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Abstract. We consider optimal control problems where the state equation is an elliptic
PDE of a Schrödinger type, governed by the Laplace operator −∆ with the addition of a
potential V , and the control is the potential V itself, that may vary in a suitable admissible
class. In a previous paper (Ref. [10]) an existence result was established under a monotonic-
ity assumption on the cost functional, which occurs if the data do not change sign. In the
present paper this sign assumption is removed and the existence of an optimal potential is
still valid. Several numerical simulations, made by FreeFem++, are shown.
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1. Introduction and statement of the problem

In the present paper we consider optimization problems of the form

min

{∫
D
g(x)u(x) dx : −∆u+ V u = f, u ∈ H1

0 (D), V ∈ V
}
. (1.1)

Here D is a fixed bounded domain of Rd, f and g are two given functions in L2(D), and the
potential V may vary in the admissible class V which is described below. Problem (1.1) is
then an optimal control problem where H1

0 (D) is the space of states, V is the set of admissible
controls, −∆u+ V u = f is the state equation, and

∫
D g(x)u(x) dx is the cost functional.

Problems of this form have been considered in [10] under some assumptions on the admis-
sible class V. In particular, the admissible class V was taken of the form

V =

{
V : D → [0,+∞] : V Lebesgue measurable,

∫
D

Ψ(V ) dx ≤ 1

}
, (1.2)

with a function Ψ satisfying some appropriate qualitative conditions. For instance, in order
to approximate shape optimization problems with Dirichlet condition on the free boundary,
the choice

Ψ(s) = e−αs

with α small, was proposed. More precisely, as α → 0 the problems with the parameter
α were shown to Γ-converge to the shape optimization problem with a volume constraint
|Ω| ≤ 1 being Ω the shape variable. The existence of an optimal potential Vopt was shown
under the key assumption (see Theorem 4.1 of [10]) to have a cost functional depending on
the potential V in a monotonically increasing way. This occurs, by the maximum principle,
when f ≥ 0 and g ≤ 0 (or symmetrically, when f ≤ 0 and g ≥ 0), and in this case the
constraint is saturated, that is

∫
D Ψ(Vopt) dx = 1.

When the data f and g are allowed to change sign, the structure of the proof above is not
valid any more and the question of the existence of an optimal potential was open. Similar
questions arise for shape optimization problems, where again the monotonicity of the cost
plays a crucial role.

The case of shape optimization problems with changing sign data was recently considered
in [11] where a new approach was proposed, allowing to obtain the existence of optimal shapes
in a larger framework allowing general functions f and g. We adopt here an approach similar
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to the one of [11], adapted to the case of potentials. Of course, when f and g may change
sign, the constraint does not need to be saturated, in the sense that it is possible to have
some situations in which there is an optimal potential Vopt such that

∫
D Ψ(Vopt) dx < 1.

Problems of the kind considered here naturally appear in variational problems with un-
certainty, where the right-hand side f is only known up to a probability P on L2(D) (see
for instance [11] for the shape optimization framework). Other kinds of uncertainties can be
treated by the so-called worst case analysis; in the case of shape optimization problems we
refer for this topic to [2], to [3] and to the references therein.

We stress the fact that the assumption that the cost function is linear with respect the state
variable u is crucial; otherwise simple examples show that an optimal shape or an optimal
potential may not exist (see for instance [6], [8] and [9]) and the optimal solution only exists
in a relaxed sense in the space of capacitary measures, introduced in [12]. The assumption
that D is bounded is also crucial, since the characterization of the relaxed formulation of
Dirichlet problems is available under this assumption (see for instance [6], [12]). In the case
of spectral optimization problems the case D = Rd has been studied and the existence of
optimal domains has been obtained in several situations (see [4], [5] and [14]); even if it
is not the goal of the present paper, it would be interesting to generalize the existence of
optimal potentials to the case D unbounded, this would require additional tools that are at
the moment unavailable.

The paper is organized as follows. In Section 2 we give the precise statement of the existence
result (Theorem 2.5) and its proof. In Section 3 we provide some necessary conditions
(Proposition 3.5 and Proposition 3.6) the optimal potentials have to fulfill. Finally, in Section
4 we provide several numerical simulations that show the optimal potentials in some two
dimensional cases.

2. Existence of optimal potentials

In this section we consider the optimization problem (1.1) in the admissible class V defined
in (1.2). On the function Ψ : [0,+∞]→ [0,+∞] we assume that:

(i) Ψ is strictly decreasing;
(ii) there exist p > 1 such that the function s 7→ Ψ−1(sp) is convex.

For instance the following functions:

(1) Ψ(s) = s−p, for any p > 0,
(2) Ψ(s) = e−αs, for any α > 0,

satisfy the assumptions (i) and (ii) above. Moreover, we will also assume that the admissible
class V is nonempty. We notice that this is equivalent to the assumption that |D|Ψ(+∞) ≤ 1.
Indeed, if V is nonempty, then the monotonicity assumption (i) implies that |D|Ψ(+∞) ≤ 1.
On the other hand, if |D|Ψ(+∞) ≤ 1, then the potential V ≡ +∞ belongs to the class V.

Capacitary measures. The relaxed form of the optimization problem (1.1) is expressed in
terms of the so called capacitary measures. In this subsection we briefly recall the definition
and the main properties of these measures. For all the details about capacitary measures
and their use in optimization problems we refer to the book [6].

A capacitary measure µ is a nonnegative Borel measure on D, possibly taking the value
+∞, that vanishes on all sets of capacity zero (here the capacity is intended with respect to
the H1 norm). In particular, if two functions are in the same class of equivalence of H1

0 (D),
then they are also in the same class of equivalence of L2(µ). Thus the space H1

0 (D) ∩ L2(µ)
is a well-defined Hilbert space endowed with the norm

‖u‖ =
(
‖∇u‖2L2(D) + ‖u‖2L2(µ)

)1/2
.

We say that u ∈ H1
0 (D) ∩ L2(µ) is a solution of the problem

−∆u+ µu = f, u ∈ H1
0 (D) ∩ L2(µ),
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for a function f ∈ L2(D), if∫
D
∇u∇φdx+

∫
D
uφ dµ =

∫
D
fφ dx ∀φ ∈ H1

0 (D) ∩ L2(µ), (2.1)

or equivalently, if u is the (unique, due to the strict convexity of the functional) minimizer
in H1

0 (D) ∩ L2(µ) of the functional

H1
0 (D) ∩ L2(µ) 3 u 7→ 1

2

∫
D
|∇u|2 dx+

1

2

∫
D
u2 dµ−

∫
D
uf dx.

We define the associated resolvent operator Rµ : L2(D)→ L2(D) as Rµ(f) := u ∈ H1
0 (D) ∩

L2(µ) and we notice that Rµ is a compact positive self-adjoint operator.
Analogously, for every function F in the dual space (H1

0 (D) ∩ L2(µ))′ we can define the
solution u = Rµ(F ) of the problem

−∆u+ µu = F, u ∈ H1
0 (D) ∩ L2(µ),

in a weak sense or, equivalently, as the minimizer of the functional

H1
0 (D) ∩ L2(µ) 3 u 7→ 1

2

∫
D
|∇u|2 dx+

1

2

∫
D
u2 dµ− F (u).

Remark 2.1. We notice that, if ν1 ≤ µ and ν2 ≤ µ are two capacitary measures and f1, f2 ∈
L2(µ) are two given functions, then the functional F : H1

0 (D) ∩ L2(µ)→ R defined by

F (u) =

∫
D
uf1 dν1 −

∫
D
uf2 dν2,

is in the dual space
(
H1

0 (D) ∩ L2(µ)
)′

and so the solution Rµ(f1ν1 − f2ν2) does exists.

Remark 2.2. The linear functional Rµ :
(
H1

0 (D) ∩ L2(µ)
)′ → H1

0 (D) ∩ L2(µ) defined above

remains symmetric, that is, for every F1, F2 ∈
(
H1

0 (D) ∩ L2(µ)
)′

we have∫
D
F1Rµ(F2) dx =

∫
D
∇Rµ(F1) · ∇Rµ(F2) dx+

∫
D
Rµ(F1)Rµ(F2) dµ =

∫
D
Rµ(F1)F2 dx,

where slightly abusing the notation we have set
∫
D F1Rµ(F2) dx := F1(Rµ(F2)).

The γ-convergence. The space of capacitary measures over a domain D of finite Lebesgue
measure can be endowed with the structure of a metric space, whose distance dγ is appositely
designed to treat optimization problems involving solutions of PDEs; the convergence with
respect to this metric is called γ-convergence. The main properties of the γ-convergence (see
for example [6] for more details) are the following:

• The space of capacitary measures endowed with distance dγ is a compact metric
space.
• If a sequence of capacitary measures (µn)n∈N γ-converges to the capacitary measure
µ, then for every f ∈ L2(D) the sequence of solutions Rµn(f) converges to Rµ(f)
strongly in L2(D) and H1

0 (D).
• The non-negative potentials, that is the capacitary measures absolutely continuous

with respect to the Lebesgue measure, are dense in the metric space of all capacitary
measures.

The admissible class of potentials and its relaxation. Let us first specify the action
of a potential V ∈ V on the state equation

−∆u+ V u = f, u ∈ H1
0 (D) ∩ L2(V ).

By this we mean the equation (2.1), where the capacitary measure µ associated to V is
defined as:

µ(A) =

{∫
A V (x) dx if cap

(
A ∩ {V = +∞}

)
= 0

+∞ if cap
(
A ∩ {V = +∞}

)
> 0,
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which implies u = 0 quasi-everywhere on the set {V = +∞}. Slightly abusing the terminology
in the following we identify µ and V .

Let us denote by V the family of capacitary measures µ obtained as limits (with respect
to the γ-distance) of sequences (Vn) of potentials in V. These measures can be written as
µ = V + µs, where V ∈ V and µs is singular with respect to the Lebesgue measure and with
µs
(
{V = +∞}

)
= 0. This fact is non-trivial, so we give the proof in the following Lemma.

Lemma 2.3. Let D ⊂ Rd be a bounded open set and let Ψ satisfy the assumptions i) and ii)
above. Then every µ ∈ V is of the form µ = V +µs with V ∈ V, and µs singular with respect
to the Lebesgue measure and with µs

(
{V = +∞}

)
= 0.

Proof. Let Vn ∈ V be a given sequence. Then, vn =
(
Ψ(Vn)

)1/p
is a bounded sequence

in Lp(D) and so, up to a subsequence, vn converges weakly in Lp(D) to some nonnegative
function v. Let W = Ψ−1(vp). Notice that by the weak lower semicontinuity of the Lp norm
and the fact that Ψ(W ) = vp we get that

∫
D Ψ(W ) dx ≤ 1.

Moreover, since the γ-convergence is compact, we may assume that, up to a subsequence,
Vn γ-converges to a capacitary measure µ. By the definition of γ-convergence, we have that
for any u ∈ H1

0 (D), there is a sequence un ∈ H1
0 (D) which converges to u in L2(D) and is

such that ∫
D
|∇u|2 dx+

∫
D
u2 dµ = lim

n→∞

∫
D
|∇un|2 dx+

∫
D
u2
nVn dx

≥ lim
n→∞

∫
D
|∇un|2 dx+

∫
D
u2
nΨ−1(vpn) dx

≥
∫
D
|∇u|2 dx+

∫
D
u2Ψ−1(vp) dx

=

∫
D
|∇u|2 dx+

∫
D
u2W dx,

where the inequality above is due to the strong-weak lower semicontinuity of integral func-
tionals (see for instance Theorem 2.3.1 of [7]), which follows by the assumptions made on the
function Ψ. Thus, for any u ∈ H1

0 (D), we have∫
D
u2 dµ ≥

∫
D
u2W dx,

which gives W ≤ µ. If we now write µ = V +µs with µs singular with respect to the Lebesgue
measure and with µs

(
{V = +∞}

)
= 0, by the monotonicity of Ψ and by the fact that W ≤ V

we obtain ∫
D

Ψ(V ) dx ≤
∫
D

Ψ(W ) dx ≤ 1,

which shows that V ∈ V. �

Existence of optimal potentials. The relaxed problem associated to (1.1) is

min

{∫
D
g(x)u(x) dx : −∆u+ µu = f, u ∈ H1

0 (D) ∩ L2(µ), µ ∈ V
}
. (2.2)

Since the class of capacitary measures is known to be compact with respect to the γ con-
vergence, the relaxed problem (2.2) admits a solution µ ∈ V. We aim to show that we can
actually find a solution in the original admissible class V. We start by a lemma which shows
that the cost functional is analytic.

Lemma 2.4. Suppose that µ and ν are two capacitary measures such that ν ≤ µ. Then the
function

φ(t) :=

∫
D
Rµ+tν(f)g dx
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is analytic on (−1,+∞) and, for every t ∈ (−1, 1),

φ(t) =

∫
D
Rµ(f)g dx+

∞∑
k=1

(−1)ktk
∫
D
Rµ(f)gk dν, (2.3)

where g1 = Rµ(g) and, for k ≥ 1, gk+1 = Rµ(gkν).

Proof. We set for the sake of simplicity ut := Rµ+tν(f). Now, since L2(µ) = L2(µ + tν) for
t ∈ (−1,+∞), we have that ut = Rµ(f − tνut), where the right-hand side is well defined,
again by Remark 2.1. We first claim that for every n ≥ 1 we have

φ(t) =

∫
D
Rµ(f)g dx+

n∑
k=1

(−1)ktk
∫
D
Rµ(f)gk dν + (−1)n+1tn+1

∫
D
utgn+1 dν. (2.4)

We argue by induction. The claim for n = 1 holds, since by Remark 2.2 we have

φ(t) =

∫
D
Rµ(f − tνut)g dx =

∫
D

(f − tνut)Rµ(g) =

∫
D
fRµ(g) dx− t

∫
D
utRµ(g) dν

=

∫
D
fRµ(g) dx− t

∫
D
Rµ(f − tνut)Rµ(g) dν

=

∫
D
fRµ(g) dx− t

∫
D
Rµ(f)Rµ(g) dν + t2

∫
D
Rµ(νut)Rµ(g) dν

=

∫
D
fRµ(g) dx− t

∫
D
Rµ(f)Rµ(g) dν + t2

∫
D
Rµ(Rµ(g)ν)ut dν.

In order to get the claim for every n, we notice that∫
D
utgn+1 dν =

∫
D
Rµ(f − tνut)gn+1 dν =

∫
D
Rµ(f)gn+1 dν − t

∫
D
utRµ(gn+1ν) dν,

which, together with the relation gn+2 = Rµ(gn+1ν), concludes the proof of (2.4).
We now claim that for every n ≥ 1 we have ‖gn+1‖L2(µ) ≤ ‖gn‖L2(µ). Indeed, by the

defintion of gn+1 = Rµ(gnν) we get that

‖gn+1‖2L2(µ) ≤
∫
D
|∇gn+1|2 dx+

∫
D
g2
n+1 dµ =

∫
D
gngn+1 dν

≤ ‖gn+1‖L2(ν)‖gn‖L2(ν) ≤ ‖gn+1‖L2(µ)‖gn‖L2(µ),

where in the last inequality we used that ν ≤ µ. In particular, this implies that the radius
of convergence of the series in the right-hand side of (2.3) is at least one.

We now claim that φ is analytic on (−1, 1) and that (2.3) holds for t ∈ (−1, 1). Indeed,
it is sufficient to estimate the last term in the right-hand side of the Taylor expansion (2.4).
To do so, we notice that for every δ ∈ (0, 1) and |t| ≤ 1− δ we have that µ+ tν ≥ δµ and

δ‖ut‖2L2(µ) ≤
∫
D
|∇ut|2 dx+

∫
D
u2
t d(µ+ tν) =

∫
D
utf dx ≤ ‖ut‖L2‖f‖L2 ≤ C‖∇ut‖L2‖f‖L2 ,

where C is the constant from the Poincaré inequality on D. We deduce that

‖∇ut‖L2 ≤ C‖f‖L2 and ‖ut‖L2(µ) ≤
C‖f‖L2√

δ
,

and we can estimate the error in (2.4) as∫
D
utgn+1 dν ≤ ‖ut‖L2(µ)‖gn+1‖L2(µ) ≤

C‖f‖L2√
δ
‖g1‖L2(µ),

which implies that (2.3) holds for t ∈ (−1, 1). In order to conclude the proof of the lemma,
it is sufficient to notice that, by the same argument as above, the function φ is analytic on
every interval

(
n−1

2 , n+1
2

)
, n ∈ N. �

We are now in a position to prove the existence of an optimal potential in the original
class V.
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Theorem 2.5. Let D ⊂ Rd be a bounded open set and let Ψ satisfy the assumptions i) and
ii) above. Then, for every f, g ∈ L2(D), the optimization problem (1.1) has a solution.

Proof. Let µ ∈ V be a solution of the relaxed problem (2.2). Then, by Lemma 2.3 µ is
of the form V + µs, where V ∈ V, µs singular with respect to the Lebesgue measure and
µs
(
{V = +∞}

)
= 0. Notice that we can assume

{Rµ(f) = 0} ∩ {Rµ(g) = 0} = {V = +∞},

by setting µ = +∞ on the set {Rµ(f) = 0} ∩ {Rµ(f) = 0}. This capacitary measure is still
admissible by the monotonicity of the function Ψ and has the same cost functional. Now, by
the optimality of µ and Lemma 2.4, with ν = ϕµs for some continuous function 0 ≤ ϕ ≤ 1,
we get that the function φ(t) attains its minimum for t = 0. Thus,

φ′(0) =

∫
D
Rµ(f)Rµ(g)ϕdµs = 0,

and since ϕ is arbitrary we get

Rµ(f)Rµ(g) = 0 µs − almost everywhere.

Now let νf := 1{Rµ(f) 6=0}µ
s and νg := 1{Rµ(g)6=0}µ

s. Thus µs = νf + νg.
Applying again Lemma 2.4, this time to ν = νg (and also to ν = νf ), we obtain that

Rµ(f) dνg ≡ 0 (and analogously Rµ(g) dνf ≡ 0) and so, the analytic function φ is identically
zero. In particular,∫

D
Rµ(f)g dx =

∫
D
Rµ+tνg(f)g dx, for every t ≥ 0.

Thus, µ+ tνg is still optimal and applying again Lemma 2.4 to µ+ tνg and νf we get that∫
D
Rµ(f)g dx =

∫
D
R(µ+tνg)+tνf (f)g dx =

∫
D
Rµ+tµs(f)g dx, for every t ≥ 0.

Passing to the limit as t → ∞, we get that µ + tµs γ-converges to the measure V = µ +
(+∞)µs = µ + (+∞)1{Rµ(f)Rµ(g)=0}, which belongs to the admissible class V. Thus, V is a
solution of the original problem (1.1). �

3. Necessary conditions of optimality

We start by a Lemma which applies to a general optimal capacitary measure µ.

Lemma 3.1. Let µ be a capacitary measure in the bounded domain D ⊂ Rd. Then, there is
a constant C, depending only on D, such that if ϕ : D → R satisfies ‖ϕ‖L∞ ≤ C, then the
function ε 7→

∫
D Rµ+εϕ(f)g dx is differentiable in zero and

d

dε

∣∣∣
ε=0

∫
D
Rµ+εϕ(f)g dx = −

∫
D
Rµ(f)Rµ(g)ϕ(x) dx. (3.1)

Proof. For every ε > 0 let µε = µ+ εϕ. Let u = Rµ(f) and uε denote the solutions of

−∆u+ µu = f in D, u ∈ H1
0 (D) ∩ L2(µ),

−∆uε + µεuε = f in D, uε ∈ H1
0 (D) ∩ L2(µε),

where we notice that in order to have a solution of the second equation we have to choose
C to be smaller than the first eigenvalue of the Dirichlet Laplacian on the domain D. Thus,
H1

0 (D) ∩ L2(µε) = H1
0 (D) ∩ L2(µ) and, setting wε = (uε − u)/ε, we have

−∆wε + µwε = −ϕuε, wε ∈ H1
0 (D) ∩ L2(µ), (3.2)

and
1

ε

(∫
D
Rµ+εϕ(f)g dx−

∫
D
Rµ(f)g dx

)
=

∫
D
g(x)wε(x) dx .
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Since µε is γ-converging to µ we have that uε tends to u in L2(D) and, by (3.2) we obtain
that wε tends to w in L2(D), where w solves

−∆w + µw = −ϕu in D, u ∈ H1
0 (D) ∩ L2(µ) .

Since the resolvent operator Rµ of −∆ + µ is self-adjoint, we have

d

dε

∣∣∣
ε=0

∫
D
Rµ+εϕ(f)g dx =

∫
D
g(x)w(x) dx =

∫
D
g(x)Rµ(−ϕu) dx = −

∫
D
Rµ(g)ϕudx,

which concludes the proof. �

The above Lemma allows us to deduce several optimality conditions for both the solutions
of the relaxed problem (2.2) and of the original problem (1.1).

Proposition 3.2. Suppose that µ is a solution of the relaxed optimization problem (2.2) on
the bounded domain D ⊂ Rd. Then

Rµ(f)Rµ(g) ≤ 0 a.e. on D. (3.3)

Moreover, the above inequality holds quasi-everywhere on D.

Proof. Let µ be a solution of the relaxed optimization problem (2.2). In particular, µ ∈ V,
so there is a sequence Vn ∈ V which γ-converges to µ. Let ϕ : D → R+ be a bounded non-
negative function and ε ≥ 0. By the monotonicity of Ψ, we have that

∫
D Ψ(Vn + εϕ) dx ≤∫

D Ψ(Vn) dx ≤ 1. Thus Vn + εϕ ∈ V. Now since Vn + εϕ γ-converges to µ+ εϕ, we get that

µ+ εϕ ∈ V. In particular, we have that

d

dε

∣∣∣
ε=0

∫
D
Rµ+εϕ(f)g dx =

∫
D
g(x)w(x) dx = −

∫
D
Rµ(g)Rµ(f)ϕdx ≥ 0,

and since ϕ is arbitrary, we obtain (3.3). Finally, the last claim is a consequence of a standard
argument since Rµ(f) and Rµ(g) are Sobolev functions. �

Remark 3.3 (An optimality condition for the optimal potentials). Proposition 3.2 allows us
to obtain the following necessary condition for a potential V solution of the optimization
problem (1.1), whose existence follows from Theorem 2.5. We have

RV (f)RV (g) ≤ 0 a.e. on D. (3.4)

Indeed, the optimal potential V solves also the relaxed problem (2.2), hence Proposition 3.2
applies.

Saturation of the constraint. Let V ∈ V be a solution of (1.1). In general, one cannot
expect that the constraint

∫
D Ψ(V ) dx ≤ 1 is saturated (see for example [11] for the case

of shape optimization problems). In this case however, we may obtain that the optimal
potential V can be reduced to be a domain Ω, that is V = 0 on Ω and V = +∞ on Ωc.
Indeed, suppose that

∫
D Ψ(V ) dx < 1, consider the set {δ ≤ V ≤ 1/δ} for some δ ≥ 0, and a

bounded function ϕ : {δ ≤ V ≤ 1/δ} → R. Thus, for ε small enough, the function V + εϕ is
admissible. Now since δ and ϕ are arbitrary, we get by Lemma 3.1

RV (f)RV (g) = 0 a.e. on {0 < V < +∞}. (3.5)

Now, arguing as in the proof of Theorem 2.5 we get that the potential +∞ · V (see (3.6))
is also a solution of (1.1). We also notice that +∞ · V can be replaced by a quasi-open set.
Indeed, by the general theory of Sobolev spaces on measurable domains (see [6]), we know
there is a quasi-open set Ω ⊂ {V = 0} (the inclusion holds up to a set of zero capacity) such
that H1

0 (Ω) = H1
0 ({V = 0}), which means that the potentials

+∞ · V :=

{
0 on {V = 0}
+∞ on {V > 0}

and VΩ :=

{
0 on Ω

+∞ on Ωc
(3.6)
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generate the same Sobolev space and so have the same cost functional, while the constraint
(1.2) remains clearly satisfied by VΩ that is∫

D
gRVΩ

(f) dx =

∫
D
gRV (f) dx and

∫
D

Ψ(VΩ) dx ≤
∫
D

Ψ(V ) dx. (3.7)

This fact have several important consequences, which we describe below.

Remark 3.4. Let Ψ be the function describing the admissible constraint V in (1.2). Then we
consider two cases:
• If Ψ(0) = +∞, which occurs for instance in the case Ψ(s) = s−p with p > 0, then

(see Proposition 3.5 below) we obtain that either there exists an optimal potential V which
saturates the constraint, or V ≡ +∞ is a solution (corresponding to the domain Ω = ∅).
• On the contrary, if Ψ(0) < +∞, which for instance occurs in the case Ψ(s) = e−αs with

α > 0, we have (see Proposition 3.6 below) that either an optimal potential V saturates the
constraint, or we have an optimal solution which is a domain, that is a potential V assuming
only the values 0 and +∞.

We now give the precise statements of the results in the Remark above.

Proposition 3.5. Suppose that Ψ : [0,+∞] → [0,+∞] satisfies the conditions (i) and (ii),
and is such that Ψ(0) = +∞. Suppose, moreover, that the minimum value of (1.1) is
non-zero. Then for every solution V of (1.1) the constraint is saturated,

∫
D Ψ(V ) dx = 1.

Moreover, if Ψ is differentiable with Ψ′ < 0, then there is a non-zero Lagrange multiplier
Λ ∈ R such that

RV (f)RV (g) = ΛΨ′(V ) a.e. on the set {0 < V < +∞}.
Proof. Let V be an optimal potential, for which the constraint is not saturated, and let Ω
be as in (3.6). Then VΩ is still a solution of (1.1). On the other hand, again by (3.7),∫
{V=0}Ψ(0) dx ≤

∫
D Ψ(+∞ · V ) dx ≤ 1 and, since Ψ(0) = +∞, we get that |{V = 0}| = 0.

This means that Ω = ∅ and thus the minimum value of (1.1) is zero, which concludes the
proof of the first part of the Proposition. For the last claim, it is sufficient to notice that
on the set {0 < V < +∞} the constraint is differentiable, so the existence of the Lagrange
multiplier on this set follows by a classical result. �

Proposition 3.6. Suppose that Ψ : [0,+∞] → [0,+∞] satisfies the conditions (i) and (ii),
and is such that Ψ(0) < +∞. Let V be a solution of (1.1) for which the constraint is
not saturated:

∫
D Ψ(V ) dx < 1. Then the quasi-open set Ω from (3.6) solves the shape

optimization problem

min
{∫

D
gRΩ(f) dx : Ω ⊂ D, |Ω| ≤ CΨ

}
, where CΨ :=

1− |D|Ψ(+∞)

Ψ(0)−Ψ(+∞)
. (3.8)

Proof. The fact that Ω solves (3.8) follows since VΩ is a solution (1.1), which in turn is a
consequence of (3.7). Notice that the constraint |Ω| ≤ CΨ corresponds to the bound

1 ≥
∫
D

Ψ(VΩ) dx = |Ω|Ψ(0) + |D \ Ω|Ψ(+∞). �

4. Some numerical simulations

In this section we present and show a numerical method in order to solve a problem of
the kind of (1.1). We would like to introduce some numerical experiments which let us
understand some qualitative properties of the optimizers and underline the phenomenon of
the non saturation of the volume constraint.

We start showing how to get a gradient descent direction. Later we describe an algorithm
for the optimization problem and finally we show some numerical experiments for some
function g and different choices of the function f which have non-constant sign, and diverse
functions Ψ(V ) = exp(−αV )/m for different values of α > 0 and m ∈ (0, 1) in order to
impose different volume constraints.
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4.1. First derivative. Our goal is to solve numerically minimization problems of the form
(1.1):

min
{∫

D
g(x)u(x) dx :

∫
D
e−αV (x) dx ≤ m

}
, (4.1)

where α > 0 and m > 0 are given, u is the solution of the state equation

−∆u+ V u = f in D, u = 0 on ∂D, (4.2)

and the optimal potential V : D → [0,+∞] is a Lebesgue measurable function. In the case
of shape optimization problems a domain Ω ⊂ D is associated to the potential VΩ defined in
(3.6), so that

|Ω| =
∫
D
e−αVΩ(x) dx.

We start with the computation of the derivative of the cost functional (4.1) with respect
to V , in order to apply a optimization algorithms (see, for instance, [1] and [15]). This part
is standard but we consider the computation of the derivative is necessary in order to apply
the optimization algorithms in the next section. We show it for completeness.

Let us assume V and V ′ two admissible potentials and let us compute formally the deriv-
ative of the cost functional

I(V ) =

∫
D
g(x)u(x) dx

at the position V in the direction V ′. By applying Lemma 3.1 we obtain

dI(V )

dV
· V ′ =

∫
D
V ′(x)u(x)p(x) dx, (4.3)

where p is the unique solution of the adjoint equation

−∆p+ V p = −g in D, p = 0 on ∂D. (4.4)

Then, taking into account formula (4.3), in order to apply a gradient descent method it is
enough to take the direction

V ′(x) = −u(x)p(x).

In order to take into account the volume constraint on V , we introduce the Lagrange
multiplier λ ∈ R and the functional

Iλ(V ) = I(V ) + λ

∫
D
e−αV (x) dx

and therefore,
dIλ(V )

dV
· V ′ =

∫
D
V ′(x)

(
u(x)p(x)− λαe−αV (x)

)
dx, (4.5)

where the multiplier λ is determined in order to ensure the constraint
∫
e−αV (x) dx ≤ m.

Thus, a general gradient algorithm to solve numerically the extremal problem (4.1) - (4.2)
is the following:

• Initialization: choose an admissible V0;
• for k ≥ 0, iterate until convergence as follows:

– compute uk solution of (4.2) and pk solution of (4.4), both corresponding to
V = Vk;

– compute the associated descent direction V ′k given by (4.5) associated to uk and
pk;

– update the potential Vk:

Vk+1 = Vk + ηkV
′
k,

with ηk small enough to ensure the decrease of the cost function.
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4.2. Numerical Simulations. For our numerical experiments we decided to use the free
software FreeFEM++ v 3.50 (see [13] and http://www.freefem.org), complemented with
the library NLopt (see http://ab-initio.mit.edu/wiki/index.php/NLopt) with the use
of the Method of Moving Asymptotes (MMA) as optimizing routing (see [16]). MMA is
a method for non-linear programming in general and structural optimization in particular,
having very effective results for this kind of problems. Moreover, this effective method has
relevant results in problems of different nature, in [3] MMA is applied by the authors to a close
problem having very interesting results. The MMA technique is a gradient method based on a
spatial type of convex approximation where in each iteration a strictly convex approximation
subproblem is generated. For the implementation of this algorithm the main required data
are the initialization V0, the associated routines to the cost and volume function and the
associated routines to the gradient of the cost and volume function using the adjoint state (we
will use the derivatives computed in the previous Subsection 4.1). The admissible potentials
V take values in [0,+∞] but from the numerical point of view it is advisable to constrain
V to take values on a bounded interval [0, Vmax], with Vmax large enough. These data are
required for the algorithm too. We observe that, when V takes its maximal value Vmax, the
state u is very small and practically vanishes, according to the well-posed character of the
extremal problem and the state equation. This is consistent with the necessary conditions of
optimality obtained in Section 3.

We show the numerical result for some experiments. We have made the simulations in the
two dimensional case and we have chosen D = (0, 1)× (0, 1). The optimization criterion we
consider is the minimization of the average solution u = RV (f) on D for a given right-hand
side f , where the potential V varies in the admissible class

V =

{
V ≥ 0,

∫
D
e−αV (x) dx ≤ m

}
.

Therefore, in the following we take g = 1 and we consider various choices for f and for the
parameters α and m. It has to be noticed that, if f ≥ 0, by the maximum principle all
the solutions u are nonnegative, so that the optimization problem has the trivial solution
V = +∞ for which the corresponding state is u = 0.

We use a P2-Lagrange finite element approximations for u and p, solutions of the state and
co-state equations (4.2) and (4.4) respectively, and P0-Lagrange finite element approximations
for the potential V . In our simulations we have considered Vmax = 104 and a regular mesh of
200 × 200 elements, see Figure 1 left. We analyze different cases. For the optimal potential
representation we use a grey scale, where black corresponds to 0 value and white to Vmax.

The first case we consider is when f(x, y) = −(1 + 10x) (see Figure 1 right) and m = 0.2.
We expect that the optimal potential consists of a quasi-ellipsoid-shape placed on the region
where the values of the function f are smaller. For this case we make two different experiments
for various values of the parameter α related to the volume constraint. In Figure 2 left, we
have used α = 0.01 while in Figure 2 right we have used α = 3.10−4. We can observe that
in the first case the optimal potential Vopt is distributed on all the domain D, while in the
second case (when α is small enough) the optimal potential is very close to an optimal shape.

In the subsequent numerical experiments we fix α = 3.10−4 in order to recover optimal
shapes, and we consider various functions f for the right-hand side of the state equation,
where f changes its sign.

In Figure 3 we show the cost evolution in the Example 1, case α = 3.10−4 (the figure for
the other examples are similar). With this picture we observe the convergence history to a
minimum. The lack of strict convexity of the problem does not guarantee the uniqueness
of solution for the optimization problem, and the possible existence of local minima. From
the numerical point of view, in order to avoid these local minima we have run the problem
for different initial values of V , but for all the cases the algorithm recover the same optimal
solution.
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Figure 1. To the left: the domain D and its triangulation; number of nodes:
40401; number of triangles: 80000. To the right: the right-hand side function
f(x, y) = −(1 + 10x).

Figure 2. Example 1 – The optimal potential Vopt for volume constraint
m = 0.2 = mopt. Case α = 0.01 (left) and α = 3.10−4 (right).

For the Example 2 we consider the right-hand side function:

f(x, y) =

{
−1 if y − 1.4x ≥ 0.3

1 if y − 1.4x < 0.3
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Figure 3. Cost evolution for Example 1, case α = 3.10−4.

Figure 4. The right-hand side function f(x, y) = −1 if y − 1.4x ≥ 0.3, and
f(x, y) = 1 if y − 1.4x < 0.3

negative on a corner of the domain D, and positive on the rest (see Figure 4). In this case, we
make two simulations with volume constraints m = 0.2 (small volume) and m = 0.45 (larger
volume). In both cases we observe that the optimal shapes are placed near the corner where
the function f is negative (see Figure 5). However, in the case of small volume constraint the
optimal domain Ωopt has volume equal to m (saturation of the constraint, see Figure 5 left),
while in the case of larger m the optimal domain satisfies |Ωopt| < m (see Figure 5 right).
For instance, in the case under consideration, the optimal domain uses only 0.33276 of the
volume, of the 0.45 available.

For the Example 3 the right-hand side function which we consider is a characteristic func-
tion which takes the values 1 on a centered non-symmetric cross and −1 on the rest of the
domain D (see Figure 6 left). In this case we have imposed a volume constraint m = 0.45 and
we observe (see Figure 6 right) that the optimal shape is made of four small balls of different
sizes at the corners of the square domain outside of the cross and the volume constraint is
saturated.
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Figure 5. Example 2 – Optimal potential Vopt. Case: m = 0.2 (left), m =
0.45 occupied volume 0.33276 (right).

Figure 6. Example 3 – The right-hand side function f (left) and the optimal
potential Vopt (right). The volume m = 0.45 is all occupied.

Finally, in the Example 4 we consider for the right-hand side f the reverse case of the
Example 3. We consider a characteristic function, which on a centered non-symmetric cross
takes the value −1 and 1 on the rest of the domain (see Figure 7 left). For this simulation
the results give an optimal shape that is placed around the cross, including regions where f
is negative but also small areas around the cross where f is positive. The volume constraint
in this case is not saturated using 0.378404 of the m = 0.5 available.
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Figure 7. Example 4 – The right-hand side function f (left) and the opti-
mal potential Vopt (right). The occupied volume is 0.378404 of the m = 0.5
available.

In conclusion, according to the previous results we have shown the numerical evidence
that the optimization problems in the form of (1.1) admit optimal solutions when the data
f and g are allowed to change sign. We can observe that in order to approximate the shape
optimization problem with Dirichlet condition on the free boundary, taking the function
Ψ(s) = e−αs, with α small enough, is a good choice in order to obtain optimal shapes.
Moreover, we can observe that the optimal shapes are located mostly in areas where the sign
of f is negative but they may in some cases occupy also small regions where f is positive.
Finally, the optimal domains may not always saturate the volume constraint.
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