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Abstract

Functions of bounded variation in an abstract Wiener space, i.e., an infinite dimensional Banach space endowed with
a Gaussian measure and a related differentiable structure, have been introduced by M. Fukushima and M. Hino using
Dirichlet forms, and their properties have been studied with tools from stochastics. In this paper we reformulate,
with purely analytical tools, the definition and the main properties of BV functions, and start investigating further
properties.

1. Introduction

Functions of bounded variation of one indepen-
dent variable have been introduced by C. Jordan in
1881, and subsequently studied by various Authors.
After several attempts (let us refer to the historical
note in [4, Section 3.12]), generalisations to Rn be-
gan in the fifties of 20th Century, starting from E.
De Giorgi’s fundamental paper [11]. Subsequently,
the structure of BV functions has been deeply un-
derstood, and applications have been found in many
fields. We shall quote some of them in Section 2.

More recently, generalisations have been devel-
oped in different contexts, such as manifolds, Carnot
groups, fractals, and general metric measure spaces,
with interesting applications also in these frame-
works. We refer to [5] and the references there for
a review of these topics. These theories rely on the

Email addresses: l.ambrosio@sns.it (Luigi Ambrosio),

michele.miranda@unife.it (Michele Miranda Jr),
stefania.maniglia@unile.it (Stefania Maniglia),

diego.pallara@unile.it (Diego Pallara).

doubling property of the underlying measure, hence
cannot cover the case of an infinite dimensional Ba-
nach space endowed with a probability measure. In
fact, in this case clearly the doubling condition is not
satisfied, as it implies that balls are totally bounded.

A definition of BV functions in abstract Wiener
spaces has been given by M. Fukushima in [19], M.
Fukushima and M. Hino in [20], and is based upon
Dirichlet form theory, see [21], [27]. The starting
point of these papers has been a characterisation
of sets with finite perimeter in finite dimensions in
terms of the behaviour of suitable stochastic pro-
cesses (see [18]), and in fact the tools used in [19],
[20] come also from stochastics. In this paper our
main aim is to compare the finite and infinite dimen-
sional theory of BV functions from a purely analyt-
ical point of view, closer to the classical setting. We
recover all the (analytical) results by M. Fukushima
and M. Hino and start investigating further proper-
ties.

The importance of generalising the classical no-
tion of perimeter and variation has been pointed
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out in several occasion by E. De Giorgi: we refer to
[13], where the infinite dimensional context is explic-
itly quoted. There are several motivations for study-
ing BV functions in Banach spaces, e.g., isoperi-
metric inequalities and mass concentration, see [23],
[25], infinite dimensional analysis and semigroups
(see e.g. [9], [10]), differential systems like Ẋ(t, x) =
b(X(t, x)) with BV vector field b, see [3] for the
Sobolev case, and the aforementioned statistical me-
chanics and stochastic processes, but further mean-
ingful variational problems could likely be formu-
lated in this context.

The paper is organised as follows: in the first sec-
tion we review the theory of BV functions on Rn

and show the equivalence of four definitions of total
variation. We focus in particular on the tools used
in the proofs, in order to stress that almost none of
them is available in infinite dimensions. In Section 3
we describe the Wiener space setting and the tools
useful to rephrase the possible definitions of total
variation. In Section 4 we define BV functions in
Wiener spaces and discuss their basic properties. Fi-
nally, in Section 5 we report on further results and
describe several open problems that should be ad-
dressed in order to give good description of BV use-
ful to applications.
Acknowledgments. The research of the last
named Author on this subject started during one
of the editions of Internet Seminar some years ago,
when Rainer Nagel pointed out to his attention the
paper [24]. We express our grateful acknowledgment
to him for that, and for creating the special atmo-
sphere around the I-Sem activities. We also warmly
thank Giuseppe Da Prato for several interesting
discussions on the subject of this paper.

2. A review of BV functions in Rn

There are various ways of defining BV functions
on Rn, which we discuss in the following theorem.
They are useful in different contexts, and we add a
few comments after sketching the proof of the fol-
lowing statement. A detailed analysis of BV func-
tions in Rn is available in [4], [15], [16], [22], [33]. We
denote by Lip(Rn) the space of Lipschitz continuous
functions on Rn.
Theorem 2.1 Let u ∈ L1(Rn). The following are
equivalent:
1 there exist real finite measures µj , j = 1, . . . , n,

on Rn such that

∫
Rn

uDjφdx = −
∫

Rn

φdµj , ∀φ ∈ C1
c (Rn), (1)

i.e., the distributional gradient Du = µ is an
Rn-valued measure with finite total variation
|Du|(Rn);

2 the following holds:

V (u) := sup
{∫

Rn

u div φdx : φ ∈ [C1
c (Rn)]n,

‖φ‖∞ ≤ 1
}
<∞;

3 the following holds:

L(u) := inf
{

lim inf
h→∞

∫
Rn

|∇uh|dx :

uh ∈ Lip(Rn), uh
L1

→ u
}
<∞;

4 if (T (t))t≥0 denotes the heat semigroup in Rn, then

I[u] := lim
t→0

∫
Rn

|∇T (t)u|dx <∞. (2)

Moreover, |Du|(Rn) = V (u) = L(u) = I[u].
If one of (hence all) the conditions in Theorem 2.1
holds, we say that u ∈ BV (Rn). Moreover, if E ⊂
Rn and |DχE |(Rn) is finite, we say that E is a set
with finite perimeter, and use the notation P (E)
(perimeter of E) for the total variation of the mea-
sure DχE .

Let us point out that the first definition of BV
has been given by E. De Giorgi in [11] through con-
dition 4, which he showed to be equivalent to 1.
Condition 2 follows at once by computing the total
variation of Du. De Giorgi did not use the terminol-
ogy of semigroups, and in fact he wrote condition 4
in a convolution form, without mentioning that the
convolution kernel was the heat kernel.
Proof.
4 ⇒ 3 Simply, notice that uh = T (th)u, with th →

0, can be used in 3. In particular, L(u) ≤ I[u].

3 ⇒ 2 Let (uh) ⊂ L1(Rn) be such that uh
L1

→ u
and

∫
|∇uh|dx → L(u). By w∗-compactness of

measures, the sequence h 7→ ∇uhdx weakly∗ con-
verges to a measure µ as h→∞; then |µ|(Rn) ≤
L(u), and∫

Rn

u div φdx = lim
h→∞

∫
Rn

uh div φdx

= − lim
h→∞

∫
Rn

〈∇uh, φ〉dx

= −
∫

Rn

φdµ

for every φ ∈ [C1
c (Rn)]n, so that V (u) ≤ L(u).
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2 ⇒ 1 If V (u) < ∞ then, by the Riesz represen-
tation theorem, the functionals φ 7→

∫
uDjφ are

measures µj and it is not difficult to show that (1)
holds.

1 ⇒ 4 Since the heat semigroup (T (t))t≥0 is con-
tractive in L1(Rn) and the commutation rela-
tion T (t)∇ = ∇T (t) holds, the function t 7→
‖∇T (t)u‖L1(Rn) is decreasing and the limit in
(2) exists (finite or not). Moreover, denoting by
Gt(x) = (4πt)−n/2 exp{−|x|2/4t} the Gauss-
Weierstrass kernel, we have

‖∇T (t)u‖L1(Rn) =
∫

Rn

∣∣∣∇x

∫
Rn

Gt(x− y)u(y)dy
∣∣∣dx

=
∫

Rn

∣∣∣− ∫
Rn

∇yGt(x− y)u(y)dy
∣∣∣dx

≤
∫

Rn

( ∫
Rn

Gt(x− y)dx
)
d|Du|(y) = |Du|(Rn),

whence I[u] ≤ |Du|(Rn).
2

Notice that the above conditions can be used in dif-
ferent contexts, according to the underlying struc-
ture. For instance, 1 and 2 require a differentiable
structure, and can be used in manifolds and Carnot
groups (with a suitable notion of divergence), 4
requires a differential structure as well, together
with some semigroup theory and works (with some
limitations: see [29], [8]) on Riemannian manifolds,
whereas it is not clear in Carnot groups. Finally,
3 seems to be the more flexible definition, requires
only a notion of Lipschitz continuity, and in fact can
be used in metric measure spaces (with a doubling
condition), see [28], [5] and the references there.
On the other hand, under condition 3 the question
arises to understand if a gradient, as a vector, can
be defined.

We cannot discuss the huge amount of variational
problems that can be settled inBV , and confine our-
selves to a generic quotation of integral functionals
with linear growth in the gradient,

F (u) =
∫
f(x, u,Du)dx, (3)

with e.g. |f(x, u, ξ)| ≤ a(x) + b(x)|ξ|, a ∈ L1, b
continuous and f (convex in ξ) suitably extended
for measure gradients Du, and geometric problems,
e.g, isoperimetric and shape optimisation problems.
Applications come, to quote only a few among
the more recent ones, from variational models in
elasto-plasticity (possibly with fractures), image
smoothing and segmentation (e.g. Mumford-Shah
functional). One of the first big success of the the-

ory of sets of finite perimeter has been the complete
solution of the isoperimetric problem (see [12]), i.e.,
the proof that equality holds in the isoperimetric
inequality

meas (E) ≤ cn|DχE |
n

n−1 (4)

if and only if E is a ball, among all sets with finite

perimeter, where cn = n−
n

n−1ω
− 1

n−1
n and ωn is the

volume of the unit ball. We shall come back to this
inequality, but point out that it entails the continu-
ous embedding W 1,1(Rn) ↪→ L

n
n−1 (Rn).

In view of the investigation of properties listed
in Theorem 2.1 in spaces of infinite dimensions,
let us have a closer look at the tools used to prove
it. Basically, they are the Riesz representation
theorem M (Rn) = (Cb(Rn))∗ and the related w∗-
compactness of measures; the integration by parts
formula (1), where the divergence plays the role of
the adjoint operator of the gradient; the regularising
properties of the heat semigroup, that ensure that
T (t)u ∈W 1,1(Rn) if u ∈ L1(Rn), as well as the con-
tractivity of (T (t))t≥0 in L1 and the commutation
property ∇T (t) = T (t)∇.

If X is an (infinite dimensional) Banach space,
none of the above properties holds: linear function-
als on Cb(X) are finitely additive measures, and, ac-
cordingly,w∗-compactness holds for finitely additive
measures, there is no generalisation of the Lebesgue
measure, it is not obvious which is the right semi-
group to be used in condition 4. Furthermore, (1)
can be written in a vectorial form taking a test func-
tion Φ = (φ1, . . . , φn) and defining the divergence
operator div Φ =

∑
j Djφj :∫

Rn

u div Φdx = −
∫

Rn

n∑
j=1

φjdµj ; (5)

hence, a div operator is to be found in infinite di-
mensions in such a way that (a suitable form of) (5)
holds.

3. Wiener space setting

In this section we describe our setting: given an
(infinite dimensional) separable Banach spaceX, we
denote by ‖·‖X its norm and byBX(x, r) = {y ∈ X :
‖y − x‖X < r} the open ball centred at x ∈ X and
with radius r > 0. X∗ denotes the topological dual,
with duality 〈·, ·〉. By C(X) we denote the space of
all continuous functions on X and by Cb(X) the
space of all bounded continous functions.
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Given the elements x∗1, . . . , x
∗
m in X∗, we denote

by Πx∗1 ,...,x∗m : X → Rm the finite dimensional
projection of X onto Rm induced by the elements
x∗1, . . . , x

∗
m, that is the map

Πx∗1 ,...,x∗mx = (〈x, x∗1〉, . . . , 〈x, x∗m〉),

also denoted by Πm : X → Rm if it is not necessary
to specify the elements x∗1, . . . , x

∗
m. The symbol

FCk
b (X) denotes the space of k times continuously

differentiable cylindrical functions with bounded
derivatives up to the order k, that is u ∈ FCk

b (X) if
u(x) = v(Πmx) for some v ∈ Ck

b (Rm).
We divide this section in some subsections; first

of all we recall some notion of measure theory, with
particular emphasis on the peculiarities of the infi-
nite dimensional (i.e., non locally compact) setting,
then we pass to the definition and description of ab-
stract Wiener spaces. In the third subsection we dis-
cuss the integration by parts formula and recall the
definition of gradient and divergence. Finally, we in-
troduce Sobolev classes and the Ornstein-Uhlenbeck
semigroup together with some of their basic proper-
ties.

3.1. Infinite dimensional measure theory

We denote by B(X) the Borel σ-algebra and by
E(X) the cylindrical σ-algebra generated by X∗,
that is the σ-algebra generated by the sets of the
form E = Π−1

m B with B ∈ B(Rm). Since X is
separable, these families coincide, see [32, Theorem
I.2.2], even if we fix a sequence (x∗i ) ⊂ X∗ which sep-
arates the points in X and use only elements from
that sequence to generate Πm. We shall make later
on some special choice of (x∗i ), induced by a Gaus-
sian probability measure γ in X.

We also denote by M (X,Y ) the set of countably
additive measures on X with values on a Banach
space Y with finite total variation, M (X) if Y = R.
We denote by |µ| the total variation measure of µ,
defined by

|µ|(B) := sup
{ n∑

h=1

‖µ(Bh)‖Y ;B =
n⋃

h=1

Bh

}
, (6)

for every B ∈ B(X), where the union is a disjoint
union. Notice that, using the polar decomposition,
there is a unit |µ|-measurable vector field σ : X →
Y such that µ = σ|µ|, and then the equality

|µ|(X) = sup
{∫

X

〈σ, φ〉d|µ|, φ ∈ Cb(X,Y ∗),

‖φ(x)‖Y ∗ ≤ 1 ∀x ∈ X
}
, (7)

holds, where 〈, 〉 denotes the duality between Y and
Y ∗. Finally, let us define the sup of (the total varia-
tion of) an arbitrary family of measures {µα, α ∈ I}
by setting∨

α∈I

|µα|(A) = sup
{ ∞∑

n=1

|µαn
|(An)

}
,

where the supremum runs along all the countable
pairwise disjoint partitions A =

⋃
nAn and all the

choices of the sequence (αn) ⊂ I.

3.2. The abstract Wiener space

Assume that a centred Gaussian measure γ is de-
fined on X. This means that γ is a probability mea-
sure and for all x∗ ∈ X∗ the law x∗#γ is a centred
Gaussian measure on R, that is, the Fourier trans-
form of γ is given by

γ̂(x∗) =
∫

X

exp{−i〈x, x∗〉}dγ(x)

= exp
{
− 1

2
〈Qx∗, x∗〉

}
∀x∗ ∈ X∗,

where Q ∈ L(X∗, X) is the covariance operator.
The covariance operator is a symmetric and positive
operator uniquely determined by the relation

〈Qx∗, y∗〉=
∫

X

〈x, x∗〉〈x, y∗〉dγ(x), ∀x∗, y∗∈X∗ (8)

and we also write N (0, Q) for γ. The fact that the
operator Q defined by (8) is bounded is a conse-
quence of Fernique’s Theorem (see e.g. [6, Theorem
2.8.5]), asserting the existence of a positive β > 0
such that ∫

X

exp{β‖x‖2X}dγ(x) <∞;

as another consequence of this we get also that any
x∗ ∈ X∗ defines a function x 7→ 〈x, x∗〉 that belongs
to Lp(X, γ) for all p ≥ 1, and even more, see (vi) in
Section 3. In particular, we can think of any x∗ ∈
X∗ as an element of L2(X, γ). Let us denote by R∗ :
X∗ → L2(X, γ) the embedding, R∗x∗(x) = 〈x, x∗〉.
The space H = L2(X, γ) is called the reproducing
kernel of the Gaussian measure γ and R∗X∗ turns
out to be dense in it. The above definition is moti-
vated by the fact that if we consider the operator
R : H → X whose adjoint is R∗, then
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Rĥ =
∫

X

ĥ(x)xdγ(x), (9)

where the last integral has to be understood as a
Bochner integral. In fact, denoting by [·, ·]H the in-
ner product in H , the equality

〈Rĥ, x∗〉 = [ĥ, R∗x∗]H

=
∫

X

ĥ(x)〈x, x∗〉dγ(x)

=
〈 ∫

X

ĥ(x)xdγ(x), x∗
〉
,

that holds for all x∗ ∈ X∗, implies (9). With the
definition of R, R∗ we obtain directly by (8) the
decomposition Q = RR∗:

〈RR∗x∗, y∗〉 = [R∗x∗, R∗y∗]H

=
∫

X

〈x, x∗〉〈x, y∗〉dγ(x)

= 〈Qx∗, y∗〉.
It can be proved that the operator R is compact and
even more, i.e., that R belongs to the ideal γ(H , X)
of γ-Radonifying, or Gaussian-Radonifying, oper-
ators, a particular important subclass of compact
operators, see e.g. [26] (γ-Radonifying operators
reduce to Hilbert-Schmidt operators when X is
a Hilbert space). We point out that the previous
statement shows that not all symmetric positive
operators in L(X∗, X) are covariance operators of
a Gaussian measure, but only those admitting a
decomposition Q = RR∗ with R ∈ γ(H , X) for
some separable Hilbert space H . In particular, in
the case when X is Hilbert, Q has to be a trace
operator. This remark shows that another way is
possible: one can start with R ∈ γ(H , X) for some
separable Hilbert space H and define the covari-
ance operatorQ = RR∗; from this, a unique centred
Gaussian measure on X is defined with covariance
Q. In any case, the measure γ is concentrated on
the separable subspace of X defined as the closure
of RH in X. The space H = RH is particularly
important and is called the Cameron-Martin space;
it is a Hilbert space with inner product defined by

[h1, h2]H = [ĥ1, ĥ2]H

for all h1, h2 ∈ H, where hi = Rĥi, i = 1, 2.
With this notation, the Fourier transform of the

Gaussian measure γ becomes

γ̂(x∗) = exp
{
− 1

2
‖x̂∗‖2H

}
, ∀x∗ ∈ X∗,

where x̂∗ = R∗x∗. This definition can be easily ex-
tended to the whole of H by density. Notice that

the assumption that X is separable is not restric-
tive, as otherwise we can replace it with the separa-
ble space X1 = H where γ is concentrated. In this
way, the Cameron-Martin space H is dense in X.
Using the embedding R∗X∗ ⊂ H , we shall say that
a family {x∗j} of elements of X∗ is orthonormal if
the corresponding family {R∗x∗j} is orthonormal in
H . It can be proved that γ(H) = 0, see [6, Theo-
rem 2.4.7]; we also notice that the unit Hilbert ball
BH(0, 1) = RB̂H (0, 1) with B̂H (0, 1) = {ĥ ∈ H :
‖ĥ‖H < 1} is a pre-compact subset of X since R
is compact. Since X and X∗ are separable, starting
from a sequence inX∗ dense inH, we may construct
an orthonormal basis (hj) in H with hj = Qx∗j .
Set also Hm = span{h1, . . . , hm}, and define X⊥ =
ker Πx∗1 ,...,x∗m and Xm the (m-dimensional) comple-
mentary space. Accordingly, we have the canonical
decomposition γ = γm ⊗ γ⊥ of the measure γ, and
notice that these Gaussian measures are rotation in-
variant, i.e., if % : X × X → X × X is given by
%(x, y) = (cosϑx+sinϑy,− sinϑx+cosϑy) for some
ϑ ∈ R, then %#(γ ⊗ γ) = γ ⊗ γ and the same holds
for γm, γ

⊥. We shall use, in particular, the following
equality:∫

X⊥

∫
X⊥

u(cosϑx+ sinϑy)dγ⊥(x)dγ⊥(y)

=
∫

X⊥
u(x)dγ⊥(x), ∀u ∈ L1(X⊥, γ⊥), (10)

which is obtained by the above relation by inte-
grating the function u ⊗ 1 on X⊥ ×X⊥. For every
function u ∈ L1(X, γ) its canonical cylindrical ap-
proximations are defined as the conditional expec-
tations relative to the σ-algebras Σm generated by
{〈x, ĥ1〉, . . . , 〈x, ĥm〉},

um = Emu s.t.
∫

A

udγ =
∫

A

umdγ (11)

for allA ∈ Σm. Then, um → u inL1(X, γ) and γ-a.e.
(see e.g. [6, Corollary 3.5.2]). More explicitly, we set

Emu(x) =
∫

X

u(Pmx+ (I − Pm)y)dγ(y)

=
∫

X⊥
u(Pmx+ y′)dγ⊥(y′),

where Pm is the projection ontoXm. Notice that the
restriction of γ to Σm is invariant under translations
along all the vectors in X⊥, hence we may write
Emu(x) = v(Pmx) for some function v, and, with
an abuse of notation, Emu(xm) instead of Emu(x).

The importance of the Cameron-Martin space re-
lies mainly on the following fact, that is crucial in the
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integration by parts formula discussed in the next
subsection; if we consider for h ∈ X the translated
measure

γh(B) = γ(B − h), B ∈ B(X),

then γh is absolutely continuous with respect to γ if
and only if h ∈ H and in this case, with the usual
notation h = Rĥ, ĥ ∈ H , we have, see e.g. [6, Corol-
lary 2.4.3],

dγh(x) = exp
{
ĥ(x)− 1

2
‖h‖2H

}
dγ(x). (12)

It is also important to notice that if we define for
any λ ∈ R the measure

γλ(B) = γ(λB), ∀B ∈ B(X)

then γλ � γσ if and only if |λ| = |σ| (see for instance
[6, Example 2.7.4]).

Let us now present the prototype of abstract
Wiener space. It was introduced by N. Wiener as
the space of trajectories of Brownian motion, en-
dowed with a Gaussian probability distribution.
By f ∈ AC([0, 1]) we mean that f is absolutely
continuous, i.e., f ′(t) exists a.e. in [0, 1] and f(t) =
f(0) +

∫ t

0
f ′(s)ds.

Example 3.1 The standard Wiener space is the
triple (X,H, γ), where

X = {f ∈ C([0, 1]; R) : f(0) = 0} ,

‖ · ‖X = ‖ · ‖∞

H =
{
f ∈ AC([0, 1]) ∩X :

∫ 1

0

|f ′(t)|2dt <∞
}
,

[f, g]H =
∫ 1

0

f ′(t)g′(t) dt.

Then one considers an orthonormal basis {en}n∈N
of H such that en ∈ H0 for any n, where

H0 := {h ∈ H : h′′ is a measure} .

For example one can take

e1(t) = t,

en(t) =
√

2
(n− 1)π

sin(n− 1)πt n ≥ 2.

The measure γ on X is then characterised by the
equality∫

X

exp{−i〈x, h〉}dγ(x) = exp
{
− 1

2
‖h‖2H

}
, h ∈ H0.

This example can also be modified in order that both
X and H are Hilbert spaces: it suffices to consider
X = L2([0, 1]) and H = W 1,2([0, 1]).

3.3. Gradient and divergence

Let us now discuss an integration by parts formula
that is the equivalent of (1) in the present context.
For h ∈ X, define

∂hf(x) = lim
t→0

f(x+ th)− f(x)
t

(whenever the limit exists); we look for an operator
∂∗h such that for every f, g ∈ FC1

b (X) the equality∫
X

g(x)∂hf(x)dγ(x) = −
∫

X

f(x)∂∗hg(x)dγ(x)

holds. Starting from the incremental ratio, we get∫
X

f(x+ th)− f(x)
t

g(x)dγ(x) =

−
∫

X

f(y)
g(y)− g(y − th)

t
dγ(y)

+
∫

X

f(x)g(x)dµt(x)

where µt is the measure

µt =
1
t

(
N (0, Q)−N (−th,Q)

)
.

From Cameron-Martin formula (12) we know that
µt � γ if and only if h ∈ H. In this case, we can
pass to the limit as t→ 0, getting

lim
t→0

−
∫

X

f(y)
g(y)− g(y − th)

t
dγ(y)

= −
∫

X

f(y)∂hg(y)dγ(y)

lim
t→0

∫
X

f(x)g(x)dµt(x)

=
∫

X

f(x)g(x)ĥ(x)dγ(x).

Therefore, ∂∗h is well defined if (and only if) h ∈ H,
and

∂∗hg(x) = ∂hg(x)− g(x)ĥ(x),
where as usual h = Rĥ. Let us now define the gradi-
ent and the divergence operators. For f ∈ FC1

b , the
H-gradient of f , denoted by ∇Hf , is the map from
X into H defined by

[∇Hf(x), h]H = ∂hf(x), h ∈ H,
where ∂hf(x) is defined as before. Notice that if
f(x) = fm(Πmx) with fm ∈ C1(Rm), then

∂hf(x) = ∇fm(Πmx) ·Πmh.

If we fix an orthonormal basis (hj)j∈N of H, we can
write

∇Hf(x) =
∑
j∈N

∂jf(x)hj , ∂j = ∂hj ,
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where it is important to notice that the directional
derivative ∂h is computed by normalizing h with
respect to the norm in H. Considering the space
FC1

b (X,H), we may define −∇∗H , the adjoint oper-
ator of ∇H , as the linear map from FC1

b (X,H) to
FCb(X) such that

∇∗Hφ(x) =
∑
j∈N

∂∗j φj(x)

=
∑
j∈N

∂jφj(x)− φj(x)ĥj(x).

Finally, we denote by C1
b (X) the R-valued functions

in φ ∈ Cb(X) such that all the derivatives ∂hφ, h ∈
H, are continuous in X. Analogously, C1

b (X,H) de-
notes theH-valued functions whose components are
in C1

b (X).

3.4. Sobolev spaces and the Ornstein-Uhlenbeck
semigroup

There are several definitions of Sobolev spaces on
Wiener spaces. Before giving a definition convenient
for our purposes, let us define the Lp spaces. Given a
Banach space F , for p ≥ 1 we denote by Lp(X, γ, F )
the space of γ-measurableF -valued functions f from
X to F such that ‖f‖p

F is γ-summable; in the case
F = R we simply write Lp(X, γ). The operator ∇H

is a closable operator in Lp(X, γ), hence we may
define the Sobolev space D1,p(X, γ) as the domain
of the closure of ∇H in Lp(X, γ). Notice that the
space denoted by D1,p(X, γ) by Fukushima is de-
noted W p,1(X, γ) in [6]. Anyway, these spaces coin-
cide, see [6, Section 5.2] for all the above statements.

On Lp spaces we may define the Ornstein-
Uhlenbeck semigroup (Tt)t≥0, which is the natural
semigroup to be used instead of the heat semigroup.
It is defined by Mehler’s formula

Ttu(x) =
∫

X

u
(
e−tx+

√
1− e−2ty

)
dγ(y) (13)

for all u ∈ L1(X, γ), t > 0. Unlike the heat semi-
group in Euclidean spaces, Ttu does not belong to
D1,1(X, γ) for all u ∈ L1(X, γ). But, as in Rn, ac-
cording to the isoperimetric inequality (4), the em-
bedding W 1,1(Rn) ↪→ Lp(Rn) holds for p ≤ n(n −
1)−1, also in our case u ∈ D1,1(X, γ) ensures some
more summability on u. The dependence of the clas-
sical Sobolev embedding upon the space dimension
explains why one is forced to look at something out-
side the Lp scale. Let us start from the Gaussian

isoperimetric inequality, see [23]. Let E ⊂ X, and
set Br = {x ∈ H : ‖x‖H < r}, Er = E +Br; then

Φ−1(γ(Er)) ≥ Φ−1(γ(E)) + r, (14)

Φ(t) =
∫ t

−∞

e−s2/2

√
2π

ds.

We sketch here why this inequality implies the
isoperimetric inequality; the complete proof of it will
follow from Remark 5.5. We introduce the function

U (t) = (Φ′ ◦ Φ−1)(t)

≈ t
√

2 log(1/t), t→ 0;

from (14) we obtain that

γ(Er) ≥ Φ(Φ−1(γ(E)) + r)
= γ(E) + rΦ′(Φ(γ(E))) + o(r)
= γ(E) + rU (γ(E)) + o(r),

and then

lim inf
r→0

γ(Er)− γ(E)
r

≥ U (γ(E)).

The quantity on the left hand side is related to the
Minkowski content of the set E and it is known, in
the Euclidean case, to agree with the perimeter only
under additional regularity on E. For instance, if
X = Rm, γ = Gm the standard centred Gaussian
measure on Rm and E a set with smooth boundary,
then

PGm(E) = lim
r→0

Gm(Er)−Gm(E)
r

≥ U (Gm(E)). (15)

It is also possible to prove in this case that equality
holds if and only ifE is an hyperplane; the first proof
of (14) has been given by Sudakov and Tsirel’son
[31] using an approximation of Gaussian measure
with orthogonal projections of uniform measures on
spheres, a second proof was given by Borell [7] using
a Brunn-Minkowski inequality and finally Ehrhard
[14] proved it using a symmetrization technique.
Remark 3.2 We point out that the right Min-
kowski content uses enlargements Er of the set E
with respect to balls of H and not of X. The reason
of this can be explained as follows; the Gaussian
measure γ introduces some anisotropy on X due
to the covariance operator Q. This anysotropy is
compensated in the definition of total variation and
perimeter by the gradient ∇H , since it is defined
using vectors that have unit H-norm. The corre-
sponding compensation in the computation of the
Minkowski content is achieved by using the balls of
H.
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The isoperimetric inequality implies also the fol-
lowing inequality

‖∇f‖L1 ≥
∫ ∞

0

U (γ({|f | > s})) ds,

and the embedding of D1,1(X, γ) into the Orlicz
space

L log1/2L(X, γ) := {u : X → R measurable :

A1/2(|u|) ∈ L1(X, γ)},

A1/2(t) =
∫ t

0

log1/2(1 + s)ds

follows, see [20, Proposition 3.2]. Let us also intro-
duce the complementary function Ψ of A1/2 by the
formula

Ψ(y) =
∫ y

0

(
A′1/2

)−1

(t)dt

=
∫ y

0

(
et2 − 1

)
dt

and the space

LΨ(X, γ) =
{
g measurable : Ψ(α|g|) ∈ L1(X, γ)

for some α > 0
}
.

From the fact that for x ≥ 0 and y ≥ 0, xy ≤
A1/2(x)+Ψ(y), it is possible to obtain the following
properties (for the general theory of Orlicz spaces
see for instance [30]):

(i) L log1/2L(X, γ) and LΨ(X, γ) are Banach
spaces under the norms

‖f‖L log1/2L(X,γ) = inf
{
α > 0 :∫

X

A1/2 (|f |/α) dγ ≤ 1
}
,

‖g‖LΨ := inf
{
α > 0 :

∫
X

Ψ(|g|/α) dγ ≤ 1
}

;

(ii) for f ∈ L log1/2L(X, γ) and g ∈ LΨ(X, γ) we
have

‖fg‖L1 ≤ 2 ‖f‖L log1/2L(X,γ) ‖g‖LΨ , (16)

‖fg‖L1 ≤
(∥∥A1/2(|f |)

∥∥
L1 + 1

)
‖g‖LΨ . (17)

To see (16), simply use

|ab| ≤ A1/2(a) + Ψ(b)

with

a =
|f(x)|

‖f‖L log1/2L(X,γ)

, b =
|g(x)|
‖g‖LΨ

and integrate. To prove (17), set

a = |f(x)|, b =
|g(x)|
‖g‖LΨ

;

integrating and taking into account that
‖Ψ(|g|/‖g‖LΨ)‖L1 = 1, (17) follows.

(iii) If (fh)h∈N converges to f in L log1/2L(X, γ),
then

lim
h→∞

∫
X

gfhdγ =
∫

X

gfdγ

for any g ∈ LΨ(X, γ);
(iv) since g ≡ 1 ∈ LΨ(X, γ), by (16), we see that

L log1/2L(X, γ) is continuously embedded in
L1(X, γ);

(v) if f ∈ D1,1(X, γ), we have that∫
X

‖∇Hf‖Hdγ = sup
{∫

X

f∇∗Hφdγ : (18)

φ ∈ FC1
b (X,H), ‖φ(x)‖H ≤ 1

}
;

this property essentially follows from the em-
bedding of D1,1(X, γ) in L log1/2L(X, γ); in
fact, the embedding and point (iii) ensure that
for any φ ∈ FC1

b (X,H) the following integra-
tion by parts formula holds for f ∈ D1,1(X, γ)∫

X

[∇Hf(x), φ(x)]Hdγ(x) = (19)

−
∫

X

f(x)∇∗Hφ(x)dγ(x).

(vi) It follows from Fernique’s theorem that the
function x 7→ 〈x, x∗〉 belongs to LΨ(X, γ).
As a consequence, by (ii), if f belongs to
L log1/2L(X, γ) then the function f(·)〈·, x∗〉 is
summable.

For our purposes, the following properties of the
Ornstein-Uhlenbeck semigroup are relevant: Tt is
strongly continuous in L log1/2L(X, γ) and Ttu ∈
D1,1(X, γ) for any u ∈ L log1/2L(X, γ) (see [20,
Proposition 3.6]). Moreover, it is important that
the Ornstein-Uhlenbeck semigroup is a contraction
semigroup and the following commutation relation
holds for any u ∈ D1,1(X, γ)

∇HTtu = e−tTt∇Hu, t > 0. (20)

Therefore, we get

∇HTt+su = ∇HTt(Tsu)
= e−tTt∇HTsu,

for any u ∈ L log1/2L(X, γ), see [6, Proposition
5.4.8]. It also follows from (20) that∫

X

Ttf∇∗Hφdγ = e−t

∫
X

f∇∗H(Ttφ)dγ, (21)
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for all f ∈ L1(X, γ), φ ∈ FC1
b (X,H). In fact, writ-

ing as usual

φ(x) =
n∑

j=1

φj(x)hj ,

and using the symmetry of Tt and (20), we get∫
X

Ttf∇∗Hφdγ =
∫

X

fTt(∇∗Hφ)dγ

=
∫

X

f
n∑

j=1

Tt(∂∗j φj)dγ

= e−t

∫
X

f∇∗H(Ttφ)dγ.

Another important consequence of (20) is that if
u ∈ D1,1(X, γ) then

lim
t→0

‖∇HTtu−∇Hu‖L1(X,γ) = 0. (22)

Finally, notice that if um are the canonical cylindri-
cal approximations of a function u ∈ L log1/2L(X, γ)
defined in (11) then∫

X

‖∇HTtu
m‖Hdγ ≤

∫
X

‖∇HTtu‖Hdγ ∀ t > 0.

(23)
To prove (23), let us first notice that, by the rota-
tional invariance of γ⊥,

TtEmu = EmTtu.

Indeed,

TtEmu(x) =
∫

X

Emu(e−tx+
√

1− e−2tz)dγ(z)

=
∫

X

∫
X⊥
u(e−tPmx+

√
1− e−2tPmz + y′)

dγ⊥(y′)dγ(z)

and

EmTtu(x) =
∫

X⊥
Ttu(Pmx+ w′)dγ⊥(w′)∫

X⊥

∫
X

u(e−t(Pmx+ w′) +
√

1− e−2tz)

dγ⊥(w′)dγ(z)∫
Xm

∫
X⊥

∫
X⊥
u(Pm(e−tx+

√
1− e−2tz)

+ (e−tw′ +
√

1− e−2tz′))

dγ⊥(w′)dγ⊥(z′)dγm(zm)

=
∫

X

∫
X⊥
u(e−tPmx+

√
1− e−2tPmz + y′)

dγ⊥(y′)dγ(z).

From the above commutation relation it follows that
the vector ∇HTtEmu = ∇HEmTtu coincides with

its projection ∇m on Hm, since for any function v
the equality

∇m

∫
X⊥

v(xm, x
′)dγ⊥(x′)

=
∫

X⊥
∇mv(xm, x

′)dγ⊥(x′)

holds. Moreover, by Jensen’s inequality we have

‖∇HTtEmu(x)‖H = ‖Em(∇mTtu)(x)‖H

=
∥∥∥∫

X⊥
∇mTtu(Pmx+ x′)dγ⊥(x′)

∥∥∥
H

≤
∫

X⊥
‖∇mTtu(Pmx+ x′)‖Hdγ

⊥(x′)

= Em‖∇mTtu(x)‖H

Summarising, we get∫
X

‖∇HTtu
m‖Hdγ

=
∫

X

‖Em(∇mTtu)(xm)‖Hdγ(xm, x
′)

=
∫

Xm

‖Em(∇mTtu)(xm)‖Hdγm(xm)

≤
∫

Xm

Em(‖∇mTtu‖H)(xm)dγm(xm)

=
∫

X⊥

∫
Xm

‖∇mTtu(xm, x
⊥)‖Hdγ(xm)dγ⊥(x′)

≤
∫

X

‖∇HTtu(x)‖Hdγ(x).

4. BV functions in infinite dimensions

We have collected in the preceding section the
tools we need in order to discuss BV functions in
the Wiener space setting. The BV (X, γ) class can
be defined as follows.
Definition 4.1 Let u ∈ L log1/2L(X, γ). We say
that u ∈ BV (X, γ) if there exists a unique measure
µ ∈ M (X,H) such that for any φ ∈ C1

b (X) we have∫
X

u(x)∂∗j φ(x)dγ(x)=−
∫

X

φ(x)dµj(x) ∀j ∈ N,

(24)
where µj = [µ, hj ]H .
Remark 4.2 If u ∈ BV (X, γ), we denote by DHu
the measure µ and, by (7), its total variation is given
by

|DHu|(X) := sup
{∫

X

u∇∗HΦdγ; Φ ∈ FC1
b (X,H),

‖Φ(x)‖H ≤ 1
}
<∞.
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Notice that from (vi) in Section 3 it follows that
the functions u∂∗j g, u∇∗Hg are γ-summable. The
L log1/2L(X, γ) membership hypothesis will be dis-
cussed later. Let us see an equivalent way of defining
the BV class.
Proposition 4.3 Let u ∈ L log1/2L(X, γ); then,
u ∈ BV (X, γ) if and only if for every h ∈ H there
is a real measure µh such that∫

X

u(x)∂∗hφ(x)dγ(x)=−
∫

X

φ(x)dµh(x) (25)

for all φ ∈ C1
b (X), with

∨
‖h‖H=1

|µh| finite.

Proof. If u ∈ BV (X, γ) then the existence of µh

for all h ∈ H follows from the linearity of the ∂h

operator with respect to h, and the boundedness of
|µh| from the finiteness of |DHu|.

Conversely, define µj = µhj and µ = (µj)∞j=1 for
an orthonormal basis (hj) of H. Then, µh = [µ, h]
and (24) holds for all φ ∈ FC1

b (X). Finally, it can
be extended to general φ ∈ C1

b (X,H) by consider-
ing its canonical cylindrical approximations φm and
passing to the limit by dominated convergence. 2

Before stating the main result, we relateBV func-
tions in Rm with cylindrical functions in X. We de-
note by Gm the standard Gaussian distribution on
Rm and define the total variation of a function v ∈
L1(Rm, Gm) by

|DGm
v|(Rm) = sup

{∫
Rm

v∇∗φdGm : (26)

φ ∈ [C1
b (Rm)]m, ‖φ‖∞ ≤ 1

}
.

Proposition 4.4 Let u ∈ L log1/2L(X, γ) be a
cylindrical function,

u(x) = v(Πx∗1 ,...,x∗mx)

with x∗j ∈ X∗ and v ∈ BV (Rm, Gm); then u ∈
BV (X, γ) and, if (R∗x∗j )j=1,...,m are orthonormal in
H , then

|DHu|(X) = |DGm
v|(Rm).

Proof. Let us assume that x∗j ∈ X∗ are selected in
such a way that ej := Πx∗j are orthonormal in Rm;
then, if we denote by Π the map Πx∗1 ,...,x∗m : X → Rm

and by Π∗ its adjoint, we have that for any ξ ∈ Rm

〈ΠQΠ∗ξ, ei〉 = 〈ΠRR∗(ξ1x∗1 + . . .+ ξmx
∗
m), ei〉

= 〈RR∗(ξ1x∗1 + . . .+ ξmx
∗
m), x∗i 〉

= [R∗(ξ1x∗1 + . . .+ ξmx
∗
m), R∗xi]H

= ξi,

that is ΠQΠ∗ = Im. Then the push-forward measure
Π#γ coincides with Gm. This implies that, setting
Hm = span{Qx∗1, . . . , Qx∗m} and y = Πx,

|DHu|(X) = sup
{∫

X

u(x)∇∗φ(x)dγ(x) :

φ ∈ FC1
b (X,H), ‖φ‖H ≤ 1

}
= sup

{∫
X

u(x)∇∗φ(x)dγ(x) :

φ ∈ FC1
b (X,Hm), ‖φ‖H ≤ 1

}
= sup

{∫
Rm

v(y)∇∗ψ(y)dGm(y) :

ψ ∈ [C1
b (Rm)]m, ‖ψ‖∞ ≤ 1

}
,

and the thesis follows. 2

We are now in a position to prove the analogue of
Theorem 2.1 in the present context.
Theorem 4.5 Given u ∈ L log1/2L(X, γ), the fol-
lowing are equivalent:
1 u belongs to BV (X, γ);
2 the following holds

VH(u) := sup
{∫

X

u∇∗Hφdγ; φ ∈ FC1
b (X,H),

‖φ(x)‖H ≤ 1
}
<∞;

3 the following holds

LH(u) := inf
{

lim inf
n→∞

∫
X

‖∇Hun‖Hdγ :

un ∈ D1,1, un
L1

→ u
}
<∞;

4 if (Tt)t≥0 denotes the Ornstein-Uhlenbeck semi-
group in X, then

I[u] := lim
t→0

∫
X

‖∇Ttu‖Hdγ <∞.

Moreover, |µ|(X) = VH(u) = LH(u) = I[u], and if
one (and then all) of the previous holds true, then we
denote by |DHu|(X) their common value.
Proof. As we have pointed out, the tools we use in
this proof are different from those used in the finite
dimensional case of Theorem 2.1. For this reason, it
is convenient to prove the implications in a different
order.
4 ⇒ 1 First of all, let us show that the limit in con-

dition 4 always exists. Let u ∈ L log1/2 L(X, γ)
and fix a time t > 0. Consider the map

s 7−→
∫

X

‖∇HTt+su‖H dγ

= e−t

∫
X

‖∇HTsu‖H dγ.

10



Observe that∫
X

‖∇HTtu‖H dγ ≤ lim inf
s→0

∫
X

‖∇HTt+su‖H dγ

= e−t lim inf
s→0

∫
X

‖∇HTsu‖H dγ

≤ lim inf
s→0

∫
X

‖∇HTsu‖H dγ,

and then

lim sup
t→0

∫
X

‖∇HTtu‖H dγ

≤ lim inf
t→0

∫
X

‖∇HTtu‖H dγ

which means that limt→0

∫
X
‖∇HTtu‖H dγ ex-

ists. Furthermore the above chain of inequalities
gives

et

∫
X

‖∇HTtu‖H dγ ≤ lim
s→0

∫
X

‖∇HTsu‖H dγ

= I[u].

We now divide the rest of the proof in three steps.
Step 1. (Finite dimensional case) Let γ =
N (0, Q) be a Gaussian measure in Rm, and Tt

the Ornstein-Uhlenbeck semigroup defined as in
(13). Let h be a unit eigenvector of the matrix
Q, let K be the hyperplane orthogonal to h, and
consider the factorisation γ = γ1 ⊗ γ⊥. Denote
points in Rm as x+ th, with x ∈ K and t ∈ R. If
u ∈ L log1/2L(Rm, γ) and

I[u] := lim
t→0

∫
Rm

|∇Ttu|dγ <∞,

then also

Ih[u] := lim
t→0

∫
Rm

|∂hTtu|dγ <∞,

hence it can be proved essentially as in the Eu-
clidean case, when the reference measure is the
Lebesgue measure (see also [4, Section 3.11]) that
the directional distributional derivative ∂hu and

|∂hu|(Rm) =
∫

K

|DG1ux|(R)dγ⊥(x) = Ih[u]

∂hu(A) =
∫

K

DG1ux(Ax)dγ⊥(x),

where ux(t) = u(x+ th), Ax = {t ∈ R : x+ th ∈
A} and DG1ux is the distributional derivative of
ux defined as in Proposition 4.4. Moreover,∫

X

u(x)∂∗hg(x)dγ(x)=−
∫

X

g(x)dµh(x)

and∣∣∣ ∫
Rm

u∂∗hφdγ
∣∣∣ ≤ I[u]‖φ‖∞, φ ∈ C1

b (Rm). (27)

By the linearity of the differential, all the direc-
tional derivatives of u are measures, and u belongs
to BV (Rm, γ).
Step 2. (Cylindrical functions) Let u be a cylindri-
cal function in L log1/2L(X, γ) such that 4 holds.
By the previous step and Proposition 4.4, for ev-
ery h ∈ H there is a measure µ̃h defined on the
algebra of cylindrical Borel sets such that∫

X

u(x)∂∗hg(x)dγ(x)=−
∫

X

g(x)dµ̃h(x)

for all g ∈ FC1
b (X).

Step 3. (General case) Let u ∈ L log1/2L(X, γ) be
such that 4 holds, and let um be the canonical
cylindrical approximations given by (11). Fixing
ĥ ∈ X∗, h = Rĥ ∈ H, and using basically the
same notation as in Step 1, define

Θu(X) =
∫

K

|DG1ux|(R)dγ⊥(x),

where |DG1ux|(R) is defined in (26) with m = 1.
Notice that for h fixed and ux as above the func-
tional u 7→ |DG1ux|(R) is L1-lower semicontinu-
ous, because it is the supremum of L1-continuous
functionals. Let us show that Θu(X) is L1-lower
semicontinuous as well. Indeed, let uk → u in
L1(X, γ), and assume thet the limit of Θuk

(X)
exists and is finite. Possibly passing to a subse-
quence, assume also that

∞∑
k=1

‖uk − u‖L1(X,γ) <∞. (28)

From (28) and Fubini’s theorem it follows that
∞∑

k=1

‖(uk)x − ux‖L1(R,G1) <∞

for γ⊥-a.e. x ∈ K too, whence (uk)x → ux

for γ⊥-a.e. x ∈ K. Therefore, |DG1ux|(R) ≤
lim infk |DG1(uk)x|(R) γ⊥-a.e. and the lower
semicontinuity of Θu(X) follows from Fatou’s
lemma. Summarising, we have

Θu(X) ≤ lim inf
m→∞

Θum(X)

≤ lim inf
m→∞

lim
t→0

∫
X

|∂hTtu
m|dγ

≤ lim
t→0

∫
X

|∂hTtu|dγ ≤ I[u] <∞,
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by the monotonicity of the norm of the deriva-
tives with respect to cylindrical projections. It fol-
lows that for γ⊥-a.e. x ∈ K the function ux has
bounded variation. By a Fubini argument, based
on the identity γ = γ1 ⊗ γ⊥, the 1-dimensional
integration by parts formula yields that the mea-
sure

A 7→
∫

K

Dux(Ax)dγ⊥(x)

provides the distributional derivative ∂hu and
extends µ̃h from the cylindrical sets to the
whole Borel σ-algebra. It follows from (27) that
|∂hu|(X) ≤ I[u] for all h ∈ H, ‖h‖H = 1, whence∨

‖h‖H=1

|µh|(X) ≤ I[u],

and 1 follows from Proposition 4.3.
1 ⇒ 2 Simply comparing the classes of competi-

tors, we notice that VH(u) ≤ |DHu|(X).
2 ⇒ 3 Let tn → 0 and un = Ttn

u. Then, for all φ ∈
FC1

b (X,H) with ‖φ‖H ≤ 1, from (21) we deduce∫
X

[∇Hun, φ]Hdγ = −
∫

X

Ttn
u∇∗φdγ

= −e−tn

∫
X

u∇∗(Ttn
φ)dγ

≤ VH(u).

Therefore, ‖∇Hun‖L1(X,γ) ≤ VH(u). In particu-
lar, we have proved that LH(u) ≤ VH(u).

3 ⇒ 4 Let (un)n∈N be such that ‖∇Hun‖L1(X) →
LH(u). Then,∫

X

‖∇HTtu‖Hdγ ≤ lim inf
n→∞

∫
X

‖∇HTtun‖Hdγ

= e−t lim inf
n→∞

∫
X

‖∇Hun‖Hdγ

≤ LH(u).

Observe that in particular we have proved that
I[u,X] ≤ LH(u).
2

As we have noticed, the hypothesis that u belongs
to L log1/2L(X, γ) gives a meaning to 1, 4. On the
other hand, if |DHu| is finite, membership of u in
L log1/2L(X, γ) follows from the isoperimetric in-
equality as in the Sobolev case.

As a particular case, if E ⊂ X, u = χE and
|DHχE |(X) is finite, we say that E is a set of fi-
nite perimeter and set Pγ(E) = |DHχE |(X). If u ∈
BV (X, γ), according to general measure theory, a
|DHu|-measurable unit vector field σ : X → H
exists such that the polar decomposition DHu =

σ|DHu| holds. Accordingly, we use the following no-
tation: ∫

X

[φ,DHu]H =
∫

X

[φ, σ]Hd|DHu| (29)

for every φ ∈ Cb(X,H).

5. Further properties and open problems

In this section we describe a few properties of
BV functions. Further results will be presented in a
forthcoming paper. Thinking of Pγ(E) as a measure
on X, we denote by Pγ(E,B) the Pγ(E)-measure of
the Borel set B.
Corollary 5.1 Let us fix x∗ ∈ X∗ and c ∈ R; then
the sets E = {x ∈ X : 〈x, x∗〉 ≤ c} have finite
perimeter with

Pγ(E) =
1√
2π

exp
{
− c2

2‖Qx∗‖2H

}
.

Proof. Without loss of generality, we may assume
that ‖Qx∗‖H = 1. The assertion simply follows by
noticing that χE(x) = v(〈x, x∗〉). Then the set E is
a cylindrical set of the form

E =
{
x ∈ X : 〈x, x∗〉 ∈ B

}
,

with B = {s ∈ R : s ≤ c}. This implies that

Pγ(E) = PG1(B,R) =
e−c2/2

√
2π

. 2

More generally, one can consider level sets of Lips-
chitz functions. There are two natural classes of Lip-
schitz continuous functions F : X → R, obtained by
requiring a control of the incremental ratio with re-
spect to the X or the H norms. Since, as remarked
before, directional derivatives are computed normal-
izing with respect to the H-norm, in this context
H-Lipschitz functions are more natural.
Definition 5.2 A function f : X → R is said to
be H-Lipschitz continuous if it is (B(X),B(R))-
measurable and there exists a constant C such that
for γ-a.e. x one has

|f(x+ h)− f(x)| ≤ C‖h‖H , ∀h ∈ H. (30)

It can be proved that for a H-Lipschitz function f
there exists a full-measure setX0 such thatX0+H =
X0 and, for every x ∈ X0, one has

|f(x+ h)− f(x+ k)| ≤ C‖h− k‖H , ∀h, k ∈ H.

In particular, f has a version such that the previous
inequality is satisfied for every x ∈ X. Of course, by
Fernique theorem any H-Lipschitz function f is γ
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summable and, denoting byC its Lipschitz constant,
for all r > 0 one has

γ

(
x :

∣∣∣∣f(x)−
∫
fdγ

∣∣∣∣ > r

)
≤ 2 exp

(
− r2

2C2

)
(see [6, Section 5.11]). Moreover, aH-Lipschitz func-
tion f is in D1,p(X, γ) for every p ≥ 1, and in par-
ticular f ∈ BV (X, γ).

An important result is the following coarea for-
mula, which can be proved by following verbatim the
proof of [15, Section 5.5].
Theorem 5.3 If u ∈ BV (X, γ), then for every
Borel set B ⊂ X the following equality holds:

|DHu|(B) =
∫

R
Pγ({u > t}, B)dt. (31)

The following approximation result for sets of fi-
nite perimeter is a consequence of the approxima-
tion inBV through smooth functions and the coarea
formula.
Proposition 5.4 Let E ⊂ X be a set with finite
perimeter; then there exists a sequence Ej of cylin-
drical setsEj = Π−1

mj
Bj, withBj ∈ Rmj smooth sets,

such that

lim
j→∞

‖χEj
− χE‖L1(X,γ) = 0

and
lim

j→∞
Pγ(Ej) = Pγ(E).

Proof. The density of D1,1(X, γ) in variation in
BV (X, γ) and the density of smooth cylindrical
functions in D1,1(X, γ) imply the existence of a
sequence (uj) of smooth cylindrical functions with

uj → χE in L1(X, γ),∫
X

‖∇Huj‖Hdγ → Pγ(E).

The conclusion then follows from the coarea formula
by taking smooth levels Bj of uj . 2

Due to the previous proposition, we say that E is
a smooth set if E = Π−1

m B for some set B ∈ Rm with
smooth boundary. As a consequence, we have that

Pγ(E) = inf
{

lim inf
j→+∞

∫
∂Bj

Gmj
dHmj−1

}
where the infimum is taken over all the sequences
of smooth sets Bj ⊂ Rmj such that Π−1

mj
Bj con-

verges to E in L1(X, γ) and Hmj−1 is the (mj − 1)-
dimensional Hausdorff measure, see [7].
Remark 5.5 As a corollary of Proposition 5.4 we
can extend the isoperimetric inequality to all sets
with finite perimeter; in fact, we can consider a

sequence of smooth set (Ej)j converging to E in
L1(X, γ) such that Pγ(Ej) → Pγ(E). For any j ∈ N
we have Ej = Π−1

mj
Bj and then γ(Ej) = Gmj (Bj)

and Pγ(Ej) = PGmj
(Bj). Equation (15) then im-

plies that Pγ(Ej) ≥ U (γ(Ej)) with equality if Ej

is a hyperplane. We can choose a direction x∗ and
define

Hj = {x ∈ X : 〈x, x∗〉 ≤ ‖Qx∗‖HΦ−1(γ(Ej))}

where Φ is the function defined in (14); for such hy-
perplane we have that γ(Hj) = γ(Ej) and Pγ(Ej) ≥
Pγ(Hj). Taking the limit as j → +∞, we have that
Hj converges in L1(X, γ) to the hyperplane

H = {x ∈ X : 〈x, x∗〉 ≤ ‖Qx∗‖HΦ−1(γ(E))}

with the property that γ(H) = γ(E) and

Pγ(E) ≥ Pγ(H).

We point out that the choice of a direction is com-
pletely arbitrary; we also point out that the previ-
ous argument proves uniqueness of isoperimetric set
in the class of cylindrical sets with finite perimeter.
It is not clear to us if uniqueness still holds in the
class of all sets with finite perimeter.

We recall that the Sobolev classes D1,p(X, γ) are
stable under composition with Lipschitz continuous
functions, and∇H(f ◦u) = f ′(u)∇Hu for every Lip-
schitz continuous function f : R → R. The same
holds for BV functions. The following is a quite
rough result, when compared with the finite dimen-
sional case. We shall add further comments later.
Proposition 5.6 For any function u ∈ BV (X, γ)
and for any Lipschitz continuous function f : R →
R we have f ◦ u ∈ BV (X, γ) and |DH(f ◦ u)|(X) ≤
L|DHu|(X), where L is the Lipschitz constant of f .
Proof. Let u ∈ BV (X, γ), and let (un) ⊂ D1,1 be
a sequence such that un → u in L1 and∫

X

‖∇Hun‖Hdγ → |DHu|(X).

Then, as f is a Lipschitz function, f(un) → f(u) in
L1(X, γ) and

lim sup
n→∞

∫
X

‖∇H(f(un))‖Hdγ

= lim sup
n→∞

∫
X

|f ′(un)|‖∇Hun‖Hdγ

≤ L lim
n→∞

∫
X

‖∇Hun‖Hdγ

= L|DHu|(X) <∞. 2

Let us now investigate the properties of sections
of functions with bounded variation, extending the
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construction seen in the proof of 4 ⇒ 1 in Theo-
rem 4.5. Given the reproducing kernel H , we can
consider a decomposition of it given by H = H1 ⊕
H2. This can be obtained, for instance, by fixing an
orthonormal system {ĥj}j∈N of H , and by choos-
ing a finite subset I ⊂ N with H1 = span(ĥj : j ∈
I) and H2 its orthogonal complement. Then X1 =
R(H1) and X2 = R(H2) (closure in X) are such
that X = X1 ⊕ X2 ∼ X1 × X2 and γ = γ1 ⊗ γ2,
where γi(B) = γ(B ×Xj) for B ⊂ Xi, i 6= j.

Given a function u : X → R we define, for ev-
ery fixed x2 ∈ X2, the function ux2 : X1 → R as
ux2(x1) = u(x1, x2). We also define the gradient
∇H1 in the obvious way and the divergence ∇∗H1

as the adjoint of ∇H1 . Given a regular function u :
X → R, the operator ∇H1 is nothing but the finite
dimensional gradient of the regular function ux2 . Af-
ter defining:

|DH1u|γ(X) = sup
{∫

X

u(x)∇∗H1
φ(x)dγ(x) :

φ ∈ FC1
b (X,H1), ‖φ(x)‖H1 ≤ 1

}
,

we can then state and prove the following result.
Proposition 5.7 Let u ∈ L log1/2L(X, γ); then

|DH1u|(X) =
∫

X2

|DH1ux2 |(X1)dγ2(x2).

Proof. If we fix

φ ∈ FC1
b (X,H1)

with
‖φ(x)‖H1 ≤ 1,

we may write∫
X

u(x)∇∗H1
φ(x)dγ(x)

=
∫

X2

dγ(x2)
∫

X1

ux2(x1)∇∗H1
φx2(x1)dγ1(x1)

≤
∫

X2

|DH1ux2 |(X1)dγ2(x2),

whence

|DH1u|(X) ≤
∫

X2

|DH1ux2 |(X1)dγ2(x2).

For the reverse inequality, we may assume that
|DH1u|(X) < ∞; Theorem 4.5 can be restated by
saying that there exists a measure µH1 = DH1u ∈
M (X,H1) such that for all φ ∈ FC1

b (X,H1)∫
X

u∇∗H1
φdγ = −

∫
X

[φ, dDH1u]H1

and

lim
t→0

∫
X

‖∇H1Ttu(x)‖H1dγ(x) = |DH1u|(X)

hold. We also notice that

|DH1Ttu|(X) =
∫

X

‖∇H1Ttu(x)‖H1dγ(x).

Since

lim
t→0

∫
X2

‖Ttux2 − ux2‖L1(X1,γ1)dγ2(x2)

= lim
t→0

∫
X

|Ttu(x)− u(x)|dγ(x) = 0,

there exists tn → 0 such that

lim
n→∞

∫
X1

|(Ttnu)x2 − ux2 |dγ1(x1) = 0

for γ2-a.e. x2 ∈ X2. By lower semicontinuity we get∫
X2

|DH1ux2 |(X1)dγ2(x2)

≤
∫

X2

lim inf
n→∞

∫
X1

‖∇H1Ttn
ux2(x1)‖H1dγ1(x1)dγ2(x2)

≤ lim inf
n→∞

∫
X2

∫
X1

‖∇H1Ttn
ux2(x1)‖H1dγ1(x1)dγ2(x2)

= lim
n→∞

∫
X

‖∇H1Ttnu(x)‖H1dγ(x) = |DH1u|(X).

2

The finite dimensional slicing can be used to give
an equivalent characterization of functions with
bounded variation.
Proposition 5.8 For every u ∈ L1(X, γ), the fol-
lowing equality holds:

|DHu|(X) = sup
K

{
|DKu|(X)

}
, (32)

where the supremum is taken over all the finite di-
mensional subspaces K of H. In particular, u ∈
BV (X, γ) if and only if supK |DKu|(X) < +∞.
Proof. The inequality ≥ is obvious, hence setM =
sup |DKu|(X), K as above, assume M < ∞ and
prove the converse. For every φ ∈ FC1

b (X,H) there
is a finite dimensional subspace K of H such that
φ(x) ∈ K for every x ∈ X, and then∫

X

u∇∗Hφdγ =
∫

X

u∇∗Kφdγ ≤M,

and by the arbitrariness of φ, |DHu|(X) ≤ M fol-
lows, and the proof is complete. 2

Remark 5.9 It is easily seen that if we fix an or-
thonormal basis (hj) of H, and denote by Hn the
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span of {h1, . . . , hn}, then a simplified form of (32)
holds, namely

|DHu|(X) = sup
n

{
|DHn

u|(X)
}
.

Indeed, the inequality≥ is obvious from Proposition
5.8. Concerning the opposite inequality, we may as-
sume |DHu|(X) < ∞ (hence u ∈ BV (X, γ)), and
for ε > 0 fixed we may find φ ∈ FCb(X,H), ‖φ‖H ≤
1, such that∫

X

[φ,DHu]H ≥ |DHu|(X)− ε.

Therefore, to conclude it suffices to approxi-
mate uniformly the function φ by functions φn ∈
FCb(X,Hn).
Open problems We have presented in this note
only a translation of the possible definition of total
variation of a function into the context of a Wiener
space, and a few simple analytical properties. Hav-
ing in mind how rich is the theory of sets of finite
perimeter and BV functions in the finite dimen-
sional case of Rn, it is easy to raise many natural
questions. As mentioned in Section 2, BV functions
have proved to be very useful when dealing with vari-
ational problems where either the energy functional
to be minimised has a linear growth with respect
to the norm of the gradient, or the competitors are
expected to exhibit discontinuity surfaces. In fact,
in these cases Sobolev classes are not suitable: they
lack good compactness properties of the sublevels of
functionals with linear growth, and do not allow for
discontinuities along hypersurfaces (i.e., manifolds
of codimension 1).

Concerning the first point, consider a functional
as in (3): this expression makes sense (under some
mild regularity assumptions on f) if, e.g., u ∈
D1,1(X, γ), but for general u ∈ BV (X, γ) a suitable
as explicit as possible formula should be found for
the relaxed functional

F (u) := inf
{

lim inf
n→∞

∫
X

f(x, un,∇Hun)dγ : (33)

un ∈ D1,1, un
L1

→ u
}
.

A related issue concerns compactness properties of
sequences of BV functions. On one hand, the finite-
ness of the measure γ suggests that bounded sets
could be relatively compact, but on the other hand
this is known to be false without further assump-
tions in the Sobolev space D1,2(X, γ), at least when
using the definition recalled here (a different defini-
tion of Sobolev spaces is given in [9]).

Before adding further comments on the relaxation
problem, let us discuss some related analytical and
geometrical features. First, it is clear from general
results in measure theory that for u ∈ BV (X, γ)
the measure DHu has a Lebesgue decomposition
as DHu = Udγ + Ds

Hu, where we denote by U ∈
L1(X, γ,H) the density of the absolutely continu-
ous part and by Ds

Hu the singular part. A better
understanding of the pointwise values of U and the
structure of Ds

Hu is still missing.
For instance, in the important particular case of

characteristic functions u = χE , the whole of DHu
is singular, and in finite dimensions it is known that
it is concentrated on the reduced boundary of E (the
relevant part of the boundary from the measure the-
oretic point of view, which turns out to have some
mild regularity properties) and is absolutely contin-
uous with respect to the codimension 1 Hausdorff
measure Hn−1, the density being the approximate
normal. It is natural to ask if these properties can
be rephrased in the Wiener setting, explicitly, to
look for a good definition of rectifiability, approxi-
mate normal and reduced boundary of a set, and to
compare DχE with the existing notions of surface
measures, such as those in [1], which relies on reg-
ular parametrisations of the embedded manifolds,
or in [17], where a Carathéodory type construction
based on coverings, closer to the (spherical) Haus-
dorff measure Hn−1, is studied.

Let us come to general BV functions. In this case,
in Rn it is known that the densityU can be recovered
as the approximate differential of u. It is also known
that Dsu further decomposes into a jump part, con-
centrated on a rectifiable set Ju sharing the same
geometric properties as the reduced boundary, and
a Cantor part lying on a set of intermediate dimen-
sion, and that the jump part is absolutely continuous
with respect to the (restriction to Ju of the) Haus-
dorff measure Hn−1, the density being the jump of
u, i.e., the difference between two one-sided approx-
imate limits u+, u−. Apart from its intrinsic inter-
est, this decomposition is important in order to go
further in the analysis of the functional F in (33):
if f is independent of u then an integral representa-
tion of F (u) could likely be achieved by using only
the Lebesgue decomposition of DHu, but if f de-
pends explicitly upon u then a more detailed anal-
ysis of the gradient is probably necessary, as it has
been the case in Rn.

Further issues could come from concrete prob-
lems: are there functionals for which variational
problems are naturally well-posed on BV (X, γ)? Is
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it possible to extend the results obtained in [3] for
Sobolev fields to the BV case? In the finite dimen-
sional case, see [2], deep properties of BV have ben
used.
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[14] A. Ehrhard: Symétrisation dans l’espace de Gauss,
Math. Scand. (2) 53 (1983), 281–301.

[15] L.C. Evans, R.F. Gariepy: Lecture notes on measure
theory and fine properties of functions, CRC Press, 1992.

[16] H. Federer: Geometric Measure Theory, Springer,
1969.

[17] D. Feyel, A. de la Pradelle: Hausdorff measures on

the Wiener space, Potential Anal. 1 (1992), 177-189.
[18] M. Fukushima: On semimartingale characterization of

functionals of symmetric Markov processes, Electron J.

Probab. 4 (1999), 1-32.
[19] M. Fukushima: BV functions and distorted Ornstein-

Uhlenbeck processes over the abstract Wiener space, J.

Funct. Anal. 174 (2000), 227-249.
[20] M. Fukushima & M. Hino: On the space of BV

functions and a Related Stochastic Calculus in Infinite

Dimensions, J. Funct. Anal. 183 (2001), 245-268.
[21] M. Fukushima & Y. Oshima & M. Takeda: Dirichlet

forms and symmetric Markov processes, de Gruyter

Studies in Mathematics, 19, de Gruyter, 1994.
[22] E. Giusti: Minimal Surfaces and Functions of Bounded

Variation. Birkhäuser, 1984.
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