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Abstract5

We prove that on a large family of metric measure spaces, if the ‘carré du6

champ’ Γ satisfies a Lp-gradient estimate of heat flows for some p > 2, then the7

L1-gradient estimate holds. This result extends Savaré’s theorem on metric8

measure space in [15], and also provides a new proof to von Renesse-Sturm’s9

theorem on smooth metric measure space in [14]. As a consequence, we also10

show that Gigli’s Ricci tensor ( [10]) could characterize the Ricci curvature of11

RCD space in a local way.12

The argument is based on iteration use of non-smooth Bakry-Émery’s13

theory, which is a new method to study metric measure spaces which lack of14

local regularity.15
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For any smooth Riemannian manifold M and any K ∈ R, it is proved by von Renesse24

and Sturm in [14] that the following properties are equivalent25

1) RicciM ≥ K26
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2) there exists p ∈ (1,∞) such that for all f ∈ C∞c (M), all x ∈M and t ≥ 01

|DHtf |p(x) ≤ e−pKtHt|Df |p(x). (1.1)

3) for all f ∈ C∞c (M), all x ∈M and t ≥ 02

|DHtf |(x) ≤ e−KtHt|Df |(x), (1.2)

where Htf is the solution to the heat equation with initial datum f .3

In non-smooth setting, the notion of synthetic Ricci curvature bounds, or non-4

smooth curvature-dimension conditions, were proposed by Lott-Sturm-Villani (see5

[13] and [16]) using optimal transport theory. Later on, by assuming the infinitesi-6

mally Hilbertianity (i.e. the Sobolev space W 1,2 is a Hilbert space), RCD condition7

(or RCD(K,∞) condtion if we want to specify the curvature) which is a refinement8

of curvature-dimension condition, was proposed by Ambrosio-Gigli-Savaré (see [4]9

and [1]). It is known that RCD(K,∞) spaces are generalizations of Riemannian10

manifolds with lower Ricci curvature bound and their limit spaces, as well as Alexan-11

drov spaces with lower curvature bound.12

Then we would like to know the relationship between Lott-Sturm-Villani’s syn-13

thetic Ricci bound and Bakry-Émery’s gradient estimate in the non-smooth setting.14

Let (X, d,m) be a RCD(K,∞) space, it is proved (in [4]) that15

|DHtf |2 ≤ e−2KtHt|Df |2, m− a.e. (1.3)

for any f ∈ W 1,2 and t > 0, where Htf is the heat flow from f and |Df | is the16

minimal weak upper gradient (or weak gradient for simplicity) of f . In particular,17

by Hölder inequality we know18

|DHtf |p ≤ e−pKtHt|Df |p, m− a.e. (1.4)

for any p ≥ 2. Furthermore, it is proved in [15] that the inequality (1.3) can be19

improved as:20

|DHtf | ≤ e−KtHt|Df |, m− a.e.. (1.5)

In other words, inequality (1.4) holds for any p ∈ [1,∞].21

Conversely, it is shown in [5] that the inequality (1.3) is sufficient to characterize22

RCD(K,∞) condition in the following way. Let (X, d,m) be an infinitesimally23

Hilbertian space, we have a well-defined Dirichlet energy:24

E(f) :=

∫
|Df |2 dm

for any f ∈ W 1,2(X, d,m). We denote the L2-gradient flow of E(·) starting from f by25

(Htf)t. Assume further that the space (X, d,m) has Sobolev-to-Lipschitz property,26

i.e. for any function f ∈ W 1,2 such that |Df | ∈ L∞, we can find a Lipschitz27

continuous function f̄ such that f = f̄ m-a.e. and Lip(f̄) = ess sup |Df |. If28

|DHtf |2 ≤ e−2KtHt|Df |2, m− a.e. (1.6)
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for any f ∈ W 1,2, and t > 0. Then (X, d,m) is a RCD(K,∞) space.1

The main goal of this paper is to prove that inequality (1.3) could also charac-2

terize the curvature-dimension condition of metric measure spaces. Equivalently, we3

prove a non-smooth version of 2) ⇒ 3) in von Renesse-Sturm’s theorem, thus we4

complete the circle 1)⇔ 2)⇔ 3) in non-smooth setting.5

Now, we introduce our main result in this paper. Under Assumption 3.5 (i.e.6

the existence of a dense subspace A of TestF such that Γ(f) ∈ M∞ for any f ∈ A)7

we prove:8

Theorem 1.1 (Theorem 3.6, Improved Bakry-Émery theory). Let M := (X, d,m)9

be a metric measure space fulfills Assumption 3.5. If for any f ∈ W 1,2(X)∩Lip(X)∩10

L∞(X) we have the gradient estimate11

|DHtf |p ≤ e−pKtHt|Df |p, m− a.e. (1.7)

for some p ∈ (1,∞). Then (1.7) holds for p = 1. In particular, M is a RCD(K,∞)12

space.13

Since we do not have second order differentiation formula for relative entropy14

along Wasserstein geodesics, or Taylor’s expansion in non-smooth setting. We can15

not simply use the argument in smooth metric measure space (see e.g. the proofs in16

[14]). The argument we adopt here is the so-called ‘self-improved’ method in Bakry-17

Émery’s Γ-calculus, which was used in [15] to deal with the non-smooth problems.18

We remark that we not only use ‘self-improved’ technique, but an improved iteration19

use of ‘self-improved’ argument. We believe that this method also has potential20

application in the future.21

It can be seen that the Assumption 3.5 hold in the following cases, where our22

main result apply.23

Example 1. Smooth metric measure space: obviously, C∞c (M), the space of24

smooth functions with bounded support is a good algebra in Assumption 3.5. Hence25

we obtain a new quick proof of von Renesse-Sturm’s theorem, without using Taylor’s26

expansion method.27

Example 2. RCD(K,∞) metric measure space: it is proved in Lemma 3.2, [15]28

that f ∈M∞ for any f ∈ TestF. By Theorem 1.1 we obtain the following proposition29

which extends Savaré’s result in [15].30

Proposition 1.2 (Self-improvement of gradient estimate). Let (X, d,m) be a RCD(K,∞)31

metric measure space. If for any f ∈ W 1,2 ∩ Lip(X) ∩ L∞(X) we have the gradient32

estimate33

|DHtf |p ≤ e−pK
′tHt|Df |p, m− a.e. (1.8)

for some p ∈ [1,∞) and K ′ > K. Then (X, d,m) is a RCD(K ′,∞) space. In34

particular, we know35

|DHtf | ≤ e−K
′tHt|Df |, m− a.e.. (1.9)
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In [10], Gigli defines measure valued Ricci tensor on RCD metric measure space1

(see also [12]) as2

Ricci(∇f,∇f) := Γ2(f)− |Hf |2HSm

where Γ2(f) := 1
2
∆|Df |2−〈∇f,∇∆f〉m. He shows that Ricci(∇f,∇f) ≥ K|Df |2m3

if and only if the space is RCD(K,∞). However, we do not know if Ricci has locality4

in the sense that Ricci(∇f,∇f)|{|Df |=0} = 0.5

From the proof of Theorem 1.1 we have the following new characterization of6

curvature bound which extends Gigli’s result:7

Proposition 1.3 (Proposition 3.7). Let (X, d,m) be a RCD space. Then the fol-8

lowing characterizations are equivalent.9

1) (X, d,m) is RCD(K,∞),10

2) Ricci(∇f,∇f) ≥ K|Df |2m for any test function f ,11

3) |Df |2Ricci(∇f,∇f) ≥ K|Df |4m for any test function f .12

We remark that this naive extension is non-trivial, because 2) is not a direct13

consequence of 3) due to lack of the locality of Ricci.14

2 Preliminaries15

The basic object we will study in this article is metric measure space (X, d,m).16

First of all, we need the following basic assumptions on (X, d,m), the notions and17

concepts in this assumption will be explained later.18

Assumption 2.1. We assume that:19

(1) (X, d) is a complete, separable geodesic space,20

(2) suppm = X, m(Br(x)) < c1 exp (c2r
2) for every r > 0,21

(3) W 1,2(X) is a Hilbert space,22

(4) (X, d,m) has Sobolev-to-Lipschitz property,23

(5) existence of the heat kernel pt(x, y).24

Remark 2.2. It is known that both smooth metric measure spaces and RCD spaces25

satisfy the properties above.26

Remark 2.3. We can also use the language of Dirichlet form to study our problems,27

by assuming that the Dirichlet form is a so-called ‘Riemannian energy measure28

space’. It is known from [5] that this way is compatible with the current approach29

using Sobolev space on metric measure space.30
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The Sobolev space W 1,2(X, d,m) is defined as in [2]. We say that f ∈ L2(X,m)1

is a Sobolev function in W 1,2(M) if there exists a sequence of Lipschitz functions2

functions (fn) ⊂ L2, such that fn → f and lip(fn)→ G in L2 for someG ∈ L2(X,m),3

where lip(fn) is the local Lipschitz constant of fn. It is known that there exists a4

minimal function G in m-a.e. sense. We call the minimal G the minimal weak5

upper gradient (or weak gradient for simplicity) of the function f , and denote it by6

|Df |. It is known that the locality holds for |Df |, i.e. |Df | = |Dg| a.e. on the set7

{f = g}. Furthermore, we have the lower semi-continuity: if {fn}n ⊂ W 1,2(X, d,m)8

is a sequence converging to some f in m-a.e. sense and such that (|Dfn|)n is bounded9

in L2(X,m), then f ∈ W 1,2(X, d,m) and10

‖|Df |‖L2 ≤ lim
n→∞

‖|Dfn|‖L2 .

We equip W 1,2(X, d,m) with the norm11

‖f‖2W 1,2(X,d,m) := ‖f‖2L2(X,m) + ‖|Df |‖2L2(X,m).

We say that (X, d,m) is an infinitesimally Hilbertian space if W 1,2 is a Hilbert space12

(see [4], [11] for more discussions).13

On an infinitesimally Hilbertian space, we have a natural ‘carré du champ’ op-14

erator Γ(·, ·) : [W 1,2(X, d,m)]2 7→ L1(X, d,m) defined by15

Γ(f, g) :=
1

4

(
|D(f + g)|2 − |D(f − g)|2

)
.

It can be seen that Γ(·, ·) is symmetric, bilinear and continuous. We denote Γ(f, f)16

by Γ(f). We have the following chain rule and Leibnitz rule (Lemma 4.7 and Propo-17

sition 4.17 in [1], see also Corollary 7.1.2 in [8])18

Γ(Φ(f), g) = Φ′(f)Γ(f, g) for every f, g ∈ W 1,2, Φ ∈ Lip (R),Φ(0) = 0

and19

Γ(fg, h) = fΓ(g, h) + gΓ(f, h) for every f, g, h ∈ W 1,2 ∩ L∞.

We say that a metric measure space M = (X, d,m) has Sobolev-to-Lipschitz20

property if: for any function f ∈ W 1,2 such that |Df | ∈ L∞, we can find a Lipschitz21

continuous function f̄ such that f = f̄ m-a.e. and Lip(f̄) = ess sup |Df |. In22

particular, by applying this property to the functions {d(z, ·) : z ∈ X}, we know23

the distance d is induced by Γ, i.e.24

d(x, y) = sup
{
f(x)− f(y) : f ∈ W 1,2 ∩ Cb(X), |Df | ≤ 1, m a.e.

}
.

Then we define the Dirichlet (energy) form E : L2 7→ [0,∞] by25

E(f) :=

∫
Γ(f) dm.

It is proved (see [2,3]) Lipschitz functions are dense in energy in the sense that: for26

any f ∈ W 1,2 there is a sequence of Lipschitz functions (fn)n ⊂ L2(X,m) such that27
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fn → f and lip(fn) → |Df | in L2. Moreover, if W 1,2 is Hilbert we know Lipschitz1

functions are dense (strongly) in W 1,2.2

It can be proved that E is a strongly local, symmetric, quasi-regular Dirichlet3

form (see [2,4,5]). The Markov semigroup (Ht)t≥0 generated by E is called the heat4

flow. There exists heat kernel which is a family of functions pt(x, y) : X×X×R 7→ R5

such that pt(x, y) dm(y) is a probability measure for any x ∈ X, t ∈ R, and Htf(x) =6 ∫
f(y)pt(x, y) dm(y) for any f ∈ L2(X,m).7

For any f ∈ L2(X,m) we know (0,∞) 3 t 7→ Htf ∈ L2 ∩D(∆) such that8

d

dt
Htf = ∆Htf ∀t ∈ (0,∞),

and9

lim
t→0

Htf = f in L2.

Here the Lapalcian is defined in the following way (see [11] for the compatibility of10

different definitions of Laplacian):11

Definition 2.4 (Measure valued Laplacian, [10,11,15]). The space D(∆) ⊂ W 1,2 is12

the space of f ∈ W 1,2 such that there is a measure µ ∈ Meas(M) satisfying13 ∫
ϕµ = −

∫
Γ(ϕ, f)m,∀ϕ : M 7→ R, Lipschitz with bounded support.

In this case the measure µ is unique and we denote it by ∆f . If ∆f � m, we14

denote its density with respect to m by ∆f .15

We define TestF(X, d,m) ⊂ W 1,2(X, d,m), the space of test functions as16

TestF(X, d,m) :=
{
f ∈ D(∆) ∩ L∞ : |Df | ∈ L∞ and ∆f ∈ W 1,2 ∩ L∞(X,m)

}
.

It is known from [15] and [4] that TestF(M) is an algebra and it is dense in17

W 1,2(X, d,m) when (X, d,m) is a RCD(K,∞) metric measure space. We will see in18

Lemma 3.4 that TestF is dense in W 1,2 when Lp-gradient estimate holds.19

Lemma 2.5 (Lemma 3.2, [15]). Let M = (X, d,m) be a metric measure space20

satisfying Assumptions 2.1. Assume that the algebra generated by {f1, ..., fn} ⊂21

TestF(M) is included in TestF(M). Let Φ ∈ C∞(Rn) be with Φ(0) = 0. Put22

f = (f1, ..., fn), then Φ(f) ∈ TestF(M).23

Let f ∈ TestF(M). We define the Hessian Hf (·, ·) : {TestF(M)}2 7→ L0(M) by24

2Hess[f ](g, h) = Γ(g,Γ(f, h)) + Γ(h,Γ(f, g))− Γ(f,Γ(g, h)).

Then we have the following lemma.25

Lemma 2.6 (Chain rules, [7], [15]). Let f1, ..., fn ∈ TestF(M) and Φ ∈ C∞(Rn)26

be with Φ(0) = 0. Assume that the algebra generated by {f1, ..., fn} ⊂ TestF(M) is27

included in TestF(M). Put f = (f1, ..., fn), then28

|DΦ(f)|2m =
n∑

i,j=1

ΦiΦj(f)Γ(fi, fj)m,
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and1

∆Φ(f) =
n∑

i=1

Φi(f)∆fi +
n∑

i,j=1

Φij(f)Γ(fi, fj)m.

The last lemma will be used in the proof of Theorem 3.6.2

Lemma 2.7 (Lemma 3.3.6, [10]). Let µi = ρim + µs
i , i = 1, 2, 3 be measures with3

µs
i ⊥ m. We assume that4

λ2µ1 + 2λµ2 + µ3 ≥ 0, ∀λ ∈ R.

Then we have5

µs
1 ≥ 0, µs

3 ≥ 0

and6

|ρ2|2 ≤ ρ1ρ3, m− a.e..

3 Main Results7

Firstly, we will discuss more about the measure valued Laplacian. Since E is quasi-8

regular, we know (see Remark 1.3.9(ii), [9]) that every function f ∈ W 1,2 has an9

quasi-continuous representative f . And f is unique up to quasi-everywhere equality,10

i.e. if f
′

is another quasi-continuous representative, then f
′
= f holds in a comple-11

ment of an E-polar set. For more details, see Definition 2.1 in [15] and the references12

therein.13

Definition 3.1. We define M∞ the space of f ∈ D(∆) ∩ L∞ such that that there14

exists a measure decomposition ∆f = µ+ − µ− with µ± ∈ (W 1,2
+ )′ where W 1,2

+ :=15

{ϕ ∈ W 1,2 : ϕ ≥ 0,m− a.e.}, such that: every E-polar set is (∆f)-negligible and16 ∫
ϕ d(∆f) = −

∫
Γ(ϕ, f) dm

for any ϕ ∈ W 1,2, the quasi-continuous representative ϕ ∈ L1(X,∆f).17

In this case, the measure ϕ∆f is well-defined.18

In the next lemma we study the measure ∆Γ(f)
p
2 . Since Γ(f) is not necessarily19

continuous, and Φ(x) = x
p
2 is not C2(R), we can not use Lemma 2.6 directly.20

Lemma 3.2. Let (X, d,m) be a metric measure space satisfying assumptions 2.1.21

Let f ∈ TestF such that Γ(f),Γ(f)
p
2 ∈M∞, p > 2. Then22

1

p
∆Γ(f)

p
2 − Γ(f)

p
2
−1Γ(∆f, f)dm ≥ KΓ(f)

p
2 dm (3.1)

if and only if23

1

2
Γ(f)∆acΓ(f) +

1

2
(
p

2
− 1)Γ(Γ(f))dm ≥

(
Γ(f)Γ(∆f, f) +KΓ(f)2

)
dm (3.2)

and Γ(f)∆singΓ(f) ≥ 0 as measures, where ∆acΓ(f) is the absolutely continuous24

part in the measure decomposition ∆Γ(f) = ∆acΓ(f) + ∆singΓ(f) with respect to25

m, and Γ(f) is the quasi-continuous representation of Γ(f).26
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Proof. Since p > 2, it can be seen that (3.2) is equivalent to1

1

2
Γ(f)

p
2
−1∆acΓ(f)+

1

2
(
p

2
−1)Γ(f)

p
2
−2Γ(Γ(f))dm ≥

(
Γ(f)

p
2
−1Γ(∆f, f)+KΓ(f)

p
2

)
dm.

(3.3)
Assume that we have the decomposition of the measure 1

p
∆Γ(f)

p
2 with respect to2

m: 1
p
∆Γ(f)

p
2 = 1

p
∆singΓ(f)

p
2 + 1

p
∆acΓ(f)

p
2 . From (3.1) we know the singular part3

1
p
∆singΓ(f)

p
2 of the measure 1

p
∆Γ(f)

p
2 is non-negative.4

From hypothesis we know Γ(f),Γ(f)
p
2 ∈ D(∆), by chain rule we know5 ∫

ϕ d∆Γ(f)
p
2 = −

∫
Γ(ϕ,Γ(f)

p
2 ) dm = −

∫
p

2
Γ(f)

p
2
−1Γ(ϕ,Γ(f)) dm (3.4)

for any Lipschitz function ϕ with bounded support.6

Let Γ(f) be the quasi-continuous representation of Γ(f), by Leibniz rule and7

chain rule we know ϕ(Γ(f) + ε)
p
2
−1 ∈ W 1,2, for any ε > 0. According to Definition8

3.1 we have9

−
∫
ϕ(Γ(f) + ε)

p
2
−1 d∆Γ(f) =

∫
Γ(ϕ(Γ(f) + ε)

p
2
−1,Γ(f)) dm

=

∫
ϕ(
p

2
− 1)(Γ(f) + ε)

p
2
−2Γ(Γ(f)) dm +

∫
(Γ(f) + ε)

p
2
−1Γ(ϕ,Γ(f)) dm.

Letting ε→ 0, by monotone convergence theorem we obtain10

−
∫
ϕΓ(f)

p
2
−1

d∆Γ(f) =

∫ [
ϕ(
p

2
− 1)Γ(f)

p
2
−2Γ(Γ(f)) + Γ(f)

p
2
−1Γ(ϕ,Γ(f))

]
dm.

(3.5)

Combining (3.4) and (3.5) we have11

1

p
∆Γ(f)

p
2 =

1

2
Γ(f)

p
2
−1

∆Γ(f) +
1

2
(
p

2
− 1)Γ(f)

p
2
−2Γ(Γ(f))dm (3.6)

as measures. Therefore, we know12

1

p
∆acΓ(f)

p
2 =

1

2
Γ(f)

p
2
−1

∆acΓ(f) +
1

2
(
p

2
− 1)Γ(f)

p
2
−2Γ(Γ(f))dm

=
1

2
Γ(f)

p
2
−1∆acΓ(f) +

1

2
(
p

2
− 1)Γ(f)

p
2
−2Γ(Γ(f))dm

and13

1

p
∆singΓ(f)

p
2 =

1

2
Γ(f)

p
2
−1

∆singΓ(f)

In conclusion, we obtain

1

p
∆Γ(f)

p
2 =

1

2
Γ(f)

p
2
−1∆acΓ(f)+

1

2
(
p

2
−1)Γ(f)

p
2
−2Γ(Γ(f))dm+

1

2
Γ(f)

p
2
−1

∆singΓ(f).

Hence (3.1) is equivalent to (3.3), we prove the lemma.14
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The following lemma will be used in the proof in Theorem 3.6.1

Lemma 3.3. Let P (r) : [0,∞) 7→ [−1
4
,∞) be a function defined as2

P (r) = r − 1

4(r + 1)
.

Let a0 ≥ 0 be an arbitrary initial datum, we define an recursively by the formula3

an+1 = P (an).

Then there exists a integer N0 such that 0 ≤ aN0 < 1 and −1
4
≤ aN0+1 < 0.4

Conversely, for any a ∈ [0, 1) and b > a, there exists a sequence a0, ..., aN0 defined5

by the recursive function P such that a0 > b and aN0 = a.6

Proof. It can be seen that an+1 < an. If a0 ≥ 0, by monotonicity we know an−an+1 ∈7

[ 1
4(a0+1)

, 1
4
] for any n ∈ N. So there must exists a unique N0 such that 0 ≤ aN0 < 18

and −1
4
≤ aN0+1 < 0. Conversely, since P (r) is strictly monotone on [0,∞), we9

know P−1(r) : [−1
4
,∞) 7→ [0,∞) is well defined. And (P−1)(n+1)(a)− (P−1)(n)(a) ∈10

[ 1
4((P−1)(n+1)(a)+1)

, 1
4
] for any n ∈ N. Thus there exists N∈N such that (P−1)(N0)(a) ≥11

b. Therefore, we can pick a0 = (P−1)(N0)(a), and aN0 = (P )(N0)(a0) = a fulfills our12

request.13

As we mentioned in the Introduction, the space of test functions is dense in14

W 1,2(X, d,m) when Lp-gradient estimate of heat flow holds.15

Lemma 3.4 (Density of test functions in W 1,2(X, d,m), see Remark 2.5, [5]). Let16

(X, d,m) be a metric measure space satisfying Assumption 2.1. Assume that for any17

f ∈ W 1,2 ∩ Lip∩L∞(X, d,m) we have the Lp-gradient estimate18

|DHtf |p ≤ e−pKtHt|Df |p, a.e. (3.7)

for some p ∈ [1,∞). Then the space of test functions TestF(X, d,m) is dense in19

W 1,2.20

Proof. As we discussed in the preliminary section, the space21

V1 :=
{
ϕ ∈ W 1,2 : Γ(ϕ) ∈ L∞(X,m)

}
is dense in W 1,2. We also know that the22

V1
∞ :=

{
ϕ ∈ W 1,2 ∩ L∞ : Γ(ϕ) ∈ L∞(X,m)

}
in dense in L2, and V1

∞ is invariant under the action (Ht)t by (3.7) and Sobolev-23

to-Lipschitz property. Hence by an approximation argument (see e.g. Lemma 4.924

in [4]), we know V1
∞ is dense in W 1,2. Similarly, by a semigroup mollification (see25

e.g. page 351, [5]) we can prove that26

V2
∞ :=

{
ϕ ∈ V1

∞ : ∆ϕ ∈ W 1,2 ∩ L∞(X,m)
}

is dense in W 1,2.27
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We now introduce the following assumption, which is basic and necessary in1

Bakry-Émery theory.2

Assumption 3.5 (Existence of good algebra). We assume the existence of a dense3

subspace A in TestF(X, d,m) w.r.t W 1,2 norm, such that Γ(f) ∈M∞ for any f ∈ A.4

It can be seen that A is an algebra (i.e. A is closed w.r.t. pointwise multipli-5

cation), if it exists. In particular, by Lemma 3.4 we know A is dense in W 1,2 if Lp
6

gradient estimate holds.7

Theorem 3.6 (Improved Bakry-Émery theory). Let (X, d,m) be a metric measure8

space satisfying Assumption 2.1. Assume also the existence of an algebra A in9

Assumption 3.5. If for any f ∈ W 1,2 ∩ Lip∩L∞(X, d,m) we have the gradient10

estimate11

|DHtf |p ≤ e−pKtHt|Df |p, m− a.e. (3.8)

for some p ∈ [1,∞). Then (X, d,m) is a RCD(K,∞) space.12

Proof. If p ≤ 2, by the result of [5] we know (X, d,m) is a RCD(K,∞) . So we13

assume p > 2.14

Part 1. Firstly, we prove15

Γ(f)∆acΓ(f) + εΓ(Γ(f)) ≥ Γ(f)Γ(∆f, f) +KΓ(f)2, (3.9)

and Γ(f)∆singΓ(f) ≥ 0, for any f ∈ A and ε > 0.16

For any ϕ ∈ TestF(X, d,m), ϕ ≥ 0 and t > 0, we define F : [0, t] 7→ R by17

F (s) =

∫
e−pKsHsϕΓ(Ht−sf)

p
2 .

It can be seen that F is a C1 function (see Lemma 2.1, [5]). From (3.8) we know18

F (s) ≤ F (t) holds for any s ∈ [0, t]. Hence F ′(s)|s=t
≥ 0, which is to say19 ∫

e−pKs∆HsϕΓ(Ht−sf)
p
2 − p

∫
e−pKsHsϕΓ(Ht−sf)

p
2
−1Γ(∆Ht−sf,Ht−sf)

≥ pK

∫
e−pKsHsϕΓ(Ht−sf)

p
2

when s = t. Letting t→ 0 we obtain20 ∫
∆ϕΓ(f)

p
2 − p

∫
ϕΓ(f)

p
2
−1Γ(∆f, f) ≥ pK

∫
ϕΓ(f)

p
2 .

In particular, from Lemma 2.6 and Lemma 3.2 in [15] we know Γ(f)
p
2 ∈ D(∆) and21

1

p
∆Γ(f)

p
2 − Γ(f)

p
2
−1Γ(∆f, f)dm ≥ KΓ(f)

p
2 dm. (3.10)

By Lemma 3.2, we have the inequality22

1

2
Γ(f)∆acΓ(f) + (

p

4
− 1

2
)Γ(Γ(f)) ≥ Γ(f)Γ(∆f, f) +KΓ(f)2 (3.11)
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holds m-a.e., and Γ(f)∆singΓ(f) ≥ 0.1

From now, all the inequalities are considered in m-a.e. sense. We denote2

1
2
∆acΓ(f)−Γ(∆f, f) by Γ2(f), and 1

2
∆acΓ(f)−Γ(∆f, f)−KΓ(f) by Γ2,K(f), then3

(3.11) becomes4

Γ2,K(f)Γ(f) + (
p

4
− 1

2
)Γ(Γ(f)) ≥ 0.

For any real number r ≥ 0, we say that the property B(r) holds if5

Γ2,K,r(f) := Γ2,K(f)Γ(f) + rΓ(Γ(f)) ≥ 0

for any f ∈ TestF. For example, (3.11) means B(p
4
− 1

2
).6

Now we define7

P (r) = r − 1

4(r + 1)
.

Then we will prove that B(r) implies B(P (r)). We choose the smooth function8

Φ : R3 7→ R defined by9

Φ(f) := λf1 + (f2 − a)(f3 − b)− ab, a, b, λ ∈ R.

Then we know10

Φ23(f) = Φ32 = a, Φij(f) = 0, if (i, j) /∈ {(2, 3), (3, 2)}
Φ1(f) = λ, Φ2(f) = f3 − b, Φ3(f) = f2 − a.

If f := (f, g, h) ∈ A3, we know Φ(f) ∈ A by Lemma 2.5. Hence we know11

Γ2,K(Φ(f))Γ(Φ(f)) + rΓ(Γ(Φ(f))) ≥ 0. (3.12)

By direct computation using Lemma 2.6 (see also Theorem 3.4, [15]), we have12

Γ(Φ(f)) = gijΦiΦj(f)

= λ2Γ(f) + (g − a)A1 + (h− b)B1

where gij = Γ(fi, fj), A1, A2 are some additional terms.13

Similarly, we have14

Γ(Γ(Φ(f))) = Γ(gijΦiΦj(f))

= (gij)2Γ(ΦiΦj) + (ΦiΦj)
2Γ(gij) + 2gijΦiΦjΓ(gij,ΦiΦj)

= (gij)2
[
Φ2

i Γ(Φj) + Φ2
jΓ(Φi) + 2ΦiΦjΓ(Φi,Φj)

]
+ (ΦiΦj)

2Γ(gij) + 2gijΦiΦjΓ(gij,ΦiΦj)

= 2(g12)2λ2Γ(h) + 2(g13)2λ2Γ(g) + λ4Γ(g11) + (g − a)A2 + (h− b)B2

= 2Γ(f, g)2λ2Γ(h) + 2Γ(f, h)2λ2Γ(g) + λ4Γ(Γ(f)) + (g − a)A2 + (h− b)B2.

We also know (see Theorem 3.4, [15] or Lemma 3.3.7, [10]) that15

Γ2(f)−KΓ(Φ(f)) = λ2Γ2(f) + 4λHess[f ](g, h) + 2
(

Γ(g)Γ(h) + Γ(g, h)2
)

+ (g − a)A3 + (h− b)B3 −Kλ2Γ(f).

11



Combining the computations above, (3.12) becomes an inequality with param-1

eters a, b, λ. Then by locality of weak gradients and density of simple functions,2

we can replace b by h and replace a by g (similar arguments are used in Theorem3

3.4, [15] and Lemma 3.3.7, [10]). Then we obtain the following inequality from4

(3.12):5

λ2Γ(f)
[
λ2Γ2(f) + 4λHess[f ](g, h) + 2

(
Γ(g)Γ(h) + Γ(g, h)2

)
−Kλ2Γ(f)

]
+ r

[
2Γ(f, g)2λ2Γ(h) + 2Γ(f, h)2λ2Γ(g) + λ4Γ(Γ(f))

]
≥ 0.

Since r ≥ 0 and6

Γ(g)Γ(h) ≥ Γ(g, h)2,

we have7

Γ(f)
[
λ2Γ2(f) + 4λHess[f ](g, h) + 4

(
Γ(g)Γ(h)

)
−Kλ2Γ(f)

]
+ r

[
4Γ(f)Γ(g)Γ(h) + λ2Γ(Γ(f))

]
≥ 0.

Then we have8

(Γ2(f)Γ(f)+rΓ(Γ(f))−KΓ(f)2)λ2+4λΓ(f)Hess[f ](g, h)+4(r+1)Γ(f)Γ(g)Γ(h) ≥ 0.

Applying Lemma 2.7 we obtain9

(1 + r)Γ2,K,rΓ(f)Γ(g)Γ(h) ≥ Γ(f)2Hess[f ](g, h).

Since B(r) means Γ2,K,r ≥ 0, this inequality is equivalent to10

(1 + r)Γ2,K,r(f)Γ(g)Γ(h) ≥ Γ(f)Hess[f ](g, h). (3.13)

From the definition of Hess[·], we know11

Hess[f ](g, h) + Hess[g](f, h) = Γ(Γ(f, g), h).

Combining with inequality (3.13) we have12 √
1

1 + r
Γ(Γ(f, g), h)

√
Γ(f) ≤

√
Γ2,K,r(f)Γ(g)Γ(h) +

√
Γ2,K,r(g)Γ(f)Γ(h)

=
(√

Γ2,K,r(f)Γ(g) +
√

Γ2,K,r(g)Γ(f)
)√

Γ(h).

Then we fix f, g ∈ A, and approximate any h ∈ W 1,2 ∩ L∞ with a sequence13

(hn) ⊂ A converging to h strongly in W 1,2 such that14

Γ(hn)→ Γ(h), Γ(hn,Γ(f, g))→ Γ(h,Γ(f, g))

pointwise and in L1(X,m). Thus we can replace h by Γ(f, g) in the last inequality15

and obtain16 √
1

1 + r

√
Γ(Γ(f, g))Γ(f) =

(√
Γ2,K,r(f)Γ(g) +

√
Γ2,K,r(g)Γ(f)

)
. (3.14)

12



Let f = g in (3.14) we have1

1

1 + r
Γ(Γ(f))Γ(f) ≤ 4Γ2,K,r(f)Γ(f).

Therefore,2

(
1

4

1

1 + r
− r)Γ(Γ(f))Γ(f) ≤ Γ2,K(f)Γ(f).

In other words, we have B(P (r)).3

From Lemma 3.3 we know there exists a0 ≥ p
4
− 1

2
and N0 ∈ N such that aN0 = ε,4

where an+1 = P (an), n = 0, ..., N0 − 1. Then we know B(a0) from (3.11). From the5

result above, we can see that B(aN0) holds by induction. So we prove (3.9).6

Part 2. From (3.9) and Lemma 3.2 we know7

1

pn
∆Γ(f)

pn
2 − Γ(f)

pn
2
−1Γ(∆f, f)dm ≥ KΓ(f)

pn
2 dm.

for any pn = 2 + 1
2n

, where n ∈ N.8

Let f ∈ A, ϕ ∈ TestF, and t > 0, we define F : [0, t] 7→ R by9

F (s) =

∫
e−pnKsHsϕΓ(Ht−sf)

pn
2 .

We know:10

F ′(s) =

∫
e−pnKs∆HsϕΓ(Ht−sf)

pn
2 − pn

∫
e−pnKsHsϕΓ(Ht−sf)

pn
2
−1Γ(∆Ht−sf,Ht−sf)

− pnK

∫
e−pnKsHsϕΓ(Ht−sf)

pn
2 ≥ 0

for any s ∈ [0, t]. Hence F (t) ≥ F (0), i.e.11 ∫
ϕe−pnKtHtΓ(f)

pn
2 ≥

∫
ϕΓ(Htf)

pn
2 .

Since ϕ is arbitrary, by Lemma 3.4 we know12

Γ(Htf)1+
1

2n+1 ≤ e−(2+
1
2n

)KtHtΓ(f)1+
1

2n+1 m− a.e..

Letting n→∞, by dominated convergence theorem we know13

Γ(Htf) ≤ e−2KtHtΓ(f) m− a.e. (3.15)

for all f ∈ A. At last, combining the density of A in TestF and Lemma 3.4, by lower14

semi-continuity (see preliminary section), we know (3.15) holds for all f ∈ W 1,2.15

Then, by Theorem 4.17 in [5] we know (X, d,m) is a RCD(K,∞) space.16

As a corollary, we have the following proposition. We recall (see [10]) that the17

measure valued Ricci tensor on RCD metric measure space is defined as18

Ricci(∇f,∇f) := Γ2(f)− |Hess[f ]|2HSm

where Γ2(f) := 1
2
∆|Df |2−Γ(f,∆f)m. It can be seen that Ricci is well defined for19

any f ∈ TestF(X, d,m) when (X, d,m) is RCD.20

13



Proposition 3.7. Let (X, d,m) be a RCD space. Then the following characteriza-1

tions are equivalent.2

1) (X, d,m) is RCD(K,∞),3

2) Ricci(∇f,∇f) ≥ KΓ(f)m for any test function f ,4

3) Γ(f)Ricciac(∇f,∇f) ≥ KΓ(f)2m and Riccising(∇f,∇f) ≥ 0 for any test5

function f .6

Proof. 1) ⇒ 2) is Lemma 3.6.2 in [10], 2) ⇒ 3) is trivial. So we just need to prove7

3) ⇒ 1).8

From 3) we know Γ2,K,0(f) ≥ 0, m-a.e. for any f ∈ TestF. Therefore Γ2,K,r(f) ≥9

0 for any r > 0. Using the same argument as Part 2. of the proof of Theorem 3.6,10

we know (X, d,m) is RCD(K,∞).11

References12

[1] L. Ambrosio, N. Gigli, A. Mondino, and T. Rajala, Riemannian Ricci13

curvature lower bounds in metric measure spaces with σ-finite measure, Trans.14

Amer. Math. Soc., 367 (2015), pp. 4661–4701.15

[2] L. Ambrosio, N. Gigli, and G. Savaré, Calculus and heat flow in met-16
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