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Abstract5

The aim of this note is to study the measure-valued Ricci tensor on smooth6

metric measure space with boundary, which is a generalization of Bakry-7

Émery’s modified Ricci tensor on weighted Riemannian manifold. As an ap-8

plication, we offer a new approach to study curvature-dimension condition of9

smooth metric measure space with boundary.10
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Bakry-Émery theory.12

13

1 Introduction14

Let M = (X, g, e−V Volg) be a n-dimensional weighted Riemannian manifold (or15

smooth metric measure space) equipped with a metric tensor g : [TM ]2 7→ C∞(M).16

The well-known Bakry-Émery’s Bochner type formula17

Γ2(f) = Ricci(∇f,∇f) + HV (∇f,∇f) + |Hf |2HS, (1.1)

valid for any smooth function f , where HV = ∇2V is the Hessian of V and |Hf |HS18

is the Hilbert-Schmidt norm of the Hessian Hf . The operator Γ2 is defined by19

Γ2(f) :=
1

2
LΓ(f, f)− Γ(f, Lf), Γ(f, f) :=

1

2
L(f 2)− fLf

where Γ(·, ·) = g(∇·,∇·), and L = ∆ − ∇V is the Witten-Laplacian on M . It20

is known that Γ2 ≥ K could characterize many important geometric and analysis21

properties of M .22

The aim of this paper is to study the Bakry-Émery’s Γ2-calculus on smooth23

metric measure space with boundary. It can be seen that smooth metric measure24

space with boundary is actually a non-smooth space, since the geodesics are not25

even C2 in general (see e.g. [1]). Therefore, it will not be more difficult to study this26
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problem in an abstract framework. In this paper, we will use the theory of (non-1

smooth) metric measure space with lower Ricci curvature bound, which was founded2

by Lott-Sturm-Villani, and systematically studied using different techniques which3

originally come from differential geometry, metric geometry, probability theory, etc.4

We will see that the non-smooth Bochner inequality and the measure-valued5

Ricci tensor Ricci, which are introduced in [14] and [10] have precise representations6

on weighted Riemannian manifold (Ω, dg, e
−V Volg) with boundary, where dg is the7

intrinsic distance on Ω ⊂ X induced by the Riemannian metric g:8

RicciΩ = RicciV e
−V dVolg + II e−V dHn−1|∂Ω

(1.2)

where RicciV = Ricci + HV is the Bakry-Émery Ricci tensor and II is the second9

fundamental form.10

From [4,5] and [10] we know that (Ω, dg,Volg) is a RCD(K,∞) space, or in other11

words, the Boltzman entropy is K-displacement convex, if and only if RicciΩ ≥ K.12

By (1.2) we know RicciΩ ≥ K if and only if Ricci ≥ K and II ≥ 0. Then we13

immediately know (Ω, dg) is locally convex if it is RCD(K,∞). Even though this14

result could also be proved by combining the result of Ambrosio-Gigli-Savaré ( [3,4])15

and Wang (see e.g. Chapter 3, [17]). Our approach here is the first one totally ‘inside’16

the framework of metric measure space.17

In this paper, we will review the construction of measure-valued Ricci tensor and18

give a quick proof to our main formula. Then we end this note with some simple19

applications. More applications and generalizations will be studied in the future.20

2 Measure valued Ricci tensor and application21

Let M := (X, d,m) be a complete, separable geodesic space. We define the local22

Lipschitz constant lip(f) : X → [0,∞] of a function f by23

lip(f)(x) :=

{
limy→x

|f(y)−f(x)|
d(x,y)

, x is not isolated

0, otherwise.

We say that f ∈ L2(X,m) is a Sobolev function in W 1,2(M) if there exists a24

sequence of Lipschitz functions functions {fn} ⊂ L2, such that fn → f and lip(fn)→25

G in L2 for some G ∈ L2(X,m). It is known that there exists a minimal function G26

in m-a.e. sense. We call this minimal G the minimal weak upper gradient (or weak27

gradient for simplicity) of the function f , and denote it by |Df |. It is known that28

the locality holds for |Df |, i.e. |Df | = |Dg| m-a.e. on the set {x ∈ X : f(x) = g(x)}.29

If M is a Riemannian manifold, it is known that |Df |M = |∇f | = lip(f) for any30

f ∈ C∞. Furthermore, let Ω ⊂M be a domain such that ∂Ω is (n− 1)-dimensional.31

Then we know |Df |Ω = |∇f | m-a.e. (see Theorem 6.1, [8]). It can also be seen that32

the weighted measure e−Vm does not change the value of weak gradients.33

We equip W 1,2(X, d,m) with the norm34

‖f‖2
W 1,2(X,d,m) := ‖f‖2

L2(X,m) + ‖|Df |‖2
L2(X,m).
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It is known that W 1,2(X) is a Banach space, but not necessarily a Hilbert space. We1

say that (X, d,m) is an infinitesimally Hilbertian space if W 1,2 is a Hilbert space.2

Obviously, Riemannian manifolds (with or without boundary) are infinitesimally3

Hilbertian spaces.4

On an infinitesimally Hilbertian space M , we have a natural pointwise bilinear5

map defined by6

[W 1,2(M)]2 3 (f, g) 7→ 〈∇f,∇g〉 :=
1

4

(
|D(f + g)|2 − |D(f − g)|2

)
.

Then we can define the Laplacian by duality.7

Definition 2.1 (Measure valued Laplacian, [10, 11]). The space D(∆) ⊂ W 1,2(M)8

is the space of f ∈ W 1,2(M) such that there is a measure µ satisfying9 ∫
h dµ = −

∫
〈∇h,∇f〉 dm,∀h : M 7→ R, Lipschitz with bounded support.

In this case the measure µ is unique and we shall denote it by ∆f . If ∆f � m, we10

denote its density by ∆f .11

We have the following proposition characterizing the curvature-dimensions con-12

ditions RCD(K,∞) and RCD∗(K,N) through non-smooth Bakry-Émery theory.13

We say that a space is RCD(K,∞)/RCD∗(K,N) if it is a CD(K,∞)/CD∗(K,N)14

space which are defined by Lott-Sturm-Villani in [13,15,16] and Bacher-Sturm in [6],15

equipped with an infinitesimally Hilbertian Sobolev space. For more details, see [4]16

and [2].17

We define TestF(M) ⊂ W 1,2(M), the set of test functions by18

TestF(M) :=
{
f ∈ D(∆) ∩ L∞ : |Df | ∈ L∞ and ∆f ∈ W 1,2(M) ∩ L∞(M)

}
.

It is known that TestF(M) is dense in W 1,2(M) when M is RCD(K,∞).19

Let f, g ∈ TestF(M). We know (see [14]) that the measure Γ2(f, g) is well-defined20

by21

Γ2(f, g) =
1

2
∆〈∇f,∇g〉 − 1

2

(
〈∇f,∇∆g〉+ 〈∇g,∇∆f〉

)
m,

and we put Γ2(f) := Γ2(f, f). Then we have the following Bochner inequality on22

metric measure space, which can be regarded as variant definitions of RCD(K,∞)23

and RCD∗(K,N) conditions.24

Proposition 2.2 (Bakry-Émery condition, [4, 5], [9]). Let M = (X, d,m) be an25

infinitesimally Hilbertian space satisfying Sobolev-to-Lipschitz property (see [5] or26

[12] for the definition). Then it is a RCD∗(K,N) space with K ∈ R and N ∈ [1,∞]27

if and only if28

Γ2(f) ≥
(
K|Df |2 +

1

N
(∆f)2

)
m

for any f ∈ TestF(M).29

3



Let f ∈ TestF(M). We define the Hessian Hf : {∇g : g ∈ TestF(M)}2 7→ L0(M)1

by2

2Hf (∇g,∇h) = 〈∇g,∇〈∇f,∇h〉〉+ 〈∇h,∇〈∇f,∇g〉〉 − 〈∇f,∇〈∇g,∇h〉〉

for any g, h ∈ TestF(M). Using the estimate obtained in [14], it can be seen that3

Hf can be extended to a symmetric L∞(M)-bilinear map on L2(TM) (see [10] for4

the definition) and continuous with values in L0(M), see Theorem 3.3.8 in [10]5

for a proof. On Riemannian manifolds (with boundary), it can be seen that Hf6

coincides with the usual Hessian ∇2f , m-a.e., and the Hilbert-Schimidt norms are7

also identified.8

Furthermore, we have the following proposition.9

Proposition 2.3 (See [10]). Let M be an infinitesimally Hilbertian space satisfying10

Sobolev-to-Lipschitz property. Then M is RCD(K,∞) if and only if11

Ricci(∇f,∇f) ≥ K|Df |2 m

for any f ∈ TestF(M), where12

Ricci(∇f,∇f) := Γ2(f)− |Hf |2HS m.

Now we introduce our main theorem.13

Theorem 2.4 (Measure-valued Ricci tensor). Let M = (X, g, e−V Volg) be a n-14

dimensional weighted Riemannian manifold and Ω ⊂M be a submanifold with (n−15

1)-dimensional smooth orientable boundary. Then the measure valued Ricci tensor16

on (Ω, dΩ, e
−V Volg) can be computed as17

RicciΩ(∇g,∇g) = RicciV (∇g,∇g) e−V dVolg + II(∇g,∇g) e−V dHn−1|∂Ω
(2.1)

for any g ∈ C∞c with g(N,∇g) = 0, where N is the outwards normal vector field on18

∂Ω, and RicciV is the usual Bakry-Émery Ricci tensor on M .19

Proof. By integration by part formula (or Green’s formula) on Riemannian manifold,20

we know21 ∫
g(∇f,∇g) e−V dVolg = −

∫
f∆V g e

−V dVolg +

∫
∂Ω

fg(N,∇g) e−V dHn−1|∂Ω

for any f, g ∈ C∞c , where ∆V := (∆−∇V ) and N is the outwards normal vector field,22

Hn−1|∂Ω
is the (n− 1)-dimensional Hausdorff measure on ∂Ω. From the discussions23

before we know24 ∫
〈∇f,∇g〉Ω e

−V dVolg = −
∫
f∆V g e

−V dVolg +

∫
∂Ω

fg(N,∇g) e−V dHn−1|∂Ω
.

Therefore we know g ∈ D(∆Ω) and we obtain the following formula concerning25

the measure-valued Laplacian26

∆Ωg = ∆V g e
−V dVolg − g(N,∇g) e−V dHn−1|∂Ω

.
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Therefore for any g ∈ C∞c with g(N,∇g) = 0 on ∂Ω, we know g ∈ TestF(Ω).1

Now we can compute the measure-valued Bakry-Émery tensor. Let g ∈ C∞c with2

g(N,∇g) = 0 on ∂Ω. We have3

RicciΩ(∇g,∇g) =
1

2
∆Ω|Dg|2Ω − 〈∇g,∇∆Ωg〉Ω e

−V dVolg − ‖Hessg‖2
HS e

−V dVolg

=
1

2
∆V |∇g|2 e−V dVolg − g(∇g,∇∆V g) e−V dVolg − ‖Hessg‖2

HS e
−V dVolg

−1

2
g(N,∇|∇g|2) e−V dHn−1|∂Ω

= Ricci(∇g,∇g) e−V dVolg + HV (∇g,∇g) e−V Volg

− 1

2
g(N,∇|∇g|2) e−V dHn−1|∂Ω

= RicciV (∇g,∇g) e−V dVolg −
1

2
g(N,∇|∇g|2) e−V dHn−1|∂Ω

,

where we use Bochner formula at the third equality and RicciV = Ricci + HV is the4

Bakry-Émery Ricci tensor on weighted Riemannian manifold w.r.t the weight e−V .5

By definition of second fundamental form, we have6

II(∇g,∇g) = g(∇∇gN,∇g) = g
(
∇g(N,∇g),∇g

)
− 1

2
g(N,∇|∇g|2).

However, we assume that g(N,∇g) = 0 on ∂Ω. Hence g(∇∇gN,∇g) = −1
2
g(N,∇|∇g|2).7

Finally, we obtain8

RicciΩ(∇g,∇g) = RicciV (∇g,∇g) dVolg + II(∇g,∇g) e−V dHn−1|∂Ω
(2.2)

for any g ∈ C∞c with g(N,∇g) = 0.9

In the next corollary we will see that the space {g : g ∈ C∞c , g(N,∇g) = 0} ⊂10

TestF(Ω) is big enough to characterize the Ricci curvature and the mean curvature.11

Corollary 2.5 (Rigidity: convexity of the boundary). Let (Ω, dΩ, e
−V Volg) be a12

space as in Theorem 2.4. Then it is RCD(K,∞) if and only if ∂Ω is convex and13

RicciV ≥ K on Ω.14

Proof. If Ω is RCD(K,∞), then from Proposition 2.3 we know RicciΩ(∇g,∇g) ≥15

K|∇g|2Volg for any g ∈ TestF(Ω). By Theorem 2.4 we know RicciV (∇g,∇g) ≥16

K|∇g|2 and II(∇g,∇g) ≥ 0 for any g ∈ C∞c with g(N,∇g) = 0.17

On one hand, for any g ∈ C∞c (Ω) with support inside Ω, we know g ∈ TestF. Ap-18

plying Theorem 2.4 with any of these g, we know RicciV (∇g,∇g) ≥ K|∇g|2, hence19

RicciV ≥ K. On the other hand, for any g ∈ C∞c (∂Ω). By Cauchy–Kovalevskaya20

theorem we know the Cauchy problem:21

1) f = g on ∂Ω,22

2) g(∇f,N) = 0 on ∂Ω23
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has a local analytical solution ḡ. Furthermore, by multiplying an appropriate smooth1

cut-off function we can assume further that ḡ ∈ C∞c (Ω) and ḡ ∈ TestF(Ω). Applying2

Theorem 2.4 with ḡ , we know II(∇g,∇g) ≥ 0. Since g is arbitrary, we know II ≥ 0.3

Conversely, if ∂Ω is convex we know Ω is locally convex in the ambient space4

X (see e.g. [7]). Combining with RicciV ≥ 0 we know Ω is locally RCD(K,∞).5

By local to global property of RCD(K,∞) condition (see e.g. [15]), we prove the6

result.7

Remark 2.6. In this corollary, we only study the manifolds with boundary which8

can be regarded as a submanifold with orientable boundary. Since the problem we9

are considering is local, it is not more restrictive than general case.10

Remark 2.7. In [3] Ambrosio-Gigli-Savaré identify the gradient flow of Boltzman11

entropy with the (Neumann) heat flow. In [4] they prove the exponential contraction12

of heat flows in Wasserstein distance. Combining the result of Wang (see Theorem13

3.3.2 in [17]) we can also prove this result.14

Corollary 2.8. A N-dimensional Riemannian manifold with boundary is RCD(K,∞)15

if and only if it is RCD∗(K,N).16

The next corollary characterize the Ricci-flat space as a metric measure space.17

Corollary 2.9. Let M and Ω be as above. Then Ω is a Ricci flat space, i.e.18

RicciΩ = 0, if and only if it is a minimal hypersurface with zero Ricci curvature19

inside.20
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