ∈ X there exists a geodesic γ connecting them such that t 7→ b(γt) is
affine.

proof Let x, y ∈ X, r > 0, define

µrx :=
1

m(Br(x))
m|Br(x)

µry :=
1

m(Br(y))
m|Br(y)

and let (µrt ) be the only W2-geodesic from µrx to µry. Since µrx, µry have compact support, there
exist x̄ ∈ X and R > 0 sufficiently large such that

supp(µrt ) ⊂ BR(x̄), ∀t ∈ [0, 1].

Thus let χ ∈ Test∞(X) be a cut-off function (Lemma 2.2.1) with bounded support such
that χ ≡ 1 in BR(x̄). Now recall that b ∈ W 1,2

loc (X) and ∆b = 0, as proved in [55], so
that χb ∈ D(∆); by (1.2.18) this implies that χb ∈ H2,2(X) with Hess(χb) = 0. Therefore,
applying Theorem 7.1.2 to h = χb and (µrt ) and noticing that χb = b m-a.e. in supp(µrt ) by
construction, we get that

[0, 1] 3 t 7→
ˆ

b dµrt ∈ R

is affine. In order to localize this information by passing to the limit as r ↓ 0, let πr be the
only lifting of (µrt ) (recall point (i) of Theorem 1.2.6) and observe that

sup
r∈(0,1)

¨ 1

0
|γ̇t|2dtdπr(γ) <∞

because W2(µrx, δx) → 0 and W2(µry, δy) as r ↓ 0: this implies that the lifting (πr) is tight in
P(C([0, 1],X)). Hence, up to pass to a suitable subsequence, not relabeled, we can assume that
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(πr) weakly converges to some π ∈P(C([0, 1],X)) concentrated on Geo(X) with (e0)∗π = δx
and (e1)∗π = δy.

Since geodesics are essentially unique in finite-dimensional RCD∗(K,N) spaces, in the sense
of point (iv) of Theorem 1.2.6, we deduce that for all x ∈ X the following holds: for m-a.e.
y ∈ X there exists a (unique) geodesic γ from x to y such that t 7→ b(γt) is affine. To get
rid of the ‘a.e.’ quantification fix x, y ∈ X and let (yn) be such that yn → y as n → ∞ and
t 7→ b(γnt ) is affine for a suitable geodesic joining x and yn; observing that (γn) is relatively
compact in C([0, 1],X), by the Ascoli-Arzelà theorem there exist a convergent subsequence
and a limit curve γ connecting x and y, which is actually a geodesic. It is now easy to see that
t 7→ b(γt) is affine. �

The fact that the gradient flow of b is an isometry is now a consequence of the following
result, proved by Sturm in [117] and here adapted to our purposes: if (X, d,m) is a RCD∗(0, N)
space with N ∈ [1,∞) and f : X → R is a continuous and geodesically convex function with
at most quadratic decrease, then for all x ∈ X there exists a unique EVI-gradient flow (xt) of
f starting at x. Since it is well known that EVI-gradient flows are contractive, i.e.

d(xt, yt) ≤ d(x0, y0) ∀x0, y0 ∈ X, t > 0

where (xt) and (yt) are the EVI-gradient flows of f starting at x0 and y0 respectively, and b is
both geodesically convex and concave by the theorem above, it is sufficient to apply Sturm’s
result to b and −b to get

(7.2.2) d(xt, yt) = d(x0, y0) ∀x0, y0 ∈ X, t > 0.

Indeed, by uniqueness of the gradient flows of b and −b, for all T > 0 the gradient flow (xt)
of b starting at x0 and the gradient flow (x′t) of −b starting at xT are linked via the identity
xt = x′T−t for all t ∈ [0, T ]; plugging this information into the contraction estimate for (x′t) we
get

d(x0, y0) ≤ d(xt, yt) ∀x0, y0 ∈ X, t > 0

whence (7.2.2).
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Appendix A

Auxiliary results

In this part we recall some definitions and general facts about Γ-convergence, selection and
disintegration theorems (both from an analytic and probabilistic point of view) and Markov
processes.

A.1 Γ-convergence

A sequence of functions fk : Y → R on a metric space (Y, dY) Γ-converges to f , and we shall
write Γ− limk→∞ f

k = f , if:

(a) for all y ∈ Y and for all sequence yn → y, lim infk→∞ f
k(yk) ≥ f(y);

(b) for all y ∈ Y there exists a sequence y′k → y such that lim supk→∞ f
k(y′k) ≤ f(y).

In the case the sequence (fk) is equi-coercive, i.e. for any c ∈ R there exists a compact set
Kc ⊂ Y such that {fk ≤ c} ⊂ Kc for all k ∈ N, and Γ− limk→∞ f

k = f , then:

(i) infY f is attained and
lim
k→∞

inf
y∈Y

fk(y) = min
y∈Y

f(y);

(ii) if infY f < ∞, then given a precompact sequence (yk) ⊂ Y such that limk→∞ f
k(yk) =

minY f every cluster point of (yk) is a minimizer of f .

A proof of these facts as well as a detailed presentation of the topic can be found, for instance,
in the monograph [39].

A.2 Selection and disintegration theorems

Given two arbitrary non-empty sets Y,Y′, by axiom of choice a multifunction F : Y → Y′

always admits a selector, i.e. a function s : Y → Y′ such that s(y) ∈ F (y) for every y ∈ Y.
But when does a measurable multifunction admit a measurable selector?

An answer is given by the Kuratowski-Ryll-Nardzewski selection theorem. In order to
state it, let Y be a non-empty set and A an algebra of sets on Y, i.e. a non-empty family
of subsets of Y which is closed under complementations and finite unions. We will denote by
Aσ the smallest family of subsets of Y containing A and closed under countable unions. If
we further consider a Polish space Y′, the graph of a multifunction F : Y → Y′ is defined by
{(y, y′) ∈ Y ×Y′ | y′ ∈ F (y)} and it is closed if F (y) is closed in Y′ for every y ∈ Y.
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Theorem A.2.1 (Kuratowski, Ryll-Nardzewski). Let Y be a non-empty set, A an algebra of
sets on Y and Aσ as above. Furthermore, let Y′ be a Polish space. Then every Aσ-measurable
multifunction F : Y → Y′ with closed graph admits a Aσ-measurable selector.

The second measure-theoretic topic of this section is the disintegration theorem. The reader
is addressed to the rich literature on the subject for a detailed discussion (see for instance
fremlin, dellacherie-meyer or the state of the art paper pachl), here we are only interested in
providing the notions needed for the understanding of the theorem statement and in presenting
conditional probabilities as disintegrations, since throughout the manuscript we occasionally
adopt a probabilistic point of view.

Definition A.2.2. Let (Y,F , µ) and (Y′,G , ν) be σ-finite measure spaces and let T : Y → Y′

be a measurable map. A (T, ν)-disintegration is a family {µy}y∈Y ′ of measures on F such that:

(i) for every y ∈ Y ′, µy is a σ-finite measure and µy({x ∈ Y |T (x) 6= y}) = 0 for ν-a.e.
y ∈ Y′, that is µy is concentrated on the fiber T−1({y});

(ii) for every non-negative µ-measurable function f on Y, the function y 7→
´

Y f dµy is
ν-measurable;

(iii) for every non-negative µ-measurable function f on Y, it holds
ˆ

Y
f dµ =

ˆ
Y′

( ˆ
Y
f(x)dµy(x)

)
dν(y).

When ν = T∗µ, a (T, ν)-disintegration is also called disintegration of µ w.r.t. T .

In the case µ, ν and every µy are probability measures, the disintegration {µy}y∈Y ′ is also
called (especially in probability) a regular conditional probability.

For the next statement, recall that a σ-algebra G is countably generated if there exists a
countable family of sets such that G coincides with the smallest σ-algebra containing such a
family.

Theorem A.2.3 (Disintegration). Let µ be a non-negative σ-finite regular Borel measure on
a metric space (Y, d) and let T be a measurable map from Y into (Y′,G , ν), where ν is non-
negative, σ-finite and such that T∗µ� ν. Assume that G is countably generated and contains
all singletons. Then:

(i) µ admits a (T, ν)-disintegration;

(ii) if {µy}y∈Y′ , {µ′y}y∈Y′ are two such disintegrations, then µy = µ′y for ν-a.e. y ∈ Y′;

(iii) if in addition T∗µ = ν, then µy is a probability measure for ν-a.e. y ∈ Y′.

We conclude the section with some applications of the disintegration theorem to push-
forward and relative entropy.

Let (Y, τ), (Y′, τ ′) be two Polish spaces endowed with their Borel σ-algebras, φ : Y → Y′

a Borel function, µ a probability measure on Y and ν a non-negative Radon measure on Y.
Assume that µ� ν. Then φ∗µ� φ∗ν with Radon-Nikodym derivative explicitly given by

dφ∗µ

dφ∗ν
(y′) =

ˆ
Y

dµ

dν
(y)dνy

′
(y) for φ∗ν-a.e. y′ ∈ Y′,
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where {νy′}y′∈Y′ denotes the disintegration of φ∗ν w.r.t. φ, or in probabilistic language (see the
forthcoming Appendix A.3 for a concise explanation of the parallelism between conditioning
and disintegration)

(A.2.1)
dφ∗µ

dφ∗ν
= Eν

[
dµ

dν

∣∣∣∣φ = ·
]

φ∗ν-a.e.

Moreover the following additivity property holds true

(A.2.2) H(µ | ν) = H(φ∗µ |φ∗ν) +

ˆ
Y′
H(µy

′ | νy′)dφ∗µ(y′)

and in particular this shows that entropy is decreasing under push-forward. In fact, as νy′ is a
probability measure for φ∗ν-a.e. y′ ∈ Y′, we see that H(φ∗µ |φ∗ν) ≤ H(µ | ν) for all µ ∈P(Y)
with equality if and only if

µy
′

= νy
′

for φ∗µ− a.e. y′ ∈ Y′.

The proof of both (A.2.1) and (A.2.2) can be found in [80].

A.3 Conditioning as disintegration

In probability conditioning is usually introduced via the abstract Kolmogorov approach, i.e.
given a probability space (Y,F ,P), an integrable random variable Z : Y → R and a σ-algebra
G ⊂ F , the conditional expectation of Z given G is denoted by EP[Z |G ] and defined as the
unique G -measurable integrable random variable such that

ˆ
A
Z dP =

ˆ
A
EP[Z |G ] dP, ∀A ∈ G

and, for any event A ∈ F , the conditional probability of A given G is defined as

P(A |G ) := EP[1A |G ].

Awareness is required, because inspite of the notations and of the names EP[Z |G ] and P(A |G )
are not scalars but random variables. If we further introduce a space with σ-algebra (Y′,Σ)
and a function f : Y → Y′, then

EP[Z | f ] := EP[Z |σ(f)] and P(A | f) := P(A |σ(f))

where σ(f) denotes the σ-algebra generated by f , i.e. the smallest σ-algebra that makes f
Σ-measurable. It is now tempting to define EP[Z | f = y′] := EP[Z | f ](y) and P(A | f = y′) :=
P(A | f)(y) with y ∈ f−1({y′}) arbitrarily chosen; the definition is actually meaningful, as
EP[Z | f ] and P(A | f) are P-a.e. constant on f−1({y′}), but P(· | f = y′) may fail to be a
measure and thus in general there is no reason for

(A.3.1) P(A ∩ f−1(B)) =

ˆ
B
P(A | f = y′)df∗P(y′), ∀A ∈ F , B ∈ Σ

to hold. When this identity is satisfied together with the following two conditions:
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(i) for every A ∈ F , y′ 7→ P(A | f = y′) is Σ-measurable;

(ii) for f∗P-a.e. y′ ∈ Y′, P(· | f = y′) is a probability measure;

then {P(· | f = y′)}y′∈Y′ is called a regular conditional probability. Notice that this definition
is perfectly in line with the notion of disintegration given in Appendix A.2, because point (iii)
of Definition A.2.2 is equivalent to (A.3.1).

Thus, if we are willing to sacrifice a little of the generality of Kolmogorov’s abstract defini-
tion, we can actually see conditioning as a disintegration procedure and in this way we surely
gain in rigour, always preserving that intuition so common in conditioning arguments.

A.4 Markov property

Let (Y,F ) be a space with σ-algebra. A family (Ft)t≥0 ⊂ F of σ-algebras is called a filtration
if it is increasing, that is

t ≤ s ⇒ Ft ⊂ Fs.

A stochastic process Z = (Zt)t≥0 on the measure space (Y,F ,P) is said to be (Ft)-adapted
if Zt is Ft-measurable for all t ≥ 0.

With this said a stochastic process Z is Markov w.r.t. the filtration (Ft)t≥0 if it is adapted
to the filtration and there exists a family of functions {p(s, x; t, I)}, called transition proba-
bilities, such that:

(i) for every I, (s, x, t) 7→ p(s, x; t, I) is Borel;

(ii) for every (s, x, t), I 7→ p(s, x; t, I) is a probability measure;

(iii) p(s, x; s, I) = δx(I);

(iv) the Chapman-Kolmogorov relation holds, i.e.

p(s, x; t, I) =

ˆ
R
p(s, x; r, dz)p(r, z; t, I), s < r < t;

(v) PR(Zt ∈ I |Fs) = p(s, Zs; t, I).

A standard choice for the filtration (Ft)t≥0 is the following: Ft is the smallest σ-algebra that
makes measurable all random variables Zs for 0 ≤ s ≤ t. With this choice P(· |Fs) is commonly
denoted by P(· |Z[0,s]), as already explained in Appendix A.3, and it is the disintegration of
P w.r.t. Z[0,s], Z[0,s] being defined as Z[0,s](y) := (Zr(y))0≤r≤s. On the other hand, what if we
disintegrate P w.r.t. Zs? Since the transition probability {p(s, x; t, ·)}x∈Y is nothing but the
disintegration of (Zs, Zt)∗P w.r.t. Zs, the Markov property encoded in property (v) above can
be equivalently restated in the following, more common way

P(· |Z[0,t]) = P(· |Zt).

A third characterization is actually possible: for every t ∈ [0, 1] it holds

P(Z[0,t] ∈ ·, Z[t,1] ∈ · |Zt) = P(Z[0,t] ∈ · |Zt)P(Z[t,1] ∈ · |Zt).
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In a nutshell this means that, conditionally on the present state of the system, future and past
are independent. By integration this identity yields

(A.4.1) EP[fg |Zt] = EhP [f |Zt]EhP [g |Zt]

for all t ∈ [0, 1] and f, g : Y → R which are Z[0,t] and Z[t,1]-measurable respectively.

Observe that the heat kernel on a RCD∗(K,∞) space satisfies requirements (i)− (v), thus
the Brownian motion defined in Section 5.1 is actually a Markov process.
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