
SADDLE-SHAPED SOLUTIONS FOR THE FRACTIONAL

ALLEN-CAHN EQUATION

ELEONORA CINTI

Abstract. We establish existence and qualitative properties of solutions to the fractional
Allen-Cahn equation, which vanish on the Simons cone and are even with respect to the
coordinate axes. These solutions are called saddle-shaped solutions.

More precisely, we prove monotonicity properties, asymptotic behaviour, and instability
in dimensions 2m = 4, 6. We extend to any fractional power s of the Laplacian, some results
obtained for the case s = 1/2 in [19].

The interest in the study of saddle-shaped solutions comes in connection with a cele-
brated De Giorgi conjecture on the one-dimensional symmetry of monotone solutions and
of minimizers for the Allen-Cahn equation. Saddle-shaped solutions are candidates to be
(not one-dimensional) minimizers in high dimension, a property which is not known to
hold yet.

1. Introduction

In this paper we study existence and qualitative properties of saddle-shaped solutions
(see definition 1.1) to the equation

(−∆)su = f(u) in Rn, (1.1)

where s ∈ (0, 1), n = 2m is an even integer and f is of bistable type. In particular, we
extend the results contained in [19] for the case s = 1/2 to any fractional power of the
Laplacian 0 < s < 1.

The saddle-shaped solutions that we consider are even with respect to the coordinate
axes and odd with respect to the Simons cone, which is defined as follows. For n = 2m the
Simons cone C is given by:

C = {x ∈ R2m : x2
1 + ...+ x2

m = x2
m+1 + ...+ x2

2m}.
We recall that the Simons cone has zero mean curvature at every point x ∈ C \{0}, in every
dimension 2m ≥ 2. Moreover in dimensions 2m ≥ 8 it is a minimizer of the area functional,
as established by Bombieri, De Giorgi, and Giusti in [4].

We define two new variables

s =
√
x2

1 + · · ·+ x2
m and t =

√
x2
m+1 + · · ·+ x2

2m, (1.2)

for which the Simons cone becomes C = {s = t}.

Definition 1.1. We say that a solution u of (1.1) is a saddle-shaped solution, if u depends
only on s and t, and it satisfies u > 0 for s > t and u(s, t) = −u(t, s).
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Observe that, obviously, the Simons cone C is the zero-level set of u.
We are interested in the study of this type of solutions since they are relevant in connection

to the following well known De Giorgi conjecture for the (classical) Allen-Cahn equation:
let u be a bounded monotone (in some direction) solution to

−∆u = u− u3 in Rn, (1.3)

then, if n ≤ 8, u depends on only one Euclidean variable, that is all its level sets are
hyperplanes.

The motivation for this conjecture relies on the classical Modica-Mortola result which
states that the energy functional associated to equation (1.3), after a suitable rescaling, Γ-
converges to the area functional. This result establish a very deep connection between the
classification of area-minimizing surfaces and the classification of certain solutions to (1.3).
It is well known that when n ≤ 7, any area minimzing surface in the all Rn is necessarely
an hyperplane. The Simons cone is the first example of a singular area minimizing surface
in R8.

The De Giorgi conjecture has been proven to be true in dimension n = 2 by Ghoussoub
and Gui [27] and in dimension n = 3 by Ambrosio and Cabré [2]. For 4 ≤ n ≤ 8, if ∂xnu > 0,
and assuming the additional condition

lim
xn→±∞

u(x′, xn) = ±1 for all x′ ∈ Rn−1,

it has been established by Savin [31]. Moreover Savin proved the conjecture for solutions
that are minimizers of the associated energy functional (without any monotonicity assump-
tion) in any dimension 4 ≤ n ≤ 7. A counterexample to the conjecture for n ≥ 9 in the
setting of monotone solutions has been found by del Pino, Kowalczyk and Wei [24], while
for n ≥ 8 in the setting of minimizers by Liu, Wang, Wei in the recent contribution [30].
In these last two references, the minimality property of the Simons cone plays a crucial
role. Besides the solutions constructed in [30], saddle-shaped solutions are candidates to be
minimizers in dimensions 2m ≥ 8, a property which is not established yet and turns out to
be a difficult problem.

For the fractional equation (−∆)su = f(u) in Rn with 0 < s < 1, the De Giorgi conjecture
has been proven to be true when n = 2 and s = 1/2 by Cabré and Solà-Morales [14], and
when n = 2 and for every 0 < s < 1 by Cabré and Sire [12], and by Sire and Valdinoci [36]. In
all these references the proof of the conjecture makes use of the so-called Caffarelli-Silvestre
extension. We emphasize that in the recent contribution [6], Bucur and Valdinoci give an
alternative proof of the conjecture in dimension n = 2, which does not use the extension.
When n = 3 and for every power 1/2 ≤ s < 1 the conjecture has been established in [8, 9]
by Cabré and the author. Very recently Savin [32] extended his result for the local case (in
dimensions 4 ≤ n ≤ 8 for monotone solutions with limits at∞ and in dimensions 4 ≤ n ≤ 7
for minimizers) to any fractional power of the Laplacian 1/2 < s < 1; in [25] under the
same assumption on the limits at∞ the conjecture has been established in dimension n = 3
and for 0 < 1/2 < 1. Finally in [28] and in the forthcoming paper [11], the conjecture has
been established in dimension n = 3 and for any 0 < s < 1/2 for any monotone solutions
(without any additional assumption). Counterexample to the conjecture in high dimension
for the fractional problem are not known yet.

We remind also the analogue of the Modica-Mortola result in this fractional setting:
in [34], Savin and Valdinoci proved that, after a suitable rescaling, the energy functional
associated to the fractional Allen-Cahn equation Γ-converges to the (classical) perimeter
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functional when 1/2 ≤ s < 1 and to the fractional perimeter when 0 < s < 1/2. Hence
when 1/2 ≤ s < 1 the De Giorgi conjecture is expected to be true up to dimension n = 8
(as already mentioned, Savin proved this fact for 1/2 < s < 1), while when 0 < s <
1/2 to guess which is the critical dimension for the validity of the conjecture, one should
know the classification for minimizers of the fractional perimeter. The notion of fractional
perimeter was introduced in [17] by Caffarelli, Roquejoffre, and Savin, but the only available
classification results are just in dimension n = 2 (see [33] and [21]) and there are some partial
results in dimension n = 3 (more precisely, for minimal graphs see [26] and for stable cones
but only for s sufficiently close to 1/2 see [10]).

Saddle solutions for the classical equation −∆u = f(u) when n = 2 were studied in [22,
35]. In higher dimension they were considerd in [7, 15, 16], where existence and qualitative
properties were established.

In [19], the author started the study of these solutions for the fractional Allen-Cahn
equation, for s = 1/2. The main result of [19] are: existence of saddle-shaped solutions
in all R2m, monotonicity properties, asymptotic behaviour, and instability in dimensions
2m = 4, 6. In this contribution we extend the results in [19] to any fractional power of the
Laplacian 0 < s < 1.

The instability properties in low dimensions are interesting in connection with the prob-
lem, described above, of understanding the minimality property for saddle-shaped solutions
(which is still an open problem even in the classical case). Regarding stability properties,
we mention the recent contribution [23] where the authors study stability for the, so called,
nonlocal minimal Lawson cones (that is, Lowson cones which are stationary for the frac-
tional perimeter functional). The class of Lowson cones includes, in particular, the Simons
cone. In [23], the authors prove that for s sufficiently close to 0, nonlocal minimal Lawson
cones are unstable in Rn for n ≤ 6 and stable for n ≥ 7. This result shows an interesting
difference between the nonlocal setting and the local one, indeed Lawson cones are unstable
for the classical perimeter also in dimension n = 7. On the other side, the instability result
of [23] in the nonlocal setting up to dimension 6 is consistent with the instability result
for saddle-shaped solution to (1.1) in dimension n = 4, 6 that we prove in this paper (see
Theorem 2.2 below). We stress however that, while the result in [23] holds only for s ∼ 0,
our instability result holds for any 0 < s < 1.

2. Some preliminaries and main results

To study the nonlocal problem (1.1) we will use the so-called Caffarelli-Silvestre extension
[18], which allow to realize it as a local problem in Rn+1

+ with a nonlinear Neumann condition

on ∂Rn+1
+ = Rn. More precisely, given u = u(x) defined on Rn, we consider its s-harmonic

extension v = v(x, λ) in Rn+1
+ = Rn×(0,+∞). It is well known (see [18]) that u is a solution

of (1.1) if and only if v satisfiesdiv(λ1−2s∇v) = 0 in Rn+1
+ ,

− 1

cs
lim
λ→0

λ1−2s∂λv = f(v) on Rn = ∂Rn+1
+ ,

(2.1)

where cs is a constant whose precise value is given by

cs =
21−2sΓ(1− s)

Γ(s)
. (2.2)

Since the constant cs will not play any role in this paper, we will omit it in the sequel.
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With this local formulation at hand, we can now give the notion of stability and mini-
mality in a standard way.

First, we consider the energy functional associated to problem (2.1). Let Ω̃ be a bounded

Lipschitz domain in Rn+1
+ . We denote by ∂0Ω̃ the subset of ∂Ω̃ which lies on the boundary

of Rn+1, that is ∂0Ω̃ = ∂Ω̃ ∩ {λ = 0}. For f : R → R, we call G the potential such that
G′ = −f .

The energy functional associated to (2.1) is given by

E
Ω̃

(v) =

∫
Ω̃

1

2
λ1−2s|∇v|2 dx dλ+

∫
∂0Ω̃

G(v) dx. (2.3)

We say that v is a minimizer for problem (2.1) in Ω̃ if

E
Ω̃

(v) ≤ E
Ω̃

(w),

for any w which coincides with v on ∂Ω̃ ∩ {λ > 0}. Observe that an admissible competitor
w is “free” on the bottom boundary Ω × {0}, due to the Neumann condition in (2.1). We

say that v is a global minimizer if it is a minimizer in Ω̃, for any bounded Ω̃ ⊂ Rn+1
+ .

Moroever, we say that a bounded solution v of (2.1) is stable if the second variation

of the energy δ2E/δ2ξ, with respect to perturbations ξ compactly supported in Rn+1
+ , is

nonnegative. That is, if

Qv(ξ) :=

∫
Rn+1
+

λ1−2s|∇ξ|2 dxdλ−
∫
∂Rn+1

+

f ′(v)ξ2 dx ≥ 0 (2.4)

for every ξ ∈ C∞0 (Rn+1
+ ).

In what follows we will assume some or all of the following properties on f :

f is odd; (2.5)

G ≥ 0 = G(±1) inR, andG > 0 in (−1, 1); (2.6)

f ′ is decreasing in (0, 1). (2.7)

We observe that, if (2.5) and (2.6) hold, then f(0) = f(±1) = 0. Conversely, if f is odd
in R, positive with f ′ decreasing in (0, 1) and negative in (1,∞) then f satisfies (2.5), (2.6)
and (2.7). A typical example of such stable nonlinearity is f(u) = u− u3, which appears in
the well studied Allen-Cahn equation.

Our first result is an existence result for a saddle-shaped solution for problem (1.1) in
every even dimension n = 2m.

For R, L > 0, we define the cylinder

CR,L = BR × (0, L),

where BR is the open ball in R2m centered at the origin and of radius R.

Theorem 2.1. Let 2m ≥ 2 and 0 < s < 1. Assume that f satisfy (2.5) and (2.6).
Then, there exists a saddle solution u, with |u| < 1, of the problem

(−∆)su = f(u) in R2m.

Let v be the s-harmonic extension of the saddle solution u in R2m+1
+ . If in addition f

satisfies (2.7), then

Qv(ξ) ≥ 0
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for any test function ξ ∈ C1(R2m+1
+ ) with compact support in R2m+1

+ and vanishing on
C × [0,+∞).

The proof of this existence result will be given in Section 3.
For solutions of problem (2.1) depending only on the coordinates s, t and λ, problem

(2.1) becomes−(vss + vtt + vλλ)− (m− 1)
(vs
s

+
vt
t

)
− 1− 2s

λ
vλ = 0, in R2m+1

+

− lim
λ→0

λ1−2s∂λv = f(v) on ∂R2m+1
+ ,

(2.8)

while the energy functional becomes

E(v, Ω̃) = cm

{∫
Ω̃
λ1−2s sm−1tm−1 1

2
(v2
s + v2

t + v2
λ) ds dt dλ+

∫
∂0Ω̃

sm−1tm−1G(v) ds dt

}
,

(2.9)

where cm is a positive constant depending only on m—here we have assumed that Ω̃ ⊂
R2m+1

+ is radially symmetric in the first m variables and also in the last m variables.
As said in the Introduction, saddle-shaped solutions are candidates to be minimizers of

the energy functional (2.3), in high dimension (at least for s ≥ 1/2 one would expect for
dimensions n ≥ 8, due to the minimality of the Simons cone for the classical perimeter
functional).

Proving minimality of saddle-shaped solution is a difficult task, which is still open even for
the classical Allen-Cahn equation. In this direction, it is interesting to have informations
at least on the stability properties of these solutions (we recall that minimality implies
stability). In our second main result, we show that saddle-shaped solution are unstable in
dimensions 2m = 4, 6 for any 0 < s < 1.

Theorem 2.2. Let f satisfy conditions (2.5), (2.6), (2.7).
Then, every bounded solution u of (−∆)su = f(u) in R2m such that u = 0 on the Simons

cone C = {s = t} and u has the same sign as s− t, is unstable in dimensions 2m = 4 and
2m = 6.

We stress that in Theorem 2.1 we have established the stability of u under perturbations
that vanish on C × [0,+∞), hence our instability result Theorem 2.2 above (where pertur-
bations do not vanish in general on C × [0,+∞)) relies crucially on the instability property
of the Simons cone in low dimensions.

The proof of this result uses several ingredients, that we will develop in Sections 4-
6. More precisely, we will need to establish existence and monotonicity properties for a
maximal saddle-solution (see Proposition 5.1 in Section 5). The proof of this result will
rely on maximum principles for a fractional Laplacian in bounded domains, that we will
provide in Section 4. A last fundamental ingredient in the proof of the instability property
is given by the asymptotic behaviour of our saddle-solution, which will be established in
Proposition 5.2 in Section 5. Finally, in Section 6, we prove our main Theorem 2.2.

3. The existence result

In this section we prove the existence of a saddle solution u for problem (1.1), by prov-
ing the existence of a solution v for the extended problem (2.1) satisfying the following
properties:

(1) v depends only on the variables s, t and λ. We write v = v(s, t, λ);
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(2) v > 0 for s > t;
(3) v(s, t, λ) = −v(t, s, λ).

The proof follows the analogue proof of the existence result (Theorem 1.6) in [19]. For
the convenience of the reader, we present here the main steps of the proof and we explicitely
emphasize when computations differ from the case s = 1/2 and when some difficulties arise,
due to the presence of the weight λ1−2s in the equations satisfied by v.

We introduce the following sets:

O := {x ∈ R2m : s > t} ⊂ R2m,

Õ := {(x, λ) ∈ R2m+1
+ : x ∈ O} ⊂ R2m+1

+ .

Note that
∂O = C.

Let BR be the open ball in R2m centered at the origin and of radius R. We will consider
the open bounded sets

OR := O ∩BR = {s > t, |x|2 = s2 + t2 < R2} ⊂ R2m.

ÕR,L := OR × (0, L) = {(x, λ) ∈ R2m+1
+ : s > t, |x|2 = s2 + t2 < R2, λ < L}.

Note that
∂OR = (C ∩BR) ∪ (∂BR ∩ O).

We define now the sets

H1(ÕR,L, λ1−2s) = {v : ÕR,L → R : λ1−2s(v2 + |∇v|2) ∈ L1(ÕR,L)},

L̃2(ÕR,L) = {v ∈ L2(ÕR,L) : v = v(s, t, λ) a.e.}
and

H̃1
0 (ÕR,L, λ1−2s) = {v ∈ H1(ÕR,L, λ1−2s) : v ≡ 0 on ∂+ÕR,L, v = v(s, t, λ) a.e.}.

We recall that the inclusion

H̃1
0 (ÕR,L, λ1−2s) ⊂⊂ L2(∂0ÕR,L) (3.1)

is compact (see the proof of Lemma 4.1 in [13] and Section 2 in [19]).
We can now give the proof of Theorem 2.1.

Proof of Theorem 2.1. As already mentioned, we prove the existence of a solution v for the
problem (2.1) such that v = v(s, t, λ) and v(s, t, λ) = −v(−t, s, λ).

Consider the energy functional in ÕR,L,

EÕR,L(v) =
1

2

∫
ÕR,L

λ1−2s|∇v|2 +

∫
∂0ÕR,L

G(v) for every v ∈ H̃1
0 (ÕR,L, λ1−2s).

Next, we prove the existence of a minimizer of the functional among functions in H̃1
0 (ÕR,L, λ1−2s).

Recall that we assume condition (2.6) on G, that is,

G(±1) = 0 and G > 0 in (−1, 1).

We define a continuous extension G̃ of G in R such that

• G̃ = G in [−1, 1],

• G̃ > 0 in R \ [−1, 1],

• G̃ is even,

• G̃ has linear growth at infinity.
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We consider the new energy functional

ẼÕR,L(v) =
1

2

∫
ÕR,L

λ1−2s|∇v|2 +

∫
∂0ÕR,L

G̃(v) for every v ∈ H̃1
0 (ÕR,L, λ1−2s).

We observe that every minimizer w of ẼÕR,L(·) in H̃1
0 (ÕR,L, λ1−2s) such that −1 ≤ w ≤ 1

is also a minimizer of EÕR,L(·) in the set

{v ∈ H̃1
0 (ÕR,L, λ1−2s) : −1 ≤ v ≤ 1}.

To show that ẼÕR,L(·) admits a minimizer we use a standard variational argument and

the compactness of the inclusion (3.1) above. Hence, taking a minimizing sequence {vkR,L} ∈
H̃1

0 (ÕR,L, λ1−2s) and a subsequence convergent in L̃2(∂0ÕR,L), we conclude that ẼÕR,L(·)
admits an absolute minimizer vR,L in H̃1

0 (ÕR,L, λ1−2s).

Observe that, without loss of generality, we may assume 0 ≤ vkR,L ≤ 1 in ÕR,L because, if

not, we can replace the minimizing sequence vkR,L with the sequence min{|vkR,L|, 1}. Indeed,

it is also minimizing because G̃ is even and G̃ ≥ G̃(1). Then the absolute minimizer vR,L is

such that 0 ≤ vR,L ≤ 1 in ÕR,L.

To prove that vR,L is indeed a solution of (2.8) in ÕR,L some care is needed, we refer to
[19] for details.

To get a solution in all of BR × (0, L), we consider now the odd reflection of vR,L with
respect to C × R+,

vR,L(s, t, λ) = −vR,L(t, s, λ).

This is a solution in BR \ {0} × (0, L). Using a cutoff argument, precisely as in [19], we
conclude that vR,L is also a solution around 0, and hence in all of BR × (0, L).

We now wish to pass to the limit in R and L, and obtain a solution in all of R2m+1
+ .

Let S > 0, L′ > 0 and consider the family {vR,L} of solutions in BS+2 × [0, L′ + 2], with
R > S + 2 and L > L′ + 2. Since |vR,L| ≤ 1, regularity results proved in [12], Proposition

4.5, give a uniform Cα(BS × [0, L′]) bound for vR,L (uniform with respect to R and L).
Moreover vR,L satisfies (see Proposition 4.6 in [12])

|∇vR,L(x, λ)| ≤ C

λ
in BR × (1, L), (3.2)

‖λ1−2s∂λu‖∞ ≤ C in BR × (1, L). (3.3)

Choose now L = Rγ , with 1/2 < γ < 1
2(1−s) (this choice will be used later to prove that

the solution that we construct is not identically zero). By the Arzelà-Ascoli Theorem, using
the uniform Cα estimates and the bound (3.3), we deduce that a subsequence of {vR,Rγ}
converges in Cα(BS×[0, Sγ ]) to a solution in BS×(0, Sγ). Taking S = 1, 2, 3, . . . and making
a Cantor diagonal argument, we obtain a sequence vRj ,Rγj converging in Cαloc(R

2m+1
+ ) to a

solution v ∈ Cα(R2m+1
+ ). By construction we have found a solution v in R2m+1

+ depending
only on s, t and λ, such that v(s, t, λ) = −v(t, s, λ), |v| ≤ 1 and v ≥ 0 in {s > t}.

The fact that |v| ≤ 1 follows easily using that f(1) = 0 and applying the maximum
principle (see Remark 4.2 in [12]) as in [19].

We prove now that v 6≡ 0 in R2m+1
+ . Then, the strong maximum principle and Hopf’s

Lemma (see again Remark 4.2 in [12]) lead to v > 0 in {s > t} × R+ since f(0) = 0 and
v ≥ 0 in {s > t} × R+.
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To prove that v does not identically vanish, we establish an energy estimate using a

comparison argument (based on the minimality property of vR,L in the set ÕR,L). We give
all the detailed computations for this part of the proof because of the precence of the weight
λ1−2s in the Dirichlet energy.

Let 1/2 < γ < 1
2(1−s) as above and β be a positive real number depending only on γ and

such that 1/2 ≤ β < γ < 1
2(1−s) . Let S < R− 2, since we have chosen before L = Rγ , then

Sγ < L. We consider a C1 function g : ÕS,Sγ → R defined as follows:

g(x, λ) = g(s, t, λ) = η(s, t) min

{
1,
s− t√

2

}
+ (1− η(s, t))vR,L(s, t, λ),

where η is a smooth function depending only on r2 = s2 + t2 such that η ≡ 1 in BS−1 and

η ≡ 0 outside BS . Observe that g agrees with vR,L on the lateral boundary of ÕS,Sγ and g

is identically 1 inside (OS−1 ∩ {(s− t)/
√

2 > 1})× (0, Sγ).
Now, we introduce the following C1 function ξ : (0, Sγ)→ (0,+∞):

ξ(λ) =

1 if 0 < λ ≤ Sγ − Sβ
logSγ − log λ

logSγ − log (Sγ − Sβ)
if Sγ − Sβ < λ ≤ Sγ .

Finally, we define w : ÕS,Sγ → (−1, 1) as follows

w(x, λ) = ξ(λ)g(x, λ) + [1− ξ(λ)]vR,L(x, λ). (3.4)

We set Ô = OS−1 ∩ {(s − t)/
√

2 > 1} × (0, Sγ − Sβ). Observe that w agree with vR,L
on ∂+ÕS,Sγ and w ≡ 1 in Ô. We extend w to be identically equal to vR,L in ÕR,L \ ÕS,Sγ .

Using the minimality of vR,L in ÕR,L, we deduce

EÕR,L(vR,L) ≤ EÕR,L(w).

Thus, since w = vR,L in ÕR,L \ ÕS,Sγ , we get

EÕS,Sγ (vR,L) ≤ EÕS,Sγ (w).

We want now to estimate EÕS,Sγ (w). We start by observing that, since w ≡ 1 on OS−1 ∩
{(s− t)/

√
2 > 1}, then∫

OS
G(w) =

∫
OS\(OS−1∩{(s−t)/

√
2>1})

G(w) ≤ C|OS \ (OS−1∩{(s− t)/
√

2 > 1})| ≤ CS2m−1.

(3.5)
It remains to bound the Dirichlet energy of w. We have∫

ÕS,Sγ
λ1−2s|∇w(x, λ)|2dxdλ =

∫
Õ
S,Sγ−Sβ

λ1−2s|∇w(x, λ)|2dxdλ

+

∫
ÕS,Sγ \ÕS,Sγ−Sβ

λ1−2s|∇w(x, λ)|2dxdλ. (3.6)
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Using again that w ≡ 1 in Ô and that |OS \ {(s − t)/
√

2 > 1}| ≤ CS2m−1, we deduce
that ∫

ÕS,Sγ
λ1−2s|∇w(x, λ)|2dxdλ

≤ CS2m−1

∫ Sγ−Sβ

0
λ1−2s dλ+

∫
ÕS,Sγ \ÕS,Sγ−Sβ

λ1−2s|∇w(x, λ)|2dxdλ

≤ CS2m−1+2γ(1−s) +

∫
ÕS,Sγ \ÕS,Sγ−Sβ

λ1−2s|∇w(x, λ)|2dxdλ.

(3.7)

We give now an estimate for the last term on the right-hand side of (3.7). By the
definition of w in (3.4), we have that

|∇w(x, λ)|2 ≤ |ξ′(λ)|2[g(x, λ) + vR,L(x, λ)]2 + {|∇g|2 + |∇vR,L(x, λ)|2}[1 + ξ(λ)]2.

We integrate now in ÕS,Sγ \ ÕS,Sγ−Sβ , use that g, |∇g|, vR,L, and ξ are bounded, the
definition of ξ, and the gradient bound (3.2) for vR,L, and we recall that ∇g ≡ 0 in O ∩
{(s− t)/

√
2 > 1} × (0, Sγ), to obtain∫
ÕS,Sγ \ÕS,Sγ−Sβ

λ1−2s|∇w(x, λ)|2 ≤ C
∫
OS

∫ Sγ

Sγ−Sβ
λ1−2s|ξ′(λ)|2dλdx

+C

∫
OS

∫ Sγ

Sγ−Sβ

λ1−2s

λ2
dλdx+ CS2m−1+2γ(1−s)

≤ C

 1(
log Sγ

Sγ−Sβ

)2 + 1

∫
OS

∫ Sγ

Sγ−Sβ
λ−1−2sdλdx+ CS2m−1+2γ(1−s)

≤ CS2m

[
1

(− log (1− Sβ−γ))
2 + 1

] [
1

S2sγ − S2sβ
− 1

S2sγ

]
+ S2m−1+2γ(1−s)

≤ CS2m · S2(γ−β) · S−2sγ + CS2m−1+2γ(1−s)

≤ CS2m+2γ(1−s)−2β + CS2m−1+2γ(1−s). (3.8)

Combining (3.5), (3.7) and (3.8), we get

EÕS,Sγ (w) ≤ C(S2m−1 + CS2m+2γ(1−s)−2β + CS2m−1+2γ(1−s)). (3.9)

Since, by hypothesis, γ and β = β(γ) satisfy 1/2 ≤ β < γ < 1
2(1−s) , then there exists

ε = ε(γ) > 0 such that

EÕS,Sγ (w) ≤ CS2m−ε.

Thus by minimality of vR,L, we get

EÕS,Sγ (vR,L) ≤ CS2m−ε.

We now let R and L = Rγ tend to infinity to obtain

EÕS,Sγ (v) ≤ CS2m−ε.

Making an odd reflection with respect to C, the previous bound leads to the energy estimate

ECS,Sγ (v) ≤ CS2m−ε.
9



This last estimate implies that v cannot be identically 0. Indeed v ≡ 0 would imply

cmG(0)S2m = ECS,Sγ (v) ≤ CS2m−ε,

which is a contradiction for S large.
We prove now the last part of the statement, on the stability of saddle-shaped solutions

under perturbations vanishing on C × (0,+∞).
Since f(0) = 0, concavity leads to f ′(w) ≤ f(w)/w for all real numbers w ∈ (0, 1). Hence

we have {
−div(λ1−2s∇v) = 0 in Õ
− lim
λ→0

λ1−2s∂λv ≥ f ′(v)v on O × {0}.

Following a simple argument (see the proof of Proposition 4.2 of [1] and the proof of
Theorem 1.6 in [19]), we multiply the equation −div(λ1−2s∇v) = 0 by ξ2/v, where ξ ∈
C1(R2m+1

+ ) has compact support in Õ ∪ ∂0Õ, integrate by parts in Õ, and use Cauchy-
Schwarz inequality to get:

0 =

∫ +∞

0

∫
O
−div(λ1−2s∇v)

ξ2

v
=

∫ +∞

0

∫
O
λ1−2s∇v · ∇ξ 2ξ

v

−
∫ +∞

0

∫
O
λ1−2s|∇v|2 ξ

2

v2
+

∫
O
λ1−2s ξ

2

v

∂v

∂λ

≤
∫ +∞

0

∫
O
λ1−2s|∇ξ|2 −

∫
O
f ′(v)ξ2 = Qv(ξ).

By an approximation argument, the same holds for all ξ ∈ C1 with compact support in

Õ and vanishing on C × R+. Finally, by odd symmetry with respect to C × R+, we deduce

that Qv(ξ) ≥ 0 for any C1 functions ξ with compact support in R2m+1
+ and vanishing

on C × R+. �

4. Fractional Laplacians on domains and maximum principles

In this section we introduce the operator As, which is a fractional power of the Laplacian
on a domain Ω ⊂ Rn with 0-Dirichlet boundary condition.

Let u be a function defined on Ω, where Ω is a sufficiently regular (say Lipschitz) domain
of Rn. Following [5, 37], we can consider the s-harmonic extension v of u in the cylinder
Ω = Ω× (0,∞) which vanishes on the all lateral boundary ∂Ω× (0,∞), i.e the solution of
the problem 

div(λ1−2s∇v) = 0 in Ω× (0,∞)

v = 0 on ∂Ω× (0,∞)

v = u on Ω× {y = 0}.
(4.1)

We can define

Asu(x) = − 1

cα
lim
λ→0

λ1−2s∂λv(x, λ),

where

cs =
21−2sΓ(1− s)

Γ(s)
. (4.2)

Since, as before, the constant cs will not be important for our purposes, we will omit it in
the sequel.
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In [5, 37] bounded domain Ω were considered. For our porpuse Ω is not necessarily
bounded (later we will consider Ω = O) and we observe that the definition of As as the
(weighted) Dirichlet to Neumann operator can be given also for unbounded domains.

With this definition in mind, we will study the problem
Asu = f(u) in Ω

u = 0 on ∂Ω

u > 0 in Ω

(4.3)

by studing the corresponding local problem
div(λ1−2s∇v) = 0 in Ω× (0,∞)

v = 0 on ∂Ω× (0,∞)

u > 0 in Ω× (0,∞)

− limλ→0 λ
1−2s∂λv = f(v) on ∂Ω× {0}.

(4.4)

We recall now an existence result for layer solutions in the all R for the one-dimensional
problem

(−∂xx)su = f(u) in R. (4.5)

In Theorem 2.4 in [13], Cabré and Sire established that under our assumption on the
nonlinearity f (see (2.5), (2.6), (2.7)), there exists a monotone solution of (4.5) going from
−1 to 1. This kind of solutions are usually called layers. Moreover, they are unique up to
translations.

In the sequel we will call u0 the layer solution of (4.5) which vanish at 0, and v0 its
s-harmonic extension in R2

+ .
The following Proposition is the analogue of Proposition 1.8 in [19] and it provides a

supersolution for the extension problem (4.4) in O × (0,∞). We remind that |s− t|/
√

2 is
the distance to the Simons cone.

Proposition 4.1. Let f satisfy hypothesis (2.5), (2.6), (2.7). Let u0 be the layer solution,
vanishing at the origin, of problem (1.1) in R and let v0 be its s-harmonic extension in R2

+.

Then, the function v0

(
s− t√

2
, λ

)
satisfies{

div(λ1−2s∇v0) ≥ 0 in Õ
− limλ→0 λ

1−2s∂λv0 ≥ f(v0) on O × {0}.
(4.6)

Proof. The proof is the same as the proof of Proposition 3.3 in [19]. It is enough to write
problem (4.6) in the (s, t, λ) variables:

vss + vtt + vλλ + (m− 1)
(
vs
s + vt

t

)
+ 1−2s

λ vλ = 0 in Õ
v = 0 on C × [0,∞)

v > 0 in Õ
− limλ→0 λ

1−2s∂λv = f(v) on O × {0}.

A direct computations shows that v0((s− t)/
√

2, λ) is a supersolution in the set {(s, t, λ) :
s > t > 0}. As in [19], a cut-off argument implies that v0((s− t)/

√
2, λ) is a supersolution

in all of Õ in dimensions 2m+ 1 ≥ 5. In dimension 2m+ 1 = 3, the same holds true, since
the outer flux −∂tv0((s− t)/

√
2, λ) is positive. �
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We have the following

Corollary 4.2. Let f satisfy hypothesis (2.5), (2.6), (2.7). Let v0 be as above and assume
K ≥ 1.

Then, the function min{Kv0((s − t)/
√

2, λ), 1} is a supersolution of problem (4.4) with
Ω = O = {s > t}.

In particular min{Ku0((s− t)/
√

2), 1} is a supersolution of problem (4.3) with Ω = O =
{s > t}.

Proof. To prove the assertion it is enough to prove that Kv0((s−t)/
√

2, λ) is a supersolution

in the set {(x, λ) ∈ Õ : Kv0(x, λ) < 1}. This follows by the assumption on the nolinearity
f . Indeed (see Remark 3.4 in [19]) we have that f(ρ)/ρ is non-increasing in (0, 1) and hence

−∂λ(Kv0(z, 0)) = Kf(v0(z, 0)) ≥ f(Kv0(z, 0)) if Kv0(z, 0) < 1.

This implies that

− lim
λ→0

λ1−2s∂λ(Kv0(z, 0)) = Kf(v0(z, 0)) ≥ f(Kv0(z, 0)) on {(x, 0) ∈ Õ : Kv0(z, 0) < 1},

which concludes the proof of the Corollary. �

We want now to introduce an operator, that we will call AsΩ,ϕ acting as As on functions
u defined in a domain Ω, but satisfying the Dirichlet boundary condition u = ϕ on ∂Ω.
Following [19], Section 4, we consider the s-harmonic extension v of u in the cylinder
Ω × (0,+∞) which agrees with ϕ on all the lateral boundary ∂Ω × (0,∞) and we define
AsΩ,ϕ to be

AsΩ,ϕ = − lim
λ→0

λ1−2s∂λv|Ω×{0}.

When ϕ = 0, AsΩ,ϕ coincides with the operator As introduced in the beginning of this
section.

Hence, the nonlocal problem {
AsΩ,ϕu = f(u) in Ω

u = ϕ on ∂Ω,

is reformulated in the local problem,
−div(λ1−2s∇v) = 0 in Ω× (0,∞)

v(x, λ) = ϕ(x) on ∂Ω× (0,∞)

− limλ→0 λ
1−2s∂λv = f(v) on Ω× {0}.

(4.7)

In the sequel, we will show that the operator AsΩ,ϕ satisfies weak and strong maximum
principles. In order to do that, we recall the following Lemma which gives an explicit
expression for a solution to the ordinary differential equation

ϕ′′ +
1− 2s

λ
ϕ′ − ϕ = 0,

in terms of Bessel’s functions (see e.g. [3], Lemma 2.2 and [20], Sect. 4).

Lemma 4.3 (Lemma 2.2 in [3]). The solution of the ordinary differential equation

ϕ′′ +
1− 2s

λ
ϕ′ − ϕ = 0 (4.8)
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may be written as ϕ(λ) = λsψ(λ), where ψ solves the well known Bessel equation

λ2ψ′′ + λψ′ − (λ2 + s2)ψ = 0. (4.9)

In addition (4.9) has two linearly independent solutions, Is, Zs, which are the modified
Bessel functions; their asymptotic behaviour is given precisely by

Is(λ) ∼ 1

Γ(s+ 1)

(
λ

2

)s(
1 +

λ2

4(s+ 1)
+

λ4

32(s+ 1)(s+ 2)
+ ...

)
,

Zs(λ) ∼ Γ(s)

2

(
2

λ

)s(
1 +

λ2

4(1− s)
+

λ4

32(1− s)(2− s)
+ ...

)
+

+
Γ(−s)

2s

(
λ

2

)s(
1 +

λ2

4(s+ 1)
+

λ4

32(s+ 1)(s+ 2)
+ ...

)
, (4.10)

for y → 0+, s /∈ Z. And when λ→ +∞,

Is(λ) ∼ 1√
2πλ

eλ
(

1− 4s2 − 1

8λ
+

(4λ2 − 1)(4λ2 − 9)

2!(8λ)2
+ ...

)
,

Zs(λ) ∼
√

π

2λ
e−λ

(
1− 4s2 − 1

8λ
+

(4λ2 − 1)(4λ2 − 9)

2!(8λ)2
+ ...

)
. (4.11)

In the sequel, we will use the solution given in Lemma 4.3 above which grows exponentially
as λ→∞. Up to a normalization constant chosen in such a way that ϕ(0) = 1, we set

ϕ(λ) := λsIs(λ). (4.12)

We observe that if ϕ satisfies (4.8), then the function ϕµ(λ) := ϕ(
√
µλ) satisfies

∂λ(λ1−2s∂λϕµ) = λ1−2sµϕµ.

Finally, we stress that

ϕ(λ) ∼ λs−1/2eλ as λ→∞. (4.13)

We can now give the following:

Lemma 4.4. Let Ω̃ = Ω× R+ be a cylinder in Rn+1
+ , where Ω ⊂ Rn is a bounded domain.

Suppose that v ∈ C2(Ω̃) ∩ C(Ω̃) is bounded and satisfies

div(λ1−2s∇v) = 0 in Ω̃. (4.14)

Then,
inf
Ω̃
v = inf

∂Ω̃
v.

Proof. Substracting a constant from v, we may assume that v is nonnegative on ∂Ω̃ and we

need to show v ≥ 0 in Ω̃.
We want to construct a strictly positive function ψ, which is still a solution to (4.14) and

which goes to infinity as |(x, λ)| → ∞.
First, let BR be a ball of radius R in Rn which containes Ω (we recall that Ω is bounded).

Let µR and φR be, respectively, the first eigenvalue and the corresponding eigenfunction
of the Laplacian −∆ in BR with 0−Dirichlet boundary condition on ∂BR. Let ϕµR(λ) =
ϕ(
√
µRλ), where ϕ is the solution of (4.8) given in Lemma 4.3, which tends to∞ as λ→∞.

We define the function ψ : BR × R+ → R as follows

ψ(x, λ) = φR(x)ϕµR(λ).
13



Then the restriction of ψ in Ω̃ is a strictly positive s-harmonic function.
Moreover, since φR is bounded, we have that

lim
|(x,λ)|→+∞

ψ(x, λ) = lim
λ→+∞

ψ(x, λ) = +∞. (4.15)

We define now the function w = v/ψ. Clearly w ≥ 0 in Ω̃.

By an easy computation, we have that w satisfies w ≥ 0 on ∂Ω̃ and

div(λ1−2s∇w) =
1

ψ
div(λ1−2s∇v)− v

ψ2
div(λ1−2s∇ψ)− 2λ1−2s∇ψ

ψ
·
(
∇v
ψ
− ∇ψ

ψ2
v

)
= −2λ1−2s∇ψ

ψ
· ∇w.

In addition, by (4.15), w(x, λ) → 0 as |(x, λ)| → +∞ and thus, by the strong maximum
principle (applied, by a contradiction argument, to a possible negative minimum) w ≥ 0 in

Ω̃, which implies v ≥ 0 in Ω̃, since w has the same sign of v. �

As a consequence of the previous result, we can deduce the following lemmas (which are
the analogous, respectively, of Lemma 4.2, Corollary 4.3, and Lemma 4.4 in [19]).

Lemma 4.5. Assume that u ∈ C2(Ω) ∩ C(Ω) satisfies{
AsΩ,ϕu+ c(x)u ≥ 0 in Ω,

u = ϕ on ∂Ω,

where Ω is a bounded domain in Rn and c(x) ≥ 0 in Ω. Suppose that ϕ ≥ 0 on ∂Ω. Then
u ≥ 0 in Ω.

Proof. The proof follows exactly the proof of Lemma 4.2 in [19]. For the sake of complete-
ness, we recall it here.

Consider the s-harmonic extension v of u in Ω̃ = Ω×(0,+∞) with Dirichlet data v(x, λ) =
ϕ(x) on the lateral boundary ∂Ω× (0,+∞) (as in the definition of the operator AsΩ,ϕ). We

prove that v ≥ 0 in Ω̃, then in particular u ≥ 0 in Ω.
Suppose by contradiction that v is negative somewhere in Ω×R+. Since v is s-harmonic,

Lemma 4.4 implies that the inf
Ω̃
v < 0 will be achieved at some point (x0, 0) ∈ Ω × {0}.

Thus, we have

inf
Ω̃
v = v(x0, 0) < 0.

By Hopf’s lemma,

vλ(x0, 0) > 0.

It follows

−λ1−2svλ(x0, 0) = AsΩ,ϕv(x0, 0) < 0.

Therefore, since c ≥ 0,

AsΩ,ϕv(x0, 0) + c(x0)v(x0, 0) < 0.

This is a contradiction with the hypothesis AsΩ,ϕu+ c(x)u ≥ 0. �

As a corollary, we deduce
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Corollary 4.6. Let Ω be a bounded domain in Rn. Suppose that u1 and u2 are two bounded
functions, u1, u2 ∈ C2(Ω) ∩ C(Ω), which satisfy{

AsΩ,ϕu1 ≤ AsΩ,ϕu2 in Ω

u1 = u2 = ϕ on ∂Ω.

Then, u1 ≤ u2 in Ω.

Finally we have the following strong maximum principle, whose proof is similar to the
one of Lemma (4.5) above and we omit the details here (see [19], proof of Lemma 4.4).

Lemma 4.7. Assume that u ∈ C2(Ω) ∩ C(Ω) satisfies
AsΩ,ϕu+ c(x)u ≥ 0 in Ω,

u ≥ 0 in Ω,
u = ϕ on ∂Ω,

where Ω is a smooth bounded domain in Rn and c ∈ L∞(Ω). Suppose ϕ ≥ 0 on ∂Ω.
Then, either u > 0 in Ω, or u ≡ 0 in Ω.

5. Monotonicity properties and asymptotic behaviour

We start by introducing the new variables (y, z) ∈ Rm × Rm as follows:
y =

s+ t√
2

z =
s− t√

2
.

(5.1)

Note that |z| ≤ y and that we may write the Simons cone as C = {z = 0}. We observe
that problem (2.8), written in these new variables, becomesvyy + vzz + vλλ +

2(m− 1)

y2 − z2
(yvy − zvz) +

1− 2s

λ
vλ = 0 in R2m+1

+

−λ1−2s∂λv = f(v) on ∂R2m+1
+ .

The first result of this section concerns existence and monotonicity properties of a max-
imal saddle solution.

Proposition 5.1. Let f satisfy conditions (2.5), (2.6), and (2.7).
Then, there exists a saddle solution u of (−∆)su = f(u) in R2m, with |u| < 1, which is

maximal in the following sense. For every solution u of (−∆)su = f(u) in R2m, vanishing
on the Simons cone and such that u has the same sign as s− t, we have

0 < u ≤ u in O.
As a consequence, we also have

0 ≤ |u| ≤ |u| in R2m.

In addition, if v is the harmonic extension of u in R2m+1
+ , then v satisfies:

(a) ∂sv ≥ 0 in R2m+1
+ .

(b) ∂tv ≤ 0 in R2m+1
+ .

(c) ∂zv > 0 in R2m+1
+ \ {0};

(d) ∂yv > 0 in {s > t} × [0,+∞).
15



As a consequence, for every direction ∂η = α∂y−β∂t, with α and β nonnegative constants,
∂ηv > 0 in {s > t > 0} × [0,+∞).

This result is the analogue of Theorem 1.7 in [19]. The proof, which follows exactly the
one in [19], uses two main ingredients: the maximum principles for the fractional Laplacian
in bounded domains with Dirichlet boundary condition established in the previous section,
and an upper barrier for our saddle solution, that we construct here below.

Let, as before, v be the s-harmonic extension of a saddle solution u in the half-space
R2m+1

+ . The regularity results established in Proposition 4.6 of [12] give a uniform upper

bound for |∇xv| (where ∇x denotes the derivatives in the horizontal variable x ∈ R2m).
Then, since v = 0 on C ×R+ = {z = 0}×R+, there exists a constant C, depending only on
n, ||u||∞, and ||f ||C1 , such that

|v(x, λ)| = |v(y, z, λ)| ≤ C|z|, for every (x, λ) ∈ R2m+1
+ .

In particular, we have that |u(x)| = |v(x, 0)| ≤ C|z| for every x ∈ R2m.
Using the properties of the one-dimensional layer solution u0, we can see that there exists

a real number K ≥ 1 such that

min{1, C|z|} ≤ min{1,K|u0(z)|} for every z.

Indeed it is enough to choose

K ≥ max{C/u′0(0), 1/u0(C−1)}, (5.2)

which is possible since the quantities u′0(0) and u0(C−1) are strictly positive.

Choosing K as in (5.2), then the s-harmonic extension v in R2m+1
+ of every saddle solution

u of (1.1) satisfies

|v(x, λ)| ≤ min{1,K|u0(z)|} for every (x, λ) ∈ R2m+1
+ . (5.3)

We recall that in Corollary 4.2, we have seen that min{1,K|u0(z)|} is a supersolution for
problem 4.3 in O.

We set

ub(z) := min{1,K|u0(z)|}, (5.4)

where K satisfies (5.2). Note that ub = 0 on C.
Sketch of the Proof of Proposition 5.1. Since the proof of Proposition 5.1 is exactly the
same as the one of Theorem 1.7 in [19] (once we have maximum principles for the operator
AsΩ,ϕ and the upper barrier ub(z) for u), we refer to [19], Sect. 5 for the details. We give
here just the main idea of the proof, which can be sketched as follows:

• First, we establish existence of a maximal positive solution uR, depending only on
s and t, of AsTR,ub = f(u) in the bounded set TR defined as TR = {x ∈ R2m : 0 <

t < s < R} (note that TR ⊃ OR = O ∩ BR) with Dirichlet boundary condition
ub, as defined in (5.4). This is exactly the analogue of Lemma 5.1 in [19]. The
proof follows a quite standard argument: we construct a non inceasing sequence
of solutions to linear problems involving AsTR,ub ; this is done by an iterative use of

the maximum principle (Lemma 4.5 and Corollary 4.6) and using that the function
min{1,K|u0(z)|} is a supersolution.
• In a second step, we prove that the function uR, constructed in Step 1, satisfies the

monotonicity property of Proposition 5.1 (in particular ∂tuR ≤ 0 and ∂yuR ≥ 0).
These results are the analogue of Lemmas 5.2 and 5.3 in [19]. The proof consists in
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differentiating (in t and y, respectively) the equations satisfied by the s-harmonic
extension of uR in TR × (0,∞) and applying, again, maximum principles.
• In the last step, by standard elliptic estimates and a compactness argument (as

in the proof of the existence result Theorem 2.1) we let R → ∞ and we obtain a
maximal positive solution u in all O = {s > t}, satisfying the above mentioned
monotonicity properties. Finally, we extend u to all R2m by odd reflection with
respect to the Simons cone C.

In the second result of this Section we establish the asymptotic behaviour of a saddle
solution as |x| → ∞ (the corresping result for s = 1/2 is contanied in Theorem 1.9 in [19]).

Proposition 5.2. Let f satisfy conditions (2.5), (2.6), and (2.7), and let u be a bounded
solution of (−∆)su = f(u) in R2m such that u = 0 on C, u > 0 in O = {s > t} and u is
odd with respect to C.

Then, denoting U(x) := u0((s− t)/
√

2) = u0(z) we have,

u(x)− U(x)→ 0 and ∇u(x)−∇U(x)→ 0, (5.5)

uniformly as |x| → ∞. That is,

||u− U ||L∞(R2m\BR) + ||∇u−∇U ||L∞(R2m\BR) → 0 as R→∞. (5.6)

The proof of this result follows the one in [19] and it is based on the two following Liouville
type results for the extended problem in the half-space and in a quarter of space, which
have been proven via the method of moving planes in [29] and [37], respectively.

Theorem 5.3 ([29]). Let Rn+1
+ = {(x1, x2, · · · , xn, λ) ∈ Rn+1 | λ > 0} and let f be such

that f(u)/u
n+2s
n−2s is non-increasing. Assume that v is a solution of problem

div(λ1−2s∇v) = 0 in Rn+1
+ ,

−λ1−2s∂λv = f(v) on {λ = 0},
v > 0 in Rn+1

+ .

(5.7)

Then v depends only on λ.
More precisely, there exist a ≥ 0 and b > 0 such that

v(x, λ) = v(λ) = aλ+ b and f(b) = a.

Remark 5.4. As already mentioned in the proof of Corollary 4.2, under our assumptions on

f , we have that f(u)/u is non-increasing in (0, 1) and hence so it is f(u)/u
n+2s
n−2s , since

f(u)

u
n+2s
n−2s

=
f(u)

u
· u1−n+2s

n−2s .

Hence, applying Theorem 5.3 above we deduce that if f satisfy (2.5), (2.6), (2.7), then
any bounded solution v of problem (5.7) is necessarely v ≡ 0 or v ≡ 1. Indeed, since f is
bistable, we have that f is odd, f(0) = f(±1) = 0, f > 0 in (0, 1) and f < 0 in (1,+∞).
Thus, the Liouville theorem above and the boundedness of v, imply that v(x, λ) = b with
f(b) = 0, that is v ≡ 0 or v ≡ 1. This fact will be used in the proof of Proposition 5.2.

The following theorem, proven in [37], gives an analog symmetry property but for solu-
tions in a quarter of space.
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Theorem 5.5 ([37]). Let Rn+1
++ = {(x1, x2, · · · , xn, λ) ∈ Rn+1 | xn > 0, λ > 0} and let f be

such that f(u)/u
n+2s
n−2s is non-increasing. Assume that v is a solution of problem

−div(λ1−2s∇v)v = 0 in Rn+1
++ ,

−∂λv = f(v) on {xn > 0, λ = 0},
v = 0 on {xn = 0, λ ≥ 0},
v > 0 in Rn+1

++ ,

Then v depends only on xn and λ.

We give now a
Sketch of the Proof of Proposition 5.2. The proof of Proposition 5.2 follows the one of the
analogue result contained in [19]. The proof uses a compactness argument as follows: we
assume by contradiction that there exists ε > 0 and a sequence {xk} with

|xk| → ∞ and |v(xk, λ)− V (xk, λ)|+ |∇v(xk, λ)−∇V (xk, λ)| ≥ ε. (5.8)

By continuity we may move slightly xk and assume xk 6∈ C for all k. Moreover, up to a
subsequence (which we still denote by {xk}), either {xk} ⊂ {s > t} or {xk} ⊂ {s < t}. By
the symmetries of the problem we may assume {xk} ⊂ {s > t} = O.

We distinguish the two cases: { dist(xk, C) = dk} unbounded or bounded.
In the first case, we show that, up to a subsequence, a suitable translation of the solutions

v(xk) converges to a solution of the semilienar Neumann problem in the half-space given
in the statement of Theorem 5.3. Using Theorem 5.3 and the stability of vk we get a
contradiction. Similarly, in the second case ({ dist(xk, C) = dk} bounded) we reach a
contradiction using the second Liouville type result in a quarter of space.

6. Instability in low dimensions

In this Section we give the proof of our instability result Theorem 2.2, which follows the
proof of the analogue result Theorem 1.10 in [19].

We start by observing the following easy fact. Assume that the nonlinearity f satisfies
conditions (2.5), (2.6), (2.7) and that v is a bounded solution of (2.1) in Rn+1

+ . If w is a

function such that |v| ≤ |w| ≤ 1 in Rn+1
+ , Then,

Qv(ξ) ≤ Qw(ξ) for all ξ ∈ C∞0 (Rn+1
+ ),

where the second variation of the energy functional Qw is given by

Qw(ξ) =

∫
Rn+1
+

λ1−2s|∇ξ|2dxdλ−
∫
∂Rn+1

+

f ′(w)ξ2dx. (6.1)

In particular, if there exists a function ξ ∈ C∞0 (Rn+1
+ ) such that Qw(ξ) < 0, then v is

unstable. This follows by the easy observation that, since f ′ is decreasing in (0, 1), we have
that f ′(|v|) ≥ f ′(|w|) in Rn+1

+ . Moreover, using that f ′ is even, we deduce that f ′(v) ≥ f ′(w)

in Rn+1
+ , which yelds (6.1).

The main ingredients in the proof of Theorem 2.2 are the following. First, by the obser-
vation above, in order to prove that a saddle solution v is unstable, it is enough to prove
that the maximal solution v (constructed in Section 5) is unstable. To do that we provide
an explicit test function ξ for which Qv(ξ) ≤ 0. The idea is to choose ξ to be a truncation
(in the variables y and λ) of the function vz. To conclude the proof of instability, we will
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use crucially: the monotonicity properties established in Proposition 5.1, the asymptotic
behaviour given in Proposition 5.2, and the optimal constant for the Hardy inequality (6.7).

We can give now the

Proof of Theorem 2.2. As said above, it is enough to show that the maximal solution v is
unstable in dimension 2m = 4 and 2m = 6.

We recall that the second variation of the energy is given by the expression

Qv(ξ) =

∫
R2m+1
+

λ1−2s|∇ξ|2dxdλ−
∫
∂R2m+1

+

f ′(v)ξ2dx,

for every test function ξ.
We consider now a test function ξ of the form ξ = ξ(y, z, λ) = η(y, z, λ)ψ(y, z, λ), with

η and ψ Lipschitz functions with compact support in y ∈ [0,+∞) and λ ∈ [0,+∞). The
expression for Qv becomes,

Qv(ξ) =

∫ +∞

0
λ1−2s

∫
R2m

(
|∇η|2ψ2 + η2|∇ψ|2 + 2ηψ∇η · ∇ψ

)
dxdλ

−
∫
R2m

f ′(v)η2ψ2dx.

Observing that 2ηψ∇η · ∇ψ = ψ∇(η2) · ∇ψ and integrating by parts, we obtain

Qv(ξ) =

∫ +∞

0

∫
R2m

(
λ1−2s|∇η|2ψ2 − η2ψdiv(λ1−2s∇ψ)

)
dxdλ

−
∫
R2m

η2ψ(λ1−2s∂λψ + f ′(v)ψ)dx.

We recall that problem (2.1) (satisfied by v) written in the (y, z, λ) variables, readsvyy + vzz + vλλ +
2(m− 1)

y2 − z2
(yvy − zvz) +

1− 2s

λ
vλ = 0 in R2m+1

+

−λ1−2s∂λv = f(v) on ∂R2m+1
+ .

(6.2)

Differentiating the above problem with respect to z, we have∆vz −
2(m− 1)

y2 − z2
vz +

4(m− 1)z

(y2 − z2)2
(yvy − zvz) +

1− 2s

λ
vλz = 0 in R2m+1

+

−λ1−2s∂λvz = f ′(v)vz on ∂R2m+1
+ .

(6.3)

We choose now ψ(y, z, λ) = vz(y, z, λ) and we use the equations satisfied by vz to get

Qv(ξ) =

∫ +∞

0
λ1−2s

∫
R2m

(
|∇η|2v2

z−

−η2
{2(m− 1)(y2 + z2)

(y2 − z2)2
v2
z −

4(m− 1)zy

(y2 − z2)2
vyvz

})
dxdλ.

Next we change coordinates to (y, z, λ) and we have, for some positive constant cm,

cmQv(ξ) =

∫ +∞

0
λ1−2s

∫
{−y<z<y}

(y2 − z2)m−1
(
|∇η|2v2

z−

−η2
{2(m− 1)(y2 + z2)

(y2 − z2)2
v2
z −

4(m− 1)zy

(y2 − z2)2
vyvz

})
dydzdλ.
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Now we take η(y, z, λ) = η1(y)η2(λ), where η1 and η2 are smooth functions with compact
support in [0,+∞). Moreover we require that η2(λ) ≡ 1 for λ < N and η2(λ) ≡ 0 for
λ > N + 1, where N is a large positive number that we will choose later. For a > 1, a
constant that we will make tend to infinity, let φ = φ(ρ) be a Lipschitz function of ρ := y/a
with compact support [ρ1, ρ2] ⊂ [0,+∞). Let us denote by

ηa1(y) := φ(y/a) and

ξa(y, z, λ) = ηa1(y)η2(λ)vz(y, z, λ) = φ(y/a)η2(λ)vz(y, z, λ).

The change y = aρ, dy = adρ yields,

cmQv(ξa) = a2m−3

∫ N+1

0
λ1−2s

∫ ρ2

ρ1

∫ aρ

−aρ
ρ2(m−1)

(
1− z2

a2ρ2

)m−1 (
φ2
ρη

2
2(λ)v2

z

+a2φ2(ρ)(η′2)2v2
z − φ2η2

2

{2(m− 1)(1 + z2

a2ρ2
)

ρ2(1− z2

a2ρ2
)2

v2
z −

4(m− 1)z

aρ3(1− z2

a2ρ2
)2
vyvz

})
dzdρ. (6.4)

We divide now by a2m−3N2−2s and use that
(

1− z2

a2ρ2

)2
≤ 1 and 1 + z2

a2ρ2
≥ 1, to get

cmQu(ξa)

a2m−3N2−2s
≤

≤ 1

N2−2s

∫ N+1

0
λ1−2s

∫ ρ2

ρ1

∫ aρ

−aρ
ρ2(m−1)η2

2v
2
z(aρ, z, λ)

(
φ2
ρ −

2(m− 1)

ρ2
φ2

)
dzdρdλ

+
a2

N2−2s

∫ N+1

N
λ1−2s

∫ ρ2

ρ1

∫ aρ

−aρ
ρ2(m−1)φ2(η′2)2v2

zdzdρdλ

+
1

N2−2s

∫ N+1

0
λ1−2s

∫ ρ2

ρ1

∫ aρ

−aρ

4(m− 1)zρ2m−5η2
2φ

2(ρ)

a
vy(aρ, z, λ)vz(aρ, z, λ)dzdρdλ.

= I1 + I2 + I3.

We estimate the three terms above separately.
We start by I3. We use the asymptotic behaviour established in Proposition 5.2, and in

particular that vy(aρ, z, λ)→ 0 uniformly, for all ρ ∈ [ρ1, ρ2] = suppφ, as a tends to infinity.
Given ε > 0, for a sufficiently large, |vy(aρ, z)| ≤ ε. Moreover, by Theorem 5.1 we have that
vz ≥ 0. All these facts, together with the fact that φ is bounded, implies that for a large
we have

I3 ≤
∣∣∣∣ 1

N2−2s

∫ N+1

0
λ1−2sη2

2

∫
4(m− 1)zρ2m−5φ2(ρ)

a
vyvzdρdzdλ

∣∣∣∣
≤ 1

N2−2s

∫ N+1

0
λ1−2sη2

2

∫ ∣∣∣∣4(m− 1)zρ2m−5φ2(ρ)

a

∣∣∣∣ |vy|vzdρdzdλ
≤ 1

N2−2s

∫ N+1

0
λ1−2sη2

2

∫
4(m− 1)ρ2m−4φ2(ρ)|vy|vzdρdzdλ

≤ Cε

N2−2s

∫ N+1

0
λ1−2sη2

2dλ

∫ ρ2

ρ1

ρ2m−4dρ

∫ aρ

−aρ
vzdz

=
Cε

N2−2s

∫ N+1

0
λ1−2sη2

2

∫ ρ2

ρ1

(v(aρ, aρ, λ)− v(aρ,−aρ, λ)) dρdλ

≤ Cε,
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where C are different constants depending on ρ1 and ρ2. Hence, as a tends to infinity, this
integral tends to zero.

We consider now I2. Let N be such that N > a4. With this choice of N , we have

I2 =
a2

N2−2s

∫ N+1

N
λ1−2s

∫ ρ2

ρ1

∫ aρ

−aρ
ρ2(m−1)φ2(η′2)2v2

z ≤

≤ C a3

N2−2s
sup v2

z

∫ N+1

N
λ1−2s ≤ C a3

N2−2s
sup v2

z[(N + 1)2−2s −N2−2s]

≤ C sup v2
z

a3

N2−2s
N1−2s ≤ C sup v2

z

1

a
.

Thus, also I2 tends to 0 as a→∞.
Finally, we consider I1. We have that, again by Proposition 5.2, vz(aρ, z, λ) converges to

∂zv0(z, λ) which is a bounded positive integrable function. We write

I1 =
1

N2−2s

∫ N+1

0
λ1−2sη2

2

∫ ρ2

ρ1

∫ aρ

−aρ
ρ2(m−1)v2

z(aρ, z, λ)

(
φ2
ρ −

2(m− 1)

ρ2
φ2

)
dρdzdλ =

=
1

N2−2s

∫ N+1

0
λ1−2sη2

2

∫ ρ2

ρ1

∫ aρ

−aρ
(∂zv0)2ρ2(m−1)

(
φ2
ρ −

2(m− 1)

ρ2
φ2

)
dρdzdλ

+
1

N2−2s

∫ N+1

0
λ1−2sη2

2

∫ ρ2

ρ1

∫ aρ

−aρ
ρ2(m−1)(vz(aρ, z, λ)− ∂zv0(z, λ))(vz(aρ, z, λ)

+∂zv0(z, λ))

(
φ2
ρ −

2(m− 1)

ρ2
φ2

)
dρdzdλ.

For a large, |vz(aρ, z, λ) − ∂zv0(z, λ)| ≤ ε in [ρ1, ρ2]. Moreover, vz(aρ, z, λ) + ∂zv0(z, λ) is
positive and it is integrable in z since it is the derivative with respect to z of a bounded func-
tion. Thus, since φ = φ(ρ) is smooth with compact support, the second integral converges
to zero as a tends to infinity. Therefore, letting a tend to infinity, we obtain

lim sup
a→∞

cmQv(ξa)

a2m−3N2−2s
≤ (6.5)

≤ lim sup
a→∞

1

N2−2s

(∫ N+1

0
λ1−2s dλη2

2

∫ +∞

0
(∂zv0)2(z) dz

)∫
ρ2(m−1)

(
φ2
ρ −

2(m− 1)

ρ2
φ2

)
dρ

≤ C
∫ +∞

0
(∂zv0)2(z)dz

∫
ρ2(m−1)

(
φ2
ρ −

2(m− 1)

ρ2
φ2

)
dρ.

The conclusion of the proof is as in [19]. We show that when 2m = 4 and 2m = 6, there
exists a test function φ for which∫

ρ2(m−1)

(
φ2
ρ −

2(m− 1)

ρ2
φ2

)
dρ < 0, (6.6)

where we observe that the integral in ρ can be seen as an integral in R2m−1 of radial
functions φ = φ(|ζ|) = φ(ρ)

Comparing the constant 2(m − 1) with the optimal constant of the well known Hardy
inequality in R2m−1

(2m− 1− 2)2

4

∫
R2m−1

ϕ2

|ζ|2
dx ≤

∫
R2m−1

|∇ϕ|2dx, (6.7)
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we deduce that the integral in (6.6) is positive for all Lipschitz compactly supported func-
tions φ, if and only if

2(m− 1) ≤ (2m− 1− 2)2

4
.

Writing n = 2m, the above inequality holds if and only if

n2 − 10n+ 17 ≥ 0,

that is, n ≥ 8. This shows the instability of v in dimensions 2m = 4, 6 and concludes the
proof of Theorem 2.2.
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[11] X. Cabré, E. Cinti, and J. Serra, Stable nonlocal phase transitions, forthcoming.
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