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Ricci tensor on smooth metric measure space with
boundary
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Abstract

The aim of this note is to study the measure-valued Ricci tensor on smooth
metric measure space with boundary, which is a generalization of Bakry-
Emery’s modified Ricci tensor on weighted Riemannian manifold. As an ap-
plication, we offer a new approach to study curvature-dimension condition of
smooth metric measure space with boundary.

Keywords: metric measure space, curvature-dimension condition, boundary,
Bakry-Emery theory.

1 Introduction

Let M = (X,g,e Y Vol,) be a n-dimensional weighted Riemannian manifold (or
smooth metric measure space) equipped with a metric tensor g : [TM]? — C>(M).
The well-known Bakry-Emery’s Bochner type formula

Lo(f) = Ricci(Vf, Vf) + Hy(Vf, V f) + [Hy s, (1.1)

valid for any smooth function f, where Hy = V2V is the Hessian of V and |Hy|us
is the Hilbert-Schmidt norm of the Hessian Hy. The operator I'y is defined by

Dolf) = L0 ) =T LS, T S) = 5L = LS

where I'(+,-) = g(V-, V), and L = A — VV is the Witten-Laplacian on M. It
is known that 'y > K could characterize many important geometric and analysis
properties of M.

The aim of this paper is to study the Bakry—Emery’s ['5-calculus on smooth
metric measure space with boundary. It can be seen that smooth metric measure
space with boundary is actually a non-smooth space, since the geodesics are not
even C? in general (see e.g. [1]). Therefore, it will not be more difficult to study this
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problem in an abstract framework. In this paper, we will use the theory of (non-
smooth) metric measure space with lower Ricci curvature bound, which was founded
by Lott-Sturm-Villani, and systematically studied using different techniques which
originally come from differential geometry, metric geometry, probability theory, etc.

We will see that the non-smooth Bochner inequality and the measure-valued
Ricci tensor Ricci, which are introduced in [14] and [10] have precise representations
on weighted Riemannian manifold (2, dg, e~ Vol,) with boundary, where d, is the
intrinsic distance on 2 C X induced by the Riemannian metric g:

Riccio = Ricciy e dVolg + 1T e dH" | (1.2)

where Ricciyy = Ricci + Hy is the Bakry—Emery Ricci tensor and I7 is the second
fundamental form.

From [4,5] and [10] we know that (€2, d,, Vol,) is a RCD(K, 00) space, or in other
words, the Boltzman entropy is K-displacement convex, if and only if Riccip > K.
By we know Riccigp > K if and only if Ricci > K and II > 0. Then we
immediately know (£2,d) is locally convex if it is RCD(K, 00). Even though this
result could also be proved by combining the result of Ambrosio-Gigli-Savaré ( [3,4])
and Wang (see e.g. Chapter 3, |[17]). Our approach here is the first one totally ‘inside’
the framework of metric measure space.

In this paper, we will review the construction of measure-valued Ricci tensor and
give a quick proof to our main formula. Then we end this note with some simple
applications. More applications and generalizations will be studied in the future.

2 Measure valued Ricci tensor and application

Let M := (X,d,m) be a complete, separable geodesic space. We define the local
Lipschitz constant lip(f) : X — [0, 00| of a function f by

Lf ()= f ()]
d(z,y)

0, otherwise.

lim,_,, , 1« is not isolated

lip(f)(x) = {

We say that f € L*(X,m) is a Sobolev function in W2(M) if there exists a
sequence of Lipschitz functions functions { f,,} C L?, such that f,, — f and lip(f,,) —
G in L? for some G € L*(X, m). It is known that there exists a minimal function G
in m-a.e. sense. We call this minimal G the minimal weak upper gradient (or weak
gradient for simplicity) of the function f, and denote it by |Df|. It is known that
the locality holds for |Df|, i.e. |Df| = |Dg| m-a.e. on the set {z € X : f(z) = g(x)}.
If M is a Riemannian manifold, it is known that |Df|y, = |V f| = lip(f) for any
f € C*. Furthermore, let Q@ C M be a domain such that 02 is (n — 1)-dimensional.
Then we know |Df|q = |V f| m-a.e. (see Theorem 6.1, [8]). It can also be seen that
the weighted measure e~"'m does not change the value of weak gradients.

We equip W?(X,d, m) with the norm

1112 amy = 112 my + TP Z2(x m)-
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It is known that W?(X) is a Banach space, but not necessarily a Hilbert space. We
say that (X,d, m) is an infinitesimally Hilbertian space if W'? is a Hilbert space.
Obviously, Riemannian manifolds (with or without boundary) are infinitesimally
Hilbertian spaces.

On an infinitesimally Hilbertian space M, we have a natural pointwise bilinear
map defined by

1
WOME 3 (f,9) = (V£,g) == £ (ID( + 9) = ID(f = 9)?).
Then we can define the Laplacian by duality.

Definition 2.1 (Measure valued Laplacian, [10,[11]). The space D(A) C W12(M)
is the space of f € W12(M) such that there is a measure u satisfying

/hdu = — / (Vh,Vf)dm,Vh : M — R, Lipschitz with bounded support.

In this case the measure p is unique and we shall denote it by Af. If Af < m, we
denote its density by Af.

We have the following proposition characterizing the curvature-dimensions con-
ditions RCD(K, 00) and RCD*(K, N) through non-smooth Bakry-Emery theory.
We say that a space is RCD(K, 00)/RCD*(K, N) if it is a CD(K, 00)/CD*(K, N)
space which are defined by Lott-Sturm-Villani in [13}[15,/16] and Bacher-Sturm in [6],
equipped with an infinitesimally Hilbertian Sobolev space. For more details, see [4]
and [2].

We define TestF (M) C W2(M), the set of test functions by

TestF(M) = {f eD(A)NL®:|Df| € L*® and Afe W(M)N LOO(M)}.
It is known that TestF(M) is dense in W'2(M) when M is RCD(K, o).

Let f, g € TestF(M). We know (see [14]) that the measure I's(f, g) is well-defined
by
1

La(f.9) = A(VS V) - 3 (V.VAg) + (V9. TAD) m

and we put Ty(f) := I's(f, f). Then we have the following Bochner inequality on
metric measure space, which can be regarded as variant definitions of RCD(K, 00)
and RCD*(K, N) conditions.

Proposition 2.2 (Bakry-Emery condition, [4,5], [9]). Let M = (X,d,m) be an
infinitesimally Hilbertian space satisfying Sobolev-to-Lipschitz property (see [5] or
(12] for the definition). Then it is a RCD*(K, N) space with K € R and N € [1, 00|
of and only iof

Do(f) > (KIDS? + 5 (A?) m
for any f € TestF(M).
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Let f € TestF(M). We define the Hessian Hy : {Vg : g € TestF(M)}? — L°(M)
by

for any g, h € TestF(M). Using the estimate obtained in [14], it can be seen that
H; can be extended to a symmetric L>°(M)-bilinear map on L*(T'M) (see [10] for
the definition) and continuous with values in L°(M), see Theorem 3.3.8 in [10]
for a proof. On Riemannian manifolds (with boundary), it can be seen that Hy
coincides with the usual Hessian V2f, m-a.e., and the Hilbert-Schimidt norms are
also identified.

Furthermore, we have the following proposition.

Proposition 2.3 (See [10]). Let M be an infinitesimally Hilbertian space satisfying
Sobolev-to-Lipschitz property. Then M is RCD(K, 00) if and only if

Ricci(Vf,Vf) > K|IDf|*m
for any f € TestF (M), where

Ricci(V/, V) = Da(f) — [Hy g m.

Now we introduce our main theorem.

Theorem 2.4 (Measure-valued Ricci tensor). Let M = (X,g,e V' Voly) be a n-
dimensional weighted Riemannian manifold and @ C M be a submanifold with (n —
1)-dimensional smooth orientable boundary. Then the measure valued Ricci tensor
on (2, dq, eV Volg) can be computed as

Riccio(Vg, Vg) = Ricciv(Vg, Vg) e dVol, + I1(Vg,Vg) e dH"™Y, o (2.1)

Q

for any g € C° with g(N,Vg) = 0, where N is the outwards normal vector field on
%), and Ricciy is the usual Bakry-Emery Ricci tensor on M.

Proof. By integration by part formula (or Green’s formula) on Riemannian manifold,
we know

eV eV avol, = - [ favge Vavol, + [ oV Vg e Vaze
a0
for any f,g € C°, where Ay := (A—=VV) and N is the outwards normal vector field,

5{”_1| o, 18 the (n — 1)-dimensional Hausdorff measure on 9. From the discussions
before we know

/(Vf, Va)ge " dVol = _/fAvg G_VdVOIng/ fe(N,Vg)e VdF" .
o0N

Therefore we know g € D(Ag) and we obtain the following formula concerning
the measure-valued Laplacian

Ang = AvgeVdVoly — g(N,Vg)e™"dIH" | .

4
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Therefore for any g € C° with g(N, Vg) = 0 on 912, we know g € TestF(Q).

Now we can compute the measure-valued Bakry-Emery tensor. Let g € C° with
g(N,Vg) =0 on 92. We have

1
Riccig(Vyg,Vg) = §AQ|Dg|?2 —(Vg,VAqg),e " dVol, — |[Hess,||;ig e~ dVol,

1
= EAV|Vg|2 e VdVol, — g(Vg, VAyg) e " dVol, — ||Hess, |55 e dVol,

1 I
—ég(N,V’ng)e Vdg{ 1|5Q
= Ricci(Vg, Vg) e VdVol, + Hy(Vg, Vg) eV Vol,

1 v
- 5g(N,V|Vg|2)€ Vdg{ 1|aQ

1
= Ricciy(Vg, Vg) eV dVol, — §g(N, V|Vg[*) e dH"

where we use Bochner formula at the third equality and Ricciy = Ricci + Hy is the
Bakry-Emery Ricci tensor on weighted Riemannian manifold w.r.t the weight e~V

By definition of second fundamental form, we have
1
I1(Vg,Vg) = &(VyyN, Vg) = g(Va(N, Vg), Vg) = 58(N, V|Vg[).

However, we assume that g(N, Vg) = 0 on 0Q2. Hence g(Vy,N, Vg) = —3g(N, V|Vg|?).

Finally, we obtain

Riccig(Vg, Vg) = Ricciy(Vg, Vg) dVolg + I1(Vg,Vg) e VdK (2.2)

for any g € C° with g(N, Vg) = 0. O

In the next corollary we will see that the space {g : g € C°,g(N,Vyg) = 0} C
TestF(2) is big enough to characterize the Ricci curvature and the mean curvature.

Corollary 2.5 (Rigidity: convexity of the boundary). Let (2, dg,e™"Vol,) be a
space as in Theorem . Then it is RCD(K, 00) if and only if O is conver and
Ricciy > K on Q.

Proof. 1f © is RCD(K, 00), then from Proposition [2.3| we know Riccig(Vyg, Vg)
K|Vg|*Vol, for any g € TestF(Q2). By Theorem we know Ricciy(Vyg, Vg)
K|Vg|* and I1(Vg,Vg) > 0 for any g € C° with g(N,Vg) = 0.

On one hand, for any g € C2°(Q2) with support inside €2, we know g € TestF. Ap-
plying Theorem [2.4) with any of these g, we know Ricciy (Vg, Vg) > K|Vgl|?, hence
Ricciy > K. On the other hand, for any g € C°(092). By Cauchy-Kovalevskaya
theorem we know the Cauchy problem:

>
>

1) f=gon0Q,
2) g(Vf,N) =0 on 02
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has a local analytical solution g. Furthermore, by multiplying an appropriate smooth
cut-off function we can assume further that g € C2°(2) and g € TestF(€2). Applying
Theoremwith g, we know I1(Vg,Vg) > 0. Since g is arbitrary, we know 11 > 0.

Conversely, if 0€2 is convex we know () is locally convex in the ambient space
X (see e.g. |7]). Combining with Ricciy > 0 we know 2 is locally RCD(K, 00).
By local to global property of RCD(K, 00) condition (see e.g. [15]), we prove the
result. O

Remark 2.6. In this corollary, we only study the manifolds with boundary which
can be regarded as a submanifold with orientable boundary. Since the problem we
are considering is local, it is not more restrictive than general case.

Remark 2.7. In [3] Ambrosio-Gigli-Savaré identify the gradient flow of Boltzman
entropy with the (Neumann) heat flow. In [4] they prove the exponential contraction
of heat flows in Wasserstein distance. Combining the result of Wang (see Theorem
3.3.2 in [17]) we can also prove this result.

Corollary 2.8. A N-dimensional Riemannian manifold with boundary is RCD(K, 00)
if and only if it is RCD*(K, N).

The next corollary characterize the Ricci-flat space as a metric measure space.

Corollary 2.9. Let M and 2 be as above. Then ) is a Ricci flat space, i.e.
Riccig = 0, if and only if it is a minimal hypersurface with zero Ricci curvature
inside.

References

[1] R. ALEXANDER AND S. ALEXANDER, Geodesics in Riemannian manifolds-
with-boundary, Indiana Univ. Math. J., 30 (1981), pp. 481-488.

[2] L. AMBROSIO, N. GIGLI, A. MONDINO, AND T. RAJALA, Riemannian Ricci

curvature lower bounds in metric measure spaces with o-finite measure, Trans.
Amer. Math. Soc., 367 (2015), pp. 4661-4701.

[3] L. AMBROSIO, N. GIGLI, AND G. SAVARE, Calculus and heat flow in met-
ric measure spaces and applications to spaces with Ricci bounds from below,
Inventiones mathematicae, (2013), pp. 1-103.

[4] ——, Metric measure spaces with riemannian Ricci curvature bounded from
below, Duke Math. J., 163 (2014), pp. 1405-1490.

[5] —, Bakry-Emery curvature-dimension condition and Riemannian Ricci cur-
vature bounds, Ann. Probab., 43 (2015), pp. 339-404.

6] K. BACHER AND K.-T. STURM, Localization and tensorization properties of
the curvature-dimension condition for metric measure spaces, J. Funct. Anal.,
259 (2010), pp. 28-56.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. L. BisHoOP, Infinitesimal convexity implies local convexity, Indiana Univ.
Math. J., 24 (1974/75), pp. 169-172.

J. CHEEGER, Differentiability of Lipschitz functions on metric measure spaces,
Geom. Funct. Anal., 9 (1999), pp. 428-517.

M. ErBAR, K. KuwADA, AND K.-T. STURM, On the equivalence of the en-

tropic curvature-dimension condition and Bochner’s inequality on metric mea-
sure spaces, Invent. Math., 201 (2015), pp. 993-1071.

N. GicLi, Non-smooth differential geometry. Preprint, arXiv:1407.0809. To
appear on Mem. Amer. Math. Soc., 2014.

—, On the differential structure of metric measure spaces and applications,
Mem. Amer. Math. Soc., 236 (2015), pp. vi+91.

N. GicLl AND B.-X. HAN, Sobolev spaces on warped products. Preprint,
arXiv:1512.03177, 2015.

J. LoTrT AND C. VILLANI, Ricci curvature for metric-measure spaces via op-
timal transport, Ann. of Math. (2), 169 (2009), pp. 903-991.

G. SAVARE, Self-improvement of the Bakry-émery condition and Wasserstein
contraction of the heat flow in RCD(K,oc0) metric measure spaces, Disc. Cont.
Dyn. Sist. A, 34 (2014), pp. 1641-1661.

K.-T. STURM, On the geometry of metric measure spaces. I, Acta Math., 196
(2006), pp. 65-131.

—, On the geometry of metric measure spaces. II, Acta Math., 196 (2006),
pp. 133-177.

F.-Y. WANG, Analysis for diffusion processes on Riemannian manifolds, vol. 18
of Advanced Series on Statistical Science & Applied Probability, World Scien-
tific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014.



	Introduction
	Measure valued Ricci tensor and application

