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1 Introduction

1.1 A regularity theorem

In this article we give some regularity results for the boundary of isoperi-
metric regions in a smooth complete Riemannian manifold with vari-
able metric using the theory of regularity of Allard. In the remaining
part of this paper we always assume that all the Riemannian man-
ifolds (M, g) considered are smooth with smooth Riemannian metric
g. Mn

k will denote the simply connected space form of constant sec-
tional curvature k. For every m ∈ N, we denote by Hmg , the m-
dimensional Hausdorff measure associated to the metric space (M,dg),
where dg is the canonical length space metric associated to g, i.e.,
dg(x, y) := inf{lg(γ) : γ is a piecewiseC1curve joining x to y}, lg(γ) rep-
resents the length of the curve γ with respect to the Riemannian metric
g. V olg = Hng will denote the canonical Riemannian measure induced

on M by g, by Ag we will denote often Hn−1
g , Mg indicates the mass

of a current, the notation here is the standard one of Federer’s book
[Fed69]. When it is already clear from the context, explicit mention of
the metric g will be suppressed. All along this text we will encounter
a lot of constants that depends on various geometrical quantities and
the metric g, when a constant c depends on the metric g and on its
first and/or second derivatives continuously, we will denote this fact by
writing c = c(g, ∂g, ∂2g). In what follow we will also be concerned with
isoperimetric regions that are close to a fixed open relatively compact
set B ⊆ M with smooth boundary ∂B. As a consequence of this fact
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we need to consider also the dependence on B ⊆ M and a fixed once
at all ξ ∈ X(M), where X(M) is the set of smooth vector fields defined
on Mn, these objects depending only on the differentiable structure of
Mn (that is considered fixed in this work) without any reference to a
Riemannian metric. To deal with the case of variable metrics we will
use the celebrated Nash’s isometric embedding Theorem. So in gen-
eral our constants c will be of two kinds. The constants of the first
kind are of the form c = c(B, ξ, g, ∂g, ∂2g) when they do not depend on
the Nash’s isometric imbedding in some higher dimensional Euclidean
space ig : (Mn, g) → (RN , δ) for some N > n, where δ is the Eu-
clidean canonical metric. The constants are of the second kind when
they depend on a Nash’s isometric imbedding. In this latter case we
write c = c(B, ξ, ig, g, ∂g, ∂

2g). However, as we will see later in Sec-
tion 4, C2 dependence on ig means to depend C4 on the metric so
in general another kind of typical constants that we will encounter is
c = c(B, ξ, ig, g, ∂g, ∂

2g) = c(B, ξ, g, ∂g, ∂2g, ∂3g, ∂4g).

Definition 1.1. Let (M, g) be a smooth (possibly non-complete) Rie-
mannian manifold of dimension n. We denote by τM the class of
relatively compact open sets of M with C∞ boundary. The function
I(M,g) : [0, V olg(M)[→ [0,+∞[ defined by

I(M,g)(v) := inf {Ag(∂Ω) | Ω ∈ τM , V olg(Ω) = v} , (1)

is called the isoperimetric profile function (shortly the isoperimet-
ric profile) of the manifold M . We define an isoperimetric region
for volume v as an n-dimensional integral normal current T , such that
Mg(T ) = v and Mg(∂T ) = I(M,g)(v).

The regularity theory for minimizing currents, inaugurated by Ennio
De Giorgi in codimension 1 (see for example [DGCP72]), Federer and
Fleming in any codimension, and fully developed in the work of Alm-
gren and Allard, shows that isoperimetric regions are almost smooth.
Precisely, they are submanifolds with smooth boundary on the comple-
ment of a singular set of codimension at least equal to 7 [Alm76]. In
codimension 1 one can compare with [GMT83] in which the theory of
finite perimeter sets is adopted. On the other hand, for manifolds Mn

of dimension n ≥ 8 there can be minimizing currents whith non-smooth
boundary (see [Alm76], [Mor03], [BGG69]). The first result along these
lines, due to Bombieri, De Giorgi, and Giusti [BGG69], shows that the
cone C := {(x, y) ∈ R4 × R4 : |x| = |y|}, as conjectured by James
Simons is singular at the origin and has minimal area in R8. In every
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ball of Rn, such a current is a minimal hypersurface. Coming back to
the isoperimetric problem, consider a point p belonging to the support
of the boundary of the current T , p ∈ spt(∂T ), for some isoperimetric
region T , then the tangent cone of ∂T at p have to be area minimizing
in TpM

n. If the point p is regular then the tangent cone of ∂T at p is
an hyperplane. If p is a singular point the tangent cone at p could be a
genuine cone. In fact, there are examples with non void singular part,
for more details about this matter we recommend the lecture of Propo-
sition 3.5 of [Mor03] in which is proved that if T is an isoperimetric
region p ∈ ∂T and the tangential tangent cone of ∂T at p is a hyper-
plane then p is a regular point. Almgren’s Theorem is thus optimal.
Therefore, additional conditions are required to get more regularity in
higher dimension.

The aim of this article is to show in Theorem 1 that an isoperimetric
region, sufficiently close in the flat norm to a domain B with smooth
boundary ∂B, is also smooth and very close to B in the C2,α topology
and every α ∈]0, 1[. For further applications of this theorem, we also
allow that the Riemannian metric g of Mn to be variable. We refer
the reader to the last Section 4 for the precise meaning and definitions
required to state our main Theorem 1, especially Definitions 4.2 and 4.3
of topologies.

Theorem 1. Let (Mn, p, g∞) be a pointed Riemannian manifold of
class C∞ with bounded geometry, gj a sequence of Riemannian met-
rics of class C∞ converging to g∞ in the fine C4-topology or such that
(Mn, p, gj) converges to g∞ in the usual pointed C4-topology. Let B
be an open relatively compact domain of M with smooth boundary ∂B.
Consider Tj a sequence of isoperimetric regions of (Mn, gj) such that

Mg∞(B − Tj)→ 0, (2)

where Mg∞ denotes the mass of a current in the metric g∞. Then ∂Tj
is the graph in normal exponential coordinates of a function uj on ∂B.
Furthermore, for all α ∈]0, 1[, uj ∈ C2,α(∂B) and ||uj ||g∞,C2,α(∂B) → 0.
If the convergence of the metric is in the fine Cm,α-topology then we
also have ||uj ||g∞,Cm+1,α(∂B) → 0.

Remark 1.1. In the assumptions of Theorem 1, rather than (2) we can
use the following equivalent condition Vgj (B − Tj)→ 0.

Remark 1.2. Notice that ||uj ||g∞,C2,α(∂B) → 0 is equivalent to ||uj ||gj ,C2,α(∂B) →
0.
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Remark 1.3. Observe that, since ∂B is compact the spaces C2,α(∂B)
are independent of the metric g, although the norm ||uj ||g,C2,α(∂B) de-
pends on g.

1.2 Previous results

We can find a particular case of Theorem 1 in the article [MJ00] of David
L. Johnson and F. Morgan, from which we took a lot of inspiration.
Indeed, these authors show that in a compact manifold isoperimetric
regions for small volumes are close to small geodesic balls. One can
also consult Theorem 5 of [Ros05] for analogous results in the case of
a compact Riemannian manifold, but with a different proof. Here we
follow the same ideas of [MJ00] adapted to our more general situation,
paying attention to give intrinsic metric proofs from which very accurate
estimates of the C2,α norms and their dependence on the geometric
bounds of M and on the geometric bounds of the isometric imbeddings
∂B ↪→M ↪→ RN are given.

1.3 Some applications of Theorem 1

From Theorem 1, we can argue that if, for a v̄ > 0, all the isoperimet-
ric regions in volume v̄ are smooth, then the isoperimetric regions for
volumes v close to v̄ are smooth too. Under this condition, we could
be able to reduce the isoperimetric problem for volumes close to v̄ to
a variational problem in finite dimension, as developed in [Nar09] and
[Nar14b] under small volumes assumptions. An analogous program is
carried out in a separate paper see [GNP09] Lemma 6. In [Nar09] and
[Nar14b] we used Theorem 1, for showing that for small volumes the
isoperimetric regions are pseudo-bubbles. But the range of application
of this theorem and its straightforward generalizations is much wider.

1.4 Sketch of the proof of Theorem 1

First, assume that the metric is fixed, i.e., gj = g, for every j. We make
essential use of Allard’s regularity theorem, see [All72], Theorem 8.1,
which states that, if a varifold V = ∂T 3 a, has in a ball B(a, r), a
weight ||V ||(B(a, r)) sufficiently close to ωn−1R

n−1 (where ωn−1 is the
volume of the unit ball of Rn−1), and controlled first variation (i.e.,
mean curvature) in suitable Lp-norm, then V is, locally, the graph of a
function u ∈ C1,α. A regularity theorem for elliptic partial differential
equations and a bootstrap argument imply that u ∈ C∞, and also give
upper bounds for ||u||C2,α , via Schauder estimates.
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In order to show that ∂Tj satisfies the conditions of Allard’s regular-
ity theorem, we compare ∂Tj to suitably chosen deformations with fixed
enclosed volume. This is the matter in which is involved subsection 3.4.

Unfortunately for our purposes, Allard’s theorem is stated in Eu-
clidean spaces, hence we have to give a Riemannian version via isometric
embedding of Riemannian manifolds in Euclidean spaces. Furthermore
we need to control the second fundamental form of the isometric em-
beddings relative to different metrics on M . To make this possible we
use a fine analysis of the proof of the Nash’s isometric embedding the-
orem that M. Gromov did in [Gro86b], this highlights the fact that
free isometric embeddings can be chosen to depend continuously on the
metric. It is worth noting here that we follow the scheme of the proof
of Theorem 2.2 [MJ00], with the difference that our context is more
general because we consider arbitrary volumes instead that only small
volumes, noncompact manifolds instead of compact ones and the proofs
are made intrinsic as we can, when in the paper [MJ00] all is done us-
ing an isometric embedding of a compact manifold. Moreover we make
an extra effort to find effective bounds for the constants involved and
some improved arguments and some details that in [MJ00] are not men-
tioned, especially the way in which constants are calculated. In section
2.2 explicit calculations of the mean curvature operator of a normal
graph over a smooth (n−1)-dimensional submanifold are done. Lemma
3.1 on how to bound uniformly the curvatures is like in Theorem 2.2
of [MJ00] with the suitable modifications required to fit the case of a
noncompact manifold. The compensation Lemma 3.3 from Section 3.4
is new in the literature for the intrinsic metric geometry context and
because it is done in a small ball centered on the boundary of the fixed
domain B, rather than on the boundary of T . This features allows us
to avoid the classical dependence of the constant measuring the distor-
tion of area, on T . We want that the constants involved depends just
on B, uniformly on T , for values of V olg(B∆T ) smaller than a con-
stant that depends just on B, and the bounds of the geometry of M
that in turn depend only on g, ∂g, ∂2g. As a consequence of Lemma 3.3
we have Lemma 3.7 that permits to check one of the hypothesis of the
Allard’s regularity Theorem, the intrinsic feature of these arguments is
also new. The confinement Lemma 3.8 via the monotonicity formula I
did not find in the literature but it is classical in the Euclidean case and
perhaps it already exists for Riemannian manifolds at least for minimal
submanifolds using Nash’s embedding Theorem. An alternative proof of
Lemma 3.8 is that of the confinement Lemma 3.11, which is inspired by
arguments on boundedness of isoperimetric regions in Euclidean space
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that can be found in [Mor94] combined with the technical compensation
Lemma 3.3, and it is new in this form. The main difficulty encountered
to adapt the Euclidean argument of [Mor94] to the Riemannian bounded
geometry case consists in using an Euclidean type isoperimetric inequal-
ity for small volumes, but just with this we only produced Theorem 3
of [Nar14a]. To obtain the full generality of Lemma 3.11 we need the
technical Lemma 3.3 that permits us to control the variation of the
perimeter of a deformation of volume ∆v of T , |∆A| by the quantity
c(n, k, v0, B, g, ∂g, ∂g

2)∆v. How to apply the Allard’s regularity theo-
rem keeping track of the constants and the way in which they depend on
the geometry of the noncompact manifold and on B, I did not find in the
literature. The Schauder’s estimates are classical and Hopf comparison
theorems are classical. I put all the details required in our context for
completeness and again to keep track of the constants and the quantities
on which they depend in view of the subsequent application to the case
of variable metrics. All these features make the arguments available for
the case of variable metrics, arbitrary volumes, intrinsically without us-
ing an embedding of Mn into some higher dimensional Euclidean RN .
Unfortunately to achieve this program I need a version of the Allard
regularity results stated in the Riemannian case, keeping track of how
the constants depend on geometric quantities. This is a task that I did
not write up because the details are cumbersome. On the other hand,
using the remark of Gromov about the Nash embedding Theorem and
keeping track of the constants involved I can overcome this difficulty
paying the price of loosing the optimal C2 convergence of the metrics in
favor of the stronger C4 convergence. The reader is invited to compare
the last page for more details about this point.

1.5 Plan of the article

1. In subsection 2.2 a useful purely differential geometric formula for
the mean curvature operator of a normal graph is given. Section 2
provides Riemannian versions of three classical results of geometric
measure theory: Allard’s regularity theorem, the link between first
variation and mean curvature in the case of currents and varifolds,
the monotonicity formula.

2. Section 3 is the core of the paper and gives the proof of Theorem
1 in case of a fixed metric, namely Theorem 3.1. It starts by a
detailed sketch of the proof. This part has the aim of elucidating
the basic ideas involved in the proof of Theorem 3.1.
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3. Section 4 deals with the general case of variable metrics and the
final part of the proof of Theorem 1.
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2 Regularity Theory

The aim of this section is to adapt several classical results of geomet-
ric measure theory stated in Euclidean spaces to arbitrary Riemannian
manifolds.

2.1 Notations

In this section we are concerned with a Riemannian manifold (Mn, g)
of class at least C2, with bounded second fundamental form, and we
keep fixed an isometric embedding i : (Mn, g) ↪→ (RN , δ), where δ is the
Euclidean metric. We denote

βi = ||IIi↪→M ||∞,g < +∞,

where IIi↪→M is the second fundamental form of the embedding i and
||.||∞,g is the supremum norm taken on (Mn, g). In fact this is not a
big restriction for the proof of our Theorem 1 because by Lemma 3.11
all happen in a bounded neighborhood of B and the proof of Lemma
3.11 is completely intrinsic and independent from any isometric im-
mersion into Euclidean spaces. Since in this neighborhood the second
fundamental form is always bounded we loose no generality in making
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this assumption. We observe, incidentally, that the second fundamental
form depends on first and second derivatives of the embedding i by con-
tinuous functions. Hence, if we have 2 embeddings i1, i2 that are ε close
in the C2 topology, then βi1 , βi2 will be const.ε close and the constant
is independent of embeddings i1, i2. Indeed the constant depends only
on M and the intrinsic metric but unfortunately this dependence is C4.

2.2 Mean curvature vector based on an hypersurface

For further applications, we now give a formula for mean curvature of
an hypersurface Nn−1 ↪→ Mn which is a graph over ∂B in normal ex-
ponential coordinates inside a tubular neighborhood. In this subsection
we consider a purely differential geometric context without needing any
technical assumptions or any geometric measure theory, or any isometric
embedding into Euclidean spaces. For every y ∈ N let us define

HN
ν (y) =

n−1∑
1 i

IINy (ei,N , ei,N ) = −
n−1∑

1 i

< ∇ei,N νN , ei,N >g (y), (3)

where (e1,N , . . . , en−1,N ) is an orthonormal basis of TyN , IINy (v, w) is
the second fundamental form of N at the point y and evaluated on
the tangent vectors v, w ∈ TyN , νN is a unit normal vector field of N ,
where νN could be interpreted as a section of the normal bundle of νN
embedded in TM , and ∇ is the Levi-Civita connexion of M . In what
follow, write νN = aN + bNθ, with aN ⊥ θ, extend νN to a vector field
ν = a+ bθ over an entire neighborhood ν : Ur(∂B)→ TM such that

[θ, a] = θ(b) = 0, (4)

where [·, ·] indicates the Lie bracket of two vector fields, and θ :=
∇gd̃g(., ∂B), the gradient of the function d̃g(., ∂B), the signed distance
function to ∂B having positive values outside B. In particular [θ, ν] = 0.

Let us introduce a chart φ of M . First, choose a chart Θ in a
neighborhood of ∂B, and set

φ :

{
]− r, r[×U → Ur ⊆M
(t, x) 7→ expΘ(x) (tθ(Θ(x))) ,

where U ⊆ Rn is the domain of Θ. By choosing r less than the normal
injectivity radius of ∂B, we have that φ is a diffeomorphism. The func-
tions (t, x) are called Fermi coordinates based at ∂B. By Gauss’s
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lemma, the metric g of M restricted to Ur is expressed in these coor-
dinates as dt2 + gt, where gt = i∗t (g) and it : ∂B → M is the function
defined as it : x 7→ expΘ(x)(tθ(Θ(x))) ∈ M . In the local chart Θ−1,

we can write gt = (gt)ij(x)dxidxj = g(t, x)ijdx
idxj . It is useful for

subsequent geometrical constructions and generalization to note that
the family of embeddings it can be interpreted as the images of ∂B
under the flow Φt of the vector field θ on M . Now we proceed to the
explicit calculations of the mean curvature of a hypersurface N ↪→ Ur
isometrically embedded in (Ur, g|Ur). Set ν = a + bθ, and note that on
N , (

|a|2 + b2
)
|N = 1, (5)

but at p ∈ Ur \N , in general one could have(
|a|2 + b2

)
|Ur\N (p) 6= 1. (6)

As a last remark, one can see that

Hν(t, x) := −
n−1∑
i=1

〈∇eiν, ei〉 ,

is a function actually defined on all of Ur0 , provided that we extend
the vector fields eNi to vector fields ei defined on Ur, in such a way
that [ei, θ] = 0. Furthermore we observe that Hν(t, x) is equal to HN

ν

when restricted to the subset N . Since the trace of a linear operator
is independent of the basis employed to compute it, we will use two
different basis adapted to our problem, namely (e1, . . . , en−1, ν) and
(∂1, . . . , ∂n−1, θ = ∂

∂t) and we obtain

trM
(
∇(·)ν

)
=

(
n−1∑
i=1

〈∇eiν, ei〉

)
+ 〈∇νν, ν〉 (7)

= 〈∇∂iν, ∂j〉 g
ij + 〈∇θν, θ〉 (8)

= 〈∇∂iν, ∂j〉 g
ij , (9)

where the Einstein summation convention is used with indexes i and j
running on {1, ..., n− 1}, and by Gauss lemma 〈θ, ∂i〉 = gni = 0, which
implies that gni = 0 too. We continue the computation remarking

〈∇∂iν, ∂j〉 g
ij = 〈∇∂ia, ∂j〉 g

ij + 〈∇∂i(bθ), ∂j〉 g
ij , (10)

〈∇∂i(bθ), ∂j〉 g
ij = 〈∇∂i(b)θ, ∂j〉 g

ij + bgij 〈∇∂iθ, ∂j〉 , (11)
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but
〈∇∂i(b)θ, ∂j〉 = 0, (12)

so
〈∇∂i(bθ), ∂j〉 g

ij = bgij 〈∇∂iθ, ∂j〉 . (13)

Recalling that

gij 〈∇∂iθ, ∂j〉 = −H∂Bt

θ (y), (14)

and
〈∇∂ia, ∂j〉 g

ij = div∂Bt(a), (15)

we get

HN
ν (y) = −div∂Bt(a) + bH∂Bt

θ + 〈∇νν, ν〉 . (16)

Now it remains to examine the term

〈∇νν, ν〉 = 〈∇a+bθν, a+ bθ〉 (17)

= 〈∇aν, a〉+ b 〈∇θν, a〉+ b 〈∇aν, θ〉+ b 〈∇θν, θ〉 , (18)

but

〈∇θν, θ〉 = 〈∇νθ, θ〉 =
1

2
∇ν 〈θ, θ〉 = 0, (19)

because ∇θν = ∇νθ, since [θ, ν] = 0, the Levi-Civita connection ∇ is
torsion free, and 〈θ, θ〉 = ||θ||2 ≡ 1 on an entire neighborhood of ∂B. So
we get

〈∇νν, ν〉 = 〈∇aa, a〉+ 〈∇a(bθ), a〉+ b 〈∇θa, a〉 (20)

+ b 〈∇θ(bθ), a〉+ b 〈∇aa, θ〉+ b 〈∇a(bθ), θ〉 , (21)

remark that

〈∇θ(bθ), a〉 = 〈∇θ(b)θ, a〉+ b 〈∇θ(θ), a〉 = 0, (22)

〈∇a(bθ), a〉 = 〈∇a(b)θ, a〉+ b 〈∇a(θ), a〉 = −bII∂B
t

θ (a, a), (23)

because θ ⊥ a, and that

b 〈∇θa, a〉 =
1

2
∇θ|a|2, (24)

b 〈∇aa, θ〉 = −1

2
∇θ|a|2, (25)

〈∇a(bθ), θ〉 = ∇a(b) 〈θ, θ〉+ b 〈∇aθ, θ〉 (26)

= ∇a(b) +
1

2
∇a(|θ|2) = ∇a(b), (27)
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since |θ|2 = 1 on Ur. From all this follows

〈∇νν, ν〉 = 〈∇aa, a〉 − bII∂B
t

θ (a, a) + b∇a(b), (28)

but

〈∇aa, a〉 =
1

2
∇a(|a|2), (29)

b∇ab =
1

2
∇a(b2), (30)

so

〈∇νν, ν〉 = −bII∂B
t

θ (a, a) +
1

2
∇a(|ν|2). (31)

Finally, for every y ∈ N we obtain

HN
ν (y) = −div∂Bt(a)+bH∂Bt

θ −bII∂B
t

θ (a, a)+

{
1

2
∇a(|ν|2)

}
|N

(y). (32)

We give another way to compute of HNν (y) in the particular case that
a 6= 0, so that one possible choice for en−1, is en−1 = −b

|a|a + |a|θ, and

one for (e1, . . . , en−2), is (e1, . . . , en−2) = TyN ∩Ty∂Bt, where Bt is the
domain whose boundary is the equidistant hypersurface at distance t
to ∂B. We set (ẽ1 = e1, . . . , ẽn−1 = en−2, ẽn−1 = a

|a|). The calculation

that follows will be independent of the extensions of ν, ei, and thus ei’s,
ν can be chosen in such a way that [ei, θ] = 0 for all i ∈ {1, ..., n − 1},
and [a, θ] = 0.
Note the following useful relations:

< θ, θ >≡ 1, in Ur, (33)

∇θθ = 0, in Ur, (34)

< (∇eib)θ, ei >= 0,∀i ∈ {1, ..., n− 2}, (35)

Straightforward computations yield the equations

H = −
n−1∑
i=1

< ∇eiν, ei > (36)

= −(

n−2∑
i=1

< ∇eiν, ei >)− < ∇en−1ν, en−1 >, (37)

expanding each term of the right hand side of the (37) we get

n−2∑
i=1

< ∇eiν, ei >=

n−2∑
i=1

(< ∇eia, ei > + < ∇ei(bθ), ei >), (38)
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< ∇ei(bθ), ei >=< (∇eib)θ + b∇eiθ, ei >= b < ∇eiθ, ei >, (39)

n−2∑
i=1

< ∇eiν, ei >=
n−2∑
i=1

< ∇eia, ei > +b < ∇eiθ, ei >, (40)

< ∇en−1ν, en−1 >=< ∇en−1a, en−1 > + < ∇en−1(bθ), en−1 >, (41)

< ∇en−1(bθ), en−1 > = < (∇en−1b)θ, en−1 > (42)

+ b < ∇en−1θ, en−1 >, (43)

< (∇en−1b)θ, en−1 > = (∇en−1b) < θ, |a|θ > (44)

= − b

|a|
|a|∇ab = −b∇ab, (45)

the final formula, coming from the preceding equalities, is the following

∇en−1b = ∇− b
|a|a+|a|θb = − b

|a|
∇ab+ |a|∇θb = − b

|a|
∇ab. (46)

b < ∇en−1θ, en−1 > = b < − b

|a|
∇aθ + |a|∇θθ,−

b

|a|
a+ |a|θ >(47)

= b

(
b2

|a|2

)
< ∇aθ, a > −b2 < ∇aθ, θ > (48)

= b

(
1

|a|2
− 1

)
< ∇aθ, a > (49)

= b < ∇ẽn−1θ, ẽn−1 > −b < ∇aθ, a > . (50)

Thus

< ∇en−1(bθ), en−1 > = b < ∇ẽn−1θ, ẽn−1 > −b < ∇aθ, a > (51)

− b∇ab,

< ∇en−1a, en−1 > =
b2

|a|2
< ∇aa, a > (52)

=

(
1

|a|2
− 1

)
< ∇aa, a > (53)

= < ∇ẽn−1a, ẽn−1 > − < ∇aa, a >, (54)
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< ∇en−1ν, en−1 > = < ∇ẽn−1a, ẽn−1 > − < ∇aa, a > (55)

+ b < ∇ẽn−1θ, ẽn−1 > −b < ∇aθ, a >
− b∇ab.

Hence

−
n−1∑
i=1

< ∇eiν, ei > = −
n−2∑
i=1

< ∇eia, ei > −
n−2∑
i=1

b < ∇eiθ, ei >(56)

− < ∇en−1ν, en−1 >

= −
n−2∑
i=1

< ∇eia, ei > −
n−2∑
i=1

b < ∇eiθ, ei >

− < ∇ẽn−1a, ẽn−1 > −b < ∇ẽn−1θ, ẽn−1 >

+ b < ∇aθ, a > + b∇ab + < ∇aa, a > .

Before to give the final formula we observe

d
1

2
|ν|2(a) = ∇a

1

2
|ν|2 (57)

=
1

2
<
−→
∇g|ν|2, a >

= ∇a
[

1

2
(|a|2(t, x) + b2(t, x))

]
(t, x)

= b2∇ab+ < ∇aa, a > .

Finally we have again

Hν(t, x) = −div∂Bt(a) + bH∂Bt

θ − bII∂B
t

θ (a, a) +
1

2
∇a|ν|2, (58)

where II∂B
t

θ andH∂Bt

θ are respectively the second fundamental form and
the mean curvature in the direction of θ of the equidistant hypersurface
at distance t from ∂B computed at the point exp∂B(tθ(Θ(x))) ∈ N .
Equation (58) comes from a geometrical interpretation of the terms in
(56), by observing that

(i): div∂Bt(a) =
∑n−2

i=1 < ∇eia, ei > + < ∇ẽn−1a, ẽn−1 >,

(ii): bH∂Bt

θ = −
[∑n−2

i=1 b < ∇eiθ, ei > +b < ∇ẽn−1θ, ẽn−1 >
]
,

(iii): bII∂B
t

θ (a, a) = −b < ∇aθ, a >.
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As a last remark, one can see that Hν(t, x) is a function actually de-
fined on all of Ur0 , and it is equal to HN when restricted to the subset
N . Another interesting and simpler formula is obtained by choosing
extensions ν1, a1, b1, respectively of νN , aN , and bN , in such a way that

∇θν1 = 0, (59)

is satisfied on the entire Ur0 . The same kind of computation leading to
(58) leads to the following formula for the mean curvature:

Hν1(t, x) = −div∂Bt(a1) + b1H
∂Bt

θ . (60)

This latter formula is the analog of formula (58). It is easy to check that
Hν1 |N = Hν |N , but in general Hν1 |(Ur0\N) 6= Hν2 |(Ur0\N) for every fixed

N ⊂ Ur0 . Another very simple way to prove (60) is to observe that H is
the trace of an appropriate endomorphism and computing with respect
to two different choices of orthonormal basis. First observe that, by
construction,

< ν1, ν1 >= 1, (61)

is a constant function on all Ur0 , so for an arbitrary p ∈M we have

∇Xp(< ν1, ν1 >) = 0,∀Xp ∈ TpUr0 . (62)

In particular

∇νp(< ν1, ν1 >) = 0, ∀p ∈ N , (63)

∇θp(< ν1, ν1 >) = 0, ∀p ∈ Ur0 . (64)

Now we are ready to prove (60) as follows. We have that

H|N = −divN ν = −divN (ν1)|N , (65)

because of the independence from extension of ν defined only on N , to
any ν1 defined on all Ur0 . The divergence of the vector field ν1 calculated
in the orthonormal frame (ẽ1, ..., ẽn−1, θ) is

divM (ν1)|N =
n−1∑
i=1

< ∇ẽiν1, ẽi > + < ∇θν1, θ > (66)

= divN ν1

= divN ν.
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But
divM (ν1)|N = div∂Bt(a1)− b1H∂Bt

θ . (67)

Combining the last three equations, it is easy to check the validity of
(60). Assume now thatN = {p ∈ Ur0 |∃x ∈ U , s.t. p = expp(u(x)θ(Θ(x)))}
is the normal graph (i.e., in normal exponential coordinates) of a func-
tion u ∈ C2,α(∂B). Let

Wu :=
√

1 + ‖
−→
∇ i∗u(g)u‖2i∗u(g).

Here we consider Wu as both a function on M independent of t and a
function on ∂B, and so we will make no distinction between Wu and
π∗∂B(Wu), where π∂B denotes the projection π∂B :]ε, ε[×∂B → ∂B, π∂B :
(t, x) 7→ x. Then

b =

{ 1
Wu
, < ν, θ >≥ 0, ν outward

− 1
Wu
, < ν, θ >≤ 0, ν inward

Let b = 1
Wu

. In Fermi coordinates, the preceding equation (58) can be
written as

a(t, x) = − 1

Wu
g(u(x), x)ij

∂u

∂xj
(x)

∂

∂xi
(t, x). (68)

This leads to

div∂Bt(a) = −div(∂B,gt)(

−→
∇(∂B,gu)u

Wu
)

= − 1√
det(gt)

∂

∂xi

(√
det(gt)

1

Wu
giju

∂u

∂xj
(x)

)
. (69)

We observe here that in general gt = gt(x) depends on x, although it is
independent in some important cases, including warped product normal
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bundles. The mean curvature of the graph of u is thus

Hg[u](x) =

(
div(∂Bt)(

−→
∇guu

Wu
)

)
|t=u(x)

(70)

− 1

W 3
u

IIuθ (
−→
∇guu,

−→
∇guu)

+
1

Wu
Hu
θ (u)

− 1

W 2
u

giju
∂u

∂xj
(x)glmu

∂u

∂xm
(x) < ∇ ∂

∂xi
(t,x)

(−→
∇guu

Wu

)
,
∂

∂xm
(t, x) >|t=u(x)

− 1

W 2
u

giju
∂u

∂xj
(x)

(
∇ ∂

∂xi
(t,x)

(
1

Wu

))
|t=u(x)

.

with < νext, θ >g≥ 0 and
−→
∇guu = giju(x)

∂u
∂xj

(x) ∂
∂xi

(t, x). Regarding H as

an opertor Hg : C2,α(∂B)→ C0,α(∂B), we easily see that it is semilin-
ear elliptic, which is essentially the only property of Hg we will use in
this paper. But the exact expression (70) for H demonstrates that the
coefficients of the constant mean curvature equation

Hg[u] = const, (71)

are bounded in various Sobolev and Hölder spaces. As a result, one
can apply standard bootstrap arguments of elliptic regularity theory to
show higher order regularity of solutions u of the constant mean cur-
vature equation (71). To obtain the estimates needed to apply elliptic
regularity theory, one need not appeal to (70). In fact, this is an im-
mediate consequence of the definition of the mean curvature function
as the partial divergence with respect to TN of the smooth vector field
ν, i.e., is a general operator in divergence form to which classical result
applies. The interest in a formula like (70) is more geometric and lies in
the possibility of applying (70) to solve (71) and to help to give a qual-
itative description of solutions knowing the geometry of the equidistant
foliation of Ur, in the ambient manifold. One instance of this philosophy
can be found in [Nar09].

2.3 Allard’s Regularity Theorem

The proof of the Theorem 3.1 is mainly based on a regularity theorem
for almost minimizing varifolds. In the article [All72], it is stated in an



18

Euclidean ambient context. Using isometric embeddings we can deduce
a Riemannian version of it.

We restate, here, for completeness sake, the regularity theorem of
Chapter 8 p. 466 of [All72] that will be of frequent use in the sequel.
For this statement we use the notations of the original article [All72].

Definition 2.1. For any 0 ≤ m ≤ n, we say that V is a m-dimensional
varifold in M , if V is a nonnegative real extended valued (compare
section 2.6 of [All72]) Radon measure on Gm(M) the Grassmannian
manifold whose underlying set is the union of the sets of m-dimensional
subspaces of TxM as x varies on M . For every m ∈ {0, ..., n}, we define
Vm(M) to be the space of all m-dimensional varifolds on M endowed
with the weak topology induced by C0

c (Gm(M)) say the space of continu-
ous compactly supported functions on Gm(M) endowed with the compact
open topology.

Definition 2.2. Let V ∈ Vm(M), g is a Riemannian metric on M , we
say that the nonnegative Radon measure on M , ||V || is the weight of
V , if ||V || = π#(V ), here π indicates the natural fiber bundle projection
π : Gm(M) → M , π : (x, S) 7→ x, for every (x, S) ∈ Gm(M), x ∈ M ,
S ∈ Gm(TxM),

||V ||(A) := V (π−1(A)).

Notice that the notion of a varifold is independent of the choice of
any Riemannian metric g on M . This reflects the phenomenon that on a
differentiable manifold one can have a fixed submanifold but whose met-
ric datas like volume, curvature, second fundamental form, etc. depends
on the metric that we put on it. If we consider a varifold V ∈ Vm(M)
we can construct without the help of a metric the support of ||V || that
is a set contained in M , however starting from a set E ⊆M even a good
one like a m-dimensional smooth submanifold of M , there is no canon-
ical way to come back to a uniquely determined varifold V ∈ Vm(M),
such that Supp||V || = E. One way to proceed is to chose a metric g
and to associate to a Hmg -countably m-rectifiable set E, the varifold
Vg(E) ∈ Vm(M), where

V (E, g)(A) := Hmg ({x ∈ E : (x, TxE) ∈ A}), ∀A ∈ Gm(Mn), (72)

in this way the manifold associated is unique and canonical in the sense
that depends only on the choice of the metric g. When (Mn, g) is (Rn, ξ)
we find again the classical theory of varifolds as developed by Almgren,
Allard et al. The way in which classically one proceed to study the
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theory of varifolds in Riemannian manifolds is well explained in [All72]
and consists in embedding isometrically (Mn, g) in some higher dimen-
sional Euclidean space via Nash’s Theorem, and then using the existing
theory on Rn of [All72]. The point of view that we will adopt here is an
intrinsic one, without having to choose an isometric embedding. This is
needed because in the Euclidean monotonicity formula will appear an
upper bound of the second fundamental form of the particular isometric
embedding chosen and it is not clear to us how to bound the second fun-
damental form of the isometric embedding just starting with intrinsic
bounded geometry assumptions on the manifold (M, g). The intrinsic
approach avoid this technical difficulty and permits to have a mono-
tonicity formula which depends only on an upper bound of the sectional
curvature. This means that locally the geometric measure theory of Rn
is mutatis mutandis the same as the corresponding theory developed
on a Riemannian manifold, with just the constants involved depending
on the bound of the sectional curvature. This is what one could ex-
pects since locally a Riemannian manifold is bi-Lipschitz equivalent to
an Euclidean ball via the exponential map. The importance of making
rigorous the details and the proofs appears clear when we deal with
problems in ambient manifolds with variable metric. Let us introduce
at this point some standard notions that will be useful in our further
developments.

Definition 2.3. Let µ be a Borel regular measure on a locally compact
Hausdorff topological space X. Define

Θm
∗ (µ, a) := lim−→r→0+

µ(B(a, r))

ωmrm
,

the m-lower density of µ at a ∈M ,

Θ∗m(µ, a) :=
−→
limr→0+

µ(B(a, r))

ωmrm
,

the m-upper density of µ at a ∈M , and if

Θm
∗ (µ, a) = Θ∗m(µ, a),

then we set

Θm(µ, a) := Θ∗m(µ, a) = Θm
∗ (µ, a) = lim

r→0+

µ(B(a, r))

ωmrm
.

We call Θm(µ, a) the m-density of µ at a ∈ X.
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According to [All72] we give the following definition for the first
variation of a varifold.

Definition 2.4. Let V ∈ Vm(M). Let Xc(M) denotes the set of smooth
vector fields on M with compact support, we denote by the linear func-
tion δgV (X) : Xc(M)→ R, the first variation of the varifold V in the
direction of the vector field X ∈ Xc(M), defined as follows

δgV (X) :=

∫
ξ∈Gm(M)

〈(∇gX(π(ξ)) ◦ πS), πS〉g dV (ξ)

:=

∫
ξ∈Gm(M)

n∑
i=1

〈
∇gπS(ei)

X,πS(ei)
〉
g
dV (ξ) (73)

:=

∫
ξ∈Gm(M)

divS,gXdV (ξ), (74)

for every X ∈ Xc(M), where S ≤ TxM is such that ξ = (x, S) ∈
Gm(M), i.e., a m-dimensional subspace of TxM , πS is the orthogonal
projection πS : TxM → S with respect to the metric g, (e1, ..., en) is an
orthonormal basis of (Tπ(ξ)M, gπ(ξ)), and divS,gX =

∑m
i=1〈∇ẽiX, ẽi〉g,

with {ẽ1, . . . , ẽm} being an orthonormal basis over S with respect to g.

Remark 2.1. The first variation is a metric concept and depends on
g.

Remark 2.2. In the rest of this paper we adopt the convention to denote
real variables with letters without subscripts and real constants by letters
with subscripts.

Theorem 2.1 (Allard’s Regularity Theorem 8.1 [All72], Euclidean ver-
sion ). Let p > 1 be a real number. Let q be the conjugate exponent of
p, i.e., q satisfies 1

p + 1
q = 1. Let k be a integer number, 1 ≤ k ≤ n. We

assume that k < p < +∞, if k > 1, and that p ≥ 2, if k = 1.
For all ε ∈]0, 1[ there exists η1 = η1(ε) > 0, (that depends on ε)

such that for all reals R > 0, for all integer d ≥ 1, for all varifolds
V ∈ Vk(Rn) and for all points a ∈ spt||V ||, if

1. Θk(||V ||, x) ≥ d for ||V || almost all x ∈ BRn(a,R);

2. ||V ||(U(a,R)) ≤ (1 + η1)dωkR
k;

3. δgV (X) ≤ η1d
1
pR

k
p
−1 (∫

Rn |X|
q||V ||(dx)

) 1
q , with X ∈ X(Rn) and

supp(X) ⊂ U(a,R) := {x ∈ Rn | 0 ≤ |x− a| < R}.
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Then there exists a map F1 : Rk → Rn such that

1. F1 ∈ C1(Rk,Rn) and T ◦ F1 = IdRk , where T : Rn → Rk is an
orthogonal projection,

2. U(a, (1− ε)R) ∩ spt||V || = U(a, (1− ε)R) ∩ F1(Rk),

3. ∀y, z ∈ Rk, ||dF1(y)− dF1(z)|| ≤ ε
(
|y−z|
R

)1− k
p

.

4. Moreover η1(ε)→ 0+, when ε→ 0+.

Theorem 2.2 (Allard’s Regularity Theorem, Riemannian version). Let
(Mn, g) be a compact Riemannian manifold, ig : M ↪→ RN be an iso-
metric embedding. Let p > 1 be a real number. Let q be the conjugate
exponent, 1

p + 1
q = 1. Let k be an integer number, 1 ≤ k ≤ n. We

assume that k < p < +∞ if k > 1, and that p ≥ 2, if k = 1.
For all ε ∈]0, 1[ there exists η̃1 = η̃1(ε, ig) > 0, such that there exists

a R̃1 = R̃1(ε, ig) = R̃1(ε, g, ∂g, ∂2g, ∂3g, ∂4g) > 0 satisfying the property

that for all 0 < R̃ ≤ R̃1, for all integer number 0 < d̃ < +∞, for all
varifolds V ∈ Vk(Mn), and for all point a ∈ spt||V ||, if

1. Θk(||V ||, x) ≥ d̃ for ||V || almost every x ∈ BM (a, R̃);

2. ||V ||(B(a, R̃)) ≤ (1 + η̃1)d̃ωkR̃
k,

3. δgV (X) ≤ η̃1d̃
1
p R̃

k
p
−1 (∫

M |X|
q
g||V ||(dx)

) 1
q , with X ∈ X(M) and

supp(X) ⊂ B(a, R̃),

then there exists a function F̃1 : Rk → M , R0 = R0(ig, R̃, ε) < R̃ (F̃1

and R0 are mutually independent) such that

1. F̃1 ∈ C1(Rk,M), dF̃1(0) is an isometry,

2. B(a, (1− ε)R0) ∩ spt||V || = B(a, (1− ε)R0) ∩ F̃1(Rk),

3. ||dF̃1(y)− dF̃1(z)|| ≤ ε
(
|y−z|
R0

)1− k
p

for all y, z ∈ Rk.

4. η̃1 → 0, when ε→ 0+.

Remark 2.3. R0 is independent of V .



22

Remark: In the statement of the theorem the constant η̃1 depends
on the embedding i and on η1 produced by Theorem 2.1.

Idea of the proof: At this point we try to apply Theorem 2.1
to the varifold i#(V ). Actually, if V satisfies the assumptions 1, 2
and 3 of Theorem 2.2, then i#(V ) satisfies the hypothesis of Allard’s
Regularity Theorem, Euclidean version (see Theorem 2.1) but, with
different constants.

To this aim, we need to compare the intrinsic distance of a sub-
manifold and the distance of the ambient manifold restricted to the
submanifold.

Lemma 2.1. Let M be an embedded manifold into RN of arbitrary
codimension. i : M ↪→ RN an isometric embedding and βi its second
fundamental form. Fix a point a ∈ RN , a ∈ M and consider a second
point y 6= a different from a on M , now take the geodesic σ of M of
length R̃ that joins a and y on M and the Euclidean segment [a, y] of
length R. Then there exists R0 > 0 and a constant δi > 0 depending
only on βi and R0 such that for all R < R0, results R̃ ≤ R(1 + δiR

2).

Proof: We take as origin of coordinates the point a and parametrize
σ by its arc length s. Consider the function f(s) = |σ(s)|2. Then
f(R̃) = R2, f ′(s) = 2 < σ′, σ > (s),

f ′′(s) = 2(< σ′′, σ > (s)+ < σ′, σ′ > (s))
= 2 + 2 < σ′′, σ > (s)
= 2 + 2 < σ′′, σ − sσ′ > (s).

Since (σ − sσ′)′ = σ′ − σ′ − sσ′′, ||(σ − sσ′)′|| ≤ s||σ′′|| ≤ sβi, we get

||σ − sσ′|| ≤ s2

2 βi. It follows that f ′′(s) ≥ 2 − s2β2
i , f ′(s) − f ′(0) =

f ′(s) ≥ 2s− s3

3 β
2
i , f(s) ≥ s2 − s4

12β
2
i , which implies

f(R̃) = R2 ≥ R̃2 − R̃4

12
β2
i . (75)

Finally R̃ ≤ R(1 + R2const.
24 β2

i ) = R(1 + R2δi) where δi is a constant
that depends only on βi and R0. More explicitely could be taken as
δi =

∑
j an(βi)R0

j , for some positive general terms an that depends
only on βi. q.e.d.
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Proof:[Proof of Allard’s Regularity Theorem, Riemannian version]
In this context, variables and constants respect the previous convention
and furthermore constants and variables relative to intrinsic objects of
M are denoted with a tilda. From the following formula [4.4 (1) in
[All72]]:

δ(ig,#V )(X) = δgV (X>)−
∫
Gk(M)

X⊥(x) · h(M, (x, S))dV (x, S), (76)

with X ∈ Xc(U(a,R0)), X(x) = X>(x) + X⊥(x), X>(x) ∈ TxM ,
X⊥(x) ∈ T⊥x M , we can deduce that assumption 3 of Theorem 2.1 is
satisfied with some suitably chosen constant. To see this, it is sufficient
to control the Euclidean mean curvature of ig,#V .

Now, we assume that R0, η̃1, R̃ verify the following conditions:

0 < R0 < min

 inf
x∈ig(∂B(a,R̃))

{|x− a|RN } ,

√
(1 + η1(ε))

1
k − 1

δi

 , (77)

d̃ = d,

0 < η̃1(ε) ≤ min

{
η1

2
,

1 + η1

(1 + δ̃iR2
0)k
− 1

}
, (78)

0 < R̃ ≤ η̃1(ε)

βi(1 + η̃1(ε))
1
pω

1
p

k

=: R̃1(ε). (79)

Remark 2.4. First we choose R0 > 0, then η̃1 and after that, R̃1 with
dependences in this order.

Remark 2.5. η̃1(ε)→ 0, R̃1(ε)→ 0, when ε→ ε.

The condition 0 < R0 <

√
(1+η1)

1
k−1

δi
serves to assert that 1+η1

(1+δiR2
0)k
−

1 > 0 and there exists η̃1 such that (1 + η̃1)ωkR̃
k ≤ (1 + η1)ωkR

k.
The condition 0 < R0 < infx∈ig(B(a,R̃)) {|x− a|RN } serves to assert that

spt||ig,#V || ∩ ig(B(a,R0)) ⊆ ig(spt||V || ∩B(a, R̃)).
From what is said, it follows

||ig,#V ||(BRN (a,R0)) ≤ ||V ||(BM (a, R̃)) ≤ d(1+η̃1)ωkR̃
k ≤ d(1+η1)ωkR

k
0 .

(80)
The first term on the right hand side of equation (76) is estimated

thanks to assumption 3,

|δgV (X>)| ≤ η̃1d
1
p R̃

k
p
−1
(∫

M
|X>|q||V ||(dx)

) 1
q

≤ η̃1d
1
p R̃

k
p
−1||X||Lq(||V ||).
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To the second term, we apply Hölder’s inequality,

|
∫
Gk(M)

X⊥(x)·h(M, (x, S))dV (x, S)| ≤ βi

{∫
Supp(X)

d||V ||

} 1
p

||X||Lq(||V ||).

Choosing vector fields X supported in the R0-ball makes{∫
Supp(X)

d||V ||

} 1
p

≤ {||ig,#V ||(B(a,R0))}
1
p ≤ d

1
p (1 + η1)ωkR

k
0 .

It follows that

δ(ig,#V )(X) ≤ ηd
1
pR

k
p
−1

0

(∫
Rn |X|

q||V ||(dx)
) 1
q . (81)

Now we can apply Theorem 2.1 (Allard’s Euclidean) to ig,#V at point
a with R = R0 as described previously to obtain (with a little abuse
of notation for i−1

g ), F̃1 = i−1
g ◦ F1 where F1 is given by Theorem 2.1

(Allard Euclidean). It can be easily seen that dF1(0) = Id and that i is
an isometric embedding. This implies that dF̃1(0) is an isometry. q.e.d.

2.4 First Variation of isoperimetric regions

In this subsection, we check that varifold isoperimetric regions have
constant mean curvature. This will be used later, in Lemma 3.1, where
Levy-Gromov’s inequality will be used to verify the third assumption in
Allard’s theorem.

Lemma 2.2. Let (Mn, g) be a smooth Riemannian manifold. Let V be
the varifold associated to a current ∂D of dimension n − 1, that is the
boundary of an isoperimetric region D. Then there exists a constant Hg

so that for every vector field X ∈ X(M) we have

δg∂D(X) = −Hg

∫
Spt||∂D||

< X, ν >g ||∂D||(x),

where ν is the outward normal to the boundary of D defined ||∂D||-a.e.

Remark 2.6. We observe that it is the first time that we encounter
in this paper a concept used to study a varifold depends on the metric,
namely the mean curvature.
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Remark 2.7. The vector ν is the exterior normal to ∂D that by regu-
larity theory exists Hn−1

g a.e. on ∂D. (The reader can consult [Mor03])

Proof: As X(M) is the space of sections of the tangent bundle
TM →M , it has a natural structure of vector space (possibly of infinite
dimension). Consider the following linear functionals on this vector
space:

Fluxg :

{
X(M) → R
X 7→

∫
∂D < X, ν >g dAg,∂D(x)

δg∂D :

{
X(M) → R
X 7→ δg∂D(X)

Lemma 2.3. If Fluxg(X) = 0, then there exists a variation h(t, x)
such that Mg((ht)#D) = Mg(D) and

[
∂h
∂t

]
t=0

= X.

Proof: Construction of h. We start with the flow h̃(t, x) of X
(i.e: X(x) := ∂

∂t h̃(t, x)|t=0) and we make a correction by a flow Hs of a
vector field Y that has Fluxg(Y ) 6= 0. Now, we consider the function

f :

{
I2 → M
(s, t) 7→ Mg((Hs ◦ ht)(D))− V olg(D)

where I is an interval of the real line. It is smooth by classical theorems
of differentiation of an integral, since we make an integration on recti-
fiable currents. We apply the implicit function theorem at point (0, 0)
to function f in order to find an s(t) that satisfies

Mg((Hs(t) ◦ h̃t)(D))− V olg(D) = 0.

Such an application of implicit function theorem is possible since

∂

∂s
f(0, 0) = Fluxg(Y ) 6= 0.

We have also s′(0) = 0. Indeed

d

dt
f(s(t), t) = s′(t)

∫
ht(D)

divg(Y ) +

∫
D
divg(Hs(t)∗X)

and an evaluation at t = 0 gives

s′(0)Fluxg(Y ) + Fluxg(X) = 0
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hence s′(0) = 0 since Fluxg(Y ) 6= 0 and Fluxg(X) = 0.

Now if we apply the previous argument to h(t, x) = Hs(t) ◦ h̃(t, x) we
can see that

∂

∂t
h(0, x) = s′(0)Y (ht(x)) +Hs(0)∗X = X,

by the fact s′(0) = 0. q.e.d.

End of the proof of Lemma 2.2.
Let X be a vector field with Fluxg(X) = 0. Applying Lemma 2.3,

there exists a variation h(t, x) satisfing the following two properties

1. Mg((ht)#D) = Mg(D)

2. ∂h
∂t t=0

= X,

provided Fluxg(X) = 0 and

d

dt
[Mg((ht)#∂D)]t=0 = δg∂D(X) = 0.

In other words, Ker(Fluxg) ⊆ Ker(δg∂D). Hence there exists λ ∈ R
for which it is true that δg∂D = λF lux. We set Hg = −λ. This notation
is justified by the fact that on the smooth part of ∂D, Hg is equal to
the genuine mean curvature. q.e.d.

2.5 Riemannian Monotonicity Formula using isometric
embedding

Theorem 2.3 (Riemannian Monotonicity Formula). Let T ∈ RVn(M)
be a varifold solution of the isoperimetric problem, consider x ∈ Spt||∂T ||,
and R > 0. Then

Θ(||ig#∂T ||, x)ωn−1R
n−1e−(|Hg |g+βi,g)R ≤ ||ig#∂T ||BRn(x,R), (82)

where Hg is the generalized mean curvature of the varifold ∂T viewed
as a varifold on M , βig is an upper bound on the norm of the second
fundamental form of the isometric embedding ig : M ↪→ RN .
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Proof: When M is Euclidean space, this result is due to W. K.
Allard, Theorem 5.1 of [All72]. In order to adapt it to the situation
considered here, we make use of an isometric embedding ig of M (whose
existence is guaranteed by Nash’s theorem) and then we look at the
current ig#T in order to apply the Euclidean statement. In this case we
see that the term to consider, instead of simply taking into account the
mean curvature of T in M , involves the mean curvature of ig#T into
RN . This is not really a problem because of our control on the norm
of the second fundamental form of the embedding of M in RN by the
upper bound βig . Therefore

Θ(||∂T ||, x)ωn−1R
n−1e−(|Hg |g+βi)R ≤ ||∂T ||B(x,R).

q.e.d.
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3 The Normal Graph Theorem

Definition 3.1. A complete Riemannian manifold (M, g), is said to
be of bounded geometry, if there exists a constant k ∈ R, such that
RicM ≥ k(n − 1) (i.e., RicM ≥ (n − 1)kg in the sense of quadratic
forms) and V (B(M,g)(p, 1)) ≥ v0 for some positive constant v0, where
B(M,g)(p, r) is the geodesic ball (or equivalently the metric ball) of M
centered at p and of radius r > 0.

Theorem 3.1. Let (Mn, g) be a smooth Riemannian manifold endowed
with a Riemannian metric g of class C∞ with bounded geometry. Let
ig : M ↪→ RN be an isometric embedding. Let B be an open relatively
compact domain whose boundary ∂B is smooth, α ∈]0, 1[, ε > 0, given
real numbers. Then there exist
ε0 = ε0(n,B, ξ, g, ∂g, ∂2g, ∂3g, ∂4g, α, ε) > 0 and C∗(1, ε, ε0) > 0,
such that for every current T solution of the isoperimetric problem that
satisfies the following condition

V olg(B∆T ) ≤ ε0, (83)

∂T is the normal graph of a function uT on ∂B, uT ∈ C1,α(∂B), and
||uT ||C1,α

g (∂B)
≤ C∗(1, B, ∂4g, ε, ε0). Moreover C∗(1, ε, ε0, ∂

4g) tends to

0 as ε, ε0 → 0+ and the constant ε0 is continuous with respect to its
arguments and so in particular with respect to convergence of metrics
in the C4 topology. In particular, if Tj is a sequence of isoperimetric
regions such that V olg(B∆Tj) → 0, then ||uTj ||C1,α

g (∂B)
→ 0, H∂Tj −

H∂B → 0, ∂B is a constant mean curvature hypersurface, and actually
B is an isoperimetric region. This convergence is uniform with respect to
g. Furthermore for any positive integer m ≥ 1 and real number α ∈]0, 1[
there exists a positive constant C∗m+1 := C∗(m, ε, ε0, ||g||m,α, ∂4g) > 0
such that ||uT ||Cm+1,α

g (∂B)
≤ C∗m+1 where C∗m+1 → 0 as ε → 0, where

||g||m,α is the Cm,α norm of the metric tensor over a suitable compact
neighborhood of B.

Remark 3.1. All the constants that bound the geometry of the ambient
space are calculated on a tubular neighborhood of ∂B contained in a
compact V where the normal exponential map of ∂B is a diffeomorphism,
except for the confinement Lemmas 3.11, 3.8.

The proof of Theorem 3.1 occupies paragraphs 3.1 to 3.8.
We give at first an informal sketch of this proof and then a series of
lemmas that are used in the rigorous proof.
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3.1 Sketch of the Proof of Theorem 3.1

1. Lemma 3.11 allows us to locate the entire picture of Theorem 3.1
inside a compact tubular neighborhood of B. So all the quantities
needed in the proof are bounded above and are bounded below
away from 0, hence the proof go in the same way as in the compact
case. Furthermore we notice that Lemma 3.11 does not make any
use of an isometric embedding of the Riemannian manifold (M, g)
into some Euclidean space.

2. We continue as in the compact case and we make use of an a
priori estimate of the mean curvature for isoperimetric regions,
this is Lévy-Gromov’s lemma, stated in 3.1. From the discussions
contained in the proof of Lemma 3.1 we have that if the length of
the mean curvature vector of ∂T is strictly bigger than

√
k then

T is always mean convex.

3. Secondly, we apply Allard’s regularity theorem (Riemannian, but
still non intrinsic, version) to prove that ∂T is a C1,α submanifold
and to prove C1,α convergence at this point we make a crucial use
of Nash’s isometric embedding theorem.
To this aim we proceed as in the following steps:

(a) We stand on a sufficently small scale R in order to estimate
the first variation like required by Theorem 2.2.

(b) We estimate the volume of the intersection of ∂T with a
ball BM (x,R) and we proceed as follows: we cut ∂T with
BM (x,R) and replace T by T ′ of equal volume thanks to
the construction (Lemma 3.3) of a one parameter family of
diffeomorphisms that perturbes T preserving the volumes of
perturbed domains. This leads to the estimates of Lemmas
3.3, 3.7.

(c) We apply Allard’s theorem and we conclude that ∂T is of
class C1,α. The tangent cone is hence a vector space. As
showed by Frank Morgan in [Mor03], it follows that ∂T is as
smooth as the metric. We shall give a direct proof of this.

4. We confine ∂T in a tubular neighborhood of ∂B, of sufficiently
small thickness, in Lemma 3.8. For this, 3.3 is combined with the
Riemannian monotonicity formula 2.3.

5. We calculate a bound on r (the tubular neighborhood thickness)
so that the projection π, of the tubular neighborhood Ur0(∂B) of
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thickness r on ∂B, restricted to ∂T is a local diffeomorphism and,
after, via a topological argument we argue that π|∂T is a global
diffeomorphism. This shows that ∂T is the global normal graph
on ∂B of a function u. By an application of the implicit function
theorem, u is then of class C1,α. Notice that r = r(V olg(B∆T ))→
0 when V olg(B∆T )→ 0.

6. The estimates presented in the conclusions of the Allard’s regu-
larity theorem shows that ||u||C1,α → 0 when V olg(B∆T ) → 0.
A geometric argument also shows that the C1 norm of u goes to
zero if r → 0, i.e., if V olg(B∆T )→ 0. Alternatively an appeal to
Ascoli-Arzelà’s theorem could be used to show that ||u||C1,α → 0
when r → 0.

7. Now we are ready to use elliptic regularity theory, Schauder’s es-
timates, in order to find upper bounds on ||u||C2,α and with the
same technique of Ascoli-Arzelà of point 5, we show ||u||C2,α → 0
when V olg(T∆B)→ 0. In particular H∂T → H∂B.

8. Finally, when B is the limit in flat norm of isoperimetric regions
then by the continuity of the isoperimetric profile in bounded ge-
ometry and by lower semicontinuity of the perimeter we get that
B is isoperimetric, so with constant mean curvature.

3.2 A priori estimates on mean curvature

Set

k := Min

{
−1, inf

Ur0 (∂B)
KM1 (x)

}
,

δ := Max

 sup
Ur0 (∂B)

KM2 (x), 1

 ,

where KM1 (x) is a lower bound on the sectional curvatures of M at x,
and KM2 (x) is an upper bound on the sectional curvatures of M at x.
Denote by Hg,∂T the mean curvature vector of ∂T . It is constant for
isoperimetric domains. This means that the mean curvature vector have
a constant scalar product with the fixed global defined inward pointing
unit normal vector defined Hn−1-a.e. on the support of the measure
||∂T ||. The following Lemma is inspired by Theorem 2.2 of [MJ00] in
which only the case of (M, g) compact is treated.
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Lemma 3.1. Let Mn be a complete not necessarily compact Rieman-
nian manifold satisfying Ricci ≥ (n−1)k, k ∈ R. Let B an open bounded
domain whose boundary ∂B is smooth. Then there exists ε1 > 0 and
H1 > 0 such that for every current T solution of the isoperimetric prob-
lem that satisfies the condition

V olg(T∆B) ≤ ε1,

we have
|H∂T

g | ≤ H1,g, (84)

where H1 = H1(n, k, V olg(B), V olg(M)) = H1(B, g), if M is compact
and H1 = H1(n, k, V olg(B)), if M is noncompact.

Proof: We can assume in this proof without loss of generality that
∂T is smooth. As we know from regularity theory, compare [Mor03] or
Theorem 2.28 of [Mag12], if T is an isoperimetric region every point of
Supp(∂T ) that have the tangent cone being an half space is a regular
point, hence for any point p ∈ M a minimizing geodesic issued from p
hits ∂T orthogonally in a regular point, because we can put a tangent
ball to ∂T at half the distance between p and ∂T . The tangency con-
dition implies that the tangent cone is a half space. For this reason the
arguments of this proof are not affected at all by the possible presence of
singularities in ∂T . Compare on this issue (4) of page 297 of [BBG85] or
the original paper [Gro86a]. Settled this first technical point we proceed
with our proof. Set

ck :


R → R

t 7→


cos(
√
kt), if k > 0,

1, if k = 0,

cosh(
√
kt), if k < 0,

sk :


R → R

t 7→


1√
k
sin(
√
kt), if k > 0,

t, if k = 0,
1√
−ksinh(

√
−kt), if k < 0.

Let h := |H∂T | ∈ [0,+∞[ denote the length of the mean curvature
vector of the regular part of the boundary ∂T of an isoperimetric region
T . It is well known that h is a constant. The mean curvature vector of
the regular part of ∂T could point toward the interior or the exterior of
the support of T . Now, fix x ∈ ∂T , denote by ξ := ξ(x) ∈ TxM a unit
vector normal to ∂rT at x, where ∂rT is the regular part of ∂T . Let
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us define rx,ξ(x) := sup{t ∈ [0,+∞[: d(M,g)(γξ(t), ∂T ) = t}, where γξ is
a geodesic parametrized by the arc length such that γ(0) = x = π(ξ)
and γ̇ξ(0) = ξ. Using Theorem 2.1 of [HK78] (see also [BZ88] Corollary
34.4.1, or [Cha06] Theorem IX.3.2) is not too hard to verify that

rξ ≤ τ, (85)

where τ is the first positive zero of t 7→ fn,k,h(t) := ck(t) − h
n−1sk(t).

Notice that when k ≤ 0 and h > (n − 1)
√
−k, there exists a first

positive zero τ ∈]0,+∞[, otherwise when h ≤ (n − 1)
√
−k there is no

first positive zero of fn,k,h and we set τ := +∞. If k > 0, then τ ∈]0, π√
k
[.

Assume for the moment that h > (n− 1)
√
|k|, again by Theorem 2.1 of

[HK78]

v ≤ v + ṽT ≤ vn,k,h,∂T ≤ Ag(∂T )f(τ), (86)

where ṽT is the volume of a tubular neighborhood of ∂T outside T ,

vn,k,h,∂T :=

∫
∂T

∫ rξ

0

(
ck(t)−

h

n− 1
sk(t)

)n−1

χ[0,τ ]dt (87)

+

∫
∂T

∫ r−ξ

0

(
ck(t) +

h

n− 1
sk(t)

)n−1

dt, (88)

and for every s ≥ 0 we set

f(s) :=

∫ s

0

[(
ck(t)− h

n− 1
sk(t)

)n−1
χ[0,τ ](t) +

(
ck(t) +

h

n− 1
sk(t)

)n−1]
dt.

As it is easy to check f is a strictly increasing function, moreover we
have that f(s) ≥ s for every s, hence by (86) we get

v

Ag(∂T )
≤ f−1

(
v

Ag(∂T )

)
≤ τ. (89)

From the last inequality it is easy to see that for every constant 0 <
c < 1, (say c = 1

2) there exists ε1 such that if V olg(T∆B) ≤ ε1, then by
(89)

H̃1 := (n− 1) cotk

(
c

V olg(B)

IMn
k
(V olg(B))

)
≥ h, (90)

since (n − 1) cotk(τ) = h, cotk is a strictly decreasing function, IM ≤
IMn

k
, IMn

k
is a continuous function, and the perimeter is lower semicon-

tinuous with respect to the convergence in flat norm. Thus we proved
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that h ≤ max
{
H̃1, (n− 1)

√
|k|
}

= H1 and the lemma follows. Now

we can compare this proof with that of Theorem 2.2 of [MJ00] in which
the case when M is compact is treated and a little better estimates are
provided in that case. q.e.d.

3.3 Volume of the Intersection of a smooth hypersurface
with a ball of the ambient Riemannian manifold

Let τδ,β > 0 be the first positive zero of the function cδ − βsδ.
Set λ(β, δ)(t) = 1

cδ(t)−βsδ(t) for t ∈ [0, τδ,β[.

Lemma 3.2. Let M be a Riemannian manifold, V ⊂M be a smooth hy-
persurface. There exists R2 = R2(V, g, ∂g, ∂2g) > 0 and C2(V, g, ∂g, ∂2g) >
0 such that for every R < R2 and for every x ∈ M at distance d < R2

from V , if R′ = d+R, then

V olg(V ∩B(x,R)) ≤ (1 + C2R
′)ωn−1R

′n−1.

R2 depends only on β, r0, inj(M,g) (bound on the second fundamental
form of V , normal injectivity radius of V , injectivity radius of M ), δ0

(geometry of the ambient Riemannian manifold) and C2 depends on the
same quantities plus a lower bound on Ricci curvature of V .

Remark 3.2. In the proof of Theorem 3.1 we apply Lemma 3.2 with
V = ∂B, d ≤ R3, but, d ≤ R2 is enough too.

Remark 3.3. β = β(V, g, ∂g, ∂2g), r0 = r0(V, g, ∂g, ∂2g), injM =
inj(M,g)(V, g, ∂g, ∂

2g).

Idea of the proof. Using comparison theorems for distortion of
the normal exponential map based on a submanifold, we can compare
the intrinsic and extrinsic distance functions on V ↪→ M . This allows
us to reduce the problem to the estimation of the volume of an intrinsic
ball of V , i.e., to Bishop-Gromov’s inequality.

Proof: Whenever y ∈ V such that d(M,g)(x, V ) = d(M,g)(x, y) = d
there exists R′′ > 0 for which

V ∩B(x,R) ⊆ BV (y,R′′).
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We can take for example R′′ ≥ supz∈V ∩B(x,R){dV (y, z)}.
Set

k2 := Min{ inf{RicV }
n− 2

,−1}.

then

V olg(V ∩B(x,R)) ≤ V ol(BV (y,R′′))

≤ V olMn−1
k

(B(o,R′′))

= αn−2

∫ R′′

0
sk2(t)n−2dt,

where the second inequality follows from Bishop-Gromov’s Theorem.
We have then

V olg(V ∩BM (x,R)) ≤ (1 + C ′(k2)(R′′)2)ωn−1R
′′n−1

after expanding the term

VMn−1
k

(B(o,R′′))− V olRn−1(B(o,R′′))

ωn−1R′′n−1

by a Taylor-Lagrange type formula. Let π be the projection of Ur0 on
V . Following a comparison result of 3.2.1 Main inequality and Corollary
3.3.1 of [HK78] we get

(cδ(t)− βsδ(t))2g0 ≤ gt ≤ (ck(t) + βsk(t))
2g0, (91)

where gt is the induced metric on the equidistant hypersurface Vt :=
{x ∈ M : dM (x, V ) = t} and the preceding expression is understood
in the sense of quadratic forms. Let z ∈ V so that dM (x, z) = R,
dV (y, z) = R′′ and dM (x, z) = b. If we consider the minimizing geodesic
γ of M that joins y to z parameterized by arc length s and let us
denote ∆̃ = Sups∈[0,b]{dM (γ(s), ∂B)}, there are points p ∈ ∂B, q ∈ γ,

p, q ∈ BM (y, b) for which ∆̃ = dM (p, q) and conclude ∆̃ ≤ 2R. If we
take R2 such that 0 < R2 := Min{ τδ,β4 , injM} this provides that cδ−βsδ
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is decreasing and positive on [0, R2], we then infer

R′′ ≤ l(π ◦ γ)g0

=

∫ b

0
|dπ(γ′)|g0(s)ds

≤
∫ b

0
λ(β, δ)(s)|γ′|gdM (γ(s),V )

(s)ds

=

∫ b

0
λ(β, δ)(s)ds

≤
∫ b

0
λ(β, δ)(2R)ds,

this last inequality leads certainly to

R′′ ≤ λ(β, δ)(2R)b.

But, b ≤ d+R, by triangle inequality, hence

R′′(R) ≤ λ(β, δ)(b)b ≤ (1 + C(β, δ)b)b. (92)

Incidentally we observe that the preceding equation gives us an ana-
logue result to Lemma 2.1 in case of an arbitrary Riemannian ambient
manifold, but still in codimension 1. If we look at the Taylor expansion
of λ(β, δ)(t) = 1 + βt+O(t2), we notice at a qualitative level that

R′′(R) ≤ (1+β2R+O(R2))(d+R) = (1+O(R))(d+R) = (1+CR)(d+R),

where the constant C = SupR∈[0,R2]{
λ(β,δ)(2R)

R }. So we get

V ol(V ∩BM (x,R)) ≤ (1+C ′(k2)((1+CR)(d+R))2)ωn−1((1+CR)(d+R))n−1

and finally

V olg(V ∩BM (x,R)) ≤ (1 + C2R
′)ωn−1R

′n−1

for C2 depending on a lower bound on Ricci curvature tensor of V , on
an upper bound on the second fundamental form of V and un upper
bound on curvature tensor of ambient manifold. q.e.d.
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3.4 Compensation of Volume Process

Remark: In this subsection we make no assumption on the distance of
an arbitrary point x of ∂T to the boundary ∂B. Let

R3 := Min{inj(M,g), r0,g,
diamg(B)

4
} = R3(B, g, ∂g, ∂2g).

Lemma 3.3 (Deformation Lemma first version). There exists C3 =
C3(B, g, ∂g, ∂2g) > 0 such that whenever R < R3, a < R

2 , there is
ε3 > 0 so that, for every x ∈ ∂T , there exists a vector field ξx with the
following properties

1. the support of ξx is disjoint from B(x,R) ;

2. the flow φt is defined for t ∈ [−R,R], and for t ∈ [−R
2 ,

R
2 ], ξx

restricted to a sufficiently small ball centered at a point y′ ∈ ∂B,
coincides with the gradient of the signed distance function to ∂B;

3. the norm of the covariant derivative |∇gξx|g < C3.

Furthermore, for every solution T of the isoperimetric problem whose
boundary contains x, and V olg(T∆B) < ε3, there exists t ∈ [−a, a]
such that T ′ = (B ∩ B(x,R)) ∪ (φt(T ) \ B(x,R)) has volume equal to
the volume of T . In particular,

Ag(∂T ∩B(x,R)) ≤ Ag(∂B ∩B(x,R)) +Ag((T∆B) ∩ ∂B(x,R))
+ Ag(φt#(∂T ))−Ag(∂T ).

(93)
Constants C3 and ε3 depend only on the geometry of the problem, of the
a priori choice of a vector field fixed once and for all on U∂B(r0) and
on a bump function ψ defined once at all also.

Remarks:

1. In the proof of Theorem 3.1 we use Lemma 3.3 with ε0 ≤ ε3,
among other contraints that will be clear in the sequel.

2. Furthermore if δv := V olg(B ∩B(x,R))− V olg(T ∩B(x,R)) ≤ 0
then t ≥ 0 and if δv > 0 then t < 0 (balancing of volume).

3. The parameter a serves to control that t be small, as this t will
control the term |V olg(T ′ ∩ Supp(ϕ))− V olg(T ∩ Supp(ϕ))|
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Idea of proof. The vector field ξx is obtained with the classical
technique of multiplication by a bump function the metric vector gradi-
ent of the signed distance function ∂B. This bump function has support
in a neighborhood of a point that belongs to ∂B and that is far away
from x. We provide also that the flow of this vector field significantly
increases the volume of B. This is sufficient to suitably change the vol-
ume of T . We can then operate a balancing of a given volume variation.

Proof: First, we make the following geometric construction of a vector
field ν. Fix a point y′ ∈ ∂B with B(x,R) ∩ B(y,R) = ∅ (it suffices to
take y′ so that d(x, y′) ≥ R+ 1

2diam(B), for example).
Let U∂B(r0) := {x ∈M |d(x, ∂B) < r0}. By the choice of r0, the normal
exponential map

exp∂B :

{
∂B×]− r0, r0[ → U∂B(r0)
(q, t) 7→ expq(tν(q))

is a diffeomorphism.
Let ν be the extension by parallel transport on normal (to ∂B) geodesics
of the exterior normal issuing from ∂B (equivalently, ν is the gradient of
the signed distance function to ∂B), in a vector field defined on Ur0(∂B).
Let

ψ :

{
R → [0, 1]

s 7→ χ[0,1/2](|s|) + e4/3e
1

s2−1χ]1/2,1[(|s|).

Now, we modulate ν with the smooth function ψ and we set

ξx := ψ(
d(y′, .)

R
)ν = ψ1ν.

It can be seen that ||∇Xξx|| ≤ ||ψ′||∞,[−1,1]||X|| + ||∇Xν|| ≤ C3||X||,
establishing that C3 depends on geometric quantities and on the choice
of ψ. Let {ϕt} be the flow (one parameter group of diffeomorphisms of
M) of the vector field ξx. It’s true that Supp(ϕ) ⊂ BM (y′, R). Now
consider, whenever a ∈]0, R2 [ the functions f, f1, h defined as follows:

f1 :

{
[−a, a] → R
t 7→ V olg,n(ϕt(B))

f :

{
[−a, a] → R
t 7→ V olg,n(ϕt(T̃ )),

h :

{
[−a, a] → R
t 7→ V olg,n(ϕt(T )),
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where T̃ := (T −B(x,R)) ∪ (B ∩B(x,R)).
For the aims of the proof, we need to show that V olg(T ) ∈ f([−a, a])
with an argument independent of x as f depends on x.
By construction

d
dt [V olg(ϕt(B))] =

∫
ϕt(∂B) ψ1 < ν, ν > dVϕt(∂B)

≥ ψ(t)Ag(∂Bt ∩ Supp(ψ1))
= Ag(∂Bt ∩ Supp(ψ1)),

(94)

hence letting R′ := R
2(ck+βsk)(R

2
)

and

(cδ − βsδ)(R2 )(Infy′∈∂BV (∂B ∩B(y′, R′)) := C ′3,

f ′1(t) ≥ V ol(∂Bt ∩ Supp(ψ1))
≥ C ′3,

(95)

whenever t < R
2 .

Hence f1 is strictly increasing and f1(a)− f1(−a) ≥ 2aC ′3 =: ∆3.
Let

J :=

∣∣∣∣det(∂ϕt(y)

∂y

)∣∣∣∣
∞,[−a,a]×Ur0 (∂B)

≤ enC3a,

by similar arguments to those of the proof of Lemma 3.4.
From

|f(t)− h(t)| = |V oln(B ∩B(x,R))− V oln(T ∩B(x,R))|
≤ V ol((T∆B) ∩B(x,R))
≤ ε3,

|h(t)− f1(t)| ≤ |V olg(ϕt(T∆B))|
≤ JV ol(T∆B)
≤ enC3aε3,

it follows that

|f(t)− f1(t)| ≤ ε3 + Jε3 ≤ (1 + enC3a)ε3 =: σ,

σ is independent on x.
If we take

0 < ε3 ≤
1

2(1 + enC3a)
aC ′3, (96)

then

σ ≤ 1

2
min{f1(0)− f1(−a), f1(a)− f1(0)}, (97)
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therefore
[f1(−a) + σ, f1(a)− σ] ⊆ f([−a, a]).

With this choice for ε3 we obtain

V olg(T ) ∈ [f1(−a) + σ, f1(a)− σ],

so, there exists t ∈ [−a, a] depending on x such that f(t) = V olg(T ) =

V olg(ϕt(T̃ )) and we conclude the proof by taking T ′ := ϕt(T̃ ).

Finally
Ag(∂T ) = I(M,g)(V olg(T ))

≤ Ag(∂T
′),

whence

Ag(∂T
′) ≤ Ag(∂B ∩B(x,R)) + V olg((T∆B) ∩ ∂B(x,R))

+ Ag(ϕt#(∂T ))−Ag(∂T ∩B(x,R)), (98)

which implies (93). q.e.d.

3.5 Comparison of the area of the boundary of an isoperi-
metric domain with the area of a perturbation with
constant volume

Lemma 3.4. Let M be a Riemannian manifold. For every C > 0, for
every vector field ξ on M such that |∇gξ|g < C, whose flow is denoted
by φt, and whenever V is a hypersurface embedded in M , it holds

V olg(φt#V ) ≤ e(n−1)C|t|V olg(V ).

Proof: It suffices to majorate the norm of the differential of diffeo-
morphism φt.

|dxφt(v)| = (g(φt(x))(dxφt(v)))
1
2 = (φ∗t (gM )(x)(v))

1
2

(φ∗t (gM )(x)(v))
1
2 ≤ eC|t|g(x)(v) = eC|t||v|.

The last inequality comes from the following lemma.

Lemma 3.5. (φ∗t (gM )(x)(v)) ≤ e2C|t|g(x)(v).
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Proof: From well known properties of Lie derivative we know that

∂

∂t
(φ∗t (gM )) = φ∗tLξgM . (99)

We assume for the moment that we can show the following inequality

LξgM = 2× symmetric part of ∇ξ. (100)

We use this fact to establish

LξgM ≤ 2|∇ξ|gM ≤ 2CgM ,

hence φ∗tLξgM ≤ 2Cφ∗t (gM ). Set t 7→ φ∗t (gM ) = qt, on TxM , then it
is not too hard to see that qt satisfies ∂

∂tqt ≤ 2Cqt with q0 = gM . It

follows that whenever x ∈ M and v ∈ TxM , qt(v) ≤ e2C|t|q0(v) we
have (φ∗t (gM )(x)(v)) ≤ e2C|t|g(x)(v). It remains to show that LξgM =
2× symmetric part of ∇ξ. Let Aξ := Lξ−∇ξ. We look at this operator
on 2 covariant tensor fields and evaluate it on the metric gM . We obtain
LξgM = AξgM , since ∇ξg = 0 and then

0 = Aξ(g(w1, w2)) = (Aξg)(w1, w2) + g(−∇w1ξ, w2) + g(−w1,∇w2ξ).

The first equality comes from the fact that the Lie derivative and the
covariant derivative coincide when acting on functions, the others are
straightforward consequences of the definition of Aξ. So we conclude
that |LξgM | ≤ 2|∇ξ|. q.e.d.

End of the proof of Lemma 3.4.
We apply the inequality of Lemma 3.5 to the members of an or-

thonormal basis (v1, . . . , vn−1) of the tangent space TxV , we find

|φt#(v1 ∧ · · · ∧ vn−1)|g ≤ e(n−1)C|t|.

By an integration on V , one gets

Ag(φt#V ) ≤ e(n−1)C|t|Ag(V ).

q.e.d.
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Lemma 3.6. Whenever R > 0, x ∈ Spt||∂T || there exists R4, R
2 <

R4 < R, such that

Ag((T∆B) ∩ ∂B(x,R4)) ≤ 2

R
V olg(T∆B).

Proof: By a straightforward application of the coarea formula and
the mean value theorem for integrals. q.e.d.

Remark 3.4. At this point of the article we cannot put restrictions on
the distance of x ∈ ∂T to ∂B.

This lemma is used in the confinement lemma to majorate the vol-
ume of ∂T in a geodesic ball. In Lemma 3.7, we need to control the
(n − 1)-dimensional volume of the intersection of ∂T with a geodesic
ball of radius R centered in x. To make it possible we need to have the

quantity
dg(x,∂B)

R very small.

Lemma 3.7. Whenever η > 0, there is R5 such that whenever R <
R5 = R5(B, ξ, g, ∂g, ∂2g), (depending on the geometry of the problem)
there are R6, ε6 > 0 (depending only on R and on the geometry of
the problem, i.e., B, ξ, g, ∂g, ∂2g) such that 0 < R

2 < R6 < R and if
T is a current solution of the isoperimetric problem with the property

V olg(B∆T ) ≤ ε6, then whenever x ∈ Spt||∂T || with dg(x, ∂B) ≤
(
R
2

)3
we have

Ag(∂T ∩BM (x,R6)) ≤ (1 + η)ωn−1R
n−1
6 . (101)

Remark 3.5. In this context there are 2 distance scales. The scale of
R6 the radius of the cutting geodesic ball of the ambient Riemannian
manifold, that is the same as the scale of R and that of r6 that is the
distance between an arbitrary point of ∂T and a point of ∂B. This is
an important point in the estimates required by Allard’s theorem, as the
proof of Lemma 3.2 shows. Without this control on the scales involved
we cannot have good control on the volume of the intersection of the
hypersurface ∂B with an ambient geodesic ball.

Remark 3.6. The presence of interval ]R2 , R[ is just a technical com-
plication due to the mean value theorem for integrals in the estimates
of the (n − 1)-dimensional volume of the part of ∂T ∩ B(x,R) that is
T∆B.
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Proof:

Let A := C2s
(

1 + s2

23

)
, B :=

(
1 + s2

23

)n−1
− 1.

Let R5 be the greatest positive real number s such that

1. s ≤Min{injM , r0,
diam(B)

4 , R3},

2.

AB +B +A ≤ 1

3
η. (102)

We fix r6 > 0 with r6 ≤
(
R
2

)3
.

Let x ∈ Spt||∂T ||. Let a be the greatest positive real number s < R
2

with

(e(n−1)C3s − 1)M ≤ 1

3
ηωn−1

(
R

2

)n−1

, (103)

where M is the maximum of the isoperimetric profile on the interval

[vol(B)/2, 2vol(B)],

i.e.

a ≤Min{ 1

(n− 1)C3
log

[
1 +

ηωn−1

(
R
2

)n−1

3M

]
,
R

2
}.

Set ε6 := Min{ε3,
V ol(B)

2 , 1
3ηωn−1

(
R
2

)n}. Let T be a solution of the
isoperimetric problem such that V ol(T∆B) < ε6. By (93) we find
t(x) ∈ [−a, a] and ε3 (given by Lemma 3.3) satisfying

Ag(∂T ∩B(x,R)) ≤ Ag(∂B ∩B(x,R)) (104)

+ Ag((T∆B) ∩ ∂B(x,R))

+ Ag(ϕt#(∂T ))−Ag(∂T ).

From Lemmas 3.3 and 3.4 we have

Ag(∂T ∩B(x,R)) ≤ Ag(∂B ∩B(x,R)) (105)

+ Ag((T∆B) ∩ ∂B(x,R))

+ (e(n−1)C3t − 1)Ag(∂T ).

By Lemma 3.6 we get R4 satisfying

Ag((T∆B) ∩ ∂B(x,R4)) ≤ 2
RV ol(T∆B)

≤ 2
Rε6.
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Let R6 := R4. Lemmas 3.4, 3.6 and 3.2 combined give

V olg(∂T ∩B(x,R6)) ≤ (1 +O(R6))ωn−1R
n−1
6 (106)

+
2

R
V olg(T∆B) + (e(n−1)C3a − 1)M,

as, by Lemma 3.2,

V olg(∂B ∩B(x,R)) ≤ (1 +O(R))ωn−1R
n−1,

and by Lemma 3.6, 0 < R
2 < R6 < R.

By (103), (102), and the choice of ε6, equation (106) becomes

V olg(∂T ∩B(x,R6)) ≤ (1 +
1

3
η)ωn−1R

n−1
6 +

1

3
ηωn−1R

n−1
6 (107)

+
1

3
ηωn−1R

n−1
6 .

Finally
V olg(∂T ∩B(x,R6)) ≤ (1 + η)ωn−1R

n−1
6 . (108)

q.e.d.

3.6 Confinement of an Isoperimetric Domain by Mono-
tonicity Formula

Lemma 3.8. Let Mn be a Riemannian manifold. Let B a compact
domain whose boundary ∂B is smooth. For every s ∈]0, R3[, there ex-
ists ε7(s) > 0 with the property that if T is a current solution of the
isoperimetric problem with

V olg(B∆T ) < ε7,

then ∂T is contained in a tubular neighborhood of thickness s of ∂B.

Idea of the proof: By contradiction, we assume that there is a
current T and a point x ∈ ∂T at distance > s of ∂B. We choose
R ∈]s/2, s[ so that the intersection T∆B with the sphere ∂B(x,R) has
small area. The mechanism of balancing gives an estimation of the
area of ∂T ∩B(x,R), as ∂B ∩B(x,R) = ∅. This estimates from above
contradicts the estimates from below given by monotonicity formula
(Lemma 2.3), if V olg(T∆B) is sufficiently small.



44

Proof: Set s > 0. Let H1 be the constant produced by Lemma 3.1.
Let C3 be the constant given by Lemma 3.3. Let M0 be the maximum
of the isoperimetric profile on the interval [V ol(B)/2, 2V ol(B)]. Let βi
be a bound on the second fundamental form of an isometric immersion
of M in RN the Euclidean space. We can choose a so that

(e(n−1)C3a − 1)M0 <
1

2
ωn−1

(s
2

)n−1
e−(H1+βi)s. (109)

Let ε3 be the second constant given by Lemma 3.3, when, in this lemma,
we take R = s/2. Let ε7 < ε3, ε7 < vol(B)/2 and

2ε7

s
<

1

2
ωn−1

(s
2

)n−1
e−(H1+βi)s.

Let T be a current solution of the isoperimetric problem satisfying

V olg(T∆B) < ε7.

We argue by contradiction. Assume there is a point x ∈ ∂T placed at
distance > s from ∂B.
The balancing of volume (Lemma 3.3) gives for all R ≤Min{s,R3}

Ag(∂T ∩B(x,R)) ≤ Ag((T∆B) ∩ ∂B(x,R)) +Ag(φt#(∂T ))−Ag(∂T ),

as B(x,R) ∩ B = ∅. We apply Lemma 3.4 with C = C3 and we set
R7 ∈]s/2, s[ defining R7 := R4 obtained by applying Lemma 3.6 with
R = s such that

Ag((T∆B) ∩ ∂B(x,R7)) ≤ 2

s
V olg(T∆B).

It follows

Ag(∂T ∩B(x,R7)) ≤ 2ε7

s
+ (e(n−1)C3a − 1)Ag(∂T )

Ag(∂T ∩B(x,R)) ≤ 2ε7

s
+ (e(n−1)C3a − 1)M0.

Invoking Lemma 3.1 (Lévy-Gromov), the mean curvature of ∂T satisfies

|H| ≤ H1.

Monotonicity inequality (Lemma 2.3 ) gives us

Ag(∂T ∩B(x,R7)) ≥ ωn−1R
n−1
7 e−(|H|+βi)R7 ,
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which, by our choice of ε7, contradicts the preceding inequality. We
conclude that ∂T is contained in a tubular neighborhood of thickness s
of ∂B. q.e.d.

Loosely speaking the next theorem asserts that ∂T is contained in a
tubular neighborhood of thickness at most C ′7V olg(T∆B) of ∂B, where
C ′7 is a constant that depends only on n.

Lemma 3.9. Let Mn be a Riemannian manifold. Let B a compact do-
main whose boundary ∂B is smooth. Then there exists a constant C ′7 =

C ′7(n) > 0 such that if s := sup{x ∈ ∂T, dg(x, ∂B)} < min
{
R3,

ln(2)
H1+βig

}
,

then s ≤ C ′7V olg(T∆B)
1
n .

Proof: Let H1 be the constant produced by Lemma 3.1. Let C3 > 0
be the constant given by Lemma 3.3. Let M0 be the maximum of the
isoperimetric profile on the interval [V ol(B)/2, 2V ol(B)]. Let βi be a
bound on the second fundamental form of an isometric immersion of M
in RN the Euclidean space. We can choose a so that

(e(n−1)C3a − 1)M0 <
1

2
ωn−1

(s
2

)n−1
e−(H1+βi)s. (110)

Assume there is a point x ∈ ∂T placed at distance s from ∂B.
The balancing of volume (Lemma 3.3) gives for all R < s

Ag(∂T ∩B(x,R)) ≤ Ag((T∆B) ∩ ∂B(x,R)) +Ag(φt#(∂T ))−Ag(∂T ),

as B(x,R) ∩ B = ∅. We apply Lemma 3.4 with C = C3 and we set
R7 ∈]s/2, s[ defining R7 := R4 obtained by applying Lemma 3.6 with
R = s such that

Ag((T∆B) ∩ ∂B(x,R7)) ≤ 2

s
V olg(T∆B).

It follows

Ag(∂T ∩B(x,R7)) ≤ 2V olg(T∆B)

s
+ (e(n−1)C3a − 1)Ag(∂T ),

hence

Ag(∂T ∩B(x,R)) ≤ 2V olg(T∆B)

s
+ (e(n−1)C3a − 1)M0.
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Invoking Lemma 3.1 (Lévy-Gromov), the mean curvature of ∂T satisfies

|H| ≤ H1.

Monotonicity inequality (Lemma 2.3) gives us

Ag(∂T ∩B(x,R7)) ≥ ωn−1R
n−1
7 e−(|H|+βi)R7 ,

thus

ωn−1R
n−1
7 e−(|H|+βi)R7 ≤ 2V olg(T∆B)

s
+ (e(n−1)C3a − 1)M0,

which in turn gives

ωn−1

(
sn

2n+1

)
≤ sωn−1R

n−1
7 e−(H1+βig )R7 (111)

≤ V olg(T∆B). (112)

Setting C ′7 := 2
n+1
n

ω
1
n
n−1

We conclude that ∂T is contained in a tubular

neighborhood of thickness s of ∂B. q.e.d.

3.7 Alternative proof of confinement under weaker bounded
geometry assumptions

We present here an alternative proof of the results contained in the
preceding section under weaker assumptions on the way the geometry
of (M, g) is bounded. The main result of this section is Lemma 3.11.
Before stating and proving it, we need an important technical defor-
mation lemma in the spirit of what is called today Almgren’s Lemma.
Instances of this kind of lemma are Lemma 3.3, Lemma 4.8 of [NO16],
Lemma 17.21 of [Mag12] and Lemma 4.5 of [GR13], but in the literature
there are plenty of ad-hoc versions of it . Roughly speaking we deform
an isoperimetric region Ω by a small amount of volume ∆v control-
ling the amount of variation of area ∆A by a constant C times ∆v, i.e.,
∆A ≤ C∆v. In general the constant C depends on Ω, but in our specific
situation we need to have an uniform constant C > 0 independent of Ω
if Ω is close enough in flat norm to B. To overcome this difficulty we
prove the following uniform deformation lemma which needs the notion
of normal injectivity radius of an arbitrary codimension submanifold,
which in turn generalizes the notion of injectivity radius at a point.
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Definition 3.2. Let (Mn, g) be a Riemannian manifold, 0 ≤ m ≤ n,
and Nm ⊆M be a m-dimensional submanifold of M . Consider T 1N :=
{(p, w) ∈ TM : w ∈ TpN⊥, ||w||g = 1} the unit tangent bundle of
Nk. For any (p, w) ∈ T 1N let us define the nonnegative extended real
numbers r0,g,N (p, w) := sup{t > 0 : dg(expp(tw), N) = t} ∈]0,+∞] and
r0,g,N := inf{r0,g(p, w) : (p, w) ∈ T 1N} ∈]0,+∞]. We call r0,g,N the
normal injectivity radius of N .

Remark 3.7. Notice that in the language of the Definition at the end
of page 145 of [Gra01] we have r0,g,N = minfoc(∂N).

Remark 3.8. By the choice of r0,g,N and standard comparison results
for the shape operator, see for instance Equation (7.23) and Lemma 8.51
of [Gra01] we know that

r0,g,N ≥ cot−1
Λg,N

(max{1, βg}) = r0 = r0(N, g, ∂g, ∂2g) > 0,

where Λg,N := sup{K(M,g)(x) : x ∈ dg(x,N) ≤ 1} with K(M,g)(x) being
the maximum taken over all the sectional curvature of 2-plane in TxM
with respect to the Riemannian metric g and βg is an upper bound on
the second fundamental form of the isometric embedding of (N, g|N ) into
(M, g).

To simplify the notation in what follows we set r0,g := r0,g,∂B. In
first we make the following geometric construction of a vector field ν.
Fix a point y′ ∈ ∂B. Let U∂B(r0,g) := {x ∈M |dg(x, ∂B) < r0,g}. It is
well known that the normal exponential map

exp∂Bg :

{
∂B×]− r0,g, r0,g[ → U∂B(r0,g)
(q, t) 7→ expq(tν(q))

is a diffeomorphism. Let ν be the extension by parallel transport on
normal (to ∂B) geodesics of the exterior normal issuing from ∂B (equiv-
alently, ν is the gradient of the signed distance function to ∂B), in a
vector field defined on Ur0,g(∂B).
Let

ψ :

{
R → [0, 1]

s 7→ χ[0,1/2](|s|) + e4/3e
1

s2−1χ]1/2,1[(|s|),

by a direct computation it is easy to check that ||ψ′||∞,[−1,1] ≤ 4. Now,
we modulate ν with the smooth function ψ and we set

ξ := ψ(
dg(y

′, .)

r0,g
)ν = ψ1ν. (113)



48

Lemma 3.10 (Uniform Deformation Lemma second version). Let (M, g)
be a complete Riemannian manifold (without any further assumption on
g), B ⊆ M be an open relatively compact set with smooth boundary,
y′ ∈ ∂B, r0,g the normal injectivity radius of ∂B, and ξ the smooth vec-
tor field with Supp(ξ) ⊆ Bg(y

′, r0,g) defined by (113). Then there exist
ε8 = ε8(B, ∂B, ξ, g, ∂g, ∂2g) > 0, C8 = C8(B, ∂B, ξ, g, ∂g, ∂2g) > 0, and
σ0 = σ0(B, ∂B, ξ, g, ∂g, ∂2g) > 0 such that for every finite perimeter
set Ω with V olg(Ω∆B) ≤ ε8 and σ ∈ [−σ0, σ0] there exist T ′ a finite
perimeter set (or n-rectifiable current) such that V olg(T

′) = V olg(Ω)+σ,
T ′∆Ω ⊆ Bg(y′, r0), and

Ag(∂T
′) ≤ Ag(∂Ω) + C8Ag(∂Ω ∩ Supp(ξ))|Vg(T ′)− Vg(Ω)|. (114)

Proof: It can be seen easily that

||∇Xξ|| ≤
1

r0,g
||ψ′||∞,[−1,1]||X||+ ||∇Xν|| ≤ C3||X||,

where

C3 = C3(β̃g, r0,g) =
4

r0,g
+sup{||IIg||∞,∂Bt : t ∈ [−r0,g, r0,g]} =

4

r0,g
+β̃g,

being ∂Bt := d̃−1
g (t) the level set of the signed distance function d̃ to ∂B.

This last equation establishes readily that C3 = C3(B, ∂B, ξ, g, ∂g, ∂2g) >
0 depends on geometric quantities and on the choice of ψ. Let {ϕt} be
the flow (one parameter group of diffeomorphisms of M) of the vector
field ξ. It is immediate to check that Supp(ϕ) ⊂ B(M,g)(y

′, r0,g). Now,

consider, whenever a ∈]0,
r0,g

2 [ for example a :=
r0,g

4 the functions f1, h
defined as follows:

f1 :

{
[−a, a] → [0,+∞[
t 7→ V olg,n(ϕt(B)),

h :

{
[−a, a] → [0,+∞[
t 7→ V olg,n(ϕt(Ω)).

For the aims of the proof, we need to show that V olg(Ω)+σ ∈ h([−a, a])
for sufficiently small σ. First of all assume that

ε8 < min{1

2
V olg(Bg(y

′, r0,g) \B),
1

2
V olg(Bg(y

′, r0,g) ∩B)}, (115)
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to have enough space to put enough volume inside Bg(y
′, r0,g) and to

have Ag(∂Ω∩Bg(y′, r0)) > 0. By the first variation formula for volumes
in maximal dimension n we have

f ′1(t) = d
dt [V olg(ϕt(B))] =

∫
ϕt(∂B) ψ1 < ν, ν > dV olg,ϕt(∂B)

≥ Ag(∂ϕt(B) ∩B(M,g)(y
′,
r0,g

2 )),
(116)

hence letting R′ :=
r0,g

2(ck+βsk)(
r0,g

2
)

and

(cδ−βsδ)(
r0,g

2
)(Infz∈∂BAg(∂B∩Bg(z,R′)) =: C ′3 = C ′3(∂B, g, ∂g, ∂2g) > 0,

thus
f ′1(t) ≥ Ag(∂ϕt(B) ∩B(M,g)(y

′,
r0,g

2 ))
≥ C ′3 > 0,

(117)

whenever t <
r0,g

2 . Hence f1 is strictly increasing on [−a, a] and

f1(a)− f1(−a) ≥ 2aC ′3 =: ∆3 > 0.

Let us define J as

J :=

∣∣∣∣det(∂ϕt(y)

∂y

)∣∣∣∣
∞,[−a,a]×Ur0,g (∂B)

,

by similar arguments to those of the proof of Lemma 3.4 we obtain

J ≤ enC3a.

From
|h(t)− f1(t)| ≤ |V olg(ϕt(Ω∆B))|

≤ JV olg(Ω∆B)
≤ enC3aε8,

it follows that
|h(t)− f1(t)| ≤ enC3aε8 =: δ. (118)

Now we want to estimate h′(t) from below. The idea behind this esti-
mates is that when Ω is close in flat norm to B the flux of ξ through Ω
is close to the flux of ξ trough B. Formally we have

|h′(t)− f ′1(t)| =

∣∣∣∣∣
∫
∂ϕt(Ω)

〈ξ, νϕt(Ω)〉gdH
n−1
g −

∫
∂ϕt(B)

〈ξ, νϕt(B)〉gdH
n−1
g

∣∣∣∣∣ (119)

=

∣∣∣∣∣
∫
ϕt(Ω)

divg(ξ)dV olg −
∫
ϕt(B)

divg(ξ)dV olg

∣∣∣∣∣ (120)

=

∣∣∣∣∣
∫
ϕt(Ω)∆ϕt(B)

divg(ξ)dV olg

∣∣∣∣∣ (121)

≤ ||divg(ξ)||∞,∂B×[r0,g,r0,g ]V olg(ϕt(Ω)∆ϕt(B)) (122)

≤ Ce
nC3t

V olg(Ω∆B) (123)

≤ Ce
nC3r0,gV olg(Ω∆B), (124)
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where C := ||divg(ξ)||∞,∂B×[r0,g ,r0,g ] = C(∂B, g, ∂g, ∂2g) > 0. Hence
choosing

ε8 ≤
C ′3

2CenC3r0,g
, (125)

we get

h′(t) ≥ f ′1(t)− CenC3r0,gV olg(Ω∆B) ≥ C ′3
2
> 0, ∀t ∈ [0, r0,g]. (126)

Integrating over the interval [0, t] this last inequality we easily conclude

∆v := |V olg(ϕt(Ω))− V olg(Ω)| = h(t)− h(0) ≥ C ′3
2
t, ∀t ∈ [0, r0,g].

(127)
Combining this last equation with Lemma 3.4 and putting T ′ := ϕt(Ω)
leads to

Ag(∂T
′) ≤ Ag(∂Ω ∩ (M \Bg(y′, r0))) (128)

+ e(n−1)C3tAg(∂Ω ∩Bg(y′, r0)) (129)

≤ Ag(∂Ω) (130)

+
e(n−1)C3r0,g − 1

r0,g
tAg(∂Ω ∩Bg(y′, r0)) (131)

≤ e(n−1)C3tAg(∂Ω) (132)

≤

(
1 +

e(n−1)C3r0,g − 1

r0,g
t

)
Ag(∂Ω) (133)

≤ Ag(∂Ω) +
2∆v(e(n−1)C3r0,g − 1)

C ′3r0,g
Ag(∂Ω) (134)

≤ Ag(∂Ω) +
2∆v(e(n−1)C3r0,g − 1)

C ′3r0,g
Ag(∂Ω). (135)

Hence we can choose C8 := 2(e(n−1)C3r0,g−1)
C′3r0,g

= C8(∂B,B, ξ, g, ∂g, ∂2g) >

0. Integrating (117) over the interval [0, a] we get f1(a)−f1(0) > aC ′3 >
0, and again integrating over the interval [−a, 0] we get f1(0)−f1(−a) >
aC ′3 > 0 so if we choose

0 < ε8 ≤
1

2enC3a
aC ′3, (136)

then

δ ≤ 1

2
min{f1(0)− f1(−a), f1(a)− f1(0)}, (137)
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y′

B

Ωr0

r0
2

∂Ω

∂B

∆v
∂T ′

Figure 1: Illustration of the Uniform Deformation Lemma.
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therefore
[f1(−a) + δ, f1(a)− δ] ⊆ h([−a, a]).

So for every σ ∈ [−σ̃0, σ̃0] where

σ̃0 := min{|f1(−a) + δ − V olg(Ω)|, |f1(a)− δ − V olg(Ω)|},

there exists t ∈ [−a, a] such that V olg(ϕt(Ω)) = V olg(T
′) = V olg(Ω)+σ.

Taking ε8 possibly smaller, i.e.,

0 < ε8 ≤
1

2(1 + e−nC3a)
min{−f1(−a) + V olg(B), f1(a)− V olg(B)},

(138)
we have

σ̃0 ≥
1

2
min{|f1(−a)− V olg(B)|, |f1(a)− V olg(B)|} > 0.

Thus we can choose

σ0 :=
1

2
min{|f1(−a)−V olg(B)|, |f1(a)−V olg(B)|} = σ0(∂B,B, ξ, g, ∂g, ∂2g) > 0.

Since ε8 satisfies (115), (125), (136), and (138) we argue that we can
choose ε8 = ε8(B, ∂B, ξ, g, ∂g, ∂2g) > 0 and this finishes the proof.
q.e.d.

We now state our desired confinement lemma in bounded geometry.

Lemma 3.11 (Confinement Lemma General Case). Let (Mn, g) be a
complete Riemannian manifold, with bounded geometry. Let B be an
open bounded domain with Vg(B) > 0 and smooth boundary ∂B, T an
isoperimetric region, and 0 ≤ sT := Sup

{
d(M,g)(x,B) : x ∈ Supp(||T ||)

}
.

Then there exist positive constants ε∗7 = ε∗7(B, ξ, g, ∂g, ∂2g) > 0 and
c̃ = c̃(n, k, v0) > 0 such that whenever V olg(T∆B) ≤ ε∗7, it holds

sT,g ≤ c̃V olg(Supp(||T ||) \B)
1
n . (139)

Furthermore for every s ∈]0, R3[, there exists ε′7(s, n, k0, v0, B) > 0 with
the property that if T is a current solution of the isoperimetric problem
with

V olg(B∆T ) < ε′7,

then ∂T is supported in a tubular neighborhood of thickness s of ∂B.
In other words, if Tj is a sequence of isoperimetric regions such that
Tj → B in flat norm, then dG−H(Tj , B)→ 0.



53

y′

B

T
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r0
r0
2

∆v

∆v

∂T ′

∂T

∂B

Figure 2: Illustration of the Confinement Lemma 3.11.

Remark 3.9. As will appear evident from the proof below, 1
c̃ = c =

c(n, k, v0) = CHeb
4n > 0 where CHeb denotes the constant appearing in

Lemma 3.2 of [Heb99], that we restate here for completeness’s sake.

Lemma 3.12 (Lemma 3.2 of [Heb99]). Let (Mn, g) be a smooth, com-
plete Riemannian n-dimensional manifold with weak bounded geome-
try. There exist two positive constants CHeb = CHeb(n, k, v0) > 0 and
v̄ := v̄(n, k, v0) > 0, depending only on n, k, and v0, such that for
any open subset Ω of M with smooth boundary and compact closure, if

Vg(Ω) ≤ v̄, then CHebVg(Ω)
n−1
n < Ag(∂Ω).

Now we are ready to prove Lemma 3.11.
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Proof:[of Lemma 3.11] Set VT (r) := V olg(Supp(||T ||) \ Ur) where
Ur := {x ∈ M : dg(x,B) ≤ r}. Looking at the proof of Theorem 3 of
[Nar14a], in which boundedness of isoperimetric regions in Riemannian
manifolds with bounded geometry is proved (proof that was inspired
by preceding works of Frank Morgan [Mor94] proving boundedness of
isoperimetric regions in the Euclidean setting and Manuel Ritoré and
Cesar Rosales in Euclidean cones [RR04]), we have that if V olg(T∆B) ≤
const(n, k, v0, B, ξ), then there exists a positive constant

c = c(n, k, v0, V olg(B), Ag(∂B), ||H∂B||∞,g, injB) > 0,

such that (
V

1
n
T

)′
≤ −c, a.e. on [0,+∞[. (140)

Integrating equation (140) on the support [0, sT,g] of VT we get

VT (sT,g)
1
n − VT (0)

1
n ≤ −csT,g, (141)

but VT (sT,g) = 0 and

VT (0) = V olg(Supp(||T ||) \B),

hence sT,g ≤ V olg(Supp(||T ||)\B)
1
n

c , which proves (139). Since, we have
trivially that

V olg(Supp(||T ||) \ Supp(||B||)) ≤ V olg(T −B),

we easily finish the proof of the last assertion of the theorem. To make
rigorous the arguments that leads to (140) we rewrite here the modifica-
tions to the proof of Theorem 3 of [Nar14a] needed here. By Theorem 3
of [Nar14a], T have bounded support. Put Ag(r) := Ag(∂T ∩ (M \ Ūr))
it is known that for any r ∈ R \ S where S is a countable set we have
Hn−1(∂Ur ∩ ∂∗T ) = 0. Fix ε∗7 < σ0 and apply Lemma 3.10 with T \ Ur
in place of Ω and σ = VT (r) ≥ 0. In this way we obtain T ′ such that
V olg(T

′) = V olg(T ) and

Ag(∂T
′) ≤ Ag(∂(T \ Ur)) + C8Ag(∂(T \ Ur) ∩ Supp(ξ))VT (r), (142)

where C8 = C8(B, ∂B, ξ, g, ∂g, ∂2g). We consider two cases. First
0 ≤ r ≤ r0. Second r > r0. If 0 ≤ r ≤ r0, then Ag(∂(T \ Ur) ∩
Supp(ξ)) = Ag(∂T ∩Supp(ξ)) +Ag(T

(1)∩∂Ur ∩Supp(ξ)) ≤ 2Ag(∂B) +
sup {Ag(∂Ur) : 0 ≤ r ≤ r0} =: C9(B, g, ∂g). If r > r0, then ∂Ur ∩
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Supp(ξ) = ∅ and thus Ag(∂(T \ Ur) ∩ Supp(ξ)) ≤ 2Ag(∂B). Hence
in both cases

Ag(∂T
′) ≤ Ag(∂(T \ Ur)) + C10VT (r), (143)

where C10 := C9C8 = C10(B, ∂B, ξ, g, ∂g, ∂2g). We know that T is an
isoperimetric region, this implies that

Ag(∂T ) ≤ Ag(∂T ′). (144)

Hence by (143), (144), and standard slicing theory for currents (or finite
perimeter sets or varifolds depending on the taste of the reader) we get

Ag(r) ≤ −V ′T (r) +KVT (r), (145)

with K := C10. Assuming ε∗7 ≤ v̄ we are allowed to apply the isoperi-
metric inequality for small volumes as in Lemma 3.12 (see Lemma 3.2 of
[Heb99]) to the domain Supp(||T ||) \ Ur, and again by standard slicing
theory, readily follows

− V ′T (r) +Ag(r) ≥ CHeb(n, k, v0)VT (r)
n−1
n . (146)

Summing (145) and (146) we get

− CHeb
2n

+
K

2n
(VT (r))

1
n ≥

(
V

1
n
T

)′
. (147)

Therefore, if we choose ε∗7 <
(
CHeb
2K

)n
we obtain

V olg(T∆B) < ε∗7 <

(
CHeb
2K

)n
= const(B, ∂B, ξ, g, ∂g, ∂2g).

Remembering that VT (r) ≤ V olg(T∆B), we obtain

− CHeb
4n

= −c ≥
(
V

1
n
T

)′
. (148)

Thus putting

ε∗7 := min{
(
CHeb
2K

)n
, v̄, σ0}

= ε∗7(n, k, v0, B, V olg(B), Ag(∂B), ||II∂B||g, r0,g)

= ε∗7(B, ∂B, ξ, g, ∂g, ∂2g) > 0,
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the proof of the first part of the lemma, i.e., (139) is completed. Now
to finish the proof we need just to note that what just shown until now
permits to us to reduce to the compact case so Lemma 3.8 applies imme-
diately to a suitable compact neighborhood of B and we can conclude
the proof of the lemma taking ε′7 < min{ε7(s), ε∗7}. q.e.d.

3.8 Proof of Theorem 3.1

Application of Allard’s Theorem Before starting our proof we re-
call that the Allard regularity theorem is a regularity theorem with
estimates on the the C1,α norm. We give now the proof of Theorem
3.1. We must show that solutions T of the isoperimetric problem which
are close to B in flat norm are graphs of small functions in C1,α norm.
Therefore, we fix a real number ε > 0 and will find ε0(ε) > 0 such
that V olg(T∆B) < ε0(ε) implies that ∂T is the graph of a function
u with ||u||∞ < r(ε′0), ||uT ||C1,α(∂B) ≤ C(ε′0) + ε. Later on, stronger
norms of u will be estimated in terms of r and ε by Schauder’s estimates.

Proof: Set α ∈]0, 1[, ε ∈]0, 1[, d = 1 and p = n−1
1−α in the Rieman-

nian Allard’s theorem. Consider R3 = min{inj(M,g), r0,g,
diamg(B)

4 } =

R3(B, ∂B, g, ∂g, ∂2g) > 0 as defined in Section 3.4 and let

R =
1

2
min{R5, R̃1(ε), R3,

η̃1(ε)

H1[(1 + η̃1(ε))ωn−1]
1
p

, 1} (149)

= R(B, ∂B, g, ∂g, ∂2g, ∂3g, ∂4g, ε) > 0. (150)

Without loss of generality we can assume that ε is small enough to fill
the following conditions

ε < min

{
α+ 1

3
, 1

}
, (151)

and

R0(ε) <
2

3C
, (152)

R0(ε) >
6R(ε)3

(1− ε)
. (153)

The preceding inequality is possible because by construction we have
R0(ε) ∼ Const(B, ig)R(ε) as ε → 0. Theorem 2.2 provides us with
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a constant η̃1 and radius R̃1 satisfying the conclusion of Theorem 2.2.
Then from the comparison Lemma 3.7 applied with η = η̃1(ε) and R
defined by (149), we obtain a R6 = R6(ε) ∈]R2 , R[ with the property

||V ||(Bg(x,R6)) ≤ (1 + η̃1)dωkR
k
6 . (154)

We recall here that R6(ε)→ 0 when ε→ 0. From Lemmas 2.2 and 3.1
we argue that whenever X ∈ Xc(M) with
Supp(X) ⊂ BM (x,R6),

δ∂T (X) ≤ H1(Ag(∂T ∩B(x,R6)))
1
p ||X||Lq(∂T ). (155)

Hence, an application of comparison Lemma 3.7 allows us to get

δ∂T (X) ≤
{
H1[(1 + η̃1)ωn−1]

1
pR6

}
R
n−1
p
−1

6 ||X||Lq(∂T ) (156)

≤ η̃1R
n−1
p
−1

6 ||X||Lq(∂T ), (157)

because {
H1[(1 + η̃1)ωn−1]

1
pR
}
≤ η̃1, (158)

by the choice of R made in (149). The Riemannian version of Allard’s
theorem applies with R̃ = R6(ηε) = R6(ε) → 0, when ε → 0+. It
provides us with a radius R0 = R0(ε) such that

(1− δigr2)R6 ≤ R0 ≤ (1 + δigr
2)R6, (159)

and with a C1 map F x : Rn−1 → M , for all x ∈ ∂T , whose image of
a neighborhood of the origin is exactly ||ig#(∂T )|| ∩BRN (x, (1− ε)R0),
and whose differential satisfies

||dF xz − dF xz′ || ≤ ε
(
dRn(z, z′)

R0

)α
,∀z, z′ ∈ Rn−1, |z|, |z′| < R0,

where ig : (M, g)→ (RN , can) is the Nash embedding of M in RN . Now
w.l.g. we can assume that ε is small enough to get

C(B, ξ, ∂4g, ε)R0(ε) <
1

3
,
c

2
(1− ε)R0(ε) <

1

3
, (160)

where C = C(B, g, ∂g, ∂2g, ∂3g, ∂4g) and c = c(B, g, ∂g, ∂2g, ∂3g, ∂4g) >
0 are constants that will be defined in sequel in equation (165), and

1

2
<

η

η′′
<

3

2
, (161)
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where η, η′′ are defined later in (167) and (168). Pick a radius

r = r(ε) ≤ R3(ε)∗ := min

{(
R(ε)

2

)3

,
(1− ε)R0(ε)

6

}
,

and set

ε′0 := min

{[
1

c̃

(
R

2

)3
]n
, ε6, ε

∗
7, ε
′
7(r)

}
= ε′0(B, ∂B, ξ, g, ∂g, ∂2g, ∂3g, ∂4g, r(ε), ε) > 0.

Observe that ε′0 → when ε→ 0. Let T be a solution of the isoperimetric
problem satisfying

V olg(T∆B) ≤ ε′0.

The confinement Lemma 3.11 allows us to state that the support of ∂T
is inside a tubular neighborhood of thickness r.

π|∂T is a local diffeomorphism. In what follows r indicates again
the thickness of a tubular neighborhood of ∂B in which ∂T is confined,
π is the projection of Ur(∂B) on ∂B, θ is the gradient vector of the
signed distance function to ∂B and g0 the induced metric by that of M
on ∂B. Let ε0 = min{ε′0, V olg({x ∈M |d(x, ∂B) ≤ r})}. From now on,
we assume that V olg(T∆B) < ε0. Consider the functions

f :

{
]− (1− ε)R0(ε), (1− ε)R0(ε)[ → R
t 7→ d(M,g)(F

x(tv), ∂B),

where R0 is given by the Riemannian Allard’s theorem goes to 0 as
ε → 0+, v is a unit vector in Tx∂T . Allard’s theorem gives a C1,α

bound on F therefore for any s ∈]− (1− ε)R0(ε), (1− ε)R0(ε)[

|f ′(s)− f ′(0)| ≤ |〈dF x0 (v), θ0〉g − 〈dF xs (v), θs〉g|
= |〈dF x0 (v)− dF xs (v), θ0〉g − 〈dF x0 (v), θ0 − θs〉g|

≤ εsα

((1− ε)R0(ε))α
+ |〈dF x0 (v), θ0 − θs〉g|

≤ εsα

((1− ε)R0(ε))α
+ |dF x0 (v)||θ0 − θs|

≤ εsα

((1− ε)R0(ε))α
+ c(B,n, ∂4g)s. (162)

In particular when s = (1− ε)R0 we have

|f ′(s)− f ′(0)| ≤ ε+ c(B, ∂4g)(1− ε)R0(ε). (163)
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Thus we conclude that

|f ′(0)| ≤ 2r(ε)

(1− ε)R0(ε)
+

ε

α+ 1
+
c

2
(1− ε)R0(ε) (164)

≤ C(B, ξ, ∂4g, ε)R0(ε) +
ε

α+ 1
+
c

2
(1− ε)R0(ε) (165)

≤ C(B, ξ, ∂4g, ε) < 1, (166)

where C(∂4g, ε) → 0+ when ε → 0+. It is elementary to deduce from
(162), (165), that there exists C∗1 = C∗(1, B, ∂4g, ε, ε0) > 0, such that

||u||
C1,α
g (∂B)

≤ C∗1 ,

with C∗(1, B, ∂4g, ε, ε0)→ 0, when ε→ 0.
Furthermore, as r gets smaller, the differential of π|∂T gets closer

and closer to an isometry.

π|∂T is a global diffeomorphism

Lemma 3.13. Let U be a tubular neighborhood of B. There exists
ω ∈ Λn−1(U) such that dω = dV olg.

Proof: Working on each connected component of B we can as-
sume U being a connected non compact manifold of dimension n implies
Hn(U ,R) = 0, see [[God71]Thm. 6.1 p. 216]. q.e.d.

At this stage we just know that ∂T is a locally C1,α regular sub-
manifold of M lying in a tubular neighborhood and possibly composed
of infinitely many layers parameterized by a family of functions uT,i ∈
C1,α(∂B), i ∈ N. We have to show that in fact ∂T is a global defined
normal graph over ∂B. With this aim in mind observe that the fam-
ily {uT,i}, as it is easily seen, is actually finite because the area of ∂T
is finite and the distortion of are from ∂B to a the i-th leaf of ∂T is
uniformly bounded by the C1 norm of g and the C1 norm uT,i being
||uT,i||C1,α bounded by a constant independent of i. By C1,α regularity
we can use classical Stoke’s Theorem which combined with the preceding
lemma gives

V olg(T ) =

∫
T
dω

Stokes
=

∫
∂T
ω = ηV olg(B) = η

∫
∂B
ω, (167)
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with (1 − ε′0
V olg(B)) ≤ η ≤

(
1 +

ε′0
V olg(B)

)
close to 1 for ε close to 0. On

the other hand denoting by l := #{uT,i} yields∫
∂T
ω = lη′′

∫
∂B
ω
Stokes

= lη′′
∫
B
dω = lη′′V olg(B), (168)

with η′ = η′(B, ∂g, ε) = 1
η′′(ε) close to 1, when ε is close to 0 as π∗(ω|∂B)

is close to ω|∂T as ∂T is C1 close to ∂B and

η′
∫
∂T
ω =

∫
∂T
π∗(ω|∂B) = l

∫
∂B
ω.

To be convinced of the first equality of (168) and its dependence on
the C1 norm uT and on g, it is enough to write

∫
∂T ω in local Fermi

coordinates based on an open coordinate set U ⊆ ∂B and then observing
that ∫

∂T∩V
ω =

l∑
i=1

∫
U
F ∗T,i(ω), (169)

where l < ∞ is the number of leaves of ∂T and FT,i : U ⊆ ∂B → ∂T
is represented in local Fermi coordinates by (x, uT,i(x)), i.e., FT,i(x) :=
expx(uT,i(x)ν(x)) for every x ∈ U , and V is a cylindrical neighborhood
with base U , i.e., V := U×]−r, r[ of the normal bundle of ∂B. Expanding
the terms that are in the sum of the right hand side of (169) we get∫

U
F ∗T,i(ωg) =

∫
U
ωg(x, uT,i)(∂1 +

∂uT,i
∂x1

θ, ..., ∂n−1 +
∂uT,i
∂xn−1

θ). (170)

Standard computations using basic multilinear algebra and basic ele-
mentary inequalities show that∣∣∣∣∫

U
F ∗T,i(ωg)−

∫
U
ωg

∣∣∣∣ ≤ C(B, ∂g, ||uT,i||C1(∂B)) ≤ C(B, ∂g, ε), (171)

with C(B, ∂g, ε) → 0 uniformly as ε → 0+, and C(B, ∂g, ε) being con-
tinuous with respect to g, ∂g. From (171), (167), and (168) we conclude

ηV olg(B) = lη′′V olg(B).

Having already chosen ε in (161) small enough to have 1
2 <

η
η′′ <

3
2 we

establish that l = 1. In other words we have showed that π|∂T is a global
diffeomorphism allowing to set the following definition of the function
uT belonging to C1,α(∂B) and representing the current (varifold) ∂T as
a normal global graph defined over the entire ∂B

uT := d(·, ∂B) ◦ F ◦ (π ◦ F )−1. (172)
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C2,α and Higher order Regularity. Let us first give a precise defi-
nition of the C`,α norms.

Definition 3.3. Let M be a compact Riemannian manifold, let u be a
function on M . We say that u ∈ C`,α(M,Rm) if the representative of u
in every coordinates chart is of class C`,α.

Definition 3.4. Let u ∈ C`,α(M). We set

||u||C`,α(M) = max
l

{
||u|Ωl ||C`,α(Ωl)

}
,

where ||u|Ωl ||C`,α(Ωl)
:= ||u ◦Θ−1||C`,α(Ul) with {Ωl

Θ︷︸︸︷∼= Ul ⊆ Rn−1} be a
fixed atlas of M .

At this point we quote a standard regularity result. The C2,α regu-
larity follows by Schauder estimates, and higher regularity by bootstrap
arguments. In order to show that u is more regular we use the same
argument used in [Mor03] Proposition 3.3 p. 5044 as indicated at the
end of the proof of [Mor03] Proposition 3.5 p. 5047. For reader’s con-
venience, we restate here the theorem.

Proposition 3.1 ([Mor03] Prop. 3.3). Let f be a real C1,α function
defined on an open set Ω of Rn−1 with the property

d

dt

[∫
Ω
F (x, f(x) + tg(x),∇(f(x) + tg(x)))dx

]
t=0

= 0

whenever g is a C1 function with Supp(g) ⊂⊂ Ω. Assume F and ∂F
∂fi

are C`−1,α for some l ≥ 2, α ∈]0, 1[, and F is elliptic, i.e. the matrix
∂F

∂fi∂fj
is positive definite.

Then
f is C`,α.

Proof: The proof can be found in Proposition 3.3 of [Mor03]. q.e.d.

In local coordinates, we can see ∂T locally like the graph of a func-
tion f of class C1,α.
For smooth variations g with compact support the area functionalA(f) :=∫
A(x, f,∇f(x))dx and the volume functional V(f) :=

∫
V (x, f(x))dx

satisfy the relation:

d

dt
[A(f + tg)− λV(f + tg)] |t=0 = 0 (173)
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for some Lagrange multiplier λ that is the mean curvature of ∂T . The
functionalA−λV then satisfies the regularity and ellipticity assumptions
required by Proposition 3.1, hence ∂T is as regular as possible and
at least of class C2,α, which implies by an application of the implicit
function theorem that F given by Allard’s theorem belongs to C2,α and
therefore that u is also of class C2,α.
In other words, there exists F̃ of class C2,α such that

u = d(·, ∂B) ◦ F̃ ◦ (π ◦ F̃ )−1,

and we conclude that u is of class C2,α. By a standard bootstrap argu-
ment we conclude that u is C∞, since g is C∞.

C2,α and higher order estimates. Now we are in a position to ex-
ploit formula (70) for the mean curvature of a normal graph, represented
as a function u defined on ∂B. This allows to estimate the C1,α norm
and C2,α norm of u. Straightforward computations will show that the
C2,α norm of u goes to zero when r → 0. We now give some details
of these calculations. We consider a system of Fermi coordinates (r, x)
centerd at a point p ∈ ∂B, with x normal coordinates on an open set of
∂B centered in p. Let

ui :=
∂u

∂xi
, uij :=

∂2u

∂xixj
,

g := dt2 + gij(t, x)dxidxj , (174)

||∇guu||2gu = gij(u, x)uiuj , (175)

∇guWu = −1
2

1√
(1+||∇u||2)3

{
∂
∂rg

lj(u, x)uiujul
}

− 1
2

1√
(1+||∇u||2)3

{
∂
∂xi
gjl(u, x)ujul + 2glj(u, x)uiuijul

}
gim ∂

∂xm

(176)
1

Wu
[div∂Br (∇guu)]|r=u =

[
1

Wu
gij(u, x) + f ij(x, u,∇u)

]
uij+f(x, u,∇u).

(177)
Notice that f(x, u,∇u) , f ij(x, u,∇u) → 0 , ||u||C1 → 0. The functions

f, f ij : Ω× R× Rn−1 → R

have the same regularity than the metric with respect to variables x,
y and they are of class C∞ with respect to z. We carry analogous
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calculations for the remaining 4 terms of formula (70). After these
straightforward standard computations we obtain the following expres-
sion for the constant mean curvature equation of a normal graph based
on a hypersurface[

1

Wu
gij(u, x) + lij(x, u,∇u)

]
uij = h = h1 + h2, (178)

where h1 = H∂T
ν − 1

Wu
H∂Bu

−θ and h2 = h2(x, u,∇u) satisfying

||h2||∞ → 0,

when ||u||C1,α → 0. Moreover

h1, h2 : Ω× R× Rn−1 → R

have the same regularity as the Levi-Civita connection with respect to
variables x, y and are of class C∞ with respect to z. If k ≤ KM ≤ δ
(which is guaranteed by the fact that we are in a compact neighborhood
of B that is itself compact), then by Heintze-Karcher’s theorem see (91)
we get

(cδ(u)− βsδ(u))2 g0 ≤ g(u, x) ≤ (cδ(u) + βsδ(u))2 g0, (179)

and so

g−1
0

(cδ(u)− βsδ(u))2 ≤ g(u, x)−1 ≤ g−1
0

(cδ(u) + βsδ(u))2 , (180)

where g0 is the metric g restricted to ∂B. Consequently, there are
0 < A1 ≤ A2 for which

A1In−1

(cδ(u) + βsδ(u))2 ≤ g(u, x)−1 ≤ A2In−1

(cδ(u)− βsδ(u))2 , (181)

hence the equation
Lu := aijuij = h̃(x),

with aij(x) := 1
Wu
gij(u, x) + lij(x, u,∇u), h̃(x) = h(x, u(x),∇u(x)) is

uniformly elliptic as the lij → 0 when ||u||C1 ↘ 0 (r ↘ 0). Using
classical Schauder interior estimates for linear elliptic partial differential
equations, e.g. Theorem 6.2 and Corollary 6.3 of [GT01] applied to a
fixed covering by charts of ∂B and taking as Λ of (6.13) of [GT01] a
uniform fixed upper bound of C(1, B, ∂4g, ε) (a constant that is taken as
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an upper bound of ||uT ||C1,α in the statement of Theorem 3.1) multiplied
by a constant that depends on the diameter of ∂B (i.e., C0 on the metric
g) it is not too hard to check, that

||uT ||C2,α
g (∂B)

≤ C̃(∂B, g, ∂g, ∂2g, C(ε̄))||u||
C1,α
g (∂B)

(182)

≤ C̃C(1, B, ∂4g, ε, ε0) =: C(2, B, ∂4g, ε, ε0). (183)

Thus we can choose C∗(2, B, ∂4g, ε, ε0) := C̃C(1, B, ∂4g, ε, ε0) > 0 in the
statement of Theorem 3.1. Now deriving equation (70) and iterating a
suitable number of times (in fact m−1 times) this Schauder interior esti-
mates argument, we easily obtain our constants C∗(m,B, ∂4g, ε, ε0, ||g||m,α)
for anym. This shows that for anym the constants C(m,B, ∂4g, ε, ε0) >
0 are small when ε, ε0 are small. Now it is trivial to deduce the remain-
ing parts of the statement of the theorem. We just point out that the
fact that in case B is the limit in flat norm of a sequence of isoperimet-
ric regions implies that B is also an isoperimetric region is due to fact
that as a consequence of Theorem 2 of [MN16] I(M,g) is continuous when
(M, g) is of bounded geometry. With this last remark we complete the
proof of the theorem. q.e.d.

3.9 Some refined mean curvature estimates

In this last section we give an effective estimate of the difference of
the mean curvature vector of ∂T and ∂B. We give a more geometric
characterizations of the explicit estimates of

||H∂T −H∂B||C0 ,

in terms of the geometric data of the isometric embedding of ∂B into
(M, g) and the ambient metric g. This is not relevant for the sequel but
it has an interest in itself; for this reason we included it here. From the
preceding theorem we know that the interior normals to ∂T converge
to the interior normals of ∂B by C1 convergence and that the mean
curvature vectors of ∂T converge to the mean curvature vectors of ∂B by
C2 convergence. We want to compare the mean curvature of ∂T with the
mean curvature of a touching inscribed equidistant hypersurface. This is
possible only when the mean curvatures point in the same direction, and
unfortunately when the mean curvature of ∂B is 0 or changes sign we are
not able to do such a comparison. However when the mean curvature
of ∂B does not change direction and is not zero, Schauder estimates of
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Section 3.8 show provided ε is small enough, that H∂T and H∂Br have
the same direction at points of contact. So in particular for ε small
enough the mean curvature vector of ∂T at a maximum point x0 of uT
and at a minimum point x1 of uT point in the same direction of that of
suitable circumscribed and inscribed tangent equidistant hypersurfaces
of ∂B. We prove the following lemma.

Lemma 3.14. There exists b3(s) such that whenever y ∈ ∂B,

|H∂Bs

θ (y)−H∂B
θ (y)| ≤ b3(s), (184)

where ∂Bs is the equidistant hypersurface at signed distance s from ∂B.

Proof: Let

b′3(s, y) := |
n−1∑
i=1

ctgδ(s+ c1(y, λi(y)))−H∂B
θ (y)|,

b′′3(s, y) := |ak(s+ c2(y,H∂B
θ (y)))−H∂B

θ (y)|,

b3(s, y) := Max
{
b′3(s, y), b′′3(s, y)

}
,

where ctgδ(c1(x, s)) = s, c1(x, s) ∈]0, π√
δ
[, and ctgk(c2(x, s)) = s,

if s >
√
−k, tgk(c2(x, s)) = s, if s <

√
−k and c2(x,

√
−k) =

√
−k

ak(s) =


ctgk(s) , s >

√
−k√

−k , s =
√
−k

tgk(s) , s <
√
−k

We find b3(s) := ||b3(s, y)||∞,∂B. q.e.d.

Remark 3.10. b3(s)→ 0, when s→ 0.

Theorem 3.2 (The Comparison Principle for Mean Curvatures). Let
B1 and B2 being two submanifolds with boundary, of dimension n of M ,
B1 ⊆ B2, with {x} = ∂B1 ∩ ∂B2, for a single point x ∈ M , with the
mean curvature vector that points in the same direction.
Then
< H∂B1(x), νext >≤< H∂B2(x), νext >

Proof: [Ale62] q.e.d.
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Lemma 3.15. Let ∂Tj be a sequence of normal graphs of C2,α func-
tions uj over ∂B. Assume that uj satisfies the constant mean curvature
equation, ||uj ||∞ converges to 0 as j → +∞ and that ∂Tj and ∂B have
mean curvature vectors such that < H∂B, θ > and < H∂Tj , θ > have the
same sign. Then∣∣∣H∂Tj −H∂Bu

θ

∣∣∣ ≤ max{|b3(u(x1))|, |b3(u(x2))|} → 0, (185)

when j → +∞. In particular, (185) holds if the sequence (Tj) and B
satisfy the hypothesis of Theorem 3.1.

Proof: Let x1, x2 ∈ ∂B be defined as u(x2) := Maxx∈∂B{u(x)}
and u(x1) := Minx∈∂B{u(x)}.
Then

Bu(x1) ⊆ T ⊆ Bu(x2)

and Bu(x1), Bu(x2) have smooth boundary and are tangent to ∂T at p1 =
(x1, u(x1)) and p2 = (x2, u(x2)). We deduce then, by the comparison
principle applied to Bu(x1), T , Bu(x2) that∣∣∣H∂T

ν (x)−H∂B
θ

∣∣∣ ≤ max{|b3(u(x1))|, |b3(u(x2))|}. (186)

q.e.d.

4 Proof of Theorem 1: Normal Graph Theorem
with variable metrics

In this section we present the proof of our main Theorem 1. We begin
by summarizing results of Gromov [Gro86b], p. 118 that we will need.
We assume that the reader is familiar with the notions of fibration,
vector bundle, jet bundle of a fibration, and partial differential operator.
For these topics one can consult various basic texts such as [Hir94].
For a more advanced treatment relevant for our purposes we strongly
recommend [EM02], [Spr10], and obviously the treatise [Gro86b]. We
follow closely the treatment given in [Gro86b].

Definition 4.1. Let p : Xn+q → V n be a smooth fibration and let
π : G → V be a smooth vector bundle. We denote by Xα and Gα
the spaces of Cα-sections of the fibrations p and π for α ∈ N∪̊{∞},
respectively. We say that D : Xα → Gα, is a differential operator of
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order r, if there exists ∆ : X(r) → G (here X(r) is the space of r − jet
of sections of p) such that D(σ) = ∆◦Jrσ, for every Cr-section σ of p. D
is said Cα-smooth, if ∆ is Cα-smooth. We assume in the sequel that D
is C∞ and so the maps D : X r+α → Gα are continuous with respect to
the usual compact-open and fine topologies. Here a typical neighborhood
of a section σ1 ∈ Γ(ξ) of a fibration ξ : E → V in the C0-fine topology
is of the form Uε(σ1) := {σ2 ∈ Γ(ξ) : dE(σ1(v), σ2(v)) < ε(v)}, where
ε(v) ∈ C0(V, [0,+∞[) and dE is a metric on E.

Remark 4.1. There are several equivalent definitions in the literature
of our fine topology known also as the Whitney strong topology; for more
details see [Hir94] p. 59 and the entire content of Chapter 2 of the same
book or [Spr10] p. 9.

Example 4.1. Let G be the bundle of symmetric bilinear forms over
the manifold V , and let (W,h) be a manifold endowed with a quadratic
differential form h. We consider the trivial fibration ξ : X = W ×
V → V . As usual we identify every map V → W with a section of
ξ. We obtain a first order partial differential operator D if we define
D(σ) := σ∗(h). D is C∞ if h is C∞.

Definition 4.2. For any m ∈ N, α ∈ [0, 1], a sequence of pointed
smooth complete Riemannian manifolds is said to converge in the
pointed Cm,α, respectively Cm topology to a smooth manifold
M (denoted (Mi, pi, gi) → (M,p, g)), if for every R > 0 we can find
a domain ΩR with B(p,R) ⊆ ΩR ⊆ M , a natural number νR ∈ N,
and Cm+1 embeddings Fi,R : ΩR → Mi, for large i ≥ νR such that
B(pi, R) ⊆ Fi,R(ΩR) and F ∗i,R(gi) → g on ΩR in the Cm,α, respectively
Cm topology.

Remark 4.2. As it easy to check when the manifolds are compact,
pointed convergence is independent of the base point, so we can speak
just of convergence without making any reference to the word pointed.

We define now the fine topologies needed to state the continuity
results with respect to the metric deducible from Nash’s imbedding the-
orem. Following [Hir94] we give the following definition.

Definition 4.3 ([Gro86b] page 18). Let (X, τX) and (Y, τY ) be arbitrary
topological spaces, denotes by τX×τY the product space topology. Let f ∈
C0(X,Y ), Γf ⊆ X × Y be the graph of f , U(f,W ) := {g ∈ C0(X,Y ) :
Γg ⊆ W}. The family {U(f,W )} with (f,W ) ∈ C0(X,Y ) × (τX × τY )
forms a base for a topology τ that is called in the literature strong
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topology or fine topology or Whitney topology. We chose here to
call τ the fine topology. We define C0

S(X,Y ) := (C0(X,Y ), τ). The
fine-Cr-topology in Γr(V,X) is the relative topology induced from the
fine topology in Γr(V,X) → C0(V,X(r)) by the injection f 7→ Jrf onto

the space of holonomic sections Γ(V,X(r)).

Definition 4.4 ([Gro86b] page 8). Let f ∈ C2(V n,Rq), and x a chart
centered at p ∈ V . Denote by T 2

f (V, p) ≤ Tf(p)(Rq) the subspace spanned

by the vectors ∂f
∂xi

(p), ∂2f
∂xixj

(p), for i, j ∈ {1, ..., n}. We say that f is a
free immersion if all the preceding vectors form a linearly independent
set of vectors.

The following theorem is attributed in [Gro86b] page 116 to John
Nash.

Theorem 4.1 (compare [Gro86b], page 116). Let D be the operator of
Example 4.1, with (W,h) = (Rq, δ) where δ is the canonical Euclidean
metric. Then over the space of free maps V → Rq, D admits an in-
finitesimal inversion M of defect d = 2 and of order s = 0.

Roughly speaking this last theorem asserts that the differential op-
erator D of degree 1 of Example 4.1 has its differential invertible on
free immersions that are two (d = 2) times differentiable with inverse a
differential operator of order s = 0. The optimal version of this theorem
could be with d = 1, and this justifies the reason for the use of the word
defect. For an account of the proof of this last result and for the rigor-
ous definitions needed to understand its statement we refer the reader
to the book [Gro86b] pages 116-117. As a consequence of Theorem 4.1,
(4) of Main Theorem pages 117-118 we have the following remarkable
results, whose statement is just the statement of (4) of [Gro86b] page
118 specialized to the case of the differential operator D described in
example 4.1, with s = 0, d = 2, r = 1, σ0 = σ1 = η1 = 3.

Theorem 4.2 ( (4) [Gro86b] page 118). Let n < N , and let ig∞ :
(Mn, g∞)→ (RN , δ) be a free C4 isometric immersion. Then for every
α ≥ 4, α ∈ {0, 1, ...,∞} there exists a fine Cα-neighborhood Uα of g∞
such that for every g ∈ U there exists an isometric immersion ig :
(M, g) → (RN , δ) of class Cσ, for any integer σ < 3. Moreover such
immersions can be chosen such that ig → i∞ in the Cσ-fine topology,
as g → g∞ in Cα-topology. In particular ig → ig∞ in C2 topology when
g → g∞ in Cα-topology, and so also the second fundamental forms
IIig → IIig∞ , g → g∞ in Cα-topology.
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Observe that our choice of r = 1, σ0 = σ1 = η1 = 3 are the weakest
possible in the range of integers, because it has to be max{d, 2r+ s} =:
s̄ < σ0 ≤ σ1 ≤ η1. On the other hand if we take (4) of page 118 with
σ0 = 3, η1 = σ1 = ∞, r = 1, s = 0, d = 2, and D the differential
operator of Example 4.1, we have the following theorem.

Theorem 4.3 (Nash in [Nas56]). If there exists a free C∞ isometric
immersion ig : (M, g) → (RN , δ), then there exists a C3 neighborhood
U3 of g such that for every σ ≥ 3 and h ∈ U3 ∩ Γσ(G), where G is the
bundle of symmetric bilinear forms on M of Example 4.1, there exists
a Cσ isometric immersion ih : (M, g)→ (RN , δ).

Theorem 4.4 (Imbedding Theorem [Gro86b] page 223). Every Rie-
mannian Cα-manifold V n, 2 < α ≤ ∞, admits a free isometric Cα-
imbedding i : V → RN , with N = n2 + 10n+ 3.

Observe that our ih corresponds to the D−1
ig

(h) in the notation of

[Gro86b] and these corresponds to the same ig of Theorem 4.2. Now we
are ready to achieve the proof of our main result.

Proof:[of Theorem 1] Take the manifold (M, g∞) and apply Theo-
rem 4.4 to (M, g∞) with α =∞ to obtain a free isometric C∞-imbedding
i∞ for (M, g∞) fixed. Furthermore, an application of Theorem 4.2 allows
us to obtain C∞ free isometric embeddings igj of (M, gj) into (RN , δ)
close in the C2 fine topology (see [Gro86b] p. 18) to ig∞ . If M is
compact the fine topology and the usual topology of convergence on
compact sets are the same, so the C2-fine-topology of Definition 4.3
is the same as the C2-topology of Definition 4.2. If M is not com-
pact the explicit computation of the constants involved in Lemma 3.8
shows that they depend continuously on V olg(B), H∂B,g, Ag(∂B), injB,g
and that when j varies the numbers n, k, v0 do not vary. Namely
V olg(B), Ag(∂B), diamg(B), |∇gξ|g depend just on g and they are con-
tinuous in C0-topology, Hg,∂B depends on g and the first derivatives of
g, and moreover they depend on them continuously. For what concerns
the injectivity radius of (M, g) we have injg → injg∞ in C2-topology
as is proved in the Theorem (there is no number in the paper of Sakai)
of page 91 of Sakai [Sak83] and by Theorem 4.2 βig → βig∞ . So the
constants ε∗7,j , and ε′7,j of Lemma 3.11 applied to the metrics gj sat-
isfy ε′7,j → ε7,∞ and are obviously uniformly bounded below.Hence

we can put all the Tj inside a big compact set B̃ ⊆ M such that

diamgj (B̃), diamg∞(B̃) ≤ const. uniformly with respect to j. So we
are reduced to the case when M is a compact manifold and this just
requires bounded geometry and C2 convergence of the metrics. Now



70

we are in position to apply our Theorem 3.1 and obtain that ∂Tj is a
normal graph of a function uTj ∈ C2,α(∂B), moreover for every ε > 0
there is jε such that for every j ≥ jε it holds

||uTj ||C2,α ≤ C = C(ε), (187)

with C depending just on ε and satisfying

C(ε)→ 0, ε→ 0. (188)

To check the validity of (187), (188) observe that the explicit cal-
culations made in the proof of Theorem 3.1 the constants on which
the estimates of Theorem 3.1 depend are divided into two disjoint fi-
nite sets C := A∪̊B, satisfying the property that if c ∈ A then c =
c(B, ξ, g, ∂g, ∂2g, ig) = c(B, g, ∂g, ∂2g, ∂3g, ∂4g), and if c ∈ B then c =
c(B, ξ, g, ∂g, ∂2g) does not depends on ig. Furthermore the constants
c ∈ A depends continuously in C4 topology on the metric and the
constants c ∈ B depends continuously in C4 topology on the met-
ric. The dependence on B and ξ of the constants means the depen-
dence on B and ξ differentiable objects independent of g. To differ-
entiate between quantities that depend on the metric also we indicate
it explicitly. By Theorem 4.2 it follows easily that a typical constant
c(B, g, ∂g, ∂2g, ig) = c(B, g, ∂g, ∂2g, ∂3g, ∂4g). This is the reason for re-
quiring C4 convergence. By the way this is just a temporarily technical
obstacle due to the fact that the version of the Allard regularity theo-
rem that we use, needs the Nash isometric embedding theorem. Now
appears clear that C4 convergence of the metric implies that the con-
stants of Theorem 3.1 could be chosen independently of j. This last
fact combined with (187), (188) readily yields ||uTj ||C2,α → 0. Finally
using the last part of Theorem 3.1 about higher order norm estimates
we finish the proof of the theorem. q.e.d.

Remark 4.3. We need this unpleasant C4 convergence in Theorem 3.1
because of the dependence of the constants involved on the imbedding
ig through the bounds on βg that are continuous with respect to g only
if the imbedding ig are continuous in C2 topology. Unfortunately we
can ensure the C2 continuity of the embeddings ig only in case of C4

convergence of the metrics gj. However, it is still possible to drop the
hypothesis of C4 convergence and replace it by C2 convergence if we
are concerned just with C2,α (remember that we assumed that M is a
smooth differentiable manifold) convergence of the uT,j as prescribed by
the Allard’s regularity Theorem. Consult Remark 4.4 on this last issue.
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Remark 4.4. As a final remark we expect that with a slight but cumber-
some modification of the arguments contained in the proof of Theorem
3.1, Theorem 1 is true also if we replace C4 convergence by C2 conver-
gence of the metrics gj to get C2,α (remember that we assumed that M
is a smooth differentiable manifold) convergence of uTj . To achieve this
goal one needs to write down carefully the dependence of all constants in
the Euclidean proof of the regularity theorem of Allard to obtain a pure
intrinsic Riemannian proof and then observe that indeed the constants
involved depends just on the first and second derivatives of the metric
and so they can be uniformly bounded over a sequence converging in C2-
topology in the sense of Definition 4.2, without any use of the Nash’s
isometric imbedding theorem. To be convinced of the C2 dependence on
the metric it is enough to remark that all these constants comes from
a distortion of the metric due locally to the exponential map that is a
bi-Lipschitz diffeomorphism. Hence the metric distortion depends on
bounds on the sectional curvature of M , and so on the metric up to
the second derivatives. The required details to make these arguments
rigorous will be the object of a forthcoming paper.
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