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Abstract

In this work, we analyze the convergence of the recent numerical method for enforcing fluid–
structure interaction (FSI) kinematic constraints in the immersogeometric framework for cardio-
vascular fluid–structure interaction. In the immersogeometric framework, the structure is modeled
as a thin shell, and its influence on the fluid subproblem is imposed as a forcing term. This force has
the interpretation of a Lagrange multiplier field supplemented by penalty forces, in an augmented
Lagrangian formulation of the FSI kinematic constraints. Because of the non-matching fluid and
structure discretizations used, no discrete inf-sup condition can be assumed. To avoid solving (po-
tentially unstable) discrete saddle point problems, the penalty forces are treated implicitly and the
multiplier field is updated explicitly. In the present contribution, we introduce the term dynamic

augmented Lagrangian (DAL) to describe this time integration scheme. We formulate the DAL
algorithm for a linearized parabolic model problem, analyze the regularity of solutions to this prob-
lem, and provide error estimates for the DAL method in both the L∞(H1) and L∞(L2) norms. We
also prove error estimates for a recently-proposed extension of the DAL method, with improved
conservation properties. Numerical experiments indicate that the derived estimates are sharp and
that the results of the model problem analysis can be extrapolated to the setting of nonlinear FSI,
for which the numerical method was originally proposed.
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1. Introduction

Recent years have seen great interest in numerical analysis of fluid–structure interaction (FSI)
[1–26] due to its relevance to structural [27, 28], biomedical [29], and other engineering applica-
tions [30]. In a recent series of articles [31–36], we developed a framework for simulating FSI
dynamics of thin, flexible shell structures immersed in a viscous, incompressible fluid, where we
assume that the thin structure can cut through the fluid meshes and the fluid/structure meshes do
not have to match each other on the fluid-structure interface [37–39]. The target application was
bioprosthetic heart valve [40] analysis. Heart valves are anatomical structures in the heart, regulat-
ing the direction of blood flow. Bioprosthetic heart valves are artificial replacements for diseased
valves that mimic the structure of native valves: they consist of several thin elastic leaflets that are
pushed open by flow in one direction and shut by flow in the other direction. FSI analysis could
become an important tool for understanding and designing bioprosthetic heart valves; however,
this problem class presents special difficulties [41–43]: (1) due to the thinness of the heart valve
leaflets, shell models are typically employed for efficiency. However, the high-order derivatives in
some shell models (e.g., Kirchhoff–Love shells [44]) require additional smoothness on the numer-
ical solutions; (2) in heart valve problems the fluid and structure densities are close. Convergence
of coupled solvers is problematic because of the “added-mass” effect [45]; (3) the fluid velocity
gradients and blood pressure are discontinuous across the leaflets, which is difficult to approximate
in unfitted discretizations; (4) the leaflets undergo large deformations in each cardiac cycle, which
causes significant changes in the geometry of the region occupied by fluid.

To accommodate large deformations of and contact between bioprosthetic heart valve leaflets,
we pursued an immersed boundary numerical method (see, e.g., [16–18, 46]), in which the fluid
and structure are discretized separately and coupled in the numerical method. To simplify the
translation of bioprosthetic heart valve designs into analysis models, we used an isogeometric dis-
cretization [47, 48] of the bioprosthetic heart valve leaflets, representing discrete approximations to
the valve’s deformation with the same spline function space used to design its geometry. Moreover,
isogeometric spline spaces can be as smooth as the geometry allows, which permits straightfor-
ward discretization of fourth-order thin shell models. We introduced the term immersogeometric

analysis in [31], to identify the idea of directly using design geometries as immersed boundaries.
References [28, 49–51] explore immersogeometric analysis in several application areas, using a
variety of numerical methods.

This paper focuses on the particular numerical method introduced in [31], and refinements
of it developed in subsequent work [36]. This numerical method is specialized for problems in
which the structure is modeled geometrically as a surface of co-dimension one to the fluid sub-
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problem domain. The interaction between the shell structure and fluid is mediated by a Lagrange
multiplier field, which enforces the constraint that the fluid and shell structure velocities match
along the shell structure’s midsurface. Immersed boundary numerical methods based on this dis-
tributed Lagrange multiplier concept have their origins in the work of Glowinski and collaborators
[52, 53], and continue to be studied today by Boffi, Gastaldi and Cavallini [22, 54]. In [53], a
Lagrange-multiplier based fictitious domain method is presented and validated on a fluid-solid
coupling problem, where both the fluid and solid subdomains are in 2D. In this method, the fluid
flow equations are enforced in the whole domain, including the solid subdomain, and the solid
boundary is constrained using a distributed Lagrange multiplier. In [22], the authors provided op-
timal error estimates for the Lagrange-multiplier based fictitious domain method on a simplified
linear model for the solid. Besides the case when the fluid and solid have the same dimension,
the authors have further discussed the case of a thin solid immersed in a fluid. However, in [22]
the error estimates depend on the problem regularity, i.e., the smoothness of the solutions, which
was not discussed in the paper. Moreover, the Lagrange-multiplier based fictitious domain method
entails the construction of a saddle point problem, which is fraught with practical difficulties in
the discrete setting. Drawing inspiration from discrete optimization [55, 56] and solution methods
for contact problems [57] (where non-matching discretizations are the norm), we first attempted
to use an augmented Lagrangian iteration. This iteration avoids directly solving a saddle point
problem by introducing auxiliary penalty forces, then alternating between 1: solving an uncon-
strained problem, with fixed Lagrange multipliers, and 2: using the penalty forces to update the
Lagrange multipliers. Finding the convergence of this iteration unreliable, we truncated the orig-
inal augmented Lagrangian iteration, updating the Lagrange multiplier only once each time step.
This can be reinterpreted as an implicit discretization of the feedback forcing method of Goldstein
et al. [58–62], in which the fluid–structure forcing (i.e. Lagrange multiplier) is governed by a
stiff differential equation in time, essentially penalizing the time integral of fluid–structure velocity
discrepancy [31, Section 4.3]. Feedback forcing is a rate form of the fluid–structure displacement

penalties [63, Section 4.2.1] used quite widely to simulate airbag inflation [64], heart valve FSI
[65–68], and other fluid–thin structure interaction phenomena [69–71].

Retaining the Lagrange multiplier viewpoint has allowed us to devise stabilization schemes
[34, 36] that would not clearly emerge from the picture of accumulating a fluid–structure dis-
placement difference in rate form and penalizing it. In this paper, we introduce the term dynamic

augmented Lagrangian (DAL) to describe the resulting family of numerical methods for imposing
the Dirichlet boundary conditions on the fluid–structure interface. The idea of DAL was initially
introduced for immersogeometric analysis in [31], and came from a combination of heuristic analo-
gies to feedback methods and results of numerical experiments. In [35, Section 3], we began to
undertake a numerical analysis of DAL, by introducing a scalar parabolic model problem with a
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Dirichlet boundary condition applied on a surface cutting through the interior of the domain. Our
analysis of the model problem in [35] proceeded as follows: First, we related the model problem
to a feedback forcing regularization. Second, we analyzed the error in discretizing this regularized
problem in space and time. However, the dependence of the regularized problem’s coefficients
on refinement parameters introduced many technical difficulties into the analysis, and numerical
experiments indicated that the resulting error bounds were not sharp.

The present paper aims to address the solution regularity for the immersed thin solid problem,
and based on this regularity further investigate the convergence rates for DAL methods. We provide
a novel analysis of the original DAL on the parabolic model problem introduced in [35] and,
for the first time, analyze a recent extension of DAL [36]. In this extension, the multiplier is
projected onto a coarser space, to circumvent the trade-off between stability and conservation that
results from the original DAL [34, 35]. The new analysis does not rely on passing through a
regularized problem, and arrives at sharp bounds. We begin by reviewing the fluid–thin structure
interaction problem setting (Section 2) and the immersogeometric FSI framework (Section 3) in
which the two DAL methods are developed and applied. Then, in Section 4, we recall the linear
parabolic model problem introduced in [35, Section 3.1.1] and study the regularity of its solutions.
Section 5 analyzes the convergence of the original DAL and the projection-based DAL methods
in the context of this model problem. Numerical testing in Section 6 supports the analysis on
linear problems, and in Section 7 the numerical results on a novel benchmark 2D FSI problem
indicates that the conclusions of the model problem analysis extrapolate to much more complicated
problems. Section 8 summarizes our findings and discusses future research.

2. Mathematical model for FSI

This section defines the mathematical model of fluid–thin structure interaction in which the
DAL methods we consider here were originally developed. We also outline the discretizations
used for the fluid and thin structure subproblems.

2.1. Augmented Lagrangian formulation of FSI

We begin with a versatile augmented Lagrangian framework for FSI [72], which we specialize
to the case of thin immersed structures. The region occupied by fluid is denoted Ω ⊂ R3, and the
deformed structure geometry at time t is modeled by the 2D surface Γt ⊂ Ω. Let u and p denote
the fluid velocity and pressure fields. Let y denote the structure displacement relative to some
reference configuration, Γ0. The structure velocity is denoted η ≡ ẏ. The fluid–structure kinematic
constraint that u = η on Γt is enforced using the augmented Lagrangian∫

Γt

λ · (u − η) dΓ +
1
2

∫
Γt

β|u − η|2 dΓ , (2.1)
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in which λλλ is a Lagrange multiplier and β ≥ 0 is a penalty parameter. This results in the following
variational problem: Find u ∈ Su, p ∈ Sp, y ∈ Sd, and λ ∈ S` such that, for all w1 ∈ Vu, q ∈ Vp,
w2 ∈ Vd, and δλ ∈ V`

B1({u, p}, {w1, q}) − F1({w1, q}) +

∫
Γt

w1 · λλλ dΓ +

∫
Γt

w1 · β(u − η) dΓ = 0 , (2.2)

B2(y,w2) − F2(w2) −
∫

Γt

w2 · λλλ dΓ −

∫
Γt

w2 · β(u − η) dΓ = 0 , (2.3)∫
Γt

δλλλ · (u − η) dΓ = 0 , (2.4)

where Su, Sp, Sd, and S` are trial solution spaces for the different solution components and Vu,
Vp, Vd, and V` are the corresponding test spaces. B1, B2, F1, and F2 are semi-linear forms and
linear functionals defining the fluid and structure subproblems.

2.2. Fluid subproblem

We assume the fluid to be incompressible and Newtonian, with the following weak formulation

B1({u, p}, {w, q}) =

∫
Ω

w · ρ f

(
∂u
∂t

∣∣∣∣∣
x

+ u ·∇u
)

dΩ +

∫
Ω

ε(w) : σ f dΩ

+

∫
Ω

q∇ · u dΩ − γ

∫
ΓN

w · ρ f

{
u · n f

}
−

u dΓ , (2.5)

F1({w, q}) =

∫
Ω

w · ρ f f1 dΩ +

∫
ΓN

w · T1 dΓ , (2.6)

where ρ1 is the mass density of the fluid, ε(·) is the symmetric gradient, σ f = −pI + 2µε(u) is the
fluid Cauchy stress, µ is the dynamic viscosity, f1 is a body force, T1 is a traction on ΓN ⊂ ∂Ω, and
n f is the unit outward-facing normal to Ω. ∂(·)/∂t|x indicates time differentiation holding x ∈ Ω

fixed. In the last term of (2.5), the function {·}− extracts the negative part of (·):

{x}− =

 0 x > 0
x otherwise

. (2.7)

This enhances the stability of the problem in situations where flow enters through ΓN [35, 73]. The
dimensionless coefficient γ controls the strength of stabilization.

Our past work on immersogeometric analysis has discretized this subproblem in a number of
ways. In [31], we used the variational multiscale (VMS) formulation, with equal-order pressure
and velocity interpolation. This suffered from difficulties with mass loss in the discrete fluid solu-
tion. In [35], we circumvented this issue by applying a modification of the divergence conforming
(or div-conforming) discretization described in Evans and Hughes [74–76] and based on work by
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Buffa et al. [77, 78]. We refer interested readers to [74] for further information on div-conforming
B-splines and [35, Section 2.2] for details of the implementation we used for immersogeometric
FSI analysis. Numerical FSI examples in this paper use the div-conforming fluid discretization.

2.3. Thin structure subproblem

We define the forms B2 and F2 for the structure subproblem by assuming Kirchhoff–Love thin
shell kinematics [44, 79, 80]:

B2(y,w) =

∫
Γt

w · ρshth
∂2y
∂t

∣∣∣∣∣∣
X

dΓ +

∫
Γ0

∫ hth/2

−hth/2
DwE : S dξdΓ (2.8)

and
F2(w) =

∫
Γt

w · ρshthf2 dΓ +

∫
Γt

w · hnet dΓ , (2.9)

where ρs is mass density, f2 is a body force, hth is the thickness of the shell, and ξ is a coordinate
parameterizing the through-thickness direction. The elasticity term is referred to the reference
configuration; E is the Green–Lagrange strain tensor,

DwE(y) =
d
dε

E(y + εw)
∣∣∣∣∣
ε=0

, (2.10)

and S is the second Piola–Kirchhoff stress tensor. The last term of F2 combines tractions prescribed
on both sides of Γt: hnet = h(ξ = −hth/2) + h(ξ = +hth/2). The time derivative ∂(·)/∂t|X is taken
holding X ∈ Γ0 fixed. S can be computed from E using an arbitrary constitutive model. Computing
E from the midsurface displacement y relies on kinematic assumptions detailed in [44, 79, 80].

In the resulting thin shell subproblem, the smoothness of the solution space is especially im-
portant because of the high-order derivatives of y and w resulting from the mapping of y to E. For
B2(w, y) to remain bounded, w and y must be at least in H2(Γ). Therefore, in this paper we employ
isogeometric analysis (IGA) spline spaces to discretize the thin shell subproblem in space, because
IGA accommodates the additional smoothness required of numerical solutions.

3. Dynamic augmented Lagrangian methods for fluid–structure coupling

This section discusses how we discretize the constraint coupling the subproblems. We describe
two variants of the DAL method: the original DAL approach proposed in [31] (including a sta-
bilization technique added in [34]) and a modified version proposed in [36], which projects the
Lagrange multiplier onto a coarse discrete space.
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3.1. The original DAL approach

In [31], we formally separated the constraint u = η on Γ into no-penetration and no-slip com-
ponents:

u · n f = −η · ns (3.1)

and
u −

(
u · n f

)
n f = η − (η · ns) ns , (3.2)

where ns = −n f . (3.1) and (3.2) are enforced by normal and tangential components of λ, respec-
tively, as well as the penalty forcing β (u − η). In the applications with a closed structure separating
regions of different pressures (e.g. an aortic heart valve during diastole), the thin structure must be
able to prevent leakage to maintain the correct qualitative solution behavior. On the other hand, the
no-slip constraint is less essential; its strong enforcement may even be detrimental to solution qual-
ity on coarse meshes [81–84]. We therefore discretized these constraint components differently.
For the no-slip constraint, we simply rely on imposing consistency with a penalty integral term
and neglect the corresponding component of the Lagrange multiplier field. For the no-penetration
constraint, we retain a scalar Lagrange multiplier field on Γ, denoted λ = λ · n f , to strengthen
enforcement of non-penetration. Because Γt can cut through the fluid domain arbitrarily, it would
be difficult to construct inf-sup stable combinations of discrete velocity and multiplier spaces. We
discretize λ as a set of samples at quadrature points, which may be viewed as coefficients in a lin-
ear combination of piecewise-constant basis functions, each supported on the patch of surface area
associated with a quadrature point (cf. Pinsky’s interpretation [85, (6.6)–(6.7)] of discretizing the
plastic multiplier at quadrature points in a three-field formulation of elastoplasticity). However, we
do not place any upper bound on the density of quadrature points relative to the fluid and structure
discretizations, so no discrete inf-sup condition can be assumed. To stabilize the formulation, we
introduced (in [34]) a relaxation parameter, r, to regularize the no-penetration constraint residual:

(u − η) · n f → (u − η) · n f −
r
β
λ . (3.3)

This “perturbed Lagrangian” approach for multiplier stabilization has previously been applied to
contact problems [86]. The use of a perturbed residual and a multiplier discretized at quadrature
points is clearly equivalent to a penalty method, in which the penalty parameter scales like ∼
τB

NOR/r. The reason for retaining an unknown multiplier field is that it allows us to formulate a
semi-implicit time discretization that does not rely on solving a severely ill-conditioned problem
when r � 1. (In the initial formulation of [31], r was in fact zero.)

These modifications of the constraint lead to the following problem: Find u ∈ Su, p ∈ Sp,
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y ∈ Sd, and λ ∈ S` such that, for all test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd, and δλ ∈ V`

B1({w1, q}, {u, p}) − F1({w1, q}) + B2(w2, y) − F2(w2)

+

∫
Γt

(w1 − w2) · λn f dΓ

+

∫
Γt

(w1 − w2) · τB
NOR

(
(u − η) · n f

)
n f dΓ

+

∫
Γt

(w1 − w2) · τB
TAN

(
(u − η) −

(
(u − η) · n f

)
n f

)
dΓ

+

∫
Γt

δλ ·

(
(u − η) · n f −

rλ
τB

NOR

)
dΓ = 0 . (3.4)

Applying spatial discretizations to the subproblems of (3.4), as discussed in previous sections, al-
lows us to represent the semi-discrete solutions as vectors of basis function coefficients, which is
convenient for discussing time integration algorithms. When describing time stepping procedures
for the fully-discrete problem, we use n to denote the time step index, and denote the spatially dis-
cretized fluid velocity solution as a vector of basis function coefficients Un. Likewise, the spatially
discretized fluid velocity time derivative, fluid pressure, structure displacement, and displacement
time derivatives are denoted U̇n, Pn, Yn, Ẏn, and Ÿn. We denote the multiplier at time level n as λn.

The time discretization proposed in [31, 34] proceeds in two phases at each time step. First, λ
is held fixed at λn, and the penalty-coupled problem is solved implicitly. Second, λn+1 is computed
explicitly. More precisely, the algorithm of [31, 34] considered solution variables at time level n

known, and first solved the following problem for all (n + 1)-level unknowns except λn+1:

Res
(
Un+α f , U̇n+αm ,Yn+α f , Ẏn+α f , Ÿn+αm ,Pn+1, λn

)
= 0 , (3.5)

Un+1 = Un + ∆t
(
(1 − γ)U̇n + γU̇n+1

)
, (3.6)

U̇n+αm = U̇n + αm

(
U̇n+1 − U̇n

)
, (3.7)

Un+α f = Un + α f

(
Un+1 − Un

)
, (3.8)

Yn+1 = Yn + ∆tẎn +
∆t2

2

(
(1 − 2β)Ÿn + 2βŸn+1

)
, (3.9)

Ẏn+1 = Ẏn + ∆t
(
(1 − γ)Ÿn + γŸn+1

)
, (3.10)

Ÿn+αm = Ÿn + αm

(
Ÿn+1 − Ÿn

)
, (3.11)

Ẏn+α f = Ẏn + α f

(
Ẏn+1 − Ẏn

)
, (3.12)

Yn+α f = Yn + α f

(
Yn+1 − Yn

)
, (3.13)

where αm, α f , β, and γ are time integration parameters. Res(. . .) is the nonlinear algebraic residual
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corresponding to discretization of (3.4) with λ fixed andV` = ∅. The subproblems are still coupled
through the penalty term, but in a more gentle way, which can be resolved using block iteration [35,
Section 4]. Equations (3.5)–(3.13) come from the generalized-αmethod of time integration [87]. In
[31–34], we followed [88, Section 4.4] by using a subset of generalized-α methods parameterized
by ρ∞ ∈ [0, 1], which controls numerical damping and defines the four free parameters as

αm =
1
2

(
3 − ρ∞
1 + ρ∞

)
, (3.14)

α f =
1

1 + ρ∞
, (3.15)

γ =
1
2

+ αm − α f , (3.16)

β =
1
4

(
1 + αm − α f

)2
. (3.17)

The mathematical interpretation of ρ∞ is it is the spectral radius of the amplification matrix as
∆t → ∞; see [87]. In FSI examples within this work, we maintain a direct analogy to the linear
model problems analyzed in Section 5 by using the backward Euler method instead. This can be
conveniently implemented within the generalized-α predictor–multi-corrector scheme of [88] by
setting the generalized-α parameters to αm = α f = γ = β = 1 and modifying the displacement
predictor to be consistent with the backward Euler method.

The second, explicit phase of the DAL time stepping procedure is to update the Lagrange
multiplier:

λn+1 ←
λn + τB

NOR (un+α f − ηn+α f ) · nn+α f

f

1 + r
. (3.18)

The present semi-implicit algorithm is in fact stable in an energetic sense, as discussed physically
in [34, Section 3.2] and mathematically in [35]. In summary, then, the original DAL approach
employs the following two-phase algorithm in each time step:

1. Solve (3.5)–(3.13) with λn fixed.
2. Update λn+1 explicitly, by (3.18).

Regarding the choices of the penalty parameters, we suggested, based on dimensional analysis
and physical considerations [35, Section 5.2.1], to set

τB
TAN = CTAN

µ

h
, (3.19)

and
τB

NOR = max
{

Cinert
NOR

ρ1h
∆t

,Cvisc
NOR

µ

h

}
, (3.20)

where CTAN, Cinert
NOR, and Cvisc

NOR are dimensionless O(1) constants and h is the fluid element diameter.
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When analyzing this original DAL method for the linear parabolic problem in Section 5, we con-
sider the normal penalty only and take the asymptotic value of the parameter as τB

NOR = β = O(1/h).

3.2. The projection-based DAL

As discussed in [35], the original DAL method requires r > 0 for a stable spatial discretization.
In [36], we suggested a stabilized method which projects the Lagrangian multiplier λ onto a coarse
element space satisfying an inf-sup condition. This spatial discretization remains stable while
satisfying the kinematic conservation law∫

Γt

(u − η) · n f dΓ = 0 , (3.21)

which can only be recovered in the unstable limit of r → 0 with the original DAL approach.
In this section, we first describe the stabilized immersogeometric framework with fully pro-

jected Lagrangian multiplier, which is equivalent to the r → ∞ limit of the formulation from [36].
Then we discuss the semi-implicit time integration method for this immersogemetric framework,
in which the projection-based DAL method is introduced and employed. Further discussions on
the inf-sup stability for the projection-based DAL method as well as its error estimates will be
provided in Section 5.

We start with a modification of the algorithm provided in (3.4), by introducing the projection
operator P as an L2 projection fromV` to a finite-dimensional subspaceVH: For λ ∈ V`,

〈Pλ, δλ〉 = 〈λ, δλ〉 , ∀δλ ∈ VH , (3.22)

where 〈·, ·〉 is the inner product in L2(Γ). The space VH is defined on a coarse mesh of Γ, with
element size H > h. In this paper, we keep C ≤ H/h where C > 1 is a sufficiently large constant
required by the inf-sup condition, as will be discussed in Section 5. Practically, having H � h as
h → 0 would be sufficient for the projection-based DAL method to converge. We also denote the
complementary commutative projector of P as P⊥ = I − P, then we have,

〈Pλ, P⊥δλ〉 = 〈P⊥λ, Pδλ〉 = 0 , ∀λ, δλ ∈ V` . (3.23)

The original immersogeometric framework can then be modified, and we employ the spatial dis-
cretization as: Find u ∈ Su, p ∈ Sp, y ∈ Sd, and λ ∈ VH such that, for all test functions w1 ∈ Vu,
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q ∈ Vp, w2 ∈ Vd, and δλ ∈ VH

B1({w1, q}, {u, p}; û) − F1({w1, q}) + B2(w2, y) − F2(w2)

+

∫
Γt

(w1 − w2) · n fλ dΓ

+

∫
Γt

(w1 − w2) · τB
NOR

(
(u − η) · n f

)
n f dΓ

+

∫
Γt

(w1 − w2) · τB
TAN

(
(u − η) −

(
(u − η) · n f

)
n f

)
dΓ

+

∫
Γt

δλ(u − η) · n f dΓ = 0 . (3.24)

In this method, we also separate the penalty terms as the tangential and the normal parts, and the
tangential and the normal penalty parameters are given as in equations (3.19) and (3.20).

We now consider DAL time discretization of this formulation. The effect of the projection is to
modify the explicit multiplier update step of the original DAL method. The update formula (3.18)
is replaced by

λn+1 ← P
(
λn + τB

NOR
(
un+α f − ηn+α f

)
· nn+α f

f

)
. (3.25)

Summarizing, then, the projection-based DAL method uses the following two-phase time stepping
procedure:

1. Solve (3.5)–(3.13) with λn fixed.

2. Update λn+1 by (3.25).

For general VH, the second step would require inverting a matrix. However, this step can be
made explicit by considering VH to consist of piecewise constants on the elements of the coarse
boundary mesh, rendering the projection matrix diagonal. As explained in [36], the approximation
power ofVH is largely unimportant.

4. A model problem and its regularity

References [34, 35] discuss the stability of the original DAL integrator, and the latter provides
some initial error estimates in the context of a linear parabolic model problem. However, the esti-
mates of [35] are not sharp and depend on unproven assumptions about the regularity of solutions
to the model problem. To further investigate the convergence rate of the original DAL and to de-
velop error estimates for the projection-based DAL, we formulate these methods for a linear model
problem. To ensure general applicability of the derived error estimates, we first provide analysis
of the regularity of solutions to this model problem.

12



Γ

Ω

u = 0
u = g

∂Ω

1

Ω2

n2

n1

Ω=(Ω ∪Ω )°1 2

Figure 1: The domain Ω and the immersed boundary Γ.

On the domain as defined in Figure 1, a parabolic interface problem is considered: Given
f ∈ L2(Ω), find u = u(x, t) satisfying

∂ui

∂t
− ∇ · (c∇ui) = f (x, t), in Ωi × (0,T ] , i ∈ {1, 2}, (4.1a)

u(x, t) = g(x, t), on Γ, (4.1b)

u(x, 0) = u0(x), in Ω, (4.1c)

u(x, t) = 0, on ∂Ω. (4.1d)

Here Ω, Ωi, and Γ are shown in Figure 1; c is a linear transformation that we further consider to
be multiplication by a constant, c(v) = κv; ui = u|Ωi , and g(x, t) can be seen as analogous to the
shell structure velocity. In the thin structure problem, the fluid pressure is not continuous across
the thin structure, and the second spatial derivative of fluid velocity is not well-defined on the
interface; to state a problem for u without reference to the subdomains (which, in practice, may not
be well-defined if, e.g., Γ is not closed), we re-write the problem in a weak formulation, in which

we introduce the Lagrange multiplier λ = κ

(
∂u1

∂n1

)
+ κ

(
∂u2

∂n2

)
and consider the parabolic evolution

problem in a weak formulation:

(ut, v) + a(u, v) − 〈λ, v〉 = ( f , v), for all test functions v ∈ X, (4.2a)

〈u, δλ〉 = 〈g, δλ〉, for all test functions δλ ∈ M, (4.2b)

u(x, 0) = u0(x), in Ω, (4.2c)

u(x, t) = 0, on ∂Ω. (4.2d)

Here (·, ·) and 〈·, ·〉 denote the inner product in L2(Ω) and in L2(Γ), respectively. X = {w ∈ L2(Ω) :
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w ∈ H1(Ω) and w = 0 on ∂Ω}, M = L2(Γ), and the bilinear operator a(u, v) is given by

a(u, v) :=
∫

Ω

κ(∇u) · ∇v,

which is elliptic, i.e., a(u, u) = κ||∇u||2L2(Ω), and continuous on H1(Ω \ Γ), i.e., a(u, v) ≤
κ||∇u||L2(Ω)||∇v||L2(Ω).

For the above parabolic problem, we can obtain its regularity by the following results, for
Ω ∈ R2 and Ω ∈ R3:

Theorem 4.1. For Ω ∈ R2 or R3 with finite diameter (diam Ω < ∞), when the boundaries ∂Ω j,

j = 1, 2 and the force loading f and boundary condition g are all smooth, the solutions u j ( j = 1, 2)

to (4.2) are smooth in both space and time [89, Section 7.1.3]. We have H3/2−ε regularity (for all

ε > 0) for the function

u : Ω −→ R, u|Ω j = u j, j = 1, 2,

and its time derivatives:
∂u
∂t

,
∂2u
∂t2 .

Proof: We will discuss the 2D and 3D cases separately. When Ω ∈ R2, we need to check
∇u ∈ H1/2−ε(Ω) for all ε > 0, i.e. the Gagliardo seminorm

||∇u||H1/2−ε (Ω) =

∫
Ω

∫
Ω

|∇u(x) − ∇u(y)|2

|x − y|3−2ε dxdy

is finite for all ε > 0. Since both u1, u2 are smooth, it follows |∇u(x) − ∇u(y)|2 ∈ L∞(Ω), thus it
suffices to check

(∀ε > 0)
∫

Ω×Ω

1
|x − y|3−2ε dxdy < +∞.

As
Ω ×Ω = (Ω1 ×Ω1) ∪ (Ω2 ×Ω1) ∪ (Ω1 ×Ω2) ∪ (Ω2 ×Ω2), (4.3)

and u j is smooth on Ω j, j = 1, 2, it suffices to check

(∀ε > 0)
∫

Ω1×Ω2

1
|x − y|3−2ε dxdy < +∞.

Let D := diam Ω, which we assumed to be finite. Thus for all x ∈ Ω it holds Ω ⊆ B(x,D), and∫
Ω1×Ω2

1
|x − y|3−2ε dxdy ≤

∫
Ω1

∫
Ω2∩B(x,D)

1
|x − y|3−2ε dydx.

The convergence of this integral entirely depends on what happens when x and y are close. Thus
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one can define Ωδ := {x ∈ Ω1 : dist(x,Γ) ≥ δ}, then∫
Ω1

∫
Ω2∩B(x,D)

1
|x − y|3−2ε dydx ≤

∫
{x∈Ω1:dist(x,Γ)≥1}

∫
Ω2

1
|x − y|3−2ε dydx

+

+∞∑
n=1

∫
Ω 1

n+1
\Ω 1

n

∫
Ω2∩B(x,D)

1
|x − y|3−2ε dydx. (4.4)

Clearly, ∫
{x∈Ω1:dist(x,Γ)≥1}

∫
Ω2

1
|x − y|3−2ε dydx < +∞.

To estimate
+∞∑
n=1

∫
Ω 1

n+1
\Ω 1

n

∫
Ω2∩B(x,D)

1
|x − y|3−2ε dydx, we first note that since Γ is smooth, for n suffi-

ciently large the area of the “strip” Ω 1
n+1
\Ω 1

n
is estimated byH2(Ω 1

n+1
\Ω 1

n
) ≤ H1(Γ)

n(n+1) , whereH1 (resp.
H2) denotes the 1-Hausdorff measure (resp. 2-Hausdorff measure), which intuitively corresponds
to the perimeter (resp. area). Direct computation then gives∫

Ω 1
n+1
\Ω 1

n

∫
Ω2∩B(x,D)

1
|x − y|3−2ε dydx =

∫
Ω 1

n+1
\Ω 1

n

∫
Ω2∩B(0,D)

1
|y|3−2ε dydx

≤
H1(Γ)

n(n + 1)

∫
Ω2∩B(0,D)

1
|y|3−2ε dy =

2πH1(Γ)
n(n + 1)

∫ D

1
n+1

ρ2ε−2dρ

=
2πH1(Γ)

(1 − 2ε)n(n + 1)

(
(n + 1)1−2ε − D1−2ε

)
.

Thus

+∞∑
n=1

∫
Ω 1

n+1
\Ω 1

n

∫
Ω2∩B(x,D)

1
|x − y|3−2ε dydx ≤

+∞∑
n=1

2πH1(Γ)
(1 − 2ε)n(n + 1)

(
(n + 1)1−2ε − D1−2ε

)
,

which converges for all ε > 0. Thus both right-hand side terms in (4.4) are finite, and u ∈ H3/2−ε(Ω)
for all ε > 0. We have then proved the regularity for u in the 2D case. For the regularity of its
second time derivative, we have the Gagliardo semi-norm as

[∇utt]2
H1/2−ε (Ω) =

∫
Ω×Ω

|∇utt(x) − ∇utt(y)|2

|x − y|3−2ε dxdy.

Since u ∈ C∞(Ω j × (0,T )) for all T > 0 and j = 1, 2, we have

2∑
j=1

∫
Ω j×Ω j

|∇utt(x) − ∇utt(y)|2

|x − y|3−2ε dxdy < +∞, (4.5)
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and ∇utt ∈ L∞(Ω). Thus∫
Ω1×Ω2

|∇utt(x) − ∇utt(y)|2

|x − y|3−2ε dxdy ≤
∫

Ω1×Ω2

2‖∇utt‖
2
L∞(Ω)

|x − y|3−2ε dxdy,

and it is thus enough to prove ∫
Ω1×Ω2

1
|x − y|3−2ε dxdy < +∞. (4.6)

Set
Ωr

1 := {x ∈ Ω1 : dist(x,Γ) = r}, Ω2(x, ρ) := Ω2 ∩ ∂B(x, ρ),

and the integral in (4.6) is rewritten as∫
Ω1×Ω2

1
|x − y|3−2ε dxdy =

∫ D

0

∫
Ωr

1

∫ D

r

∫
Ω2(x,ρ)

ρ−3+2εdH1
xΩ2(x,ρ)(y)dρdH1

xΩ1
r
(x)dr

Noting that supD≥r≥0H
1(Ωr

1) < +∞ due to H1(Γ) < +∞, and H1(Ω2(x, ρ)) ≤ 2πρ for all x ∈ Ω1

and ρ > 0, we get∫ D

0

∫
Ωr

1

∫ D

r

∫
Ω2(x,ρ)

ρ−3+2εdH1
xΩ2(x,ρ)(y)dρdH1

xΩ1
r
(x)dr ≤ 2π

∫ D

0

∫
Ωr

1

∫ D

r
ρ−2+2εdρdH1

xΩ1
r
(x)dr

≤ 2π(1 − 2ε)−1
∫ D

0

∫
Ωr

1

r−1+2εdH1
xΩ1

r
(x)dr ≤ 2π(1 − 2ε)−1

(
sup

D≥r≥0
H1(Ωr

1)
) ∫ D

0
r−1+2εdr,

which converges for all ε > 0. Thus (4.6) is proven. The proof of∫
Ω2×Ω1

1
|x − y|2+2s dxdy < +∞.

is completely identical, and combining with (4.5) and (4.6) we infer [∇utt]2
H1/2−ε (Ω) < +∞ for all

ε > 0. Now the theorem for the 2D case has been completely proved.
When Ω ∈ R3, we need to show that

[∇u]H1/2−ε (Ω) :=
∫

Ω×Ω

|∇u(x) − ∇u(y)|2

|x − y|4−2ε dxdy < +∞

for all ε > 0. Similar as in (4.3), Ω is split into four parts, and since u j ∈ C∞(Ω j), j = 1, 2, we have

2∑
j=1

∫
Ω j×Ω j

|∇u(x) − ∇u(y)|2

|x − y|4−2ε dxdy < +∞.
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Then it suffices to show ∫
Ω1×Ω2

|∇u(x) − ∇u(y)|2

|x − y|4−2ε dxdy < +∞. (4.7)

Again, in view of u j ∈ C∞(Ω j), j = 1, 2, we have ∇u(x) − ∇u(y) ∈ L∞(Ω), i.e., there exists a
constant M such that |∇u(x) − ∇u(y)| < M. Let

Ωr
1 := {x ∈ Ω1 : dist(x,Γ) = r},

and note immediately that since Ω is bounded, we have suprH
2(Ωr

1) < +∞. Moreover, we can
partition Ω1, Ω2 as follows:

Ω1 =
⋃
r>0

Ωr
1, Ω2 =

⋃
ρ>0

(Ω2 ∩ ∂B(x, ρ)) for all x ∈ Ω1.

Note that for any r > 0 and x ∈ Ωr
1, the closest point in Ω2 is at distance at least r, hence Ω2 ∩

∂B(x, ρ) = ∅ for all ρ < r. Thus the integral (4.7) satisfies∫
Ω1×Ω2

|∇u(x) − ∇u(y)|2

|x − y|4−2ε dxdy

≤ 2M
∫ D

0

∫
Ωr

1

∫ +∞

r

∫
Ω2∩∂B(x,ρ)

|x − y|−4+2εdH2
xΩ2∩∂B(x,ρ)(y)dρdH2

xΩr
1
(x)dr, (4.8)

where D denotes the diameter of Ω. Direct computation then gives∫ D

0

∫
Ωr

1

∫ +∞

r

∫
Ω2∩∂B(x,ρ)

|x − y|−4+2εdH2
xΩ2∩∂B(x,ρ)(y)dρdH2

xΩr
1
(x)dr

≤

∫ D

0

∫
Ωr

1

∫ +∞

r
ρ−4+2εH2(Ω2 ∩ ∂B(x, ρ))dρdH2

xΩr
1
(x)dr

≤ 4π
∫ D

0

∫
Ωr

1

∫ +∞

r
ρ−2+2εdρdH2

xΩr
1
(x)dr = 4π(1 − 2ε)−1

∫ D

0

∫
Ωr

1

r−1+2εdH2
xΩr

1
(x)dr

≤
(
2π(1 − 2ε)−1 sup

r
H2(Ωr

1)
) ∫ D

0
r−1+2εdr, (4.9)

with the last integral converging if and only if ε > 0. We have then proved the regularity for u in
the 3D case; for the time derivative of u one can similarly write out the Gagliardo semi-norm as

[∇utt]2
H1/2−ε (Ω) =

∫
Ω×Ω

|∇utt(x) − ∇utt(y)|2

|x − y|4−2ε dxdy.
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Since u ∈ C∞(Ω j × (0,T )), T > 0, j = 1, 2 and ∇utt ∈ L∞(Ω), we have

2∑
j=1

∫
Ω j×Ω j

|∇utt(x) − ∇utt(y)|2

|x − y|4−2ε dxdy < +∞, (4.10)

and ∫
Ω1×Ω2

|∇utt(x) − ∇utt(y)|2

|x − y|4−2ε dxdy ≤
∫

Ω1×Ω2

2‖∇utt‖
2
L∞(Ω)

|x − y|4−2ε dxdy,

Tus it suffices to prove ∫
Ω1×Ω2

1
|x − y|4−2ε dxdy < +∞. (4.11)

Following the procedure in (4.8) and (4.9), one can show that (4.11) converges for all ε > 0.
Therefore, [∇utt]H1/2−ε (Ω) ≤ +∞ for all ε > 0. We have finished the proof of regularity for the 3D
cases. �

5. Convergence of the dynamic augmented Lagrangian (DAL) methods

In this section, we aim to estimate, a priori, the error for the two DAL methods introduced in
Section 3, when they are applied to the problem given in Section 4. Both the original DAL method
(in Section 5.1) and the projection-based DAL method (in Section 5.2) will be analyzed. For the
original DAL method, the spatial error for an elliptic interface problem is estimated in Section
5.1.1, and the error of a fully discretized scheme for a parabolic interface problem is provided
in Section 5.1.2. Note that, for the original DAL method, we will mainly focus on the case that
r > 0 so the convergence and stability are not be constrained by the inf-sup condition. More
investigations on the inf-sup condition will be involved in Section 5.2, where we provide a proof for
the error estimate of the projection-based DAL method on the elliptic interface problem, followed
by the estimates for the errors on the parabolic interface problem. Throughout this section, we
consider the symbol “C” to indicate a generic constant that is independent of h, H, and ∆t, but may
have different numerical values in different situations.

5.1. Original dynamic augmented Lagrangian (DAL) method

For the original DAL method, integrating by parts and introducing the Lagrange multiplier

λ =
κ

1 + r

(
∂u1

∂n1
+
∂u2

∂n2

)
, we derive an alternative weak formulation for this interface problem: Find

(u, λ) ∈ X × M such that for t ∈ (0,T ],

(ut,w) + a(u,w) + (1 + r)〈λ,w〉 = ( f ,w) , ∀w ∈ X , (5.1a)

〈u − g, δλ〉 = 0 , ∀δλ ∈ M , (5.1b)
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where X = {w ∈ H1(Ω) and w = 0 on ∂Ω}, M = L2(Γ), (·, ·) denotes the inner product in L2(Ω) and
〈·, ·〉 is the inner product in L2(Γ). According to the discussions in Section 4, the bilinear operator
a(·, ·) is coercive and continuous, i.e, a(u, u) ≥ κ||∇u||2L2(Ω), and a(u, v) ≤ κ||∇u||L2(Ω)||∇v||L2(Ω).

To state the numerical method, we associate with Ω a regular triangulation Th(Ω) consisting
of elements T of mesh sizes h = maxTh(Ω) hT . The low regularity of the solution to the model
problem implies that the minimum distance between u and a discrete solution on an unfitted mesh
will converge at low order, so, for simplicity, we assume that the space X is approximated by linear
finite elements, viz.

Xh(Ω) = {wh ∈ P1(T ) | wh = 0 on ∂Ω} . (5.2)

Let Wh(Γ) be the restriction of Xh(Ω) to Γ. The original DAL method can now be applied to the
weak problem (5.1): Find (un+1

h , λn+1
h ) ∈ Xh ×Wh such that(

un+1
h − un

h

∆t
,wh

)
+ a(un+1

h ,wh) + 〈λn
h,wh〉 + β

〈
un+1

h − g(tn+1),wh

〉
=

(
f (tn+1),wh

)
, ∀wh ∈ Xh, (5.3a)

〈λn+1
h , δλh〉 =

1
1 + r

(
〈λn

h, δλh〉 + β〈un+1
h − g(tn+1), δλh〉

)
, ∀δλh ∈ Wh, (5.3b)

where r and β are suitably chosen penalty parameters. Since wh|Γ ∈ Wh, we can take δλh = wh|Γ in
(5.3b) and combining it with (5.3a) yields(

un+1
h − un

h

∆t
,wh

)
+ a

(
un+1

h ,wh

)
+ (1 + r)

〈
λn+1

h ,wh

〉
=

(
f (tn+1),wh

)
, (5.4)

and (5.3b) can be written as

∆t
〈
λn+1

h − λn
h

∆t
, δλh

〉
+ r

〈
λn+1

h , δλh

〉
= β

〈
un+1

h − g
(
tn+1

)
, δλh

〉
. (5.5)

In the ensuing derivations, we will use the following mesh-dependent half-norms as suggested in
[90]:

‖λ‖21/2,h =
1
h
〈λ, λ〉 , (5.6)

‖λ‖2−1/2,h = h 〈λ, λ〉 . (5.7)
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5.1.1. Static: Elliptic interface problem

We first study the error estimate for the static problem

a(u,w) + (1 + r)〈λ,w〉 = ( f ,w), ∀w ∈ X, (5.8a)

〈u − g, δλ〉 = 0, ∀δλ ∈ M, (5.8b)

and a discretization corresponding to the steady limit of the original DAL method

a (uh,wh) + (1 + r) 〈λh,wh〉 = ( f ,wh), ∀wh ∈ Xh, (5.9a)

r 〈λh, δλh〉 = β 〈uh − g, δλh〉 ∀δλh ∈ Wh . (5.9b)

Denoting

A (uh, λh; wh, δλh) = a (uh,wh) + (1 + r) 〈λh,wh〉 − (1 + r) 〈uh, δλh〉 +
r(1 + r)

β
〈λh, δλh〉 (5.10)

and
F (wh, δλh) = ( f ,wh) − (1 + r)〈g, δλh〉 , (5.11)

the formulation (5.9) can be written as

A (uh, λh; wh, δλh) = F (wh, δλh) , ∀wh ∈ Xh, δλh ∈ Wh . (5.12)

Combining the weak formulation of the static problem (5.8) with (5.9), one can obtain an alterna-
tive definition of the static solution from the original DAL method

a (u − uh,wh) + (1 + r)〈λ − λh,wh〉 − (1 + r)〈u − uh, δλh〉 =
r(1 + r)

β
〈λh, δλh〉 , (5.13)

which is equivalent to

a (u − uh,wh) + (1 + r) 〈λ − λh,wh〉 − (1 + r) 〈u − uh, δλh〉 +
r(1 + r)

β
〈λ − λh, δλh〉

=
r(1 + r)

β
〈λ, δλh〉 (5.14)

or
A (u − uh, λ − λh; wh, δλh) =

r(1 + r)
β
〈λ, δλh〉 . (5.15)
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For given u(t) and λ(t), we can define a perturbed mixed elliptic projection (ûh, λ̂h) as the solution
of

A
(
u − ûh, λ − λ̂h; wh, δλh

)
=

r(1 + r)
β
〈λ, δλh〉 , ∀wh ∈ Xh, δλh ∈ Wh . (5.16)

Then the estimates in this section also hold true for the mixed elliptic projection.
In the estimates, we employ the mesh-dependent norm

|||(uh, λh)|||2 = (∇uh,∇uh) + h〈λh, λh〉 = ‖∇uh‖
2
L2(Ω) + ‖λh‖

2
−1/2,h. (5.17)

With r = O(1) and β =
l
h

= O(1/h), we can then prove the coercivity and the boundedness
properties ofA(·, ·; ·, ·), as follow:

Lemma 5.1. For all wh ∈ Xh, δλh ∈ Wh,A satisfies the coercivity property:

A (wh, δλh; wh, δλh) ≥ C|||(wh, δλh)|||2. (5.18)

Proof: From the definition ofA we have

A(wh, δλh; wh, δλh)

= a(wh,wh) + (1 + r)〈δλh,wh〉 − (1 + r)〈wh, δλh〉 +
r(1 + r)

β
〈δλh, δλh〉

= a(wh,wh) +
r(1 + r)h

l
〈δλh, δλh〉

≥ κ‖∇wh‖
2
L2(Ω) +

r(1 + r)
l
‖δλh‖

2
−1/2,h

≥ C|||(wh, δλh)|||2 . (5.19)

We have then finished the proof. �

Lemma 5.2. Let (v, µ) ∈ X × M and (wh, δλh) ∈ Xh ×Wh, the following inequality holds

A(v, µ; wh, δλh) ≤ C
(
|||(v, µ)||| + ‖µ‖L2(Γ) + ‖v‖1/2,h

)
|||(wh, δλh)|||. (5.20)
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Proof: The definition ofA yields

A(v, µ; wh, δλh)

=a(v,wh) + (1 + r) 〈µ,wh〉 − (1 + r) 〈v, δλh〉 +
r(1 + r)

β
〈µ, δλh〉

≤ κ‖∇v‖L2(Ω)‖∇wh‖L2(Ω) + (1 + r)‖µ‖L2(Γ)‖wh‖L2(Γ) + (1 + r)‖v‖1/2,h‖δλh‖−1/2,h

+
r(1 + r)

l
‖µ‖−1/2,h‖δλh‖−1/2,h

≤C
(
‖∇v‖L2(Ω)‖ + ‖µ‖L2(Γ) + ‖v‖1/2,h + ‖µ‖−1/2,h

) (
‖∇wh‖L2(Ω) + ‖wh‖L2(Γ)

+‖δλh‖−1/2,h
)

. (5.21)

Since wh = 0 on ∂Ω, the trace inequality

‖wh‖L2(Γ) ≤ C‖wh‖H1(Ω) ≤ C
(
‖∇wh‖L2(Ω) + ‖wh‖L2(Ω)

)
(5.22)

and Poincaré’s inequality
‖wh‖

2
L2(Ω) ≤ C‖∇wh‖L2(Ω) (5.23)

imply
‖wh‖L2(Γ) ≤ C‖∇wh‖L2(Ω) . (5.24)

Given that h � 1, one can obtain

A(v, µ; wh, δλh)

≤C
(
‖∇v‖L2(Ω)‖ + ‖µ‖L2(Γ) + ‖v‖1/2,h + h‖µ‖L2(Γ)

) (
‖∇wh‖L2(Ω) + ‖δλh‖−1/2,h

)
≤C

(
|||(v, µ)||| + ‖µ‖L2(Γ) + ‖v‖1/2,h

)
|||(wh, δλh)||| . (5.25)

We have then finished the proof. �

We define Ih as the linear interpolation operator defined on Xh, and the L2 projection Πh from
L2(Γ) to Wh as ∫

Γ

(µ − Πhµ) δλh = 0, ∀δλh ∈ Wh. (5.26)

We then have the following properties [91]:

Lemma 5.3. For u ∈ H3/2−ε(Ω),

‖u − Ihu‖H1(Ω) ≤ Ch1/2−ε‖u‖H3/2−ε (Ω) , (5.27)

‖u − Ihu‖L2(Γ) ≤ Ch1−ε‖u‖H3/2−ε (Ω) . (5.28)
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Lemma 5.4. For λ ∈ H1/2−ε(Γ),

‖λ − Πhλ‖L2(Γ) ≤ Ch1/2−ε‖λ‖H1/2−ε (Γ) . (5.29)

‖λ − Πhλ‖H−1/2(Γ) ≤ Ch1/2‖λ‖L2(Γ) . (5.30)

‖λ − Πhλ‖L2(Γ) ≤ C‖λ‖L2(Γ) . (5.31)

We also have the following Lemmas from [92]

Lemma 5.5. For u ∈ H3/2−ε(Ω), and λ ∈ H1/2−ε(Γ),

‖u‖H1/2(Ω) ≤ C‖u‖H1(Ω) ≤ C‖u‖H3/2−ε (Ω), (5.32)

‖u‖H1/2(Γ) ≤ C‖u‖H1(Ω), (5.33)

‖λ‖L2(Γ) ≤ C ‖λ‖H1/2−ε (Γ) . (5.34)

Lemma 5.6. For any given function ω, consider the elliptic problem

−∇ · (c(∇(φ))) = ω, in Ω\Γ, (5.35a)

φ = 0, on ∂Ω, (5.35b)

φ = 0, on Γ . (5.35c)

Since the boundaries of Ω1 and Ω2 are both smooth, letting φ be the solution, the restrictions

φ j := φ|Ω j , j = 1, 2, are smooth. Set θ := c(∇φ1) · n1 + c(∇φ2) · n2. Then the following inequality

holds:

‖φ‖2H3/2−ε (Ω) + ‖θ‖2H1/2−ε (Γ) ≤ C‖ω‖2L2(Ω). (5.36)

for some constant C.

Proof: We note first that φ satisfies ‖φ j‖H2(Ω j) ≤ C‖ω‖L2(Ω j), j = 1, 2. Thus

‖φ‖2L2(Ω) = ‖φ‖2L2(Ω1) + ‖φ‖2L2(Ω2) ≤ C‖ω‖2L2(Ω). (5.37)

By the trace theorem, since ∇φ j ∈ H1(Ω j), j = 1, 2, we have also

‖∇φ j · n j‖H1/2−ε (Γ) ≤ ‖∇φ j‖H1/2−ε (Γ) ≤ C‖∇φ j‖H1−ε (Ω j), j = 1, 2,
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where n j denotes the outer (with respect to Ω j) normal derivative to Γ. Thus

‖θ‖H1/2−ε (Γ) ≤ (‖∇φ1 · n1‖H1/2−ε (Γ) + ‖∇φ2 · n2‖H1/2−ε (Γ))

≤ C(‖∇φ1‖H1−ε (Ω1) + ‖∇φ2‖H1−ε (Ω2)) ≤ C‖ω‖L2(Ω) (5.38)

It remains to estimate the Gagliardo semi-norm ||∇φ||H1/2−ε (Ω). By definition,

||∇φ||H1/2−ε (Ω) =

∫
Ω

∫
Ω

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx

=

∫
Ω1

∫
Ω1

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx +

∫
Ω2

∫
Ω2

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx

+

∫
Ω1

∫
Ω2

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx +

∫
Ω1

∫
Ω2

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx.

Since φ j ∈ H2(Ω j), j = 1, 2, it follows∫
Ω j

∫
Ω j

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx =

∫
Ω j

∫
Ω j

|∇φ j(x) − ∇φ j(y)|2

|x − y|3−2ε dydx

≤ C‖∇φ j‖
2
H1(Ω j)

≤ C‖ω‖2L2(Ω), j = 1, 2. (5.39)

To estimate
∫

Ω1

∫
Ω2

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx, note that

∫
Ω1

∫
Ω2

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx =

∫
{x∈Ω1:dist(x,Γ)≤δ}

∫
Ω2

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx

+

∫
{x∈Ω1:dist(x,Γ)>δ}

∫
Ω2

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx

for all δ > 0. Since we already proved ||∇φ||H1/2−ε (Ω) < +∞, there exists sufficiently small δ0 > 0
such that ∫

{x∈Ω1:dist(x,Γ)≤δ0}

∫
Ω2

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx ≤ ‖ω‖L2(Ω). (5.40)
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On the other hand, ∫
{x∈Ω1:dist(x,Γ)>δ0}

∫
Ω2

|∇φ(x) − ∇φ(y)|2

|x − y|3−2ε dydx

≤δ2ε−3
0

∫
{x∈Ω1:dist(x,Γ)>δ0}

∫
Ω2

|∇φ(x) − ∇φ(y)|2dydx

≤2δ2ε−3
0

∫
Ω1

∫
Ω2

(|∇φ(x)|2 + ∇φ(y)|2)dydx

≤2δ2ε−3
0 H2(Ω)(‖∇φ1‖

2
L2(Ω1) + ‖∇φ2‖

2
L2(Ω2)) ≤ C‖ω‖2L2(Ω), (5.41)

where H2 denotes the 2-Hausdorff measure. Combining (5.41) with (5.40) we obtain
||∇φ||H1/2−ε (Ω) ≤ C‖ω‖2L2(Ω). Combining with (5.37), (5.38) and (5.39) we have proved (5.36). �

With the above lemmas, we can now prove the error estimates as in the following theorem

Theorem 5.7. Let (u, λ) ∈ X × M be the solution of (5.8) and (ûh, λ̂h) ∈ Xh ×Wh be the solutions

of (5.9). Then, for r = O(1) and β =
l
h

, the following error estimates for the original DAL method

hold true: ∣∣∣∣∣∣∣∣∣(u − ûh, λ − λ̂h)
∣∣∣∣∣∣∣∣∣ ≤ Ch1/2−ε

(
‖u‖H3/2−ε (Ω) + ‖λ‖H1/2−ε (Γ)

)
, (5.42)

‖u − ûh‖L2(Ω) ≤ Ch1−2ε(‖u‖H3/2−ε (Ω) + ‖λ‖H1/2−ε (Γ)) . (5.43)

Proof: From the triangle inequality, we obtain∣∣∣∣∣∣∣∣∣(u − ûh, λ − λ̂h)
∣∣∣∣∣∣∣∣∣ ≤ |||(u − Ihu, λ − Πhλ)||| +

∣∣∣∣∣∣∣∣∣(Ihu − ûh,Πhλ − λ̂h)
∣∣∣∣∣∣∣∣∣. (5.44)

Lemma 5.3 and Lemma 5.4 yield the estimate for the first term:

|||(u − Ihu, λ − Πhλ)|||2 = ‖∇(u − Ihu)‖2L2(Ω) + h‖λ − Πhλ‖
2
L2(Γ)

≤ ‖u − Ihu‖2H1(Ω) + h‖λ − Πhλ‖
2
L2(Γ)

≤ Ch1−2ε
(
‖u‖2H3/2−ε (Ω) + h‖λ‖2H1/2−ε (Γ)

)
. (5.45)

Therefore, given h � 1, for the first term

|||(u − Ihu, λ − Πhλ)||| ≤ Ch1/2−ε‖u‖H3/2−ε (Ω). (5.46)

25



For the second term, we can use Lemma 5.1∣∣∣∣∣∣∣∣∣(Ihu − ûh,Πhλ − λ̂h)
∣∣∣∣∣∣∣∣∣2 ≤CA(Ihu − ûh , Πhλ − λ̂h ; Ihu − ûh , Πhλ − λ̂h)

≤C
(
A(u − ûh , λ − λ̂h ; Ihu − ûh , Πhλ − λ̂h)

−A(u − Ihu , λ − Πhλ ; Ihu − ûh , Πhλ − λ̂h)
)

. (5.47)

From the alternative definition given in (5.16), the first term of (5.47) can be rewritten as

A(u − ûh, λ − λ̂h; Ihu − ûh,Πhλ − λ̂h) =
(1 + r)r

β
〈λ,Πhλ − λ̂h〉

≤
(1 + r)r

l
‖λ‖−1/2,h‖Πhλ − λ̂h‖−1/2,h

≤ C‖λ‖−1/2,h

∣∣∣∣∣∣∣∣∣∣∣∣(Ihu − ûh,Πhλ − λ̂h

)∣∣∣∣∣∣∣∣∣∣∣∣ . (5.48)

The estimate for the second part of (5.47) can be derived from Lemma 5.2

A(u − Ihu, λ − Πhλ; Ihu − ûh,Πhλ − λ̂h)

≤C
(
|||(u − Ihu, λ − Πhλ)||| + ‖λ − Πhλ‖L2(Γ) + ‖u − Ihu‖1/2,h

) ∣∣∣∣∣∣∣∣∣∣∣∣(Ihu − ûh,Πhλ − λ̂h

)∣∣∣∣∣∣∣∣∣∣∣∣ . (5.49)

Combining (5.48) and (5.49), one can get∣∣∣∣∣∣∣∣∣∣∣∣(Ihu − ûh,Πhλ − λ̂h

)∣∣∣∣∣∣∣∣∣∣∣∣
≤C

(
‖λ‖−1/2,h + |||(u − Ihu, λ − Πhλ)||| + ‖λ − Πhλ‖L2(Γ) + ‖u − Ihu‖1/2,h

)
≤C

(
h1/2‖λ‖L2(Γ) + h1/2−ε‖u‖H3/2−ε (Ω) + h1/2−ε‖λ‖H1/2−ε (Γ) + h1/2−ε‖u‖H3/2−ε (Ω)

)
≤Ch1/2−ε

(
‖u‖H3/2−ε (Ω) + ‖λ‖H1/2−ε (Γ)

)
. (5.50)

To estimate the L2 error, we apply the Aubin–Nitsche duality argument. We introduce the dual
problem of finding (φ, θ) as the solution of

−∇ · (c(∇φ)) = u − ûh, in Ω\Γ, (5.51a)

φ = 0, on ∂Ω, (5.51b)

φ = 0, on Γ, (5.51c)

θ = c(∇φ1) · n1 + c(∇φ2) · n2, on Γ, (5.51d)

from Lemma 5.6, the following bound holds for φ

‖φ‖2H3/2−ε (Ω) + ‖θ‖2L2(Γ) ≤ C ‖u − ûh‖
2
L2(Ω) . (5.52)
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Then, taking an inner product of (5.51a) and u − ûh gives

‖u − ûh‖
2
L2(Ω) = a (φ, u − ûh) − 〈c(∇φ1) · n1, u − ûh〉 − 〈c(∇φ2) · n2, u − ûh〉

= a (φ − Ihφ, u − ûh) + a (Ihφ, u − ûh) − 〈θ, u − ûh〉 . (5.53)

We can estimate the above three terms separately. Firstly

a (φ − Ihφ, u − ûh) ≤ C‖∇(φ − Ihφ)‖L2(Ω) ‖∇ (u − ûh)‖L2(Ω)

≤ C‖φ − Ihφ‖H1(Ω)‖∇(u − ûh)‖L2(Ω)

≤ Ch1/2−ε‖φ‖H3/2−ε (Ω)‖∇(u − ûh)‖L2(Ω)

≤ Ch1−2ε‖φ‖H3/2−ε (Ω)

(
‖u‖H3/2−ε (Ω) + ‖λ‖H1/2−ε (Γ)

)
≤ Ch1−2ε‖u − ûh‖L2(Ω)

(
‖u‖H3/2−ε (Ω) + ‖λ‖H1/2−ε (Γ)

)
. (5.54)

Secondly, from (5.9a) and (5.8a)

a(Ihφ, u − ûh) = −(1 + r)
〈
λ − λ̂h, Ihφ

〉
= (1 + r)

〈
λ − λ̂h, φ − Ihφ

〉
(5.55)

≤ (1 + r)‖λ − λ̂h‖L2(Γ)‖φ − Ihφ‖L2(Γ)

≤ Ch1−2ε
(
‖u‖H3/2−ε (Ω) + ‖λ‖H1/2−ε (Γ)

)
‖φ‖H3/2−ε (Ω)

≤ Ch1−2ε‖u − ûh‖L2(Ω)

(
‖u‖H3/2−ε (Ω) + ‖λ‖H1/2−ε (Γ)

)
, (5.56)

where (5.55) was obtained based on the fact that φ = 0 on Γ. For the last term in (5.53), one can
further divide it into two parts:

〈θ, u − ûh〉 = 〈θ − Πhθ, u − ûh〉 + 〈Πhθ, u − ûh〉

= 〈θ − Πhθ, u − ûh〉 +
r
β

〈
Πhθ, λ̂h

〉
≤ C‖θ − Πhθ‖H−1/2(Γ)‖u − ûh‖H1/2(Γ) +

rh
l

(‖θ‖L2(Γ) + ‖θ − Πhθ‖L2(Γ))‖λ̂h‖L2(Γ)

≤ Ch1/2‖θ‖L2(Γ)‖u − ûh‖H1/2(Γ) + C
rh
l
‖θ‖L2(Γ)‖λ̂h‖L2(Γ) . (5.57)

Since u − ûh = 0 on ∂Ω, we have

‖u − ûh‖H1/2(Γ) ≤ C‖u − ûh‖H1(Ω) ≤ C‖∇(u − ûh)‖L2(Γ) . (5.58)
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Together with the estimate for λ̂h

||λ̂h||L2(Γ) ≤ ||λ||L2(Γ) + ||λ − λ̂h||L2(Γ) ≤ Ch−ε(||u||H3/2−ε (Ω) + ||λ||H1/2−ε (Γ)) , (5.59)

we obtain

〈θ, u − ûh〉

≤Ch1/2‖θ‖L2(Γ)||∇(u − ûh)||L2(Γ) + Ch1−ε ||θ||L2(Γ)

(
||u||H3/2−ε (Ω) + ||λ||H1/2−ε (Γ)

)
≤Ch1−ε ||θ||L2(Γ)

(
||u||H3/2−ε (Ω) + ||λ||H1/2−ε (Γ)

)
≤Ch1−ε ||u − ûh||L2(Ω)

(
||u||H3/2−ε (Ω) + ||λ||H1/2−ε (Γ)

)
. (5.60)

Combining (5.53)–(5.60), we get

||u − ûh||L2(Ω) ≤ Ch1−2ε
(
||u||H3/2−ε (Ω) + ||λ||H1/2−ε (Γ)

)
. (5.61)

We have then finished the error estimate of the original DAL method for the static problem. �

Remark 1. The analysis for linear finite elements can be extended to higher-order elements, but
the convergence rate would not improve. Nevertheless, in practice, higher-order approximations of
fluid mechanics may be beneficial for representing complex flow features away from the boundary;
cf. the reasoning in [93, Section 3].

5.1.2. Fully discrete: Parabolic interface problem

From the analysis for the static problem in Section 5.1.1, we obtain the following Lemma
which is useful for the analysis of the fully-discrete original DAL scheme in this section.

Lemma 5.8. For given u and λ, we have the following estimate for their perturbed mixed elliptic

projections
(
ûh, λ̂h

)
defined in (5.16):

∣∣∣∣∣∣∣∣∣∣∣∣(u − ûh, λ − λ̂h

)∣∣∣∣∣∣∣∣∣∣∣∣2 ≤ Ch1−2ε(||u||2H3/2−ε (Ω) + ||λ||2H1/2−ε (Γ)) , (5.62)

‖u − ûh‖
2
L2(Ω) ≤ Ch2−4ε(||u||2H3/2−ε (Ω) + ||λ||2H1/2−ε (Γ)) . (5.63)∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣
(
∂u
∂t
−
∂ûh

∂t
,
∂λ

∂t
−
∂λ̂h

∂t

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣2 ≤ Ch1−2ε

(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
, (5.64)

∣∣∣∣∣∣∣∣∣∣∂u
∂t
−
∂ûh

∂t

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)
≤ Ch2−4ε

(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
. (5.65)
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Let ∆t be the time step size and T = N∆t. We employ backward Euler time integration, and

obtain the fully discrete scheme as in (5.3). Denoting ∂tvn+1 =
vn+1 − vn

∆t
, the original fully discrete

DAL scheme at the n + 1-the time step can be rewritten: Given
(
un

h, λ
n
h

)
, find

(
un+1

h , λn+1
h

)
∈ Xh ×Wh

such that(
∂tun+1

h ,wh

)
+ a

(
un+1

h ,wh

)
+ (1 + r)

〈
λn+1

h ,wh

〉
= ( f (tn+1),wh) , ∀wh ∈ Xh , (5.66a)

∆t
〈
∂tλ

n+1
h , δλh

〉
+ r

〈
λn+1

h , δλh

〉
= β

〈
un+1

h − g(tn+1), δλh

〉
, ∀δλh ∈ Mh , (5.66b)

u0
h = Ihu0 , (5.66c)

λ0
h = 0 . (5.66d)

The above fully-discrete method can also be written in an equivalent form: Find (un+1
h , λn+1

h ) ∈
Xh ×Wh such that for all wh ∈ Xh, δλh ∈ Wh,

(
∂tun+1

h ,wh

)
+

∆t(1 + r)
β

〈
∂tλ

n+1
h , δλh

〉
+A(un+1

h , λn+1
h ; wh, δλh) = F (wh, δλh). (5.67)

Theorem 5.9. Let (u, λ) ∈ X×M be the solution of (4.1) and (un+1
h , λn+1

h ) ∈ Xh×Wh be the solutions

of (5.66). Then, for r = O(1) and β =
l
h

, the following error estimates for the original DAL method

hold true: ∣∣∣∣∣∣∣∣∣∣∣∣(u(tn+1) − un+1
h , λ(tn+1) − λn+1

h

)∣∣∣∣∣∣∣∣∣∣∣∣2
≤C

(
h2−4ε

∆t
+ ∆t

) (
||u0||

2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ)

+

∫ tn+1

0

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 (5.68)

and ∥∥∥u(tn+1) − un+1
h

∥∥∥2

L2(Ω)

≤C
(
h2−4ε + ∆t2

) (
||u0||

2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ)

+

∫ tn+1

0

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 . (5.69)

Proof: With the perturbed mixed elliptic projection
(
ûh(tn+1), λ̂h(tn+1)

)
of u(tn+1) and λ(tn+1),

set
u(tn+1) − un+1

h = (u(tn+1) − ûh(tn+1)) + (ûh(tn+1) − un+1
h ) = ϕn+1 + θn+1 , (5.70)
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λ(tn+1) − λn+1
h = (λ(tn+1) − λ̂h(tn+1)) + (λ̂h(tn+1) − λn+1

h ) = ωn+1 + ξn+1 . (5.71)

The estimates of the interpolation errors ϕn+1 and ωn+1 are known from Lemma 5.18:

|||(ϕn+1, ωn+1)|||2 ≤ Ch2−2ε(||u(tn+1)||2H3/2−ε (Ω) + ||λ(tn+1)||2H1/2−ε (Γ)), (5.72)

||ϕn+1||2L2(Ω) ≤ Ch2−4ε(||u(tn+1)||2H3/2−ε (Ω) + ||λ(tn+1)||2H1/2−ε (Γ)). (5.73)

For θn+1, take w = wh in (5.1) and recall the definition of the perturbed mixed elliptic projection
(5.16); one can obtain(

∂u
∂t

∣∣∣∣∣
tn+1

,wh

)
+ a

(
ûh(tn+1),wh

)
+ (1 + r)

〈
λ̂h(tn+1),wh

〉
=

(
f (tn+1),wh

)
. (5.74)

Subtracting (5.66a) from (5.18) yields(
∂u
∂t

∣∣∣∣∣
tn+1
− ∂tun+1

h ,wh

)
+ a

(
ûh(tn+1) − un+1

h ,wh

)
+ (1 + r)

〈
λ̂h(tn+1) − λn+1

h ,wh

〉
= 0 (5.75)

or, equivalently,

(
∂tθ

n+1,wh

)
+ a(θn+1,wh) + (1 + r)

〈
ξn+1,wh

〉
= −

(
∂tϕ

n+1,wh

)
+

(
∂tu(tn+1) −

∂u
∂t

∣∣∣∣∣
tn+1

,wh

)
. (5.76)

On the other hand, for ξn+1, taking wh = 0 in the perturbed mixed elliptic projection definition
(5.16) yields

β
〈
ûh(tn+1) − g(tn+1), δλh

〉
− r

〈
λ̂h(tn+1), δλh

〉
= 0 . (5.77)

We can now subtract (5.66b) from the above equation:

∆t
〈
∂tλ

n+1
h , δλh

〉
− r

〈
λ̂h(tn+1) − λ

n+1
h , δλh

〉
+ β

〈
ûh(tn+1) − un+1

h , δλh

〉
= 0 (5.78)

or, equivalently,

〈
θn+1, δλh

〉
=

r
β

〈
ξn+1, δλh

〉
+

∆t
β

〈
∂tξ

n+1, δλh

〉
−

∆t
β

〈
∂tλ(tn+1), δλh

〉
+

∆t
β

〈
∂tω

n+1, δλh

〉
. (5.79)
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Taking wh = θn+1 and δλh = ξn+1 and subtracting (5.79)×(1 + r) from (5.76) yields

(
∂tθ

n+1, θn+1
)

+ a(θn+1, θn+1) +
∆t(1 + r)

β

〈
∂tξ

n+1, ξn+1
〉

+
r(1 + r)

β

〈
ξn+1, ξn+1

〉
= −

(
∂tϕ

n+1, θn+1
)

+

(
∂tu(tn+1) −

∂u
∂t

∣∣∣∣∣
tn+1

, θn+1
)
−

∆t(1 + r)
β

〈
∂tω

n+1, ξn+1
〉

+
∆t(1 + r)

β

〈
∂tλ(tn+1), ξn+1

〉
. (5.80)

Since (
vn+1 − vn, vn+1

)
=

1
2
||vn+1||2 −

1
2
||vn||2 +

1
2
||vn+1 − vn||2 ≥

1
2
||vn+1||2 −

1
2
||vn||2 , (5.81)

for the left hand side of (5.80) we have

(
∂tθ

n+1, θn+1
)

+ a(θn+1, θn+1) +
∆t(1 + r)

β

〈
∂tξ

n+1, ξn+1
〉

+
r(1 + r)

β

〈
ξn+1, ξn+1

〉
≥

1
2∆t

(
||θn+1||2L2(Ω) − ||θ

n||2L2(Ω)

)
+ a(θn+1, θn+1) +

1 + r
2β

(
||ξn+1||2L2(Γ) − ||ξ

n||2L2(Γ)

)
+

r(1 + r)
β
||ξn+1||2L2(Γ)

≥
1

2∆t

(
||θn+1||2L2(Ω) − ||θ

n||2L2(Ω)

)
+ κ||∇θn+1||2L2(Ω) +

1 + r
2l

(
||ξn+1||2−1/2,h − ||ξ

n||2−1/2,h

)
+

r(1 + r)
l
||ξn+1||2−1/2,h . (5.82)

From the fact that θn+1 = 0 on ∂Ω, and applying the Poincaré’s inequality

||θn+1||2L2(Ω) ≤ CPo||∇θ
n+1||2L2(Ω) , (5.83)
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we can then have the inequality for the right hand side of (5.80):

−
(
∂tϕ

n+1, θn+1
)

+

(
∂tu(tn+1) −

∂u
∂t

∣∣∣∣∣
tn+1

, θn+1
)
−

∆t(1 + r)
β

〈
∂tω

n+1, ξn+1
〉

+
∆t(1 + r)

β

〈
∂tλ(tn+1), ξn+1

〉
≤

κ

2CPo
||θn+1||2L2(Ω) +

CPo

κ
||∂tϕ

n+1||2L2(Ω) +
CPo

κ

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

+
r(1 + r)

2l
||ξn+1||2−1/2,h +

∆t2(1 + r)
rl

||∂tω
n+1||2−1/2,h +

∆t2(1 + r)
rl

||∂tλ(tn+1)||2−1/2,h

≤
κ

2
||∇θn+1||2L2(Ω) +

CPo

κ
||∂tϕ

n+1||2L2(Ω) +
CPo

κ

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

+
r(1 + r)

2l
||ξn+1||2−1/2,h +

∆t2(1 + r)
rl

||∂tω
n+1||2−1/2,h +

∆t2(1 + r)
rl

||∂tλ(tn+1)||2−1/2,h . (5.84)

Putting together the inequalities for the left and right hand sides, (5.80) yields

1
2∆t

(||θn+1||2L2(Ω) − ||θ
n||2L2(Ω)) +

κ

2
||∇θn+1||2L2(Ω) +

1 + r
2l

(||ξn+1||2−1/2,h − ||ξ
n||2−1/2,h)

+
r(1 + r)

2l
||ξn+1||2−1/2,h

≤
CPo

κ
||∂tϕ

n+1||2L2(Ω) +
CPo

κ

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

+
∆t2(1 + r)

rl
||∂tω

n+1||2−1/2,h

+
∆t2(1 + r)

rl
||∂tλ(tn+1)||2−1/2,h , (5.85)

or, equivalently,

(||θn+1||2L2(Ω) − ||θ
n||2L2(Ω)) + ∆tκ||∇θn+1||2L2(Ω) +

∆t(1 + r)
l

(
||ξn+1||2−1/2,h − ||ξ

n||2−1/2,h

)
+

∆tr(1 + r)
l

||ξn+1||2−1/2,h

≤C
(
∆t||∂tϕ

n+1||2L2(Ω) + ∆t
∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −

∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

+ ∆t3||∂tω
n+1||2−1/2,h

+∆t3||∂tλ(tn+1)||2−1/2,h

)
. (5.86)
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We will now try to bound each term in the right hand side of (5.86):

||∂tϕ
n+1||2L2(Ω) =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
∆t

∫ tn+1

tn

∂ϕ

∂t
dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

L2(Ω)

≤
1
∆t

∫ tn+1

tn

∣∣∣∣∣∣∣∣∣∣∂ϕ∂t

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

dt

≤
Ch2−4ε

∆t

∫ tn+1

tn

(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
dt . (5.87)

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
∆t

∫ tn+1

tn
(t − tn)

∂2u
∂t2 dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

L2(Ω)

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
∆t

∫ tn+1

tn
∆t

∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣ dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

L2(Ω)

≤ ∆t
∫ tn+1

tn

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt . (5.88)

||∂tω
n+1||2−1/2,h = h

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
∆t

∫ tn+1

tn

∂ω

∂t
dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

L2(Γ)

≤
h
∆t

∫ tn+1

tn

∣∣∣∣∣∣∣∣∣∣∂ω∂t

∣∣∣∣∣∣∣∣∣∣2
L2(Γ)

dt

=
1
∆t

∫ tn+1

tn

∣∣∣∣∣∣∣∣∣∣∂ω∂t

∣∣∣∣∣∣∣∣∣∣2
−1/2,h

dt

≤
Ch1−2ε

∆t

∫ tn+1

tn

(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
dt . (5.89)

||∂tλ(tn+1)||2−1/2,h = h

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
∆t

∫ tn+1

tn

∂λ

∂t
dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

L2(Γ)

≤
h
∆t

∫ tn+1

tn

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
L2(Γ)

dt

≤
Ch
∆t

∫ tn+1

tn

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

dt . (5.90)

Substituting the above inequalities into (5.86) yields

(||θn+1||2L2(Ω) − ||θ
n||2L2(Ω)) + ∆tκ||∇θn+1||2L2(Ω) +

∆t(1 + r)
l

(||ξn+1||2−1/2,h − ||ξ
n||2−1/2,h)

+
∆tr(1 + r)

l
||ξn+1||2−1/2,h

≤C
∫ tn+1

tn

(h2−4ε + h1−ε∆t2 + h∆t2)
(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+ ∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt . (5.91)
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Summing (5.91) up from the first step to the (n + 1)th step, we find that

||θn+1||2L2(Ω) + ∆tκ
n∑

i=0

||∇θi+1||2L2(Ω) +
∆t(1 + r)

l
||ξn+1||2−1/2,h

+
∆tr(1 + r)

l

n∑
i=0

||ξi+1||2−1/2,h

≤C
∫ tn+1

0

(
(h2−4ε + h1−2ε∆t2 + h∆t2)

(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt + ||θ0||2L2(Ω) +
∆t(1 + r)

l
||ξ0||2−1/2,h . (5.92)

While taking the initial values of u0
h and λ0

h as in (5.66), and since h � 1, one has the estimates for
the initial errors

||θ0||L2(Ω) =||ûh(t0) − Ihu0||L2(Ω) ≤ ||u0 − Ihu0||L2(Ω) + ||ûh(t0) − u0||L2(Ω)

≤Ch1−2ε
(
||u0||H3/2−ε (Ω) + ||λ0||H1/2−ε (Γ)

)
, (5.93)

||ξ0||−1/2,h =||λ̂h(t0) − 0||−1/2,h ≤ ||λ0||−1/2,h + ||λ̂h(t0) − λ0||−1/2,h

≤Ch1/2−ε
(
||u0||H3/2−ε (Ω) + ||λ0||H1/2−ε (Γ)

)
. (5.94)

Substituting the initial error estimates into (5.92) and using the fact that h � 1 yields

||θn+1||2L2(Ω) + ∆tκ
n∑

i=0

||∇θi+1||2L2(Ω) +
∆t(1 + r)

l
||ξn+1||2−1/2,h

+
∆tr(1 + r)

l

n∑
i=0

||ξi+1||2−1/2,h

≤C
∫ tn+1

0

(h2−4ε + h1−2ε∆t2 + h∆t2)
(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+ ∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt

+ C
(
h2−4ε + h1−2ε∆t

) (
||u0||

2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ)

)
(5.95)

≤C
∫ tn+1

0

h2−4ε
(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+ ∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt

+ C
(
h2−4ε + h1−2ε∆t

) (
||u0||

2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ)

)
. (5.96)
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Therefore

n∑
i=0

||∇θi+1||2L2(Ω) +

n∑
i=0

||ξi+1||2−1/2,h

≤
C
∆t

∫ tn+1

0

h2−4ε
(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+ ∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt

+
C
∆t

(
h2−4ε + h1−2ε∆t

) (
||u0||

2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ)

)
(5.97)

and

||θn+1||2L2(Ω) ≤ C
∫ tn+1

0

h2−4ε
(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+ ∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt

+ C
(
h2−4ε + h1−2ε∆t

) (
||u0||

2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ)

)
. (5.98)

The inequality (5.97) yields

||∇θn+1||2L2(Ω) + ||ξn+1||2−1/2,h

≤
C
∆t

∫ tn+1

0

h2−4ε
(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+ ∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt

+
C
∆t

(
h2−4ε + h1−2ε∆t

) (
||u0||

2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ)

)
. (5.99)

Together with the estimates for the interpolation errors ϕn+1 and ωn+1, we have obtained an error
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estimate in the |||(·, ·)|||-norm:∣∣∣∣∣∣∣∣∣∣∣∣(u(tn+1) − un+1
h , λ(tn+1) − λn+1

h

)∣∣∣∣∣∣∣∣∣∣∣∣2
≤C

(
h2−4ε

∆t
+ h1−2ε

) (
||u0||

2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ)

)
+ C

∫ tn+1

0

h2−4ε

∆t

(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt

+ Ch1−2ε
(
||u(tn+1)||2H3/2−ε (Ω) + ||λ(tn+1)||2H1/2−ε (Γ)

)
≤C

(
h2−4ε

∆t
+ h1−2ε + ∆t

) ||u0||
2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ) +

∫ tn+1

0

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt


≤C

(
h2−4ε

∆t
+ ∆t

) ||u0||
2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ) +

∫ tn+1

0

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 . (5.100)

On the other hand, combining (5.98) with the estimate for ϕn+1, we obtain an error estimate in the
L2 norm:

||u(tn+1) − un+1
h ||

2
L2(Ω)

≤2
(
||ϕn+1||2L2(Ω) + ||θn+1||2L2(Ω)

)
≤C

(
h2−4ε

(
||u(tn+1)||2H3/2−ε (Ω) + ||λ(tn+1)||2H1/2−ε (Γ)

)
+

(
h2−4ε + h1−2ε∆t

) (
||u0||

2
H3/2−ε (Ω)

+||λ0||
2
H1/2−ε (Γ)

)
+

∫ tn+1

0

(
h2−4ε

(∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt


≤C(h2−4ε + ∆t2)

(
||u(tn+1)||2H3/2−ε (Ω) + ||λ(tn+1)||2H1/2−ε (Γ) + ||u0||

2
H3/2−ε (Ω)

+||λ0||
2
H1/2−ε (Γ) +

∫ tn+1

0

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt


≤C(h2−4ε + ∆t2)

||u0||
2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ) +

∫ tn+1

0

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 . (5.101)
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We have then finished the error estimate of the fully-discrete original DAL method. �

Theorem 5.1.2 has indicated the following corollary:

Corollary 1. In the original fully-discrete DAL method, the optimal time step size is ∆t = O(h),
which yields the error estimates:

||∇(u(tn) − un
h)||2L2(Ω) + h||λ(tn) − λn

h||
2
L2(Γ) ≤ Ch1−4ε , (5.102)

||u(tn) − un
h||

2
L2(Ω) ≤ Ch2−4ε . (5.103)

Or, equivalently, h1/2−2ε order of accuracy for the |||(·, ·)|||-norm and h1−2ε order for u in the L2(Ω)-
norm.

Remark 5.10. Due to the lack of strong consistency of the method and the problem regularity in
the static problem, we lose h1/2+ε order for the |||(·, ·)|||-norm and h1+2ε order for the L2-norm, as
shown in (5.42) and (5.43).

Remark 5.11. The
h2−4ε

∆t
in (5.68) suggests that, when taking ∆t smaller than O(h2), one might

expect to see large errors in the H1-norm. A similar concern was raised by our earlier analysis
[35]. However, numerical experiments in Section 6.4 suggest that the method remains robust in
the limit of temporal over-refinement.

Remark 5.12. In practical numerical implementations, we are using nodal quadrature to obtain
a diagonal mass matrix for what is essentially an L2(Γ) projection. The Lagrange multiplier is
represented as a collection of samples at quadrature points on Γ (i.e., amplitudes of the Dirac
measure) and the residual of the perturbed constraint equation is tested independently at each point.
In such implementations, Wh is enriched and the interpolation error should be much smaller than
considered in the analysis here. Since coercivity condition (5.18) still holds, such an enrichment
of Wh should not affect the error estimates of u.

5.2. Projection-based dynamic augmented Lagrangian (DAL) method

For the projection-based DAL method, introducing the Lagrange multiplier yields an alterna-
tive weak formulation for this interface problem: Find (u, λ) ∈ X × M such that for t ∈ (0,T ],

(ut,w) + a(u,w) + 〈λ,w〉 = ( f ,w), ∀w ∈ X, (5.104a)

〈u − g, δλ〉 = 0, ∀δλ ∈ M, (5.104b)
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where a(u,w), X, M are defined as in the previous section. For the numerical method, we consider
the regular triangulation Th(Ω) and the space

Xh(Ω) = {wh ∈ P1(T ) | wh = 0 on ∂Ω} . (5.105)

For the projection, we also consider a coarse, piecewise constant function space WH(Γ) on the
interface, which may have jump discontinuities at element boundaries. We also assume that Xh(Ω)
and WH(Γ) are all strongly regular [92]. The Lagrange multiplier method with projection-based
stabilization technique in Section 3.2 can now be applied on the weak problem (5.104): Find
(un+1

h , λn+1
H ) ∈ Xh ×WH such that for all wh ∈ Xh and δλH ∈ WH,(

un+1
h − un

h

∆t
,wh

)
+ a(un+1

h ,wh) +
〈
λn

H,wh
〉

+ β
〈
un+1

h − g(tn+1),wh

〉
= ( f (tn+1),wh), (5.106a)〈

λn+1
H , δλH

〉
=

〈
λn

H, δλH
〉

+ β
〈
P(un+1

h − g(tn+1)), δλH

〉
. (5.106b)

From (5.106b) and the orthogonality property of the projection operator P, we have〈
λn+1

H ,wh

〉
=

〈
λn+1

H , P(wh)
〉

=
〈
λn

H, P(wh)
〉

+ β
〈
P

(
un+1

h − g
(
tn+1

))
, P(wh)

〉
=

〈
λn

H,wh
〉

+ β
〈
un+1

h − g
(
tn+1

)
,wh

〉
− β

〈
P⊥

(
un+1

h − g
(
tn+1

))
, P⊥(wh)

〉
. (5.107)

Substituting into (5.106a) yields(
un+1

h − un
h

∆t
,wh

)
+ a

(
un+1

h ,wh

)
+

〈
λn+1

H , P(wh)
〉

+ β
〈
P⊥

(
un+1

h

)
, P⊥(wh)

〉
=

(
f (tn+1),wh

)
+ β

〈
P⊥

(
g
(
tn+1

))
, P⊥(wh)

〉
, (5.108)

and (5.106b) can be written as

∆t
〈
λn+1

H − λn
H

∆t
, δλH

〉
= β

〈
P

(
un+1

h − g
(
tn+1

))
, δλH

〉
. (5.109)

Combining (5.108) with (5.109) with δλH = P(wh) we can obtain(
un+1

h − un
h

∆t
,wh

)
− ∆t

〈
λn+1

H − λn
H

∆t
,wh

〉
+ a(un+1

h ,wh) +
〈
λn+1

H , P(wh)
〉

+ β
〈
un+1

h ,wh

〉
=

(
f
(
tn+1

)
,wh

)
+ β

〈
g
(
tn+1

)
,wh

〉
, (5.110)
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In the following derivations, we will use the mesh-dependent half norm based on the mesh Xh

||λ||21/2,h =
1
h
〈λ, λ〉 , ||λ||2−1/2,h = h〈λ, λ〉 , (5.111)

and the norms defiend on the coarse mesh WH:

||λ||21/2,H =
1
H
〈λ, λ〉 , ||λ||2−1/2,H = H〈λ, λ〉 . (5.112)

5.2.1. Static: Elliptic interface problem

We now study the error estimates for the projection-based DAL method defined in Section
3.2. As in the above sections, we start with the static problem (5.104). The steady limit of the
projection-based DAL method can be written as

a(uh,wh) + 〈λH,wh〉 + β 〈uh,wh〉 = ( f ,wh) + β 〈g,wh〉 , ∀wh ∈ Xh (5.113a)

〈uh − g, δλH〉 = 0 , ∀δλH ∈ WH . (5.113b)

Defining
A(uh, λH; wh, δλH) = a(uh,wh) + 〈λH,wh〉 − 〈uh, δλH〉 + β 〈uh,wh〉 (5.114)

and
F (wh, δλH) = ( f ,wh) − 〈g, δλH〉 + β〈g,wh〉 , (5.115)

the formulation (5.113) can be written as

A(uh, λH; wh, δλH) = F (wh, δλH), ∀wh ∈ Xh, δλH ∈ WH. (5.116)

Combining (5.113) with the weak formulation from the static problem

a(u,w) + 〈λ,w〉 = ( f ,w) , ∀w ∈ X , (5.117a)

〈u − g, δλ〉 = 0 , ∀δλ ∈ M , (5.117b)

one can obtain an alternative definition of the static solution

a(u − uh,wh) + 〈λ − λH,wh〉 − 〈u − uh, δλH〉 + β〈u − uh,wh〉 = 0 , (5.118)

or
A(u − uh, λ − λH; wh, δλH) = 0 . (5.119)
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Therefore, one can similarly define a mixed elliptic projection (ũh, λ̃H) for given u(t) and λ(t) as
the solution of

A(u − ũh, λ − λ̃H; wh, δλH) = 0 , ∀wh ∈ Xh, δλH ∈ WH . (5.120)

Then the estimates in this section also hold true for the mixed elliptic projection.
In the estimates, we employ the mesh-dependent norm

|||(uh, λH)|||2p = ||∇uh||
2
L2(Ω) + ||uh||

2
1/2,h + ||λH ||

2
−1/2,h . (5.121)

Before introducing the main lemmas for the continuity property and the inf-sup condition, we first
introduce the following lemma:

Lemma 5.13. For any given function µH ∈ WH, denote by χ the solution of the Robin problem for

the differential equation

−∇ · (c(∇(χ))) = 0, in Ω\Γ, (5.122a)

χ = 0, on ∂Ω, (5.122b)

c(∇χ1) · n1 + c(∇χ2) · n2 + βχ = µH, on Γ. (5.122c)

Then

a(χ, χ) + β〈χ, χ〉 = 〈χ, µH〉, (5.123)

and there exist constants 0 < C1 < C2 < ∞ such that

C1〈χ, µH〉 ≤ ||µH ||
2
−1/2,h ≤ C2〈χ, µH〉. (5.124)

Proof: One can obtain (5.123) by applying the test function χ to (5.122a) and integrating. For
(5.124), we first want to prove the following inequality

||µH ||
2
−1/2,h ≤ C2〈χ, µH〉. (5.125)

Take vh = Πh(µH), then we have
‖vh‖L2(Γ) ≤ ‖µH‖L2(Γ) . (5.126)

We now show that for h/H sufficiently small, the following statement holds:

‖µH‖
2
L2(Γ) ≤ C〈vh, µH〉 . (5.127)

Since µH is piecewise constant, with possible jump discontinuities at element boundaries, we have
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µH ∈ H1/2−ε(Γ) for any ε ≥ 0. Therefore, with the assumption that WH is strongly regular and when
h/H is sufficiently small,

‖µH − vh‖L2(Γ) ≤ Ch1/2−ε‖µH‖H1/2−ε (Γ) ≤ C
(

h
H

)1/2−ε

‖µH‖L2(Γ) ≤
1
2
‖µH‖L2(Γ) . (5.128)

Then

‖µH‖
2
L2(Γ) = 〈vh, µH〉 + 〈µH − vh, µH〉 = 〈vh, µH〉 + ‖µH − vh‖

2
L2(Γ)

≤ 〈vh, µH〉 +
1
4
‖µH‖

2
L2(Γ) , (5.129)

which implies

‖µH‖
2
L2(Γ) ≤

4
3
〈vh, µH〉 , (5.130)

giving (5.127).
By an inverse imbedding theorem, there exists a linear mappingM of H1/2(Γ) into H1(Ω) such

that for any function θ ∈ H1/2(Γ) we have M(θ) = θ on Γ and ||M(θ)||H1(Ω) ≤ C||θ||H1/2(Γ). Since
vh = Πh(µH) is continuous, we have vh ∈ H1/2(Γ) and therefore

‖M(vh)‖H1(Ω) ≤ C‖vh‖H1/2(Γ) ≤ C‖vh‖1/2,h . (5.131)

The above bounds yield

‖µH‖
2
L2(Γ) ≤ C〈µH, vh〉 = C (a(χ,M(vh)) + β〈χ, vh〉)

≤ C
(
‖M(vh)‖H1(Ω)‖χ‖H1(Ω) + β‖vh‖L2(Γ)‖χ‖L2(Γ)

)
≤ C

(
‖vh‖1/2,h‖χ‖H1(Ω) +

1
h
‖µH‖L2(Γ)‖χ‖L2(Γ)

)
≤ C

(
1
√

h
‖µH‖L2(Γ)‖χ‖H1(Ω) +

1
√

h
‖µH‖L2(Γ)‖χ‖1/2,h

)
, (5.132)

which, after dividing through by ‖µH‖L2(Γ)/
√

h, implies (5.125):

‖µH‖−1/2,h ≤ C
(
‖χ‖H1(Ω) + ‖χ‖1/2,h

)
≤ C

√
a(χ, χ) + β〈χ, χ〉

= C
√
〈µH, χ〉 . (5.133)
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For the other side of (5.124), since

||χ||1/2,h =
1
√

h
||χ||L2(Γ) ≤ C

√
a(χ, χ) + β〈χ, χ〉,

we have

〈χ, µH〉 ≤ ||χ||1/2,h||µH ||−1/2,h

≤ C
√

a(χ, χ) + β〈χ, χ〉||µH ||−1/2,h

= C
√
〈χ, µH〉||µH ||−1/2,h , (5.134)

and thus
〈χ, µH〉 ≤ C||µH ||

2
−1/2,h .

We have finished the proof. �

Lemma 5.14. Assuming that Ω has finite diameter, then for any given function µH ∈ WH, denote

by χ the solution of the Robin problem in (5.122), we have χ ∈ H3/2−ε(Ω). Moreover, for 1 ≤ s ≤

3/2 − ε, the following inequality holds

||χ||Hs(Ω) ≤ C
√

h||µH ||Hs−1(Γ). (5.135)

Proof: For s = 1, Lemma 5.2.1 gives

||χ||2H1(Ω) ≤ Ca(χ, χ) ≤ C〈χ, µH〉 ≤ C||µH ||
2
−1/2,h. (5.136)

For the case 1 < s = 3/2 − ε, we separate the proof for 2D and 3D cases. Since µH is piecewise
constant, µH ∈ H1/2−ε(Γ) for any ε ≥ 0. Note that for any piece-wise constant µH, we can approx-
imate in H1/2−ε(Γ) with a sequence of smooth functions which are obtained by mollifying µH on
arbitrarily small sets near the jump points. Therefore, we first prove the estimate for µH ∈ H1−ε(Γ).
Later we will extend the proof to µH ∈ H1/2−ε(Γ) for all ε > 0. For the 2D case, the Gagliardo
semi-norm can be written as

[∇χ]2
H1/2−ε (Ω) :=

∫
Ω×Ω

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy.

42



Note that ∫
Ω×Ω

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy =

2∑
j=1

∫
Ω j×Ω j

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy

+

∫
Ω1×Ω2

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy

+

∫
Ω2×Ω1

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy.

It suffices to show∫
Ω1×Ω1

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy = ‖χk‖
2
H3/2−ε (Ω1) < Ch‖µH‖

2
H1/2−ε (Γ) (5.137)∫

Ω1×Ω2

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy < Ch‖µH‖
2
H1/2−ε (Γ), (5.138)

as the proof for the other two integral terms is completely analogous. Here the symbol “C” may
denote different constants in different equations, but they are all independent of h. To prove (5.137),
we rewrite the problem as

−∇ · (c(∇(χ))) = 0, in Ω\Γ, (5.139)

χ = 0, on ∂Ω, (5.140)

χk =
1
β

(µH − j) on Γ, (5.141)

where j := κ∇(χ1 − χ2) · n1 is the normal jump of the gradient across Γ. To estimate ‖ j‖L2(Γ), we
claim

‖ j‖L2(Γ) ≤ ‖µH‖L2(Γ). (5.142)

By integration by parts we have∫
Γ

χ1∇χ1 · n1dH1
xΓ =

∫
Ω1

[χ1∆χ1 + |∇χ1|
2]dx = ‖∇χ1‖

2
L2(Ω1),

−

∫
Γ

χ2∇χ2 · n1dH1
xΓ =

∫
Ω1

[χ2∆χ2 + |∇χ2|
2]dx = ‖∇χ2‖

2
L2(Ω2),

hence

‖∇χ‖2L2(Ω) =

∫
Γ

χ∇(χ1 − χ2) · n1dH1
xΓ =

∫
Γ

1
β

(µH − ∇(χ1 − χ2) · n1)(∇(χ1 − χ2) · n1)dH1
xΓ

=
h
l

∫
Γ

[µH∇(χ1 − χ2) · n1 − |∇(χ1 − χ2) · n1|
2]dH1

xΓ,
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which then gives

‖∇(χ1 − χ2) · n1‖
2
L2(Γ) =

∫
Γ

|∇(χ1 − χ2) · n1|
2dH1

xΓ ≤

∫
Γ

µH∇(χ1 − χ2) · n1dH1
xΓ

≤ ‖µH‖L2(Γ)‖∇(χ1 − χ2) · n1‖L2(Γ),

which proves (5.142). This implies j ∈ H−1/2(Γ), and by the trace theorem we have

‖ j‖H−1/2(Γ) ≤ C‖χ‖H1(Ω) ≤ Ch1/2‖µH‖L2(Γ).

Since µH ∈ H1/2(Γ), we have also

‖∇χ‖2L2(Ω) ≤
h
l

∫
Γ

[µH j − | j|2]dH1
xΓ ≤

h
l
‖µH‖H1/2(Γ)‖ j‖H−1/2(Γ) −

h
l
‖ j‖2L2(Γ)

≤ Ch‖µH‖H1/2(Γ)‖χ‖H1(Ω) −
h
l
‖ j‖2L2(Γ)

≤ Ch3/2‖µH‖H1/2(Γ)‖µH‖L2(Γ) −
h
l
‖ j‖2L2(Γ),

hence

‖χ‖H1(Ω) ≤ Ch‖µH‖H1/2(Γ),

‖ j‖2L2(Γ) ≤ Ch1/2‖µH‖H1/2(Γ)‖µH‖L2(Γ),

‖h(µH − j)‖H1/2(Γ) = l‖χ‖H1/2(Γ) ≤ C‖χ‖H1(Ω) ≤ Ch‖µH‖H1/2(Γ)

=⇒ ‖µH − j‖H1/2(Γ) ≤ C‖µH‖H1/2(Γ)

=⇒ ‖ j‖H1/2(Γ) ≤ ‖µH − j‖H1/2(Γ) + ‖µH‖H1/2(Γ) ≤ C‖µH‖H1/2(Γ).

This last inequality is the most crucial point in the proof of this lemma: the solution u is thus the
solution of the transmission-reflection problem

−∇ · (c(∇(χ))) = 0, in Ω\Γ, (5.143)

χ1 = χ2 = 0, on ∂Ω, (5.144)

χ1 = χ2 = χ, on Γ, (5.145)

∇(χ1 − χ2) · n1 = j ∈ H1/2(Γ), on Γ, (5.146)

and since the Laplacian is clearly a coercive form, by [94, Theorem 5.3.7] χk ∈ H2(Ωk), k = 1, 2
and

‖χk‖H2(Ωk) ≤ C(‖χk‖H1(Ω j) + ‖ j‖H1/2(Γ)), k = 1, 2
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and by the interpolation inequality, for k = 1, 2,

‖χk‖H3/2−ε (Ωk) ≤ C‖χk‖
1/2−ε
H2(Ωk)‖χk‖

1/2+ε

H1(Ωk)

≤ C(‖χk‖H1(Ωk) + ‖ j‖H1/2(Γ))1/2−ε‖χk‖
1/2+ε

H1(Ωk)

≤ C(‖χk‖H1(Ωk) + ‖ j‖1/2−ε
H1/2(Γ)‖χk‖

1/2+ε

H1(Ωk)),

≤ Ch1/2‖µH‖L2(Γ) + C(‖µH‖
1/2−ε
H1/2(Γ)h

1/2+ε‖µH‖
1/2+ε

H1/2(Γ))

≤ Ch1/2‖µH‖L2(Γ) + Ch1/2+ε‖µH‖H1/2(Γ),

≤ Ch1/2‖µH‖L2(Γ) + Ch1/2‖µH‖H1/2−ε (Γ), (5.147)

which concludes the proof of (5.137).
To prove (5.138), we note first that∫

Ω1×Ω2

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy =

∫
(Ω1×Ω2)∩{|x−y|>h}

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy

+

∫
(Ω1×Ω2)∩{|x−y|≤h}

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy

and we aim to prove ∫
(Ω1×Ω2)∩{|x−y|>h}

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy ≤ Ch‖µH‖
2
H1/2−ε (Γ), (5.148)∫

(Ω1×Ω2)∩{|x−y|≤h}

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy ≤ Ch‖µH‖
2
H1/2−ε (Γ). (5.149)

To prove (5.148), we note that∫
(Ω1×Ω2)∩{|x−y|>h}

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy ≤ 2
∫

(Ω1×Ω2)∩{|x−y|>h}

|∇χ(x)|2 + |∇χ(y)|2

|x − y|3−2ε dxdy

Set

Q : Ω1 −→ [0,+∞), Q(x) :=
∫

Ω2∩{|x−y|>h}

|∇χ(y)|2

|x − y|3−2ε dy,

and note

Q(x) =

∫
R2

|1Ω2(y)∇χ(y)|21{|x−y|>h}(y)
|x − y|3−2ε dy = |1Ω2∇χ|

2 ∗ 1{|·|>h}| · |
−(3−2ε),

‖Q‖L1(Ω1) =

∫
Ω1×Ω2

|∇χ(y)|2

|x − y|3−2ε dxdy,
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where | · | denotes the Euclidean norm function of R2, hence

‖Q‖L1(Ω1) ≤ ‖|1Ω2∇χ|
2‖L1(R2)‖| · |

−(3−2ε)‖L1(R2\B(0,h)).

Clearly

‖|1Ω2∇χ|
2‖L1(R2) =

∫
Ω2

|∇χ(y)|2dy = ‖∇χ‖2L2(Ω2),

and
‖| · |−(3−2ε)‖L1(R2\B(0,h)) = 2π

∫ +∞

h
ρ−2+2εdρ =

2πh−1+2ε

1 − 2ε
.

Thus since WH is strongly regular and h << H,

‖Q(x)‖L1(Ω1) ≤ ‖∇χ‖
2
L2(Ω2)

2πh−1+2ε

1 − 2ε
≤ 2π(1 − 2ε)−1h1+2ε‖µH‖

2
H1/2(Γ)

≤ Ch1+2εH−2ε‖µH‖
2
H1/2−ε (Γ) ≤ Ch‖µH‖

2
H1/2−ε (Γ),

which proves (5.148). We now proceed to prove (5.149): Denote by

Ωk(r) := {x ∈ Ωk : dist(x,Γ) ≤ r}, k = 1, 2

and note that
{(x, y) ∈ Ω1 ×Ω2 : |x − y| ≤ h} ⊆ Ω1(h) ×Ω2(h).

With the assumption that µH ∈ H1−ε(Γ), we have,

‖∇χ‖2L2(Ω) ≤ h
∫

Γ

[µH j − | j|2]dH1
xΓ ≤ h‖µH‖H1−ε (Γ)‖ j‖Hε−1(Γ) − h‖ j‖2L2(Γ)

= h‖µH‖H1−ε (Γ)

‖ j‖2L2(Γ)

‖ j‖H1−ε (Γ)
− h‖ j‖2L2(Γ)

=⇒ ‖ j‖H1−ε (Γ) ≤ ‖µH‖H1−ε (Γ).

As
|∇χ(x) − ∇χ(y)|2 ≤ C(|∇χ(x) − ∇χ(xΓ)|2 + |∇χ(xΓ) − ∇χ(yΓ)|2 + |∇χ(y) − ∇χ(yΓ)|2),
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where xΓ is the projection of x on Γ. Thus∫
(Ω1×Ω2)∩{|x−y|≤h}

|∇χ(x) − ∇χ(y)|2

|x − y|3−2ε dxdy

=

∫
(Ω1×Ω2)∩{|x−y|≤h}

|∇χ(x) − ∇χ(xΓ)|2

|x − y|3−2ε dxdy

+

∫
(Ω1×Ω2)∩{|x−y|≤h}

|∇χ(xΓ) − ∇χ(yΓ)|2

|x − y|3−2ε dxdy

+

∫
(Ω1×Ω2)∩{|x−y|≤h}

|∇χ(yΓ) − ∇χ(y)|2

|x − y|3−2ε dxdy

Clearly |x − y| ≥ |x − xΓ|, and by [94, Theorem 4.12], for fractional regularity results for solutions
of elliptic equations), we have Hölder regularity of ∇2χ:

‖∇2χ‖C0,1/2−ε (Ωk) ≤ ‖h(µH − j)‖H1−ε (Γ) + ‖ j‖H1−ε (Γ) k = 1, 2

≤ C‖χ‖H3/2−ε (Ωk) + ‖µH‖H1−ε (Γ)

≤ C‖µH‖H1/2−ε (Γ)

√
h + ‖µH‖H1−ε (Γ) ≤ C‖µH‖H1−ε (Γ).

Since Ω has finite diameter, sup |∇2χ| ≤ C‖∇2χ‖C0,1/2−ε (Ωk) ≤ C‖µH‖H1−ε (Γ)

sup
Ωk

|∇2χ| ≤ C‖∇2χ‖C0,1/2−ε (Ωk) ≤ C‖µH‖H1−ε (Γ)

=⇒ |∇χ(x) − ∇χ(xΓ)|2 ≤ C‖∇2χ‖2C0,1/2−ε (Ωk)h
2 ≤ C‖µH‖

2
H1−ε (Γ)h

2.

Thus with the fact the WH is strongly regular and ry := dist(y,Γ),∫
Ω2(h)

∫
B(y,h)

|∇χ(x) − ∇χ(xΓ)|2

|x − y|3−2ε dxdy ≤ Ch2‖µH‖
2
H1−ε (Γ)

∫
Ω2(h)

∫ h

ry

ρ−2+2εdρdy

≤ Ch2‖µH‖
2
H1−ε (Γ)

∫ h

0
r−1+2ε

y dyT ≤ Ch2+2ε‖µH‖
2
H1−ε (Γ)

≤ C
h2+2ε

H
‖µH‖

2
H1/2−ε (Γ) ≤ Ch1+2ε‖µH‖

2
H1/2−ε (Γ).

Thus the integrals∫
(Ω1×Ω2)∩{|x−y|≤h}

|∇χ(x) − ∇χ(xΓ)|2

|x − y|3−2ε dxdy,
∫

(Ω1×Ω2)∩{|x−y|≤h}

|∇χ(yΓ) − ∇χ(y)|2

|x − y|3−2ε dxdy
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are bounded by Ch‖µH‖
2
H1/2−ε (Γ). The last remaining term to estimate is

∫
(Ω1×Ω2)∩{|x−y|≤h}

|∇χ(xΓ) − ∇χ(yΓ)|2

|x − y|3−2ε dxdy.

Since h � 1, the projection of any point in Ωk(h) (k = 1, 2) on Γ is uniquely determined. Thus
we can introduce a set of coordinate as follows: given x ∈ Ω1(h), x is uniquely determined by its
projection xΓ, and by x‖ := |x − xΓ|. Similarly for y ∈ Ω2(h). Thus∫

(Ω1×Ω2)∩{|x−y|≤h}

|∇χ(xΓ) − ∇χ(yΓ)|2

|x − y|3−2ε dxdy ≤
∫

Ω1(h)×Ω2(h)

|∇χ(xΓ) − ∇χ(yΓ)|2

|x − y|3−2ε dxdy

=

∫ h

0

∫ h

0

∫
Γ×Γ

|∇χ(xΓ) − ∇χ(yΓ)|2

|x − y|3−2ε dxΓdyΓdx‖dy‖

= h2
∫

Γ×Γ

| j(xΓ) − j(yΓ)|2

|x − y|3−2ε dxΓdyΓ

= h2‖ j‖2H1−ε (Γ) ≤ C‖µH‖
2
H1/2−ε (Γ)h.

Thus (5.149) is proven. Summing together (5.137), (5.138), (5.148) and (5.149) we obtain

‖χ‖H3/2−ε (Ω) ≤ C‖µH‖H1/2−ε (Γ)

√
h (5.150)

which concludes the proof in the case µH ∈ H1/2(Γ).
When µH < H1−ε(Γ), since µH is a piecewise constant function we have µH < H1/2−ε(Γ) for all

ε > 0. Then we can approximate µH with a sequence of smoother functions µ(n)
H ⊆ H1−ε(Γ) such

that µ(n)
H → µH in H1/2−ε(Γ). Repeating the above arguments for µ(n)

H , denoting by χ(n) the solution
of

−∇ · (c(∇(χ(n)))) = 0, in Ω\Γ, (5.151)

χ(n)
1 = χ(n)

2 = 0, on ∂Ω, (5.152)

χ(n)
1 = χ(n)

2 = χ(n), on Γ, (5.153)

∇(χ(n)
1 − χ

(n)
2 ) · n1 + βχ(n) = µ(n)

H , on Γ, (5.154)

inequality (5.150) gives

‖χ(n)‖H3/2−ε (Ω) ≤ C′h1/2‖µ(n)
H ‖H1/2−ε (Γ),

where the right-hand side quantities is uniformly bounded from above as n → +∞. Thus the
sequence χ(n) is uniformly bounded in H3/2−ε(Ω), hence upon extracting a subsequence (which we
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do not relabel) χ(n) → χ in H3/2−ε(Ω), with χ being the solution of (5.122). Thus by the lower-
semicontinuity of the norm ‖ · ‖H3/2−ε (Ω) we infer

‖χ‖H3/2−ε (Ω) ≤ lim inf
n→+∞

C′h1/2‖µ(n)
H ‖H1/2−ε (Γ) = C′h1/2‖µH‖H1/2−ε (Γ),

concluding the proof for 2D case. The 3D case can be similarly proved with the above procedure,
except that the Gagliardo semi-norm should be modified as

[∇χ]2
H1/2−ε (Ω) :=

∫
Ω×Ω

|∇χ(x) − ∇χ(y)|2

|x − y|4−2ε dxdy.

We have then finished the proof. �

With β =
l
h

= O(1/h), we now prove the continuity property and the inf-sup condition of
A(·, ·; ·, ·) as follows:

Lemma 5.15. For all (v, µ) ∈ X×M, (wh, δλH) ∈ Xh×WH,A(v, µ; wh, δλH) satisfies the continuous

property:

A(v, µ; wh, δλH) ≤ C
(
||∇v||L2(Ω) + ||v||1/2,h + ||µ||L2(Γ)

)
|||(wh, δλH)|||p. (5.155)

Proof: From the definition ofA we have

A(v, µ; wh, δλH)

=a(v,wh) + 〈µ,wh〉 − 〈v, δλH〉 + β 〈v,wh〉

≤C
(
||∇v||L2(Ω)||∇wh||L2(Ω) + ||wh||L2(Γ)||µ||L2(Γ) + ||v||1/2,h||δλH ||−1/2,h

+||v||1/2,h||wh||1/2,h
)

≤C
(
||∇v||L2(Ω)||∇wh||L2(Ω) + ||∇wh||L2(Ω)||µ||L2(Γ) + ||v||1/2,h||δλH ||−1/2,h

+||v||1/2,h||wh||1/2,h
)

≤C
(
||∇v||L2(Ω) + ||v||1/2,h + ||µ||L2(Γ)

)
|||(wh, δλH)|||p . (5.156)

We have then finished the proof. �

Lemma 5.16. Let (vh, µH) ∈ Xh ×WH. When h/H is small enough, the following inf-sup property

holds:

sup
|||(wh,δλH)|||p=1

A(vh, µH; wh, δλH) ≥ C|||(vh, µH)|||p . (5.157)

Proof: For a given µH, denote by y the solution of the Robin problem for the differential
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equation

−∇ · (c(∇(y))) = 0, in Ω\Γ , (5.158a)

y = 0, on ∂Ω , (5.158b)

c(∇y1) · n1 + c(∇y2) · n2 + βy = µH, on Γ . (5.158c)

Then
a(vh, y) = 〈vh, µH〉 − β 〈vh, y〉 , (5.159)

and from Lemma 5.2.1, the following bound holds for y:

||µH ||
2
−1/2,h ≤ C〈µH, P(y)〉 . (5.160)

One can then obtain the bound forA(vh, µH; uh + y, 2µH):

A(vh, µH; vh + y, 2µH) =a(vh, vh) + a(vh, y) + 〈µH, P(vh)〉 + 〈µH, P(y)〉 − 〈P(vh), 2µH〉

+ β 〈vh, vh〉 + β 〈vh, y〉

=a(vh, vh) + 〈vh, µH〉 + 〈µH, P(vh)〉 + 〈µH, P(y)〉 − 〈P(vh), 2µH〉

+ β 〈vh, vh〉

=a(vh, vh) + 〈µH, P(y)〉 + β 〈vh, vh〉

≥a(vh, vh) + C∗||µH ||
2
−1/2,h + β 〈vh, vh〉 . (5.161)

where the constant C∗ is associated with the inequality (5.160). Taking yh = Ih(y) , the following
estimate holds

||yh − y||H1(Ω) ≤ Ch1/2−ε ||y||H3/2−ε (Ω) ≤ h1−ε ||µH ||H1/2−ε (Γ) ≤ C
h1−ε

H1/2−ε ||µH ||L2(Γ) ≤ C
(

h
H

)1/2−ε

||µH ||−1/2,h,

||yh − y||L2(Γ) ≤ Ch1−ε ||y||H3/2−ε (Ω) ≤ C
√

h
(

h
H

)1/2−ε

||µH ||−1/2,h.

When wh = vh + yh, δλH = 2µH, we have

A(vh, µH; uh + yh, 2µH) =A(vh, µH; uh + y, 2µH) + a(vh, yh − y) + 〈µH, P(yh − y)〉

+ β 〈vh, yh − y〉

≥κ||∇vh||
2
L2(Ω) + C∗||µH ||

2
−1/2,h + β 〈vh, vh〉 + a(vh, yh − y)

+ 〈µH, P(yh − y)〉 + β 〈vh, yh − y〉 . (5.162)
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We then bound the last three terms on the right hand side. Firstly

a(vh, yh − y) ≥ −
κ

2
||∇vh||L2(Ω) −C||∇(yh − y)||2L2(Ω)

≥ −
κ

2
||∇vh||L2(Ω) −C

(
h
H

)1−2ε

||µH ||
2
−1/2,h . (5.163)

For the second term one can obtain

〈µH, P(yh − y)〉 ≥ −
1
2

C∗||µH ||
2
−1/2,h −C||yh − y||21/2,h

≥ −
1
2

C∗||µH ||
2
−1/2,h −C

(
h
H

)1−2ε

||µH ||
2
−1/2,h . (5.164)

For the last term

β 〈vh, yh − y〉 ≥ −
l

2h
||vh||

2
L2(Γ) −

C
h
||yh − y||2L2(Γ)

≥ −
l
2
||vh||

2
1/2,h −C

(
h
H

)1−2ε

||µH ||
2
−1/2,h . (5.165)

Substituting the above three estimates into (5.162) yields

A(vh, µH; uh + yh, 2µH)

≥κ||∇vh||
2
L2(Ω) + C∗||µH ||

2
−1/2,h + β 〈vh, vh〉 + a(vh, yh − y)

+ 〈µH, P(yh − y)〉 + β 〈vh, yh − y〉

≥κ||∇vh||
2
L2(Ω) + C∗||µH ||

2
−1/2,h + β 〈vh, vh〉 −

κ

2
||∇vh||

2
L2(Ω) −C

(
h
H

)1−2ε

||µH ||
2
−1/2,h

−
1
2

C∗||µH ||
2
−1/2,h −C

(
h
H

)1−2ε

||µH ||
2
−1/2,h −

l
2
||vh||

2
1/2,h −C

(
h
H

)1−2ε

||µH ||
2
−1/2,h

≥κ||∇vh||
2
L2(Ω) +

C∗

2
||µH ||

2
−1/2,h + l||vh||

2
1/2,h −

κ

2
||∇vh||

2
L2(Ω) −C

(
h
H

)1−2ε

||µH ||
2
−1/2,h

−
l
2
||vh||

2
1/2,h

=C
||∇vh||

2
L2(Ω) +

C∗ −C1

(
h
H

)1−2ε ||µH ||
2
−1/2,h + ||vh||

2
1/2,h

 . (5.166)

On the other hand, since
||∇y||2L2(Ω) ≤ C||µH ||

2
−1/2,h

||y||21/2,h =
1
l
(−a(y, y) + 〈y, µH〉) ≤ C 〈y, µH〉 ≤ C||µH ||

2
−1/2,h
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||∇(y − yh)||2L2(Ω) ≤ C||y||2H1(Ω) ≤ C||∇y||2L2(Ω) ≤ C||µH ||
2
−1/2,h ,

and
||y − yh||

2
1/2,h =

1
h
||y − yh||

2
L2(Γ) ≤ C||y||2H1(Ω) ≤ C||∇y||2L2(Ω) ≤ C||µH ||

2
−1/2,h ,

we have the following estimate

||∇wh||
2
L2(Ω) + ||δλH ||

2
−1/2,h + ||wh||

2
1/2,h

=||∇vh + ∇yh||
2
L2(Ω) + ||2µH ||

2
−1/2,h + ||vh + yh||

2
1/2,h

≤C
(
||∇vh||

2
L2(Ω) + ||∇y||2L2(Ω) + ||∇(y − yh)||2L2(Ω) + ||µH ||

2
−1/2,h + ||vh||

2
1/2,h

+||y − yh||
2
1/2,h + ||y||21/2,h

)
≤C

(
||∇vh||

2
L2(Ω) + ||µH ||

2
−1/2,h + ||vh||

2
1/2,h

)
. (5.167)

Therefore, we have
A(vh, µH; wh, δλH) ≥ C|||(vh, µH)|||p|||(wh, δλH)|||p. (5.168)

and we have finished the proof. �

With the above lemmas, we can prove the error estimates in the following theorem

Theorem 5.17. Let (u, λ) ∈ X × M be the solution of (5.117) and (ũh, λ̃H) ∈ Xh × WH be the

solutions of (5.113). Then for r = O(1) and β =
l
h

, when h/H is small, the following estimates

hold true:

|||(u − ũh, λ − λ̃H)|||p ≤ C
(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
, (5.169)

||u − ũh||L2(Ω) ≤ C(h1/2−ε + H1−ε)
(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
. (5.170)

Proof: Similarly, as in the proof for the original DAL method, from the triangle inequality we
first obtain

|||(u − ũh, λ − λ̃H)|||p ≤ |||(u − Ihu, λ − ΠHλ)|||p + |||(Ihu − ũh,ΠHλ − λ̃H)|||p . (5.171)

For the first term, given h � 1, we have

|||(u − Ihu, λ − ΠHλ)|||2p = ||∇(u − Ihu)||2L2(Ω) + ||λ − ΠHλ||
2
−1/2,h + ||u − Ihu||21/2,h

≤ ||u − Ihu||2H1(Ω) + h||λ − ΠHλ||
2
L2(Γ) +

1
h
||u − Ihu||2L2(Γ)

≤ Ch1−2ε ||u||2H3/2−ε (Ω) + ChH1−2ε ||λ||2H1/2−ε (Γ)

≤ Ch1−2ε ||u||2H3/2−ε (Ω) . (5.172)
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For the second term, the proof of Lemma 5.16 shows that there exists (wh, δλH) ∈ Xh × WH such
that |||(wh, δλH)|||p = 1 and

|||(Ihu − ũh,ΠHλ − λ̃H)|||p

≤CA(Ihu − ũh,ΠHλ − λ̃H; wh, δλH)

=C
(
A(u − ũh, λ − λ̃H; wh, δλH) −A(u − Ihu, λ − ΠHλ; wh, δλH)

)
. (5.173)

From the alternative definition given in (5.120), the first term of (5.173) should be equal to 0. The
estimate for the second part of (5.173) can be derived from Lemma 5.15:

A(u − Ihu, λ − ΠHλ; wh, δλH)

≤C
(
||∇(u − Ihu)||L2(Ω) + ||λ − ΠHλ||L2(Γ) + ||u − Ihu||1/2,h

)
|||(wh, δλH)|||p

=C
(
||∇(u − Ihu)||L2(Ω) + ||λ − ΠHλ||L2(Γ) + ||u − Ihu||1/2,h

)
. (5.174)

(5.173) and (5.174) yield

|||(Ihu − ũh,ΠHλ − λ̃H)|||p

≤C
(
||∇(u − Ihu)||L2(Ω) + ||λ − ΠHλ||L2(Γ) + ||u − Ihu||1/2,h

)
≤C

(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
, (5.175)

which finishes the estimate for the H1 error. To estimate the L2 error, we apply an Aubin–Nitsche
duality argument similar to that used for the original DAL method, by introducing the dual problem
of finding (φ, θ) such that

−∇ · (c(∇(φ))) = u − ũh, in Ω\Γ, (5.176a)

φ = 0, on ∂Ω, (5.176b)

φ = 0, on Γ, (5.176c)

θ = c(∇φ1) · n1 + c(∇φ2) · n2, on Γ . (5.176d)

From Lemma 5.6, the following bound holds for φ:

||φ||2H3/2−ε (Ω) + ||θ||2H1/2−ε (Γ) ≤ C||u − ũh||
2
L2(Ω) . (5.177)

Taking an inner product of (5.176a) and u − ũh gives

||u − ũh||
2
L2(Ω) = a(φ − Ihφ, u − ũh) + a(Ihφ, u − ũh) − 〈θ, u − ũh〉 . (5.178)
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We can estimate the above three terms separately. Firstly,

a(φ − Ihφ, u − ũh) ≤ C||∇(φ − Ihφ)||L2(Ω)||∇(u − ũh)||L2(Ω)

≤ C||φ − Ihφ||H1(Ω)||∇(u − ũh)||L2(Ω)

≤ Ch1/2−ε ||φ||H3/2−ε (Ω)

(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
≤ Ch1/2−ε ||u − ûh||L2(Ω)

(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
. (5.179)

Secondly, from (5.120) and the fact that φ = 0 on Γ, one can obtain

a(Ihφ, u − ũh) = −
〈
λ − λ̃H, Ihφ

〉
− β 〈Ihφ, u − ũh〉

=
〈
λ − λ̃H, φ − Ihφ

〉
+ β 〈φ − Ihφ, u − ũh〉

≤
C

h1/2 ||λ − λ̃H ||−1/2,h||φ − Ihφ||L2(Γ) +
C

h1/2 ||u − ũh||1/2,h||φ − Ihφ||L2(Γ)

≤ Ch−1/2
(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
||φ − Ihφ||L2(Γ)

≤ Ch1/2−ε
(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
||φ||H3/2−ε (Ω)

≤ Ch1/2−ε ||u − ũh||L2(Ω)

(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
. (5.180)

For the last term in (5.178), from the fact that 〈ΠHθ, u − ũh〉 = 0, we divide it into two parts:

〈θ, u − ũh〉 = 〈θ − ΠHθ, u − ũh〉 + 〈ΠHθ, u − ũh〉

= 〈θ − ΠHθ, u − ũh〉

≤ C||θ − ΠHθ||H−1/2(Γ)||u − ũh||H1/2(Γ)

≤ C||θ − ΠHθ||H−1/2(Γ)||u − ũh||H1(Ω)

≤ CH1−ε ||θ||H1/2−ε (Γ)

(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
≤ CH1−ε ||u − ũh||L2(Ω)

(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
. (5.181)

Combining (5.178)–(5.181), one can get

||u − ũh||L2(Ω) ≤ C(h1/2−ε + H1−ε)
(
h1/2−ε ||u||H3/2−ε (Ω) + H1/2−ε ||λ||H1/2−ε (Γ)

)
.

We have then finished the error estimate of the projection-based DAL method on the static
problem. �

5.2.2. Fully discrete: Parabolic interface problem

Based on the analysis for the static problem in Section 5.2.1, we will have the following lemma
for the projection-based DAL method:
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Lemma 5.18. For given u and λ, we have the following estimates for their mixed elliptic projection

(ũh, λ̃H) defined in (5.120):

|||(u − ũh, λ − λ̃H)|||2p ≤ C
(
h1−2ε ||u||2H3/2−ε (Ω) + H1−2ε ||λ||2H1/2−ε (Γ)

)
, (5.182)

||u − ũh||
2
L2(Ω) ≤ C(h1−2ε + H2−2ε)

(
h1−2ε ||u||2H3/2−ε (Ω) + H1−2ε ||λ||2H1/2−ε (Γ)

)
, (5.183)∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣
(
∂u
∂t
−
∂ũh

∂t
,
∂λ

∂t
−
∂λ̃H

∂t

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣2
p

≤ C
(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
, (5.184)

∣∣∣∣∣∣∣∣∣∣∂u
∂t
−
∂ũh

∂t

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)
≤ C(h1−2ε + H2−2ε)

(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
. (5.185)

Let ∆t be the time step size and T = N∆t. We employ the backward Euler method for time
integration, and obtain the following fully discrete scheme for the projection-based DAL method
at the (n + 1)-th time step: Given (un

h, λ
n
H), find (un+1

h , λn+1
H ) ∈ Xh ×WH such that(

∂tun+1
h ,wh

)
− ∆t

〈
∂tλ

n+1
H ,wh

〉
+ a(un+1

h ,wh) +
〈
λn+1

H ,wh

〉
+ β

〈
un+1

h ,wh

〉
=

(
f (tn+1),wh

)
+ β

〈
g(tn+1),wh

〉
, ∀wh ∈ Xh , (5.186a)

∆t
〈
∂tλ

n+1
H , δλH

〉
= β

〈
un+1

h − g(tn+1), δλH

〉
, ∀δλH ∈ WH , (5.186b)

u0
h = Ihu0 , (5.186c)

λ0
H = 0 . (5.186d)

The above fully-discrete method can be written in an equivalent form: Find (un+1
h , λn+1

H ) ∈ Xh ×WH

such that ∀wh ∈ Xh, δλH ∈ WH,

(
∂tun+1

h ,wh

)
− ∆t

〈
∂tλ

n+1
H ,wh

〉
+

∆t
β

〈
∂tλ

n+1
H , δλH

〉
+A(un+1

h , λn+1
H ; wh, δλH) = F (wh, δλH). (5.187)

To prove the error estimate for the above fully-discrete method, we first introduce a lemma for the
inf-sup condition.

Lemma 5.19. When h/H is small enough, there exists a constant C such that for any given function

µH ∈ WH, the following inf-sup condition holds true:

sup
wh∈Xh

〈wh, µH〉

||wh||H1(Ω) + ||wh||−1/2,h
≥ C||µH ||−1/2,h . (5.188)

Proof: Set vh = 0 in (5.157). The supremum is clearly attained for δλH = 0, producing (5.188).
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�

Theorem 5.20. Let (u, λ) ∈ X × M be the solution of (4.1) and (un+1
h , λn+1

H ) ∈ Xh × WH be the

solutions of (5.186), then when the fixed element ratio h/H is small enough and β =
l
h

, the

following error estimates for the projection-based DAL method hold true:∣∣∣∣∣∣∣∣∣(u(tn+1) − un+1
h , λ(tn+1) − λn+1

H )
∣∣∣∣∣∣∣∣∣2

p

≤C
(
h1−2ε + H2−2ε

∆t
+ 1

) (
h1−2ε ||u0||

2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ)

+

∫ tn+1

0
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 (5.189)

and ∥∥∥u(tn+1) − un+1
h

∥∥∥2

L2(Ω)

≤C
(
h1−2ε + H2−2ε + ∆t

) (
h1−2ε ||u0||

2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ)

+

∫ tn+1

0
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 . (5.190)

Proof: With the mixed elliptic projection (ũh(tn+1), λ̃H(tn+1)) for u(tn+1) and λ(tn+1), set

u(tn+1) − un+1
h = (u(tn+1) − ũh(tn+1)) + (ũh(tn+1) − un+1

h ) = ϕn+1 + θn+1 , (5.191)

λ(tn+1) − λn+1
H = (λ(tn+1) − λ̃H(tn+1)) + (λ̃H(tn+1) − λn+1

H ) = ωn+1 + ξn+1 . (5.192)

The estimates of ϕn+1 and ωn+1 are know from Lemma 5.18:∣∣∣∣∣∣∣∣∣(ϕn+1, ωn+1)
∣∣∣∣∣∣∣∣∣2

p
≤ C

(
h1−2ε ||u(tn+1)||2H3/2−ε (Ω) + H1−2ε ||λ(tn+1)||2H1/2−ε (Γ)

)
, (5.193)

||ϕn+1||2L2(Ω) ≤ C(h1−2ε + H2−2ε)
(
h1−2ε ||u(tn+1)||2H3/2−ε (Ω) + H1−2ε ||λ(tn+1)||2H1/2−ε (Γ)

)
. (5.194)

For θn+1, with the definition of elliptic projection (5.120) we have

a
(
u(tn+1) − ũh(tn+1),wh

)
+

〈
λ(tn+1) − λ̃H(tn+1),wh

〉
+ β

〈
u(tn+1) − ũh(tn+1),wh

〉
= 0 . (5.195)
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Taking w = wh in (5.104) and combining it with the above equation, one can obtain(
∂u
∂t

∣∣∣∣∣
tn+1

,wh

)
+ a

(
ũh(tn+1),wh

)
+

〈
λ̃H(tn+1),wh

〉
+ β

〈
ũh(tn+1),wh

〉
= ( f (tn+1),wh) + β

〈
g(tn+1),wh

〉
. (5.196)

Subtracting (5.186a) from the above equation yields(
∂u
∂t

∣∣∣∣∣
tn+1
− ∂tun+1

h ,wh

)
+ ∆t

〈
∂tλ

n+1
H ,wh

〉
+ a

(
ũh(tn+1) − un+1

h ,wh

)
+

〈
λ̃H(tn+1) − λn+1

H ,wh

〉
+ β

〈
ũh(tn+1) − un+1

h ,wh

〉
= 0 (5.197)

or, equivalently, (
∂tθ

n+1,wh

)
+ a(θn+1,wh) +

〈
ξn+1,wh

〉
+ β

〈
θn+1,wh

〉
= −

(
∂tϕ

n+1,wh

)
+

(
∂tu(tn+1) −

∂u
∂t

∣∣∣∣∣
tn+1

,wh

)
+ ∆t

〈
∂tξ

n+1,wh

〉
+ ∆t

〈
∂tω

n+1,wh

〉
− ∆t

〈
∂tλ(tn+1),wh

〉
. (5.198)

From the fact that θn+1 = 0 on ∂Ω and Poincaré’s inequality, one can obtain

||θn+1||2L2(Ω) ≤ CPo||∇θ
n+1||2L2(Ω) . (5.199)
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Combining it with lemma 5.19, there exists a vh ∈ Xh satisfying

||ξn+1||−1/2,h(||vh||H1(Ω) + ||vh||1/2,h) ≤ C
〈
ξn+1, vh

〉
=C

(
−

(
∂tθ

n+1, vh

)
− a(θn+1, vh) − β

〈
θn+1, vh

〉
+ ∆t

〈
∂tξ

n+1, vh

〉
+∆t

〈
∂tω

n+1, vh

〉
− ∆t

〈
∂tλ(tn+1), vh

〉
−

(
∂tϕ

n+1, vh

)
+

(
∂tu(tn+1) −

∂u
∂t

∣∣∣∣∣
tn+1

, vh

))
≤C

(
||∂tθ

n+1||L2(Ω)||vh||L2(Ω) + ||∇θn+1||L2(Ω)||∇vh||L2(Ω) + β||θn+1||L2(Γ)||vh||L2(Γ)

+ ∆t||∂tξ
n+1||L2(Γ)||vh||L2(Γ) + ∆t||∂tω

n+1||L2(Γ)||vh||L2(Γ) + ∆t||∂tλ(tn+1)||L2(Γ)||vh||L2(Γ)

+||∂tϕ
n+1||L2(Ω)||vh||L2(Ω) +

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣
L2(Ω)
||vh||L2(Ω)

)
≤C

(
||∂tθ

n+1||L2(Ω)||vh||H1(Ω) + ||∇θn+1||L2(Ω)||vh||H1(Ω) +
√
β||θn+1||L2(Γ)||vh||1/2,h

+ ∆t
√

h||∂tξ
n+1||L2(Γ)||vh||1/2,h + ∆t

√
h||∂tω

n+1||L2(Γ)||vh||1/2,h

+ ∆t
√

h||∂tλ(tn+1)||L2(Γ)||vh||1/2,h + ||∂tϕ
n+1||L2(Ω)||vh||H1(Ω)

+

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣
L2(Ω)
||vh||H1(Ω)

)
≤ C(||vh||H1(Ω) + ||vh||1/2,h)

||∂tθ
n+1||L2(Ω) + ||∇θn+1||L2(Ω) +

√
1
h
||θn+1||L2(Γ)

+∆t
√

h||∂tξ
n+1||L2(Γ) + ∆t

√
h||∂tω

n+1||L2(Γ) + ∆t
√

h||∂tλ(tn+1)||L2(Γ)

+||∂tϕ
n+1||L2(Ω) +

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣
L2(Ω)

)
(5.200)

or, equivalently,

||ξn+1||2−1/2,h ≤ Cm

(
||∂tθ

n+1||2L2(Ω) + ||∇θn+1||2L2(Ω) + β||θn+1||2L2(Γ) + ∆t2h||∂tξ
n+1||2L2(Γ)

+∆t2h||∂tω
n+1||2L2(Γ) + ∆t2h||∂tλ(tn+1)||2L2(Γ) + ||∂tϕ

n+1||2L2(Ω)

+

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

)
. (5.201)

On the other hand, for ξn+1, take δλ = δλH in (5.104). Then, with the elliptic projection definition
(5.120), we have 〈

ũh(tn+1) − u(tn+1), δλH

〉
= 0 (5.202)

and therefore 〈
ũh(tn+1) − g(tn+1), δλH

〉
= 0 . (5.203)
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Subtracting (5.186b) from the above equation yields

∆t
〈
∂tλ

n+1
H , δλH

〉
+ β

〈
ũh(tn+1) − un+1

h , δλH

〉
= 0 (5.204)

or, equivalently,

〈
θn+1, δλH

〉
=

∆t
β

〈
∂tξ

n+1, δλH

〉
−

∆t
β

〈
∂tλ(tn+1), δλH

〉
+

∆t
β

〈
∂tω

n+1, δλH

〉
. (5.205)

Take wh = θn+1 and δλH = ξn+1, subtracting (5.205) from (5.198) yields

(
∂tθ

n+1, θn+1
)

+ a(θn+1, θn+1) +
∆t
β

〈
∂tξ

n+1, ξn+1
〉

+ β
〈
θn+1, θn+1

〉
= −

(
∂tϕ

n+1, θn+1
)

+

(
∂tu(tn+1) −

∂u
∂t

∣∣∣∣∣
tn+1

, θn+1
)

+ ∆t
〈
∂tξ

n+1, θn+1
〉

+ ∆t
〈
∂tω

n+1, θn+1
〉

− ∆t
〈
∂tλ(tn+1), θn+1

〉
−

∆t
β

〈
∂tω

n+1, ξn+1
〉

+
∆t
β

〈
∂tλ(tn+1), ξn+1

〉
. (5.206)

For the left hand side, we have

(
∂tθ

n+1, θn+1
)

+ a(θn+1, θn+1) +
∆t
β

〈
∂tξ

n+1, ξn+1
〉

+ β
〈
θn+1, θn+1

〉
≥

1
2∆t

(
||θn+1||2L2(Ω) − ||θ

n||2L2(Ω)

)
+

∆t
2
||∂tθ

n+1||2L2(Ω) + κ||∇θn+1||2L2(Ω)

+
1
2l

(
||ξn+1||2−1/2,h − ||ξ

n||2−1/2,h

)
+

∆t2

2l
||∂tξ

n+1||2−1/2,h + β||θn+1||2L2(Γ) . (5.207)

For the right hand side, when the mesh is strongly regular we can combine it with the inequality
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(5.201)

−
(
∂tϕ

n+1, θn+1
)

+

(
∂tu(tn+1) −

∂u
∂t

∣∣∣∣∣
tn+1

, θn+1
)

+ ∆t
〈
∂tξ

n+1, θn+1
〉

+ ∆t
〈
∂tω

n+1, θn+1
〉

− ∆t
〈
∂tλ(tn+1), θn+1

〉
−

∆t
β

〈
∂tω

n+1, ξn+1
〉

+
∆t
β

〈
∂tλ(tn+1), ξn+1

〉
≤

κ

2CPo
||θn+1||2L2(Ω) +

CPo

κ
||∂tϕ

n+1||2L2(Ω) +
CPo

κ

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

+
∆t2

3β

∣∣∣∣∣∣∣∣∂tξ
n+1

∣∣∣∣∣∣∣∣2
L2(Γ)

+
3β
4
||θn+1||2L2(Γ) +

∆t
2h
||θn+1||2L2(Γ) + h∆t||∂tω

n+1||2L2(Γ)

+ h∆t||∂tλ(tn+1)||2L2(Γ) +
∆th
4Cm
||ξn+1||2L2(Γ) +

2h∆tCm

l2 ||∂tω
n+1||2L2(Γ)

+
2h∆tCm

l2 ||∂tλ(tn+1)||2L2(Γ)

≤
κ

2CPo
||θn+1||2L2(Ω) +

CPo

κ
||∂tϕ

n+1||2L2(Ω) +
CPo

κ

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

+
∆t2

3l

∣∣∣∣∣∣∣∣∂tξ
n+1

∣∣∣∣∣∣∣∣2
−1/2,h

+
3l + 2∆t

4h
||θn+1||2L2(Γ) +

∆t
4Cm
||ξn+1||2−1/2,h

+
∆t(l2 + 2Cm)

l2 ||∂tω
n+1||2−1/2,h +

∆t(l2 + 2Cm)
l2 ||∂tλ(tn+1)||2−1/2,h

≤
κ

2
||∇θn+1||2L2(Ω) +

CPo

κ
||∂tϕ

n+1||2L2(Ω) +
CPo

κ

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

+
∆t2

3l

∣∣∣∣∣∣∣∣∂tξ
n+1

∣∣∣∣∣∣∣∣2
−1/2,h

+
3l + 2∆t

4h
||θn+1||2L2(Γ) +

∆t
4

(
||∂tθ

n+1||2L2(Ω)

+||∇θn+1||2L2(Ω) + β||θn+1||2L2(Γ) + ∆t2h||∂tξ
n+1||2L2(Γ) + ∆t2h||∂tω

n+1||2L2(Γ)

+∆t2h||∂tλ(tn+1)||2L2(Γ) + ||∂tϕ
n+1||2L2(Ω) +

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

)
+

∆t(l2 + 2Cm)
l2 ||∂tω

n+1||2−1/2,h +
∆t(l2 + 2Cm)

l2 ||∂tλ(tn+1)||2−1/2,h .
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When ∆t � 1, we have

−
(
∂tϕ

n+1, θn+1
)

+

(
∂tu(tn+1) −

∂u
∂t

∣∣∣∣∣
tn+1

, θn+1
)

+ ∆t
〈
∂tξ

n+1, θn+1
〉

+ ∆t
〈
∂tω

n+1, θn+1
〉
− ∆t

〈
∂tλ(tn+1), θn+1

〉
−

∆t
β

〈
∂tω

n+1, ξn+1
〉

+
∆t
β

〈
∂tλ(tn+1), ξn+1

〉
≤
κ

2
||∇θn+1||2L2(Ω) +

CPo

κ
||∂tϕ

n+1||2L2(Ω) +
CPo

κ

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

+
∆t2

3l

∣∣∣∣∣∣∣∣∂tξ
n+1

∣∣∣∣∣∣∣∣2
−1/2,h

+
3l
4h
||θn+1||2L2(Γ) +

∆t
4
||∂tθ

n+1||2L2(Ω)

+
∆t(l2 + 2Cm)

l2 ||∂tω
n+1||2−1/2,h +

∆t(l2 + 2Cm)
l2 ||∂tλ(tn+1)||2−1/2,h .

Putting the inequalities for the left hand side and the right hand side together, (5.206) yields

1
2∆t

(
||θn+1||2L2(Ω) − ||θ

n||2L2(Ω)

)
+

∆t
4
||∂tθ

n+1||2L2(Ω) +
κ

2
||∇θn+1||2L2(Ω)

+
1
2l

(
||ξn+1||2−1/2,h − ||ξ

n||2−1/2,h

)
+

∆t2

6l
||∂tξ

n+1||2−1/2,h +
l

4h
||θn+1||2L2(Γ)

≤
CPo

κ
||∂tϕ

n+1||2L2(Ω) +
CPo

κ

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

+
∆t(l2 + 2Cm)

l2 ||∂tω
n+1||2−1/2,h

+
∆t(l2 + 2Cm)

l2 ||∂tλ(tn+1)||2−1/2,h (5.208)

or, equivalently,

(
||θn+1||2L2(Ω) − ||θ

n||2L2(Ω)

)
+

∆t2

2
||∂tθ

n+1||2L2(Ω) + κ∆t||∇θn+1||2L2(Ω)

+
∆t
l

(
||ξn+1||2−1/2,h − ||ξ

n||2−1/2,h

)
+

∆t3

3l
||∂tξ

n+1||2−1/2,h +
∆tl
2h
||θn+1||2L2(Γ)

≤C
(
∆t||∂tϕ

n+1||2L2(Ω) + ∆t
∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −

∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

+ ∆t2||∂tω
n+1||2−1/2,h

+∆t2||∂tλ(tn+1)||2−1/2,h

)
. (5.209)
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The terms in the right hand side can be bounded as

||∂tϕ
n+1||2L2(Ω) =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
∆t

∫ tn+1

tn

∂ϕ

∂t
dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

L2(Ω)

≤
1
∆t

∫ tn+1

tn

∣∣∣∣∣∣∣∣∣∣∂ϕ∂t

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)

dt

≤
C(h1−2ε + H2−2ε)

∆t

∫ tn+1

tn

(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
dt . (5.210)

∣∣∣∣∣∣∣∣∣∣∂tu(tn+1) −
∂u
∂t

∣∣∣∣∣
tn+1

∣∣∣∣∣∣∣∣∣∣2
L2(Ω)
≤ ∆t

∫ tn+1

tn

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt . (5.211)

||∂tω
n+1||2−1/2,h = h

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
∆t

∫ tn+1

tn

∂ω

∂t
dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

L2(Γ)

≤
h
∆t

∫ tn+1

tn

∣∣∣∣∣∣∣∣∣∣∂ω∂t

∣∣∣∣∣∣∣∣∣∣2
L2(Γ)

dt

=
1
∆t

∫ tn+1

tn

∣∣∣∣∣∣∣∣∣∣∂ω∂t

∣∣∣∣∣∣∣∣∣∣2
−1/2,h

dt

≤
C
∆t

∫ tn+1

tn

(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
dt . (5.212)

||∂tλ(tn+1)||2−1/2,h ≤
Ch
∆t

∫ tn+1

tn

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

dt . (5.213)

Combining with h, H � 1, the above bounds lead to

(
||θn+1||2L2(Ω) − ||θ

n||2L2(Ω)

)
+

∆t2

2
||∂tθ

n+1||2L2(Ω) + κ∆t||∇θn+1||2L2(Ω)

+
∆t
l

(
||ξn+1||2−1/2,h − ||ξ

n||2−1/2,h

)
+

∆t3

3l
||∂tξ

n+1||2−1/2,h +
∆tl
2h
||θn+1||2L2(Γ)

≤C
∫ tn+1

tn

(
(h1−2ε + H2−2ε + ∆t)

(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ (h + H1−2ε)
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt

≤C
∫ tn+1

tn

(
(h1−2ε + H2−2ε + ∆t)

(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt . (5.214)
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Summing (5.214) up from the first step to the (n + 1)st step gives

||θn+1||2L2(Ω) +
∆t2

2

n∑
i=0

||∂tθ
i+1||2L2(Ω) + κ∆t

n∑
i=0

||∇θi+1||2L2(Ω) +
∆t
l
||ξn+1||2−1/2,h

+
∆t3

3l

n∑
i=0

||∂tξ
i+1||2−1/2,h +

∆tl
2

n∑
i=0

||θi+1||21/2,h

≤C
∫ tn+1

0

(
(h1−2ε + H2−2ε + ∆t)

(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt + ||θ0||2L2(Ω) +
∆t
l
||ξ0||2−1/2,h . (5.215)

While taking the initial values of u0
h and λ0

H as in (5.186), we have estimates for the initial errors
similar to (5.93)–(5.94) from the analysis of the original DAL method:

||θ0||2L2(Ω) = ||ũh(0) − Ihu0||
2
L2(Ω) ≤ 2||ũh(0) − u0||

2
L2(Ω) + 2||u0 − Ihu0||

2
L2(Ω)

≤ C(h1−2ε + H2−2ε)(h1−2ε ||u0||
2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ)), (5.216)

||ξ0||2−1/2,h = ||λ̃H(0)||2−1/2,h ≤ 2||λ̃H(0) − λ(0)||2−1/2,h + 2||λ(0)||2−1/2,h

≤ C(h1−2ε ||u0||
2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ)). (5.217)

Substituting the initial error estimates into (5.215) gives

||θn+1||2L2(Ω) +
∆t2

2

n∑
i=0

||∂tθ
i+1||2L2(Ω) + κ∆t

n∑
i=0

||∇θi+1||2L2(Ω) +
∆t
l
||ξn+1||2−1/2,h

+
∆t3

3l

n∑
i=0

||∂tξ
i+1||2−1/2,h +

∆tl
2

n∑
i=0

||θi+1||21/2,h

≤C
∫ tn+1

0

(h1−2ε + H2−2ε + ∆t)
(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+ ∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt

+ C(h1−2ε + H2−2ε + ∆t)(h1−2ε ||u0||
2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ)) , (5.218)
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which yields the estimate for θn+1 in the L2 norm

||θn+1||2L2(Ω) ≤ C
∫ tn+1

0

(
(h1−2ε + H2−2ε + ∆t)

(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt + C(h1−2ε + H2−2ε + ∆t)(h1−2ε ||u0||
2
H3/2−ε (Ω)

+ H1−2ε ||λ0||
2
H1/2−ε (Γ)) . (5.219)

Combining (5.219) with the estimate for ϕn+1, we obtain the error estimate in the L2 norm

||u(tn+1) − un+1
h ||

2
L2(Ω)

≤2(||ϕn+1||2L2(Ω) + ||θn+1||2L2(Ω))

≤C
(
(h1−2ε + H2−2ε)(h1−2ε ||u(tn+1)||2H3/2−ε (Ω) + H1−2ε ||λ(tn+1)||2H1/2−ε (Γ)) + (h1−2ε + H2−2ε

+∆t)(h1−2ε ||u0||
2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ)) +

∫ tn+1

0

(
(h1−2ε + H2−2ε + ∆t)

(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+ ∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt


≤C(h1−2ε + H2−2ε + ∆t)

h1−2ε ||u0||
2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ) +

∫ tn+1

0

(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt

 . (5.220)

On the other hand, from (5.218), we have also obtained

n∑
i=0

||∇θi+1||2L2(Ω) +

n∑
i=0

||θi+1||21/2,h + ||ξn+1||2−1/2,h

≤
C
∆t

∫ tn+1

0

(h1−2ε + H2−2ε + ∆t)
(
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

)
+ ∆t2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

 dt

+
C(h1−2ε + H2−2ε + ∆t)

∆t

(
h1−2ε ||u0||

2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ)

)
, (5.221)
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which yields

||∇θn+1||2L2(Ω) + ||θn+1||21/2,h + ||ξn+1||2−1/2,h

≤C
(
h1−2ε + H2−2ε

∆t
+ 1

) (
h1−2ε ||u0||

2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ)

+

∫ tn+1

0
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 . (5.222)

Together with the estimates for ϕn+1 and ωn+1, we have obtained the error estimate in the
|||(·, ·)|||p-norm:∣∣∣∣∣∣∣∣∣∣∣∣(u(tn+1) − un+1

h , λ(tn+1) − λn+1
H

)∣∣∣∣∣∣∣∣∣∣∣∣2
p

≤C
(
h1−2ε + H2−2ε

∆t
+ 1

) h1−2ε ||u0||
2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ) +

∫ tn+1

0
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 + C
(
h1−2ε ||u(tn+1)||2H3/2−ε (Ω) + H1−2ε ||λ(tn+1)||2H1/2−ε (Γ)

)
≤C

(
h1−2ε + H2−2ε

∆t
+ 1

) h1−2ε ||u0||
2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ) +

∫ tn+1

0
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∣∣∣∣∣∣∂2u
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∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 . (5.223)

We have finished the error estimate of the projection-based DAL method. �

Theorem 5.2.2 has indicated the following corollary:

Corollary 2. In the projection-based fully-discrete DAL method, the optimal time step size is ∆t =

O(h) = O(H), which yields the error estimates:

||∇(u(tn) − un
h)||2L2(Ω) +

1
h
||u(tn) − un

h||
2
L2(Γ) + h||λ(tn) − λn

h||
2
L2(Γ) ≤ Ch1−4ε , (5.224)

||u(tn) − un
h||

2
L2(Ω) ≤ Ch2−4ε . (5.225)

That is, in similar fashion to the original DAL method, with these settings we have h1/2−2ε order of

accuracy for the |||(·, ·)|||p-norm and h1−2ε order for u in the L2(Ω)-norm.

Remark 5.21. Given the problem regularity u ∈ H3/2−ε(Ω), the error estimates in both DAL meth-
ods are consistent with the error estimates in [22]. Therefore, although the original augmented
Lagrangian iteration was truncated in the DAL methods, the error estimates have shown that com-
paring with the algorithms in [22] where the Lagrange multiplier was updated exactly, such a

65



truncation in the iterations did not affect the convergence rates for u, due to the fact that the error
introduced by this truncation is actually of the same order with the error from the degraded solution
regularity.

6. Numerical results for model problems

The basic results of the error analysis for the original DAL method are already supported by
the numerical experiments of [35, Section 3.1.8]. When taking ∆t = O(h), half-order convergence
for the H1(Ω) error of u and first-order convergence for the L2(Ω) error of u were observed. For
the error of λ, we have observed no convergence of the L2(Γ) error. For further details, we refer the
interested reader to [35]. In this section, we test the results of the analysis for the projection-based
DAL method, then explore how robust the results are by applying them in situations outside the
scope of the linearized model problem analysis presented earlier. In section 6.1 and section 6.2,
two types of element spaces for the Lagrange multiplier are investigated. Moreover, in section 6.3
we demonstrate the kinematic conservation property of the projection-based DAL method, which
was the original motivation for developing this method. Lastly, in section 6.4 we investigate the
stability of the temporal over-refinement cases as discussed in Remark 5.11. To demonstrate the
robustness, in section 6.4 the original DAL method with r = 0 is employed, which represents the
case with the worst stability among the DAL methods.

6.1. Confirming estimates for the projection-based DAL method: foreground definition for WH

To test the conclusions of our error analysis for the projection-based DAL method, we construct
a particular linearized model problem. We set the space dimension to two and choose a(u, v) =

(∇u,∇v)L2(Ω). Ω is the square (−W/2,W/2)2 ⊂ R2, with W = 2.5, and Γ is the unit circle {x ∈
R2 : ‖x‖`2 = 1}. The time interval terminates at T = 0.1. The initial temperature distribution is

u0(x) = uBess(x) + usin(x) , (6.1)

where

uBess(x) =

 J0 (R‖x‖`2) ‖x‖`2 < 1
0 otherwise

(6.2)

and
usin(x) = sin

(
2πx1

W

)
sin

(
2πx2

W

)
, (6.3)

where R is the first root of the Bessel function J0. Given g = u|Γ and f = 0, this problem has a
time-dependent analytic solution as

u(x, t) = uBess(x)e−R2t + usin(x)e−
(

8π2t
W2

)
. (6.4)
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This solution exhibits discontinuous first derivatives of u at Γ and is smooth everywhere else, i.e.,
u ∈ H3/2−ε(Ω); this matches the spatial regularity that is shown to hold over a large class of problem
data in Section 4. The exact multiplier λ is constant in space and decaying in time, corresponding
to the jump in normal derivative of the Bessel function component of u.1

To define the space WH(Γ), in this section we divide Γ into elements of size ∼ H, as illustrated
in the left plot of Figure 2. In the following developments, we denote this type of definition for
WH as the “foreground” construction [36]. In contrast with the “foreground” construction in this
section, in the right plot of Figure 2 we illustrate another choice of Lagrange multiplier space
construction, i.e., the “background” construction. In the background construction, the Lagrange
multiplier is discretized in the trace on Γ of a space of degree-zero B-splines with every other
knot’s multiplicity set to zero along each direction (i.e. the space of constants on clusters of 2d

Bézier elements, see [36] for further details), and its numerical performance will be discussed in
the next section.

Γ
ΓE

Γ ΓE

Figure 2: Sketches illustrating foreground (left) and background (right) definitions of the boundary Lagrange multi-
plier. In each case, ΓE indicates a section of Γ that serves as an element domain in the multiplier mesh.

We now discretize the temperature field with a linear uniform B-spline space of 2M × 2M el-
ements, for M ∈ {3, . . . , 11}. The Lagrange multiplier is approximated with a piecewise constant
function on 2M−3 elements that evenly divide the arc length of Γ, i.e., λH is represented with a
single constant element in the computations with the coarsest 8 × 8 background mesh (M = 3),
and a constant ratio of H/h is maintained during refinement. Defining H = 2π/(2M−3), i.e., the arc
length of one element, H/h ≈ 20. If we take H to be the arc length of one of these elements and
let h = W/2M, then we have H ∼ h. We set β = 1/h. The discrete initial condition is set by nodal
interpolaton of u0. Integrals over Γ are evaluated using 32 × 2M evenly-spaced quadrature points.
The time step is proportional to h, viz. ∆t = T/2M. An illustrative snapshot of a numerical solution
is shown in Figure 3.

1Although the exact multiplier is trivial to represent with any reasonable discrete space, we expect the discrete
solution to be polluted by errors in u, as indicated by the bounds derived previously.
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Figure 3: Annotated snapshot of a numerical solution to the scalar parabolic test problem.

The convergence results of projection-based DAL method are illustrated in Figure 4. The left
plot of Figure 4 shows the convergence of the L2(Ω) and H1(Ω) norms of the error u(T ) − uN

h ,
suggesting convergence rates of 1/2 in H1(Ω) and 1 in L2(Ω) for both cases, as expected from the
analysis. The right plot of Figure 4 shows the convergence of the L2(Γ) norm of the multiplier error
λH − λ at time T . Although this error does not diverge, it is only bounded under refinement. This
observation is consistent with convergence at a rate of 1/2 in the weaker ‖ · ‖−1/2,h norm.
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Figure 4: Convergence of u and λ using the projection-based DAL, with respect to element size h and ∆t = O(h). Left:
L2(Ω) and H1(Ω) errors of u(T ). Right: L2(Γ) error of λ(T ).

The lack of convergence of the Lagrange multiplier in a strong norm is also clear from com-
paring plots of the Lagrange multiplier at various levels of refinement. The multiplier field λ(T ) is
shown at several refinement levels in Figure 5, as a function of the arc length along Γ. While there
is an obvious improvement from the coarsest discretizations to more refined ones, the magnitudes
of oscillations in the asymptotic regime do not decrease, as is consistent with the O(1) L2(Γ) error
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shown in the right plot of Figure 4.
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Figure 5: The Lagrange multiplier as a function of arc length along Γ, at various levels M of refinement.

6.2. Confirming estimates for the projection-based DAL method: background definition for WH

It would at first appear very intuitive to define the space WH(Γ) by dividing Γ into elements
of size ∼ H, as in the numerical experiments of Section 6.1. However, this use of a “foreground”
construction may lead to difficulties in practice. In the FSI case, one might immerse a structure into
a background mesh of the fluid domain that is refined in a highly non-uniform and/or anisotropic
way, to, e.g., capture boundary layers near a fitted boundary. A foreground construction of WH that
is appropriate for a structure immersed in one part of Ω may become inappropriate as the structure
moves to a less-refined region or changes its orientation relative to anisotropic refinement of the
background mesh. Puso et al. [95] previously compared foreground and background definitions
of Lagrange multiplier spaces for immersed discretizations and found that defining the Lagrange
multiplier using the background mesh was typically a more stable choice. In [36], we chose a
background-based definition of the Lagrange multiplier for isogeometric background discretiza-
tions, which will be investigated in this section.

We now test the convergence of the projection-based DAL method with this background mul-
tiplier space. Aside from changing the definition of WH, we repeat the experiment of Section 6.1.
The convergence of the error in temperature is shown in the left plot of Figure 6; we obtain the
same convergence rates as we did when using the foreground multiplier space. The O(1) L2(Γ)
error for the multiplier λ, shown in the right plot of Figure 6, is also consistent with the results of
Section 6.1.

The multiplier field in this case appears to have oscillations of larger amplitude, as shown in
Figure 7. The thin spikes in Figure 7 correspond to poorly cut elements of the background mesh.
If we define H = 2h, irrespective of how Γ cuts through elements, we are reducing the ratio H/h by
about a factor of 10 relative to the experiment of Section 6.1, so it is not surprising that we would
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Figure 6: Convergence results of u and λ while using a background-mesh-derived multiplier space in the projection-
based DAL method, with respect to element size h and ∆t = O(h). Left: convergence of of L2(Ω) and H1(Ω) errors of
u(T ). Right: convergence of the L2(Γ) error of λ(T ).

see larger oscillations, even without considering the issue of cut cells. While these oscillations
and spikes may look alarming, they do not appear to impede the convergence of the temperature
solution. Further, unlike multiplier oscillations in the r = 0 limit of the original DAL method, these
spurious features do not grow in an unbounded way under temporal refinement, or in the limit of
T → ∞.
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Figure 7: The Lagrange multiplier as a function of arc length along Γ, at various levels M of refinement, when using
the background mesh to define WH . Note that some of the functions plotted extend beyond the bounds on the vertical
axis.

6.3. Advantages of the projection-based DAL method

As elaborated in [36], the purpose of the projection-based DAL method is to ensure kinematic
conservation in the steady limit without needing to reduce the parameter r to an unstable value
near zero. We demonstrate this conservation property on the problem introduced in Section 6.1 by
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looking at the conservation error (cf. (3.21))

EΓ =

∫
Γ

(
uN

h − g(T )
)

dΓ (6.5)

in the limit of ∆t → 0 at fixed h. (The steady limit of T → ∞ for this problem is trivial.) We use
the M = 4 meshes of Ω and Γ defined in Section 6.1 and consider ∆t = T/2Mt , for Mt ∈ {3, . . . , 10}.
For computations using the original DAL method, we set r = 1.2,3 The resulting values of log |EΓ|

are plotted in Figure 8. It is clear that the projection-based DAL recovers kinematic conservation,
with the conservation error converging as O(∆t), while the conservation error from the original
DAL does not converge.
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Figure 8: Convergence of log |EΓ| as ∆t → 0 at fixed h.

6.4. Over-refinement in time

As mentioned in Remark 5.11, for the original DAL method, error estimates suggest a lower
bound for stability on the time step in terms of h as ∆t > O(h2−4ε). The possibility of error blowing
up under temporal refinement is a serious practical concern in nonlinear FSI simulations, as reduc-
ing ∆t on a fixed spatial discretization may be necessary to ensure stability or rapid convergence.
(See, e.g., the stability analysis in [35, Section 4] of the block iterative procedure used to resolve
the implicit step of the time integrator.) In this section, we explore the consequences of refining
too quickly in time, relative to the spatial discretization.

2Note that practical heart valve FSI computations in our previous work required r � 1, or r = 0. Small r allows
good kinematic convergence, but sacrifices stability. We do not recommend using r = 1 in practice, but we use it in
this section, to illustrate the drawback of considering “r = O(1)”, as needed for the convergence analysis.

3Concerns over taking ∆t → 0 at fixed h with the original DAL method should be allayed by the experiments of
Section 6.4.
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To exacerbate the potential small-time-step instability, we consider the original DAL method
with limiting case of r = 0 and run two experiments using the scalar parabolic model problem.
First, we refine in both space and time, with ∆t ∼ h2. Then, we refine in time while holding
h fixed. Based on the bound (5.68), we might expect to see H1(Ω) errors in temperature fail to
converge in the first case, and diverge in the second case. The particular problem we consider is
the same as that used in Section 6.1. We use (part of) the same sequence of spatial meshes for the
temperature field, and attempt to cast a spotlight on any possible unstable behavior of the multiplier
by setting β = 105/h.

The convergence of error in temperature at time T is shown for ∆t = T/(2M/4)2 in the left plot
of Figure 9. The temperature error when taking ∆t → 0 on the M = 4 spatial mesh is shown in the
right plot of Figure 9. We see from these results that the apparent small-time-step divergence of
the error bound (5.68) appears to be a false alarm, suggesting that either the predicted divergence
only occurs in select pathological cases, or the theoretical estimate is overly pessimistic.
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Figure 9: Convergence results of u with over-refinement in time, with the original DAL method and r = 0. Left:
Convergence of L2(Ω) and H1(Ω) errors in u(T ) when taking ∆t ∼ h2. Right: Convergence of L2(Ω) error in u(T )
when taking ∆t → 0 at fixed h. (For h fixed, all norms of uN

h are equivalent.)

7. A benchmark problem and numerical results for nonlinear FSI

In this section we test how well the model problem analysis extrapolates to the setting of
nonlinear FSI, on a benchmark 2D FSI problem with manufactured solution. Briefly, we first
derived a benchmark problem with analytic solution that exhibits the regularity expected in practice
and satisfies all kinematic constraints, then substituting it into the strong form of the governing
equations, to obtain a source term. This is complicated by several factors in the case of unsteady
fluid–thin structure interaction. First, the overall method presumes that the solution is stable, but
this cannot be assured in nonlinear problems, especially with thin structures (that may buckle) and
fluid flow (that may become turbulent). Second, the expected regularity of the fluid solution in
immersed FSI applications is less than that needed by the strong form of the governing equations.
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We address the first of these challenges by considering flow at low Reynolds numbers, to avoid
turbulence, and formulating the thin structure as a prestressed membrane. In particular, we select
the constitutive law of the structure in (2.8) to be∫ hth/2

−hth/2
DwE : S dξ =

∫ hth/2

−hth/2
Dwε : (n + npre) dξ , (7.1)

where ε is membrane strain [79, (3.34)], n is the membrane resultant force [79, (3.38)], and npre

is a prescribed membrane prestress (cf. [96, (5)], in the 3D solid setting). To resolve the second
difficulty, we construct the benchmark problem in the way that the distributional parts of the fluid
solution derivatives are always induced by fluid–structure coupling, rather than imposed in the
manufacturing process, through an artificial concentrated source term. To be specific, the bench-
mark 2D FSI problem is constructed through the following steps:

• In Section 7.1, define the shell structure displacement, and define a solenoidal fluid velocity
field with a discontinuous gradient at the deformed shell structure position. Then calculate
the body force f1 on the fluid from the strong form of the fluid equation.

• In Section 7.2, compute the jump in fluid traction, −λ, at the shell structure, due to the jump
in velocity gradient and an arbitrary pressure difference.

• In Section 7.3, prescribe −λ as a fixed traction on the structure, then solve for the remaining
body force, f2, based on the strong form of the shell equation.

Lastly, in Section 7.4 we test the convergence of the computational results from DAL methods in
the derived benchmark 2D FSI problem, with respect to the manufactured analytic solution.

7.1. Choosing structure displacement and velocity solutions

The fluid subproblem domain is Ω = (0, L)2 and the initial shell structure midsurface divides
Ω in half: Γ0 = {L/2} × (0, L). We parameterize this midsurface by ξ1 = X2, so that the conversion
between curvilinear and local Cartesian coordinates in the reference configuration [79, (3.41)] is
simple. We want to manufacture a shell structure displacement solution

y(X, t) = VtY(X2)e1 , (7.2)

where V > 0 is a constant and
Y(x) = x(L − x) = Lx − x2 . (7.3)

Note that the expression for y remains well-defined for X < Γ0, which will be useful in the con-
struction of the conforming fluid velocity field. A sketch of the problem is shown in the left plot
of Figure 10.

73



L

L
 ξ₁ 

 ξ₂ 

Γ₀

Γₜ

Figure 10: A sketch of the benchmark FSI problem settings. Left: The fluid domain with the deformed structure,
where arrows indicate the surrounding fluid velocity field. Right: Shell structure parameterization.

Remark 2. If bending is included in the shell structure, one can avoid issues with the time-
dependent boundary condition on the shell structure bending moment by replacing (7.3) with

Y(x) =
1
2

(
1 − cos

(
2πx
L

))
, (7.4)

or some other function for which Y ′(0) = Y ′(L) = 0.

The fluid velocity field must conform to the selected structure displacement. Further, to have
regularity representative of expected applications, we want the pressure and fluid velocity gradients
to be discontinuous at Γt. For x ∈ Ω with x1 < L/2 + VtY(x2) (i.e., x is to the left of Γt), we set

uleft(x, t) = VY(x2)e1 . (7.5)

On the other hand, for x to the right of Γt,

uright(x, t) = VY(x2)e1 + ushear(x, t) , (7.6)

with
ushear(x, t) = F

(
φ−1(x, t)

)
Ushear

(
φ−1(x), t

)
. (7.7)

Here Ushear(X, t) =
V
L

(X1 − L/2)e2 is a velocity field with uniform shear stress in the structure’s
reference configuration, φ(X, t) = X + y(X, t) is the volume preserving motion which extends the

shell structure’s midsurface motion to Ω, and F =
∂φ

∂X
is the deformation gradient of φ. Because

Ushear is solenoidal and ushear is its pushforward by φ using the Piola transform (with detF = 1),
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ushear is also solenoidal. Specifically

ushear(x, t) = F12 (Ushear)2 e1 + F22 (Ushear)2 e2

=
V(x1 − (VtY(x2) + L/2))

L
(
VtY ′(x2)e1 + e2

)
. (7.8)

To manufacture the fluid and structure solutions, we will need ∇u, ∆u, and ∂tu. Taking derivatives
of the solutions to the left and right sides of the (deformed) structure, we have, for the points x to
the left of Γt,

∇uleft =

 0 VY ′

0 0

 , ∆uleft =

 VY ′′

0

 , ∂tuleft = 0 (7.9)

and for the points x to the right of Γt

∇uright =

 V2t
L Y ′ VY ′ + V2t

L

(
x1Y ′′ − Vt (Y ′Y ′ + YY ′′) − L

2 Y ′′
)

V
L −V2t

L Y ′

 , (7.10)

∆uright =

 VY ′′ + V2t
L

(
x1Y ′′′ − Vt (3Y ′Y ′′ + YY ′′′) − L

2 Y ′′′
)

−V2t
L Y ′′

 , (7.11)

∂turight =
1
L

 V2x1Y ′ − 2V3tYY ′ − V2L
2 Y ′

−V2Y

 . (7.12)

We can then calculate the body force term for the whole fluid domain

ρ f f1 = ρ f (∂tu + u · ∇u) − µ∆u − ∇p , (7.13)

where ∇p is an arbitrary irrotational pressure gradient. For simplicity, we assume that ∇p = 0 to
the left and right of the structure, with a pressure jump P across the deformed structure Γt, i.e.,
pleft − pright = P.

7.2. Obtaining the traction jump on the structure

In this section we prescribe the fluid traction jump across the structure as a source term on the
structure. With the gradient ∇u computed above, we can write the viscous stress in the fluid as a
function of the shell structure midsurface parameter ξ1:

τ (ξ1, t) = µ
(
∇u (X(ξ1) + y(ξ1, t)) + (∇u (X(ξ1) + y(ξ1, t)))T

)
. (7.14)
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We now set the fluid-induced traction load on the structure subproblem as:

− λ =
(
τ rightns − τ

leftns

)
+ Pns , (7.15)

where P is the pressure jump, and ns is the unit vector normal to the deformed structure:

ns =
1√

1 + (VtY ′)2

 1
−VtY ′

 . (7.16)

7.3. Manufacturing the shell structure solution

We now manufacture a shell structure solution by determining the remaining prescribed forcing
needed to obtain the solution y = VtY(X2)e1 in the presence of the exact fluid subproblem solution.
To apply shell theory to a 1D structure, consider it to be extruded in the x3 direction, along which
all problem variables are constant, as illustrated in the right plot of Figure 10.

We need to first derive the Euler–Lagrange form of the shell structure’s virtual work principle.
To define the membrane strain, we define the covariant basis vectors in the reference and current
configurations:

In the reference configuration: A1 = e2 , A2 = e3 , (7.17)

In the current configuration: a1 =
∂x
ξ1

=

 VtY ′

1

 , a2 = A2 . (7.18)

The midsurface metric tensor in the reference configuration is identity due to the choice of a Carte-
sian parameterization. The (pulled-back) midsurface metric tensor in the deformed configuration
is

gαβAα ⊗ Aβ =


(
1 + (VtY ′)2

)
0

0 1

 , (7.19)

where Aα are the contravariant basis vectors such that Aα · Aβ = δα
β. Since the displacements in

the x3-direction are constrained to be zero, the membrane strain is then

ε =
1
2

(g − I) =

 1
2 (VtY ′)2 0

0 0

 .

We can compute the extension resultants nαβ = Cαβγδεγδhth [79, (3.38)] with the given material
tensor Cαβγδ, and obtain

n11

n22

n12

 =
Ehth

1 − ν2


1 ν 0
ν 1 0
0 0 1−ν

2



ε11

0
0

 =
Ehth

2(1 − ν2)
(VtY ′)2


1
ν

0

 , (7.20)
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where E and ν are the Young’s modulus and Poisson’s ratio of the membrane material. We now
compute the membrane strain variation with respect to the displacement test function w:

Dwε11 =
d
dε

1
2

(∣∣∣∣∣∂ (X + (y + εw))
∂ξ1

∣∣∣∣∣2 − 1
)∣∣∣∣∣∣
ε=0

=
∂ (X + y)
∂ξ1

·
∂w
∂ξ1

. (7.21)

The internal work term of the variational problem is then∫
Γ0

(n + npre) : Dwε dΓ =

∫
Γ0

n11
∂ (X + y)
∂ξ1

·
∂w
∂ξ1

dΓ . (7.22)

With the assumption that the test function w vanishes at the end points of Γ0, we can integrate by
parts to get

−

∫
Γ0

∂

∂ξ1

((
n11 + npre

11

) ∂

∂ξ1
(X + y)

)
· w dΓ . (7.23)

which yields the strong form of the shell structure subproblem

hth (ρs)0 ÿ −
∂

∂ξ1

((
n11 + npre

11

) ∂

∂ξ1
(X + y)

)
= −
√

g11λ + hth (ρs)0 f2 , (7.24)

where
√

g11 transfers the fluid traction λ to the reference configuration. Splitting into components,
substituting in the manufactured solution in (7.2), and assuming that the presstress does not vary
in space, we get

hth (ρs)0 (f2)1 = −
∂2

∂ξ2
1

 3Ehth

2(1 − ν2)
(Vt)3

(
∂Y
∂ξ1

)2

+ npre
11 Vt

 Y +
√

g11λ1, (7.25)

hth (ρs)0 (f2)2 = −
Ehth

(1 − ν2)
(Vt)2 ∂Y

∂ξ1

∂2Y
∂ξ2

1

+
√

g11λ2 . (7.26)

7.4. Numerical results

To test the convergence of the projection-based DAL approach to the manufactured solution
in the benchmark problem, we take a test problem with the following parameters: V = 1, L = 1,
∆P = 1, µ = 0.1, ρ f = 1, (ρs)0 = 1, npre

11 = 10, E = 1, hth = 0.1, ν = 0.3, and T = 1. We
then discretize the fluid domain into a uniform grid of 2N × 2N lowest-order div-conforming B-
spline elements [77, 78], where N = 4, . . . , 8. Weakly-consistent advective stabilization of the
form [35, (41)–(43)] is included, but its effect is minimal at such a low Reynolds number. The
corresponding time steps are ∆t = T/2N . The structure is discretized into 19×2N−4 linear elements
along the ξ1 direction, to ensure some degree of mismatch with the fluid mesh. The FSI penalty
parameter β on Γt is set to 10 × 2N−4. The coarse-scale Lagrange multiplier space is discrtetized
in the background fashion proposed in [36]. Dirichlet boundary conditions on ∂Ω are enforced
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using a penalty method, with penalty parameter 1000 × 2N−4. Quadrature on Γt is performed using
a three-point Gaussian quadrature rule in each element of the membrane structure, without regard
to how the structure elements intersect the fluid elements. The nonlinear problem in the implicit
step of the semi-implicit algorithm is solved using a fixed number of block iterations [35, Section
4].

A representative numerical solution (N = 6) is shown in Figure 11, demonstrating the correct
qualitative behavior of the solution. The convergence of the L2(Ω) and H1(Ω) norms of the velocity
errors are shown in the left plot Figure 12; these errors appear to converge at the rates predicted
by the analysis of the model problem. The Lagrange multiplier fields as functions of x2 are shown
in the right plot Figure 12; it is evident that there is some O(1) error in L2(Γ), which is again
consistent with the analysis of the model problem, in which the multiplier converges in a weak,
mesh-dependent norm. The L∞ deviation from a constant is much less pronounced here than in
numerical tests with the model problem.

Figure 11: An annotated snapshot at t = T of a numerical approximation to the manufactured solution. Streamlines
indicate fluid velocity. Contours show pressure on a scale from ≤-0.7 (blue) to ≥+0.7 (red), reproducing the expected
∆P of 1, with moderate over- and under-shoot near the structure. (The range of the scale exceeds ∆P to illustrate the
over- and under-shoot phenomena.)

8. Conclusion

In this paper we presented two dynamic augmented Lagrangian (DAL) methods: the original
DAL method (of [31, 34]) and the projection-based DAL method (of [36]), for enforcing Dirichlet
boundary conditions. Both methods were previously developed within immersogeometric frame-
works for fluid–thin structure interaction simulations. In the present work, we have for the first
time addressed regularity of immersed thin structure problems for a simplified linearized parabolic
model problem. In this model, the computational domain Ω is separated by a co dimension-one
interface Γ, where a Dirichlet boundary condition is enforced. We have shown that for both 2D and
3D cases, when all the boundaries are smooth, the solution u(x, t) for this problem has regularity
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Figure 12: Computational results in the FSI benchmark problem, from projection-based DAL method. Left: Conver-
gence of the fluid velocity error at time T in the H1(Ω) and L2(Ω) norms. Right: The Lagrange multiplier at time T ,
for various meshes, interpolated linearly between samples at quadrature points on ΓT .

∂ku
∂tk ∈ H3/2−ε(Ω), for k = 0, 2 and any ε > 0. With this regularity, we have provided sharp error
estimates for the original DAL method: When the element size is h, taking the penalty parameters
r = O(1), and β = O(1/h), the following error estimates hold for the original DAL method:∣∣∣∣∣∣∣∣∣∣∣∣(u(tn+1) − un+1

h , λ(tn+1) − λn+1
h

)∣∣∣∣∣∣∣∣∣∣∣∣2
≤C

(
h2−4ε

∆t
+ ∆t

) (
||u0||

2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ)

+

∫ tn+1

0

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt


and ∥∥∥u(tn+1) − un+1

h

∥∥∥2

L2(Ω)

≤C
(
h2−4ε + ∆t2

) (
||u0||

2
H3/2−ε (Ω) + ||λ0||

2
H1/2−ε (Γ)

+

∫ tn+1

0

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 .

The results suggest the optimal choice of time step size as ∆t = O(h), which yields approximately
half-order accuracy for u in the H1(Ω) norm, and first-order accuracy of u in the L2(Ω) norm.
Moreover, in this paper we have for the first time provided error estimates for the projection-based
DAL method: When the element size on Ω is h, and the element size for the Lagrange multiplier
is H, large enough, with penalty parameter β = O(1/h), the following error estimates for the
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projection-based DAL method hold:∣∣∣∣∣∣∣∣∣(u(tn+1) − un+1
h , λ(tn+1) − λn+1

H )
∣∣∣∣∣∣∣∣∣2

p

≤C
(
h1−2ε + H2−2ε

∆t
+ 1

) (
h1−2ε ||u0||

2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ)

+

∫ tn+1

0
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt


and ∥∥∥u(tn+1) − un+1

h

∥∥∥2

L2(Ω)

≤C
(
h1−2ε + H2−2ε + ∆t

) (
h1−2ε ||u0||

2
H3/2−ε (Ω) + H1−2ε ||λ0||

2
H1/2−ε (Γ)

+

∫ tn+1

0
h1−2ε

∣∣∣∣∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣∣∣∣∣2
H3/2−ε (Ω)

+ H1−2ε
∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣2
H1/2−ε (Γ)

+ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Ω)

dt

 .

Similarly, as in the original DAL method, the above error estimates suggest the optimal choice of
time-step size as ∆t = O(h) = O(H), which yields approximately half-order accuracy for u in the
H1(Ω) norm, and first-order accuracy of u in the L2(Ω) norm. Given the problem regularity, the
convergence rate in H1(Ω) is the same as the rates from the Lagrange-multiplier based fictitious-
domain method [22, 53], which is actually the best possible rate when using a quasi-uniform mesh
of Ω that is not designed to conform to the boundary Γ.

In the numerical investigations, we have firstly verified the error estimates for both DAL meth-
ods, on numerical tests using the model problem. To test the applicability of the above error
estimates in practice for more complicated applications, i.e., in the immersogemetric methods for
nonlinear and large-displacement FSI, we have derived a manufactured solution for a fluid-thin
structure problem with pressure jump. Numerical evidence has suggested that on this FSI prob-
lem, the approximate fluid velocity converges at the predicted rates to the manufactured solution.
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