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Abstract

There are two main aims of this paper. The first aim is to characterize
the convexity of functions on metric measure space, so that we could link the
existence of some special K-convex functions to the particular metric structure
of the space, which is a new approach to deal with some rigidity theorems such
as “splitting theorem” and “volume cone implies metric cone theorem”. The
second aim is to study the convexity/monotonicity of non-smooth vector fields
on metric measure space. We introduce the notion of K-monotonicity which
is stable under measured Gromov-Hausdorff convergence, then characterize
the K-monotone vector fields in several equivalent ways.

Keywords: continuity equation, convex function, metric measure space, metric
rigidity, monotone vector field, optimal transport.
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1 Introduction

In the past twenty years, the displacement convexity of functionals on Wasserstein
space W2 = (P2(X),W2), i.e. geodesically convex functionals on the space of proba-
bility measures equipped with L2- transportation distance, have been deeply studied
and applied in many fields such as differential equation, probability theory, differ-
ential and metric geometry (see e.g. Ambrosio-Gigli-Savaré’s “green book” [4] and
Villani’s encyclopedia [45] for an overview of related theories).

One of the most interesting functionals is the Boltzmann entropy. On a Rie-
mannian manifold (M, d,m), the convexity of the Boltzmann entropy (or relative
entropy) Entm(·) defined by

Entm(µ) :=

{ ∫
ρ ln ρ dm if µ = ρm,
∞ otherwise

characterizes the lower Ricci curvature bound of M (see [46]). It is proven (by Erbar
in [20]) that the gradient flow of Entm in Wasserstein space could be identified
with the heat flow in the following sense: let Ht(f) be the solution to the heat
equation with initial datum f , H̃t(fm) be the Wasserstein gradient flow of Entm
from fm ∈ P2(M). then Ht(f)m = H̃t(fm).

Moreover, the following well-known characterizations are equivalent (see [46]):

1) The uniform lower Ricci curvature bound: RicM ≥ K for some K ∈ R.

2) Entm is K-convex in Wasserstein space.

3) The existence of EVIK-gradient flow of Entm from any initial measure.

4) The exponential contraction of the heat flows in Wasserstein distance:

W2

(
µ1
t , µ

2
t

)
≤ e−KtW2(µ1

0, µ
2
0), ∀t > 0

holds for any two heat flows µit := Ht(f
i)m, i = 1, 2.

5) The existence of the heat kernel, and exponential contraction of the heat ker-
nels in Wasserstein distance :

W2

(
ρt(x, dz)m(z), ρt(y, dz)m(z)

)
≤ e−Ktd(x, y)

for any x, y ∈ X and t > 0, where ρt(x, dz)m(z) = H̃t(δx).

6) The gradient estimate of heat flow:

|DHt(f)|2(x) ≤ e−2KtHt(|Df |2)(x), m− a.e. x ∈ X

for any f ∈ W 1,2(M).
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In the last few years, the notion of curvature-dimension condition of (non-
smooth) metric measure space, was proposed by Lott-Sturm-Villani (see [37] and
[42, 43]) . They use the characterization 2) above as a definition of synthetic lower
Ricci curvature bound. Later on, the curvature-dimension condition was refined
by Ambrosio-Gigli-Savaré (see [6] and [24]), which we call Riemannian curvature-
dimension condition or RCD condition for short. It is known that the class of
RCD(k,∞) spaces includes weighted Riemannian manifolds satisfying curvature-
dimension condition a la Bakry-Émery, as well as their measured Gromov-Hausdorff
limits, and Alexandrov spaces.

In this RCD setting, there is a very natural generalized heat flow, which is the
L2-gradient flow of the Cheeger energy. In particular, all those chatacterizations
on manifold are known to be valid in appropriate weak sense on metric measure
space (see [5–7]). Furthermore, more entropy-like (internal energy) functionals have
been studied in [8] and [21], which could be used to study more problems such as
RCD∗(k,N) condition.

Besides the Boltzmann entropy (and other internal energy functionals), another
important example is the (potential energy) functional

U(·) : P2(X) 3 µ 7→
∫
X

u(x) dµ(x),

where u is a lower semicontinuous function on Rn (or Hilbert space) whose negative
part has squared-distance growth (see [4]). It is known that each of the charac-
terizations concerning entropy/heat flow has a parallel description for U(·) and its
gradient flow, and they characterize the convexity of u. Then we would like to know
if we can characterize the convexity of U(·) in the setting of (non-smooth) metric
measure space, in a similar way as we know about Entm(·). In this direction, sev-
eral results have been obatined by Sturm, Ketterer etc., in [44], [33], [41] and [27].
However, these results just answer our question partially. So a complete study of
this problem is still needed, which is the first motivation of the current work.

On the other hand, in the study of Ricci-limit spaces, i.e. measured Gro-
mov–Hausdorff limits of Riemannian manifolds with Ricci curvature uniformly bounded
from below, two (almost) rigidity theorems “(almost) splitting theorem” and “ (al-
most) volume cone implies (almost) metric cone theorem” play important roles (see
Cheeger-Colding’s papers [14–17]). In the proofs of these rigidity theorems on Ricci-
limtit spaces, as well as on RCD(k,∞) and RCD∗(k,N) spaces (see e.g. [19], [22]),
the analysis on some special K-convex functions play key roles. For example, in
“volume cone implies metric cone theorem” (see [14], [19]), the target function is
the distance function u := 1

2
d2(·,O) where O is a fixed point. We know Hessu = IdN ,

such that u is a “N -convex function”. In “splitting theorem” (see [18], [22]), the
target function is the Busemann function associated to a line which is harmonic,
so that it should be regarded as a “0-convex function”. In the case of the above
mentioned non-smooth metric measure spaces, due to lack of regularity, the met-
ric property could not be obtained directly from the existence of these K-convex
functions.

However, the results in [35,44] and [33] concerning K-convex functions could not
be used directly to study the rigidity theorems, since the pre-request of applying
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those results seems to be too restrictive in our situation. This encourages us to
study K-convex functions deeply in RCD setting, so that we can learn the metric
property of the space directly from the analytical properties of some special K-
convex functions.

Before introducing the main result of this article, we should clarify the rela-
tionship between (Wasserstein) gradient flow of U(·) and the flow generated by the
(non-smooth) vector field ∇u, as we identified the heat flow and the gradient flow
of entropy before.

On one hand, Ambrosio-Trevisan extend the famous Di Perna-Lions theory to
RCD(k,∞) metric measure spaces in [11], they prove that the continuity equation

∂tµt +∇ · (−µt∇u) = 0, (1.1)

is well posed under some assumptions on the Sobolev regularity of u. They prove the
existence and uniqueness of the solution to (1.1) for any initial condition µ0 ∈ P(X)
with µ0 ≤ C0m. They also prove the existence of the regular Lagrangian flow
(Ft)t∈[0,T ) such that the flows Ft(x), t > 0 is non-branching and µt = (Ft)]µ0 ≤ C1m.

On the other hand, in [25] Gigli and the author study the absolutely continuous
curves in Wasserstein space through its corresponding continuity equation on metric
measure space. It is proved in [25] that (µt) solves (1.1) if and only if it is a gradient
flow of U : µ 7→

∫
u dµ in Wasserstein space. In other words, (µt) is the gradient

flow of U if and only if the velocity field of its continuity equation is −∇u.

The main results of this paper show that the following characterizations are
equivalent (see Theorem 3.12, Theorem 3.14), where u is a scaler function with
appropriate a priori regularities.

1) u is infinitesimally K-convex, i.e. Hessu(·, ·) which is the Hessian of u satisfies
Hessu(∇f,∇f) ≥ K|Df |2 m-a.e. for any f ∈ W 1,2.

2) u is weakly K-convex, i.e. U(·) is K-displacement convex.

3) ∇u is K-monotone in the sense that∫
〈∇u,∇ϕ〉 dµ1 +

∫
〈∇u,∇ϕc〉 dµ2 ≥ KW 2

2 (µ1, µ2).

for any µ1, µ2 ∈ P2 with bounded densities, where (ϕ, ϕc) is the Kantorovich
potentials associated to (µ1, µ2). It can be seen that this concept is a natural
generalization of the monotone vectors in Hilbert space.

4) The exponential contraction in Wasserstein distance:

W2(µ1
t , µ

2
t ) ≤ e−KtW2(µ1

0, µ
2
0), ∀t > 0

holds for any two solutions (µ1
t ), (µ

2
t ) to the continuity equation (1.1), whose

velocity fields are −∇u.
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5) The regular Lagrangian flow (Ft) of −∇u is well-defined on the entire space
X, and exponential contraction:

d(Ft(x), Ft(y)) ≤ e−Ktd(x, y)

holds for any x, y ∈ X and t > 0. We will see some applications of this
property in Section 4.

6) For any f ∈ W 1,2(X, d,m), we have f ◦ Ft ∈ W 1,2 and

|D(f ◦ Ft)|(x) ≤ e−Kt|Df | ◦ Ft(x), m− a.e. x ∈ X.

We divide the characterization theorem above into two theorems in Section 3,
because the pre-requests on the regularity of u are slightly different. The first one is
Theorem 3.12, which deals with the equivalence of 1) and 2). It has been proven
(in e.g. [33], [27], [35]) when u is a test function (see section 2.2 for the definition).
However, in many cases which are potential applications of the characterization the-
orem, e.g. in “ splitting theorem” and “volume cone implies metric cone theorem”,
the functions only have lower differentiability and integrability. In Theorem 3.12,
u ∈ W 2,2

loc is only assumed to be locally bounded and u(x) ≥ −a−bd2(x, x0) for some
a, b ∈ R+, x0 ∈ X. So it is possible to apply our characterization theorem to more
functions on non-compact space.

The second one is Theorem 3.14, which deals with the equivalence of 2) − 6).
The well-posedness of this theorem requires the existence and uniqueness of regular
Lagrangian flow on metric measure space, which is studied by Ambrosio-Trevisan (in
[11]). For the potential application of the theorem, we also need to extend Ambrosio-
Trevisan’s result to a lager class of vector fields. This will be studied in Proposition
3.2. Consequently, we will see in Theorem 3.16 that the K-monotonicity of a
(possibly) non-symmetric vector field b can be characterized in similar ways as
3), 4), 5), 6) above. We remark that these equivalent descriptions are new even on
Riemannian manifold and Riemannian limit space. Due to lack of second order
differentiation formula, and low regularity of the vector field, the usual argument
in smooth setting fails to work under such non-smooth condition (see also Remark
3.18).

At last, we summarize the highlights and main innovations of this paper.

a) Equivalent characterizations to K-convexity of function.

b) Equivalent characterizations to K-monotonicity of non-symmetric vector field.

c) Improve the known results concerning K-convex function, and continuity equa-
tion on metric measure space.

d) Improve the understanding of K-convex function on Riemannian manifold.

e) A new approach to study rigidity theorems on spaces with lower Ricci curva-
ture bound.
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The organization of this paper is as following. In section 2 we review some basic
results on optimal transport, Sobolev spaces and (co)tangent modules on metric
measure space, and continuity equation on metric measure space studied in [11], [25].
In section 3, we prove our main theorems which characterize the K-convexity of
functions and K-monotonicity of vector fields on metric measure spaces. In the last
section, we apply our characterization theorem to prove two results, which are key
steps in the proofs of “splitting theorems” and “from volume cone to metric cone
theorem”.

2 Preliminaries

2.1 Metric measure space and optimal transport

We recall some basic results concerning analysis on metric spaces and optimal trans-
port theory. More detailed discussions could be found in [2], [4] and [45]. Basic
assumptions on the metric measure space in this paper are:

Assumption 2.1. The metric measure space M := (X, d,m) satisfies:

i) (X, d) is a complete and separable geodesic metric space,

ii) suppm = X,

iii) m is a d-Borel measure and gives finite value on bounded sets,

iv) (X, d,m) has exponential volume growth:
∫
e−λd2(x,x0) dm(x) < ∞ for some

λ > 0, x0 ∈ X.

The local Lipschitz constant lip(f) : X → [0,∞] of a function f is defined by

lip(f)(x) :=

{
limy→x

|f(y)−f(x)|
d(x,y)

, x is not isolated

0, otherwise.

The space of continuous curves on [0, 1] with values inX is denoted by C([0, 1], X)
and equipped with the uniform distance. Its subspace consisting of geodesics is
denoted by Geo(X). For t ∈ [0, 1] we denote by et : C([0, 1], X) 7→ X the “evaluation
map” defined by

et(γ) := γt, ∀γ ∈ C([0, 1], X).

A curve γ : [0, 1]→ X is called absolutely continuous if there exists f ∈ L1([0, 1])
such that

d(γs, γt) ≤
∫ s

t

f(r) dr, ∀t, s ∈ [0, 1], t < s. (2.1)

For an absolutely continuous curve γ, it can be proved that the limit limh→0
d(γt+h,γt)

|h|
exists for a.e. t and thus defines a function, called metric speed and denoted by |γ̇t|,
which is in L1([0, 1]). If |γ̇t| ∈ L2([0, 1]), we say that the curve is 2-absolutely
continuous and denote the set of 2-absolutely continuous by AC2([0, 1], X).
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The space of Borel probability measures on X is denoted by P(X) and P2(X) ⊂
P(X) is the space of probability measures with finite second order moment, i.e.
µ ∈ P2(X) if µ ∈ P(X) and

∫
d2(x, x0) dµ(x) < +∞ for some x0 ∈ X. We equip

P2(X) with the L2-transportation distance W2, or 2-Wasserstein distance defined
by:

W 2
2 (µ, ν) := inf

∫
d2(x, y) dπ(x, y), (2.2)

where the inf is taken among all π ∈ P(X2) whose marginals are µ, ν.

The measures which attain the infimum are called optimal transport plans and
denoted by Opt(µ, ν). Given ϕ : X → R∪ {−∞}, which is not identically −∞, the
c-transform ϕc : X → R ∪ {−∞} is defined by

ϕc(y) := inf
x∈X

d2(x, y)

2
− ϕ(x).

ϕ is said to be c-concave if it is not identically −∞ and ϕ = ψc for some ψ :
X → R ∪ {−∞}. It is known that for µ, ν ∈ P2(X), W 2

2 (µ, ν) can be obtained as
maximization of the dual problem

1

2
W 2

2 (µ, ν) = sup

∫
ϕ dµ+

∫
ϕc dν, (2.3)

where the sup is taken among all c-concave functions ϕ. Notice that the integrals
on the right hand side are well posed because for any c-concave function ϕ and
µ, ν ∈ P2(X) we always have max{ϕ, 0} ∈ L1(µ) and max{ϕc, 0} ∈ L1(ν). The sup
can be achieved and any maximizing ϕ is called Kantorovich potential from µ to
ν. For any Kantorovich potential we have in particular ϕ ∈ L1(µ) and ϕc ∈ L1(ν).
Equivalently, the sup in (2.3) can be taken among all ϕ : X → R Lipschitz and
bounded.

Absolutely continuous curves in (P2,W2) can be characterized by the following
proposition:

Proposition 2.2 (Superposition principle, [36]). Let (X, d) be a complete and sep-
arable metric space, and (µt)t∈[0,1] ∈ AC2([0, 1],P2). Then there exists a measure
Π ∈ P(C([0, 1], X)) concentrated on AC2([0, 1], X) such that:

(et)]π = µt, ∀t ∈ [0, 1]∫
|γ̇t|2 dπ(γ) = |µ̇t|2, a.e. t.

Such a measure Π associated to the curve (µt) is called a lifting of (µt).

2.2 Sobolev space and tangent module

The Sobolev space W 1,2(M) is defined as in [5]. We say that f ∈ L2(X,m) is
a Sobolev function in W 1,2(M) if there exists a sequence of Lipschitz functions
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functions {fn} ⊂ L2, such that fn → f and lip(fn) → G in L2 for some G ∈
L2(X,m). It is known that there exists a minimal function G in m-a.e. sense.
We call this minimal G the minimal weak upper gradient (or weak gradient for
simplicity) of f , and denote it by |Df |. It is known that the locality holds for |Df |,
i.e. |Df | = |Dg| m-a.e. on the set {x ∈ X : f(x) = g(x)}. Similarly, we define local
Sobolev space W 1,2

loc (M) which consists of functions f ∈ L2
loc such that for any open

set Ω with bounded closure, f ∈ W 1,2(Ω).

As a consequence of the definition above, we have the lower semi-continuity: if
(fn)n ⊂ W 1,2 converge to some f ∈ L2 in m-a.e. sense and such that (|Dfn|)n is
bounded in L2(X,m), then f ∈ W 1,2(X, d,m) and

|Df | ≤ G, m-a.e.,

for every L2-weak limit G of some subsequence of (|Dfn|)n.

We equip W 1,2(X, d,m) with the norm

‖f‖2
W 1,2(X,d,m) := ‖f‖2

L2(X,m) + ‖|Df |‖2
L2(X,m).

It is known that W 1,2(X, d,m) is a Banach space, but not necessary a Hilbert space.
We say that (X, d,m) is an infinitesimally Hilbertian space if W 1,2(X, d,m) is a
Hilbert space.

On an infinitesimally Hilbertian space M , we have a natural pointwise bilinear
map defined by

[W 1,2(M)]2 3 (f, g) 7→ Γ(f, g) :=
1

4

(
|D(f + g)|2 − |D(f − g)|2

)
.

We have the following Leibniz rule (see Proposition 3.17 in [24] for a proof):

Γ(fg, h) = fΓ(g, h) + gΓ(f, h)

for any f, g, h ∈ W 1,2 ∩ L∞.

Then we can define the measure-valued Laplacian by duality (integration by
part).

Definition 2.3 (Measure valued Laplacian, [23, 24]). The space D(∆) ⊂ L2
loc(M)

is the space of f ∈ W 1,2
loc (M) such that there is a measure µ satisfying∫

h dµ = −
∫

Γ(h, f) dm,∀h : M 7→ R, Lipschitz with bounded support.

In this case the measure µ is unique and we shall denote it by ∆f . If ∆f � m, we
denote its density by ∆f . If ∆f ∈ L2, it can be seen that∫

ϕ∆f dm = −
∫

Γ(ϕ, f) dm

for any ϕ ∈ W 1,2.

Let (fn)∞n=0 ⊂ D(∆). We say that (fn) converge to f∞ in D(∆) if ∆fn → ∆f∞
in L2.
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Remark 2.4. We do not assume that ∆f has bounded total variation in this paper.
Similarly, ∆f is not necessarily L1-integrable, but locally integrable.

We have the following proposition characterizing the curvature-dimensions con-
ditions RCD(k,∞) and RCD∗(k,N) through non-smooth Bakry-Émery theory. We
recall that a space is RCD(k,∞)/RCD∗(k,N) if it is a CD(K,∞)/CD∗(K,N) space
which are defined by Lott-Sturm-Villani in [37, 42, 43] and Bacher-Sturm in [12],
equipped with an infinitesimally Hilbertian Sobolev space. For more details, see [6]
and [3].

We define TestF(M) ⊂ W 1,2(M), the set of test functions by

TestF(M) :=
{
f ∈ D(∆)∩L∞ : f ∈ W 1,2∩W 1,∞ and ∆f ∈ W 1,2(M)∩L∞(M)

}
.

It is known that TestF(M) is dense in W 1,2(M) when M is RCD(k,∞).

Let f, g ∈ TestF(M). We know (see [40]) that Γ(f, g) ∈ D(∆), and the measure
Γ2(f, g) is well-defined by

Γ2(f, g) =
1

2
∆Γ(f, g)− 1

2

(
Γ(f,∆g) + Γ(g,∆f)

)
m,

and we put Γ2(f) := Γ2(f, f). Then we have the following Bochner inequality on
metric measure space, which can be regarded as a variant definition of RCD(k,∞)
and RCD∗(k,N) conditions.

We recall the Sobolev-to-Lipschitz property, which is a fundamental prerequisite
for Bakry-Émery theory, see [7] and [26] for more discussion about this property.

Definition 2.5 (Sobolev-to-Lipschitz property). We say that a metric measure
space (X, d,m) has Sobolev to Lipschitz property if for any function f ∈ W 1,2(X)
with |Df | ∈ L∞(X), we can find a function f̃ such that f = f̃ m-a.e. and
Lip(f̃) = ess sup |Df |.

Proposition 2.6 (Bakry-Émery condition, [6, 7], [21]). Let M = (X, d,m) be a
RCD∗(k,N) space with k ∈ R and N ∈ [1,∞]. Then

Γ2(f) ≥
(
k|Df |2 +

1

N
(∆f)2

)
m

for any f ∈ TestF(M).

Conversely, let M = (X, d,m) be an infinitesimally Hilbertian space satisfying
Sobolev-to-Lipschitz property, fulfils the Assumption 2.1. Then it is a RCD∗(k,N)
space with k ∈ R and N ∈ [1,∞] if

1

2

∫
|Df |2∆ϕ dm−

∫
〈∇f,∇∆f〉ϕ dm ≥ k

∫
|Df |2ϕ dm +

1

N

∫
(∆f)2ϕ dm

for any ϕ ∈ DL∞(∆) and f ∈ DW 1,2(∆), where

DL∞(∆) :=
{
ϕ : ∆ϕ ∈ L2 ∩ L∞, ϕ ∈ W 1,2 ∩ L∞

}
,

and
DW 1,2(∆) :=

{
ϕ : ϕ ∈ W 1,2,∆ϕ ∈ W 1,2

}
.
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Next, we will review the concepts of “tangent/cotangent vector field” in non-
smooth setting. Firstly we recall the definition and basic properties of L∞-module.

Definition 2.7 (L2-normed L∞-module). Let M = (X, d,m) be a metric measure
space. A L2-normed L∞(M) module is a Banach space (B, ‖ · ‖B) equipped with a
bilinear map

L∞(M)×B 7→ B,

(f, v) 7→ f · v

such that

(fg) · v = f · (g · v),

1 · v = v

for every v ∈ B and f, g ∈ L∞(M), where 1 ∈ L∞(M) is the function identically
equals to 1 on X, and a “pointwise norm” | · | : B 7→ L2(M) which maps v ∈ B to
a non-negative function in L2(M) such that

‖v‖B = ‖|v|‖L2

|f · v| = |f ||v|, m− a.e.

for every f ∈ L∞(M) and v ∈ B.

It can be seen that the L2-normed L∞-module has the following properties:

Locality: for any v ∈ B and Borel sets {Ai}i∈N ⊂ X we have

χAi · v = 0, ∀i ∈ N⇒ χ∪iAi · v = 0.

Gluing: for every sequence (vi)i∈N ⊂ B and sequence of Borel sets {Ai}i such
that

χAi∩Aj · vi = χAi∩Aj · vj, ∀i, j, and lim
n→∞

‖
n∑
i=1

χAi · vi‖B <∞,

there exists v ∈ B such that

χAi · v = χAi · vi, ∀i, and ‖v‖B ≤ lim
n→∞

‖
n∑
i=1

χAi · vi‖B.

Then we define the tangent (and cotangent) modules of M , which are particular
examples of L2-normed module. We define the “Pre-Cotangent Module” PCM as
the set consisting of the elements {(Ai, fi)}i∈N, where {Ai}i∈N is a Borel partition
of X, and {fi}i are Sobolev functions such that

∑
i

∫
Ai
|Dfi|2 <∞.

We define an equivalence relation on PCM by

{(Ai, fi)}i∈N ∼ {(Bj, gj)}j∈N if |D(gj − fi)| = 0, m− a.e. on Ai ∩Bj.

We denote the equivalence class of {(Ai, fi)}i∈N by [(Ai, fi)]. In particular, we call
[(X, f)] the differential of a function f ∈ W 1,2 and denote it by df .

Then we define the following operations:
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a) [(Ai, fi)] + [(Bi, gi)] := [(Ai ∩Bj, fi + gj)],

b) Multiplication by scalars: λ[(Ai, fi)] := [(Ai, λfi)],

c) Multiplication by simple functions: (
∑

j λjχBj)[(Ai, fi)] := [(Ai ∩Bj, λjfi)],

d) Pointwise norm: |[(Ai, fi)]| :=
∑

i
χAi |Dfi|,

where χA denote the characteristic function on the set A.

It can be seen that all the operations above are continuous on PCM/ ∼ with

respect to the norm ‖[(Ai, fi)]‖ :=
√∫
|[(Ai, fi)]|2 dm and the L∞(M)-norm on the

space of simple functions. Therefore we can extend them to the completion of
(PCM/ ∼, ‖ · ‖) and we denote this completion by L2(T ∗M). As a consequence of
our definition, we can see that L2(T ∗M) is the ‖ · ‖ closure of {

∑
i∈I aidfi : |I| <

∞, ai ∈ L∞(M), fi ∈ W 1,2} (see Proposition 2.2.5 in [23]). It can also be seen from
the definition and the infinitesimal Hilbertianity assumption on M that L2(T ∗M)
is a Hilbert space equipped with the inner product induced by ‖ · ‖. Moreover,(
L2(T ∗M), ‖ · ‖, | · |

)
is a L2-normed module according to the Definition 2.7, which

we shall call cotangent module of M .

We define the tangent module L0(TM) as HomL∞(M)(L
2(T ∗M), L0(M)), i.e. T ∈

L0(TM) if it is a linear map from L2(T ∗M) to L0(M) as Banach spaces satisfying
the L∞-homogeneity:

T (fv) = fT (v), ∀v ∈ L2(T ∗M), f ∈ L∞(M),

and continuity:
T (v) ≤ G|v| m− a.e., ∀ v ∈ L2(T ∗M)

for some G ∈ L0. The smallest function G satisfying this property will be denoted
by |T |. For example, for any f ∈ W 1,2

loc (M), we know that there exists an element
in L0(TM) which we denote by ∇f such that ∇f(dg) = Γ(f, g) ≤ |Df ||Dg| for any
g ∈ W 1,2. So |∇f | = |Df | ∈ L2

loc.

We define L2(TM) as the space consisting of vectors T ∈ L0(TM) such that
|T | ∈ L2(M). It can be seen that L2(TM) has a natural L2-normed L∞(M)-
module structure, and it is isometric to L2(T ∗M) both as a module and a Hilbert
space. We denote the corresponding element of df in L2(TM) by ∇f and call it
the gradient of f (see also the Riesz theorem for Hilbert modules in Chapter 1
of [23]). The natural pointwise norm on L2(TM) (we also denote it by | · |) satisfies
|∇f | = |df | = |Df |. It is also known that {

∑
i∈I ai∇fi : |I| <∞, ai ∈ L∞(M), fi ∈

W 1,2} is dense in L2(TM). In other words, since we have a pointwise inner product
〈·, ·〉 : [L2(T ∗M)]2 7→ L1(M) such that

〈df, dg〉 := Γ(f, g) =
1

4

(
|D(f + g)|2 − |D(f − g)|2

)
,

11



we can then define the gradient ∇g as the unique element in L2(TM) such that
∇g(df) := 〈df, dg〉, m-a.e. for every f ∈ W 1,2(M). Therefore, L2(TM) inherits
a pointwise inner product from L2(T ∗M) and we still use 〈·, ·〉 to denote it. We
define L2

loc(TM) as those b ∈ L0(TM) such that |b| ∈ L2
loc(M). It can be seen that

L2
loc(TM) inherits a pointwise inner product from L2(TM).

Next we review the definition and basic properties of the covariant derivatives
and Sobolev spaces W 2,2(M), H2,2(M) and W 1,2

C (TM), H1,2
C (TM). It is proved in

Lemma 3.2 of [40] that 〈∇f,∇g〉 ∈ D(∆) ⊂ W 1,2(M) for any f, g ∈ TestF(M).
Therefore we can define the Hessian of f ∈ TestF(M), which is a bilinear map:
Hessf : {∇g : g ∈ TestF(M)}2 7→ L0(M) by

2Hessf (∇g,∇h) = 〈∇g,∇〈∇f,∇h〉〉+ 〈∇h,∇〈∇f,∇g〉〉 − 〈∇f,∇〈∇g,∇h〉〉 (2.4)

for any g, h ∈ TestF(M). It is known that Hessf can be extended to a continuous
symmetric L∞(M)-bilinear map on [L2(TM)]2 with values in L0(M).

We denote the pointwise scalar product of two tensors X, Y ∈ L2(TM)⊗L2(TM)
by X : Y . It can be seen that |X|2HS :=

√
X : X is the Hilbert-Schmidt norm of X.

We recall that the distributional divergence can be defined through integration by
part.

Definition 2.8 (Distributional divergence, [11, 23]). The domain of divergence
D(div) ⊂ L2

loc(TM) is the space of all X ∈ L2
loc(TM) for which there exists a

function f ∈ L2
loc(X,m) such that∫

fg dm = −
∫
〈X,∇g〉 dm, ∀g Lipschitz with bounded support.

In this case, we call (the unique) f the divergence of X and denote it by divX.

It can be seen (see section 2.3.3, [23]) that div(ϕX) := 〈∇ϕ,X〉 + fdivX for
ϕ ∈ Lip(M) ∩ L∞ and X ∈ D(div).

Definition 2.9 (Sobolev space W 1,2
C,loc(TM)). The Sobolev space W 1,2

C,loc(TM) is the
space of all X ∈ L2

loc(TM) for which there exists a T ∈ L2
loc(TM)⊗ L2

loc(TM) such
that ∫

hT : (∇g1 ⊗∇g2) dm = −
∫
〈X,∇g2〉div(h∇g1)− hHessg2(X,∇g1) dm

for any g1, g2, h ∈ TestF(M). In this case we call T the covariant derivative of X
and denote it by ∇X. We endow W 1,2

C,loc(TM) with the (extended) norm ‖·‖W 1,2
C (TM)

defined by
‖X‖2

W 1,2
C (TM)

:= ‖X‖2
L2(TM) + ‖|∇X|HS‖2

L2(M).

We define W 1,2
C (TM) as those X ∈ W 1,2

C,loc(TM) with finite norm.

12



We recall that the class of test vector fields TestV(M) ⊂ L2(TM) is defined as

TestV(M) :=
{ n∑

i=1

gi∇fi : n ∈ N, fi, gi ∈ TestF(M), i = 1, ..., n
}
.

It can be proved that TestV(M) is dense in L2(TM) whenM is RCD(k,∞) (see [23]).

It can be seen that TestV(M) ⊂ W 1,2
C (TM). In particular, for any f ∈ TestF(M)

we have ∇f ∈ W 1,2
C (TM) and (∇∇f)b = Hessf where b is the isomorphism from

L2(TM)⊗ L2(TM) to L2(T ∗M)⊗ L2(T ∗M).

We defineW 2,2
loc (M) as the space of functions f ∈ W 1,2

loc (M) with∇f ∈ W 1,2
C,loc(TM),

equipped with the (extended) norm

‖f‖2
W 2,2(M) := ‖|Df |‖2

L2(M) + ‖|∇∇f |HS‖2
L2(M).

We define W 2,2(M) as the subspace of W 2,2
loc (M) consisting of vectors with finite

norm. We call (∇∇f)b the Hessian of f and denote it by Hessf . It can be seen
that this notation is compatible with (2.4) when f ∈ TestF. We define H2,2(M) ⊂
W 2,2(M) as the W 2,2- closure of TestF(M).

Definition 2.10 (Sobolev spaceH1,2
C (TM)). We define the Sobolev spaceH1,2

C (TM) ⊂
W 1,2
C (TM) as the W 1,2

C (TM)-closure of TestV(M).

As an extension of the result in [40], we have the following proposition concerning
H1,2
C (TM) vectors.

Proposition 2.11 (Proposition 3.4.6, [23]). Let X ∈ H1,2
C (TM). Then 〈X, Y 〉 ∈

W 1,2(M)/W 1,2
loc (M) for any Y ∈ W 1,2

C (TM)/W 1,2
C,loc(TM). In particular,

∇Y : (∇g ⊗∇h) = 〈∇g,∇〈Y,∇h〉〉 − Hessh(Y,∇g)

for any h ∈ TestF(M).

We define the symmetric part of ∇X by

∇sX : (∇f ⊗∇g) :=
1

2

(
∇X : (∇f ⊗∇g) +∇X : (∇g ⊗∇f)

)
for any f, g ∈ TestF(M). In particular, for X ∈ W 1,2

C (TM) we know

∇sX : (∇f ⊗∇f) = 〈∇f,∇〈X,∇f〉〉 − 1

2
〈X,∇|Df |2〉

for any f, g ∈ TestF(M).

We have the following improved Bochner inequality, a more refined version for
RCD∗(k,N) space could be found in [31].
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Proposition 2.12 (Improved Bochner inequality, [23]). Let M = (X, d,m) be a
RCD(k,∞) space. Then for any f ∈ TestF(M) we have

Γ2(f) ≥
(
K|Df |2 + |Hessf |2HS

)
m

where |Hessf |HS is the Hilbert-Schmidt norm of the Hessian (as a bi-linear map).
In the case of RCD∗(k,N) space, |Hessf |HS can be computed by local coordinate (see
Proposition 2.19 below).

We also have the following important results.

Proposition 2.13 (Corollary 3.3.9, Proposition 3.3.18, [23]). Let M = (X, d,m) be
a RCD(k,∞) space. Then for any f ∈ W 1,2(M) with ∆f ∈ L2, we have

‖|Hessf |HS‖2
L2 ≤ ‖∆f‖2

L2 − k‖|Df |‖2
L2 .

Furthermore, we know
{
f : f ∈ W 1,2,∆f ∈ L2

}W 2,2

= H2,2 ⊂ W 2,2.

At the end of this part, we review some useful knowledge about the dimension of
M , which is understood as the dimension of L2(TM) as a L∞-module. The readers
who are familiar with the so-called “Lipschitz differentiable space” studied firstly by
Cheeger, could find that the following results have their counterparts in [13].

Definition 2.14 (Local independence). Let B be a Borel set with positive measure.
We denote the subset of L2(TM) consisting of those v such that χBcv = 0 by
L2(TM)|B. We say that {vi}n1 ⊂ L2(TM) is independent on B if

n∑
i=1

fivi = 0, m− a.e. on B

holds if and only if fi = 0 m-a.e. on B for each i.

Definition 2.15 (Local span and generators). Let B be a Borel set in X and
V := {vi}i∈I ⊂ L2(TM). The span of V on B, denoted by SpanB(V ), is the subset of
L2(TM)|B with the following property: there exist a Borel decomposition {Bn}n∈N
of B, families of vectors {vi,n}mni=1 ⊂ L2(TM) and functions {fi,n}mni=1 ⊂ L∞(M),
n = 1, 2, ..., such that

χBnv =
mn∑
i=1

fi,nvi,n

for each n. We call the closure of SpanB(V ) the space generated by V on B.

We say that L2(TM) is finitely generated if there exists a finite set {v1, ..., vn}
spanning L2(TM) on X, and locally finitely generated if there is a partition {Ei} of
X such that L2(TM)|Ei is finitely generated for every i ∈ N. It can be seen (in [23],

Proposition 1.4.4) that we have well-defined basis and dimension on metric measure
space.

14



Definition 2.16 (Local basis and dimension). We say that a finite set v1, ..., vn is
a basis on Borel set B if it is independent on B and SpanB{v1, ..., vn} = L2(TM)|B.

If L2(TM) has a basis of cardinality n on B, we say that it has dimension n on B,
or that its local dimension on B is n. If L2(TM) does not admit any local basis of
finite cardinality on any subset of B with positive measure, we say that L2(TM)
has infinite dimension on B.

Proposition 2.17 (Theorem 1.4.11, [23]). Let (X, d,m) be a RCD(k,∞) metric
measure space. Then there exists a unique decomposition {En}n∈N∪{∞} of X such
that

• For any n ∈ N and any B ⊂ En with finite positive measure, L2(TM) has a
unit orthogonal basis {ei,n}ni=1 on B,

• For every subset B of E∞ with finite positive measure, there exists a set of unit
orthogonal vectors {ei,B}i∈N∪{∞} ⊂ L2(TM)|B which generates L2(TM)|B,

where unit orthogonal of a countable set {vi}i ⊂ L2(TM) on B means 〈vi, vj〉 = δij
m-a.e. on B.

Definition 2.18 (Analytic Dimension). We say that the dimension of L2(TM)
is k if k = sup{n : m(En) > 0} where {En}n∈N∪{∞} is the decomposition given
in Proposition 2.17. We define the analytic dimension of M as the dimension of
L2(TM) and denote it by dimmaxM .

Combining Proposition 3.2 in [31] and Proposition 2.13, we have the following
result concerning the analytic dimension of RCD∗(k,N) space.

Proposition 2.19. Let M = (X, d,m) be a RCD∗(k,N) metric measure space.
Then dimmaxM ≤ N . Furthermore, if the local dimension on a Borel set E is N ,
we have trHessf (x) = ∆f(x) m-a.e. x ∈ E for every f ∈ W 1,2(M) with ∆f ∈ L2.

2.3 Continuity equation on metric measure space

In this part we introduce some recent results about the continuity equation on metric
measure space, more detailed discussions could be found in [25]. We assume that
the metric measure space (X, d,m) is RCD(k,∞). Under this assumption, we know
W 1,2(X, d,m) is separable (see [1]) so that the continuity equation could be defined
pointwisely, and we can prove that Wasserstein geodesics are C1-continuous.

We start by recalling the definition of weak solution to the continuity equation
in non-smooth setting.

Definition 2.20 (Solutions to ∂tµt = Lt). Let (X, d,m) be a metric measure space.
Assume that (µt) is a W2-continuous curve with bounded compression (i.e. µt ≤ Cm
for some constant C), and {Lt}t∈[0,1] is a family of maps from S2(X) to R.

We say that (µt) solves the continuity equation

∂tµt = Lt, (2.5)

provided:
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i) for a.e. t ∈ [0, 1], S2 3 f 7→ Lt(f) is a bounded linear functional, and
‖Lt‖ ∈ L2([0, 1]),

ii) for every f ∈ L1 ∩S2(X) the map t 7→
∫
f dµt is in absolutely continuous and

the identity
d

dt

∫
f dµt = Lt(f),

holds for a.e. t.

In the following proposition we will see that the continuity equation characterizes
2-absolute continuity.

Proposition 2.21 (Continuity equation on metric measure space, [25]). Let (X, d,m)
be a RCD(k,∞) space, (µt) be a continuous curve with bounded compression in
Wasserstein space. Then the following are equivalent.

i) (µt) is 2-absolutely continuous w.r.t. W2.

ii) There is a family of maps {Lt}t∈[0,1] from S2(X) to R such that (µt) solves the
continuity equation (2.5).

Furthermore, if the above characterizations hold, we have

‖Lt‖ = |µ̇t|, a.e. t ∈ [0, 1].

As an application of the Proposition 2.21, we can prove the following result
concerning the derivative of W 2

2 (·, ν) along an absolutely continuous curve.

Proposition 2.22 (Derivative of W 2
2 (·, ν), Proposition 3.10, [25]). Let (X, d,m)

be a RCD(k,∞) space. Let (µt) ⊂ W2(X) be an absolutely continuous curve with
bounded compression, ν with bounded support and notice that t 7→ 1

2
W 2

2 (µt, ν) is
absolutely continuous. Then the for a.e. t ∈ [0, 1] the formula

d

dt

1

2
W 2

2 (µt, ν) = Lt(ϕt), (2.6)

holds, where ϕt is any Kantorovich potential from µt to ν.

Next, we discuss more about the geodesics in Wasserstein space. Firstly, we
review the Hopf-Lax formula.

Definition 2.23.

Qt(φ)(x) :=

{
infy∈X c(x, y) + φ(y) t > 0
φ(x) t = 0

(2.7)

where c(x, y) = d2(x,y)
2t

, t > 0.

It is known that t 7→ Qt(f) is a continuous semigroup for any lower semi-
continuous and bounded function f . In particular, limt→0 Qt(f) = f . Furthermore,
we have the following metric Hamilton-Jacobi equation.
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Lemma 2.24 (Subsolution of Hamilton-Jacobi equation). For every x ∈ X it holds:

d

dt
Qt(f)(x) +

1

2
|DQt(f)|2(x) = 0

with at most countably many exceptions in (0,+∞).

We have the following proposition concerning the evolution of Kantorovich po-
tentials by Hopf-Lax formula (see Theorem 7.36 in [45] or Theorem 2.18 in [2] for a
proof).

Proposition 2.25 (Evolution of Kantorovich potentials). Let (X, d) be a metric
space, (µt)t a W2-geodesic in Wasserstein space and ϕ a Kantorovich potential from
µ0 to µ1. Then for every t ∈ [0, 1]:

1) the function tQt(−ϕ) is a Kantorovich potential from µt to µ0,

2) the function (1− t)Q1−t(−ϕc) is a Kantorovich potential from µt to µ1.

Moreover, we know the evolution of Kantorovich potential is related to the con-
tinuity equation of the corresponding geodesic.

Proposition 2.26 (Geodesics, [25] ). Let (µt) be a geodesic with bounded compres-
sion such that µ0, µ1 have bounded supports, and ϕ a Kantorovich potential from µ0

to µ1 which are bounded supported. Then

∂tµt +∇ · (∇φtµt) = 0,

where φt := −Q1−t(−ϕc) for every t ∈ [0, 1].

Similarly,
∂tµt +∇ · (∇ϕtµt) = 0,

where ϕt := Qt(−ϕ) for every t ∈ [0, 1].

At last, we recall a result about C1-regularity of geodesics.

Proposition 2.27 (Weak C1-regularity for geodesics, Proposition 5.7 [25] and
Corollary 5.7 [22]). Let (µt) ⊂ P2(X) be a geodesic with bounded compression. As-
sume further that µ0, µ1 have bounded supports. We denote the density of µt by ρt,
then for any t ∈ [0, 1] and any sequence (tn) ⊂ [0, 1] converging to t, there exists a
subsequence (tnk) such that

ρtnk → ρt, m− a.e.

as k →∞. Furthermore, (µt) is a weakly C1 curve in the sense that t 7→
∫
f dµt is

C1 for any f ∈ W 1,2.
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3 Main results

3.1 Regular Lagrangian flow

In this part we firstly review the existence and uniqueness theory of continuity
equation, and regular Lagrangian flows (RLF for short) on metric measure space
studied by Ambrosio-Trevisan in [11]. Then we prove some basic properties which
will be used in the proof of our main theorems.

Proposition 3.1 (Regular Lagrangian flow and continuity equation, Ambrosio-Tre-
visan, [11]). Let b ∈ L2

loc(TM) be with |b| ∈ L2 + L∞, b ∈ W 1,2
C,loc(TM) with

|∇b|HS ∈ L2, divb ∈ L2 + L∞ and
(
divb

)− ∈ L∞. There exists a measurable map
(which we call regular Lagrangian flow) F : X × [0, T ] 7→ X such that

1) Ft is a semigroup in the sense that Ft+s(x) = Ft ◦Fs(x) and F0(x) = x m-a.e.
for any s, t ∈ [0, T ].

2) There exists a constant C0(T ) such that (Ft)](m) ≤ C0m for all t ∈ [0, T ].

3) For any initial condition µ0 = fm with f ∈ L1∩L∞, µt := (Ft)]µ0 is a solution
to the continuity equation

d

dt

∫
g dµt =

∫
〈∇g,b〉 dµt, L1 − a.e. t ∈ (0, T ), lim

t→0

∫
g dµt =

∫
g dµ0

for any g ∈ Lip(X, d) ∩ L∞. We also know that dµt
dm
∈ L1 ∩ L∞.

4) For m-a.e. x, |Ḟt|(x) = |b|(x) a.e. t ∈ (0, T ).

5) Let f ∈ W 1,2(X, d,m). Then

d

dt
f ◦ Ft(x) = 〈b,∇f〉 ◦ Ft(x)

for L1 ×m-a.e. (t, x).

6) Let µ0 = fm, µt = (Ft)]µ0 with f ∈ L2. Then∥∥∥∥dµt
dm

∥∥∥∥
L2

≤ eC1t‖f‖L2

for some constant C1 which depends only on ‖(divb)−‖L∞.

7) Ft is unique/non-branching in the sense that if F̄t is another map satisfying
the properties above, then (F̄t)]µ = (Ft)]µ for any µ ∈ P(X) with bounded
density.

In some potential applications, we do not have the global L2 + L∞-bound for
|b|, divb or global L∞-bound for

(
divb

)−
. The following proposition tells us that

the theory concerning the existence and uniqueness of regular Lagrangian flow still
works in some special situations, see also Theorem 4.2, [27] for an example in this
direction.
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Proposition 3.2. Let b ∈ W 1,2
C,loc(TM). Assume that |b| ≤ C0d(x, x0)+C1 for some

C0, C1 > 0, x0 ∈ X, and |∇b|HS ∈ L2(Ω), divb ∈ L2(Ω)+L∞(Ω),
(
divb

)− ∈ L∞(Ω)
for any bounded set Ω. Then there exists a unique regular Lagrangian flow associate
to the vector field b.

Proof. Let µ ∈ P2(X) be an arbitrary measure with bounded density. We assume
that suppµ ∈ BR(x0) for some R ≥ 1. Let χ be a cut-off function in Lemma 6.7, [9]
such that χ is Lipschitz and

a) 0 ≤ χ ≤ 1, χ supports on B3R(x0) and χ = 1 on B2R(x0),

b) ∆χ ∈ L∞ and |Dχ|2 ∈ W 1,2.

Then we know that χb ∈ D(div), and it satisfies div(χb) = 〈b,∇χ〉 + χdivb ∈
L2 + L∞, so that

‖
(
div(χb)

)−‖L∞ ≤ ‖|b||∇χ|‖L∞ + ‖χ
(
divb

)−‖L∞ <∞,

and |χb| ∈ L2 +L∞, ∇(χb) = χ∇b+∇χ⊗b ∈ L2(TM)⊗L2(TM). By Proposition
3.1 we know the regular Lagrangian flow associated to χb exists. We denote this
flow by F̄t. We know that the curve µt := (F̄t)]µ is the unique solution to the
continuity equation

d

dt
µt + div(χbµt) = 0, µ0 = µ.

In particular, when suppµt ⊂ B2R, we know |b|(x) ≤ 2C0R + C1 for x ∈ suppµt.
From 4) of Proposition 3.1, we know suppµt ⊂ B2R when t ∈ [0, 2R−R

2C0R+C1
]. So

d

dt
µt + div(bµt) = 0, t ∈ [0,

1

2C0 + C1

], µ0 = µ. (3.1)

Then for any T > 0, we can find a solution to the continuity equation (3.1) for
t ∈ [0, T ] by repeating the construction above for finite times. It can be seen from
the construction that this solution is unique.

Finally, we can prove the existence and uniqueness of regular Lagrangian flow
using Theorem 8.3 in [11] and the proof therein.

For convenience, we will not distinguish the regular Lagrangian flow (Ft) and the
curve of measures push-forward by Ft. We will see in Proposition 3.4 that the curve
push-forward by Ft is C1. To prove this result, we firstly recall a useful lemma.

Lemma 3.3 (“Weak-strong” convergence, Lemma 5.11, [22]). Let (X, d,m) be an
infinitesimally Hilbertian space. Assume that:

i) Let (µn) ⊂ P(X) be a sequence with uniformly bounded densities, such that
ρn → ρ m-a.e. for some probability density ρ, where ρn is the density of µn.

ii) Let (fn) ⊂ W 1,2 be a sequence such that:

supn∈N

∫
|Dfn|2 dm <∞,

and assume that fn → f m-a.e. for some Borel function f .
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Then for any b ∈ L2(TM), we have

lim
n→∞

∫
〈∇fn,b〉 dµn =

∫
〈∇f,b〉 dµ,

where µ := ρm.

Proof. If b = ∇g for some g ∈ W 1,2, the assertion is proved in Lemma 5.11, [22].
For any ε > 0, we can find vε ∈ TestV with vε =

∑N
i aigi such that ‖b − vε‖ < ε.

Then we have

lim
n→∞

∫
〈∇fn,b〉 dµn = lim

n→∞

∫
〈∇fn,b− vε〉 dµn + lim

n→∞

∫
〈∇fn, vε〉 dµn

≤ Cε+ lim
n→∞

N∑
i

∫
〈∇fn,∇gi〉 aidµn

= Cε+
N∑
i

∫
〈∇f,∇gi〉 aidµ

≤ Cε+ C1ε+

∫
〈∇f,b〉 dµ.

Letting ε→ 0 and considering the opposite inequality we prove the assertion.

Proposition 3.4. Let (Ft) be a regular Lagrangian flow associated to b ∈ W 1,2
C,loc

defined as in Proposition 3.1. Assume that µ0 has bounded density and bounded
support. Then µt := (Ft)]µ0 fulfils the hypothesis in Lemma 3.3 to be a C1 curve.

Proof. Let µt := (Ft)]µ0 be a RLF with ρt := dµt
dm
∈ L∞. By 6) of Proposition 3.1 we

know limt→0 ‖ρt‖L2 ≤ ‖ρ0‖L2 . It is known that the functional P2 3 µ 7→
∫ (

dµt
dm

)2
dm

is lower semi-continuous w.r.t Wasserstein distance. So the function t 7→ ‖ρt‖2 is
lower semi-continuous. Then we have limt→0 ‖ρt‖L2 = ‖ρ0‖L2 .

Since ρt → ρ0 weakly in duality with Cb(X) and (ρt) are uniformly bounded in L2.
We know that ρt → ρ0 weakly in L2(X,m). Combining with limt→0 ‖ρt‖L2 = ‖ρ0‖L2

we know ρt → ρ0 in L2 strongly, and in Lp strongly for any p ∈ [1,∞).

From semi-group property, we know t 7→ ρt is continuous in L1. For any t, (tn)n ≥
0 such that tn → t, we know there exists a subsequence (tnk)k such that ρtnk → ρt
m-a.e. as k →∞. Therefore, by Proposition 3.1 and Lemma 3.3 we get

lim
tnk→t

d

dr

∫
f dµr|r=tnk = lim

k→∞

∫
〈∇f,b〉 dµtnk =

∫
〈∇f,b〉 dµt

for any f ∈ W 1,2. So (µt) is a C1 curve .

The following simple lemma is a complement to the Proposition 3.1.

Lemma 3.5. Let f ∈ W 1,2, b ∈ L2
loc(TM). We assume that (Ft)t is the regular

Lagrangian flow associated to b. If f ◦ Ft ∈ W 1,2 for any t > 0. Then for all
t ∈ [0, T ],

〈b,∇f〉 ◦ Ft(x) = 〈b,∇(f ◦ Ft)(x), m− a.e. x ∈ X.
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Proof. Let µ0 ∈ P(X) be an arbitrary measure with bounded density and bounded
support. We define µt = (Ft)]µ0, t > 0. From the definition of continuity equation
and Proposition 3.1, we know

d

dt

∫
f dµt =

∫
〈b,∇f〉 dµt =

∫
〈b,∇f〉 ◦ Ft dµ0

for a.e. t ∈ [0, T ]. By Proposition 3.4 above we know this formula holds for all t.
Meanwhile, since f ◦ Ft+h ∈ W 1,2 for any h > 0, we know

d

dh

∫
f dµt+h|h=0

=
d

dh

∫
f ◦ Ft dµh|h=0

=

∫
〈b,∇(f ◦ Ft)〉 dµ0.

Then we have ∫
〈b,∇(f ◦ Ft)〉 dµ0 =

∫
〈b,∇f〉 ◦ Ft dµ0.

As µ0 is arbitrary, we know 〈b,∇f〉 ◦ Ft = 〈b,∇(f ◦ Ft), m-a.e..

3.2 K-convex functions and K-monotone vectors

Firstly we introduce some notions/concepts to characterize the convexity of func-
tions, and the monotonicity of vector fields in non-smooth setting.

The first one is a zero order characterization.

Definition 3.6 (Weak K-convexity). Let u ∈ L1
loc(X,m). We say that u is weakly

K-convex if the functional U(·) : P2 3 µ 7→
∫
X
u dµ is K-convex on Wasserstein

space in the sense that

U(µt) ≤ (1− t)U(µ0) + tU(µ1)− K

2
(1− t)tW 2

2 (µ0, µ1) (3.2)

for any t ∈ [0, 1] along any geodesic (µt) ⊂ (P2,W2), where µ0, µ1 have bounded
densities and bounded supports.

The second one is a first order characterization.

Definition 3.7 (K-monotonicity). We say that a vector field b ∈ L2
loc(TM) is

K-monotone if ∫
〈b,∇ϕ〉 dµ1 +

∫
〈b,∇(ϕ)c〉 dµ2 ≥ KW 2

2 (µ1, µ2).

for any µ1, µ2 ∈ P2 with bounded densities and bounded supports, where (ϕ, ϕc) is
the Kantorovich potentials relative to (µ1, µ2).
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Remark 3.8. If b ∈ L2(TM), by the following metric Brenier’s theorem, we can
replace the condition “µ1, µ2 ∈ P2 with bounded densities and bounded densities”
in Definition 3.7 by “bounded densities” only.

Similarly, by metric Brenier’s theorem we can rephrase Definition 3.6 as: for any
µ0, µ1 ∈ P(X) with bounded densities and bounded supports, there exists a geodesic
(µt) ⊂ (P2,W2) connecting µ0, µ1 such that the inequality (3.2) holds.

Proposition 3.9 (Metric Brenier’s theorem, [6,39]). Let (X, d,m) be a RCD(k,∞)
metric measure space, and µ, ν ∈ P2 be absolutely continuous w.r.t. m. Let ϕ be
a Kantorovich potential relative to (µ, ν). Then the geodesic connecting µ and ν is
unique. The lifting Π of this geodesic (µt) is induced by a map and Π concentrates
on a set of non-branching geodesics. Moreover, for Π-a.e. γ ∈ Geo(X) we have

d(γ0, γ1) = lip(ϕ)(γ0) = |Dϕ|(γ0).

In particular, we have

W 2
2 (µ, ν) =

∫
|Dϕ|2 dµ.

Moreover, we know the locality of Kantorovich potentials, i.e.

|D(ϕ− ϕ̄)| = 0 m− a.e. on suppµ

for any ϕ, ϕ̄ which are both Kantorovich potentials from µ to ν.

Next, we introduce the concept of infinitesimal K-monotonicity of a vector field
b ∈ W 1,2

C,loc(TM), which is a second order characterization. We recall that the
Hessian of a test function f could be defined by

2Hessf (∇g1,∇g2) = 〈∇〈∇f,∇g1〉,∇g2〉+ 〈∇〈∇f,∇g2〉,∇g1〉 − 〈∇〈∇g1,∇g2〉,∇f〉,

and the covariant derivative of a vector field b ∈ W 1,2
C,loc(TM) can be represented as:

∇b : (∇g1 ⊗∇g2) = 〈∇〈b,∇g2〉,∇g1〉 − Hessg2(∇g1,b),

where g1, g2 ∈ TestF.

Definition 3.10 (Infinitesimal K-monotonicity). Let b ∈ W 1,2
C,loc(TM) be a vector

field. We say that b is infinitesimally K-monotone if

∇sb : (X ⊗X) = ∇b : (X ⊗X) ≥ K|X|2 m− a.e.

for any X ∈ L2(TM).

Definition 3.11 (Infinitesimal K-convexity). We say that f is infinitesimally K-
convex if ∇f ∈ W 1,2

C,loc(TM) and ∇f is infinitesimally K-monotone. In other words,

f is infinitesimally K-convex if f ∈ W 2,2
loc and Hessf (∇g,∇g) ≥ K|Dg|2 for any

g ∈ TestF.
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Next we prove the first theorem in this article. When u ∈ TestF, this result
has been proven in Theorem 7.1 in [33] (see also Lemma 2.1 in [35], Theorem 3.3
in [27]). In Theorem 3.12, we will remove some bounds on u,∇u, and the condition
∆u ∈ W 1,2 in the former proofs. Similar to the former ones in [33], [35] etc., the
proof of the current theorem is also based on Bochner’s inequality on metric measure
space and the original definition of CD(k,∞) condition.

Theorem 3.12. Let M := (X, d,m) be a RCD(k,∞) metric measure space, u ∈
W 2,2

loc (X, d,m). Assume further that u ∈ L∞loc(M) and u(x) ≥ −a − bd2(x, x0) for
some a, b ∈ R, x0 ∈ X. Then the following are equivalent

i) u is infinitesimally K-convex,

ii) u is weakly K-convex.

Proof. First of all, we rewrite the Bochner’s formula in Proposition 2.6 in the fol-

lowing weak form. We recall that DL∞(∆) :=
{
ϕ : ∆ϕ ∈ L2 ∩L∞, ϕ ∈ W 1,2 ∩L∞

}
.

For any f ∈ TestF(M), ϕ ∈ DL∞(∆), we define

Γ2(f ;ϕ) :=

∫
ϕ dΓ2(f) (3.3)

=
1

2

∫
ϕ d∆|Df |2 −

∫
〈∇f,∇∆f〉ϕ dm (3.4)

= −1

2

∫
〈∇|Df |2,∇ϕ〉 dm−

∫
〈∇f,∇∆f〉ϕ dm (3.5)

=
1

2

∫
|Df |2∆ϕ dm−

∫
〈∇f,∇∆f〉ϕ dm. (3.6)

If ϕ ∈ Lip, we know ϕ∇f ∈ D(div), hence

Γ2(f ;ϕ) =
1

2

∫
|Df |2∆ϕ dm +

∫
div(ϕ∇f)∆f dm

=
1

2

∫
|Df |2∆ϕ dm +

∫
(∆f)2ϕ dm +

∫
〈∇ϕ,∇f〉∆f dm

=: Γ′2(f ;ϕ).

By Proposition 2.6 we know

Γ′2(f ;ϕ) = Γ2(f ;ϕ) ≥ k

∫
|Df |2ϕ dm (3.7)

for any f ∈ TestF(M), ϕ ∈ DL∞(∆) ∩ Lip, ϕ ≥ 0.

We denote the space of test functions with bounded support by TestFbs(M) ⊂
TestF(M), then we will see that TestFbs(M) is dense in TestF(M).

Let χn ∈ TestF, n ∈ N be cut-off functions (see Lemma 6.7, [9]) such that

a) 0 ≤ χn ≤ 1, χn supports on B3n(x0) and χn = 1 on Bn(x0),

b) Lip(χn) ≤ 1
n
,
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c) ∆χn ∈ L∞ uniformly in n and |Dχn|2 ∈ W 1,2.

For any f ∈ TestF we define fn := χnf . Then we know ∇fn = f∇χn + χn∇f ,
∆fn = f∆χn + χn∆f + 2〈∇f,∇χn〉. Hence we know fn ∈ TestFbs, fn → f in W 1,2

and ∆fn → ∆f in L2. So we know TestFbs is dense in TestF with respect to both
W 1,2 and D(∆) topology.

We define TestF(Mu) as the space of test functions on Mu := (X, d, e−um). Since
u is locally bounded, we know W 1,2

loc (M) = W 1,2
loc (Mu). It can be seen (by Leibniz

rule) that{
f ∈ D(∆) : ∆f ∈ L2

loc(M)
}
∩L∞loc(M) =

{
f ∈ D(∆Mu

) : ∆Mu

f ∈ L2
loc(M

u)
}
∩L∞loc(M

u),

and ∆Mu
f = ∆f−〈∇u,∇f〉m for any f ∈

{
f ∈ D(∆) : ∆f ∈ L2

loc(M)
}
∩L∞loc(M).

In fact, for any f ∈
{
f ∈ D(∆) : ∆f ∈ L2

loc(M)
}
∩ L∞loc(M) and ϕ ∈ Lip with

bounded support, we know∫
〈∇f,∇ϕ〉e−u dm =

∫
〈∇f, e−u∇ϕ〉 dm

(by Leibniz rule) =

∫
〈∇f,∇(e−uϕ)〉 dm−

∫
〈∇f,∇e−u〉ϕ dm

= −
∫
e−uϕ∆f dm +

∫
〈∇f,∇u〉ϕe−u dm.

So f ∈ D(∆Mu
) and ∆Mu

f = ∆f − 〈∇u,∇f〉 ∈ L2
loc. Conversely, we can prove the

assertion concerning ∆Mu
in the same way.

For any f ∈ TestF(Mu), ϕ ∈ DL∞(∆Mu
) ∩W 1,2 ∩ Lip(Mu), we define Γu2(f ;ϕ)

as in (3.3) by replacing ∆ by ∆u := ∆− 〈∇u,∇ · 〉, and m by e−um. We claim that
the following assertions are equivalent:

1) Γ2(f ;ϕ) ≥ k
∫
|Df |2ϕ dm, and

∫
Hessu(∇f,∇f)ϕ dm ≥ K

∫
|Df |2ϕ dm for

any f ∈ TestF(M), ϕ ∈ DL∞(∆) ∩ Lip(M), ϕ ≥ 0,

2) Γ2(f ;ϕ) ≥ k
∫
|Df |2ϕ dm, and

∫
Hessu(∇f,∇f)ϕ dm ≥ K

∫
|Df |2ϕ dm for

any f ∈ TestFbs(M), ϕ ∈ DL∞(∆) ∩ Lip(M), ϕ ≥ 0 with bounded support,

3) Γmu2 (f ;ϕ) ≥ (mK + k)
∫
|Df |2ϕ e−mudm for any m ∈ N, f ∈ TestFbs(M),

ϕ ∈ DL∞(∆) ∩ Lip(M), ϕ ≥ 0 with bounded support,

4) Γmu2 (f ;ϕ) ≥ (mK + k)
∫
|Df |2ϕ e−mudm for any m ∈ N, f ∈ DW 1,2(Mu)(∆

u),
ϕ ∈ DL∞(∆u), ϕ ≥ 0.

1)⇐⇒ 2) is a direct consequence of the density of TestFbs in TestF.

To prove 2) =⇒ 3), it is sufficient to prove

Γmu2 (f ;ϕ) = Γ2(f ; e−muϕ) +m

∫
Hessu(∇f,∇f)ϕ e−mudm
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for any f ∈ TestFbs(M), ϕ ∈ DL∞(∆) ∩ Lip(M), ϕ ≥ 0. By Proposition 2.11 we
know 〈∇u,∇f〉 ∈ W 1,2, and the Hessian of u ∈ W 2,2 could be written in the form
of (2.4). So by a direct computation we have

Γmu2 (f ;ϕ) =
1

2

∫
|Df |2∆Mu

ϕ e−mudm−
∫
〈∇f,∇∆Mu

f〉ϕ e−mudm

=
1

2

∫
|Df |2(∆−m∇u)ϕ e−mudm−

∫
〈∇f,∇(∆f −m〈∇u,∇f〉)〉ϕ e−mudm

= Γ2(f ; e−muϕ) +m

∫
Hessu(∇f,∇f)ϕ e−mudm.

Conversely, we claim that for any ϕ ∈ DL∞(∆) ∩ Lip(M), ϕ ≥ 0 with bounded
support, we can find ϕn ∈ DL∞(∆)∩Lip(M), ϕ ≥ 0 with bounded support such that
ϕne

−mu → ϕ in W 1,2. For this aim, we use a well known approximation procedure.
For any f ∈ L2, we define

hεf :=
1

ε

∫ ∞
0

κ(r/ε)Hrf dr =

∫ ∞
0

κ(s)Hεsf ds. ε > 0,

where (Ht) is the heat flow, and κ ∈ C∞c ((0,∞)) with κ ≥ 0 and
∫∞

0
κ(r) dr = 1.

It can be checked that ∆hεf ∈ L2 ∩L∞, hεf ∈ TestF if f ∈ L2 ∩L∞. We also know
that hεf → f both in W 1,2 and in D(∆) as ε ↓ 0.

Now we turn back to our problem. Since u, e−u are locally finite, we can approx-
imate ηemu by test functions φn, where η ∈ TestF has bounded support and η = 1
on suppϕ. Then ϕn := ϕφn achieve our aim. Assume that 3) holds, we know

Γ2(f ; e−muϕn) +m

∫
Hessu(∇f,∇f)ϕn e

−mudm ≥ (mK + k)

∫
|Df |2ϕn e−mudm

Letting n→∞, combining with (3.5) and L2
loc-integrability of |Hessu|HS we have

Γ2(f ;ϕ) +m

∫
Hessu(∇f,∇f)ϕ dm ≥ (mK + k)

∫
|Df |2ϕ dm. (3.8)

Letting m = 0, we know Γ2(f ;ϕ) ≥ k
∫
|Df |2ϕ dm. Dividing m on both sides of

(3.8) and letting m→∞, we prove Hessu ≥ K.

To prove 3) =⇒ 4) it is sufficient to approximate f, ϕ in 4). For this aim,
we firstly assume that f ∈ L∞ and ϕ ∈ Lip, then we can use the approximation
technique above again. Let f ∈ DW 1,2(Mu)(∆

u) ∩ L∞. For any n ∈ N, we can find
an > n such that

‖χanf − f‖W 1,2(Mu) + ‖∆u(χanf − f)‖L2(Mu) <
1

n
.

Since χanf ∈ L2 ∩ L∞(M), we know from the above mentioned approximation
procedure that hε(χanf) → χanf both in W 1,2(M) and in D(∆) as ε ↓ 0. In
particular, we know χanhε(χanf) → χanχanf = χanf in W 1,2(M) and in D(∆). As
both χanhε(χanf) and χanf are bounded supported, we know the convergences also
hold in W 1,2(Mu) and in D(∆u).
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Therefore there exits 0 < bn <
1
n

such that

‖χanfhbn(χanf)− χanf‖W 1,2(Mu) + ‖∆
(
χanhbn(χanf)

)
−∆(χanf)‖L2(Mu) <

1

n
.

We define fn := χanhbn(χanf). It can be seen that fn ∈ TestFbs(M) and fn → f
in both in W 1,2(Mu) and D(∆u) as n → ∞. Similarly, for any ϕ ∈ DL∞(∆u) ∩
Lip(Mu), ϕ ≥ 0, we can define ϕn := χa′nhb′n(χa′nϕ) in the same way for some a′n, b

′
n.

It can be checked that Γu2(fn, ϕn)→ Γu2(f, ϕ) and
∫
|Dfn|2ϕn e−udm→

∫
|Df |2ϕ e−udm

as n → ∞. Then we have 4) for such functions f, ϕ. By an approximation using
heat flow, we can remove the assumption ϕ ∈ Lip ( see e.g. Proposition 3.6, [27]).
We can also remove the assumption f ∈ L∞ by a simple truncation argument (see
e.g. Theorem 4.8, [21]). Then we prove 4) for all the required functions f and ϕ.

Finally, it can be checked that the test functions f, ϕ in 3) are included in the
test functions in 4), so we also have 4) =⇒ 3).

Now we can complete the proof of the theorem:

i) =⇒ ii).

If u is infinitesimally K-convex. Combining with the fact that M is RCD(k,∞),
we know 4) holds. AsM has Sobolev-to-Lipschitz property, soMmu := (X, d, e−mum)
also has such property. Since u(x) ≥ −a− bd2(x, x0), we know e−mum has exponen-
tial volume growth. By Proposition 2.6, we know Mmu is RCD(k +mK,∞) space.
Therefore (by the original definition of CD(k,∞) condition, see [42]) we have

Ente−mum(µt) ≤ (1− t)Ente−mum(µ0) + tEnte−mum(µ1)− mK + k

2
t(1− t)W 2

2 (µ0, µ1)

(3.9)
for any geodesic (µt) in Wasserstein space with bounded densities and bounded
supports. Dividing m on both sides of (3.9) and letting m → ∞, combining with
the fact Ente−mum(µt) = Entm(µt) +m

∫
u dµt, we know u is weakly K-convex.

ii) =⇒ i).

If u is weakly K-convex, we know (from the definition) that the metric measure
space Mmu := (X, d, e−mum) is RCD(k + mK,∞) for any m ∈ N . By Proposition
2.6 we have 4), thus we get 1). By the density of test functions in 1) we know
Hessu ≥ K.

3.3 Equivalent characterizations

In this part we will prove the main results in this paper. The first theorem char-
acterizes the K-convex functions on RCD(k,∞) space. Due to lack of knowledge
about the regularity of weak K-convex functions, we assume a priori that u has the
following regularities.

Assumption 3.13. Basic assumptions on u are the following:

i) u ∈ L1
loc(X,m) and lower semi-continuous,
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ii) u(x) ≥ −a− bd2(x, x0) for some a, b ∈ R, x0 ∈ X.

Assumptions i) and ii) ensures that the functional P2 3 µ 7→
∫
u dµ is lower

semi-continuous, and not identically −∞.

iii) ∇u ∈ L2
loc(TM),

iv) there exists a unique regular Lagrangian flow associated to −∇u.

Theorem 3.14. Let (X, d,m) be a RCD(k,∞) metric measure space, u be a function
fulfils Assumption 3.13. We denote the regular Lagrangian flow associated to −∇u
by (Ft). Then the following characterizations are equivalent.

1) u is weakly K-convex.

2) ∇u is K-monotone.

3) the exponential contraction in Wasserstein distance:

W2(µ1
t , µ

2
t ) ≤ e−KtW2(µ1

0, µ
2
0), ∀t > 0

holds for any two absolutely continuous curves (µ1
t ), (µ

2
t ) ⊂ (P2,W2) with

bounded compression, whose velocity fields are −∇u.

4) the flow (Ft) associate to −∇u is well-defined for all x ∈ X such that the
exponential contraction holds in the sense that:

d(Ft(x), Ft(y)) ≤ e−Ktd(x, y)

for any x, y ∈ X and t > 0.

5) for any f ∈ W 1,2(X, d,m), we have f ◦ Ft ∈ W 1,2 for any t > 0, and

|D(f ◦ Ft)|(x) ≤ e−Kt|Df | ◦ Ft(x), m− a.e.x ∈ X.

Furthermore, if u ∈ L∞loc ∩W
2,2
loc , then one of the above characterizations holds

if and only if :

6) u is infinitesimally K-convex.

Proof. 1) =⇒ 2): Let µ0, µ1 ∈ P2 be any two measures with bounded densities and
bounded supports. We consider the (unique) geodesic (µt)t∈[0,1] from µ0 to µ1. From
weak K-convexity, we know

U(µs) ≤
(1− s)
1− t

U(µt) +
s− t
1− t

U(µ1)− K

2

(1− s)(s− t)
1− t

W 2
2 (µ0, µ1), ∀s ∈ [t, 1]

(3.10)
where U(µ) =

∫
u dµ. Therefore,

U(µs)− U(µt)

s− t
≤ 1

1− t

[
U(µ1)− U(µt)

]
− K

2

(1− s)
1− t

W 2
2 (µ0, µ1) (3.11)
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Letting s ↓ t and t ↓ 0 in (3.11), by Proposition 2.21,Proposition 2.26, the C1

continuity of geodesic in Proposition 2.27, and lower semicontinuity of U we obtain

−
∫
〈∇u,∇ϕ〉 dµ0 ≤ U(µ1)− U(µ0)− K

2
W 2

2 (µ0, µ1) (3.12)

where ϕ is the Kantorovich potential from µ0 to µ1. Similarly, by changing the role
of µ1 and µ0 we obtain

−
∫
〈∇u,∇ϕc〉 dµ1 ≤ U(µ0)− U(µ1)− K

2
W 2

2 (µ0, µ1). (3.13)

Combining (3.12) and (3.13) we obtain∫
〈∇u,∇ϕ〉 dµ0 +

∫
〈∇u,∇ϕc〉 dµ1 ≥ KW 2

2 (µ0, µ1).

Since µ0, µ1 are arbitrary, we know ∇u is K-monotone.

2) =⇒ 1): From Proposition 3.9 we know the uniqueness of geodesics, so by a
classical approximation argument, it is sufficient to prove

U(µ 1
2
) ≤ 1

2
U(µ0) +

1

2
U(µ1)− K

8
W 2

2 (µ0, µ1)

for any geodesic (µt) ⊂ (P2,W2), where µ0, µ1 have bounded densities.

By Proposition 2.25 and Proposition 2.26 we know

U(µ 1
2
)− U(µ0) =

∫ 1
2

0

( d

dr

∫
u dµr

)
dr

=

∫ 1
2

0

1

1− 2r

( d

ds |s=0

∫
u dµr+s(1−2r)

)
dr

= −
∫ 1

2

0

1

1− 2r

(∫
〈∇u,∇ϕr,1−r〉 dµr

)
dr

where ϕr,1−r is the Kanrotovich potential relative to (µr, µ1−r).

Similarly, we have

U(µ1)− U(µ 1
2
) =

∫ 1

1
2

1

2r − 1

(∫
〈∇u,∇(ϕ1−r,r)

c〉 dµr
)

dr.

By a change of variable, we know

U(µ1)− U(µ 1
2
) =

∫ 1
2

0

1

1− 2r

(∫
〈∇u,∇(ϕr,1−r)

c〉 dµ1−r

)
dr.
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Combining the results above, we obtain

1

2
U(µ0) +

1

2
U(µ1)− U(µ 1

2
)

=
1

2

(
U(µ0)− U(µ 1

2
)
)

+
1

2

(
U(µ1)− U(µ 1

2
)
)

=
1

2

∫ 1
2

0

1

1− 2r

(∫
〈∇u,∇(ϕ1−r,r)

c〉 dµr +

∫
〈∇u,∇(ϕr,1−r)

c〉 dµ1−r

)
dr

≥ 1

2

∫ 1
2

0

1

1− 2r
K(1− 2r)2W 2(µ0, µ1) dr

=
K

8
W 2(µ0, µ1),

which is the thesis.

1) =⇒ 3): Let µ0 ∈ P2(X) be a measure with bounded density and bounded
support, (µt) be the RLF associated to −∇u starting from µ0. Assume µt, t ∈ [0, T ]
have uniformly bounded supports. We claim that (µt) is an EVIK-gradient flow of
U in the following sense:

d

dt

1

2
W 2

2 (µt, ν) +
K

2
W 2

2 (µt, ν) ≤ U(ν)− U(µt), for all t > 0 (3.14)

for any ν ∈ P2(X). It is sufficient to prove (3.14) for any ν with bounded density
and compact support (see Proposition 2.21, [6]).

By Proposition 2.22 we have

d

dt

1

2
W 2

2 (µt, ν) = −
∫
〈∇u,∇ϕt〉 dµt (3.15)

for a.e. t > 0, where ϕt is the Kantorovich potential from µt to ν. From (3.12), we
know

−
∫
〈∇u,∇ϕt〉 dµt ≤ U(ν)− U(µt)−

K

2
W 2

2 (µt, ν), ∀ t ≥ 0. (3.16)

Combining (3.16) and (3.15) we know (3.14) holds for a.e. t > 0. To prove the
claim, it is sufficient to prove the C1-continuity of the function t 7→ W 2

2 (µt, ν). So
we need to prove

lim
h→0

∫
〈∇u,∇ϕt+h〉 dµt+h =

∫
〈∇u,∇ϕt〉 dµt

for any given t. In fact, from Proposition 3.4 and the compactness of supp ν we can
apply Lemma 2.3 in [3] to obtain the compactness/stability of Kantorovich poten-
tials. Combining with Proposition 3.4, Proposition 3.9 and uniform boundedness of
suppµt, we can prove the convergence using Lemma 3.3.

Let (νt) be another RLF associated to −∇u starting from ν0, where ν0 has
bounded density and bounded support such that νt, t ∈ [0, T ] have uniformly bounded
supports. Then by Theorem 4.0.4 in [4] we have the exponential contraction:

W2(µt, νt) ≤ e−KtW2(µ0, ν0) (3.17)
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for any t.

For arbitrary µ0, ν0 ∈ P2 with bounded density, we can restrict µ0, ν0 on those
points x ∈ X such that Ft(x) ⊂ BR(x0) for any t ∈ [0, T ], where x0 ∈ X, R > 0.
Then we can renormalise µ0, ν0 and denote them by µR0 , ν

R
0 . We push-forward µR0 , ν

R
0

by Ft and denote them by (µRt ), (νRt ). From the results above we know (3.17) holds
for (µRt ), (νRt ).

Letting R → ∞ we know µR0 , ν
R
0 converge to µ0, ν0 in (P2,W2). From the com-

pleteness of (P2,W2), we know (µRt ), (νRt ) converge to some (µt), (νt). It can be seen
from the uniqueness of RLF that µt = (Ft)]µ0 and νt = (Ft)]ν0. So (3.17) holds for
(µt), (νt).

3) =⇒ 4): Let x ∈ X be an arbitrary point. From exponential contraction,
by a typical approximation argument we know the flow of −∇u from δx ∈ P2 is
uniquely defined. In fact, for any x ∈ X, we can find a sequence (µn) ⊂ P2 such
that limn→∞W2(µn, δx) = 0. From (3.17) we know the flow of −∇u from µn, which
is denoted by (µnt ), converges uniformly to a curve as n → ∞. It can be seen
that this limit curve is independent of the choice of (µn). We denote this curve
by
(
Ut(x)

)
t
⊂ P2(X). Now we claim that Ut(x) supports on a single point in X.

Actually, assume that suppUt0(x) has at least two points a, b ∈ X for some t0 > 0.
Let Πn ∈ P(C([0,∞), X) be the lifting of (Ft)]

(
1

m(B 1
n

(x))
m|B 1

n
(x)

)
. Since the RLF is

non-branching, we know there exists Γ1,n,Γ2,n ∈ supp Πn with positive measures such
that inf{d(γ1

t0
, γ2

t0
) : γ1 ∈ Γ1,n, γ2 ∈ Γ2,n} > 1

2
d(a, b) > 0 when n big enough. Then,

by renormalization, we find two sequences of curves µi,nt := (et)]
(

1
Πn(Γi,n)

Πn|Γi,n
)
, i =

1, 2, such that µi,n0 → δx but µ1,n
t0 6= µ2,n

t0 which contradicts to the uniqueness of
Ut(x). We still use Ut(x) to denote this single point.

Let x ∈ X be a point where the curve (Ft(x))t is well-defined (i.e. (Ft(x))t is an
absolutely continuous curve in X), where (Ft) is the RLF associated to −∇u. From
the construction procedure of Ut and the uniqueness of Ut(x) we know Ut(x) = Ft(x).

Therefore, we can extend Ft to the whole space in the following way. For any
x ∈ X, we define (Ft)]δx = Ut(x) = δFt(x). Finally, apply (3.17) again with µ0 =
δx, µ1 = δy we prove 4).

4) =⇒ 5): Since f ∈ W 1,2, we know there exists a sequence (fn) ⊂ Lip(X) such

that fn → f and |lip(fn)| → |Df | in L2. Then we have

lim
n→∞

∫
|f ◦ Ft − fn ◦ Ft|(x)2 dm = lim

n→∞

∫
|f − fn|2(x) d(Ft)]m

≤ C lim
n→∞

∫
|f − fn|2 dm

= 0

where we use the fact that (Ft)]m ≤ Cm in the second step. Similarly, we can prove
that |lip(fn)| ◦ Ft converge to |Df | ◦ Ft in L2
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From the hypothesis, we know

|lip(fn ◦ Ft)|(x) = lim
y→x

|fn ◦ Ft(y)− fn ◦ Ft(x)|
d(y, x)

= lim
y→x

|fn ◦ Ft(y)− fn ◦ Ft(x)|
d(Ft(x), Ft(y))

d(Ft(x), Ft(y))

d(y, x)

≤ lim
y→x

|fn ◦ Ft(y)− fn ◦ Ft(x)|
d(Ft(x), Ft(y))

lim
y→x

d(Ft(x), Ft(y))

d(y, x)

≤ |lip(fn)| ◦ Ft(x)e−Kt.

Then we know

lim
n→∞

∫
|lip(fn ◦ Ft)|2 dm ≤ lim

n→∞
e−2Kt

∫
|lip(fn)|2 ◦ Ft dm

= e−2Kt

∫
|Df |2 ◦ Ft dm.

Hence by definition we know f ◦ Ft ∈ W 1,2.

Moreover, let G be a weak limit of a subsequence of (lip(fn ◦ Ft))n in L2. By
pointwise minimality of weak gradient, we know |D(f ◦ Ft)| ≤ G ≤ e−Kt|Df | ◦ Ft
m-a.e..

5) =⇒ 3): The strategy used in this proof is similar to the ones in [25] and [34],

so we sketch the proof. We just need to prove 3) for µ1
0, µ

2
0 with the form µ1

0 = fm
and µ2

0 = gm, where f, g are Lipschitz functions with bounded support. Now let
ϕ ∈ L∞ ∩ Lip be with bounded support, Π0 ∈ P(C([0, 1], X) be the lifting of the
geodesic (ν0

r )r connecting µ1
0 and µ2

0. We denote (Ft)]ν
0
r by νtr and denote the lifting

of (νtr) by Πt. We also denote the velocity field of (νtr)r by ∇φtr.
For any r ∈ [0, 1], h > 0, we have∣∣∣∫ Qr+h(ϕ) dνtr+h −

∫
Qr(ϕ) dνtr

∣∣∣
≤

∣∣∣∫ Qr+h(ϕ) dνtr+h −
∫
Qr(ϕ) dνtr+h

∣∣∣+
∣∣∣∫ Qr(ϕ) dνtr+h −

∫
Qr(ϕ) dνtr

∣∣∣
≤ C

∫ ∣∣Qr+h(ϕ)−Qr(ϕ)
∣∣ dm +

∣∣∣∫ Qr(ϕ) dνtr+h −
∫
Qr(ϕ) dνtr

∣∣∣.
Then we know that r 7→

∫
Qr(ϕ) dνtr is absolutely continuous, so it is differentiable

almost everywhere. Using weak Leibniz rule (Lemma 4.3.4, [4]) we have

d

dr

∫
Qr(ϕ) dνtr

= lim
h→0

∫
Qr+h(ϕ) dνtr+h −

∫
Qr(ϕ) dνtr

h

≤ lim
h→0

∫
Qr+h(ϕ) dνtr −

∫
Qr(ϕ) dνtr

h
+ lim

h→0

∫
Qr(ϕ) dνtr −

∫
Qr(ϕ) dνtr−h

h

for a.e. r.
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By Hamilton-Jacobi equation in Lemma 2.24, Proposition 2.27 and dominated
convergence theorem we have

lim
h→0

∫
Qr+h(ϕ) dνtr −

∫
Qr(ϕ) dνtr

h
=

∫
−1

2
|DQr(ϕ)|2dνtr

for a.e. r ∈ (0, 1). From Proposition 2.27 we know

lim
h→0

∫
Qr(ϕ) dνtr+h −

∫
Qr(ϕ) dνtr

h
=

∫
〈∇(Qr(ϕ) ◦ Ft),∇φ0

r〉dν0
r

for all r.

Combining with the computations above we obtain:

d

dr

∫
Qr(ϕ) dνtr ≤

∫
−1

2
|DQr(ϕ)|2dνtr +

∫
〈∇(Qr(ϕ) ◦ Ft),∇φ0

r〉dν0
r

for a.e. r ∈ (0, 1).

Then we have the following estimate: ∫
ϕc(y) dµ2

t (y) +

∫
ϕ(x) dµ1

t (x)

=

∫ (
Q1(−ϕ)(y)−Q0(−ϕ)(x)

)
dΠt

=

∫ 1

0

d

dr

∫ (
Qr(−ϕ)dνtr

)
dr

≤
∫ 1

0

∫
−1

2
|DQr(−ϕ)|2dνtr dr

+

∫ 1

0

∫
〈∇(Qr(−ϕ) ◦ Ft),∇φ0

r〉dν0
r dr

Young’s inequality ≤
∫ 1

0

∫
−1

2
|DQr(−ϕ)|2dνtr dr

+
1

2

∫ 1

0

∫
e2Kt|D(Qr(−ϕ) ◦ Ft)|2 dν0

rdr

+
1

2
e−2Kt

∫ 1

0

∫
|Dφ0

r|2 dν0
rdr

hypothesis 5) ≤ 1

2
e−2Kt

∫ 1

0

∫
|Dφ0

r|2 dν0
rdr

Proposition 2.21 + Proposition 2.26 =
1

2
e−2KtW 2

2 (µ1
0, µ

2
0).

Since ϕ is arbitrary, we know W 2
2 (µ1

t , µ
2
t ) ≤ e−2KtW 2

2 (µ1
0, µ

2
0).

4) + 5) =⇒ 2): Let µ0, ν0 ∈ P2 be measures with compact support and bounded
density. We consider the RLFs (µt)t∈[0,T ] and (νt)t∈[0,T ] starting from µ0, ν0 respec-
tively, where T > 0. From Proposition 3.1 we know the measures µt, νt, t ∈ [0, T ]
have uniformly bounded densities. From 4) we know µt, νt have compact supports

32



for all t ∈ [0, T ]. Since suppµ0 and supp ν0 are bounded, we know from 4) that the
supports of µt, νt t ∈ [0, T ] are uniformly bounded.

We denote by (θr)r the geodesic from µ0 to ν0, and denote the velocity field
of (θr)r by ∇φr. Let δr : [0, 1] 7→ [0, 1] be a C1 function (to be determined) with
δ(i) = i, i = 0, 1. We define an interpolation (Ftr)]θδr and denoted it by ηtr.

Then we estimate W 2
2 (µ0, νt) using a similar method as we used in 5) =⇒ 3).

For any ϕ ∈ L∞ ∩ Lip with bounded support, we have∫
ϕc(y) dνt(y) +

∫
ϕ(x) dµ0(x)

=

∫
ϕc(y) dηt1(y) +

∫
ϕ(x) dηt0(x)

=

∫ 1

0

d

dr

∫ (
Qr(−ϕ) ◦ Ftr

)
dθδr dr

=

∫ 1

0

∫
−1

2
|DQr(−ϕ)|2 dηtrdr +

∫ 1

0

δ′r

∫
〈∇(Qr(−ϕ) ◦ Ftr),∇φδr〉 dθδrdr

− t

∫ 1

0

∫
〈∇(Qr(−ϕ),∇u〉 dηtrdr

=

∫ 1

0

∫
−1

2
|D
(
Qr(−ϕ) + tu

)
|2 dηtrdr +

∫ 1

0

δ′r

∫
〈∇
(
(Qr(−ϕ) + tu) ◦ Ftr

)
,∇φδr〉 dθδrdr

+

∫ 1

0

∫
1

2
t2|Du|2 dηtrdr − t

∫ 1

0

δ′r

∫
〈∇(u ◦ Ftr),∇φδr〉 dθδrdr

≤
∫ 1

0

1

2

(
δ′r
)2
e−2Krt

∫
|Dφδr |2 dθδrdr +

∫ 1

0

∫ [1

2
t2〈∇(u ◦ Ftr),∇u〉 − tδ′r〈∇(u ◦ Ftr),∇φδr〉

]
dθδrdr

:= A(t) + tB(t).

We then choose

δ(r) :=
e2Krt − 1

e2Kt − 1
,

so that δ′(r) = RK(t)e2Krt where

RK(t) :=
2Kt

e2Kt − 1
if K 6= 0, R0(t) = 1.

Then we have

A(t) =

∫ 1

0

1

2

(
δ′r
)2
e−2Krt

∫
|Dφδr |2 dθδrdr

=
RK(t)

2

∫ 1

0

δ′r

∫
|Dφδr |2 dθδrdr

=
RK(t)

2

∫ 1

0

∫
|Dφr|2 dθrdr

=
1

2
R2
K(t)W 2

2 (µ0, ν0)
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It can be seen from Proposition 2.27 and Proposition 3.4 that B(t) is continuous
in t. In fact, by direct computation we can even prove:

U(µ0)− U(νt) =

∫ 1

0

d

dr

∫ (
(−u) ◦ Frt

)
dθδrdr

=

∫ 1

0

∫ [
t〈∇(u ◦ Ftr),∇u〉 − δ′r〈∇(u ◦ Ftr),∇φδr〉

]
dθδrdr

≥ B(t).

Combining the results above, we obtain

W 2
2 (µ0, νt) ≤ R2

K(t)W 2
2 (µ0, ν0) + 2tB(t).

Dividing t > 0 on both sides and letting t→ 0, together with the formula RK(t) =
1− Kt

2
+ o(t) we obtain

d+

dt
W 2

2 (µ0, νt)|t=0
≤ B(0)− K

2
W 2

2 (µ0, ν0).

Since t 7→ W 2
2 (µ0, νt) is C1 (see the proof of 1) =⇒ 3)), we know

−
∫
〈∇u,∇ϕc0,0 〉 dν0 ≤ B(0)− K

2
W 2

2 (µ0, ν0), (3.18)

where B(0) = −
∫ 1

0

∫
〈∇u,∇φ0

r〉 dν0
rdr.

Using the same argument we can also prove

−
∫
〈∇u,∇ϕ0,0 〉 dµ0 ≤ C(0)− K

2
W 2

2 (µ0, ν0), (3.19)

where C(0) =
∫ 1

0

∫
〈∇u,∇φ0

1−r〉 dν0
1−rdr =

∫ 1

0

∫
〈∇u,∇φ0

r〉 dν0
rdr = −B(0).

Combining (3.18) and (3.19) we obtain∫
〈∇u,∇ϕc0,0 〉 dν0 +

∫
〈∇u,∇ϕ0,0 〉 dµ0 ≥ KW 2

2 (µ0, ν0). (3.20)

Finally, by an approximation by compactly supported measures and metirc
Brenier’s theorem, we know (3.20) holds for all µ0, ν0 with bounded support and
bounded density, so ∇u is K-monotone.

6)⇐⇒ 1): This is a direct consequence of Theorem 3.12.

Remark 3.15. Let f be a smooth function f on a Riemannian manifold (M, g), and
(γt) be a smooth curve. We know the map t→ f(γt) is smooth and

d2

dt2
f(γt) = Hessf (γ

′
t, γ
′
t) + 〈∇γ′t

γ′t,∇f〉.
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In particular, if (γt) is a geodesic, we know ∇γ′t
γ′t = 0, then we obtain

d2

dt2
f(γt) = Hessf (γ

′
t, γ
′
t).

We then know that the second order derivative along geodesic characterizes the
convexity of a function f .

On RCD∗(k,N) spaces, we can use the second order differentiation formula devel-
oped by Gigli-Tamanini (see [30]) to study the convexity of H2,2 functions. However,
it is still unknown to us whether we can do the same in RCD(k,∞) case or not.

Theorem 3.16. Let M := (X, d,m) be a RCD(k,∞) space, b ∈ L2
loc(TM). We

assume there exits a unique regular Lagrangian flow associated to −b, which is
denoted by (Ft). Then the following descriptions are equivalent.

1) b is K-monotone.

2) the exponential contraction in Wasserstein distance:

W2(µ1
t , µ

2
t ) ≤ e−KtW2(µ1

0, µ
2
0), ∀t > 0

holds for any two curves (µ1
t ), (µ

2
t ) whose velocity fields are −b.

3) the everywhere-defined RLF (Ft) of −b, and the exponential contraction:

d(Ft(x), Ft(y)) ≤ e−Ktd(x, y)

for any x, y ∈ X and t > 0.

4) for any f ∈ W 1,2(X, d,m), we have f ◦ Ft ∈ W 1,2 and:

|D(f ◦ Ft)|(x) ≤ e−Kt|Df | ◦ Ft(x), m− a.e. x ∈ X

where (Ft) is the RLF of −b

Proof. We can prove 2) =⇒ 3) =⇒ 4) =⇒ 2) and 4) =⇒ 1) in the same ways as in
the proof of Theorem 3.14.

1) =⇒ 2): Let µ0, ν0 ∈ P2 be measures with bounded support and bounded
density, (µt), (νt) be the solutions to the continuity equation with velocity field −b,
with initial datum µ0 and ν0 respectively. It can be seen from Proposition 3.1 that
µt, νt have bounded densities for any t > 0. Fix T > 0, we denote the lifting of
(µt)t∈[0,T ] by Π ∈ P(AC([0, T ], X)). Let Γ ⊂ AC([0, T ], X) be the support of Π.
For any ε > 0, we can find Γε ⊂ Γ which is compact in C([0, T ], X) such that
Π(Γ \ Γε) < ε, and Γε ⊂ BR(x0) for some x0 ∈ X and R > 1

ε
. Then we define

µεt := (et)]

( 1

Π(Γε)
Π|Γε

)
, ε > 0, t ∈ [0, T ].

It can be seen that suppµεt = et(Γε) is compact for any t ∈ [0, T ] and

lim
ε→0

W 2(µ0, µ
ε
0) = 0.
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So without loss of generality we could assume that µt, νt support on compact sets for
any t ∈ [0, T ]. Furthermore, we may also assume that µt, νt have uniformly bounded
supports for t ∈ [0, T ].

Then for any s ≥ 0, by Proposition 2.22 we have

d

dt

1

2
W 2

2 (µt, νs) = −
∫
〈b,∇ϕt,s〉 dµt (3.21)

for a.e. t > 0, where ϕt,s is the Kantorovich potential from µt to νs. Similarly, fix a
t we know

d

ds

1

2
W 2

2 (µt, νs) = −
∫
〈b,∇φs,t〉 dνs (3.22)

for a.e. s > 0, where φs,t is the Kantorovich potential from νs to µt.

Now we claim that t 7→ −
∫
〈b,∇ϕt,s〉 dµt is continuous for any s. We just need

to prove

lim
h→0

∫
〈b,∇ϕt+h,s〉 dµt+h =

∫
〈b,∇ϕt,s〉 dµt

for a given t.

By Proposition 3.4 and the compactness assumption on supp νs, we can apply
Lemma 2.3 in [3] to obtain the compactness of Kantorovich potentials. Combining
with Proposition 3.4 we know the convergence from Lemma 3.3.

Similarly, we can prove that s 7→
∫
〈b,∇φs,t〉 dνs is continuous. Therefore we

know (3.21) and (3.22) hold for all t and s respectively. Then we have

d

ds

1

2
W 2

2 (µt, νs)|s=t = −
∫
〈b,∇φt,t〉 dνt (3.23)

and
d

dr

1

2
W 2

2 (µr, νt)|r=t = −
∫
〈b,∇ϕt,t〉 dµt. (3.24)

Furthermore, we know t 7→ W 2
2 (µt, νt) is differentiable for a.e. t ∈ [0, T ]. Using the

formula in Lemma 4.3.4, [4] we have

d

dt

1

2
W 2

2 (µt, νt) =
d

dr

1

2
W 2

2 (µr, νt)|r=t +
d

ds

1

2
W 2

2 (µt, νs)|s=t

= −
∫
〈b,∇ϕt,t〉 dµt −

∫
〈b,∇φt,t〉 dνt

for a.e. t ∈ [0, T ].

From the definition of K-monotonicity we know

d

dt

1

2
W 2

2 (µt, νt) ≤ −KW 2
2 (µt, νt)

for a.e. t ∈ [0, T ]. Finally, by Grönwall’s lemma we obtain the exponential contrac-
tion

W2(µt, νt) ≤ e−KtW2(µ0, ν0) (3.25)

for any t ∈ [0, T ].
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Remark 3.17. The velocity field b in this theorem could be replaced by a time-
dependent field bt, with minor modifications to the current proof.

Remark 3.18. One would ask if the infinitesimal K-monotonicity of b is equivalent
to the characterizations in the Theorem 3.16. Due to lack of Sobolev regularity of
f ◦ Ft when f ∈ W 1,2, we can not prove the theorem from the infinitesimal K-
monotonicity of b using the classical semigroup argument in Bakry-Émery theory.
But in some special situations, we can achieve this goal.

Case 1. When b is a harmonic vector field on RCD(k,∞) space, it is proved by
Gigli-Rigoni (in [29]) that f ◦ Ft ∈ TestF if f ∈ TestF, and Ft induces an isometry.
Formally speaking, in this case the Hille-Yoshida theorem works for the generator
Ln := 1

n
∆−b with n ∈ N. Then the corresponding semigroup Pn

t f converge to f ◦Ft
(by Lemma 3.5). Combining the gradient estimate of Pn

t f which can be proven by
considering the modified Γ2 w.r.t 1

n
∆− b , we can prove 4) in Theorem 3.16.

Case 2. On RCD∗(k,N) spaces, using the second order differentiation formula
developed by Gigli-Tamanini (see [30]) we can easily prove that infinitesimal K-
monotonicity is equivalent to K-monotonicity.

At the end of this section, we show that the K-monotonicity is stable with
respect to measured Gromov-Hausdorff convergence. For simplicity, we adopt the
notions from [10] without further explanation. Without loss of generality, we call
that RCD(k,∞) spaces Mn := (X, d,mn) converge to M := (X, d,m) in measured
Gromov-Hausdorff topology if mn → m weakly.

We define the countable class

HQ+Abs :=
{
Htf : f ∈ Abs, t ∈ Q+

}
⊂ Lip∩L∞,

where Abs is a sub-algebra of A consisting of functions with bounded support, where
A is a Q-vector space generated by

min
{

d(·, x), k
}

k ∈ Q ∩ [0,∞], x ∈ D,D is dense in X.

It can be seen (see e.g. [10]) that HQ+Abs is dense in W 1,2.

Corollary 3.19 (Stability of K-monotonicity). Let bn ∈ W 1,2
C (TMn), n ∈ N be

such that supn ‖bn‖L2(X,mn) < ∞ and supn ‖divbn‖L∞(X,mn) < ∞. If (bn)n∈N are
K-monotone and bn(f)mn → b(f)m as measures for all f ∈ HQ+Abs, and

lim
n→∞

∫
|bn|2 dmn ≤

∫
|b|2 dm.

Then b is K-monotone.

Proof. From Theorem 8.2 in [10] we know the regular Lagrangian flow associated
to bn converge to the RLF of b in measure. We apply 2) of Theorem 3.16 with
bn, from lower-semicontinuity of Wasserstein distance w.r.t weak topology, we know
K-monotonicity of bn implies K-monotonicity of b.
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4 Applications

In this section, we apply Theorem 3.14 to two special functions. Our aim is not
to give complete proofs to the rigidity theorems which are already perfectly done,
but to present how to use our result to connect the differential structure and metric
structure on metric measure spaces in a different way. For simplicity, we will always
start our discussion from the non-smooth differential equation concerning the K-
convex functions.

Example 1: Splitting

Theorem. Let (X, d,m) be a RCD(k,∞) metric measure space. If ∆u = 0, and
|Du| = 1, then there exists a metric space Y such that X is isometric to Y × R.

Proof. By a cut-off argument we can apply Corollary 2.13 to u, then we can prove
that Hessu = 0. From Proposition 3.2 we know that the regular Lagrangian flows
associated to ∇u and −∇u exist, which are denoted by (F+

t )t≥0 and (F−t )t≥0 respec-

tively. By uniqueness of the RLF we know F+
t (F−s (x)) = F−s (F+

t (x)) = F
sign(t−s)
|t−s| ,

where sign(t− s) is “ + ” if t− s ≥ 0 and is “− ” if t− s < 0. We define

Ft(x) :=

{
F+
t (x) t ≥ 0
F−t (x) t < 0

(4.1)

Since |Df | = 1 we know Lip(f) = 1 from Sobolev-to-Lipschitz property. Then
we can apply Theorem 3.12 and Theorem 3.14 to infinitesimally 0-convex functions
u and −u. From 4) of Theorem 3.14 we know

d(Ft(x), Ft(y)) ≤ d(x, y)

for any x, y ∈ X, t ∈ R. So we have

d(Ft(x), Ft(y)) ≤ d(x, y) = d(F−t(Ft(x)), F−t(Ft(y))) ≤ d(Ft(x), Ft(y))

for any x, y ∈ X, t ∈ R. Hence d(Ft(x), Ft(y)) = d(x, y) for any x, y ∈ X, t ∈ R.
Therefore Ft induces an isometry between u−1(0) and u−1(t). Combining with the
fact that |Ḟt|(x) = 1, we know Ft induces a translation on the fibre (Ft(x0))t for any
x0 ∈ u−1(0). It can also be checked that u−1(0) is totally geodesic.

Finally, by identifying the Sobolev spaces W 1,2(Φ−1(X)) and W 1,2(R× u−1(0)),
we know from the Sobolev-to-Lipschitz property that the map Φ : R × u−1(0) 3
(t, x) 7→ Ft(x) ∈ X is an isometry (see Section 6, [22]).

Remark 4.1. In “splitting theorem” (see [18], [22]), the function u is the Buseman
function associated with a line. In [27] the function u is a solution to the equation
∆u = −u, such that Hessu = 0.

Example 2: Volume cone implies metric cone

Theorem. Let (X, d,m) be a RCD(0, N) space with m � HN . If ∆u = N ,
|Du|2 = 2u and u ≤ Cd2(·, O) for some O ∈ X, C > 0, then (X, d) admits a warped
product-like structure.
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Proof. Since m � HN , from the rectifiability theorem (see [38], [28] and [32]) we
know dimloc = N is a constant. Then by Proposition 2.19, we know u ∈ W 1,2

C,loc and
trHessu(x) = ∆u(x) m-a.e. x ∈ X. Hence ∆ is a local operator so that we can
represent it using local coordinate.

Since ∆u = N , by Proposition 2.12 we know

N = ∆u =
1

2
∆|Du|2 − 〈∇u,∇∆u〉 ≥ |Hessu|2HS, m− a.e.. (4.2)

By Cauchy inequality and the fact that dimloc = N we know

|Hessu|2HS ≥
1

N
(trHessf )

2 =
1

N
(∆f)2 = N.

Combining with (4.2) we know Hessu = IdN .

Then we consider the regular Lagrangian flow associated to ∇u and −∇u, which
are denoted by (F+

t )t≥0 and (F−t )t≥0 respectively. We can also construct Ft as we
did in the first example. We know both

d(Ft(x), Ft(y)) ≤ e−Ntd(x, y)

for any x, y ∈ X, t > 0, and

d(Ft(x), Ft(y)) ≤ eNtd(x, y)

for any x, y ∈ X, t < 0.

Therefore, for any t > 0 we have

d(Ft(x), Ft(y)) ≤ e−Ntd(x, y) = e−Ntd
(
F−t(Ft(x)), F−t(Ft(y))

)
≤ e−NteNtd(Ft(x), Ft(y)).

Therefore we know d(Ft(x), Ft(y)) = e−Ntd(x, y). So (X, d) admits a warped
product-like structure.

Remark 4.2. In “volume cone implies metric cone theorem ” (see [14], [19]), the
target function u is the squared distance function 1

2
d2(·,O) where O is a fixed point.

Then we know |Du|2 = 2u = d2(·,O). From the theorem above we know |Ḟt|(x) =
|Du| ◦ Ft(x) = d(Ft(x),O). We define Φ : R × u−1(1) 3 (t, x) 7→ Ft(x) ∈ X. By
identifying the Sobolev spaces W 1,2(Φ−1(X)) and W 1,2(R × u−1(1)) (see [19] and
[26]), we know from Sobolev-to-Lipschitz property that Φ is an isometry. So(X, d)
admits a cone structure, and the point O is exactly the apex.
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