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Abstract

There are two main aims of this paper. The first aim is to characterize
the convexity of functions on metric measure space, so that we could link the
existence of some special K-convex functions to the particular metric structure
of the space, which is a new approach to deal with some rigidity theorems such
as “splitting theorem” and “volume cone implies metric cone theorem”. The
second aim is to study the convexity /monotonicity of non-smooth vector fields
on metric measure space. We introduce the notion of K-monotonicity which
is stable under measured Gromov-Hausdorff convergence, then characterize
the K-monotone vector fields in several equivalent ways.

Keywords: continuity equation, convex function, metric measure space, metric
rigidity, monotone vector field, optimal transport.
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1 Introduction

In the past twenty years, the displacement convexity of functionals on Wasserstein
space Wy = (Po(X), W), i.e. geodesically convex functionals on the space of proba-
bility measures equipped with L2 transportation distance, have been deeply studied
and applied in many fields such as differential equation, probability theory, differ-
ential and metric geometry (see e.g. Ambrosio-Gigli-Savaré’s “green book” [4] and
Villani’s encyclopedia [45] for an overview of related theories).

One of the most interesting functionals is the Boltzmann entropy. On a Rie-
mannian manifold (M, d, m), the convexity of the Boltzmann entropy (or relative
entropy) Enty(-) defined by

| [plnpdm if p=pm,
Ento(p) := { 00 otherwise

characterizes the lower Ricci curvature bound of M (see [46]). It is proven (by Erbar
in [20]) that the gradient flow of Ent, in Wasserstein space could be identified
with the heat flow in the following sense: let H;(f) be the solution to the heat
equation with initial datum f, ﬂift( fm) be the Wasserstein gradient flow of Enty,
from fm € Py(M). then FH;(f) m = H,(fm).

Moreover, the following well-known characterizations are equivalent (see [46]):

1) The uniform lower Ricci curvature bound: Ricys > K for some K € R.

)

2) Ent, is K-convex in Wasserstein space.

3) The existence of EVIg-gradient flow of Ent,, from any initial measure.
)

4) The exponential contraction of the heat flows in Wasserstein distance:

W (i, p7) < e S Walug, ug), vt >0
holds for any two heat flows ! := H;(f*)m,i = 1,2.

5) The existence of the heat kernel, and exponential contraction of the heat ker-
nels in Wasserstein distance :

Wa (pe(z,dz)m(2), pi(y, dz)m(2)) < e *'d(z, )
for any z,y € X and ¢ > 0, where p,(z, dz)m(z) = H,(5,).
6) The gradient estimate of heat flow:
IDIH(f)|2(z) < e K'H,(IDfP)(z), m—ae xz€X

for any f € Wh2(M).



In the last few years, the notion of curvature-dimension condition of (non-
smooth) metric measure space, was proposed by Lott-Sturm-Villani (see [37] and
[42,/43]) . They use the characterization 2) above as a definition of synthetic lower
Ricci curvature bound. Later on, the curvature-dimension condition was refined
by Ambrosio-Gigli-Savaré (see [6] and [24]), which we call Riemannian curvature-
dimension condition or RCD condition for short. It is known that the class of
RCD(k, 00) spaces includes weighted Riemannian manifolds satisfying curvature-
dimension condition a la Bakry—Emery, as well as their measured Gromov-Hausdorft
limits, and Alexandrov spaces.

In this RCD setting, there is a very natural generalized heat flow, which is the
L2-gradient flow of the Cheeger energy. In particular, all those chatacterizations
on manifold are known to be valid in appropriate weak sense on metric measure
space (see [5H7]). Furthermore, more entropy-like (internal energy) functionals have
been studied in [8] and [21], which could be used to study more problems such as
RCD*(k, N) condition.

Besides the Boltzmann entropy (and other internal energy functionals), another
important example is the (potential energy) functional

UC) : Po(X 9,LL!—>/

where u is a lower semicontinuous function on R™ (or Hilbert space) whose negative
part has squared-distance growth (see [4]). It is known that each of the charac-
terizations concerning entropy/heat flow has a parallel description for U(-) and its
gradient flow, and they characterize the convexity of u. Then we would like to know
if we can characterize the convexity of U(-) in the setting of (non-smooth) metric
measure space, in a similar way as we know about Enty(-). In this direction, sev-
eral results have been obatined by Sturm, Ketterer etc., in [44], [33], [41] and [27].
However, these results just answer our question partially. So a complete study of
this problem is still needed, which is the first motivation of the current work.

On the other hand, in the study of Ricci-limit spaces, i.e. measured Gro-
mov—Hausdorff limits of Riemannian manifolds with Ricci curvature uniformly bounded
from below, two (almost) rigidity theorems “(almost) splitting theorem” and “ (al-
most) volume cone implies (almost) metric cone theorem” play important roles (see
Cheeger-Colding’s papers [1417]). In the proofs of these rigidity theorems on Ricci-
limtit spaces, as well as on RCD(k, c0) and RCD*(k, N) spaces (see e.g. [19], [22]),
the analysis on some special K-convex functions play key roles. For example, in
“volume cone implies metric cone theorem” (see [14], |19]), the target function is
the distance function u := %d2(~, O) where O is a fixed point. We know Hess,, = Idy,
such that u is a “N-convex function”. In “splitting theorem” (see [1§], [22]), the
target function is the Busemann function associated to a line which is harmonic,
so that it should be regarded as a “0O-convex function”. In the case of the above
mentioned non-smooth metric measure spaces, due to lack of regularity, the met-
ric property could not be obtained directly from the existence of these K-convex
functions.

However, the results in [35,44] and [33] concerning K-convex functions could not
be used directly to study the rigidity theorems, since the pre-request of applying



those results seems to be too restrictive in our situation. This encourages us to
study K-convex functions deeply in RCD setting, so that we can learn the metric
property of the space directly from the analytical properties of some special K-
convex functions.

Before introducing the main result of this article, we should clarify the rela-
tionship between (Wasserstein) gradient flow of U(-) and the flow generated by the
(non-smooth) vector field Vu, as we identified the heat flow and the gradient flow
of entropy before.

On one hand, Ambrosio-Trevisan extend the famous Di Perna-Lions theory to
RCD(k, 00) metric measure spaces in [11], they prove that the continuity equation

is well posed under some assumptions on the Sobolev regularity of u. They prove the
existence and uniqueness of the solution to for any initial condition po € P(X)
with pug < Cym. They also prove the existence of the regular Lagrangian flow
(F})tepo,r) such that the flows F(x),t > 0 is non-branching and p, = (F})gpo < Cym.

On the other hand, in [25] Gigli and the author study the absolutely continuous
curves in Wasserstein space through its corresponding continuity equation on metric
measure space. It is proved in [25] that (y) solves if and only if it is a gradient
flow of U : p +— [wdp in Wasserstein space. In other words, (u;) is the gradient
flow of U if and only if the velocity field of its continuity equation is —Vu.

The main results of this paper show that the following characterizations are
equivalent (see Theorem [3.12] Theorem [3.14]), where w is a scaler function with

appropriate a priori regularities.

1) w is infinitesimally K-convex, i.e. Hess,(-,-) which is the Hessian of u satisfies
Hess,(Vf,Vf) > K|Df|* m-a.e. for any f € W2

2) u is weakly K-convex, i.e. U(-) is K-displacement convex.

3) Vu is K-monotone in the sense that

[vuvaan+ [ (vu v dit = KW ).

for any u', u* € Py with bounded densities, where (¢, ¢°) is the Kantorovich
potentials associated to (u!, u?). It can be seen that this concept is a natural
generalization of the monotone vectors in Hilbert space.

4) The exponential contraction in Wasserstein distance:
W (pg, 17) < e Wi (pg, 1), ¥t >0

holds for any two solutions (y}), (4?) to the continuity equation (I.1]), whose
velocity fields are —Vu.



5) The regular Lagrangian flow (F};) of —Vu is well-defined on the entire space
X, and exponential contraction:

d(Fy(x), Fy(y)) < e"d(z,y)

holds for any xz,y € X and t > 0. We will see some applications of this
property in Section 4.

6) For any f € W'?(X, d, m), we have f o F, € W? and

ID(f o F)|(z) < e ®Df| o Fi(x), m—aec. z€X.

We divide the characterization theorem above into two theorems in Section 3,
because the pre-requests on the regularity of u are slightly different. The first one is
Theorem which deals with the equivalence of 1) and 2). It has been proven
(in e.g. [33], |27], [35]) when u is a test function (see section [2.2| for the definition).
However, in many cases which are potential applications of the characterization the-
orem, e.g. in “ splitting theorem” and “volume cone implies metric cone theorem”,
the functions only have lower differentiability and integrability. In Theorem [3.12
u € W22 is only assumed to be locally bounded and u(x) > —a—bd?(x, x) for some

a,b € R, 19 € X. So it is possible to apply our characterization theorem to more
functions on non-compact space.

The second one is Theorem [3.14] which deals with the equivalence of 2) — 6).
The well-posedness of this theorem requires the existence and uniqueness of regular
Lagrangian flow on metric measure space, which is studied by Ambrosio-Trevisan (in
[11]). For the potential application of the theorem, we also need to extend Ambrosio-
Trevisan’s result to a lager class of vector fields. This will be studied in Proposition
B.2l Consequently, we will see in Theorem that the K-monotonicity of a
(possibly) non-symmetric vector field b can be characterized in similar ways as
3),4),5),6) above. We remark that these equivalent descriptions are new even on
Riemannian manifold and Riemannian limit space. Due to lack of second order
differentiation formula, and low regularity of the vector field, the usual argument
in smooth setting fails to work under such non-smooth condition (see also Remark
3.18)).

At last, we summarize the highlights and main innovations of this paper.

a) Equivalent characterizations to K-convexity of function.
b) Equivalent characterizations to K-monotonicity of non-symmetric vector field.

¢) Improve the known results concerning K-convex function, and continuity equa-
tion on metric measure space.

d) Improve the understanding of K-convex function on Riemannian manifold.

e) A new approach to study rigidity theorems on spaces with lower Ricci curva-
ture bound.



The organization of this paper is as following. In section 2 we review some basic
results on optimal transport, Sobolev spaces and (co)tangent modules on metric
measure space, and continuity equation on metric measure space studied in [11], [25].
In section 3, we prove our main theorems which characterize the K-convexity of
functions and K-monotonicity of vector fields on metric measure spaces. In the last
section, we apply our characterization theorem to prove two results, which are key
steps in the proofs of “splitting theorems” and “from volume cone to metric cone
theorem”.

2 Preliminaries

2.1 Metric measure space and optimal transport

We recall some basic results concerning analysis on metric spaces and optimal trans-
port theory. More detailed discussions could be found in [2], [4] and [45]. Basic
assumptions on the metric measure space in this paper are:

Assumption 2.1. The metric measure space M := (X, d, m) satisfies:

i) (X,d) is a complete and separable geodesic metric space,

ii) suppm = X,

iii) m is a d-Borel measure and gives finite value on bounded sets,

)
)
)
iv) (X,d,m) has exponential volume growth: [ e *4*@20) dm(z) < oo for some

A> 0,29 € X.

The local Lipschitz constant lip(f) : X — [0, 00] of a function f is defined by

Lf () —f(=)]
d(z,y)

0, otherwise.

lim,_,, , x is not isolated

lip(f)(z) := {

The space of continuous curves on [0, 1] with values in X is denoted by C(|0, 1], X)
and equipped with the uniform distance. Its subspace consisting of geodesics is
denoted by Geo(X). For ¢t € [0, 1] we denote by e; : C([0, 1], X') — X the “evaluation
map” defined by

e(7) ==m,  Vye(o1],X).

A curve 7 : [0,1] — X is called absolutely continuous if there exists f € L'([0, 1])
such that

d(vs, 1) < /ts f(r)dr, Vt, s €[0,1], t < s. (2.1)

d(vent)
|h|

exists for a.e. ¢ and thus defines a function, called metric speed and denoted by |7/,
which is in L'([0,1]). If |%| € L*([0,1]), we say that the curve is 2-absolutely

continuous and denote the set of 2-absolutely continuous by AC?([0, 1], X).

For an absolutely continuous curve =, it can be proved that the limit limj_,



The space of Borel probability measures on X is denoted by P(X) and Po(X) C
P(X) is the space of probability measures with finite second order moment, i.e.
p € Po(X) if p € P(X) and [ d*(x,zp) du(x) < +oo for some x5 € X. We equip
Py(X) with the L2-transportation distance Wy, or 2-Wasserstein distance defined
by:

W2(u,v) = inf/d2(x,y) dr(z,y), (2.2)

where the inf is taken among all 7 € P(X?) whose marginals are y, v

The measures which attain the infimum are called optimal transport plans and
denoted by Opt(u,v). Given ¢ : X — RU{—o00}, which is not identically —oo, the
c-transform ¢° : X — R U {—oc} is defined by

) . d*(z,y)
o) = o

— ().

@ is said to be c-concave if it is not identically —oo and ¢ = ¢ for some ¢ :
X — RU{—o0}. It is known that for p,v € Po(X), W (u,v) can be obtained as
maximization of the dual problem

1
5Wa(p,v) zsup/sodwr/wcdv, (2.3)

where the sup is taken among all c-concave functions ¢. Notice that the integrals
on the right hand side are well posed because for any c-concave function ¢ and
w, v € Py(X) we always have max{p,0} € L'(u) and max{p°,0} € L'(v). The sup
can be achieved and any maximizing ¢ is called Kantorovich potential from pu to
v. For any Kantorovich potential we have in particular ¢ € L'(u) and ¢ € LY(v).
Equivalently, the sup in (2.3)) can be taken among all ¢ : X — R Lipschitz and
bounded.

Absolutely continuous curves in (Pq, Ws) can be characterized by the following
proposition:

Proposition 2.2 (Superposition principle [36]). Let (X,d) be a complete and sep-

arable metric space, and (ju)ico1; € AC*([0,1],P2). Then there exists a measure

]
IT € P(C([0,1], X)) concentrated on AC*([0,1], X) such that:

ey = i vt € [0,1]
/|7t|2d7T(7) = |l a.e. t.

Such a measure 11 associated to the curve (u;) is called a lifting of ().

2.2 Sobolev space and tangent module

The Sobolev space WH2(M) is defined as in [5]. We say that f € L*(X,m) is
a Sobolev function in W12(M) if there exists a sequence of Lipschitz functions

7



functions {f,} C L? such that f, — f and lip(f,) — G in L? for some G €
L*(X,m). It is known that there exists a minimal function G in m-a.e. sense.
We call this minimal G the minimal weak upper gradient (or weak gradient for
simplicity) of f, and denote it by |Df|. It is known that the locality holds for |Df|,
i.e. IDf| = |Dg| m-a.e. on the set {x € X : f(x) = g(x)}. Similarly, we define local
Sobolev space W,-?(M) which consists of functions f € L2 such that for any open

loc loc

set 2 with bounded closure, f € W12(Q).

As a consequence of the definition above, we have the lower semi-continuity: if
(fu)n C WH2 converge to some f € L? in m-a.e. sense and such that (|Df,]|), is
bounded in L*(X,m), then f € W?(X,d, m) and

IDf| <G, m-a.e.,

for every L?-weak limit G of some subsequence of (|Df,|).
We equip W?(X,d, m) with the norm

||f||%/[/1¢2(X,d,m) = ||f||%2(X,m) + |||Df|||%2(X,m)‘

It is known that W?(X,d, m) is a Banach space, but not necessary a Hilbert space.
We say that (X,d,m) is an infinitesimally Hilbertian space if W?(X,d, m) is a
Hilbert space.

On an infinitesimally Hilbertian space M, we have a natural pointwise bilinear
map defined by

1
WHME 3 (f,9) = T(f,9) := 7 (ID(f + )P = ID(S = 9) ).
We have the following Leibniz rule (see Proposition 3.17 in [24] for a proof):

[(fg,h) = [T(g,h) +gU(f, h)

for any f,g,h € Wh2 N L.

Then we can define the measure-valued Laplacian by duality (integration by
part).

Definition 2.3 (Measure valued Laplacian, [23,24]). The space D(A) C L% (M)
is the space of f € W,>(M) such that there is a measure p satisfying

/hd,u = —/F(h, f)dm Vh: M — R, Lipschitz with bounded support.

In this case the measure p is unique and we shall denote it by Af. If Af < m, we
denote its density by Af. If Af € L?, it can be seen that

/soAfdmz—/F(so,f)dm

for any ¢ € W2
Let (fn)22, € D(A). We say that (f,) converge to fo in D(A) if Af, - Afy

in L2



Remark 2.4. We do not assume that A f has bounded total variation in this paper.
Similarly, Af is not necessarily L!-integrable, but locally integrable.

We have the following proposition characterizing the curvature-dimensions con-
ditions RCD(k, o) and RCD*(k, N) through non-smooth Bakry-Emery theory. We
recall that a space is RCD(k, 00)/RCD*(k, N) if it is a CD(K, 00)/CD*(K, N) space
which are defined by Lott-Sturm-Villani in [37,142,/43] and Bacher-Sturm in [12],
equipped with an infinitesimally Hilbertian Sobolev space. For more details, see [6]
and [3].

We define TestF (M) C WH2(M), the set of test functions by

TestF (M) := {f eD(A)NL®: fe WHNWh™® and Af € W1»2(M)mL°O(M)}.
It is known that TestF(M) is dense in W'2(M) when M is RCD(k, o).

Let f,g € TestF(M). We know (see [40]) that I'(f, g) € D(A), and the measure
I's(f,g) is well-defined by

Palf.g) = AT(f.9) = 5 (I(f, Ag) + To, Af)) m,

and we put Ty(f) := Ta(f, f). Then we have the following Bochner inequality on
metric measure space, which can be regarded as a variant definition of RCD(k, 00)

and RCD*(k, N) conditions.

We recall the Sobolev-to-Lipschitz property, which is a fundamental prerequisite
for Bakry-Emery theory, see |7] and |26] for more discussion about this property.

Definition 2.5 (Sobolev-to-Lipschitz property). We say that a metric measure
space (X,d, m) has Sobolev to Lipschitz property if for any function f € W1?(X)
with |[Df| € L*(X), we can find a function f such that f = f m-a.e. and
Lip(f) = ess sup |Df|.

Proposition 2.6 (Bakry—Emery condition, [6,7], [21]). Let M = (X,d,m) be a
RCD*(k, N) space with k € R and N € [1,00]. Then
1
ro(f) 2 (KIDS + 5 (A)?) m

for any f € TestF(M).

Conversely, let M = (X,d,m) be an infinitesimally Hilbertian space satisfying
Sobolev-to-Lipschitz property, fulfils the Assumption . Then it is a RCD*(k, N)
space with k € R and N € [1,00] if

5 [IDfEagdn ~ [(vivafedn =k [Difdnt o [@r7pdm

for any ¢ € D (A) and f € Dy12(A), where
Dy (A) := {gp CAp e [2NL® peW?n LOO},

and
Dy12(A) := {(p e W Ap € W1’2}.

9



Next, we will review the concepts of “tangent/cotangent vector field” in non-
smooth setting. Firstly we recall the definition and basic properties of L>*°-module.

Definition 2.7 (L?*-normed L*-module). Let M = (X,d, m) be a metric measure
space. A L?-normed L*(M) module is a Banach space (B, || - ||g) equipped with a
bilinear map

L*(M)xB +— B,
(fa U) = f v
such that

(fg)-v = f-(g-v),
1-v

= v

for every v € B and f,g € L>(M), where 1 € L*(M) is the function identically
equals to 1 on X, and a “pointwise norm” | - | : B — L?(M) which maps v € B to
a non-negative function in L?(M) such that

lolls = lvlllz

[f ol = fll], m—ae.
for every f € L>°(M) and v € B.

It can be seen that the L2-normed L*-module has the following properties:
Locality: for any v € B and Borel sets {A; }ien C X we have

XAZ-'U:O, ViGNjXUiAi-UZO.

Gluing: for every sequence (v;);eny C B and sequence of Borel sets {A;}; such
that

n
XAind; - Vi = Xana, - V5, Vi,j, and nh_}n;) I 5 Xa, - vi|lB < 0,
=1

there exists v € B such that

n—oo

n
Xa,+v=Xa,vi, Vi, and |vls < lim || Y X4, vils.
=1

Then we define the tangent (and cotangent) modules of M, which are particular
examples of L2-normed module. We define the “Pre-Cotangent Module” PCM as

the set consisting of the elements {(A;, f;)}ien, Where {4, };en is a Borel partition
of X, and {f;}; are Sobolev functions such that Y, [, [Df;|* < oc.

We define an equivalence relation on PECM by

We denote the equivalence class of {(A;, f;) }ien by [(As, fi)]. In particular, we call
[(X, f)] the differential of a function f € W2 and denote it by df.

Then we define the following operations:

10



a) [(Ai, i)l + [(Bi, g:)] == [(A:i 0 By, fi + g5)],
b) Multiplication by scalars: A[(A;, fi)] :== [(A:, Afi)],
¢) Multiplication by simple functions: (3_; \jXp,)[(Ai, fi)] := [(Ai N By, A; £i)],

d) Pointwise norm: |[(A;, fi)]| := >, Xa,

Dfl‘?

where X4 denote the characteristic function on the set A.

It can be seen that all the operations above are continuous on PCM/ ~ with

respect to the norm ||[(A;, fi)]]| == \/f I[(A;, fi)]|? dm and the L*(M)-norm on the
space of simple functions. Therefore we can extend them to the completion of
(PEM/ ~, | - ||) and we denote this completion by L?(T*M). As a consequence of
our definition, we can see that L*(T*M) is the || - || closure of {3, ;a;df; : |I| <
00, a; € L®(M), f; € W12} (see Proposition 2.2.5 in [23]). It can also be seen from
the definition and the infinitesimal Hilbertianity assumption on M that L*(T*M)
is a Hilbert space equipped with the inner product induced by || - ||. Moreover,

<L2(T*M), -1, |> is a L?-normed module according to the Definition , which
we shall call cotangent module of M.

We define the tangent module L°(T'M) as Homyeoapy (L*(T*M), L°(M)), ie. T €
L°(TM) if it is a linear map from L*(T*M) to L°(M) as Banach spaces satisfying
the L*°-homogeneity:

T(fv) = fT(v), Yv e L*T*M), f¢& L>®(M),

and continuity:
T()<Glv] m—ae, YoveLl*(T*M)

for some G € L°. The smallest function G satisfying this property will be denoted
by |T|. For example, for any f € I/Vhlmz(M ), we know that there exists an element
in L°(T M) which we denote by V f such that V f(dg) = T'(f,g) < |Df||Dg| for any
ge W So |Vf|=|Df| € L.

We define L?(T'M) as the space consisting of vectors T € L°(T'M) such that
IT| € L*(M). Tt can be seen that L*(T'M) has a natural L*mnormed L*(M)-
module structure, and it is isometric to L?(T*M) both as a module and a Hilbert
space. We denote the corresponding element of df in L?(TM) by Vf and call it
the gradient of f (see also the Riesz theorem for Hilbert modules in Chapter 1
of [23]). The natural pointwise norm on L*(T'M) (we also denote it by | -|) satisfies
IV f| =|df| = |Df]. It is also known that {} ., a;Vfi : |I| < 00,a; € L®(M), f; €
W2} is dense in L*(T'M). In other words, since we have a pointwise inner product

-,y o [L2(T*M))* — L'(M) such that
(Af.dg) =T(f,9) = 1 (ID(F + 9)* ~ ID(f — 9)F"),

11



we can then define the gradient Vg as the unique element in L*(T'M) such that
Vg(df) := (df,dg), m-a.e. for every f € WH3(M). Therefore, L*(TM) inherits
a pointwise inner product from L?(T*M) and we still use (-,-) to denote it. We
define L2 (T M) as those b € L°(T' M) such that |b| € L2 _(M). It can be seen that
L% (T M) inherits a pointwise inner product from L?(TM).

Next we review the definition and basic properties of the covariant derivatives
and Sobolev spaces W22(M), H**(M) and W5*(TM), H5*(TM). Tt is proved in
Lemma 3.2 of [40] that (Vf, Vg) € D(A) C Wh2(M) for any f,g € TestF(M).
Therefore we can define the Hessian of f € TestF (M), which is a bilinear map:
Hess; : {Vg: g € TestF(M)}? — L°(M) by

2Hessf(Vg,Vh) = (Vg,V(Vf,Vh)) +(Vh,V(Vf,Vg)) — (Vf, V(Vg, VL)) (2.4)

for any g, h € TestF(M). It is known that Hess; can be extended to a continuous
symmetric L>(M)-bilinear map on [L*(T'M)]* with values in L°(M).

We denote the pointwise scalar product of two tensors X, Y € L*(TM)® L*(TM)
by X : Y. It can be seen that | X|%g := VX : X is the Hilbert-Schmidt norm of X.
We recall that the distributional divergence can be defined through integration by
part.

Definition 2.8 (Distributional divergence, [11},23]). The domain of divergence
D(div) € L.(TM) is the space of all X € L2 (TM) for which there exists a
function f € L2 (X, m) such that

loc

/fg dm = — / (X,Vgydm, Vg Lipschitz with bounded support.

In this case, we call (the unique) f the divergence of X and denote it by div.X.

It can be seen (see section 2.3.3, [23]) that div(pX) := (Vp, X) + fdivX for
@ € Lip(M) N L*>® and X € D(div).

Definition 2.9 (Sobolev space Wéfoc(TM )). The Sobolev space Wéfoc(TM ) is the
space of all X € L2 (TM) for which there exists a T € L (TM) ® L% _(TM) such
that

/hT : (Vg1 ® Vgy)dm = — / (X, Vgq)div(hVg;) — hHessy, (X, Vg;) dm

for any g1, g2, h € TestF(M). In this case we call T the covariant derivative of X
. 1,2 .

and denote it by VX. We endow W (T'M) with the (extended) norm ||- HWé,z(T M)

defined by

We define Wé’z (T'M) as those X € Wé:?OC(TM) with finite norm.

12



We recall that the class of test vector fields TestV(M) C L?(T'M) is defined as
TestV(M) = {Zgini :n €N, fi,g; € TestF(M),i =1, ,n}
i=1

It can be proved that TestV (M) is dense in L?(T'M) when M is RCD(k, 0o) (see [23]).

It can be seen that TestV(M) € W&*(TM). In particular, for any f € TestF (M)
we have Vf € W*(TM) and (VVf)? = Hess; where b is the isomorphism from
L2(TM) ® LA(TM) to LX(T*M) @ LX(T*M).

We define W2 (M) as the space of functions f € WL*(M) with Vf € Wézlzoc(T M),
equipped with the (extended) norm

1F1v22an) = WD F M Z2n) + IV Y flusl 22 an)-

We define W22(M) as the subspace of W2*(M) consisting of vectors with finite
norm. We call (VVf)? the Hessian of f and denote it by Hess;. It can be seen
that this notation is compatible with when f € TestF. We define H*?(M) C
W22(M) as the W22 closure of TestF(M).

Definition 2.10 (Sobolev space H5*(TM)). We define the Sobolev space HS5* (T M) C
WA (TM) as the W& (T M)-closure of TestV (M).

As an extension of the result in [40], we have the following proposition concerning
1,2
H 7 (T'M) vectors.

Proposition 2.11 (Proposition 3.4.6, [23]). Let X € HS*(TM). Then (X,Y) €
WY2(M) /WL (M) for any Y € Wéz(TM)/WéIQOC(TM) In particular,

VY : (Vg®Vh)=(Vg,V(Y,Vh)) — Hess, (Y, Vg)
for any h € TestF(M).

We define the symmetric part of VX by
VEX  (Vf®Vg) = %(vx (Vf®Vg)+VX: (Vga Vf))
for any f, g € TestF(M). In particular, for X € W5*(T M) we know
VX (V] © V) = (V£ V(X,90) - 5 (X.VIDSP)
for any f,g € TestF(M).

We have the following improved Bochner inequality, a more refined version for
RCD*(k, N) space could be found in |31].
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Proposition 2.12 (Improved Bochner inequality, [23]). Let M = (X,d,m) be a
RCD(k, 00) space. Then for any f € TestF(M) we have

Ty(f) > (KIDJJ? + [Hessyfs ) m

where |Hess¢|us is the Hilbert-Schmidt norm of the Hessian (as a bi-linear map).
In the case of RCD*(k, N) space, |Hesss|us can be computed by local coordinate (see

Proposition below).

We also have the following important results.

Proposition 2.13 (Corollary 3.3.9, Proposition 3.3.18, [23]). Let M = (X,d, m) be
a RCD(k, 00) space. Then for any f € WY(M) with Af € L*, we have

[[Hess¢lusl|7: < [[Af][72 — KIDFIIZ:-

W22

Furthermore, we know {f feWL2 Af e LZ} = H*? C W22,

At the end of this part, we review some useful knowledge about the dimension of
M, which is understood as the dimension of L*(T'M) as a L>-module. The readers
who are familiar with the so-called “Lipschitz differentiable space” studied firstly by
Cheeger, could find that the following results have their counterparts in [13].

Definition 2.14 (Local independence). Let B be a Borel set with positive measure.
We denote the subset of L*(T'M) consisting of those v such that Xpcv = 0 by

LY(TM))| ;.- We say that {v;} C L*(TM) is independent on B if

n
E fivy =0, m—a.e. on B
i=1

holds if and only if f; = 0 m-a.e. on B for each .

Definition 2.15 (Local span and generators). Let B be a Borel set in X and
V = {v;}ie; C L*(TM). The span of V on B, denoted by Spang(V), is the subset of
LA(TM )| With the following property: there exist a Borel decomposition {Bj, }nen

of B, families of vectors {v;,}"y C L*(TM) and functions {f; .} C L>(M),
n =1,2,..., such that

Mn
XB,,,U: § fi,nvi,n
i=1

for each n. We call the closure of Spang (V') the space generated by V on B.

We say that L?(T'M) is finitely generated if there exists a finite set {vy,...,v,}
spanning L?(T'M) on X, and locally finitely generated if there is a partition {F;} of
X such that L*(TM )|, is finitely generated for every ¢ € N. It can be seen (in [23],

Proposition 1.4.4) that we have well-defined basis and dimension on metric measure
space.
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Definition 2.16 (Local basis and dimension). We say that a finite set v, ..., v, is
a basis on Borel set B if it is independent on B and Spang{vy, ..., v, } = LQ(TM)|B.
If L*(T'M) has a basis of cardinality n on B, we say that it has dimension n on B,
or that its local dimension on B is n. If L*(T'M) does not admit any local basis of
finite cardinality on any subset of B with positive measure, we say that L*(T'M)
has infinite dimension on B.

Proposition 2.17 (Theorem 1.4.11, [23]). Let (X,d,m) be a RCD(k,o0) metric
measure space. Then there exists a unique decomposition {En}neNu{oo} of X such
that

e For anyn € N and any B C E,, with finite positive measure, L*(TM) has a
unit orthogonal basis {e; ,}?_, on B,

e For every subset B of E, with finite positive measure, there exists a set of unit

orthogonal vectors {e; g }ienufocy C L*(TM)|, which generates L*(TM)

B |57

where unit orthogonal of a countable set {v;}; C L*(TM) on B means (v;,v;) = 0,
m-a.e. on B.

Definition 2.18 (Analytic Dimension). We say that the dimension of L?(TM)
is k if & = sup{n : m(E,) > 0} where {E,}nrenu{cc} is the decomposition given
in Proposition We define the analytic dimension of M as the dimension of
L*(TM) and denote it by dimy., M.

Combining Proposition 3.2 in [31] and Proposition we have the following
result concerning the analytic dimension of RCD*(k, N) space.

Proposition 2.19. Let M = (X,d,m) be a RCD*(k, N) metric measure space.
Then dimy. M < N. Furthermore, if the local dimension on a Borel set E is N,
we have trHess¢(z) = Af(z) m-a.e. x € E for every f € WY2(M) with Af € L.

2.3 Continuity equation on metric measure space

In this part we introduce some recent results about the continuity equation on metric
measure space, more detailed discussions could be found in [25]. We assume that
the metric measure space (X,d, m) is RCD(k, 00). Under this assumption, we know
Wh2(X, d, m) is separable (see [1]) so that the continuity equation could be defined
pointwisely, and we can prove that Wasserstein geodesics are C''-continuous.

We start by recalling the definition of weak solution to the continuity equation
in non-smooth setting.

Definition 2.20 (Solutions to dyuy = Ly). Let (X, d, m) be a metric measure space.
Assume that (p) is a Wa-continuous curve with bounded compression (i.e. u; < Cm
for some constant C'), and {L;}ejo1] is a family of maps from S*(X) to R.

We say that (p;) solves the continuity equation
Oty = L, (2.5)

provided:

15



i) for a.e. ¢t € [0,1], S* > f +— L;(f) is a bounded linear functional, and
1Ll € L2([0, 1]),

ii) for every f € L'N S?(X) the map ¢ — [ fdu is in absolutely continuous and
the identity

d
&/fdut = Li(f),
holds for a.e. t.

In the following proposition we will see that the continuity equation characterizes
2-absolute continuity.

Proposition 2.21 (Continuity equation on metric measure space, [25]). Let (X, d, m)
be a RCD(k,00) space, (i) be a continuous curve with bounded compression in
Wasserstein space. Then the following are equivalent.

i) () s 2-absolutely continuous w.r.t. Wi.

i) There is a family of maps { Ly }iepo) from S*(X) to R such that (p;) solves the
continuity equation (12.5)).

Furthermore, if the above characterizations hold, we have

HLtH = |/:Lt|7 a.e. l e [07 1]

As an application of the Proposition 2.21 we can prove the following result
concerning the derivative of WZ(-, v) along an absolutely continuous curve.

Proposition 2.22 (Derivative of WZ(-,v), Proposition 3.10, [25]). Let (X,d, m)
be a RCD(k,0) space. Let () C Wo(X) be an absolutely continuous curve with
bounded compression, v with bounded support and notice that t —» %W;(ut,u) 18
absolutely continuous. Then the for a.e. t € [0, 1] the formula

d1

ngf(ﬂta’/) = Li(sp1), (2.6)

holds, where p; is any Kantorovich potential from p; to v.

Next, we discuss more about the geodesics in Wasserstein space. Firstly, we
review the Hopf-Lax formula.

Definition 2.23.

Que)(a) = { e (2.7

where c(z,y) = dQ(;;’y), t > 0.

It is known that ¢t — Q(f) is a continuous semigroup for any lower semi-
continuous and bounded function f. In particular, lim; ,o Q;(f) = f. Furthermore,
we have the following metric Hamilton-Jacobi equation.
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Lemma 2.24 (Subsolution of Hamilton-Jacobi equation). For every x € X it holds:

_Qt( )(@) + —IDQt( )*(z) =0

with at most countably many exceptions in (0, +00).

We have the following proposition concerning the evolution of Kantorovich po-
tentials by Hopf-Lax formula (see Theorem 7.36 in [45] or Theorem 2.18 in [2] for a
proof).

Proposition 2.25 (Evolution of Kantorovich potentials). Let (X,d) be a metric
space, (p)r a Wa-geodesic in Wasserstein space and ¢ a Kantorovich potential from
o to py. Then for every t € [0,1]:

1) the function tQ.(—y) is a Kantorovich potential from py; to po,

2) the function (1 —t)Q1—:(—¢°) is a Kantorovich potential from p; to .

Moreover, we know the evolution of Kantorovich potential is related to the con-
tinuity equation of the corresponding geodesic.

Proposition 2.26 (Geodesics, [25] ). Let (i) be a geodesic with bounded compres-
sion such that g, 1 have bounded supports, and ¢ a Kantorovich potential from py
to py which are bounded supported. Then

Optr + V- (Vepy) = 0

where ¢y = —Q1_(—¢°) for every t € [0, 1].
Simalarly,
Oipis + V- (Vo) = 0,

where @y .= Qi(—¢) for every t € [0, 1].

At last, we recall a result about C'-regularity of geodesics.

Proposition 2.27 (Weak C'-regularity for geodesics, Proposition 5.7 [25] and
Corollary 5.7 [22]). Let (u:) C P2(X) be a geodesic with bounded compression. As-
sume further that pg, gy have bounded supports. We denote the density of j; by py,
then for any t € [0,1] and any sequence (t,) C [0,1] converging to t, there exists a
subsequence (t,,) such that

Ptn, —7 Pt; M —a.c.

as k — oo. Furthermore, (j1t) is a weakly C curve in the sense that t — [ fdu, is
Ct for any f € W12,
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3 Main results

3.1 Regular Lagrangian flow

In this part we firstly review the existence and uniqueness theory of continuity
equation, and regular Lagrangian flows (RLF for short) on metric measure space
studied by Ambrosio-Trevisan in [11]. Then we prove some basic properties which
will be used in the proof of our main theorems.

Proposition 3.1 (Regular Lagrangian flow and continuity equation, Ambrosio-Tre-
visan, [11]). Let b € L} (TM) be with |b| € L* + L®, b € Wy (TM) with

loc

|Vb|gs € L?, divb € L? + L™ and (divb)_ € L*>. There exists a measurable map
(which we call regular Lagrangian flow) F': X x [0,T] — X such that

1) F; is a semigroup in the sense that Fy4(x) = F, 0 Fy(x) and Fy(x) = = m-a.e.
for any s,t € [0, 7).

2) There exists a constant Co(T) such that (Fy)y(m) < Com for all t € [0,T].

3) For any initial condition po = fm with f € L*'NL>, p, := (F})zuo is a solution
to the continuity equation

d

T gdut:/<Vg,b)dut, L' —ae te(0,T), lii%/gdut:/gduo

for any g € Lip(X,d) N L*>®. We also know that % € L'n L™,
4) For m-a.e. z, |E|(z) = |b|(z) a.e. t € (0,T).
5) Let f € WY2(X,d,m). Then
ST o) = (b.V) o F(x)
for L' x m-a.e. (t,z).
6) Let po = fm, uy = (Fy)spo with f € L*. Then

< e 2

=
L2 B

dm

for some constant Cy which depends only on ||(divb)~||e.

7) Fy is unique/non-branching in the sense that if F, is another map satisfying
the properties above, then (Fy)yu = (Fy)gp for any p € P(X) with bounded
density.

In some potential applications, we do not have the global L? + L*-bound for
|b|, divb or global L**-bound for (divb)_. The following proposition tells us that
the theory concerning the existence and uniqueness of regular Lagrangian flow still
works in some special situations, see also Theorem 4.2, [27] for an example in this
direction.
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Proposition 3.2. Letb € WéfOC(TM) Assume that |b| < Cod(x, z0)+Cy for some
Co,C1 > 0,29 € X, and |Vb|gs € L*(Q), divb € L?(Q)+ L>(Q), (divb)f € L>(Q)
for any bounded set ). Then there exists a unique reqular Lagrangian flow associate
to the vector field b.

Proof. Let p € Po(X) be an arbitrary measure with bounded density. We assume
that supp u € Br(xg) for some R > 1. Let x be a cut-off function in Lemma 6.7, [9)
such that x is Lipschitz and

a) 0 < x <1, x supports on Bsgr(xg) and x = 1 on Byg(zy),
b) Ax € L* and [Dx|* € W'

Then we know that xyb € D(div), and it satisfies div(xb) = (b, Vx) + xdivb €
L? + L™=, so that

I(div(xb)) |z < [I[bI[VxIl[z= + [[x(divb) [l < o0,

and |yb| € L+ L>*, V(xb) = xVb+Vx®b € L*(TM)® L*(TM). By Proposition
B.1] we know the regular Lagrangian flow associated to xb exists. We denote this
flow by F;. We know that the curve p; := (F;)su is the unique solution to the
continuity equation

d .

gt T divixbu) =0, po = p.

In particular, when supp u; C Bsg, we know |b|(z) < 2CoR + C; for x € supp 1.
From 4) of Proposition we know supp p; C Bag when t € [0, 20252—2:%1]. So

d 1

— div(by) = 0, te |0, ———|, = L.
dtllt + div(by) [ 2C, +01] o = p
Then for any 7' > 0, we can find a solution to the continuity equation (3.1) for
t € [0,T] by repeating the construction above for finite times. It can be seen from
the construction that this solution is unique.

(3.1)

Finally, we can prove the existence and uniqueness of regular Lagrangian flow
using Theorem 8.3 in [11] and the proof therein. O

For convenience, we will not distinguish the regular Lagrangian flow (F};) and the
curve of measures push-forward by F;. We will see in Proposition [3.4] that the curve
push-forward by F} is C1. To prove this result, we firstly recall a useful lemma.

Lemma 3.3 (“Weak-strong” convergence, Lemma 5.11, [22]). Let (X,d, m) be an
infinitesimally Hilbertian space. Assume that:

i) Let (pun,) C P(X) be a sequence with uniformly bounded densities, such that
Pn — p Mm-a.e. for some probability density p, where p, is the density of (.

i) Let (f,) C WH? be a sequence such that:

supneN/|Dfn|2dm < 00,

and assume that f, — f m-a.e. for some Borel function f.
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Then for any b € L*(TM), we have

lim [ (Vf.,b) dun:/(Vf,b> dp,

n—oo

where 1 == pm.

Proof. If b = Vg for some g € W2, the assertion is proved in Lemma 5.11, [22].
For any ¢ > 0, we can find v, € TestV with v, = va a;g; such that ||b — v || < e.
Then we have

lim [ (Vf,,b)du, = lim [ (Vf,,b—v)du,+ lim /(an,ve>dun
n—oo

n—oo n—oo

IN

n—oo

N
Ce+ lim ) / (V fr, Vi) a;dpu,

N
= Ce+Z/<Vf,Vgi>aidu

< Ce+Cle+/<Vf,b)du.

Letting ¢ — 0 and considering the opposite inequality we prove the assertion. O

Proposition 3.4. Let (F}) be a reqular Lagrangian flow associated to b € Wé’foc
defined as in Proposition [3.1. Assume that po has bounded density and bounded
support. Then p, := (Fy)spo fulfils the hypothesis in Lemma to be a C' curve.

Proof. Let p; := (F})st0 be a RLF with p, := i—‘;f € L. By 6) of Propositionﬁwe
know limy g ||p¢]| 2 < ||pollz2. It is known that the functional Py > p+— [ (%£)” dm
is lower semi-continuous w.r.t Wasserstein distance. So the function ¢ +— | p¢||2 is
lower semi-continuous. Then we have lim; ¢ ||p¢]| 2 = ||po|| L2

Since p; — po weakly in duality with Cy(X) and (p;) are uniformly bounded in L.
We know that p; — pg weakly in L*(X,m). Combining with lim; o ||p¢||z2 = ||pol|z2
we know p; — pg in L? strongly, and in LP strongly for any p € [1,00).

From semi-group property, we know ¢ — p; is continuous in L'. For any ¢, (t,,), >
0 such that t,, — t, we know there exists a subsequence (t,, ) such that Pto, = Pt
m-a.e. as k — oo. Therefore, by Proposition [3.1] and Lemma [3.3] we get

. d .
fim, - [ Fdm,_, =t [ (Vi) du, = [ (V1) du

tn,—t dr

for any f € W2, So (i) is a C* curve . O

The following simple lemma is a complement to the Proposition |3.1]

Lemma 3.5. Let f € W2 b € L2 (TM). We assume that (Fy); is the reqular
Lagrangian flow associated to b. If f o F, € W2 for any t > 0. Then for all
te0,7],

(b,Vf)oFy(x)=(b,V(foF)(x), m—a.e zelX.
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Proof. Let pp € P(X) be an arbitrary measure with bounded density and bounded
support. We define i, = (F})sp00,t > 0. From the definition of continuity equation
and Proposition [3.1, we know

%/fdut:/@,Vf)dut:/<b,Vf)OFtduo

for a.e. ¢t € [0,T]. By Proposition above we know this formula holds for all ¢.
Meanwhile, since f o Fy,;, € W2 for any h > 0, we know

d d
@/fdﬂtwqho = a/foFtd”hho

= /(b,V(fOFt)>d/,LO
Then we have

/(b,V(foFt» du0:/<b,Vf>oFtdu0.

As pg is arbitrary, we know (b, Vf) o F;, = (b, V(f o F}), m-a.e.. O

3.2 K-convex functions and K-monotone vectors

Firstly we introduce some notions/concepts to characterize the convexity of func-
tions, and the monotonicity of vector fields in non-smooth setting.

The first one is a zero order characterization.

Definition 3.6 (Weak K-convexity). Let u € Li (X, m). We say that u is weakly

loc

K-convex if the functional U(-) : Py > p + [, udp is K-convex on Wasserstein
space in the sense that

) < (1= 00 (o) + 10 (a) — 5-(1 = 013 g, ) (3.2)

for any t € [0, 1] along any geodesic (u;) C (P2, Wa), where p, 1 have bounded
densities and bounded supports.

The second one is a first order characterization.

Definition 3.7 (K-monotonicity). We say that a vector field b € L (T'M) is
K-monotone if

[ o.veant+ [ .V di = KW ).
for any p!, u? € P, with bounded densities and bounded supports, where (¢, ¢°) is

the Kantorovich potentials relative to (u', u?).
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Remark 3.8. If b € L*(TM), by the following metric Brenier’s theorem, we can

replace the condition “u!, u? € Py with bounded densities and bounded densities”
in Definition [3.7] by “bounded densities” only.

Similarly, by metric Brenier’s theorem we can rephrase Definition as: for any
Lo, 1 € P(X) with bounded densities and bounded supports, there exists a geodesic
() C (Po, W) connecting g, g1 such that the inequality (3.2)) holds.

Proposition 3.9 (Metric Brenier’s theorem, [6,39]). Let (X,d, m) be a RCD(k, 00)
metric measure space, and p,v € Py be absolutely continuous w.r.t. m. Let ¢ be
a Kantorovich potential relative to (u,v). Then the geodesic connecting p and v is
unique. The lifting 11 of this geodesic (p;) is induced by a map and 11 concentrates
on a set of non-branching geodesics. Moreover, for Il-a.e. v € Geo(X) we have

d(70,71) = lip(#)(70) = [De|(70)-
In particular, we have
W3 (1, v) = / [Dy|* du.
Moreover, we know the locality of Kantorovich potentials, i.e.
D¢ —¢)|=0 m—a.e. on supppu

for any @, which are both Kantorovich potentials from p to v.

Next, we introduce the concept of infinitesimal A-monotonicity of a vector field
b € WCIJIQOC(TM ), which is a second order characterization. We recall that the
Hessian of a test function f could be defined by

2Hess;(Vg1, Vga) = (V(V [, V1), Vo) +(V(V [, Vg2), V1) = (V(Vg1, Vg2), V f),
and the covariant derivative of a vector field b € Wéfoc(T M) can be represented as:
Vb : (Vg ® Vga) = (V(b,Vga), Vgi) — Hessy, (Var, b),

where g1, g2 € TestF.

Definition 3.10 (Infinitesimal K-monotonicity). Let b € Wéfoc(TM ) be a vector
field. We say that b is infinitesimally K-monotone if

Vb (X®X)=Vb: (X®X)>K|X[? m-—ae.

for any X € L*(TM).

Definition 3.11 (Infinitesimal K-convexity). We say that f is infinitesimally K-
convexif Vf € WéfOC(TM ) and V f is infinitesimally K-monotone. In other words,
f is infinitesimally K-convex if f € W and Hess;(Vg,Vg) > K|Dg|? for any
g € TestF.
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Next we prove the first theorem in this article. When u € TestF, this result
has been proven in Theorem 7.1 in [33] (see also Lemma 2.1 in [35], Theorem 3.3
in [27]). In Theorem [3.12] we will remove some bounds on u, Vu, and the condition
Au € W% in the former proofs. Similar to the former ones in [33], [35] etc., the
proof of the current theorem is also based on Bochner’s inequality on metric measure
space and the original definition of CD(k, co) condition.

Theorem 3.12. Let M := (X,d,m) be a RCD(k,oc0) metric measure space, u €
W2A(X,d,m). Assume further that u € L{%(M) and u(z) > —a — bd>(x, x) for

loc
some a,b € R, xg € X. Then the following are equivalent

i) u is infinitesimally K -convex,
i) u is weakly K-conver.

Proof. First of all, we rewrite the Bochner’s formula in Proposition in the fol-
lowing weak form. We recall that Dy (A) := {gp Ap e LPNL>® e Whin LOO}.

For any f € TestF(M), ¢ € Dp=(A), we define

La(fie) = [ pdlah (3.3)
_ %/gpdA]Df\Q—/<Vf,VAf>godm (3.4)
_ _%/<V|Df|2,Vgo) dm—/(Vf,VAf)godm (3.5)
— 5 [ IDsPaedm— [(vrvARpdm (3.6)

If ¢ € Lip, we know ¢V f € D(div), hence

L(fie) = 5 [IDfPApdm+ [ div(evs)asdm

= 2 [ipseagam s [apreamt [(ve.vnazam
= T%(f; ).

By Proposition [2.6] we know
Iy (fie) =Talfi0) = & [ [DfFpdm (.7)

for any f € TestF(M), ¢ € Dy~ (A) N Lip, ¢ > 0.
We denote the space of test functions with bounded support by TestFys(M) C
TestF(M), then we will see that TestFys(M) is dense in TestF(M).

Let x,, € TestF, n € N be cut-off functions (see Lemma 6.7, [9]) such that
a) 0 < x, <1, x, supports on Bs,(zo) and x, = 1 on B, (z0),
b) Lip(xn) < 4,
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¢) Ay, € L* uniformly in n and |Dy,|* € W2

For any f € TestF we define f,, := x,f. Then we know Vf, = fVx, + x.V/f,
Afn = fAXn + X Af +2(Vf, Vxn). Hence we know f,, € TestFyg, f, — f in W12
and Af, — Af in L?. So we know TestFy, is dense in TestF with respect to both
W2 and D(A) topology.

We define TestF(M™) as the space of test functions on M" := (X, d, e “m). Since
u is locally bounded, we know W.?(M) = W'?(M®). Tt can be seen (by Leibniz
rule) that

{f eD(A): Af € L2 (M)}ﬂLfg’c(M) - {f e D(AM"Y: AM" f ¢ 2 (M“)}ﬂLfg’c(M“),

loc loc

and AM" f = Af—(Vu,Vf)mforany f € {f € D(A): Af € L} (M)} NLS,(M).

In fact, for any f € {f € D(A) : Af € L} (M)} N L2 (M) and ¢ € Lip with

loc loc
bounded support, we know

/ (Vf,Vple *dm = / (Vf, e "Vp)dm
(by Leibniz rule) = /(Vf, V(e %p))dm — / (Vf,Ve ™) pdm
= — / e "eAfdm+ / (Vf,Vu)pe ™ dm.

So f € D(AM") and AM" f = Af — (Vu,Vf) € L2 .. Conversely, we can prove the
assertion concerning AM" in the same way.

For any f € TestF(M"), ¢ € D (AM") N W2 N Lip(M"), we define TY(f; ©)
as in (3.3) by replacing A by A% := A — (Vu, V), and m by e “m. We claim that

the following assertions are equivalent:

1) To(f;90) > k[ IDf|*¢pdm, and [Hess,(Vf,Vf)edm > K [|Df[*¢dm for
any f € TestF(M), ¢ € Dr=(A) NLip(M), ¢ >0,

2) Tao(f;9) > k [IDfPedm, and [Hess,(Vf,Vf)podm > K [ |Df]*¢dm for
any f € TestFyg(M), ¢ € Dr<(A) NLip(M), ¢ > 0 with bounded support,

3) Iy (fie

4) T5(f; 0

> (mK + k) [ IDf|*pe ™ dm for any m € N, f € TestFs(M),
A) N Lip(M), ¢ > 0 with bounded support,

> (mK + k) [ IDfPoe ™" dm for any m € N, f € Dyrzpuy(AY),
A"), o > 0.

1) <= 2) is a direct consequence of the density of TestF}s in TestF.
To prove 2) = 3), it is sufficient to prove

05 (f; ) = Ta(fre7 ™) +m / Hess,(Vf, Vf)pe ™ dm
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for any f € TestFyps(M), ¢ € D~ (A) N Lip(M), ¢ > 0. By Proposition we
know (Vu, Vf) € W2 and the Hessian of u € W2 could be written in the form
of (2.4). So by a direct computation we have

1 w —mu w —mu
MPfie) = 5 [ IDFPAY e am [ (9F.9AM fpe

- %/|Df\2(A—mVu)gpem“dm—/(Vf,V(Af—m<vu7vf>>>goemudm

= Da(f;e7 ™) —i—m/Hessu(Vf, V)pe ™dm.

Conversely, we claim that for any ¢ € Dy=(A) N Lip(M), ¢ > 0 with bounded
support, we can find ¢, € Dy« (A)NLip(M), ¢ > 0 with bounded support such that
Ve~ ™ — o in W2, For this aim, we use a well known approximation procedure.
For any f € L?, we define

hf ::%/Ooofi(r/e)f}(rfdr:/Ooofi(s)ﬂ{wfds. e>0,

where (H;) is the heat flow, and x € C°((0,00)) with £ > 0 and [;* &(r)dr = 1.
It can be checked that Ah.f € LN L>, h.f € TestF if f € L*N L*®. We also know
that h.f — f both in W'? and in D(A) as € | 0.

Now we turn back to our problem. Since u, e~ are locally finite, we can approx-
imate ne™" by test functions ¢,,, where n € TestF has bounded support and n =1
on supp . Then ¢, = @¢, achieve our aim. Assume that 3) holds, we know

Do(fie™ ™ on) + m/HeSSu(Vf, Vf)ene ™dm > (mK + k) / IDfPo, e ™ dm

Letting n — oo, combining with (3.5) and L?

ic-integrability of |Hess,|us we have

Ty(f: (p)—i—m/Hessu(Vf, V) dm > (mK+k)/|Df|290dm. (3.9)

Letting m = 0, we know I's(f;¢) > k [ |[Df]*¢dm. Dividing m on both sides of
(3.8) and letting m — oo, we prove Hess, > K.

To prove 3) = 4) it is sufficient to approximate f, in 4). For this aim,
we firstly assume that f € L> and ¢ € Lip, then we can use the approximation
technique above again. Let f € Dy1.2(p)(A") N L. For any n € N, we can find
a, > n such that

1
IXanf — fllwr2arey + A (Xan f — 2200y < o

Since Yo, f € L> N L®(M), we know from the above mentioned approximation
procedure that h.(xa,f) — Xa,f both in W2(M) and in D(A) as ¢ | 0. In
particular, we know Xa, he(Xa, ) = XanXanS = Xa,f iIn WH2(M) and in D(A). As
both Xa,he(Xa, f) and x,, f are bounded supported, we know the convergences also
hold in Wh2(M") and in D(A").
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Therefore there exits 0 < b,, < % such that

1
IwwaAx%f%—mmﬂwm%Mn+HAQ@ﬁ%QmJD—wﬁwwfwmmw)<5'

We define f,, := xa,hp, (Xa, f). It can be seen that f, € TestFs (M) and f, — f
in both in WH?(M*) and D(A") as n — oo. Similarly, for any ¢ € Dy~ (A%) N
Lip(M"), ¢ > 0, we can define ¢,, := Xq hy (Xa, @) in the same way for some a;,, b,

It can be checked that Iy (f,, ¢n) — T5(f, @) and [ |Dfo>¢n e “dm — [ |Df]*pe “dm
as n — oo. Then we have 4) for such functions f, . By an approximation using
heat flow, we can remove the assumption ¢ € Lip ( see e.g. Proposition 3.6, [27]).
We can also remove the assumption f € L by a simple truncation argument (see
e.g. Theorem 4.8, [21]). Then we prove 4) for all the required functions f and ¢.

Finally, it can be checked that the test functions f, ¢ in 3) are included in the
test functions in 4), so we also have 4) = 3).

Now we can complete the proof of the theorem:

i) = ii).

If w is infinitesimally K-convex. Combining with the fact that M is RCD(k, o),
we know 4) holds. As M has Sobolev-to-Lipschitz property, so M™" := (X, d, e"""m)
also has such property. Since u(x) > —a — bd?(z, zy), we know e~™m has exponen-
tial volume growth. By Proposition [2.6] we know M™ is RCD(k + mK, co) space.
Therefore (by the original definition of CD(k, co) condition, see [42]) we have

mK—f—kt

Ente—mum(,ut) S (1 — t)Ente—mum(/,Lo) -+ tEnte—mum<,LL1) — 9

(1 = )W (o, 1)

(3.9)
for any geodesic (1) in Wasserstein space with bounded densities and bounded
supports. Dividing m on both sides of and letting m — oo, combining with

the fact Ente—mup (1) = Entw(pe) + m [ wdp, we know w is weakly K-convex.

i) = ).

If u is weakly K-convex, we know (from the definition) that the metric measure
space M™" := (X,d, e ™"m) is RCD(k + mK, 0co) for any m € N. By Proposition
2.6] we have 4), thus we get 1). By the density of test functions in 1) we know
Hess, > K.

]

3.3 Equivalent characterizations

In this part we will prove the main results in this paper. The first theorem char-
acterizes the K-convex functions on RCD(k, 0o) space. Due to lack of knowledge
about the regularity of weak K-convex functions, we assume a priori that u has the
following regularities.

Assumption 3.13. Basic assumptions on u are the following:

i) u € Li.(X,m) and lower semi-continuous,
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ii) u(r) > —a — bd?(z, z) for some a,b € R, 5 € X.

Assumptions 1) and ii) ensures that the functional Py 5> p +— [wdp is lower
semi-continuous, and not identically —oc.

iii) Vu e L2 (TM),

iv) there exists a unique regular Lagrangian flow associated to —Vu.

Theorem 3.14. Let (X,d,m) be a RCD(k, 00) metric measure space, u be a function
fulfils Assumption [3.13. We denote the reqular Lagrangian flow associated to —Vu
by (Fy). Then the following characterizations are equivalent.

1) u is weakly K-conver.
2) Vu is K-monotone.

3) the exponential contraction in Wasserstein distance:
Wa(us, 1f) < e X' Waug, pd), ¥t >0

holds for any two absolutely continuous curves (ui),(u?) C (Po, Wa) with
bounded compression, whose velocity fields are —Vu.

4) the flow (Fy) associate to —Vu is well-defined for all x € X such that the
exponential contraction holds in the sense that:

d(Fy(z), Fi(y)) < e "'d(x,y)
for any x,y € X andt > 0.
5) for any f € WYX, d,m), we have f o Fy € W42 for any t > 0, and

ID(f o F)|(z) < e ™|Df|o Fi(z), m—a.excX.

> W22, then one of the above characterizations holds

Furthermore, if u € L
if and only if :

6) u is infinitesimally K-convex.

Proof. 1) = 2): Let o, 1 € Py be any two measures with bounded densities and

bounded supports. We consider the (unique) geodesic (jt)scpo,1) from fig to pi1. From
weak K-convexity, we know

Ulps) < ﬁ — ?U(ut) + f—jU(m) — %%wam Vs € [t,1]
(3.10)
where U(p) = [ udpu. Therefore,
U(Msi:i](ﬂt) - 1; () = U)| = g%:j)wg(ﬂo,m) (3.11)
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Letting s | ¢t and ¢ | 0 in (3.11)), by Proposition [2.21] Proposition [2.26 the C*
continuity of geodesic in Proposition [2.27], and lower semicontinuity of U we obtain

~ [ (90 90) o < UGm) = Ulpo) = 5 W) (312)

where ¢ is the Kantorovich potential from pg to p;. Similarly, by changing the role
of uy and py we obtain

- [ (0.9 i <Uu) = Uln) = 5 Whponp). (313

Combining (3.12)) and (3.13]) we obtain

/(Vm V) duo+/<Vu, Vo) duy > KW (o, 1)

Since i, p11 are arbitrary, we know Vu is K-monotone.

2) = 1): From Proposition we know the uniqueness of geodesics, so by a
classical approximation argument, 1t is sufficient to prove

1 K
Ulpo) + EU(M) - §W22(M0, 1)

N | —

Upy) <

for any geodesic (u;) C (P2, Wa), where pg, 111 have bounded densities.
By Proposition [2.25| and Proposition [2.26| we know

5 d
) = Ol) = /0 (g/ud/h) dr
3 d
N /0 1—2r <£|S=O/ud:ur+s(12r)> dr
5
- —/0 I (/ (Vu,Vri1_r) d,ur> dr

where ¢, 1_, is the Kanrotovich potential relative to (fi, p1—r).

Similarly, we have

U~ UGy = [ g ([ 19 Vo) ) ar

2 1 2r—1
2

By a change of variable, we know

Um) = Uuy) = [ ([ ) ar
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Combining the results above, we obtain

SU o) + 5U () — Ulry)

= —<U(,u0) — U(/Ll)) + %(U(/h) - U(N%))

1 /2 1 ) c
= 5 =5 ([ e Ve + [ (Fu T do)ar

12 1
> —/2 K1 —2r)*W?(ug, 1) dr
0

2 1—2r
K
= ng(/'ma/'Ll)u

which is the thesis.

1) = 3): Let pp € P2(X) be a measure with bounded density and bounded
support, (p;) be the RLF associated to —Vu starting from pg. Assume py,t € [0, 7]
have uniformly bounded supports. We claim that (p;) is an EVIg-gradient flow of
U in the following sense:

d1
de2

for any v € Po(X). It is sufficient to prove (3.14) for any v with bounded density
and compact support (see Proposition 2.21, [6]).

K
W2, v) + EWS(M, V) <UW)—U(u), forallt>0 (3.14)

By Proposition [2.22| we have

d1

W) = = [ (V090 du (3.15)

for a.e. t > 0, where ¢, is the Kantorovich potential from p; to v. From (3.12)), we
know

- / (Vu, V) du, <U(W) — Ulp) — ng(ut, v), Vt>0. (3.16)

Combining (3.16) and (3.15) we know (3.14) holds for a.e. ¢t > 0. To prove the

claim, it is sufficient to prove the C'-continuity of the function ¢ — W2(u,v). So
we need to prove

h—0

lim [ (Vu, Vi) duHh—/(Vu,Vgot}dut

for any given t. In fact, from Proposition and the compactness of supp v we can
apply Lemma 2.3 in 3| to obtain the compactness/stability of Kantorovich poten-
tials. Combining with Proposition [3.4] Proposition and uniform boundedness of
supp p¢, we can prove the convergence using Lemma

Let (v¢) be another RLF associated to —Vu startlng from 1y, where vy has
bounded density and bounded support such that v, t € [0, 7] have uniformly bounded
supports. Then by Theorem 4.0.4 in [4] we have the exponential contraction:

Woalpe, ve) < e X" Wa (o, o) (3.17)
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for any t.

For arbitrary ug, vy € Py with bounded density, we can restrict pg, 1y on those
points © € X such that Fy(x) C Bg(zo) for any ¢t € [0, 7], where 2o € X, R > 0.
Then we can renormalise jig, 1y and denote them by uf, 4. We push-forward uff, 18t
by F; and denote them by (uf), (vf). From the results above we know holds
for (), (vf).

Letting R — oo we know plf, vl converge to pig, vy in (Py, Ws). From the com-

pleteness of (Py, W), we know (uft), (v]?) converge to some (p), (14). It can be seen

from the uniqueness of RLF that p;, = (F})su0 and v, = (F})s1. So (3.17) holds for
(he), (1)

3) = 4): Let z € X be an arbitrary point. From exponential contraction,
by a typical approximation argument we know the flow of —Vu from 9, € Py is
uniquely defined. In fact, for any x € X, we can find a sequence (u") C Py such
that lim,, oo Wo(ptn,d,) = 0. From (3.17) we know the flow of —Vu from p", which
is denoted by (u}), converges uniformly to a curve as n — oo. It can be seen
that this limit curve is independent of the choice of (u"). We denote this curve
by (Ui(x)), € P2(X). Now we claim that Uy(x) supports on a single point in X.
Actually, assume that supp Uy, (z) has at least two points a,b € X for some ¢, > 0.

Let IT" € P(C([0,00), X) be the lifting of (Ft)ﬁ(mm‘Bl (z)). Since the RLF is

non-branching, we know there exists '™, I'*" € supp II" with positive measures such
that inf{d(+},,72) : 7' € I'"",7? € I*"} > 1d(a,b) > 0 when n big enough. Then,

. . Lo, 1 n P
by renormallzathn, we find two sequences of curves p;" 1= (e;)y (WH rm) 1=
1,2, such that ug" — 0, but u}(;” + uf(;" which contradicts to the uniqueness of
Ui(z). We still use U;(z) to denote this single point.

Let © € X be a point where the curve (Fy(x)); is well-defined (i.e. (Fi(z)); is an
absolutely continuous curve in X ), where (F;) is the RLF associated to —Vu. From
the construction procedure of U; and the uniqueness of U,(z) we know U;(z) = Fy(x).

Therefore, we can extend F; to the whole space in the following way. For any
r € X, we define (F})y6, = U(x) = Opn). Finally, apply (3.17) again with po =
0z, 1 = 9, we prove 4).

4) = 5): Since f € W% we know there exists a sequence (f,,) C Lip(X) such
that f,, — f and |lip(f,)| = |Df| in L?. Then we have

tiw [170 R~ fuoFlePdn = lim [17 = £ d(F)m

< Clim/|f—fn|2dm
n—oo
=0

where we use the fact that (F});m < Cm in the second step. Similarly, we can prove
that |lip(f,)| o F; converge to |[Df] o F} in L?
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From the hypothesis, we know

lip(fn © F7)| ()

IN

IA

Then we know

Eﬁ/mmnomW&n
n—oo

m|fn0

Yy—x

Fi(y) = fuo Fi(z)]
d(y, )
m |fn o B(y) - fn o Ft( )| d<Ft(l‘)7 t
d(Fy (), Fi(y)) d(y, )
|fn o Ft(y) - fn o Ft(x)‘ hm d( t(x)

(¥))

Yy—x

[im ()

d(Fi(z), Fi(y)) d(y, z)
[lip(f,)| o Ft(:v)e*Kt.

Yy—x Yy—x

lim e 2K

t/MMhWOEmn
n—oo

6_2Kt/|Df|QoFtdm.

Hence by definition we know f o F, € W12,

Moreover, let G be a weak limit of a subsequence of (lip(f, o F})), in L?. By
pointwise minimality of weak gradient, we know |D(f o F})| < G < e ®YDf| o F;

m-a.e..

5) = 3): The strategy used in this proof is similar to the ones in [25] and [34],
so we sketch the proof. We just need to prove 3) for b, 2 with the form pf =
and p2 = gm, where f,g are Lipschitz functions with bounded support. Now let
¢ € L* N Lip be with bounded support, I’ e P(C([o, 1],X) be the lifting of the
geodesic (12), connecting uf and p2. We denote (Ft)ﬁl/o by % and denote the lifting

of (1) by IT*. We also denote the velocity field of (%), by qut
For any r € [0,1],h > 0, we have

[ @t
‘/ Qrrn(p) deurh

— Oy }dm+‘/QT )dut,

<

<

/ |Qrin ()

Then we know that r — [ Q, ()

- [ oy

— / Qr(¥) d%hh‘ + ‘ / Qr(p) dvyyy, — / Qr(p) dv,

/ Qr(p) duy .

almost everywhere. Using weak Leibniz rule (Lemma 4.3.4, [4]) we have

dv! is absolutely continuous, so it is differentiable

d
= [
- ynf@wﬂ@dﬁﬁ—f@xmdu
—0
< m er—i—h dI/ - IQT _|_ 11 er — J‘QT(()O) dl/ﬁ_h
h—0 h h—0 h
for a.e. 7.
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By Hamilton-Jacobi equation in Lemma [2.24] Proposition and dominated
convergence theorem we have

lim er—i—h(Qp) d’/ﬁ — L/‘QT’(SO) de, —/—%’DQT(QO)FdVﬁ

h—0 h a

for a.e. r € (0,1). From Proposition we know

tiy LA W J QP JRCIERIOR LY

for all r.

Combining with the computations above we obtain:

= [etean < [3pQ)fat + [ (9@ue) 0 ). Vo

for a.e. 7 € (0,1).

Then we have the following estimate:

[ w i / () dyi ()
= [ (@-p) - Qu=¢)(@) arr
- [s / (@~
< //——\DQT p)|dvy dr
+ / [ @u=)0 F). TR

Young’s inequality < / / ——|DQT ©)[2dvt dr

5 [ [ mID@- o B

1 1
+ —G_QKt/ /|D¢2|2dyfdr
2 0
1 1
hypothesis 5) < éeQKt/ /\D¢2|2 dvddr
1
Proposition [2.21]+ Proposition [2.26] = 3¢ e W2 (g, ).
Since ¢ is arbitrary, we know W2 (ut, u?) < e 252 (b, ).
4) +5) = 2): Let pg, vp € P2 be measures with compact support and bounded
density. We consider the RLFs (p)tcjo,r) and ()i, starting from s, vy respec-
tively, where T" > 0. From Proposition we know the measures g, v4,t € (0,7

have uniformly bounded densities. From 4) we know p, v, have compact supports
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for all t € [0, T]. Since supp po and supp vy are bounded, we know from 4) that the
supports of p, v, t € [0,T] are uniformly bounded.

We denote by (6,), the geodesic from pgy to vy, and denote the velocity field
of (6,), by Vé,. Let 6, : [0,1] — [0,1] be a C* function (to be determined) with
§(i) =i, =0,1. We define an interpolation (F3)s0s, and denoted it by 7.

Then we estimate W3 (uo, ;) using a similar method as we used in 5) = 3).
For any ¢ € L* N Lip with bounded support, we have

[ ant)+ [ o )
— [vwaie)+ [ e i
_ /;%/(QT(—QD)OF”)d@gT dr

1 1
_ / /—1|DQT(—¢)]2dn£dr+/ 6;/(WQT(—so)oFtr),Vaﬁmd@ardr
0 0

- t/ol/ (Qr(—¢), Vu) dntdr

1
1
= ——|D(Q,(—¢ 2dntd o tu) o Fy,.), Vs, ) dbs,d
/O/ 2| (Q( )+tu| nr—i—/ / @) + tu) ) ¢s,) dbs, dr

1
+ / /%HIDu!?dnﬁdr—t/ 5;/(V(qutr),V¢5r>d95Tdr
0 0

"1 L
< / 5(5;)26_21(”/ |Dgs, |? d95,,d7“+/ / th(V(quﬂ),Vw —t6/(V(uo Fy.), Vs )| dfs.dr
0 0
= A(t) +tB(t)
We then choose
€2Krt 1
5(T) - e2Kt _ 17
so that &' (r) = Ry (t)e* " where
2Kt
RK<t> = m if K 7& O, Ro(t) =1.

Then we have

Alt) = /1 (6)% QK”/\D@; 2 d;,.dr

_ RK /5’/|D¢5r|2d95 dr

1 df,.dr

1
= §R§<(t)W22(H0> Vo)
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It can be seen from Proposition and Proposition [3.4| that B(t) is continuous
in t. In fact, by direct computation we can even prove:

Ule) — Uwy) — / 2 / u) o Fy) ds dr

_ / / V(wo Fy), Vu>—5;,(V(u0Ftr),qu5(s,,>]d95,d7“

Vv

Combining the results above, we obtain
W3 (o, ve) < Ra(H)W3 (o, vo) + 2t B(t).

Dividing ¢ > 0 on both sides and letting ¢ — 0, together with the formula R (t) =
1 — &L+ o(t) we obtain

d+

K
wa(ﬂoy Ve)|,_o < B(0) — EWg(Moa )

Since t — W3 (o, v¢) is C* (see the proof of 1) = 3)), we know
c K 2
— <VU, V(IDO,O >dl/0 < B(O) — EWQ (ILL(), Vo), (318)

where B(0) = — [' [ (Vu, V?) dvldr.

Using the same argument we can also prove

K
- / (Vu, Voo ) dpo < C(0) — §W22(/~007 ), (3.19)

where C(0) = [} f (Vu, VO_) dvd_dr = [} [ (Vu, V¢?) dvldr = —B(0).

Comblmng and ( - we obtain
/(Vu,Vgpao ) duvg + / (Vu, Voo ) dpe > KW2 (o, ). (3.20)

Finally, by an approximation by compactly supported measures and metirc
Brenier’s theorem, we know ((3.20) holds for all pg, vy with bounded support and
bounded density, so Vu is K-monotone.

6) <= 1): This is a direct consequence of Theorem W O

Remark 3.15. Let f be a smooth function f on a Riemannian manifold (M, g), and
(7¢) be a smooth curve. We know the map ¢ — f(;) is smooth and

d2 / / /
a2 (ve) = Hessf(%?%) + <V7§7t7 Vi)
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In particular, if (v;) is a geodesic, we know V.,v; = 0, then we obtain

d2
a2 (1) = Hessf(’%,’%)-

We then know that the second order derivative along geodesic characterizes the
convexity of a function f.

On RCD*(k, N) spaces, we can use the second order differentiation formula devel-
oped by Gigli-Tamanini (see [30]) to study the convexity of H*? functions. However,
it is still unknown to us whether we can do the same in RCD(k, 0o) case or not.

Theorem 3.16. Let M := (X,d,m) be a RCD(k,o0) space, b € L% _(TM). We

loc
assume there exits a unique reqular Lagrangian flow associated to —b, which is

denoted by (F}). Then the following descriptions are equivalent.

1) b is K-monotone.
2) the exponential contraction in Wasserstein distance:
Wiy, 1) < e X Wi (pg, 1), V>0
holds for any two curves (u)), (1?) whose velocity fields are —b.
3) the everywhere-defined RLF (F;) of —b, and the exponential contraction:
d(Fy(2), Fi(y)) < e ™d(z,y)
for any x,y € X andt > 0.
4) for any f € Wh2(X,d, m), we have f o F; € Wh? and:
ID(f o F)|(z) < e ®'Df|o Fy(x), m—ae zeX
where (Fy) is the RLF of —b

Proof. We can prove 2) = 3) = 4) = 2) and 4) = 1) in the same ways as in
the proof of Theorem [3.14]

1) = 2): Let po,p € P2 be measures with bounded support and bounded
density, (p), () be the solutions to the continuity equation with velocity field —b,
with initial datum pg and vy respectively. It can be seen from Proposition that
i, V¢ have bounded densities for any ¢ > 0. Fix T" > 0, we denote the lifting of
(pie)eep,r by 1T € P(AC([0,77,X)). Let I' € AC([0,T7, X) be the support of II.
For any ¢ > 0, we can find I' C T" which is compact in C([0,7], X) such that
I(T\T,) <e¢ and I’ C Bg(xo) for some 2y € X and R > L. Then we define

€ ,___ 1
By 2= (@ﬁ(m

It can be seen that supp ué = €,(T,) is compact for any ¢ € [0, T] and

HFE>, e>0, tel0,T].

: 2 €\ __
i W= (o, 115) = 0.
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So without loss of generality we could assume that i, ; support on compact sets for
any t € [0,T]. Furthermore, we may also assume that 1, 4 have uniformly bounded
supports for t € [0, T].

Then for any s > 0, by Proposition [2.22| we have

d1

G == [ 6. du (3.21)

for a.e. t > 0, where ¢, , is the Kantorovich potential from p, to v,. Similarly, fix a
t we know 41

e 2VV2 (pe, vs) = / (b, Vos1) dvs (3.22)
for a.e. s > 0, where ¢, is the Kantorovich potential from v, to .

Now we claim that ¢t — — f (b, Vr s) dpie is continuous for any s. We just need
to prove

lim (b, Vorin,s) dpern = / (b, Viors) dpy
for a given t.

By Proposition and the compactness assumption on supp vs, we can apply
Lemma 2.3 in [3] to obtain the compactness of Kantorovich potentials. Combining
with Proposition we know the convergence from Lemma |3.3]

Similarly, we can prove that s — [ (b, V¢s,) dv, is continuous. Therefore we
know (3.21)) and hold for all ¢ and s respectively. Then we have

1
ds 2W2 (/,Lt, VS)| = / <b, V¢t,t> dl/t (323)

and 41
W), == [ . V)i (3.24)

Furthermore, we know ¢ — W (ju, ;) is differentiable for a.e. ¢ € [0, 7). Using the
formula in Lemma 4.3.4, [4] we have

d1 d1 d1

9 . 2
&EW (Mt,l/t) - d 2W2<,u1“7 t)|7, t £§WQ</’Lt7V5)|S:t

=~ [ edn [ (b.Vou) v

for a.e. t € [0,T].
From the definition of K-monotonicity we know

d1

dt2W2 (e ve) < —KW3 (1, 1)

for a.e. t € [0,T]. Finally, by Gronwall’s lemma we obtain the exponential contrac-
tion
Wa (e, ve) < e X" Wo (o, o) (3.25)
for any t € [0, 7.
O]
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Remark 3.17. The velocity field b in this theorem could be replaced by a time-
dependent field b, with minor modifications to the current proof.

Remark 3.18. One would ask if the infinitesimal K-monotonicity of b is equivalent
to the characterizations in the Theorem |3.16 Due to lack of Sobolev regularity of
foF, when f € W'2 we can not prove the theorem from the infinitesimal K-
monotonicity of b using the classical semigroup argument in Bakry—Ernery theory.
But in some special situations, we can achieve this goal.

Case 1. When b is a harmonic vector field on RCD(k, oo) space, it is proved by
Gigli-Rigoni (in [29]) that f o F; € TestF if f € TestF, and F} induces an isometry.
Formally speaking, in this case the Hille-Yoshida theorem works for the generator
L .= %A —b with n € N. Then the corresponding semigroup P} f converge to fo F;
(by Lemma . Combining the gradient estimate of P} f which can be proven by
considering the modified I'; w.r.t %A — b , we can prove 4) in Theorem m

Case 2. On RCD*(k, N) spaces, using the second order differentiation formula
developed by Gigli-Tamanini (see [30]) we can easily prove that infinitesimal K-
monotonicity is equivalent to K-monotonicity.

At the end of this section, we show that the K-monotonicity is stable with
respect to measured Gromov-Hausdorff convergence. For simplicity, we adopt the
notions from [10] without further explanation. Without loss of generality, we call
that RCD(k, c0) spaces M,, := (X,d, m,) converge to M := (X,d, m) in measured
Gromov-Hausdorff topology if m,, — m weakly.

We define the countable class

Hge Ay = {mf f eyt € Q*} C LipNL™,

where Ay is a sub-algebra of A consisting of functions with bounded support, where
A is a Q-vector space generated by

min {d(-,x),k‘} keQn[0,00], x € D,D is dense in X.

It can be seen (see e.g. [10]) that Ho+Aps is dense in W2,

Corollary 3.19 (Stability of K-monotonicity). Let b, € Wg*(TM,),n € N be
such that sup,, ||bp||r2(xm,) < 00 and sup, ||divby, || rexm,) < 00. If (by)nen are
K -monotone and b, (f)m,, — b(f)m as measures for all f € Ho+Avs, and

im /\andmn < /|b|2dm.
n—oo

Then b is K-monotone.

Proof. From Theorem 8.2 in [10] we know the regular Lagrangian flow associated
to b, converge to the RLF of b in measure. We apply 2) of Theorem with
b,,, from lower-semicontinuity of Wasserstein distance w.r.t weak topology, we know
K-monotonicity of b,, implies K-monotonicity of b. m
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4 Applications

In this section, we apply Theorem to two special functions. Our aim is not
to give complete proofs to the rigidity theorems which are already perfectly done,
but to present how to use our result to connect the differential structure and metric
structure on metric measure spaces in a different way. For simplicity, we will always
start our discussion from the non-smooth differential equation concerning the K-
convex functions.

Example 1: Splitting
Theorem. Let (X,d,m) be a RCD(k, 00) metric measure space. If Au =0, and
|Du| = 1, then there exists a metric space Y such that X is isometric to Y x R.

Proof. By a cut-off argument we can apply Corollary to u, then we can prove
that Hess, = 0. From Proposition we know that the regular Lagrangian flows
associated to Vu and —Vu exist, which are denoted by (F;);>0 and (F, );>¢ respec-

tively. By uniqueness of the RLF we know Fj'(F. (z)) = Fo (F"(z)) = Fi&0—),

[t—s|

where sign(t —s)is “4+7 ift —s>0andis “—7 if t — s < 0. We define
[ F@ 20
Fi(z) = { F(z) t<0 (4.1)

Since |[Df| = 1 we know Lip(f) = 1 from Sobolev-to-Lipschitz property. Then
we can apply Theorem and Theorem to infinitesimally 0-convex functions
u and —u. From 4) of Theorem we know

d(Fy(x), Fi(y)) < d(z,y)

for any x,y € X, t € R. So we have

d(Fi(z), Fi(y)) < d(z,y) = d(F(Fi(2)), Fa(Fi(y)) < d(Fi(2), Fiy))

)
for any z,y € X, t € R. Hence d(Fy(z), Fi(y)) = d(z,y) for any z,y € X, t € R.
Therefore F; induces an isometry between u~"'(0) and u~'(¢). Combining with the
fact that |E}|(z) = 1, we know F, induces a translation on the fibre (F}(x)); for any
zo € u1(0). Tt can also be checked that u~'(0) is totally geodesic.

Finally, by identifying the Sobolev spaces W1?(®~1(X)) and WH(R x u~1(0)),
we know from the Sobolev-to-Lipschitz property that the map ® : R x u=!(0) >
(t,x) — Fi(z) € X is an isometry (see Section 6, [22]).

[

Remark 4.1. In “splitting theorem” (see [1§], [22]), the function w is the Buseman
function associated with a line. In [27] the function w is a solution to the equation
Awu = —u, such that Hess, = 0.

Example 2: Volume cone implies metric cone
Theorem. Let (X,d,m) be a RCD(0,N) space with m < HN. If Au = N,
|Dul? = 2u and u < Cd?(-,0) for some O € X, C' > 0, then (X,d) admits a warped
product-like structure.
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Proof. Since m < H” | from the rectifiability theorem (see [38], [28] and [32]) we
know dim),. = N is a constant. Then by Proposition , we know u € Wéloc and
trHess,(z) = Au(z) m-a.e. x € X. Hence A is a local operator so that we can
represent it using local coordinate.

Since Au = N, by Proposition [2.12] we know
1
N =Au= §A|Du\2 — (Vu, VAu) > |Hess,|5g, m — a.e.. (4.2)
By Cauchy inequality and the fact that dimy,. = N we know
2 1 2 1 2
|Hess, |fg > N(trHessf) = N(Af) = N.

Combining with (4.2)) we know Hess, = Idy.

Then we consider the regular Lagrangian flow associated to Vu and —Vu, which
are denoted by (Ft+)t20 and (F; )i>o respectively. We can also construct F; as we
did in the first example. We know both

d(Fy(x), Fi(y)) < e Md(z,y)
for any x,y € X, t > 0, and
d(Fy(x), Fy(y)) < eM'd(x,y)

for any z,y € X, t <0.

Therefore, for any ¢t > 0 we have
d(Fi(z), Fi(y)) < e Md(z,y) = eV d(F(Fy(2)), Fo(Fi(y)) < e MeMd(Fy(x), Fi(y)).

Therefore we know d(Fi(z), Fi(y)) = e Vd(x,y). So (X,d) admits a warped
product-like structure.

]

Remark 4.2. In “volume cone implies metric cone theorem ” (see [14], [19]), the
target function u is the squared distance function %d2(~, O) where O is a fixed point.
Then we know |Du|?> = 2u = d?(-,0). From the theorem above we know |F}|(z) =
|Du| o Fy(z) = d(Fy(z),0). We define ® : R x v (1) > (t,z) — Fi(z) € X. By
identifying the Sobolev spaces W?(®~1(X)) and Wh*(R x u~ (1)) (see [19] and
[26]), we know from Sobolev-to-Lipschitz property that ® is an isometry. So(X,d)
admits a cone structure, and the point O is exactly the apex.
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