
On calibrations for Lawson’s cones

Andrea Davini
Dipartimento di Matematica

Università di Pisa
via Buonarroti 2, 56100 Pisa (Italy)

e-mail: davini@dm.unipi.it

Abstract

In this paper a calibration method is recalled and applied to Lawson’s cones to
prove their minimality. The original proof of Bombieri, De Giorgi and Giusti is
reinterpreted and made simpler.
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1 Introduction

In 1968 Simons [13] established the regularity of area–minimizing hypersurfaces in
Rn up to n = 7. Moreover he showed that the cones

Ck,k =
{

(x, y) ∈ Rk ⊕ Rk | |x|2 = |y|2
}

are locally stable for k ≥ 4 and he raised the question whether they are a global
minima of the area functional. This was proved in 1969 by Bombieri, De Giorgi and
Giusti [4], thus providing a counterexample to regularity of minimal hypersurfaces
in dimensions larger than 7.
After that many other examples of minimal cones have been added by different
authors. These results can be summarized in the following

Theorem 1.1. In Rn = Rk ⊕ Rh let us consider the cone

Ck,h =
{

(x, y) ∈ Rk ⊕ Rh | |x|2 =
k − 1
h− 1

|y|2
}

with k, h ≥ 2. Then

(i) if n > 8, Ck,h is of minimal area;

(ii) if n = 8, Ck,h has mean curvature zero at every point except at the origin, wich
is singular, and it is of minimal area if and only if |k − h| ≤ 2.
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Point (i) of Theorem 1.1 was first proved in 1972 by H. B. Lawson [8]. In 1973
P. Simoes [12] used techniques related to those of Bombieri, De Giorgi and Giusti
and completed the characterization of minimal cones by adding to Lawson’s list the
cone C3,5 and by proving that the cone C2,6 is of mean curvature zero, but not a
global minimum for the area functional.
An elegant and simple proof of the minimality of Simons’ s cones (i.e. the cones
Ck,k for k ≥ 4) was given by M. Miranda [10] in 1977. In 1986 P. Concus and M.
Miranda [5], by using a technique introduced in [9] and the MACSYMA computer
programming system to perform the algebraic manipulations, were able to prove
the minimality of Lawson’s cones under the additional assumptions h + 4 < 5k and
(h, k) 6= (3, 5) (and the corresponding symmetric ones). By using the same tech-
nique, the minimality of all Lawson’s cones was reestablished in 1993 by D. Benarros
and M. Miranda [3]. The software Mathematica was used to carry out the calcula-
tions.

The purpose of this paper is to give another proof of Theorem 1.1. Our proof
is modeled on that of [4], which is reinterpreted in the framework of calibrations.
We eventually reduce to the study of a first order ODE and prove with elementary
calculus tools the existence of a suitable solution, thus simplifying the original proof,
where more sophisticated techniques were used in the study of a corresponding dif-
ferential system. We remark that our method is sufficiently general to apply to all
minimal Lawson’s cones, not only to Simons’s ones. Moreover, computations could
all be carried out by hand.

It will be convenient to consider a localized area functional of the form

A(S, B) :=
∫

B∩S
a dHn−1, (1)

where S and B are, respectively, an oriented Lipschitz hypersurface and a Borel set
contained in an open set Ω ⊂ Rn and a : Ω → R is a C1 positive function. We will
say that an oriented hypersurface S is minimal (for the functional A) if

A(S, U) ≤ A(T, U)

for every oriented hypersurface T which is homologous to S and agrees with it
outside some relatively compact open subset U of Ω (this means, roughly speaking,
that the union of T and S coincides in U with the boundary of some open subset
relatively compact in Ω). A necessary condition for A-minimality is that the first
variation of the area at S is null, that is

d
dt
A(Ft(S), U)|

t=0
= 0, (2)

whenever (Ft)t∈R is a smooth one-parameter family of diffeomorphisms of Rn such
that F0 = IdRn and spt (Ft−IdRn) ⊂ U for some relatively compact, open set U ⊂ Ω.
We say that S is critical for the functional A (briefly, A-critical) if (2) holds for any
choice of the family (Ft)t∈R.
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Let us now consider the following problem: we are explicitly given an oriented A-
critical hypersurface S and we want to prove it is minimal. How can we do that? It
is sufficient to exhibit a vector field ω such that:

(i) |ω| ≤ 1 on Ω;

(ii) ω = νS on S;

(iii) div (aω) = 0 on Ω,

where νS is the oriented unit normal along S. Such a vector field, if it exists, is called
a calibration for S (see [11]). From the existence of a calibration we easily obtain the
minimality of S. Indeed, take another oriented hypersurface T which is homologous
to S in some relatively compact open set U . We can apply the divergence theorem
to the open subset of U which is bounded by S and T and so, by taking into account
assumption (iii), we get that the flux of aω through the two hypersurfaces is equal,
that is ∫

T∩U
aω · νT dHn−1 =

∫

S∩U
a ω · νS dHn−1. (3)

This relation, together with assumptions (i) and (ii), implies that

A(T, U) ≥
∫

T∩U
aω · νT dHn−1 =

∫

S∩U
aω · νS dHn−1 = A(S, U), (4)

namely the minimality of S.
Yet, finding a calibration for a given surface is not in general an easy task, as there
are no standard techniques. In this paper we describe a method to build a calibration
and we explain how that can be applied to prove the minimality of the cones Ck,h.
The idea is to find a family (Sλ)λ∈R of pairwise disjoint oriented hypersurfaces such
that S0 = S and their union is Ω. We call such a family a foliation of Ω. Once we
have a foliation, we shall define ω by

ω(x) := νSλ
(x), (5)

where νSλ
is the unitary normal to the unique hypersurface passing through x. We

will prove that, if the hypersurfaces Sλ are all critical for the functional A, then
div (aω) = 0 and ω is therefore a calibration for S, as conditions (i) and (ii) are
trivially satisfied. A foliation consisting of A-critical hypersurfaces will be called
A-critical.
The method described above can be usefully applied to prove Theorem 1.1. The
area functional in this case is simply defined as in (1) with a = 1, and we look for
an A-critical foliation of Rn which includes the cone Ck,h. The fact that Ck,h is
invariant under the action of the group G := SO(k) × SO(h) suggests to look for
critical hypersurfaces with the same kind of simmetry. Observe that, for a regular
G-invariant hypersurface Σ, we have

Hn−1(Σ) = c

∫

Γ
uk−1vh−1 dH1(u, v)

where c is some constant depending only on k and h, u = |x|, v = |y| and Γ is
the curve contained in the first quadrant of the (u, v)-plane generating Σ under
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the action of G. Obviously, if Σ is critical for A, then Γ is critical for the length
functional

L(Γ) :=
∫

Γ
uk−1vh−1 dH1(u, v) (6)

defined for all curves Γ contained in R+⊕R+. Consequently an A-critical foliation of
Rn yields an L-critical foliation of R+⊕R+, and indeed also the converse is true (see
Section 4). Therefore the problem reduces to that of finding an L- critical foliation
of R+⊕R+ which contains γ, where γ is the half-line generating the cone Ck,h under
the action of G. Let us see, then, which is the condition that a curve must satisfy
to be critical. Let the curve be defined by the parametric equations

{
u = ez(t) cos t

v = ez(t) sin t.
(7)

If t ranges in the interval (a, b), the right hand side of (6) becomes

∫ b

a
e(n−1)z(cos t)k−1(sin t)h−1

√
1 + ż2 dt

and the associated Eulero-Lagrange equation is

z̈ = (1 + ż2)
[
(n− 1) +

(
d− (n− 2) cos(2t)

sin(2t)

)
ż

]
(8)

where d := k−h. We now observe that, if z(t) is a solution of (8), then z(t)+λ is a
solution too for every constant λ. That means that homothetic curves to a particu-
lar critical one of the form (7) are still critical. This remark suggests the following
strategy to build the desired foliation: first, we look for a particular critical curve of
the form (7), defined in [0, t0)∪(t0, π/2] and such that it tends asymptotically to the
half-line γ when t → t0 (where t0 is the angle formed by the u-axis with γ); then, we
take the family of critical curves given by all its homothetics together with γ, which
is critical too (see figure 1). It is easily seen that any point which does not lay on
the half-line γ will belong to one and only one of the homothetic curves. Therefore
such a family defines a foliation of R+ ⊕ R+, which is L-critical by construction.

We will see that such a solution of equation (8) exists if some relations between h
and k are satisfied, relations which turn out to be precisely those stated in Theorem
1.1. By means of this method, the existence of a calibration for each minimal cone
is thus proved.

This paper is organized as follows. In Section 2 we recall the main notations
used in the paper. In Section 3 we show how to pass from foliations to calibrations.
Section 4 contains the dimension reduction argument and in Section 5 we prove the
existence of a suitable solution of (8).

Acknowledgements.- The author wishes to thank Giovanni Alberti for having
explained the problem and the calibration method and, last, for his precious sug-
gestions during the preparation of this paper.
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Figure 1: All the homothetics to a particular solution give a foliation of Ω.

2 Notations and preliminary results

We write here a list of symbols used throughout this paper.

Ω open subset of Rn with Lipschitz boundary
sptf support of the function f
νγ(x) unitary normal to the curve γ in x
νS(x) unitary normal to the hypersurface S in x
Hn n−dimensional Hausdorff measure
U closure of the set U
Int(U) interior part of the set U
R+ set of non-negative real numbers

In the introduction we assumed that the area functional (1) was defined on Lipschitz
hypersurfaces. We need to enlarge the class of admissible surfaces in order to include
the cones. This can be done by considering boundaries of sets of locally finite
perimeter. A set E is said to be of locally finite perimeter in Ω if its characteristic
function χE belongs to L1

loc(Ω) and has distributional derivative DχE which is a
Radon vector-valued measure in Ω. In this setting a hypersurface is seen as the
boundary (in an appropriate measure theoretic sense) of a set E of locally finite
perimeter and indeed the measure DχE is the (n−1)-dimensional Hausdorff measure
restricted to that boundary times its unit inward normal. For the purpose of this
paper we do not need to enter into the details of this theory (which can be found
for instance in [6]). We just observe that we will deal with “nice” sets and for
them this measure theoretic definition of boundary coincides with the usual one.
Therefore in the sequel with the word hypersurface we will refer to the boundary
(in the usual set theoretic sense) of a set of locally finite perimeter, in particular to
a closed subset of Ω which is, up to an Hn−1-negligible set, an oriented Lipschitz
manifold of codimension one and with no boundary. The area functional given by
(1) is assumed to be defined on this enlarged family of hypersurfaces. Moreover, we
say that the hypersurface S (which is the boundary of some set E) is minimal for

5



the functional A if
A(S, U) ≤ A(T, U)

for every hypersurface T which is the boundary of a set L that agrees with E outside
some relatively compact open subset U of Ω. Observe that this means that the two
hypersurfaces agree outside U and their union coincides in U with the boundary of
the symmetric difference between E and L, and therefore they are, in some sense,
“homologous” one to the other.
Last, we need to verify that in this new framework the existence of a calibration for
a certain hypersurface is sufficient to guarantee its minimality. In the introduction
this was proved only for globally Lipschitz surfaces, but one easily sees that all the
statements hold in this setting too, provided we can apply the divergence theorem
when two “homologous” hypersurfaces are compared. The following refined version
of the the divergence theorem is all we need to conclude.

Lemma 2.1. Let φ be a bounded vectorfield on Ω. Suppose there exist a closed
set N := N0 ∪ N1, where N0 is an Hn−1-negligible closed set and N1 a (possibly
disconnected) Lipschitz hypersurface, such that:

(i) φ is of class C1 and divφ = 0 on Ω \ (N0 ∪N1);

(ii) φ is continuous on Ω \N0.

Then the identity divφ = 0 holds distributionally on Ω too. Moreover, let the hyper-
surfaces S and T be the perimeters of two sets which agree outside some open and
relatively compact subset U of Ω. Then we have∫

S∩U
φ · νS Hn−1 =

∫

T∩U
φ · νT Hn−1. (9)

The previous lemma is a special case of Lemma 2.4 and Lemma 2.6 of [2], to which
we refer for the proof. We remark that this lemma will be of great utility in the
sequel too since it allows to work with calibrations and surfaces that are not neces-
sarily regular.

Throughout this paper we will denote by G the group of rotations SO(k)× SO(h)
on Rn = Rk ⊕ Rh and by γ the half-line in R+ ⊕ R+ which generates the cone Ck,h

under the action of G, namely

γ := {(u, v) |u =
√

(k − 1)/(h− 1) v }.

3 Calibrations through foliations

In this section we will denote by (Sλ)λ∈R a foliation of Ω and by ω be the vector
field defined by (5). We will clarify under which assumptions ω is a calibration for
the hypersurfaces Sλ.

Proposition 3.1. Let V be an open subset of Ω. Let f ∈ C2(V ) such that |Df(x)| 6=
0 for all x ∈ V and suppose that each Sλ agrees in V with the level set {x ∈
V | f(x) = λ }. If Sλ are critical for A, then

div
(

a
Df

|Df |
)

= 0 on V .
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Remark 3.2. Notice that, as Df is normal to the level sets of f , by the hypotheses
of Proposition 3.1 the vector field Df/|Df | coincides with ω on V . So, if the foliation
of Ω is formed by A-critical hypersurfaces that can be expressed (at least locally,
since the condition that a vector field is divergence-free is local) as level sets of a
non-zero gradient C2 function, Proposition 3.1 guarantees that the vector field a ω is
divergence-free and ω is therefore a calibration for each hypersurface of the foliation.

Remark 3.3. The previous proposition will be used together with Lemma 2.1 in
the following situation: let N0 and N1 be as in Lemma 2.1 and let (Sλ)λ∈R be
an A-critical foliation of Ω which satisfies the conditions of Proposition 3.1 with
V := Ω \ (N0 ∪ N1). Moreover, let us assume that the vector field ω, given by
the unitary normals to the hypersurfaces Sλ, is continuous on Ω \N0. Then ω is a
calibration for each Sλ. In fact, by applying Proposition 3.1, we get that div (aω) = 0
on Ω \ (N0 ∪N1). Hence we can apply Lemma 2.1 with φ := aω, which guarantees
that (3) and therefore (4) hold with S := Sλ, that is the claim.

The proof that follows is just an adaptation to our case of the proof of Theorem 4.6
in [1].

Proof: Let us indicate with φ the vector field aDf/|Df |. Take an x0 in V . As
|Df(x0)| 6= 0, by reordering the coordinates and by changing sign to f if necessary,
we may as well suppose that ∂f

∂xn
(x0) > 0. Writing x = (x′, s) ∈ Rn−1 × R, we

have immediately that the map (x′, s) 7→ (x′, f(x′, s)) is a diffeomorphism in a
neighborhood of x0. Consequently, for suitable open sets U ⊂ Rn, A ⊂ Rn−1 and
I ⊂ R, it admits an inverse map

A× I → U

(x′, λ) 7→ (x′, s(x′, λ))

which is a diffeomorphism. By deriving the relation s(x′, f(x′, s)) = s, we immedi-
ately obtain {

∂λs ∂sf = 1
Dx′s(x′, f(x′, s)) + ∂λsDx′f(x′, s) = 0.

(10)

Moreover, since f(x′, s(x′, λ)) = λ, we have, for fixed λ, that sλ(x′) := s(x′, λ) is a
parametrization of the hypersurface Sλ in U , hence

A(Sλ, U) =
∫

A
g(x′, sλ, Dx′s

λ) dx′, (11)

where g(x′, ξ, p) := a(x′, ξ)
√

1 + |p|2. From the criticality of Sλ we have that sλ

satisfies the Eulero-Lagrange condition for (11), that is

∂ξg(x′, sλ, Dx′s
λ) = divx′

(
∂pg(x′, sλ, Dx′s

λ)
)

. (12)

The vector field φ can be equivalently written in U as
{

φx′(x′, s) = −∂pg(x′, sλ(x′), Dx′s
λ(x′))

φs (x′, s) = g(x′, sλ(x′), Dx′s
λ(x′))− 〈∂pg(x′, sλ(x′), Dx′s

λ(x′)), Dx′s
λ(x′)〉
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where λ = f(x′, s). Let us compute now the divergence of the vector field φ at
the point (x′, s). All the following expressions are evaluated in x′, s = sλ(x′) and
p = Dx′s

λ(x′), with λ = f(x′, s). We have

divx′φ
x′ = −divx′

(
∂pg(x′, sλ, Dx′s

λ)
)
− 〈∂pξ g, ∂λsλ Dx′f〉 − 〈∂pp g ∂λ Dx′s

λ, Dx′f〉

and

∂sφ
s = ∂ξg ∂λsλ∂sf + 〈∂pg, ∂λ Dx′s

λ∂sf〉 − 〈∂pg, ∂λ Dx′s
λ ∂sf〉

− 〈∂pξg, ∂λsλ∂sf Dx′s
λ〉 − 〈∂ppg ∂λ Dx′s

λ, ∂sf Dx′s
λ〉.

When we sum up those terms, taking into account (10) and (12) everything simplifies
and we eventually obtain that divφ = divx′φ

x′ + ∂sφ
s = 0. Since x0 was arbitrarily

choosen and the divergence is a local operator we get the claim.

4 Dimension reduction

In this section we show how from a suitable L-critical foliation of R+ ⊕ R+ we can
obtain a foliation of Rn which contains the cone Ck,h. Moreover, we show that the
vector field given by the unitary normals to the hypersurfaces of the foliation defines
a calibration for the cone.
Let us suppose we have found a foliation (γλ)λ∈R of R+ ⊕ R+ via L-critical curves
and a function f : R+ ⊕ R+ → R such that the following conditions are satisfied:

(i) γλ ≡ f−1(λ) := {(u, v) ∈ R+ ⊕ R+ | f(u, v) = λ};
(ii) γ0 ≡ γ;

(iii) f is of class C2 and |Df | 6= 0 on Int(R+ ⊕ R+ \ γ);

(iv) the vector field given by Df/|Df | admits on Int(R+ ⊕ R+) a continuous ex-
tension which agrees on γ with its unitary normal νγ . Let us call α such
extension.

Then the hypersurfaces Sλ generated by γλ under the action of G provide the re-
quired foliation of Rn. In fact we have the following

Proposition 4.1. With the conditions and notations stated above, the vector field
ω given by the unitary normal to the hypersurfaces Sλ is a calibration for each Sλ,
in particular for S0, namely Ck,h.

Proof: First notice that, by Proposition 3.1 and the hypotheses above,

div
(

uk−1vh−1 Df

|Df |
)

= 0 on Int(R+ ⊕ R+ \ γ).

Moreover, by Remark 3.3, the vector field α is a calibration for the curves γλ, in
particular for γ (relatively to the functional L).
Let us set N0 := {(x, y) ∈ Rk ⊕Rh : |x| |y| = 0} and N1 := Ck,h \ {0} and let ω be
the vector field defined by (5). As ω may be not well defined on N0, we set ω equal
to zero on that set. Then it is sufficient to prove the following two facts:
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(a) ω is of class C1 and divω = 0 on Rn \ (N0 ∪N1);

(b) ω is continuous on Rn \N0.

In fact, N0 ∪N1 is closed and N0 is Hn−1-negligible, so, by Lemma 2.1 and Remark
3.3, properties (a) and (b) above give the claim of the proposition.
Let us define the function F (x, y) := f(|x|, |y|), where (x, y) ∈ Rk ⊕ Rh. We easily
see that each hypersurface Sλ coincides with the λ-level set of F . Moreover, F is
of class C2 on Rn \ (N0 ∪N1) and on that set ω ≡ DF/|DF |. Assertion (a) above
will then follow from the next lemma. The proof is a straightforward check, and is
omitted.

Lemma 4.2. If div
(
uk−1vh−1Df/|Df |) = 0 for uv 6= 0, then div (DF/|DF |) = 0

for |x| |y| 6= 0.

To prove assertion (b), we only need to show that the continuous extension of
DF/|DF | to N1 := Ck,h \ {0} coincide with its unitary normal νCk,h

. But that
easily follows from the definition of F and from assumption (iv).

5 Proof of Theorem 1.1

In this section we end the proof of Theorem 1.1 by showing the existence of an
L-critical foliation of R+ ⊕ R+ and of a function f : R+ ⊕ R+ → R satisfying the
conditions (i)-(iv) listed in Section 4.
We will denote by t0 the angle formed by the u-axis with γ, namely t0 = 1

2 arccos
(

d
n−2

)
.

Let us go back to the differential equation (8), which, setting w := ż, can be rewrit-
ten in the following way

ẇ = (1 + w2)
[
(n− 1) +

(
d− (n− 2) cos(2t)

sin(2t)

)
w

]
, (13)

where again d := k − h. The next lemma shows that, in order to get the desired
critical foliation, it is enough to find a suitable solution of this differential equation.

Lemma 5.1. Let w(t) be a solution of (13) defined in [0, t0) ∪ (t0, π/2] and such
that lim

t→t0
|w(t)| = +∞. Then there exists an L-critical foliation (γλ)λ∈R of R+⊕R+

and a function f : R+ ⊕ R+ → R satisfying the conditions (i)-(iv) listed in Section
4.

Proof: Let us consider a curve of the form (7) such that ż(t) = w(t). This curve
is defined on [0, t0) ∪ (t0, π/2] and is L-critical by definition. By classical results on
Cauchy problem, the solution w(t) is easily seen to be at least of class C1 away from
t = 0 and t = π/2, so that z(t) is at least of class C2. We want to show that the
curve tends asymptotically to the half line γ when t goes to t0, i.e. that ρ(t) and γ
have no intersection points, where we have setted ρ(t) := ez(t). If that were not the
case, we would have, by the hypothesis on w(t), that ρ̇(t0) = lim

t→t0
|ρ̇(t)| = +∞. That

would mean that ρ(t) and γ have the same derivative in their intersection point and
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that is impossible as they are both L-critical, i.e. solutions of the same second order
Cauchy problem.
Let us see how this special solution can be used to build the desired foliation. Let
us denote by γ1 and γ−1 the L-critical curves corresponding to ρ(t) respectively
for t < t0 and t > t0. As explained in the introduction, the homothetics to this
particular two curves together with the half-line γ give us an L-critical foliation of
R+ ⊕ R+. To build a function having those curves as level sets, let us define

ϕ(t, ρ) :=





ρ/ρ(t) if 0 ≤ t < t0
0 if t = t0

−ρ/ρ(t) if t0 < t ≤ π
2

and set f(u, v) := ϕ
(
arctan (v/u),

√
u2 + v2

)
. Taking into account that ρ(t) is of

class C2, it is immediate that such an f satisfies conditions from (i) to (iii) of Section
4. Finally, by using the fact that lim

t→t0
|w(t)| = +∞, a straightforward check shows

that Df/|Df | has a continuous extension to γ, where it coincides with its unitary
normal νγ , and (iv) is thus satisfied too.

We prove now the existence of this particular solution w(t).

Lemma 5.2. For h and k satisfying the conditions of Theorem 1.1, there exists a
solution w(t) of (13) defined on [0, t0) ∪ (t0, π/2 ] such that lim

t→t0
|w(t)| = +∞.

Proof: Let us denote with H(t, w) the right-hand side of equation (13) and set

g(t) := (n− 1)
sin(2t)

(n− 2) cos(2t)− d
.

Notice that H(t, g(t)) = 0 for every t, and then g is a super-solution of (13). If in
addition we could find an α ∈ (0, 1) such that αg(t) is a sub-solution, that is

H(t, αg(t)) ≥ αġ(t) for every t ∈ (0, t0) ∪ (t0, π/2) , (14)

then a standard argument gives the existence of a solution w(t) to equation (13)
defined on (0, t0) ∪ (t0, π/2) and such that α|g(t)| ≤ |w(t)| ≤ |g(t)|. By extending
w(t) continuously to [0, t0) ∪ (t0, π/2 ] we get the claim.

Let us see then for which integers k and h there exists an α ∈ (0, 1) for which
(14) is satisfied (notice that H depends on k and h). A computation will lead to

(1− α) + (1− α)α2(g(t))2 − 2α
(n− 2)− d cos(2t)

[(n− 2) cos(2t)− d]2
≥ 0 (15)

and we want this inequality to be satisfied on (0, t0)∪(t0, π/2). Simple computations
show that this is true if

G(t) := (1− α)α2(n− 1)2(sin 2t)2 − 2α(n− 2− d cos 2t) +
+ (1− α)[(n− 2) cos 2t− d]2 ≥ 0 on [0, π/2]. (16)
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The function G(t) has a minimum in the point θ0 ∈ (0, π/2), where

cos(2θ0) =
d

(1− α)((1 + α)n− (2 + α))
,

hence (16) holds if G(θ0) ≥ 0. Such condition is equivalent to

[α2(n−1)−αn+2]d2+(1− α)[α(n− 1) + (n− 2)][α(1− α)(n− 1)2 − 2(n− 2)] ≥ 0

which can be rewritten in the following form

d2 ≤ (1− α)[α(n− 1) + (n− 2)][α(1− α)(n− 1)2 − 2(n− 2)]
αn− α2(n− 1)− 2

(17)

provided the denominator at the right-hand side is positive.
For n = 8 and α = 1/2 we have |d| ≤ 2, and so the lemma is proved under the
conditions of statement (ii) of Theorem 1.1.
To get the claim under the conditions of statement (i) of Theorem 1.1, we have to
show that for every n > 8 it is possible to choose α such that (17) is verified for the
maximal value of d, that is n − 4 (remember that k, h ≥ 2 by hypothesis). To this
purpose, we replace d with n− 4 in (17) and we try the value α = 1/

√
n− 1. After

some computation we get

3(
√

n− 1)4 − 9(
√

n− 1)3 − 6(
√

n− 1)2 + 23(
√

n− 1)− 7 ≥ 0,

which, by setting x :=
√

n− 1, can be rewritten in the following form

3x4 − 9x3 − 6x2 + 23x− 7 ≥ 0.

Since 5x > 7 it will be enough to show that

3x4 − 9x3 − 6x2 + 18x = 3x(x2 − 2)(x− 3) ≥ 0,

which is obviously true when n > 9. In the case n = 9, inequality (17) with d = n−4
is still verified for some admissible value of α (for example, take α = 2/5).

Remark 5.3. We want to stress that also the conditions k, h ≥ 2 and n ≥ 8
arise naturally from the study of inequality (15), that is they are necessary for the
existence of an admissible α. In fact, if we want this inequality to be satisfied for
t → 0+ and for t → π/2− it must be α ≤ min (1− 1/h, 1− 1/k) and therefore
k, h ≥ 2. By the study of inequality (15) when t → t0 we obtain the second
condition, that is n ≥ 8.

Proof of Theorem 1.1: the claim now follows by combining the assertions stated
in the previous sections . In fact, let h and k satisfy the hypotheses of the theorem.
Then, by Lemma 5.2 and Lemma 5.1, there exists an L-critical foliation (γλ)λ∈R
of R+ ⊕ R+. Let Sλ be the hypersurface of Rn = Rk ⊕ Rh generated by γλ under
the action of G := SO(k) × SO(h). As the family of curves (γλ)λ∈R contains the
half-line γ, the family of hypersurfaces (Sλ)λ∈R is a foliation of Rn which contains
the cone Ck,h. Let ω be the vector field defined by (5). By applying Proposition 4.1
we conclude that ω is a calibration for the cone Ck,h, which is therefore minimal.
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[1] G. Alberti, L. Ambrosio, X. Cabré, On a long-standing conjecture of E. De
Giorgi: Symmetry in 3D for general nonlinearities and a local minimality prop-
erty, Acta Appl. Math., 65, No.1-3, (2001) 9-33.

[2] G. Alberti, G. Dal Maso, G. Bouchitté, The calibration method for the Munford-
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