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Abstract

We consider minimization problems of functionals given by the difference between the Willmore functional of a closed
surface and its area, when the latter is multiplied by a positive constant weight Λ and when the surfaces are confined
in the closure of a bounded open set Ω ⊂ R3. We explicitly solve the minimization problem in the case Ω = B1.
We give a description of the value of the infima and of the convergence of minimizing sequences to integer rectifiable
varifolds, depending on the parameter Λ. We also analyze some properties of these functionals and we provide some
examples. Finally we prove the existence of a C1,α ∩W 2,2 embedded surface that is also C∞ inside Ω and such that
it achieves the infimum of the problem when the weight Λ is sufficiently small.
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Introduction

If Σ ⊂ R3 is a smooth immersed surface and H is its mean curvature vector, that we define with norm equal to the
absolute value of the arithmetic mean of the principal curvatures, we define the Willmore energy of Σ as:

W(Σ) :=

ˆ
Σ

|H|2 dσ (1)

where σ is the area measure on Σ. The opertor W is called Willmore functional. Surfaces will be usually denoted by
Σ and will be always compact and without boundary, but not necessarily connected.
The variational study of this functional has been revived in 1965 with the work of T. Willmore ([36] and [37]). He found
that round spheres are the only global minimizers forW and then he introduced the study of the minimization problem
subject to constraints of topological type, such as fixing the genus of the surfaces; the celebrated Willmore Conjecture
is related to these kind of problems, and it has been proved in [17]. In the last decades a number of properties about
the functional itself have been proved, and the ones we will use are recalled in Section 1. The minimization problem
at fixed genus has also been solved in a couple of works ([34] and then [2]), developing also a theory of which we will
make use in the following.
In this work we are going to study the following functional:

WΛ(Σ) :=W(Σ)− Λ|Σ|, (2)

where Σ ⊂ R3 is a smooth surface, Λ > 0 is fixed and |Σ| denotes the area of Σ. Moreover, we will always consider
surfaces Σ ⊂ Ω̄ with Ω ⊂ R3 open and bounded with ∂Ω of class C2. Also, by a rescaling property shown in Section
1, we will usually take Ω ⊂ B 1

2
(0) (so that diam(Ω) ≤ 1).

With the above assumptions we show that the minimization problem

(P )Ω,Λ : min{WΛ(Σ) : Σ ⊂ Ω̄} (3)
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sets a non trivial competition between the Willmore and the Area terms. We define

CΛ := inf{WΛ(Σ) : Σ ⊂ Ω̄}. (4)

We also give here the following definitions, that will be useful later on:

ΛΩ := inf{Λ > 0 : CΛ = −∞}, W(Σ) :=
W(Σ)

|Σ|
, Λ̃Ω := inf{W(Σ) : Σ ⊂ Ω̄}. (5)

Variational problems of a similar type, that is problems involving the area, have already been studied. There is a
complete treatment of the minimization problem of the Willmore energy with fixed area for surfaces of genus zero ([19]
and [20]) and with fixed isoperimetric ratio for surfaces of arbitrary fixed genus ([31] and [12]). This kind of works
found interesting comparisons with works about the shape of organic corpuscles ([32]).The link with the quantities W
and Λ̃Ω defined above resembles the Cheeger Problem, which is actually strongly related to the existence of confined
surfaces with prescribed mean curvature vector ([15]). It would be interesting to study related problems for curves in
dimension two, for which there are already remarkable results about the variational problems of functionals depending
on the curvature of the curve in the same way the Willmore energy depends on the curvature of the surface (in [6] and
[7] confined elastic curves are considered, while in [3] [4] and [25] relaxed notions of the elastic energy are studied).
In the next statement we sum up our main results in the case of a general domain Ω.

Theorem A. Under the above assumptions on Ω, denoting CΛ : (0,+∞) → [−∞,+∞) the function that associates
to Λ the infimum of (P )Ω,Λ, it holds:

(i) CΛ is a concave, continuous, non negative, strictly decreasing function on an interval (0,ΛΩ] for some ΛΩ ∈
[4, 1/ε2Ω] where ΛΩ, εΩ depend on Ω. Moreover limΛ→0+ CΛ = 4π, CΛΩ

≥ 0 and CΛ = −∞ for all Λ > ΛΩ.

(ii) If Λ ∈ (0,ΛΩ) there exists a sequence (ΣΛ
n) that is minimizing for the functional WΛ and such that it converges

in the sense of varifolds to a varifold V that is integer rectifiable and has generalized mean curvature square
integrable with respect to the weight measure of V .

(iii) If Λ is sufficiently small, depending only on Ω, the limit varifold in item (ii) is actually a C1,α ∩W 2,2 embedded
surface Σ with multiplicity one and it is such that WΛ(Σ) = CΛ. Moreover it holds that Σ ∩ Ω is of class C∞.

Next we state the result concerning the case Ω = B1, where B1 is the standard unit ball of R3.

Theorem B. If Ω = B1 the minimization problem (P )B1,Λ admits a solution if and only if Λ ≤ 1, in which case the
minimum is 4π(1− Λ). If Λ < 1 the unique minimizer is the unit sphere S2. Moreover for all Λ > 1 the infimum of
the problem is −∞.

The paper is organized as follows. In Section 1 we state some classical properties of the Willmore functional and of
theWΛ energy. In Section 2 we prove the first two items of Theorem A and we prove Theorem B. Section 3 is devoted
to the proof of item (iii) of Theorem A, that is essentially a regularity issue. In this work we adopt a very classical
method, today named Simon’s ambient approach ([34]), that is well applicable in our setting. We will mainly highlight
the differences that arise with respect to [34], that is taking care of the area term and of the presence of the boundary
∂Ω. By now we just mention that this method is based on the direct proof of the regularity of a set contained in
R3 from information about the boundedness of its second fundamental form and it has already been used in other
works linked to the Willmore energy ([14], [18], [30] and [31]). It is very remarkable a more modern method, called
parametrization approach, essentially due to Rivière and presented for example in [26], [27] and [28]. This method
is based of the formulation of suitable spaces of parametrizations of surfaces, where abstract techniques of calculus
of variations are applicable. Notable applications are contained in the already cited [12] and [19]. We think that
applying this method to our problem could give very good results and it can certainly be a future project to improve
our current results following this way.

Acknowledgments: I am very grateful to Matteo Novaga for his help and his interest during the preparation of this
work, that is partially contained in my master thesis. I also thank Giovanni Alberti for some precious observations.

1 Basic Properties

We are going to collect some useful properties about the Willmore functional that we will use later on. The symbol
V2(Ω̄) denotes the set of 2-rectifiable integer varifold defined in R3 with support contained in Ω̄. The convergence
in V2(Ω̄) is the classical convergence of varifolds in R3. The symbol µV will always denote the Radon measure on Ω̄
induced by the varifold V ∈ V2(Ω̄). We recall that Ω ⊂ R3 is open, bounded and with ∂Ω of class C2. For the general
notation and results about varifolds see Appendix A. Let us start with an important observation.
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Remark 1.1 (Semicontinuity). Let us consider a sequence Vk ∈ V2(Ω̄) that converges to V ∈ V2(Ω̄) in the sense of
varifolds. Assume that for each k there exists the generalized mean curvature Hk of Vk such that

W(Vk) := ||Hk||2L2(Ω̄,µVk ) ≤ C0 < +∞,

with C0 independent of k.
Then applying convergence of Radon measures and using the continuity of the first variation with respect to the
varifold convergence, we have that V has generalized mean curvature HV such that

lim inf
k
W(Vk) ≥ W(V ).

We note also that, since Ω̄ is compact, we have that M(Vk)→M(V ), where M denotes the mass of a varifold. Thus:

lim inf
k
WΛ(Vk) ≥ WΛ(V ),

lim inf
k

W(Vk) ≥W(V ).

For further details see [29], where it is also shown the more involved lower semicontinuity property under convergence
of currents.

Now we state a couple of fundamental properties of the Willmore energy.

Theorem 1.2 (Conformal Invariance, [37]). Let Σ ⊂ R3 be an immersed surface in the 3-dimensional Euclidean space.
Suppose Σ ⊂ Ω, with Ω ⊂ R3 open. If F : Ω→ F (Ω) is a conformal transformation, then:

W(Σ) =W(F (Σ)).

Remark 1.3. We recall that, by Liouville’s Theorem, conformal transformations of the Euclidean R3 are just com-
positions of translations, dilatations, orthogonal transformations and spherical inversions (for an interesting proof see
[22]).

Theorem 1.4 (Lower Bound for Immersed Surfaces, [2]). Let Σ be an immersed surface and ξ ∈ Σ be a point with
multiplicity k. If I : R3 \ {ξ} → R3 \ {ξ} is the standard spherical inversion about the sphere S2

1(ξ), then:

W(I(Σ \ {ξ})) =W(Σ)− 4πk. (6)

Remark 1.5. We immediately get from Theorem 1.4 that if a surface Σ has a point with multiplicity k, then
W(Σ) ≥ 4πk.
A similar argument holds for a varifold V ∈ V(Ω̄) with square integrable generalized mean curvature in the sense that
it holds:

θ(x) ≤ W(V )

4π
µV -almost every x, (7)

where θ is the multiplicity function of V and µV is the Radon measure given by V on R3 (see [14], Appendix A). In
particular we get that if W(V ) < 8π, then the varifold has multiplicity 1 µV -almost everywhere.

Now we state some results relating the Willmore and the Area functionals.

Lemma 1.6 ([34]). If Σ ⊂ R3 is a connected surface, then:√
|Σ|
W(Σ)

≤ diamΣ ≤ 2

π

√
|Σ|W(Σ),

where diamΣ is the diameter of Σ and C is a constant independent of Σ.

Another fundamental inequality is the following:

Lemma 1.7 (Willmore vs Area Inequality, [20]). Let Ω ⊂ B1 ⊂ R3 and let V ∈ V2(Ω̄) such that there exists the
generalized mean curvature HV ∈ L2(Ω̄, µV ). Then:

W(V ) :=

ˆ
Ω

H2
V dµV ≥M(V ), (8)

with equality if and only if µV = kH2 ¬S2 and S2 ⊂ Ω̄, with k ∈ N>0.
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Remark 1.8. The inequality proved in Lemma 1.7 can be specialized in the case of Ω ⊂ B 1
2
. If V ∈ V2(Ω̄), by a

simple scaling argument and using the conformal invariance of W one gets that

W(V ) ≥ 4M(V ). (9)

From these results we establish some very useful inequalities, as stated in the following.

Corollary 1.9. If Σ ⊂ Ω̄ is a connected surface, then

WΛ(Σ) ≥ |Σ|
(

1

(diamΣ)2
− Λ

)
,

WΛ(Σ) ≥ W(Σ)(1− Λ(diamΣ)2),

WΛ(Σ) ≤ W(Σ)− Λ

C2

(diamΣ)2

W(Σ)
,

W(Σ) ≥ 1

(diamΣ)2
,

W(Σ) ≥ 1

C2

(diamΣ)2

|Σ|2
,

where C is the constant in Lemma 1.6.
If Ω ⊂ B1 then

WΛ(Σ) ≥ |Σ|(1− Λ),

WΛ(Σ) ≥ W(Σ)(1− Λ),

W(Σ) ≥ 1.

Finally, we derive a simple but useful result about invariance under dilatation.

Lemma 1.10. For all Σ surface and for all α > 0 it holds:

W(Σ) =W(αΣ),

WΛ(Σ) =W Λ
α2

(αΣ),

W(Σ) = α2W(αΣ).

Proof. The first equation is a consequence of the conformal invariance of the Willmore functional. For the same
property we have:

WΛ(Σ) =

(ˆ
Σ

H2
Σ

)
− Λ|Σ| =

(ˆ
αΣ

H2
αH

)
− Λ|Σ| =W(αΣ)− Λ

α2
|αΣ| =W Λ

α2
(αΣ).

By the same token we get the last equality:

W(αΣ) =
W(Σ)

|αΣ|
=
W(Σ)

α2|Σ|
=

1

α2
W(Σ).

Remark 1.11. From Lemma 1.10 we see that from the variational point of view we have the following equivalence of
problems:

(P )Ω,Λ ←→ (P )αΩ, Λ
α2
, (10)

in the sense that if we have that for a couple (Ω,Λ) there exists minimum of (P )Ω,Λ then the same holds for the couple
(αΩ,Λ/α2) and with the same value of minimum (and the same holds in case of nonexistence of minima).
For these reasons in the study of Problem (P )Ω,Λ with generic Ω we will exploit this invariance assuming Ω ⊂ B1/2

without loss of generality.
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2 Compactness and properties of CΛ

This section is devoted to the proof of items i), ii) of Theorem A and of Theorem B. Let us start with a significant
example.

Example 2.1. If Λ > 1 then
inf

Σ⊂B̄1

WΛ(Σ) = −∞.

In fact let us define the sequence of surfaces

Dk = S2
r1 ∪ · · · ∪ S

2
rk
⊂ B1,

ri =
1√
Λ

+
i− 1

k

(
1− 1√

Λ

)
i = 1, . . . , k,

(11)

that is a surface made of k concentric spheres with minimum radius r1 = 1/
√

Λ, ri < ri+1 for i = 1, . . . , k − 1 and
maximum radius rk < 1 (since Λ > 1). We have:

WΛ(Dk) = 4πk − Λ

k∑
i=1

4πr2
i

= 4π

(
k − k − Λ

k∑
i=1

(
1− 1√

Λ

)2
1

k2
(i− 1)2 +

2

k
√

Λ

(
1− 1√

Λ

)
(i− 1)

)
≤ −4πΛ

2√
Λ

(
1− 1√

Λ

)
1

k

(
k(k + 1)

2
− k
)
→ −∞ k → +∞,

where we strongly used the fact that Λ > 1.

Now we see that we can actually connect together the rounds of the previous example in a way in which we are able
to obtain the same conclusion also in the case in which the problem is restricted to connected surfaces. We are going
to see this in a general way as stated in next lemma.

Lemma 2.2. If there exists an embedded surface Σ ⊂ Ω̄ such thatWΛ(Σ) < 0, then there exists a sequence of embedded
surfaces Σn such that WΛ(Σn)→ −∞. In particular CΛ = −∞.
Moreover if Σ is connected, the surfaces Σn can be taken connected.

Proof. We are going to reproduce the idea of Example 2.1 with the surface Σ in the hypothesis of the statement. Let
us fix ε ∈ (0, 1). First we notice that it may occur that Σc := Σ ∩ ∂Ω 6= ∅, and so we suppose we are in this situation
(the case Σc = ∅ will be a simpler by-product of this case). Let us fix for each connected component Σαc (note that Σαc
is compact) a field Nα ∈ N (Σc) such that Nα point inside Ω for each α, where N (Σc) denotes the normal bundle of
Σc. Now fix an open neighborhood Uα ⊂ Σ of each Σαc such that dist(p,Σαc ) < δ for each p ∈ Uα and Uα∩Uβ = ∅ for
all α 6= β. Let for all α the functions φα ∈ C∞c (Σ) such that φα(p) = 1 for all p ∈ Σαc and φα(p) = 0 for all p ∈ Σ\Uα.
Now mapping:

Uα 3 p 7−→ p+ δNα(p)φα(p) ∈ Ω,

we obtain a new embedded surface Σ′ ⊂ Ω such that for an appropriate choice of δ above sufficiently small we have:

WΛ(Σ′) =WΛ(Σ) + ε.

Since Σ′ is compact and embedded, it is orientable, so there exists a field N ∈ N (Σ′) that orients the surface. For
M ∈ R sufficiently big we can consider the surface:

Σ′M :=

{
p+

1

M
N(p) : p ∈ Σ′

}
⊂ Ω s.t. WΛ(Σ′M ) =WΛ(Σ′) + ε.

Now we are going to connect together Σ′ with Σ′M in order to obtain the first term Σ1 of the desired sequence (Σn).
Select p̄ ∈ Σ′ and consider the corresponding p̄M = p̄ + 1

MN(p̄) ∈ Σ′M . Letting q̄ the middle point between p̄ and
p̄M , there exists δ0 such that (Σ′ ∪ Σ′M ) ∩ Bδ0(q̄) is diffeomorphic to the disjoint union of two 2-dimensional discs.
Operating a blow up procedure by a factor Γ sufficiently big on (Σ′∪Σ′M )∩Bδ0(q̄) we obtain a surface C∞-close to the
disjoint union of two 2-dimensional discs. By removing appropriate sets ΓD1 and ΓD2 diffeomorphic to a disc from
each disconnected component, we see that we can connect the remaining surfaces (diffeomorphic to a disjoint union of
two 2-dimensional annular surfaces) with a modification ΓC̃ of the catenoid that is C2 close to the standard catenoid
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and such that Λ(|D1 ∪D2| − |C̃|)| ≤ ε and W(C̃) ≤ ε (for an explicit construction see [38]). Rescaling back in Ω and
using the dilatation invariance we see that we have obtained a connected embedded surface Σ1 ⊂ Ω such that:

WΛ(Σ1) =WΛ(Σ′) +WΛ(Σ′M ) +W(C̃)− Λ|C̃| −W(D1 ∪D2) + Λ|D1 ∪D2|
≤ 2WΛ(Σ) + 5ε.

Now we can clearly iterate the procedure obtaining Σ2, and in this case, by arbitrariness on the value of ε, we can take
a value ε2. Thus, using the notation above with an additional index 1 to distinguish from the previous quantities, we
get a connected embedded surface Σ2 ⊂ Ω such that:

WΛ(Σ2) =WΛ(Σ1) +WΛ(Σ1,M1
) +W(C̃1) + Λ(|D1,1 ∪D2,1| − |C̃1|)−W(D1,1 ∪D2,1)

≤ 2(2WΛ(Σ) + 5ε) + 3ε2

= 22WΛ(Σ) + 5(2ε) + 3ε2.

So iterating the procedure taking εn when constructing Σn we obtain:

WΛ(Σn) ≤ 2nWΛ(Σ) + 5(2n−1ε) + 3

n∑
i=2

2n−iεi

≤ 2nWΛ(Σ) + 5(2n−1ε) + 3
2n−2

1− ε
−→ −∞ as n→∞,

being WΛ(Σ) < 0.

The previous discussion allows us to solve completely Problem (P ) in the ball B1:

Theorem 2.3 (Solution of (P )B1,Λ)). If Ω = B1 the minimization problem (P )B1,Λ admits a solution if and only if
Λ ≤ 1, in which case the minimum is 4π(1 − Λ). If Λ < 1 the unique minimizer is the unit sphere S2. Moreover for
all Λ > 1 the infimum of the problem is −∞.

Proof. The last part of the statement is a consequence of Example 2.1 and Lemma 2.2, in fact for Λ > 1 we have
WΛ(S1) < 0.
If we consider Λ ≤ 1, applying Lemma 1.7, we get WΛ(Σ) ≥ |Σ|(1 − Λ) ≥ 0, hence as for the minimization problem
we can restrict ourselves to connected surfaces. Moreover WΛ(Σ) ≥ W(Σ)(1− Λ) ≥ 4π(1− Λ) =WΛ(S2). So S2 is a
minimizer.
If Λ < 1, the uniqueness of the minimizer follows having WΛ(Σ) ≥ W(Σ)(1− Λ) ≥ |Σ|(1− Λ) for all Σ, with equality
if and only if Σ = S2.

Remark 2.4 (Upper Bound for ΛΩ). Combining Example 2.1 with the proof of Lemma 2.2 we see that if there exist
two balls B1(p), B1−δ(p) such that B̄1(p) \ B1−δ(p) ⊂ Ω̄ for some δ > 0 then a minimizing sequence of connected
surfaces (Σn) can be realized inside B̄1(p) \B1−δ(p) and thus for all Λ > 1 we have CΛ = −∞.
By rescaling invariance this means that if two balls Br(p), Br−δ(p) are such that B̄r(p) \ Br−δ(p) ⊂ Ω̄ for a δ > 0,
then for all Λ > 1

r2 we have CΛ = −∞ (in other words ΛΩ ≤ 1
r2 ).

Now we turn our attention to the study of the general Problem (P )Ω,Λ. When no other is specified, Ω is assumed to
be open, with boundary of class C2 and

Ω ⊂ B 1
2
.

By the rescaling invariance of Remark 1.11 we can do this without loosing any information.
Let us first make a simple observation.

Remark 2.5 (Monotonicity). It is very important to keep in mind a simple monotonicity relation about functional
WΛ:

Λ1 > Λ2 ⇒ WΛ1
(Σ) <WΛ2

(Σ) and CΛ1
≤ CΛ2

. (12)

Moreover let us define a useful parameter:

εΩ := sup{r > 0 : ∃δ > 0,∃Br(p), Br−δ(p) s.t. B̄r(p) \Br−δ(p) ⊂ Ω̄}, (13)

so that by Remark 2.4 we have ΛΩ ≤ 1
ε2Ω

.

Lemma 2.6. If Λ > ΛΩ then CΛ = −∞.
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Proof. By definition of ΛΩ there is λ ∈ (ΛΩ,Λ) such that Cλ = −∞. By monotonicity for all Σ ⊂ Ω̄ we have:

Wλ(Σ) >WΛ(Σ),

so CΛ = −∞.

Now we are able to give a first result about compactness.

Theorem 2.7 (Compactness for Λ < ΛΩ). If Λ < ΛΩ and if Σn is minimizing for WΛ, then Σn converges (up to
subsequence) to a varifold V ∈ V2(Ω̄) with generalized mean curvature HV ∈ L2

(Ω̄,µV )
.

Proof. Let us take a minimizing sequence (Σn) such thatWΛ(Σn) ≤ CΛ+ 1
n . Suppose that |Σn| → ∞. Let λ ∈ (Λ,ΛΩ),

then:
0 ≤ Cλ ≤ Wλ(Σn) =WΛ(Σn)− (λ− Λ)|Σn| → −∞,

that is impossible. So we have that there exists L such that |Σn| ≤ L for all n, and being (Σn) a minimizing sequence
then there also exists C0 such that W(Σn) ≤ C0 for all n. Moreover, denoting by Hn the mean curvature vector of Σn
and calling again Σn the varifold associated to Σn, for all W ⊂⊂ Ωε := ε-neighborhood of Ω we have (see Appendix
A):

||δΣn||(W ) = sup
|X|≤1, supp(X)⊂W

∣∣∣∣δΣn(X)

∣∣∣∣ = sup
|X|≤1, supp(X)⊂W

∣∣∣∣ˆ
Ωε

〈X,Hn〉 dµΣn

∣∣∣∣
≤
√
LC0 ∀n.

So by compactness of varifolds ([1], Appendix A) we get the existence of a limit V ∈ V2(Ω̄) of a subsequence (Σnk) in
the sense of varifolds. By lower semicontinuity we have that V has mean curvature HV ∈ L2

(Ω̄,µV )
.

Remark 2.8. From the proof of Theorem 2.7 it is useful to remember that if a sequence (Σn) of uniformly bounded
surfaces has both uniformly bounded Willmore energy W(Σn) and area |Σn|, then such sequence is precompact with
respect to varifold convergence.

Combining the information collected up to now we have the following consequence.

Corollary 2.9. The number ΛΩ is contained in the interval [4, 1
ε2Ω

].

Proof. First recall that we already observed that ΛΩ ≤ 1
ε2Ω

(observe that εΩ ≤ 1
2 since Ω ⊂ B1/2). Now let us blow up

Ω by a factor 2; we get 2Ω ⊂ B1 and WΛ(Σ) ≥ |Σ|(1− Λ) ≥ 0 for all Σ ⊂ 2Ω and for all Λ ≤ 1 by Lemma 1.7. Thus
we get Λ2Ω ≥ 1, then rescaling back to Ω we get ΛΩ ≥ 1

(1/2)2 = 4.

Without further assumptions on Ω we will see that we are not able to identify ΛΩ among its possible values (Example
2.14). We need some further results first.

Remark 2.10. Let us consider two parameters Λ, (Λ + ε) ∈ (Λ,ΛΩ), and call (ΣΛ
n) and (ΣΛ+ε

n ) two corresponding
minimizing sequences. By the proof of Theorem 2.7 we know that areas |ΣΛ

n |, |ΣΛ+ε
n | are uniformly bounded; assume

that there exist the limits of the sequences of their areas. It holds that:

lim
n
|ΣΛ
n | ≤ lim

n
|ΣΛ+ε
n | < +∞, (14)

lim
n
|ΣΛ+ε
n | ≤ lim

n

Λ− 4

Λ
|ΣΛ
n |+

1

Λ
W(ΣΛ+ε

n ), (15)

CΛ+ε = lim
n
WΛ+ε(Σ

Λ+ε
n ) ≤ lim

n
WΛ(ΣΛ

n)− ε|ΣΛ
n | < CΛ. (16)

Let us prove such inequalities separately. First we have:

lim
n
WΛ+ε(Σ

Λ+ε
n ) ≤ lim

n
WΛ+ε(Σ

Λ
n) = lim

n
WΛ(ΣΛ

n)− ε|ΣΛ
n |+ ε|ΣΛ+ε

n | − ε|ΣΛ+ε
n |

≤ lim
n
WΛ(ΣΛ+ε

n )− ε|ΣΛ
n |+ ε|ΣΛ+ε

n | − ε|ΣΛ+ε
n |

= lim
n
WΛ+ε(Σ

Λ+ε
n ) + ε lim

n
|ΣΛ+ε
n | − |ΣΛ

n |.

Since |ΣΛ
n |, |ΣΛ+ε

n | are uniformly bounded we get (14). Moreover from limnWΛ(ΣΛ
n) ≤ limnWΛ(ΣΛ+ε

n ) we get

Λ lim
n
|ΣΛ+ε
n | ≤ lim

n
W(ΣΛ+ε

n )−W(ΣΛ
n) + Λ|ΣΛ

n | ≤ lim
n
W(ΣΛ+ε

n ) + (Λ− 4)|ΣΛ
n |,
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where in the second inequality we used Remark 1.8. Hence we got (15).
Finally

lim
n
WΛ+ε(Σ

Λ+ε
n ) ≤ lim

n
WΛ+ε(Σ

Λ
n) = lim

n
WΛ(ΣΛ

n)− ε|ΣΛ
n |,

that will give (16) once we prove that |ΣΛ
n | ≥ δ > 0 for all n. But in fact if S is any sphere contained in Ω we have that

WΛ(S) < 4π and thus CΛ < 4π; therefore if by contradiction limn |ΣΛ
n | = 0 we would have CΛ = limnWΛ(ΣΛ

n) ≥ 4π
that gives a contradiction.

Now we are able to complete the characterization of the infima CΛ. recall that

ΛΩ := inf{Λ > 0 : CΛ = −∞}.

Theorem 2.11 (Properties of CΛ). The function CΛ : R>0 → [−∞,+∞) that associates to the parameter Λ the
corresponding infimum CΛ has the following properties:

(i) C0 := limΛ→0 CΛ = 4π independently of Ω, and CΛΩ ≥ 0,

(ii) for Λ ∈ (0,ΛΩ] the function CΛ is continuous, nonnegative, concave and strictly decreasing. Moreover for all
ε < ΛΩ there exists δ = δ(ε) < 0 such that the derivative C ′Λ ≤ δ < 0 for almost all Λ ∈ (ΛΩ − ε,ΛΩ] (i.e. where
it exists), and δ(ε) cannot decrease as ε decreases,

(iii) CΛ = −∞ for each Λ > ΛΩ.

Proof. For any Σ, since |Σ| ≤ W(Σ) and W(Σ) ≥ 4π, we have:

WΛ(Σ) ≥ W(Σ)(1− Λ) ≥ 4π(1− Λ) −→ 4π Λ→ 0,

then C0 ≥ 4π. Now take r sufficiently small such that S2
r ⊂ Ω̄, then:

CΛ ≤ WΛ(S2
r ) = 4π − 4πr2Λ −→ 4π Λ→ 0,

thus C0 ≤ 4π, and we got (i).
For Λ ∈ (0,ΛΩ) we already know from Equation (16) that in this interval the function is positive and strictly decreasing,
thus it is differentiable almost everywhere and it has at most a finite number of jump-type discontinuities.
Now we have:

∀Σ WΛΩ(Σ) = lim
Λ→ΛΩ

−
WΛ(Σ),

thus:
CΛΩ

= inf
Σ⊂Ω̄
WΛΩ

(Σ) = inf
Σ⊂Ω̄

lim
Λ→ΛΩ

−
WΛ(Σ) ≥ inf

Σ⊂Ω̄
lim

Λ→ΛΩ
−
CΛ ≥ 0,

since CΛ ≥ 0 for all Λ < ΛΩ.
Now we can prove continuity from the left. Take Λ0 ∈ (0,ΛΩ) and suppose by contradiction that there exists η > 0
such that limΛ→Λ−0

CΛ ≥ CΛ0
+ η. Calling (Σn) a minimizing sequence for the functional WΛ0

, we have:

CΛ0
= lim

n
WΛ0

(Σn) = lim
n

lim
Λ→Λ−0

WΛ(Σn) ≥ lim
Λ→Λ−0

CΛ ≥ CΛ0
+ η,

that is impossible.
We can also prove continuity from the right. Take Λ0 ∈ (0,ΛΩ) and suppose by contradiction that there exists η > 0
such that limΛ→Λ+

0
CΛ ≤ CΛ0

− η. Call (ΣΛ
n) a minimizing sequence for the functional WΛ. If Λ1 ∈ (Λ0,ΛΩ), using

Equation (14) we know that limn |ΣΛ
n | ≤ limn |ΣΛ1

n | ≤ L1 for any Λ ∈ (Λ0,Λ1). Therefore

CΛ0 ≥ η + lim
Λ→Λ+

0

lim
n
WΛ(Σn) = η + lim

Λ→Λ+
0

lim
n
WΛ0(ΣΛ

n) + (Λ0 − Λ)|ΣΛ
n |

≥ η + CΛ0 + lim
Λ→Λ+

0

(Λ0 − Λ) lim
n
|ΣΛ
n |

≥ η + CΛ0 + lim
Λ→Λ+

0

(Λ0 − Λ) lim
n
|ΣΛ1
n |

≥ η + CΛ0
+ L1 lim

Λ→Λ+
0

(Λ0 − Λ) = η + CΛ0
,

for some constant L1 ≥ limn |ΣΛ1
n |, but that is impossible.

We can also check continuity from the left in ΛΩ. In fact let us consider a sequence Λn → ΛΩ
−, then the functions

8



WΛn : V := {V ∈ V2(Ω̄) : ∃HV ∈ L2
(Ω̄,µV )

} → R converge uniformly to the function WΛΩ
: V→ R with respect to the

F-metric of V2(Ω̄) on bounded sets (i.e. bounded in mass), that is:

sup
V ∈V, M(V )≤K

|WΛn(V )−WΛΩ(V )| = sup
V ∈V, M(V )≤K

|(Λn − ΛΩ)M(V )| −→ 0 n→∞,

for all K > 0. Hence we can swap the limit with the infimum in the following relation.

lim
Λn→ΛΩ

−
inf

Σ⊂Ω̄, |Σ|≤K
WΛn(Σ) = inf

Σ⊂Ω̄, |Σ|≤K
lim

Λn→ΛΩ
−
WΛn(Σ) = inf

Σ⊂Ω̄, |Σ|≤K
WΛΩ

(Σ),

for all K ≥ 0. Hence:

lim
K→∞

lim
Λn→ΛΩ

−
inf

Σ⊂Ω̄, |Σ|≤K
WΛn(Σ) = CΛΩ

. (17)

If we are able to swap the first two limits in (17), we are done. Let

CK,n := inf
Σ⊂Ω̄, |Σ|≤K

WΛn(Σ) ≥ 0

Since CK,n is decreasing in the two indexes and the numbers CK,n are greater than or equal of zero we have

inf
K
Ck,n = lim

K→∞
CK,n ≤ lim

K→∞
CK,m = inf

K
CK,m ∀n > m,

and then

inf
n

inf
K

= lim
n

inf
K
CK,n = lim

n
lim
K
CK,n.

Similarly we get

inf
K

inf
n
CK,n = lim

K
lim
n
CK,n,

and thus

lim
K

lim
n
CK,n = lim

n
lim
K
CK,n = inf

K,n
CK,n.

Using (17) we conclude that

CΛΩ = lim
K→∞

lim
Λn→ΛΩ

−
CK,n = lim

Λn→ΛΩ
−

lim
K→∞

CK,n = lim
Λn→ΛΩ

−
CΛ.

Now using Equation (16) and reminding that CΛ is differentiable for almost all Λ, we see that for almost all Λ the
function fΛ : ε 7→ CΛ+ε is such that f ′Λ(0) ≤ − limn |ΣΛ

n | < 0 for almost all ε for which fΛ is defined. Using now
Equation (14), we get f ′Λ+ε(0) ≤ f ′Λ(0) < 0 for almost all ε for which the relation is defined. Again by Equation (14)
we see that δ cannot decrease as ε decreases, thus we have completed the proof of (ii). We already know that (iii) is
true by Lemma 2.6, thus we completed the proof of the theorem.

For the convenience of the reader let us recall the definitions:

W(Σ) :=
W(Σ)

|Σ|
, Λ̃Ω := inf{W(Σ) : Σ ⊂ Ω̄}. (18)

We want to prove some results that motivate the connection between WΛΩ
and W.

Proposition 2.12. It holds that

ΛΩ = Λ̃Ω. (19)

Moreover

(i) if a minimizing sequence (Σn) for the functional W satisfies that |Σn| ≤ L for any n, then it is also minimizing
for the functional WΛΩ

and CΛΩ
= 0,

(ii) if a minimizing sequence (Σn) for the functional WΛΩ satisfies that |Σn| ≤ L for any n and if CΛΩ = 0, then Σn
is also a minimizing for W.

Proof. For all Σ it holds:

W(Σ) =
WΛΩ(Σ)

|Σ|
+ ΛΩ ≥

CΛΩ

|Σ|
+ ΛΩ ≥ ΛΩ,
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thus Λ̃Ω ≥ ΛΩ.
Now let us take a sequence Λn → ΛΩ

+ and surfaces Σn such that WΛn(Σn) ≤ 0 for all n. Then:

W(Σn) ≤ Λn → ΛΩ ≤ Λ̃Ω,

thus ΛΩ = Λ̃Ω. Now we prove the remaining two statements separately.
(i) Since |Σn| ≤ L for some constant L, and we have:

0 ≤ WΛΩ
(Σn) = |Σn|(W(Σn)− ΛΩ) ≤ L(W(Σn)− Λ̃Ω) −→ 0 n→∞.

(ii) If Σn is minimizing for WΛΩ , then |Σn| ≥ δ > 0, otherwise WΛΩ(Σn) → CΛΩ ≥ 4π, but CΛΩ = 0 by hypothesis.
We have:

0 ≤ δ(W(Σn)− Λ̃Ω) ≤ |Σn|(W(Σn)− ΛΩ) =WΛΩ
(Σn) −→ 0 n→∞.

Hence W(Σn)→ Λ̃Ω.

Let us say that a functional F : {Σ ⊂ Ω̄} → R is coercive if there exists L > 0 such that inf F (Σ) = inf |Σ|≤L F (Σ).
With this definition we see that Proposition 2.12 shows that the fact that CΛΩ

= 0 is strictly related to the coerciveness
of W. More precisely we can state the following.

Corollary 2.13. If WΛΩ
is coercive and CΛΩ

= 0, then W is coercive. In particular, if Ω = B1 the functional W is
coercive.

Proof. The proof immediately follows by item ii) in Proposition 2.12 and by Theorem 2.3.

In the following examples we show that it is not possible in general to identify the value of ΛΩ in the interval [4, 1/ε2Ω].

Example 2.14. Let us illustrate three examples.

(i) A first simple example is Ω = B1/2 \B1/2−ε with 0 < ε < 1/2, for which we have 4 = ΛΩ = 1
ε2Ω

.

(ii) Now we construct an example in which 4 < ΛΩ = 1
ε2Ω

. Let us consider 1/4 < r < 1/2, δ = 1/2 − r < r and let

Ω = Br ∪Bδ/4
((
r + 3

4δ, 0, 0
))

. In this case diam(Ω) = 1 but clearly εΩ = r < 1/2 and ΛΩ = 1
r2 = 1

ε2Ω
> 4.

(iii) We can also construct an example in which ΛΩ < 1
ε2Ω

. Let us denote by Ea,c = {(x, y, z) ∈ R3 : x2/a2 + y2/a2 +

z2/c2 = 1}. Let us fix c = 1/2 and c − η < a < c for η > 0 sufficiently small such that W(Ea,1/2) ≤ 10 (this is
possible since when a = 1/2 we would obtain a sphere).
Now we consider Ω as the volume enclosed by Ea,1/2 except the volume enclosed by {p − δν(p) : p ∈ Ea,1/2}
with ν outer normal of Ea,1/2 and δ << 1. For δ sufficiently small we get that εΩ = δ/2 and:

WΛ(Ea,1/2) ≤ 10− Λ|Ea,1/2| < 10− Λ4πa4/3 1

22/3
,

where we used the isoperimetric inequality (4π)1/332/3|A|2/3 ≤ |∂A| for A ⊂ R3. Finally we observe that for δ
sufficiently small there exists Λ < 1/δ2 such that WΛ(Ea,1/2) = 0. This implies ΛΩ < 1/δ2 = 1/ε2Ω as desired.

The following examples point out the strong dependence of the problems on the geometry of the domain as it is taken
unbounded. The scenery seems to become somehow chaotic, in the sense that we did not find spontaneous hypotheses
on an unbounded Ω under which general conclusions can be derived.

Example 2.15. Let us take:
Ω = {(x, y, z) ∈ R3|x2 + y2 < 1}.

Let us consider a sequence of surfaces Σn that is C1-close to Σn = S1 ∪ Cn ∪ S2 where Cn is a cylinder or radius 1
and height n, while S1 and S2 are the two hemispheres of the standard S2 translated in a way in which Σn becomes
an admissible surface. We can arrange:

WΛ(Σn) ≤ 4π(1− Λ) +

(
1

4
− Λ

)
2πn+ δ,

for some δ > 0, where the first term is the energy of the two hemispheres and the second one is due to the cylinder.
Then WΛ(Σ) converges to −∞ as n increases if Λ > 1/4, so ΛΩ ≤ 1/4.
Being Ω unbounded we cannot use the results obtained above, and it is also interesting to notice that the direct
method consisting of taking a minimizing sequence and proving its convergence in the sense of varifolds is no longer
applicable, since in this case we apparently have no tools in order to uniformly estimate the area of the sequence.
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Considering different unbounded domains Ω the situation may degenerate, as shown in the next example.

Example 2.16. Let us take:
Ω = {(x, y, z) ∈ R3 : |z| < 1}.

In this case we will see that the problems become immediately trivial. Let us consider the sequence of surfaces Σn
C1-close to σ1

n∪σ2
n∪Tn, where σin are two discs of radius n with center (0, 0,−1) or (0, 0, 1) lying on the opposite sides

of ∂Ω, and Tn is the subset with positive Gaussian curvature of the torus given by the rotation of a circumference of
radius 1 at a distance n from the axis z. We can estimate for some δ > 0 that:

WΛ(Σn) ≤ Cn− 2πΛn2 + δ −→ −∞ n→∞,

for all Λ > 0. So there is not a minimum for WΛ and the infimum of the problem is −∞.

Let us conclude with a further example.

Example 2.17. It is not true in general that the boundary ∂Ω of a bounded convex domain is a minimizer for
Problem (P )Ω,Λ for all Λ ≤ ΛΩ. Take for example ∂Ω C1-close to S1 ∪ Ch ∪ S2 where S1 and S2 are translations of
the two hemispheres of the standard S2 and Ch is a cylinder of radius one and height h. Ω is the bounded set with
such boundary. We can arrange that:

WΛ(∂Ω) ≥ WΛ(S2) +

(
1

4
− Λ

)
2πh− δ >WΛ(S2),

for some δ > 0 for each Λ < 1
4 −

δ
2πh . Being S2 ⊂ Ω̄ we see that the boundary cannot be a minimizer for WΛ for all

Λ ≤ ΛΩ.

3 Regularity

In this section we prove statement (iii) of Theorem A. We adopt the convention that if L is a plane in R3, then we
write u = (u1, u2, u3) ∈ Cr(Ā;L⊥), where A ⊂ L, if u(x) ∈ L⊥ ∀x ∈ A. In this case we write:

graph u = {x+ u(x)|x ∈ A}. (20)

Let us first recall the two main tools that we will use in the proof.

Lemma 3.1 (Graphical Decomposition, [34]). Let Σ be a compact surface without boundary with 0 ∈ Σ. Then for
any β > 0 there exists ε0 (independent of Σ, ρ) such that if ε ∈ (0, ε0], |Σ ∩ B̄ρ| ≤ βρ2 and

´
Σ∩Bρ |A| ≤ ερ, then the

following holds.
There are disjoint closed sets P1, ..., PN ⊂ Σ such that:

N∑
j=1

diam Pj ≤ Cε1/2ρ

and

Σ ∩Bρ/2 \
( N⋃
j=1

Pj

)
=

( M⋃
i=1

graph ui

)
∩Bρ/2,

where ui ∈ C∞(Āi;L
⊥
i ), with Li plane, Ai smooth bounded connected open in Li of the form Ai = A0

i \ (∪kdi,k) where
A0
i is simply connected and di,k are closed disjoint discs in Li not intersecting ∂A0

i and also
∑
i,k diam(di,k) ≤ Cε1/2ρ,∑

i,k |di,k| ≤ Cερ2.
Moreover graph ui is connected and:

sup
Ai

|ui|
ρ

+ sup
Ai

|Dui| ≤ Cε1/6.

If we also have
´
Bρ
|A|2 ≤ ε2, then in addition to the above conclusions it holds that for every σ ∈ (ρ/4, ρ/2) such that

∂Bσ intersects Σ transversely and ∂Bσ ∩ (∪jPj) = ∅, we have:

Σ ∩ B̄σ =

M⋃
i=1

Dσ,i,

where each Dσ,i is homeomorphic to a disc and graph ui∩B̄σ ⊂ Dσ,i. Also Dσ,i \graph ui is a union of a subcollection
of the Pj and each Pj is homeomorphic to a disc.
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Lemma 3.2 (Comparison, [31]). Let L be a plane, x0 ∈ L, u ∈ C∞(U ;L⊥) where U ⊂ L is an open neighborhood of
L ∩ ∂Bρ(x0) and assume |Du| ≤ C on U . Then there exists a function w ∈ C∞(Bρ(x0) ∩ L;L⊥) such that

w = u, ∂νw = ∂νu on ∂Bρ(x0) ∩ L,
‖w‖L∞(Bρ(x0)∩L)

ρ
≤ c(n)

(‖u‖L∞(∂Bρ(x0)∩L)

ρ
+ ‖Du‖L∞(∂Bρ(x0)∩L)

)
,

‖Dw‖L∞(Bρ(x0)∩L) ≤ c(n)‖Du‖L∞(∂Bρ(x0)∩L),ˆ
(Bρ(x0)∩L)

|D2w|2 ≤ c(n)ρ

ˆ
graph (u|L∩∂Bρ(ξ))

|A|2 dH1,

(21)

where ∂ν denotes the normal outward derivative and A is the second fundamental form of graph (u).

Now we can prove the regularity result. We will make use of arguments in [34], so we will mainly focus on the
differences that arise in our problem, namely the additional area term and the confinement in Ω. The feeling is that
this method is very well applicable for functionals given by the sum of the Willmore energy and some lower order
term.

Theorem 3.3 (Regularity). If Λ > 0 is sufficiently small (depending on Ω), then there exists an embedded surface
Σ ⊂ Ω̄ of class C1,α ∩W 2,2 such that WΛ(Σ) = CΛ. Moreover the surface Σ ∩ Ω is of class C∞.

Let us briefly illustrate the strategy of the proof of Theorem 3.3. We are going to consider a minimizing sequence
(Σn) for the functional WΛ with Λ < ΛΩ converging to some varifold V . For Λ small enough we will have that
W(Σn) ≤ 8π− δ and V has multiplicity 1. The analysis of the regularity of the support of V is divided into two steps.
We can distinguish finitely many points ξ1, ..., ξP ∈ suppV , called bad points, that are points that can accumulate
energy in the limit. First we will study the regularity at points p ∈ suppV \ {ξ1, ..., ξP }, in fact around such points
we will be able to apply the Graphical Decomposition Lemma 3.1. The graphical decomposition will be applied to
any Σn of the minimizing sequence around the same chosen point p ∈ suppV \ {ξ1, ..., ξP }; in such a way we will be
able to replace controlled pieces of Σn with comparison graphs given by Lemma 3.2. The minimizing property of the
sequence (Σn) thus yields inequalities by comparing (Σn) with the modified sequence. This will lead to the decay
inequality (28), that readily implies C1,α regularity around the good point p. Then a bootstrap argument based on
the elliptic equation satisfied by critical points gives C∞ regularity of suppV \ {ξ1, ..., ξP } inside Ω and C1,α ∩W 2,2

of suppV \ {ξ1, ..., ξP } in Ω̄. The study of the regularity around a chosen bad point ξ is similar in the spirit, but more
careful. By uniform bounds one can identify around ξ a ball Bτ (ξ) such that the convergence Σn → V is smooth
outside such ball; controlling the oscillation of the tangent planes in suitable annular regions around Σn ∩ ∂Bτ (ξ),
we will replace part of Σn ∩ Bτ (ξ) with suitable controlled disks, and we will argue again by comparison with the
original minimizing sequence. This yields estimates completely analogous to the ones of the first case, and one derives
regularity around the bad point as well.

Proof of Theorem 3.3. For Λ < ΛΩ, let us consider a minimizing sequence (Σn) for WΛ converging in the sense of
varifolds to V ∈ V(Ω̄). For a given ε > 0, we say that a point ξ ∈ R3 is a bad point if

lim
ρ↘0

(
lim inf
n→+∞

ˆ
Σn∩Bρ(ξ)

|An|2
)
> ε2, (22)

where An is the second fundamental form of Σn and |An| is its norm. If a point ξ ∈ R3 is not a bad point we then
call it a good point. Now we show that there is only a finite number of bad points.
Fix some Λ̄ < ΛΩ. We know from Remark 2.10 that there exists sequences (ΣΛ

n) and (ΣΛ̄
n) that are minimizing

respectively for the parameters Λ and Λ̄ and they converge in the sense of varifolds, and then:

lim
n
|ΣΛ
n | ≤ lim

n
|ΣΛ̄
n | =: m(Λ̄).

In the following we choose Λ < min
{

ΛΩ,
4π
m(Λ̄)

}
, so that Λ limn |ΣΛ

n | < 4π. Hence, since CΛ < 4π, we get that

W(ΣΛ
n) ≤ 8π−δ for n big enough and some δ > 0. This implies that ΣΛ

n is embedded by Theorem 1.4 for n big enough
and that the genus of Σn is bounded, in fact the minimum Willmore energy at genus g is less then 8π and converges
to 8π as g →∞ (see [13]).
The above discussion has also another consequence: let gn be the genus of Σn, then gn ∈ {0, 1, ..., ḡ} for some ḡ ∈ N
big enough. Hence there is a convergent subsequence gnj . This means that gnj is constant for j big enough. Then
replacing Σn with Σnj we get a minimizing sequence that has definitely constant genus. Hence we can assume without
loss of generality that Σn has fixed genus g for all n.
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Another consequence is that, since by lower semicontinuity we have W(V ) < 8π, then V has multiplicity 1 µV -almost
everywhere by Remark 1.5.
We can apply Gauss-Bonnet Theorem to get:

1

4

ˆ
Σn

|An|2 =W(Σn)− π

2
(2− 2g),

with g the genus of Σn (the same for all n). Being Σn minimizing, we have that
´

Σn
|An|2 is bounded. So if N is the

number of bad points related to ε > 0, we get:

Nε2 ≤ lim inf
n

ˆ
Σn

|An|2,

giving an upper bound on N in term of ε.
Moreover, by modifying the minimizing sequence with small perturbations, we can assume that Σn ⊂ Ω for every n
without loss of generality.
The monotonicity formula ([34] Equation (1.3), or Appendix B in [21]) implies that

|Σn ∩Bρ(p)|
ρ2

≤ 3

2
W(Σn), (23)

for any ρ > 0 and any p ∈ Σn. Hence we can take β = 12π > 3W(Σn)
2 in Lemma 3.1 and let ε0 be the corresponding

number given by such lemma.
Let us fix an arbitrary ε ∈ (0, ε0); from now on we will call ξ1, ..., ξP the bad points related to such ε.
For any ξ ∈ supp(V ) \ {ξ1, ..., ξP } we can select ρ(ξ, ε) > 0 such that for all ρ′ ≤ ρ(ξ, ε) we have

´
Σn∩Bρ′ (ξ)

|An|2 ≤ ε2

for infinitely many n; hence the last part of Lemma 3.1 is applicable to Σn in Bρ′(ξ) for infinitely many n. Also by
(23) we get that there exists r ∈ (0, ρ′] such that |∂Br(p) ∩ Σn| ≤ 3βr. Taking ρ = min{ρ′, r} we can Lemma A.1

for n large enough with θ small enough fixed (independent of n, ε, ξ). We deduce that only one of the discs D
(n)
j , for

example D
(n)
1 , given by Lemma 3.1 can intersect the ball Bθρ(ξ). Also, for infinitely many n we know that there exist

a plane Ln containing ξ and a C∞(Ω̄n) function un : Ω̄n → L⊥n such that:

|un|
ρ

+ |Dun| ≤ Cε1/6,

(graph un ∪j Pn,j) ∩Bσ(ξ) = D
(n)
1 ∩Bσ(ξ),∑

j

diam(Pn,j) ≤ Cε1/2ρ,

(24)

where each Pn,j is diffeomorphic to a closed disc disjoint from graph (un|Ωn) and σ ∈ (θρ/2, θρ) is independent of n.
Now let us consider Cσ(ξ) := {x + y|x ∈ Bσ(ξ) ∩ Ln, y ∈ L⊥n }; by the Selection Principle A.2 there exists a set
T ⊂ (θρ/2, θρ) of measure ≥ θρ/8 such that for each σ ∈ T we have ∂Cσ(ξ) ∩ Pn,j = ∅ for infinitely many n. Hence
for infinitely many n we can apply Lemma 3.2 on Dn

1 ∩Bσ(ξ) to get a function wn on Bσ(ξ) ∩ Ln such that:

ˆ
Ln∩Bσ(ξ)

|D2wn|2 ≤ Cσ
ˆ

Γn

|An|2 dH1,

with Γn = graph (wn|Ln∩∂Bσ(ξ)) (the integration on subsets of planes Ln is always understood with respect to the
Lebesgue measure on such planes).
Let Ãn be the second fundamental form of graph wn, in particular we have:

ˆ
graph(wn)

|Ãn|2 ≤ Cσ
ˆ

Γn

|An|2 dH1.

Note that by the estimates in Lemma 3.2, by choosing σ sufficiently small (depending on ξ), we can assume graph wn ⊂
Ω̄. Then the C1,1 surface Σ̃n := (Σn \ (D

(n)
1 ∩ Bσ(ξ))) ∪ graph wn is such that WΛ(Σn) ≤ WΛ(Σ̃n) + εn for some

εn ↘ 0. Now we argue like in [34], except that here we have to control the area term in the energy.
Since Σn has the same genus of Σ̃n, by the Gauss-Bonnet Theorem we also get:

εn +

ˆ
Σ̃n

(
1

4
|Ãn|2 − Λ

)
≥ +

ˆ
Σn

(
1

4
|An|2 − Λ

)
.

13



So we have that:
ˆ
D

(n)
1 ∩Bσ(ξ)

1

4
|An|2 ≤ εn +

ˆ
graph(wn)

1

4
|Ãn|2 dH2 + Λ

(ˆ
D

(n)
1 ∩Bσ(ξ)

dH2 −
ˆ

graph(wn)

dH2

)
.

Using Equations (24), let us estimate:

ˆ
D

(n)
1 ∩Bσ(ξ)

dH2 ≤
ˆ
πLn (graph(un)∩Bσ(ξ)

√
1 + |Dun|2 dL2 +

∑
j

|Pn,j |

≤
√

1 + cε1/3|πLn(graph(un) ∩Bσ(ξ)|+ Cρ2 ≤ (
√

1 + cε1/3πθ2 + C)ρ2 =:
1

4
aρ2.

Hence: ˆ
D

(n)
1 ∩Bσ(ξ)

|An|2 ≤ 4εn + aρ2 +

ˆ
graph(wn)

|Ãn|2 ≤ 4εn + aρ2 + Cσ

ˆ
Γn

|An|2 dH1.

That is: ˆ
Σn∩Bσ(ξ)

|An|2 ≤ 4εn + aρ2 + Cσ

ˆ
∂(D

(n)
1 ∩Bσ(ξ))

|An|2 dH1. (25)

Since σ was selected arbitrarily from the set T of measure ≥ θρ/8 in the interval (θρ/2, θρ) we can arrange that:

ˆ
∂(D

(n)
1 ∩Bσ(ξ))

|An|2 dH1 ≤ 4

σ

ˆ
Σn∩Bθρ(ξ)\B θρ

2

(ξ)

|An|2

for infinitely many n. So using Equation (25), for all ρ ≤ θρ(ε, ξ) we get:

ˆ
Σn∩B ρ

2
(ξ)

|An|2 ≤ 4εn + aρ2 + C

ˆ
Σn∩Bθρ(ξ)\B θρ

2

(ξ)

|An|2.

Adding C times the left side we obtain:

ˆ
Σn∩B ρ

2
(ξ)

|An|2 ≤ εn + αρ2 + γ

ˆ
Σn∩Bρ(ξ)

|An|2,

where γ = C
C+1 ∈ (0, 1) and we named εn and α respectively the quantities 4

C+1εn and a
C+1 .

Defining:

ψ(ρ, ξ) := lim inf
n

ˆ
Σn∩Bρ(ξ)

|An|2, (26)

we get the following decay relation:

ψ

(
ρ

2
, ξ

)
≤ γψ(ρ, ξ) + αρ2. (27)

Now let us observe that if ξ0 ∈ supp(V ) \ {ξ1, ..., ξP }, we can take:

ρ(ξ, ε) =
ρ(ξ0, ε)

2

for all ξ ∈ supp(V ) ∩ B ρ(ξ0,ε)
2

(ξ0). Hence, fixed ξ0 ∈ supp(V ) \ {ξ1, ..., ξP }, Equation (27) holds for all ξ ∈ supp(V ) ∩
B ρ(ξ0,ε)

2

(ξ0) and for all ρ ≤ θρ(ξ0, ε)/2 := ρ0. The constant C defining γ is the one given by Lemma 3.2, so we can choose

it arbitrarily big in order to get γ = C
C+1 ∈ (1/2, 1) and α = a

C+1 ∈ (0, 1/8). Hence given ξ0 ∈ supp(V ) \ {ξ1, ..., ξP }
we can apply Corollary A.4 to get:

ψ(ρ, ξ) ≤ C
(
ρ

ρ0

)β
ψ(ρ0, ξ) ≤ C

(
ρ

ρ0

)β
ψ(ρ(ξ0, ε), ξ0)

∀ξ ∈ supp(V ) ∩B ρ(ξ0,ε)
2

(ξ0), ∀ρ ≤ ρ0 := θρ(ξ0, ε)/2,

(28)

for some C > 0, β ∈ (0, 1), where second inequality holds since ψ(ρ0, ξ) ≤ ψ(ρ(ξ0, ε), ξ0).
Hence we ultimately got the key decay relation on the second fundamental form (the same of Equation (3.2) in [34]).
So following the same arguments in [34] (page 301) one gets that the varifold V has a multiplicity 1 tangent plane at
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each point ξ ∈ supp(V )∩Bρ(ξ0) with a normal vector N(ξ) such that ‖N(ξ1)−N(ξ2)‖ ≤ C|ξ1− ξ2|α for all admissible
ξ1, ξ2. Also this means that if U is a sufficiently small neighborhood of ξ0, we have:

µV
¬
U = H2 ¬ (Σ ∩ U),

where Σ is a C1,α surface. Moreover from (28) one gets
´

Σ∩Bρ(ξ)
H2 ≤ Cρα for ξ that is not a bad point, and this

decay implies that Σ is a C1,α ∩W 2,2 surface away from the bad points ξ1, ..., ξP .
Now we improve the regularity of Σ up to C∞ around points contained in Ω and different from the bad ones. This
will be one of the main differences with [34] in the sense that the following argument only applies for ξ ∈ Ω. Locally
parametrizing the surface with a function w ∈ C1,α∩W 2,2 as before, we have that w is a critical point for the functional´
|A|2−Λ on the domain of w. This implies that the first variation of the functional calculated on w vanishes, that is:

δ

(ˆ
graph(w)

|Aw|2 − Λ dH2

)
= δ

(ˆ
dmn(w)

2∑
i,j,r,s=1

(1− h)gijgrswirwjs
√
g − Λ

√
g

)
= 0,

where dmn(w) denotes the domain of w. This relation is equivalent to say that w satisfies in the weak sense a fourth
order partial differential equation of the form:

DjDs(A
ijrs(x,w,Dw)DiDrw) +DjC

j(x,w,Dw,D2w) +B0(x,w,Dw,D2w) = 0, (29)

where:

Cj = Bj + B̃j ,

with Aijrs, Bj , B0 the coefficients given by the first variation of the functional
´
|A|2 and B̃j the ones coming from

the first variation of −Λ
´
dmn(w)

√
g. That is:

B̃j(x, z, p, q) = B̃j(p) = Λ
pj√

1 +
∑
i p

2
i

.

We know by [34] (page 310) that the coefficients Aijrs, Bj , B0 satisfy the hypotheses of Lemma A.5. By a simple
calculation also the coefficients B̃j satisfy the same relations, then we can apply Lemma A.5 to get w ∈ C2,α. Hence
by a bootstrap argument on Equation (29) we conclude that w ∈ C∞.

At this point we know that supp(V ) = Σt{ξ1, ..., ξP }, with Σ that is a C1,α∩W 2,2 surface (and C∞ in Ω\{ξ1, ..., ξP }).
From now on we will rename Σ the union Σ t {ξ1, ..., ξP }, so that supp(V ) = Σ, keeping in mind that the regularity
of Σ is achieved away from the bad points.

Since we chose Λ < ΛΩ we know that CΛ > 0 and thus we can assume that Σn is connected for any n. Together with
boundedness of the Willmore energy, this implies that the sets Σn converge to Σ in the Hausdorff distance dH (see
[34] page 310-311, or Theorem 3.4 in [21] for a detailed proof), and hence in particular we get that Σ is connected.
Now we are going to derive the regularity also in neighborhoods of the bad points. By the very same arguments of
[34], pages 313-316, one can find distinct points y1, ..., yM+P ∈ Σ with yM+i = ξi for i = 1, ..., P and radii τk for

k = 1, ...,M + P such that Σ ⊂
⋃M+P
k=1 Bτk(yk) and for each k 6= l we have that ∂Bτk(yk) ∩ Σ and ∂Bτl(yl) ∩ Σ are

either disjoint or intersect transversely and:

∂Bτk(yk) ∩ ∂Bτl(yl) ∩ ∂Bτm(ym) ∩ Σ = ∅

for distinct k, l,m. Moreover the curves Γl :=

(
Σ \

(⋃M+P
k=M+1Bτk(yk)

))
∩ ∂Bτl(yl) for l = 1, ...,M + P divide

Σ \ (∪M+P
k=M+1Bτk(yk)) into polygonal regions R1, ..., RQ. And letting for all l = 1, ..., Q

Rl :=

{
x+ z|x ∈ Rl, z ∈ (TxΣ)⊥, |z| ≤ θ δ

4

}
,

for some δ, it turns out that Σn ∩Rl is C1,α-diffeomorphic to Rl and then

Σn \
( M+P⋃
k=M+1

Bτk(yk)

)
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is C1,α-diffeomorphic to Σ \
(⋃M+P

k=M+1Bτk(yk)

)
for n big enough (up to subsequence).

So we can now take surfaces Σ̃n such that:

Σ̃n \
( M+P⋃
k=M+1

Bτk(yk)

)
, Σn \

( M+P⋃
k=M+1

Bτk(yk)

)
, Σ \

( M+P⋃
k=M+1

Bτk(yk)

)
are C1,α-diffeomorphic for all n, and:

Σ̃n ∩ Vk = Σn ∩ Vk ∀k = M + 1, ...,M + P (30)

for some neighborhood Vk such that Bτk(yk) ⊂⊂ Vk ⊂⊂ B2τk(yk), and:

Σ̃n \
( M+P⋃
k=M+1

B2τk(yk)

)
= Σ \

( M+P⋃
k=M+1

B2τk(yk)

)
∀n, (31)

and also: ˆ
Σ̃n∩(B2τk

(yk)\Bτk (yk))

|Ãn|2 ≤ Cε2, (32)

where Ãn is the second fundamental form of Σ̃n.
By (30) and the minimizing property of Σn we have:

ˆ
Σn\(∪M+P

k=M+1Bτk (yk))

|Hn|2 ≤
ˆ

Σ̃n\(∪M+P
k=M+1Bτk (yk))

|H̃n|2 + Λ|Σn \ (∪M+P
k=M+1Bτk(yk))|+

− Λ|Σ̃n \ (∪M+P
k=M+1Bτk(yk))|+ εn,

with εn → 0. Then by (31) and (32) we obtain:
ˆ

Σn\(∪M+P
k=M+1Bτk (yk))

|Hn|2 ≤
ˆ

Σ\(∪M+P
k=M+1B2τk

(yk))

|H|2 + εn + Cε2+

+ Λ
(
|Σn \ (∪M+P

k=M+1Bτk(yk))| − |Σ̃n \ (∪M+P
k=M+1Bτk(yk))|

)
.

Using the hypotheses on the surfaces Σ̃n, let us estimate the quantity:

|Σn \ (∪M+P
k=M+1Bτk(yk))| − |Σ̃n \ (∪M+P

k=M+1Bτk(yk))|
≤ |Σn \ (∪M+P

k=M+1B2τk(yk))| − |Σ \ (∪M+P
k=M+1B2τk(yk))|+

+

M+P∑
k=M+1

|Σn ∩B2τk(yk) \ (Bτk(yk) ∪ Vk)|+

− | ∪M+P
k=M+1 Σ̃n ∩B2τk(yk) \ (Bτk(yk) ∪ Vk)| ≤

≤ |Σn \ (∪M+P
k=M+1B2τk(yk))| − |Σ \ (∪M+P

k=M+1B2τk(yk))|+

+

M+P∑
k=M+1

|Σn ∩B2τk(yk) \ (Bτk(yk) ∪ Vk)| ≤

≤ |Σn \ (∪M+P
k=M+1B2τk(yk))| − |Σ \ (∪M+P

k=M+1B2τk(yk))|+

+

M+P∑
k=M+1

|Σn ∩B2τk(yk)|.

Since this is true for all ε > 0, we get:
ˆ

Σn\(∪M+P
k=M+1Bτk (yk))

|Hn|2 ≤
ˆ

Σ\(∪M+P
k=M+1B2τk

(yk))

|H|2 + εn+

+ Λ

(
|Σn \ (∪M+P

k=M+1B2τk(yk))| − |Σ \ (∪M+P
k=M+1B2τk(yk))|+

+

M+P∑
k=M+1

|Σn ∩B2τk(yk)|
)
.
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Since we already know that by the convergence of varifolds we also have |Σn| →M(Σ) = |Σ|, then we get:

lim sup
n

ˆ
Σn\(∪M+P

k=M+1Bτk (yk))

|Hn|2 ≤
ˆ

Σ\(∪M+P
k=M+1B2τk

(yk))

|H|2+

+ lim sup
n

Λ

(
|Σn \ (∪M+P

k=M+1B2τk(yk))| − |Σ \ (∪M+P
k=M+1B2τk(yk))|+

+

M+P∑
k=M+1

|Σn ∩B2τk(yk)|
)

=

=

ˆ
Σ\(∪M+P

k=M+1B2τk
(yk))

|H|2 + Λ

M+P∑
k=M+1

|Σ ∩B2τk(yk)|.

Hence finally:

lim
σ↘0

lim sup
n

ˆ
Σn\(∪M+P

k=M+1Bσ(yk))

|Hn|2 ≤ lim
σ↘0

ˆ
Σ\(∪M+P

k=M+1Bσ(yk))

|H|2 =

ˆ
Σ

|H|2. (33)

Combining this with the natural lower semicontinuity of the Willmore functional under varifold convergence, we
establish that:

|Hn|2H2 ¬Σn −→ |H|2H2 ¬Σ (34)

as measures on the domain R3 \ {ξ1, ..., ξP }.
Moreover, with the above notation, we have by the Gauss-Bonnet Theorem that:

ˆ
Σ̃n\(∪M+P

k=M+1Bτk (yk))

|H̃n|2 −
ˆ

Σn\(∪M+P
k=M+1Bτk (yk))

|Hn|2

=
1

4

(ˆ
Σ̃n\(∪M+P

k=M+1Bτk (yk))

|Ãn|2 −
ˆ

Σn\(∪M+P
k=M+1Bτk (yk))

|An|2
)
,

then same conclusions hold for the second fundamental form, that is:

lim
σ↘0

lim sup
n

ˆ
Σn\(∪M+P

k=M+1Bσ(yk))

|An|2 ≤
ˆ

Σ

|A|2, (35)

and:

|An|2H2 ¬Σn −→ |A|2H2 ¬Σ (36)

as measures on the domain R3 \ {ξ1, ..., ξP }.
Finally we prove the claimed regularity of the varifold Σ, that is regularity in the bad points. According to the above
discussion, let us sum up some useful results. For each δ > 0 sufficiently small there is σ ∈ (δ/2, δ) such that:

lim sup
n

ˆ
Σn∩(∪Pi=1B2σ(ξi)\Bσ(ξi))

|An|2 ≤ δ2, (37)

Σn \
( P⋃
i=1

Bσ(ξi)

)
is C1,α-diffeomorphic to Σ \

( P⋃
i=1

Bσ(ξi)

)
, (38)

∣∣∣∣W(Σn \
( P⋃
i=1

Bσ(ξi)

))
−W(Σ)

∣∣∣∣ ≤ δ2. (39)

In particular choosing appropriate δn ↘ 0 and then σn ∈ (δn/2, δn), for all i = 1, ..., P we have:

lim
n
W
(

Σn \
( P⋃
i=1

Bσn(ξi)

))
=W(Σ). (40)

By Equation (38) we have that for σ small enough Σ∩B2σ(ξi)\Bσ(ξi) is C1-close to an annulus Li∩B2σ(ξi)\Bσ(ξi).
Hence we can take a smooth compact surface Σ̃ such that, for suitable points y1, ..., yp ∈ Σ̃ and sufficiently small σ,

Σ̃ \ (∪Pi=1Bσ(yi)) is C1,α-diffeomorphic to Σ \ (∪Pi=1Bσ(ξi)) and such that, for σ = σn as above small enough, it is
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possible to replace Σ̃∩Bσn(yi) by a slight deformation of Σn∩Bσn(ξi) followed by a rigid motion to give (Σn∩Bσn(ξi))
∗

such that the surface

Σ̃n :=

(
Σ̃ \

( P⋃
i=1

Bσn(yi)

))
∪
( P⋃
i=1

(
Σn ∩Bσn(ξi)

)∗)
is C1,α ∩W 2,2 and

WΛ((Σn ∩Bσn(ξi))
∗) ≤ WΛ(Σn ∩Bσn(ξi)) + εn εn ↘ 0. (41)

Using the minimizing property of Σn and then (41), we have:

WΛ(Σn) =WΛ

(
Σn ∩

(⋃
i

Bσn(ξi)

))
+WΛ

(
Σn \

(⋃
i

Bσn(ξi)

))
≤ WΛ(Σ̃n) + εn

≤ WΛ

(
Σn ∩

(⋃
i

Bσn(ξi)

))
+WΛ

(
Σ̃ \

(⋃
i

Bσn(yi)

))
+ (P + 1)εn.

(42)

Hence:

WΛ

(
Σn \

(⋃
i

Bσn(ξi)

))
≤ WΛ

(
Σ̃ \

(⋃
i

Bσn(yi)

))
+ (P + 1)εn,

and by (40) we get:
WΛ(Σ) ≤ WΛ(Σ̃). (43)

Analogously, using Gauss-Bonnet Theorem on the first inequality in (42), being Σn and Σ̃n diffeomorphic, we find:

ˆ
Σ

(
|A|2 − Λ

)
≤
ˆ

Σ̃

(
|Ã|2 − Λ

)
. (44)

Constructing Σ̃ taking a small perturbation of Σ (so that no bad points lie on ∂Ω) and replacing Σ \Bσ(ξi) with the
graph of the function given by Lemma 3.2, by (44) we get the estimate

ˆ
Σ∩Bρ(ξi)

|A|2 ≤ cρα + Λ(|Σ ∩Bρ(ξi)| − |Σ̃ ∩Bρ(ξi)|) ≤ Cρα,

for sufficiently small ρ for some α > 0. Hence actually:
ˆ

Σ∩Bρ(y)

|A|2 ≤ Cρα

for ρ small enough and for all y ∈ Σ, now bad points included. And by classical arguments similar to the ones applied
above in the case of good points one can show that this imply that Σ is a C1,α ∩W 2,2 surface globally (and Σ ∩ Ω
is of class C∞). In particular, arguing by approximation, we have WΛ(Σ) ≥ CΛ and then by lower semicontinuity
WΛ(Σ) = CΛ and by the upper bound on the Willmore energy we also conclude that Σ is embedded.

We conclude this section with some observations on the proof of Theorem 3.3.

Remark 3.4 (Smallness of Λ). The fundamental hypothesis of Theorem 3.3 is to take the weight Λ sufficiently small.
Observe that if CΛΩ = 0 and if there exists a minimizing sequence (ΣΛΩ

n ) for WΛΩ with equibounded areas |ΣΛΩ
n | (i.e.

if W is coercive, by Corollary 2.13), then in the proof of Theorem 3.3 we can take

Λ <
4π

m(ΛΩ)
, (45)

with
m(ΛΩ) = lim

n
|ΣΛΩ
n |, (46)

This estimate is sufficient for completing the proof. Of course the value of m(ΛΩ) depends on the chosen sequence
ΣΛΩ
n . It is interesting to notice that in the case of Ω = B 1

2
, where we know that the sphere S 1

2
of radius 1/2 ia a

minimizer for ΛB 1
2

= 4, we have m(4) = |S 1
2
| = π; hence the estimate (45) gives Λ < 4, that is precisely the critical

parameter ΛB 1
2

= 4, so in this case the estimate is sharp, excluding only the limit case of WΛΩ .

It could be a future development to prove or disprove the convergence to an enough regular surface for greater
parameters Λ and in particular for the critical value ΛΩ, perhaps using the more modern theory of [28].
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Remark 3.5 (Regularity of the limit surface). We derived the existence of a globally C1,α ∩W 2,2 surface Σ that it is
actually C∞ inside Ω, so if we know that Σ ⊂ Ω then Σ is actually a smooth surface and hence a classical solution of
the Problem (P )Ω,Λ. Also, ∂Ω is of class C2 by hypothesis, so on each relatively open set A ⊂ (Σ ∩ ∂Ω), the surface
is actually C2.
However, we want to notice here that it is not obvious that Σ is globally C2. In fact the smoothness of the surface
inside Ω is obtained by the Elliptic Regularity Lemma A.5 used on Equation (29), that is an equation given by the
first variation of a functional, so it is something like d

dtF (w + tϕ)|t=0 = 0 for the appropriate functional F . While
this calculation is possible inside Ω, on ∂Ω this leads only to a variational inequality of the fourth order subject to an
obstacle boundary condition (given by the boundary of Ω), for which the development of a regularity theory is quite
more difficult. Very remarkable results are proved in [5], where it is studied the variational inequality of the bilaplacian
∆2 subject to obstacle boundary conditions; here it is proved that in dimension 2 (that is also our case) the solution
in C2. Of course our case is different, since the elliptic operator is nonlinear (recall (29)), but it is likely that we could
achieve the same conclusion, having then Σ of class C2 globally and C∞ inside Ω (hence getting a classical minimizer
for the variational problem). This can be another possible development of the work, having also an interest itself in
the theory of regularity for elliptic problems.

A Appendix

In the Appendix we collect the technical results used in the proof of Theorem 3.3 and some basic facts about varifold
theory.

Lemma A.1 ([34]). Let Σ be a compact surface without boundary, let Bρ be an open ball such that ∂Bρ intersects Σ
transversely and Σ ∩ Bρ contains disjoint subsets Σ1,Σ2 with Σj ∩ Bθρ 6= ∅, ∂Σj ⊂ ∂Bρ and |∂Σj | ≤ βρ for j = 1, 2,
where θ ∈ (0, 1

2 ) and β > 0. Then
W(Σ) ≥ 8π − Cβθ,

with C independent of Σ, β, θ.

Lemma A.2 (Selection Principle, [34]). If δ > 0, if I ⊂ R is a bounded interval and if Aj ⊂ I is a measurable set
with measure ≥ δ for each j = 1, 2, ..., then there exists a set S ⊂ I of measure ≥ δ such that each x ∈ S lies in Aj
for infinitely many j.

Here we have the results leading to the decay estimate (28). Results of this kind are standard, however usually stated
under more general forms; since we needed only the following more simple decay estimates, we prove such inequalities
here for the convenience of the reader.

Lemma A.3. Let f : (0, x0]→ [0,+∞) such that f(x0) > 0, f is non decreasing and:

f

(
x

2

)
≤ γf(x)

for all x ∈ (0, x0] for some γ ∈ (0, 1). Then there are C > 0, β ∈ (0, 1) such that:

f(x) ≤ C
(
x

x0

)β
f(x0)

for all x ∈ (0, x0].

Proof. For all x ∈ (0, x0/2] there is n such that 2nx := x′ ∈ (x0/2, x0]. Then:

f(x) ≤ γnf(x′) = 2−n log2(1/γ)f(x′) =

(
x

x′

)log2(1/γ)

f(x′)

=

(
x

x0

)log2(1/γ)(
x0

x′

)log2(1/γ)

f(x′) ≤ 1

γ

(
x

x0

)log2(1/γ)

f(x0).

For all x ∈ (x0/2, x0]:

f(x) =
1

γ

(
1

2

)log2(1/γ)

f(x) ≤ 1

γ

(
x

x0

)log2(1/γ)

f(x0).

Now if log2(1/γ) < 1 we are done, otherwise, since x/x0 ≤ 1 for all x, we can choose an arbitrary β ∈ (0, 1) and we
have (x/x0)log2(1/γ) ≤ (x/x0)β .
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Corollary A.4. Let f : (0, x0]→ [0,+∞) such that f(x0) > 0, f is non decreasing and:

f

(
x

2

)
≤ γf(x) + αx2

for all x ∈ (0, x0] for some γ ∈ (1/2, 1), α ∈ (0, 1/8). Then there are C > 0, β ∈ (0, 1) such that:

f(x) ≤ C
(
x

x0

)β
f(x0)

for all x ∈ (0, x0].

Proof. Let h(x) = f(x) + x2. We have:

h

(
x

2

)
= f

(
x

2

)
+
x2

4
≤ γf(x) +

(
α+

1

4

)
x2 ≤ γh(x).

Applying Lemma A.3 and taking a > 0 such that x2
0 ≤ af(x0) we obtain:

f(x) ≤ h(x) ≤ K
(
x

x0

)β
h(x0) = K

(
x

x0

)β
(f(x0) + x2

0) ≤ C
(
x

x0

)β
f(x0),

with C = K(1 + a).

Lemma A.5 (Elliptic Regularity, [34]). Let β, γ, L > 0, B2 = {x ∈ R2 : |x| < 1} and let

u = (u1, ..., um) ∈W 2,2(B2;Rm) ∩ C1,γ(B2;Rm)

be such that |u|+ |Du| ≤ 1 and: ˆ
B2∩{x:|x−ξ|<ρ}

|D2u|2 ≤ βρ2γ

for each ξ ∈ B2 and ρ < 1. Moreover suppose that u is a weak solution of the system:

DjDs(A
ijrs
αβ (x, u,Du)DiDru

β) +DjB
j
α(x, u,Du,D2u) +B0

α(x, u,Du,D2u) = 0

where Aijrsαβ = Aijrsαβ (x, z, p) and Bjα = Bjα(x, z, p, q) satisfy:∑
i,j,r,s,α,β

Aijrsαβ ξαijξ
β
rs ≥ L−1

∑
i,j,α

|ξαij |2,

|Aijrsαβ (x, z, p)| ≤ L, |D(x,z,p)A
ijrs
αβ (x, z, p)| ≤ L,

|Bjα(x, z, p, q)|+ |D(x,z,p)B
j
α(x, z, p, q)| ≤ L(1 + |q|2),

|DqB
j
α(x, z, p, q)| ≤ L(1 + |q|),

for all |z|+ |p| ≤ 1 where DPF means the tensor of all first derivatives with respect to the variables P .
Then u ∈W 3,2

loc (B2) ∩ C2,α.

Finally, we list some facts about theory of varifolds that we used in the work.

Theorem A.6 (Compactness of Varifolds, [1] and [33]). Let Vn = v(Mn, θn) be a sequence of 2-rectifiable varifolds
in U ⊂ R3 open such that:

(1) sup
n
µVn(W ) + ||δVn||(W ) < +∞ ∀W ⊂⊂ U,

(2) ∃Θ(Vn, x) ≥ 1 on U \An : µVn(An ∩W )→ 0 ∀W ⊂⊂ U,

where µV denotes the Radon measure on U induced by a varifold V and δV is its first variation, and where Θ(V, x) :=

limr↘0
µV (Br(x))

πr2 . Then there exists a subsequence Vnk converging to a rectifiable varifold V with locally bounded first
variation with the properties that:

∃Θ(µV , x) ≥ 1 µV -ae in U,

lim inf
n
||δVn||(W ) ≥ ||δV ||(W ) ∀W ⊂⊂ U.

Moreover if each Vnk is integer, then V is integer too.
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Remark A.7. It is very important to observe that if in Theorem A.6 the varifolds Vn are integer, then the hypothesis
(2) is automatically satisfied (with sets such that µVn(An) = 0).

Also, we remind the concept of F-metric ([23], page 66) used in the proof of Theorem 2.11, defined as follows.

Definition A.8. The F-metric on V2(U), that is the set of 2-rectifiable integer varifolds with support contained in
the open U ⊂ R3, is defined as:

F(V,W ) = sup{V (f)−W (f) : f ∈ Cc(Gn(Rn+k)), |f | ≤ 1, Lip(f) ≤ 1}. (47)

And we have the useful:

Lemma A.9 ([23], page 66). In sets V2(U) ∩ {V : M(V ) ≤ C < +∞} with U ⊂ Rn+k open, the convergence of
varifolds is equivalent to the convergence in the F-metric.
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