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Abstract

We investigate the Dirichlet problem for multidimensional variational integrals with lin-
ear growth which is formulated in a generalized way in the space of functions of bounded
variation. We prove uniqueness of minimizers up to additive constants and deduce addi-
tional assertions about these constants and the possible (non-)attainment of the boundary
values. Moreover, we provide several related examples. In the case of the model integral

∫

Ω

√

1 + |∇w|2 dx for w : Rn ⊃ Ω → R
N

our results extend classical results from the scalar case N=1 — where the problem coincides
with the non-parametric least area problem — to the general vectorial setting N∈N.
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1 Introduction and statement of the main results

We consider multidimensional variational integrals

F [w] :=

∫

Ω

f(∇w) dx for w : Ω → R
N , (1.1)

where throughout this paper Ω is a non-empty, bounded, open, and connected1 subset of Rn

(n≥2) with Lipschitz boundary and f : RNn → [0,∞) is a given integrand which will be specified
below. We are interested in the minimization problem for F in Dirichlet classes, and in particular
in existence, uniqueness, and regularity of (generalized) minimizers. We stress thatN∈N denotes
an arbitrary natural number, and hence the problem is a vectorial one and is related to a system
of partial differential equations.

1.1 Graphs of least gradient

Postponing the treatment of general integrands f to Section 1.2 let us restrict the discussion to
the model integrals

Eλ[w] :=

∫

Ω

eλ(∇w) dx

with the density2

eλ(z) :=
√
λ2 + |z|2 ,

where λ≥0 is a fixed parameter. These integrals can be understood as a limit case of the
p-energies ∫

Ω

(λ2 + |∇w|2) p
2 dx , (1.2)

where p≥1 is another parameter. However, while for p>1 existence and uniqueness of minimizers
can be obtained in the Sobolev spaceW 1,p(Ω,RN ), in the case p=1 the application of the direct
method generally fails in the non-reflexive Sobolev space W 1,1(Ω,RN ) — due to its lack of
compactness properties. Existence results can rather be obtained in the space BV (Ω,RN) of
functions of bounded variation. Precisely, one fixes a Dirichlet class

D = u0 +W 1,1
0 (Ω,RN)

with u0 ∈W 1,1(Ω,RN ) and extends Eλ from D to BV (Ω,RN ) by letting

ED
λ [w] :=

∫

Ω

eλ(∇w) dx + |Dsw|(Ω) +
∫

∂Ω

|w − u0| dHn−1 for w ∈ BV (Ω,RN) , (1.3)

where Dw = ∇w · Ln + Dsw is the decomposition of the RNn-valued gradient measure Dw
into its absolutely continuous and its singular part with respect to the Lebesgue measure Ln.
Moreover, |Dsw|(Ω) denotes the variation of Dsw on Ω, Hn−1 the (n−1)-dimensional Hausdorff
measure on Rn, and the occurrence of w and u0 in the boundary integral is to be interpreted in
the sense of trace [40, 9] (see Section 2 for further details on terminology). The formula (1.3)
has been proposed in [43, 7] and adapts classical ideas from [49] and the BV -theory of area
minimizing hypersurfaces [27, 65, 45, 66]; compare the monographs [37, 46, 44, 6]. Obviously,
ED
λ [w] = Eλ[w] holds for w ∈ D and thus ED

λ is really an extension of Eλ. Moreover, building on

1The assumption that Ω be connected is just made in order to simplify some statements. Indeed, if Ω is
disconnected, our analysis works on the connected components of Ω.

2Throughout the article |z| denotes the Hilbert-Schmidt norm of the matrix z ∈ RNn, that is |z|2 :=∑N
α=1

∑n
i=1

(zαi )
2.
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results of [73] it was pointed out in [43] that ED
λ coincides with the extension by semicontinuity

in the tradition of Lebesgue & Serrin [56, 78, 79], satisfies the relation

inf
BV (Ω,RN )

ED
λ = inf

D
Eλ , (1.4)

and can be considered as the natural continuation of Eλ outside D. Thus, it is reasonable to
give the following definition of generalized minimizers:

Definition 1.1 (Generalized minimizer). A function u ∈ BV (Ω,RN ) is called a generalized
minimizer of Eλ in D if

ED
λ [u] ≤ ED

λ [w] for all w ∈ BV (Ω,RN) .

We write MD
λ for the set of generalized minimizers of Eλ in D.

Generalized minimizers can alternatively be characterized [43, 7, 46] as the strong L1-limits
of minimizing sequences for Eλ in D (see also Theorem 1.8). With this characterization at hand
the existence problem can easily be solved: In fact, by Rellich’s theorem in BV there exists at
least one generalized minimizer corresponding to each Dirichlet class D and hence the infimum
on the left-hand side of (1.4) is a minimum.

It should be noted that Dirichlet classes are not closed in BV (Ω,RN ) with respect to the
strong L1-topology (or the weak-∗-topology of BV ) and generalized minimizers do not neces-
sarily attain the boundary values u0. Thus, the boundary integral in (1.3) need not vanish for
generalized minimizers, and we get the following interpretation of this integral as a penalization
term: The non-attainment of the boundary values is not generally ruled out but will instead be
penalized by an increase of energy.

In the completely degenerate case λ=0 generalized minimizers are called functions of least
gradient and interesting results in the scalar case N=1 have been obtained; see for instance
[71, 82]. Here we will not further pursue this issue, but we will deal with the case3 λ>0. Still
in the scalar case N=1 we note that E1[w] represents the n-dimensional area of the graph of
w, and thus the problem is a very classical one, namely the non-parametric least area problem.
Its generalized minimizers are called area minimizing graphs or non-parametric area minimizing
hypersurfaces. They are some of the most studied analytical objects in the last century, and we
refer the reader to [64, 53, 25, 24, 80, 45, 66, 81] and to the monograph [46], where an exhaustive
list of additional references can be found.

In contrast, for N>1 the integral Eλ[w] is in general very different from the area of the
graph of w. In fact, the area integral4 involves all the minors of the gradient matrix while Eλ

just involves the modulus of this matrix, that is the first order minors. However, E√
n[w] is

the L1-norm of the gradient of the graph mapping x7→(x,w(x)) which motivates us to call the
generalized minimizers of E√

n graphs of least gradient. We will study uniqueness and regularity
of these objects which will turn out to be quite delicately linked. The authors are aware of only
two previous results concerning these topics in the vectorial setting. One result is the partial
regularity theorem of Anzellotti & Giaquinta [10] (see also [18]) which gives C1,α

loc -regularity on
an open subset of Ω with full Lebesgue measure. The other result, due to Bildhauer, concerns
everywhere gradient regularity, and since it is closely related to our approach, we restate it in
the present setting:

3Once λ is positive, its precise value is not important. Indeed, the problems corresponding to different positive
values of λ can be transformed into each other by multiplying all the functions under consideration with a positive
constant.

4The non-parametric area integral in higher codimension N>1 is non-convex with a delicate degeneration
structure. It behaves in many aspects different from Eλ and is related to several challenging and unsolved
problems. We refer to [44] for a detailed discussion, to [55] for counterexamples, and to [88, 1, 87, 86] for some
results, relying on methods from topology and the parametric setting of geometric measure theory [37].
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Theorem 1.2 (Bildhauer [15, 17]). Let λ>0 and suppose that there holds

either n = 2 or u0 ∈ L∞(Ω,RN ) . (1.5)

Then there exists a generalized minimizer u of Eλ in D which satisfies

u ∈W 1,1(Ω,RN ) and |∇u| log(1+|∇u|2) ∈ L1
loc(Ω) .

Turning to uniqueness the reader should note that ED
λ is convex but not strictly convex. More

precisely, for λ>0 the integrand eλ and the first term in (1.3) are strictly convex, but the other
two terms are merely convex. Thus, uniqueness of generalized minimizers is not immediate, and
there are two potential sources of non-uniqueness, namely the possible occurrence of singular
parts of the derivative and the possible non-attainment of the boundary values. In this paper
we will rule out the first source: We will prove that u ∈ W 1,1(Ω,RN ) holds for every generalized
minimizer u and not just that there exists a suitable one as stated in Theorem 1.2. Moreover,
we will remove the assumption (1.5). In this way we will establish the following theorem as a
particular case of our main results (see Theorem 1.10, Corollary 1.13, and Theorem 1.16 for the
general statements and Section 5 for the proofs):

Theorem 1.3 (Uniqueness up to constants). Let λ>0. Then the generalized minimizers of Eλ

in D are unique up to additive constants, that is for u, v ∈ MD
λ there exists a constant y ∈ R

N

such that u = v+y holds a. e. on Ω. Furthermore, the minimizers form a 1-parameter family,
and indeed MD

λ can be parametrized by a compact interval, precisely

MD
λ = {u+ ty : t ∈ [−1, 1]}

for some y ∈ RN and a particular generalized minimizer u.

We stress that in the generality of our setting one cannot expect to remove the second source
of non-uniqueness mentioned above and thus cannot improve Theorem 1.3 to full uniqueness,
not even in the case n=2, N=1 of two-dimensional area minimizing graphs. This is shown by
a classical example of Santi [74]; see also [46, Example 15.12], Section 3.3 and [11]. The next
theorem states that non-uniqueness happens only in quite particular situations and that Santi’s
scalar example is symptomatic even for the vectorial case.

Theorem 1.4 (Non-uniqueness and boundary behavior). Let λ>0 and suppose that generalized
minimizers of Eλ in D are not unique, that is MD

λ contains more than one element. Then for
every u ∈ MD

λ the jump u−u0 at the boundary takes values in the 1-dimensional subspace Ry
a. e. on ∂Ω. Moreover, ∂Ω can be decomposed into disjoint subsets (∂Ω)− and (∂Ω)+ with

Hn−1((∂Ω)−) = Hn−1((∂Ω)+) =
1

2
Hn−1(∂Ω) (1.6)

such that
u± Jy = u0 Hn−1-a. e. on (∂Ω)± (1.7)

for some function J : ∂Ω → R with5

inf
(∂Ω)−

J = inf
(∂Ω)+

J = 1 .

Here, y and u denote the constant and the particular minimizer introduced in the statement of
Theorem 1.3.

5The infima in Theorem 1.4 are essential infima with respect to Hn−1.
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Theorem 1.4 will be proved in Section 6 as a particular case of Theorem 1.17 and Remark 1.18
below.

Let us make a couple of related remarks. Primarily we mention that y is unique up to change
of sign and — having assumed non-uniqueness of minimizers — different from 0. Moreover, u is
uniquely determined. Secondly we point out that the situation described in the theorem cannot
occur and we must thus have full uniqueness if one of the following two assertions holds :

• The particular minimizer u (or some other minimizer apart from the extremal ones u+y
and u−y) attains the boundary values u0 on a set of positive Hn−1-measure;

• some minimizer attains the boundary values u0 on more than half the boundary.

We stress that at this point we have already obtained a quite accurate description of (non-)
uniqueness and (non-)attainment of the boundary values. In fact — apart from those already
ruled out — every combination of these phenomena may occur; compare Proposition 6.4 and
Remark 6.5.

At first glance one might wonder whether there is a counterpart of Theorem 1.4 for unique
minimizers, or in other words for y=0. While it is not clear what should be a reasonable analogon
of (1.7), one might at least hope that u−u0 still takes values in a 1-dimensional subspace. How-
ever, the following example shows that this is not true, and thus the non-uniqueness assumption
in Theorem 1.4 cannot be removed.

Theorem 1.5 (An example of non-attainment). For n=N=2 consider the annulus

Ω = {x ∈ R
2 : 1<|x|<2}

and the boundary datum u0 given by

u0(x) =

{
Mx for |x| = 1

0 for |x| = 2
,

where M ∈ R is a constant. Then there is a unique generalized minimizer u of E1 in D and
there holds

sup
Ω

|u| ≤ 2

1− log 2
.

In particular, for |M |> 2
1−log 2 the values of u−u0 on ∂Ω are not contained in any 1-dimensional

subspace of R2.

Theorem 1.5 is a refinement of a well-known example for area minimizing graphs and will
be established in Section 3.2.

1.2 Variational integrals with linear growth

In this subsection we generalize Theorem 1.3 and Theorem 1.4 and restate our results in the
setting of (1.1) with a general integrand f . As in Section 1.1 the focus is on the vectorial case
N>1, but nevertheless we believe that the general form of our results presented here is new and
interesting even in the scalar case N=1.

Of course, we have to impose growth, coercivity, convexity, and structure conditions on f .
To begin we just suppose that f : RNn → [0,∞) is convex and has linear growth in the sense of

γ|z| ≤ f(z) ≤ Γ(1 + |z|) for all z ∈ R
Nn(H1)

with positive constants Γ and γ. Then fixing a Dirichlet class

D = u0 +W 1,1
0 (Ω,RN)
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with u0 ∈W 1,1(Ω,RN ), we extend the integral F in (1.1) from D to BV (Ω,RN ) by letting

FD[w] :=

∫

Ω

f(∇w) dx +

∫

Ω

f∞
( dDsw

d|Dsw|
)
d|Dsw|+

∫

∂Ω

f∞((u0 − w) ⊗ νΩ) dHn−1 (1.8)

for w ∈ BV (Ω,RN ). This formula was introduced in [43, 7] (compare [8, 50] for a related notion
of BV -solutions of elliptic equations), νΩ denotes the outward unit normal vector to ∂Ω (which
exists Hn−1-a. e.), and

f∞(z) := lim
s→∞

f(sz)

s
for z ∈ R

Nn

defines the recession function of f which reflects the behavior of f near infinity (see Section 2
for further terminology).

We extend Definition 1.1:

Definition 1.6 (Generalized minimizer). Suppose that f is convex with (H1). A function
u ∈ BV (Ω,RN ) is called a generalized minimizer of F in D if

FD[u] ≤ FD[w] for all w ∈ BV (Ω,RN ) .

Definition 1.7 (Minimizing sequence). Suppose that f is convex with (H1). One says that a
sequence (uk)k∈N in D is a minimizing sequence for F in D if there holds

F [uk] −→
k→∞

inf
D
F .

Next we state a characterization of generalized minimizers as limits of minimizing sequences.
Basically, the result is well-known (compare for instance [43, 7, 46, 5, 6]) but it seems that a
precise proof which covers general integrands and Lipschitz domains has been written down only
recently in [19, 16].

Theorem 1.8 (Characterization of generalized minimizers). Suppose that f is convex with
(H1). Then u ∈ BV (Ω,RN ) is a generalized minimizer of F in D if and only if there exists a
minimizing sequence (uk)k∈N for F in D such that uk converges to u in L1(Ω,RN). Moreover,
one has

inf
BV (Ω,RN )

FD = inf
D
F . (1.9)

For convenience of the reader we outline a proof of Theorem 1.8 in Appendix A. By Rel-
lich’s theorem in BV every minimizing sequence for F in D has an L1-convergent subsequence.
Therefore, as an immediate consequence of Theorem 1.8 we get:

Corollary 1.9 (Existence of generalized minimizers). Suppose that f is convex with (H1). Then
there exists a generalized minimizer of F in D and hence the infimum on the left-hand side of
(1.9) is a minimum.

Now we state our main uniqueness result which will be proved in Section 5. It extends the
L logL-gradient regularity of [15] to all bounded minimizers, instead of only one, and gives in
particular uniqueness of bounded minimizers. The boundedness assumption will be justified
below.

Theorem 1.10 (Uniqueness of bounded generalized minimizers). Assume that f is a C2-
integrand which satisfies6 f(0)≤λ, (H1) and

γ(1 + |z|)−3|z̃|2 ≤ ∇2f(z)(z̃, z̃) ≤ Γ(1 + |z|)−1|z̃|2 for all z, z̃ ∈ R
Nn(H2)

with the constants γ and Γ from (H1). Then we have:

6The requirement f(0)≤λ is just imposed in order to record the dependence on f(0) precisely.
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• Regularity. Every generalized minimizer u ∈ BV (Ω,RN ) ∩ L∞(Ω,RN) of F satisfies

u ∈W 1,1(Ω,RN ) and |∇u| log(1+|∇u|2) ∈ L1
loc(Ω) .

Moreover, for every ball B2r(x0) ⊂ Ω there holds

∫

Br(x0)

|∇u| log(1+|∇u|2) dx ≤ C

(
λ+

1

r
sup

B2r(x0)

|u|
)∫

B2r(x0)

(1+|∇u|) dx

with a positive constant C depending only on n, N , γ, and Γ.

• Uniqueness. Whenever u, v ∈ BV (Ω,RN )∩L∞(Ω,RN ) are generalized minimizers of F
in D, then there exist a constant y ∈ RN such that u = v+y holds a. e. on Ω.

Let us mention that (H2) is a particular case of the µ-ellipticity condition

γ(1 + |z|)−µ|z̃|2 ≤ ∇2f(z)(z̃, z̃) ≤ Γ(1 + |z|)−1|z̃|2 for all z, z̃ ∈ R
Nn ,(H2µ)

where µ>1 is a parameter and γ and Γ are positive constants. This condition allows that the
dispersion (or ellipticity) ratio

Λf (z) :=
max|z̃|=1 ∇2f(z)(z̃, z̃)

min|z̃|=1 ∇2f(z)(z̃, z̃)
,

a crucial number for matters of regularity, may blow up, when z approaches infinity — which
means that the problem is a degenerate one. Very similar degeneration phenomena have been
studied in terms of Bernstein’s genre [13, 80] and in connection with (p, q)-growth conditions
[57, 58, 59, 72, 33, 20, 34, 35, 60, 76, 77] and the L logL-energy [38, 63, 36]. In all these cases
gradient regularity can still be obtained provided the blow-up is sufficiently slow. In particular,
following previous developments in the (p, q)-context Bildhauer & Fuchs [14, 21, 15, 16] proposed
a quite complete uniqueness and regularity theory for variational integrals with linear growth
and µ-ellipticity (H2µ) for µ<3 (partially imposing the stronger bound µ<n+2

n
; compare also

Marcellini & Papi [60]). The limit case µ=3, however, is of particular interest since it is just the
condition satisfied by the integrands eλ from Section 1.1 with λ>0 (in fact Λeλ(z) ≈ 1+|z|2).
While most of the theory fails in this case, some arguments have been adapted [15, 17, 16]
yielding, as a special case, Theorem 1.2. It should be noted that for µ>3 there is few hope for
regularity (compare [23] and Remark C.2), and thus Theorem 1.10 deals with a borderline case.

The arguments employed for uniqueness in the case µ<3 rely on everywhere C1-regularity
for (at least) one minimizer, and momentarily it seems quite hopeless to prove such a strong
regularity assertion in the limit case µ=3. Therefore, we rather base our proof of Theorem 1.10
on W 1,1-regularity for every minimizer. To this end we basically follow ideas from [15], but we
use Ekeland’s variational principle [30, 31, 32] to construct ‘nice’ minimizing sequences near a
given minimizer. This approach first appeared in the context of regularity in [61, 39, 2], but as
a novel feature we now apply the principle in the negative Sobolev space W−1,1. Moreover, we
employ a particular regularization procedure which is motivated by ideas of [26].

Next — as announced above — we will be concerned with the L∞-assumption. If the inte-
grand has a particular structure, then boundedness of minimizers (or even of certain minimizing
sequences) can be deduced from the boundedness of the boundary values by a maximum prin-
ciple; see for instance [29, 33, 15, 22]. For the sake of completeness we shall discuss relevant
versions of such principles in Appendix D. However, in the following we adopt a somewhat
different strategy and we derive local boundedness by Moser’s iteration technique [68, 69] as an
interior regularity property of minimizers. This method requires a different structure condition
but allows to remove the L∞-assumption in Theorem 1.10 without imposing a restriction on the
boundary data.
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Theorem 1.11 (Local boundedness of generalized minimizers). Assume that f is a convex
C1-integrand which satisfies f(0)≤λ, (H1) and

[ξT∇f(z)] · [ξT z] ≥ −λ|ξ|2 for all z ∈ R
Nn, ξ ∈ R

N(H3)

with a nonnegative constant λ. Then every generalized minimizer u ∈ BV (Ω,RN ) of F is locally
bounded, i. e. u ∈ L∞

loc(Ω,R
N ), and it satisfies for each pair Br(x0) ⊂ BR(x0) ⊂ Ω of concentric

balls the estimate

sup
Br(x0)

|u| ≤ C

(R−r)n
∫

BR(x0)

[
(R−r)λ + |u|

]
dx

with a constant C depending only on n, N , γ, and Γ.

Theorem 1.11 will be established in Section 4.

Remark 1.12. In principle, the convexity assumption in Theorem 1.11 is dispensable, and
— employing an adequate version [5, 6, 54] of Theorem 1.8 — an extension to quasiconvex
integrands f is possible. Moreover, adopting notions of generalized minimizers as in [75] one
might handle even non-quasiconvex situations. However, convexity seems to be inevitable for
the other results of this paper, and thus we do not further pursue these generalizations.

We combine Theorem 1.10 and Theorem 1.11 getting (see Section 5.3 for a detailed proof):

Corollary 1.13 (Uniqueness of generalized minimizers). Assume that f is a C2-integrand
which satisfies the assumptions (H1), (H2), and (H3). Then generalized minimizers of F
in D are unique in BV (Ω,RN ) up to additive constants. Furthermore, each such minimizer
u ∈ BV (Ω,RN ) satisfies

u ∈W 1,1(Ω,RN ) and |∇u| log(1+|∇u|2) ∈ L1
loc(Ω) ,

and for every ball B3r(x0) ⊂ Ω there holds the estimate

1

rn

∫

Br(x0)

|∇u| log(1+|∇u|2) dx ≤ C

(
1 +

1

rn

∫

B3r(x0)

|∇u| dx
)2

with a positive constant C depending only on n, N , γ, Γ, and λ.

Next let us discuss the mild structure condition (H3), which can be rewritten in coordinates
as

n∑

i=1

N∑

α,β=1

ξα
∂f

∂zαi
(z) zβi ξ

β ≥ −λ|ξ|2 .

Thus, for N=1 assumption (H3) reduces to ∇f(z) · z ≥ −λ and is automatically satisfied
by Lemma 2.8. This is not surprising since both maximum principles and L∞-regularity are
usually valid in the scalar case without particular hypotheses on the structure of the integrand.
In contrast, in the vectorial case it is known by a series of striking examples [28, 48, 70, 52,
84, 85] that one cannot hope for everywhere regularity, not even for boundedness of minimizers
without some kind of particular structure. A sufficient structure for regularity, namely rotational
symmetry f(z) = f̃(|z|), has first been identified by Uhlenbeck in connection with the interior
C1,α-regularity for minimizers of the p-energies (1.2); see [83, 42, 3, 51, 60]. However, here we
are just interested in boundedness of minimizers, and thus the weaker structure condition (H3)
suffices; see Meier [62] for the first occurrence of a similar lower bound. Another reasonable
condition occurring in [29, 33, 22] is

f(z) = f̃(|z1|, |z2|, . . . , |zn|) , (1.10)

8



where zi ∈ RN denotes the ith column of the matrix z ∈ RNn. In our context (1.10) is
interesting since it provides a simple sufficient criterion for (H3). More precisely, for a C1-
integrand f : RNn → R we have

f is convex with (1.10)

=⇒ f satisfies (1.10) and f̃ : [0,∞)n → R is non-decreasing in each argument

=⇒ f satisfies (H3) with λ = 0 .

To derive some consequences of uniqueness up to constants we shall have a closer look at
the recession function f∞. We start noting that in our setting f∞ is positive on RNn \ {0},
1-homogeneous, and convex; in other words f∞ is a norm on R

Nn. We shall need an additional
assumption which is related to strict convexity of f∞. However, since f∞ is 1-homogeneous,
it can obviously not be strictly convex in the radial directions. Therefore we use the following
concept.

Definition 1.14 (Strict convexity of norms). Let m ∈ N. A norm g on R
m is said to be a

strictly convex norm if its unit ball is strictly convex, that is if equality

g(y1) = g(y2) = g(λy1 + (1−λ)y2) = 1 with λ ∈ (0, 1), y1, y2 ∈ R
m

already implies
y1 = y2 .

In the following it will be convenient to consider for 0 6= ν ∈ Rn the norm y 7→ f∞(y ⊗ ν)
on RN . We will suppose:

For every 0 6= ν ∈ R
n the map

y 7→ f∞(y ⊗ ν) is a strictly convex norm on R
N .

(H4)

We stress that (H4) can in general not be deduced from strict convexity of f (see Remark 3.3).
Nevertheless, the following simple criteria justify the introduction of (H4).

Remark 1.15. Suppose that f is convex with (H1). Then (H4) is implied by each of the
following conditions:

• f∞ itself is a strictly convex norm or

• f satisfies7 the structure condition (1.10).

Next we deal with the remaining assertions of Theorem 1.3 and Theorem 1.4 and we restate
them in a more general context.

Theorem 1.16 (The set of generalized minimizers). Suppose that f is convex with (H1). More-
over, suppose that generalized minimizers of F in D are unique up to additive constants and
that f∞ satisfies (H4). Then the set of all generalized minimizers of F in D can be written in
the form

{u+ ty : t ∈ [−1, 1]}
with some constant y ∈ R

N and some particular minimizer u.

Theorem 1.16 will be proved in Section 5.4. Moreover, by means of a counterexample in
Section 3.4 we demonstrate that (H4) is indeed mandatory in Theorem 1.16.

Now we provide a statement about the boundary behavior of non-unique minimizers, which
we will establish in Section 6.

7It suffices to require somewhat less, namely that f∞ instead of f has the structure in (1.10).
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Theorem 1.17 (Non-uniqueness and boundary behavior). Suppose that we are in the situation
of Theorem 1.16 with y 6=0. Then ∂Ω can be decomposed into disjoint subsets (∂Ω)− and (∂Ω)+
such that

u± Jy = u0 Hn−1-a. e. on (∂Ω)±

for some function J : ∂Ω → R with

inf
(∂Ω)−

J = inf
(∂Ω)+

J = 1 .

Moreover, there holds
∫

(∂Ω)−

f∞(−y ⊗ νΩ) dHn−1 =

∫

(∂Ω)+

f∞(y ⊗ νΩ) dHn−1 . (1.11)

Here, the condition (1.11) implies some inequalities for the size of the sets (∂Ω)− and (∂Ω)−,
namely

min|z|=1 f
∞(z)

max|z|=1 f∞(z)
≤ Hn−1((∂Ω)−)

Hn−1((∂Ω)+)
≤ max|z|=1 f

∞(z)

min|z|=1 f∞(z)
,

but in general the identity (1.11) does not give a more precise information; compare Proposi-
tion 6.4. However, imposing another structure condition — which is in some sense the opposite of
(1.10) — we come out with the simple assertion (1.6), which we previously had in Theorem 1.4.

Remark 1.18. Suppose that we are in the situation of Theorem 1.17 and additionally assume
that f satisfies8 the structure condition

f(z) = f̃(|z1|, |z2|, . . . , |zN |) , (1.12)

where zα denotes the αth row of the matrix z ∈ R
Nn. Then there holds

Hn−1((∂Ω)−) = Hn−1((∂Ω)+) =
1

2
Hn−1(∂Ω) . (1.13)

Proof of Remark 1.18. As a consequence of (1.12) the recession function f∞ can be written as

f∞(z) =
(
f̃
)∞

(|z1|, |z2|, . . . , |zN |) .
Consequently, we have

f∞(±y ⊗ νΩ) =
(
f̃
)∞

(|y1|, |y2|, . . . , |yN |) ,
the integrands in (1.11) are both constant with the same value, and (1.11) reduces to (1.13).

To finish this introductory exposition let us comment on two problems which seem to be
open even for the model integral E1 in the vectorial case.

The first problem is two determine what can be said — beyond the L logL-regularity dis-
cussed in this paper — about the gradient of a generalized minimizer u of E1. To be more
specific we would like to know whether necessarily |∇u| ∈ L1+ε

loc (Ω) holds for some ε>0. Indeed,
this question seems to be open even for n=N=2. However, while this is a delicate problem for
E1 and the limit case µ=3 in (H2µ), ∇u is known to be Hölder continuous [15, 21] in the case
µ<3.

The second issue is boundary regularity of generalized minimizers. The above results de-
scribe the boundary behavior for general domains Ω and general boundary values u0. However,
imposing additional assumptions on Ω and u0 one may hope to obtain stronger results, namely
boundary regularity, attainment of the boundary values, and full uniqueness. For area minimiz-
ing graphs in the scalar case N=1 this program has been carried out in classical literature; see
[66, 67, 81] as well as [46, Chapter 15], and the references quoted there. It is not clear to us
whether these results or the relevant methods can be extended to the vectorial setting.

8Remark 1.18 still holds if instead of (1.12) for f only the analogous structure condition for f∞ — as it occurs
in the proof — is required.
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2 Notation and preliminaries

We briefly recall our global assumptions, imposed for the whole paper. As already mentioned in
the introduction we fix n,N ∈ N (with n≥2) and by Ω we always denote a non-empty, bounded,
open, and connected subset of Rn. Moreover, we generally assume that Ω has a Lipschitz
boundary, that is for every x ∈ ∂Ω there exists a bi-Lipschitz transformation Φ which maps the
unit ball B1 in Rn to a neighborhood of x in such a way that for y = (y1, y2, . . . , yn) ∈ B1 one
has

yn > 0 ⇐⇒ Φ(y) ∈ Ω ,

yn = 0 ⇐⇒ Φ(y) ∈ ∂Ω ,

yn < 0 ⇐⇒ Φ(y) /∈ Ω .

Next we explain some general terminology and then we start collecting a couple of basic
definitions and preliminary results.

Constants. We use various constants which are mostly understood to be positive and we
generally indicate small constants by lowercase letters and large constants by uppercase letters.
In particular, we write c or C for generic, positive constants which may vary from line to line
and need not be the same in any two occurrences.

Balls, boundary, closure. By Bn
r (x0) we abbreviate the open ball in Rn with center x0 and

radius r, that is, {x ∈ Rn : |x − x0| < r}. The upper index n will mostly be omitted when the
context is unambiguous. Moreover, if S is a set in R

n, then we denote by ∂S its topological
boundary and by S its closure.

Measures, integration, function spaces, suprema, infima. Our terminology in this re-
gard is mostly in accordance with [6] and some of it is explained after formula (1.3). Here, we
just mention a few additional points: We write w ·ν for the weighted measure with weight w and
basic measure ν, and we define the class L∞

M (Ω,RN ) (with a positive constant M) by letting

L∞
M (Ω,RN ) := {u ∈ L∞(Ω,RN) : sup

Ω
|u| ≤M} , (2.1)

where we used sup for the essential supremum with respect to the Lebesgue measure Ln. In the
following we will use inf and sup for essential infima and suprema with respect to either Ln or
Hn−1, depending on the context. Next we state a simple lemma involving the sup-norm (see
for instance [4, Theorem 2.14]).

Lemma 2.1. For any Lebesgue-measurable function w : Ω → RN there holds

sup
Ω

|w| = lim
p→∞

(∫

Ω

|w|p dx
) 1

p

,

where the limit on the right-hand side exists in [0,∞].

The negative Sobolev space W
−1,1. The negative Sobolev spaces W−1,p with p>1 are

commonly viewed as the dual spaces of W
1, p

p−1

0 . In contrast, the space W−1,1 cannot be ap-
proached via duality and rarely occurs in the literature at all. Therefore, we now briefly review
what is relevant for our purposes.

We introduce W−1,1(Ω,RN) as the collection of all RN -valued distributions T on Ω which
can be written as

T = w0 +

n∑

s=1

∂sws
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with w0, w1, . . . , wn ∈ L1(Ω,RN ). One easily checks that W−1,1(Ω,RN ) is a normed linear
space if we let

‖T ‖W−1,1(Ω,RN ) := inf

n∑

s=0

∫

Ω

|ws| dx for T ∈ W−1,1(Ω,RN ) ,

where the infimum runs over all functions w0, w1, . . . , wn representing T as before.
To see thatW−1,1(Ω,RN ) is complete and thus a Banach space we argue as follows. We con-

sider the linear map P :
[
L1(Ω,RN )

]1+n → W−1,1(Ω,RN ), (w0, w1, . . . wn) 7→ w0 +
∑n

s=1 ∂
sws

and its factorial map

J :
[
L1(Ω,RN )

]1+n
/
kerP →W−1,1(Ω,RN) .

From the above definition of W−1,1 we then infer that J is onto and isometric9. Hence
W−1,1(Ω,RN) is isometrically isomorphic to

[
L1(Ω,RN )

]1+n/
kerP . The latter space is a factor

space of Banach spaces and thus is again a Banach space; see [89, Chapter I.11]. In conclusion,
W−1,1(Ω,RN) is complete.

Moreover, we record the following inequalities for w ∈ L1(Ω,RN ) which are immediate by
the above definition of W−1,1 and its norm:

‖w‖W−1,1(Ω,RN ) ≤
∫

Ω

|w| dx , (2.2)

‖∂sw‖W−1,1(Ω,RN ) ≤
∫

Ω

|w| dx . (2.3)

The space BV of functions of bounded variation. The space BV (Ω,RN ) is of substantial
importance for this paper. By definition a function w ∈ L1(Ω,RN ) is in BV (Ω,RN ) if the
distributional derivative of w can be represented by a finite Radon measure, which we then call
Dw. Moreover, by Dsw we denote the singular part in the Lebesgue decomposition of Dw with
respect to Ln and we write ∇w for the density of the absolutely continuous part. We refer —
once more — to [6] for further information and proceed recalling the notion of strict convergence.

Definition 2.2 (Strict convergence of measures and BV -functions). Consider a sequence (µk)k∈N

of finite Rm-valued Radon measures on Ω and a finite Rm-valued Radon measure µ on Ω. We
say that µk converges strictly to µ on Ω if µk converges weakly-∗ to µ on Ω and if additionally
there holds

|µk|(Ω) −→
k→∞

|µ|(Ω) .

Moreover, we say that a sequence (wk)k∈N in BV (Ω,RN) converges strictly to some w ∈
BV (Ω,RN ) if it converges in L1(Ω,RN ) and if moreover Dwk converges strictly to Dw in the
sense of measures.

The next lemma on approximations in BV is similar to lemmas in [9, 10, 8]. The precise
statement is taken from [16, Lemma B.1].

Lemma 2.3. For each u ∈ BV (Ω,RN ) there exists a sequence (wk)k∈N in W 1,1(Ω,RN ) with
the following properties:

• Each wk coincides with u on ∂Ω in the sense of trace;

• wk converges to u in L1(Ω,RN );

• (Ln, Dwk) converges strictly to (Ln, Du) in the sense of RNn+1-valued measures on Ω.

9The factor space
[
L1(Ω,RN )

]1+n/
kerP is endowed with the quotient norm.
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The recession function. For a convex function f : Rm → [0,∞) the recession function f∞

of f is defined by

f∞(z) := lim
s→∞

f(sz)

s
for z ∈ R

m . (2.4)

Here, by the convexity of f the expression f(sz)−f(0)
s

is non-decreasing in s; thus the limit in
(2.4) always exists in [0,∞], satisfies

f∞(z) ≥ f(z)− f(0) , (2.5)

and f∞ is a well-defined, 1-homogeneous function Rm → [0,∞] with possibly infinite values.
Moreover, from the convexity of f it follows that f∞ is lower semicontinuous and convex. If f
satisfies the right-hand inequality in (H1), then f∞ is finite-valued, and if f additionally satisfies
the left-hand inequality in (H1), then f∞ is positive on Rm \ {0} and defines a norm on Rm.

(Semi-)Continuity. Next we recall the (semi)continuity theorem of Reshetnyak [73], which
is a main ingredient in the proof of Theorem 1.8.

Theorem 2.4. Consider a sequence (µk)k∈N of finite Rm-valued Radon measures on Ω which
converges weakly-∗ to a finite Rm-valued Radon measure µ on Ω. Moreover, assume that all
measures µk and µ take values10 in some closed convex cone K in Rm.

• Semicontinuity part. If f̄ : K → [0,∞] is a lower semicontinuous, convex, and 1-
homogeneous function, then there holds

∫

Ω

f̄
( dµ
d|µ|

)
d|µ| ≤ lim inf

k→∞

∫

Ω

f̄
( dµk

d|µk|
)
d|µk| .

• Continuity part. If µk converges strictly to µ on Ω and f̄ : K → [0,∞) is continuous
and 1-homogeneous, then there holds

∫

Ω

f̄
( dµ
d|µ|

)
d|µ| = lim

k→∞

∫

Ω

f̄
( dµk

d|µk|
)
d|µk| .

Proof. The claims follow from Theorem 2.38 and Theorem 2.39 in [6] once one extends f to
all of Rm preserving the above assumptions. For the semicontinuity part such an extension is
obtained by letting f̄ ≡ ∞ outside K; for the continuity part one extends f̄ as a continuous,
1-homogeneous function.

Remark 2.5. Following [43] in our applications of Theorem 2.4 we will mostly consider the
function f̄ : K → [0,∞] defined on the half-space K = [0,∞)×RNn by

f̄(t, z) :=

{
tf(z/t) for t > 0

f∞(z) for t = 0
, (2.6)

where f : RNn → [0,∞) is the integrand in (1.1). If f is convex, then f̄ is well-defined, lower
semicontinuous, convex, and 1-homogeneous and moreover for all w ∈ BV (Ω,RN ) there holds

∫

Ω

f̄
( d(Ln, Dw)

d|(Ln, Dw)|
)
d|(Ln, Dw)| =

∫

Ω

f(∇w) dx +

∫

Ω

f∞
( dDsw

d|Dsw|
)
d|Dsw| . (2.7)

Consequently, the semicontinuity part of Theorem 2.4 applies to the functional in (2.7) and
a sequence (wk)k∈N in BV (Ω,RN ) if Dwk converges weakly-∗ in the sense of measures. If
additionally (H1) holds, then f̄ is finite-valued and continuous. Thus, also the continuity part
of Theorem 2.4 applies if (Ln, Dwk) converges strictly in the sense of measures as in Lemma 2.3.

10By definition µ takes values in K if µ(B) ∈ K holds for every Borel subset B of Ω. In this case the density
dµ
d|µ|

also takes values in K.
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Next we state another semicontinuity result, tailored out for an application in Section 5.1,
which we derive as a particular case of Theorem 2.4.

Lemma 2.6. Let p>1 and suppose that f : RNn → [0,∞) is a convex function such that

f(z) ≥ γ|z|p for all z ∈ R
Nn

with some positive constant γ. Moreover, suppose that g : RN → [0,∞) is a lower semicontin-
uous function and that u0 ∈ W 1,p(Ω,RN ) is given, and let Dp := u0+W

1,p
0 (Ω,RN ). Then the

functional F : W−1,1(Ω,RN ) → R, defined by

F [w] :=





∫

Ω

f(∇w) dx +

∫

Ω

g(w) dx for w ∈ Dp

∞ for w ∈W−1,1(Ω,RN ) \ Dp
,

is lower semicontinuous with respect to convergence in the norm of W−1,1(Ω,RN).

Proof of Lemma 2.6. It suffices to prove F [w] ≤ limk→∞ F [wk] whenever wk ∈ Dp converges
to w ∈ W−1,1(Ω,RN ) and limk→∞ F [wk] exists in [0,∞). In this situation we exploit the
lower bound on f to deduce that (∇wk)k∈N is bounded in Lp(Ω,RNn). By Poincaré’s in-
equality (wk)k∈N is bounded in W 1,p(Ω,RN ), and a subsequence (wkl

)l∈N converges weakly in
W 1,p(Ω,RN ). The limit with respect to this convergence must be w, and since Dp is weakly
closed in W 1,p(Ω,RN), also w is in Dp. Passing to another subsequence we may assume conver-
gence wkl

→ w a. e., and moreover it follows that Dwkl
converges to Dw weakly-∗ in the sense

of measures on Ω. Thus we may apply the semicontinuity part of Theorem 2.4 as explained in
Remark 2.5 (note that in the present situation the involved measures are absolutely continuous
and thus the last term in (2.7) vanishes) and Fatou’s lemma getting

F [w] =

∫

Ω

f(∇w) dx +

∫

Ω

g(w) dx

≤ lim inf
l→∞

∫

Ω

f(∇wkl
) dx + lim inf

l→∞

∫

Ω

g(wkl
) dx ≤ lim

k→∞
F [wk].

Convex integrands. Next we deal with elementary properties of convex integrands f . We
state two lemmas which provide upper and lower bounds for ∇f . The first lemma is a particular
case of [47, Lemma 5.2].

Lemma 2.7. Suppose that f : Rm → [0,∞) is a convex function with

f(z) ≤ Γ(1 + |z|) for all z ∈ R
m .

Then f is Lipschitz continuous on Rm. In particular, if f is C1, then there holds

|∇f(z)| ≤ C for all z ∈ R
m

with a constant C depending only on m and Γ.

Lemma 2.8. Suppose that f : Rm → [0,∞) is a convex C1-function with f(0) ≤ λ and

f(z) ≥ γ|z| for all z ∈ R
m .

Then there holds
∇f(z) · z ≥ γ|z| − λ for all z ∈ R

m .

Proof. By the convexity of f we have

λ ≥ f(0) ≥ f(z)−∇f(z) · z ≥ γ|z| − ∇f(z) · z

for all z ∈ Rm and the claim follows.
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A lemma about generalized minimizers and Dirichlet classes. As discussed above
generalized minimizers need not attain prescribed boundary values. The next lemma states
that if we move the prescribed boundary values towards the trace of a generalized minimizer,
then the minimizing property is preserved. In particular, generalized minimizers are always
minimizing with respect to their own boundary values.

Lemma 2.9. For u0, ũ0 ∈W 1,1(Ω,RN ) we consider the Dirichlet classes

D = u0 +W 1,1
0 (Ω,RN ) and D̃ = ũ0 +W 1,1

0 (Ω,RN ) ,

and we suppose that f : RNn → [0,∞) is convex with (H1). If u is a generalized minimizer of

F in D̃ and

u0(x) is a convex combination of u(x) and ũ0(x) for Hn−1-a. e. x ∈ ∂Ω , (2.8)

then u is also a generalized minimizer of F in D.

Proof. By (2.8) the three vectors ũ0−u, ũ0−u0, and u0−u point in the same direction, and thus
by the 1-homogeneity of f∞ we have

f∞((ũ0−u)⊗ νΩ) = f∞((ũ0−u0)⊗ νΩ) + f∞((u0−u)⊗ νΩ) Hn−1-a. e. on ∂Ω .

Using this together with the minimality of u in D̃ we get for any w ∈ BV (Ω,RN )

FD[u] = F D̃[u] +

∫

∂Ω

[
f∞((u0−u)⊗ νΩ)− f∞((ũ0−u)⊗ νΩ)

]
dHn−1

≤ F D̃[w]−
∫

∂Ω

f∞((ũ0−u0)⊗ νΩ) dHn−1

= FD[w] +

∫

∂Ω

[
f∞((ũ0−w)⊗ νΩ)− f∞((u0−w) ⊗ νΩ)− f∞((ũ0−u0)⊗ νΩ)

]
dHn−1 .

By the convexity of f∞ the integrand in the last integral is nonpositive, and thus u is also
minimizing in D.

A comparison principle. Now we come to a comparison principle which incorporates bound-
ary integrals as in (1.8). The principle will only be used in Section 3.3 and we restrict ourselves
to a plain version which is sufficient for our needs.

Lemma 2.10. Let N=1. Consider u0, v0 ∈ W 1,1(Ω) and assume that f : Rn → [0,∞) is strictly
convex. Moreover, suppose that u ∈W 1,1(Ω) and v ∈W 1,1(Ω) minimize the scalar integrals

∫

Ω

f(∇w) dx +

∫

∂Ω

|u0 − w| dHn−1 and

∫

Ω

f(∇w) dx +

∫

∂Ω

|v0 − w| dHn−1 ,

respectively, among all w ∈W 1,1(Ω), and that v− u is not constant. Then we have the compar-
ison principle

u0 ≥ v0 Hn−1-a. e. on ∂Ω =⇒ u ≥ v Ln-a. e. in Ω .

Proof. We first note that
∫
Ω f(∇u) dx and

∫
Ω f(∇v) dx are finite as one can see comparing u

and v with the zero function. This observation justifies the following computations involving
these integrals.

We assume for contradiction that u0 ≥ v0 holds on ∂Ω but that

A := {x ∈ Ω : u(x) < v(x)}
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has positive Ln-measure. Then we exploit the minimality of u and v: We compare u with

ũ := u+max{u,v}
2 ∈W 1,1(Ω) and v with ṽ := min{u,v}+v

2 ∈W 1,1(Ω), and we use the fact that the
integrals over Ω \A cancel out. By this reasoning we find

∫

A

f(∇u) dx+
∫

∂Ω

|u0 − u| dHn−1 ≤
∫

A

f
(
∇u+v

2

)
dx+

∫

∂Ω

|u0 − ũ| dHn−1 ,

∫

A

f(∇v) dx+

∫

∂Ω

|v0 − v| dHn−1 ≤
∫

A

f
(
∇u+v

2

)
dx+

∫

∂Ω

|v0 − ṽ| dHn−1 .

With A also {x ∈ A : ∇u(x) 6= ∇v(x)} has positive Ln-measure (otherwise max{v− u, 0} would
equal a positive constant on Ω, which contradicts our assumption). Taking into account the
strict convexity of f we thus have

2

∫

A

f
(
∇u+v

2

)
dx <

∫

A

f(∇u) dx+

∫

A

f(∇v) dx .

Combining the previous three inequalities we come out with an inequality containing only bound-
ary integrals, namely

∫

∂Ω

[
|u0 − u|+ |v0 − v|

]
dHn−1 <

∫

∂Ω

[
|u0 − ũ|+ |v0 − ṽ|

]
dHn−1 . (2.9)

Now we introduce Ã := {x ∈ ∂Ω : u(x) ≤ v(x)}. We recall the definitions11 of ũ and ṽ, and we

use u0≥v0 and u≤v on Ã. Distinguishing the three cases u+v
2 ≤v0, v0<u+v

2 <u0, and u0≤u+v
2

one verifies

|u0 − ũ|+ |v0 − ṽ| =
∣∣∣u0 −

u+v

2

∣∣∣+
∣∣∣v0 −

u+v

2

∣∣∣ ≤ |u0 − u|+ |v0 − v| on Ã . (2.10)

Furthermore, the definitions of ũ and ṽ also give

|u0 − ũ|+ |v0 − ṽ| = |u0 − u|+ |v0 − v| on ∂Ω \ Ã . (2.11)

Since (2.10) and (2.11) are not compatible with (2.9), we have reached a contradiction. Thus,
we must have Ln(A) = 0 and we have established the claim.

Ekeland’s variational principle. Finally, we restate the famous variational principle from
[30, 31, 32] which plays an important role in the proofs of our uniqueness results.

Lemma 2.11. Suppose that X is a complete metric space, endowed with metric d, and that
F : X → [0,∞] is a lower semicontinuous functional with infX F < ∞. If for some ε > 0 and
some u ∈ X there holds

F [u] ≤ inf
X
F + ε ,

then there is a v ∈ X such that

d(u, v) ≤
√
ε ,

F [v] ≤ F [w] +
√
εd(v, w) for all w ∈ X .

11In the proof of Lemma 2.10 — as in the whole paper — we have suppressed an explicit notation for the
continuous linear trace operator T . However, it should be noted that working with the definition of ũ on ∂Ω we are
implicitly using T max{u, v} = max{Tu, Tv} on ∂Ω. To establish this equality one first proves T |u−v| = |T (u−v)|
(approximating u−v with continuous functions on Ω) and then writes 2max{u, v} = u+v + |u−v|.
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A Young type inequality. The following inequality can be interpreted as a Young inequality
in terms ofN -functions. We state a particular version which is adapted to our needs in Section 5.

Lemma 2.12. For all t ∈ [0,∞) and s ∈ R there holds

s(1+t) ≤ t log(1+t2) + exp(s) .

Proof. Fixing t we have by standard calculus

max
s∈R

[
s(1+t)− exp(s)

]
= (1+t) log(1+t)− (1+t) ≤ t log(1+t)− 1 ≤ t log(1+t2) .

3 Various examples

3.1 Examples of integrands

In this subsection we discuss two classes of integrands.
The first class of examples is the 2-parameter family of integrands given by

fλ,p(z) :=
[
1 + (λ2+|z|2) p

2

] 1
p for z ∈ R

Nn ,

where p≥1 and λ≥0 are the parameters. We start recording that the model integrands eλ from
Section 1.1 are included in this family, precisely the relation is given by

fλ,1 = 1+eλ and fλ,2 = e√1+λ2 .

It is easily checked that fλ,p is C2 (in the case λ=0, 1<p<2 only away from 0) and convex
with (H1). Moreover, it is rotationally symmetric and thus satisfies all the relevant structure
conditions discussed in Section 1.2, that is the conditions (1.10), (1.12), and in particular (H3).
Additionally, we have

(
fλ,p

)∞
(z) = |z| and thus (H4) is also available (compare Remark 1.15).

Hence, it remains to discuss the assumption (H2) which is the limit case µ=3 of the µ-
ellipticity condition (H2µ). In fact, it can be checked by elementary computations that fλ,p
satisfies (H2µ) with

µ =

{
p+ 1 if p > 1, λ > 0 or p = 2

3 if p = 1, λ > 0
.

The main results of Section 1.2 are valid for µ≤3 and thus they cover fλ,p for 1≤p≤2, λ>0 and
for p=2, λ=0. However, for µ<3 the results of Theorem 1.10 (and actually even C1,α-regularity)
were already known from [15] and thus the most interesting feature of the present paper is the
inclusion of the limit case µ=3 and the integrands eλ from Section 1.1.

We believe that the remaining cases λ=0, p 6=2 are of some interest though the respective
integrands

f0,p(z) = (1+|z|p) 1
p

do not fulfil the condition (H2µ) for any value of µ, essentially due to the degenerate resp.
singular behavior of f0,p at the origin. For this reason most results in this paper — with the
exception of Theorem 1.11 — do not apply to these integrands, which we plan to investigate in
the forthcoming paper [12].

Even though the integrands fλ,p (and in particular eλ) provide the main motivation for the
present paper, this family of examples is quite limited. In particular, as remarked above all the
integrands fλ,p have the same recession function. We take this as a motivation to provide a
second class of examples. Basically, we will prescribe an arbitrary 1-homogeneous and convex
function g and construct a suitable µ-elliptic integrand f with f∞ = g. We believe that this
construction might be of some independent interest but in particular we have the following two
applications in mind. On the one hand we deduce that the convexity assumption (H4) for f∞

17



is independent from (H1) and (H2µ) and cannot be concluded from the strict convexity of f
(Remark 3.3). On the other hand the construction will be useful for the example in Section 3.4
below.

Next let us supply the precise12 statements.

Proposition 3.1. Suppose that g is a norm on R
m and µ>1 is given. Then there exists a

smooth convex function f : Rm → [0,∞) with (H1), ∇f(0) = 0,

f∞ = g ,

and such that the left-hand inequality in (H2µ) holds. In the case µ>2 we may additionally
achieve f ≥ g. Moreover, if g has one (or both) of the following additional properties, then f
may be chosen such that it has the corresponding property (or properties):

• g is even in one of its variables ; f is even in the same variable;

• g is locally C1,1 on R
m \ {0} ; f satisfies the right-hand inequality in (H2µ).

Remark 3.2. The requirement µ>2 in Proposition 3.1 will have consequences in Sections 3.3
and 3.4 (see in particular the proof of Lemma 3.13 and Remark 3.15) and is in fact optimal in
the following sense: There exists no C2-function f on Rm with f ≥ f∞ such that the left-hand
inequality in (H2µ) holds with µ≤2.

The last claim can be proved elementarily. Nevertheless, we briefly sketch the argument
since — in our opinion — it is not completely straightforward:

Proof of the non-existence claim in Remark 3.2. It suffices to deal with the case µ=2, m=1 (re-
stricting f to lines through the origin). We consider the auxiliary function

h(t) := t arctan t− 1

2
log(1+t2) ,

the reason for this choice being h′′(t) = 1
1+t2

. If f satisfies the left-hand inequality in (H2µ)
with µ=2, then f ′′ ≥ γh′′ holds for some γ > 0, and f−γh is convex. In particular, for s, t ∈ R

it follows that
(f−γh)(s) + (f−γh)′(s) (t− s) ≤ (f−γh)(t) .

Dividing by t and passing t→ ∞ we come out with

f ′(s) ≤ f∞(1) + γh′(s)− γ
π

2
.

Integrating the last inequality with respect to s yields

f(s) ≤ f(0) + sf∞(1) + γh(s)− γ
π

2
s

≤ f(0) + f∞(s)− γ

2
log(1+s2)

for all s≥0. Choosing s sufficiently large we see that f ≥ f∞ does not hold.

Remark 3.3. Proposition 3.1 can be used to construct a smooth integrand f such that (H1) and
(H2µ) hold, but (H4) still fails. To this end the proposition is applied with a suitable non-strictly

convex norm such as g(z) =
∑N

α=1 |zα| for m=Nn and N>1.

However, a structure assumption on g yields (H3) and (H4):

12Some of the following statements will be provided for an arbitrary Euclidean space Rm instead of RNn.
When we write (H1) or (H2) in this context we refer — of course — to the respective conditions for z, z̃ ∈ Rm

instead of z, z̃ ∈ RNn.
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Proposition 3.4. In the case m=Nn the list of additional properties in Proposition 3.1 may
be extended by the following two points:

• g has the structure in (1.10) ; f satisfies (1.10) (and thus (H3) and (H4));

• g has the structure in (1.12) ; f satisfies (1.12).

Then the construction of Proposition 3.1 is possible in such a way that any combination of
properties of g from this extended list leads to the corresponding properties of f .

The proof of Proposition 3.1 and Proposition 3.4 is based on the following lemma. Indeed, the
assertion in the lemma is quite plausible, but we include its proof for the sake of completeness.

Lemma 3.5. Suppose that g is a norm on Rm. Then there exists a smooth convex function
f∗ : Rm → [0,∞) with (f∗)∞ = g and f∗ ≥ g such that ∇f∗(0) = 0 holds and ∇2f∗(0) is positive.
Moreover, we may achieve additional properties as indicated in the following:

• g is even in one of its variables ; f∗ is even in the same variable;

• g is locally C1,1 on Rm \ {0} ; f∗ satisfies the right-hand inequality in (H2µ).

Proof. We start by introducing the positive numbers a := min|x|=1 g(x) and A := max|x|=1 g(x),
and we write Coh for the convex envelope of the auxiliary function h : Rm → (0,∞) which is
given by

h(x) :=

{
g(x) if |x| ≥ 1
a
2 + A2

2a |x|2 if |x| < 1
.

Now we prove that Co h equals h outside the unit ball. We first observe g(x) ≤ A|x| ≤ a
2+

A2

2a |x|2.
Thus we have g ≤ h on Rm and by the properties of the convex envelope we deduce g ≤ Coh ≤ h
on Rm which gives the equality Coh = g outside the unit ball B1. Next we prove that Co h is
a paraboloid near 0. To this end we consider ε ∈ (0, 12 ) and pε : R

m → (0,∞) defined as

pε(x) :=

{
a
2 + 2A2ε2

a
+ 2A2ε

a
(|x|−2ε) if |x| ≥ 2ε

a
2 + A2

2a |x|2 if |x| ≤ 2ε
.

We note that pε is constructed from the convex, increasing function t 7→ a
2 +

A2

2a t
2 on the half-line

[0,∞), linearizing it for t ≥ 2ε and then rotating it. Thus, pε is convex, pε(x) ≤ h(x) for |x| < 1,
and pε(x) = h(x) for |x| ≤ 2ε. Let us fix ε (depending only on a and A) small enough that
a
2 +

2A2ε2

a
+ 2A2ε

a
(1−2ε) ≤ a and 2A2ε

a
≤ a hold. Now (by the first smallness condition) we have

pε(x) ≤ a ≤ g(x) for |x| = 1 and then (by the second one) pε(x) = pε(x/|x|) + 2A2ε
a

(|x|−1) ≤
g(x/|x|) + a(|x|−1) ≤ g(x) = h(x) for |x| ≥ 1. All in all we find pε ≤ h on R

m and using the
properties of the convex envelope again we infer pε ≤ Coh ≤ h on Rm. Recalling pε(x) = h(x)
for |x| ≤ 2ε we deduce that Coh and pε coincide on B2ε.

Finally, we define f∗ as the mollification of Coh with smoothing radius ε, that is

f∗(x) :=

∫

Rm

Co h(x− εy)η(y) dy =

∫

Rm

ηε(x− y)Co h(y) dy ,

where η is a (usual) smooth, symmetric mollifying kernel, compactly supported in B1, and
ηε(x) := ε−mη(x/ε). Since convexity is preserved under mollification, f∗ is convex. Moreover,
by Jensen’s inequality there holds

f∗(x) ≥ Coh

(∫

Rm

(x− εy)η(y) dy

)
= Coh(x) ≥ g(x)

and for x 6= 0 and s≫ 1 we have

f∗(sx)

s
=

1

s

∫

B1

g(sx− εy)η(y) dy =

∫

B1

g(x− εy/s)η(y) dy −→
s→∞

g(x) ,
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which means (f∗)∞ = g. Next, computing the mollification of Coh = pε near 0 explicitly we

get ∇f∗(0) = 0 and ∇2f∗(0) =
A2

a
Im, where Im denotes the (m×m)-unit matrix.

The claim about even dependence on the variables is obvious.
Finally, if g is locally C1,1, then by 1-homogeneity there holds13 |∇2g(z)| ≤ C|z|−1. Now,

since ∇2f∗ is smooth and coincides near infinity with the mollification of ∇2g, we deduce

∇2f∗(z) ≤ C(1 + |z|)−1

as claimed.

Proof of Proposition 3.1. Denote by f∗ the function constructed in Lemma 3.5. Now we let
fk(z) := k

[
f∗(z/k)−f∗(0)

]
for all k ∈ N and evidently fk is convex with fk(0) = 0, ∇fk(0) = 0,

and (fk)
∞ = g. By (2.5) we thus have 0 ≤ fk ≤ g on Rm. Next we set ζ(µ) :=

∑∞
k=1 k

−µ and

f :=M +
1

ζ(µ)

∞∑

k=1

k−µfk , (3.1)

where M≥0 will be chosen below. Then f is convex with f(0) = M , ∇f(0) = 0. We note that
on the one hand there hold M ≤ f ≤ M+g and thus f∞ ≤ g on Rm, and on the other hand
f∞ ≥ 1

ζ(µ)

∑K
k=1 k

−µ(fk)
∞ = 1

ζ(µ)

∑K
k=1 k

−µg is valid on Rm for every K ∈ N. In conclusion we

thus find f∞ = g on R
m as claimed. Moreover, computing the lth derivative of the series in (3.1)

term by term, we end up with another series which can locally be majorized by
∑∞

k=1 k
1−l−µ

and thus converges locally uniformly for every l ∈ N. Consequently, the limit function f has a
continuous lth derivative for every l ∈ N and is smooth on R

m. Next, let us derive the left-hand
inequality in (H2µ). We first observe that there exists an ε > 0 such that

∇2f∗(z)(z̃, z̃) ≥ ε|z̃|2 for all z with |z| < ε . (3.2)

Then for an arbitrary z we choose k0 ∈ N such that (k0−1)ε ≤ |z| < k0ε and find

∇2f(z)(z̃, z̃) ≥ 1

ζ(µ)

∞∑

k=1

k−µ∇2fk(z)(z̃, z̃) ≥
1

ζ(µ)

∞∑

k=k0

k−1−µ∇2f∗(z/k)(z̃, z̃)

≥ ε|z̃|2
ζ(µ)

∞∑

k=k0

k−1−µ ≥ ε|z̃|2
ζ(µ)

∫ ∞

k0

t−1−µ dt =
ε|z̃|2
ζ(µ)µ

k−µ
0

≥ c(ε, µ)(1 + |z|)−µ|z̃|2 .

Thus, we have established the left-hand side of (H2µ). In order to derive (H1) we recall f(0) =
M ≥ 0 and ∇f(0) = 0, and we moreover note that ∇2f(ξ)(z, z) ≥ 1

ζ(µ)∇2f∗(ξ)(z, z) holds by

(3.1) and the convexity of fk. From these properties and (3.2) we get

f(z) ≥ 1

ζ(µ)

∫ 1

0

∫ 1

0

∇2f∗(stz) ds t dt (z, z) ≥
ε

ζ(µ)

∫ 1

0

∫ ε
|z|

0

ds t dt |z|2 ≥ ε2

2ζ(µ)
|z| for |z| ≥ ε .

Thus, choosingM ≥ ε3

2ζ(µ) we have f(z) ≥ ε2

2ζ(µ) |z| for all z ∈ Rm and the left-hand side of (H1)

holds. Moreover, the right-hand side of (H1) follows from f ≤ M+g and the 1-homogeneity of
g. Finally, we exploit the inequality f∗ ≥ g from Lemma 3.5. Recalling the above definitions of
fk, f , and ζ(µ) and invoking the 1-homogeneity of g, we thus get

f(z) ≥M +
1

ζ(µ)

∞∑

k=1

k−µk
[
g(z/k)− f∗(0)

]
=M + g(z)− f∗(0)

ζ(µ)

∞∑

k=1

k1−µ .

13By Rademacher’s theorem ∇2g(z) exists for Lm-a. e. z ∈ Rm.
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In the case µ>2 the last sum converges and thus enlarging M if necessary we arrive at f ≥ g.
The even dependence on certain variables is preserved through the construction.
Finally, if g is locally C1,1 on Rm \ {0}, then Lemma 3.5 gives |∇2f∗(z)| ≤ C(1 + |z|)−1.

Tracing the consequences of this bound we infer first |∇2fk(z)| ≤ C(k + |z|)−1 ≤ C(1 + |z|)−1

and then |∇2f(z)| ≤ C(1 + |z|)−1, with the same constant C in all these conditions.

Lemma 3.6. Suppose that a function g on RNn has both structures, the one from (1.10) and
the one from (1.12). Then g is rotationally symmetric, i. e. g(z) depends only on |z|.

Proof. By assumption we have

g(z) = g̃(|z1|, |z2|, . . . , |zn|) = ˜̃g(|z1|, |z2|, . . . , |zN |) . (3.3)

Plugging a matrix z ∈ RNn with z1=x∈[0,∞)n and z2=z3= . . .=zN=0 into (3.3) we deduce
g̃(x1, x2, . . . , xn) = ˜̃g(|x|, 0, . . . , 0). We hence get g(z) = g̃(|z1|, |z2|, . . . , |zn|) = ˜̃g(|z|, 0, . . . , 0)
for all z ∈ RNn.

Proof of Proposition 3.4. We will deal with the case that g satisfies (1.10) omitting the treatment
of (1.12), which is completely analogous. Moreover, the case that g satisfies both conditions,
(1.10) and (1.12), will not be discussed in detail since exploiting Lemma 3.6 it can be treated
by simplified versions of the following arguments.

We introduce the abbreviation Sz for (|z1|, . . . , |zn|) (note |Sz| = |z|) and write down (1.10)
for g, that is

g(z) = g̃(Sz)

for some function g̃, first defined on [0,∞)n. After extending g̃ to all of Rn as an even function
in each of its n variables we apply Proposition 3.1 (with m = n) to g̃. We come out with a
smooth convex function f̃ : Rn → [0,∞), even in all of its variables, satisfying ∇f̃(0) = 0 and
f̃∞ = g̃, and such that (H1) and (H2µ) hold for f̃ . We define f by letting

f(z) := f̃(Sz) .

Obviously f has the structure (1.10), but since we have modified the above construction we still
need to check that all the properties in Proposition 3.1 carry over from f̃ to f . It is easy to
see from the corresponding properties of f̃ that f is convex and satisfies ∇f(0) = 0, f∞ = g,
and (H1). Moreover, in the case µ>2 by Proposition 3.1 we may achieve f̃ ≥ g̃, and obviously
this gives f ≥ g. In order to deal with the derivatives of f let us make two observations:
Primarily, since f̃ is even, ∂if̃(Sz) vanishes for zi=0; secondly, as a consequence, for j 6= i also
∂i∂j f̃(Sz) = ∂j∂if̃(Sz) vanishes for zi=0. Starting from the fact that f̃ is smooth and even in
all variables, one can then check that f has continuous derivatives of any order, even near those
points z with zi=0. (In particular for the second derivatives this can be seen from (3.5) keeping
the preceding observations in mind.) Hence, f is smooth. Next we will verify (H2µ) for f . By

(H2µ) for f̃ we have

∂if̃(Sz) =

∫ |zi|

0

∂i∂if̃(|z1|, . . . , |zi−1|, t, |zi+1| . . . , |zn|) dt ≥ c(1 + |z|)−µ|zi| (3.4)

for all z ∈ RNn. Now let us compute the second derivatives of f in terms of f̃ . We find

∂2f

∂zαi ∂z
β
j

(z) =

[
∂i∂j f̃(Sz)− δij

|zi|
∂if̃(Sz)

]
zαi z

β
j

|zi| |zj |
+
δijδ

αβ

|zi|
∂if̃(Sz) . (3.5)
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Using (H2µ) for f̃ and (3.4) we see

∇2f(z)(z̃, z̃) =

n∑

i,j=1

∂i∂j f̃(Sz)
zi · z̃i
|zi|

zj · z̃j
|zj|

+

n∑

i=1

∂if̃(Sz)
|zi|2|z̃i|2 − (zi · z̃i)2

|zi|3

≥ c(1+|z|)−µ

n∑

i=1

(zi · z̃i)2
|zi|2

+ c(1+|z|)−µ

n∑

i=1

|zi|2|z̃i|2 − (zi · z̃i)2
|zi|2

= c(1+|z|)−µ|z̃|2

and we have verified the left-hand inequality in (H2µ) for f .
Finally, we discuss the interaction of (1.10) with the additional properties of Proposition 3.1.

In fact, the claims about even dependence on the variables are trivial, and imposing the C1,1-
assumption on g we argue as follows to derive the corresponding property of f . Under the
C1,1-assumption Proposition 3.1 gives the right-hand side of (H2µ) for f̃ . Integrating as in (3.4)
we find the upper bound

∂if̃(Sz) ≤ C
|zi|

1+|(z1,.., zi−1, zi+1,.., zn)|
. (3.6)

We distinguish the cases of |zi| greater or not greater than 1+|(z1, ..., zi−1, zi+1, ..., zn)|. Using
Lemma 2.7 in the first situation and (3.6) in the second one we come out, for all z ∈ RNn, with
the inequality

∂if̃(Sz) ≤ C
|zi|
1+|z| . (3.7)

Now we use (H2µ) for f̃ and (3.7) on the right-hand side of (3.5). Keeping in mind that

∂if̃(Sz) ≥ 0 we get

∇2f(z)(z̃, z̃) ≤
n∑

i,j=1

∂i∂j f̃(Sz)
zi · z̃i
|zi|

zj · z̃j
|zj |

+

n∑

i=1

∂if̃(Sz)

|zi|
|z̃|2

≤ C(1+|z|)−1|z̃|2 .

Thus, the left-hand inequality in (H2µ) is valid for f as claimed.

3.2 Proof of Theorem 1.5

In this subsection we work for n=2 on the two-dimensional annulus

B2 \B1 = {x ∈ R
2 : 1 < |x| < 2}

from Theorem 1.5.
The proof of Theorem 1.5 is motivated by a classical example from the theory of area

minimizing graphs; see [46, Example 12.15]. In that example one prescribes rotationally sym-
metric boundary values on ∂(B2\B1) in the case N=1. The symmetry allows to reduce to a
1-dimensional variational problem, whose Euler equation can be explicitly computed and solved.
For a suitable choice of a parameter it can be seen that the unique generalized minimizer does
not attain the boundary values.

As explained in the introduction we are interested in a similar vectorial example exhibiting a
more complicated jump at the boundary. For our purposes it is compulsory that the boundary
values are not contained in a 1-dimensional affine subspace and thus we may not choose them
rotationally symmetric. Instead we use the function u0 from Theorem 1.5 exhibiting a different
kind of symmetry. However, we can still reduce to a scalar, 1-dimensional problem, but the
Euler equation of the reduced problem is quite complicated and there is few hope to find explicit
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formulas for the solutions. Thus, in the following we will provide a somewhat different line of
argument.

For the remainder of this subsection let us fix N=2 and the boundary values u0 from Theo-
rem 1.5, that is

u0(x) =

{
Mx for x ∈ ∂B1

0 for x ∈ ∂B2

,

where M ∈ R is a constant.

Lemma 3.7. Let n=N=2 and Ω = B2\B1. There exists a unique generalized minimizer u ∈
W 1,1(Ω,R2) of E1 in D = u0 +W 1,1

0 (Ω,R2) and it can be written as

u(x) = v(|x|) x|x| for x ∈ Ω .

Here, v is the unique minimizer in W 1,1(1, 2) of the 1-dimensional scalar integral H, defined by

H [w] :=

∫ 2

1

t
√
1 + w′(t)2 + t−2w(t)2 dt+ |w(1)−M |+ 2|w(2)| for w ∈W 1,1(1, 2) . (3.8)

Proof. By Theorem 1.2 and Theorem 1.3 (or alternatively by Corollary 1.13) the set MD
1 of

generalized minimizers of E1 in D satisfies

MD
1 = {u+ ty : t ∈ [−1, 1]} ⊂W 1,1(Ω,R2)

for some particular minimizer u ∈ W 1,1(Ω,R2) and some y ∈ R2. For u ∈ MD
1 and an

orthogonal transformation T ∈ O(2) we define a function uT ∈ W 1,1(Ω,R2) by

uT (x) := Tu(T−1x) for x ∈ Ω .

Then noting ∇uT (x) = T∇u(T−1x)T−1, |∇uT (x)| = |∇u(T−1x)|, and Tu0(T−1x) = u0(x) we
find

ED
1 [uT ] = ED

1 [u]

and thus uT ∈ MD
1 . Applying this observation to u and u+y we have uT ∈ MD

1 and uT+Ty =
(u+y)T ∈ MD

1 . By the above representation of MD
1 this means that for every T ∈ O(2) there

exists a t ∈ R with Ty = ty. However, this can only happen for y=0, and thus MD
1 contains

just one unique minimizer u. In conclusion for all T ∈ O(2) we have

u(x) = Tu(T−1x) for L2-a. e. x ∈ Ω . (3.9)

Using T = 1
|x|
(
x1

x2

−x2

x1

)
in (3.9) we deduce

u(x) = v(|x|) x|x| + ṽ(|x|) (−x2, x1)|x| for L2-a. e. x ∈ Ω ,

where we abbreviated the component functions on the x1-axis as follows:

v(t) := u1(t, 0) and ṽ(t) := u2(t, 0) .

Here, it should be noted that as another consequence of (3.9) these formulas define functions v
and ṽ in W 1,1(1, 2). Next we compute the quantities in ED

1 [u]:

|∇u(x)|2 = v′(|x|)2 + ṽ′(|x|)2 +
(
v(|x|)
|x|

)2

+

(
ṽ(|x|)
|x|

)2

for L2-a. e. x ∈ Ω ,

|u(x)− u0(x)|2 = |v(|x|) −M |2 + ṽ(|x|)2 for H1-a. e. x ∈ ∂B1 ,

|u(x)− u0(x)|2 = v(|x|)2 + ṽ(|x|)2 for H1-a. e. x ∈ ∂B2 .





(3.10)
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Let us consider v̂(x) := v(|x|) x
|x| . Replacing u with v̂ on the left-hand sides of (3.10) corresponds

to replacing ṽ with 0 on the right-hand sides. Thus we have ED
1 [v̂] ≤ ED

1 [u], and by the above
uniqueness of the minimizer u we deduce v̂ = u; in other words ṽ vanishes and we have verified
the representation claimed in the lemma.

It remains to establish the minimizing property of v. To this end we apply (3.10) (with
ṽ = 0) and get by radial integration

ED
1 [u] =

∫

B2\B1

√
1 + v′(|x|)2 + |x|−2v(|x|)2 dx+

∫

∂B1

|v(|x|) −M | dH1(x) +

∫

∂B2

|v(|x|)| dH1(x)

= 2πH [v] .

Writing ŵ(x) := w(|x|) x
|x| for an arbitrary w ∈ W 1,1(1, 2) an analogous computation gives

ED
1 [ŵ] = 2πH [w] and thus

2πH [v] = ED
1 [u] ≤ ED

1 [ŵ] = 2πH [w] .

Hence, v minimizes H and the uniqueness of v follows from the uniqueness of u.

We will now be concerned with further properties of the 1-dimensional minimizer v ∈
W 1,1(1, 2) found in the previous lemma. We recall that functions w ∈ W 1,1(1, 2) have a contin-
uous representative on the compact interval [1, 2]. In the following we identify these functions
with that representative and we will simply write w(1) and w(2) for the values of the trace as
we already did in Lemma 3.7.

Lemma 3.8. Let M ≥ 0. The function v from Lemma 3.7 has the following properties:

0 ≤ v ≤M , (3.11)

v is non-increasing , (3.12)

v(2) = 0 . (3.13)

Proof. The proof rests on the fact that v minimizes the functional H defined in (3.8)
It is easily checked that ṽ := max{min{v,M}, 0} satisfies H [ṽ] ≤ H [v]. By the uniqueness

assertion in Lemma 3.7 we thus get ṽ = v and (3.11).
To prove (3.12) we fix t0 ∈ [1, 2] and define

ṽ(t) :=

{
v(t) for t ≤ t0

min{v(t), v(t0)} for t ≥ t0
.

It is not difficult to show H [ṽ] ≤ H [v] (using v ≥ 0), and exploiting the uniqueness of v again
we find ṽ = v. In other words this means v(t) ≤ v(t0) for t ≥ t0 and (3.12) is proved.

Finally, we compare v with ṽ := v−v(2). Keeping in mind that we already know v ≥ v(2) ≥ 0
from (3.11) and (3.12) it can be checked that

H [ṽ] ≤ H [v]− |v(2)|

holds. Since v is minimizing, we thus get (3.13) .

Lemma 3.9. Let M ≥ 0. We consider the function v from Lemma 3.7 and define vε ∈
W 1,1(1, 2) by

vε(t) :=

{
v(t+ ε) for t ≤ 2− ε

0 for t ≥ 2− ε
.

Then for 0 < ε ≤ 2 we have

H [vε] ≤ H [v]− ε(1−1
2ε)(1− log 2)v(1+ε) + 2ε . (3.14)
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Proof. By Lemma 3.8 we have v(2)=0 and thus vε is continuous at 2−ε and in W 1,1(1, 2).
Moreover, using the definition of H in (3.8) and the definition of vε we have

H [vε] =

∫ 2

1

√
t2(1 + vε′(t)2) + vε(t)2 dt+ |vε(1)−M |

≤
∫ 2

1+ε

√
(t−ε)2(1 + v′(t)2) + v(t)2 dt+ 2ε+ |v(1+ε)−M | .

Noting

|v(1+ε)−M | ≤ |v(1)−M |+
∫ 1+ε

1

|v′(t)| dt

≤ |v(1)−M |+
∫ 1+ε

1

t
√
1 + v′(t)2 + t−2v(t)2 dt

we thus get

H [vε] ≤ H [v]−
∫ 2

1+ε

[√
t2(1 + v′(t)2) + v(t)2 −

√
(t−ε)2(1 + v′(t)2) + v(t)2

]
dt+ 2ε

= H [v]−
∫ 2

1+ε

(2εt− ε2)(1 + v′(t)2)√
(t−ε)2(1 + v′(t)2) + v(t)2 +

√
t2(1 + v′(t)2) + v(t)2

dt+ 2ε

=: H [v]− I + 2ε .

Next we estimate

I ≥
∫ 2

1+ε

(2εt− ε2)(1 + v′(t)2)

2
√
t2(1 + v′(t)2) + v(t)2

dt ≥ (ε−1
2ε

2)II ,

where we introduced

II :=

∫ 2

1+ε

1 + v′(t)2√
1 + v′(t)2 + t−2v(t)2

dt .

Exploiting the properties from Lemma 3.8 we control II as follows:

II =

∫ 2

1+ε

√
1 + v′(t)2 + t−2v(t)2 dt−

∫ 2

1+ε

t−2v(t)2√
1 + v′(t)2 + t−2v(t)2

dt

≥
∫ 2

1+ε

|v′(t)| dt−
∫ 2

1+ε

v(t)

t
dt

≥ v(2)− v(1+ε)− v(1+ε)

∫ 2

1

dt

t

= (1− log 2)v(1+ε) .

(3.15)

Collecting the estimates we end up with (3.14).

Proof of Theorem 1.5. It suffices to treat the case M≥0, for which Lemma 3.8 and Lemma 3.9
are available. We denote by v the function from Lemma 3.7 and recall that we work with a
continuous representative of v on [1, 2]. Assuming v(1) > 2

1− log 2 , we may find an ε>0 such that

(1−1
2ε)(1− log 2)v(1+ε) > 2. Then Lemma 3.9 gives H [vε] < H [v] for this ε, which contradicts

the minimizing property of v. Consequently, we must have v(1) ≤ 2
1− log 2 and by Lemma 3.8

we deduce

0 ≤ v ≤ 2

1− log 2
.

Recalling u(x) = v(|x|) x
|x| the claim follows.
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Remark 3.10. The bound 2
1−log 2 in Theorem 1.5 is not optimal and some refinements are

possible. For instance an improved bound can be obtained using the Jensen type inequality

∫ 2

1+ε

√
1 + v′(t)2 dt ≥

√
(1−ε)2 + (v(2)− v(1+ε))2

in the estimation of II in (3.15). However, we do not know how an optimal bound can be reached
and we abandon the discussion of further refinements.

3.3 Santi’s example, revisited

In this subsection we will revisit Santi’s example from [74]. Arguing as in Section 3.2 we will
provide similar examples — still in the scalar case N=1 — involving a more general class of
integrands. This generalization of the example will be useful in Section 3.4.

We start recalling that the construction of [74] works on two-dimensional domains

{
x ∈ B2

l : x /∈ B2
r (±l,±l) for the four possible choices of signs

}
, (3.16)

Figure 1:

Santi’s domain

where l and r are positive parameters such that l < r <
√
2 l.

These domains are axially symmetric, starshaped Lipschitz-
domains containing the origin and bounded by four circular arcs;
see the figure on the right. For the purposes of Proposition 6.4 be-
low it will be convenient to work with a suitable one-parameter-
family of domains. Thus we choose l = r√

2
+ 1

4 , which is possible

for all r ≥ 1, and denote the corresponding domain in (3.16) by
Ωr

S . For the moment it suffices to deal with ΩS := Ω1
S .

On ∂ΩS we consider the piecewise constant boundary values
x 7→Msgn(x1x2), whereM≥0 is fixed. In other words we choose
some u0 ∈W 1,1(ΩS) such that

u0(x) =Msgn(x1x2) for H1-a. e. x ∈ ∂ΩS , (3.17)

and we let D := u0 +W 1,1
0 (ΩS). Then we have:

Proposition 3.11. Let n=2, N=1, and Ω=ΩS. Assume that a C2-integrand f : R2 → [0,∞)
satisfies (H1), (H2), and

f(z) = f̃(|z|) ≥ f∞(z) = |z| for all z ∈ R
2 (3.18)

and some f̃ : [0,∞) → [0,∞). Then there exists a generalized minimizer û ∈W 1,1(ΩS) of F in
D which is bounded independently of M , precisely

sup
ΩS

|û| ≤ 2f(0) .

In particular, if M>2f(0) holds, then û+y is a generalized minimizer for every y ∈ R with
|y| ≤M−2f(0), and generalized minimizers of F in D are not unique.

Following the idea of Santi [74] we will compare minimizers on ΩS with minimizers on the
two-dimensional annulus B2

2 \B2
1 . Therefore, we look at the integral

∫

B2\B1

f(∇w) dx +

∫

∂B1

|M−w| dH1 +

∫

∂B2

|w| dH1 for w ∈ W 1,1(Ω) . (3.19)

Analogously to Section 3.2 we have:
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Lemma 3.12. Assume that f is as in Proposition 3.11. Then there exists a unique minimizer
u of (3.19) among all scalar functions w ∈ W 1,1(Ω) and it can be written as

u(x) = v(|x|) for x ∈ Ω .

Here, v is the unique minimizer in W 1,1(1, 2) of the 1-dimensional scalar integral H, defined by

H [w] :=

∫ 2

1

f̃(|w′(t)|)t dt+ |w(1)−M |+ 2|w(2)| for w ∈W 1,1(1, 2) .

We omit the proof of Lemma 3.12 which exploits the radial symmetry of the boundary values
and is similar to the proof of Lemma 3.7.

Lemma 3.13. Assume that f is as in Proposition 3.11. Then the unique minimizer u of (3.19)
is bounded independently of M , precisely

0 ≤ u ≤ 2f(0) on B2 \B1 .

Proof. We proceed as for Theorem 1.5 in Section 3.2. We first note that Lemma 3.8 carries
over to the function v in Lemma 3.12 with the same proof. Thus, v is nonnegative and non-
increasing with v(2) = 0. Now for an arbitrary ε>0 we may use the comparison function vε
from Lemma 3.9 in the present situation. We have

H [vε] =

∫ 2

1

f̃(|v′ε(t)|)t dt+ |vε(1)−M |

≤
∫ 2

1+ε

f̃(|v′(t)|)(t−ε) dt+ |v(1+ε)−M |+ 2εf̃(0)

≤
∫ 2

1+ε

f̃(|v′(t)|)t dt+
∫ 1+ε

1

|v′(t)| dt+ |v(1)−M |+ ε

[
2f̃(0)−

∫ 2

1+ε

f̃(|v′(t)|) dt
]

≤ H [v] + ε

[
2f̃(0)−

∫ 2

1+ε

|v′(t)| dt
]
,

where we exploited in the last estimate that f̃(s) ≥ s holds by (3.18). Since v minimizes H , the
term in square brackets in the last line must be nonnegative, that is

v(1+ε) ≤ 2f̃(0) = 2f(0) .

Recalling u(x) = v(|x|) we arrive at the claim.

After these preparations we now establish Proposition 3.11. We remark that — with the
preceding lemmas at hand — the remaining arguments are close to [74]. Nevertheless, for
convenience of the reader we provide a proof in our terminology.

Proof of Proposition 3.11. We first apply Corollary 1.13 (recall that (H3) holds trivially for
N=1) which tells us that all generalized minimizers of F are of class W 1,1. Then we start with
an arbitrary generalized minimizer w ∈ W 1,1(ΩS) of F in D and we recall that the boundary
values in (3.17) are odd in both variables x1 and x2. It follows that the minimizing property
is preserved if we first pass from w to x 7→ −w(−x1, x2) and then to the convex combination
x 7→ 1

2 [w(x)−w(−x1, x2)]. The latter minimizer is odd in x1, and by an analogous argument
for x2 we may find a generalized minimizer û of F in D which is odd in both variables. This
minimizer û will be fixed in the following and we record that it vanishes on both coordinate
axes (in the sense of trace).

Next we consider the upper right quarter Ω̃S of ΩS , that is

Ω̃S := {x ∈ ΩS : x1 > 0, x2 > 0} .
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The boundary ∂Ω̃S is decomposed into a circular arc ∂1Ω̃S and two line segments ∂2Ω̃S , and we
notice that û has trace 0 on ∂2Ω̃S . For an arbitrary w ∈ W 1,1(Ω̃S) we now define w̃ ∈ BV (ΩS)
by

w̃(x) :=

{
w(x) for x ∈ Ω̃S

û(x) for x ∈ ΩS \ Ω̃S

and observe FD[û] ≤ FD[w̃], by the minimizing property of û. However, some terms in this

inequality cancel out and we find that the restriction of û to Ω̃S minimizes
∫

Ω̃S

f(∇w) dx +

∫

∂1Ω̃S

|M − w| dH1 +

∫

∂2Ω̃S

|w| dH1

among all w ∈ W 1,1(Ω̃S).
Now we come back to the nonnegative minimizer u from Lemma 3.12 and Lemma 3.13. With

a slight abuse of notation we shift the annulus in Lemma 3.12 in such a way that its center is
the point ( 1√

2
+ 1

4 ,
1√
2
+ 1

4 ) but still denote it by B2 \ B1. Recalling the construction of ΩS we

have thus arranged Ω̃S ⊂ B2 \B1 and ∂1Ω̃S ⊂ ∂B1. Arguing in the same way as we did with û

before we find that the restriction of u to Ω̃S minimizes
∫

Ω̃S

f(∇w) dx +

∫

∂1Ω̃S

|M − w| dH1 +

∫

∂2Ω̃S

|u− w| dH1

among all w ∈ W 1,1(Ω̃S). The minimizing properties of û and u on Ω̃S enable us to apply the

comparison principle from Lemma 2.10. Recalling u ≥ 0 we come out with û ≤ u on Ω̃S and
taking Lemma 3.13 into account we arrive at

û ≤ 2f(0) on Ω̃S .

Moreover, by a minimum principle (which is a simple variant of those in Appendix D) we have

û ≥ 0 and thus |û| ≤ 2f(0) on Ω̃S . By the symmetries of û this inequality holds on the whole
domain ΩS and we have obtained the claimed estimate which is independent of M .

Finally, let us assume that M>2f(0) holds, which implies that û is bounded away from u0
on ∂ΩS . If we add to û some y ∈ R with |y| ≤ M − 2f(0), then we increase the integrand of
the boundary integral in (1.8) by |y| on one half of ∂ΩS and we decrease it by |y| on the other
half. Thus, we have FD[û+ y] = FD[û] and û+ y is a generalized minimizer of F in D.

3.4 An N -parameter-family of minimizers

Returning to the vector-valued setting with an arbitrary N ∈ N we will now demonstrate that
the assumption (H4) in Theorem 1.16 is inevitable. To this end we will apply the results of
Section 3.1 to construct an integrand f which satisfies (H1), (H2), and (1.12), but for which
(H4) fails. Then we will show that the generalized minimizers of F in a suitable Dirichlet class
form an N -parameter-family.

Indeed in the following construction we use the domain ΩS from the beginning of Section 3.3
and the boundary values x 7→ (Msgn(x1x2), 0, . . . , 0) on ∂ΩS. As in Section 3.3 we write
D = u0 +W 1,1

0 (ΩS) for the scalar Dirichlet class corresponding to a function u0 ∈ W 1,1(ΩS)
with u0(x) = Msgn(x1x2) for H1-a. e. x ∈ ∂Ωs. Additionally, we introduce the vector-valued
Dirichlet class

D × {0} = (u0, 0, . . . , 0) +W 1,1
0 (ΩS ,R

N ) . (3.20)

With this terminology we may state:

Theorem 3.14. Let n=2 and Ω = ΩS. We fix µ>2 and the Dirichlet class D×{0} from (3.20).
If M ≥M0 holds for some positive constant M0, depending only on N and µ, then there exist a
smooth convex integrand f : RN2 → [0,∞) and a generalized minimizer u of F in D×{0} with
the following properties:
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• (H1), (H2µ), and (1.12) are valid, but (H4) fails for f ;

• for all y ∈ RN with |y| ≤ 1
2M the function u+y is a generalized minimizer of F in D×{0}.

Proof of Theorem 3.14. It suffices to treat the case 2<µ≤3 since (H2µ) is a weaker condition
when µ is larger. The bound µ≤3 will allow an application of Proposition 3.11.

Now we start defining g̃ : RN → [0,∞) by

g̃(y) :=

{
|y1| for |y′| ≤ |y1|
|y|2
2|y′| for |y′| > |y1|

,

Figure 2:

The unit ball of g̃

where y = (y1, y′) ∈ R ×RN−1. Then g̃ is 1-homogeneous, convex, and
locally C1,1 on RN \ {0}. In fact, this properties can be seen looking only
at the unit ball of g̃ which can be visualized for N=2 as the union of a
square and two balls (see the figure on the right) and in higher dimensions
by rotating the two-dimensional picture. For our purposes it is crucial
that this unit ball of g̃ is convex but not strictly convex. We now define
g : RN2 → [0,∞) by

g(z) := g̃(|z1|, |z2|, . . . , |zN |) ,

where zα ∈ R2 denotes the αth row of z ∈ RN2 as in (1.12). Then g
is also 1-homogeneous, convex, and locally C1,1 on RN2 \ {0}. Now we
apply Proposition 3.1 to obtain a smooth integrand f : RN2 → [0,∞)
with (H1), (H2µ), and

f ≥ f∞ = g on R
N2 ,

where the last inequality relies on the hypothesis µ>2; compare Remark 3.2. Moreover, in view
of Proposition 3.4 we may write

f(z) = f̃(|z1|, |z2|, . . . , |zN |)

for some function f̃ : [0,∞)N → [0,∞). Since only the first component function of the above
boundary values does not vanish, we now concentrate on the first argument of f̃ : We introduce

f♦(ξ) := f̃(|ξ|, 0, . . . , 0) for ξ ∈ R
2 ,

and the corresponding integral

F♦[w] :=

∫

ΩS

f♦(∇w) dx

for scalar functions w on ΩS . Next we observe that f is convex and even in each of its variables.
Thus zi 7→ f(z) attains its minimum for zi = 0 and we have the inequality

f(z) ≥ f♦(z
1) for z ∈ R

N2 , (3.21)

which will be useful below. From the above construction and the corresponding properties of f
we deduce that f♦ satisfies (H1), (H2µ), and

f♦(ξ) ≥ (f♦)
∞(ξ) = g̃(|ξ|, 0, . . . , 0) = |ξ| .

In particular, (3.18) holds for f♦ (in place of f) and we may apply Proposition 3.11 (remember
that we assumed µ≤3) to the scalar integral F♦. We come out with a generalized minimizer û
of F♦ in D such that

sup
ΩS

|û| ≤ 2f♦(0) = 2f(0)
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holds. Adding zero-components to û we define the RN -valued function

u := (û, 0, . . . , 0)

and we observe

FD×{0}[u] = FD
♦ [û] ≤ FD

♦ [w1] ≤ FD×{0}[w] for all w = (w1, w2, . . . , wN ) ∈ BV (ΩS ,R
N ) ,

where we used (3.21) to derive the last inequality. In particular, u is a generalized minimizer of
F in D×{0}.

In order to construct more minimizers we consider an arbitrary y ∈ R
N with |y| ≤ 1

2M .
Then we have

|u0 − û− y1| − |y′| ≥ |u0| − |û| −
√
2|y| ≥

(
1−

√
2

2

)
M − 2f(0) on ∂ΩS ,

where we decomposed y = (y1, y′) ∈ R×RN−1 as before. We chooseM0 large enough such that
for M ≥M0 the right-hand side of the previous estimate is nonnegative, and we get

|y′| ≤ |u0 − û− y1| on ∂Ωs . (3.22)

We record that the preceding choice ofM0 depends only on the construction of f , which in turn
depends only on N and µ. Recalling (1.8) we observe that FD×{0}[u+y] and FD

♦ [û+y1] differ
at most in the boundary integrals. Written out these integrals are

∫

∂ΩS

g̃(u0 − û− y1, y′) dH1 and

∫

∂ΩS

|u0 − û− y1| dH1 .

By (3.22) and the definition of g̃ these two quantities indeed coincide and hence we also have

FD×{0}[u+y] = FD
♦ [û+y1] .

However, by the last part of Proposition 3.11 (note that |y1| ≤ 1
2M ≤ M−2f(0) by the choice

of M0) we know that û+y1 is a generalized minimizer of F♦, and thus we moreover have

FD
♦ [û+y1] = FD

♦ [û] .

Collecting the above equalities we come out with

FD×{0}[u+y] = FD×{0}[u] .

Consequently, u+y is a generalized minimizer of F in D×{0} for all y ∈ RN with |y| ≤ 1
2M .

We close this section with a comment on the hypothesis µ>2.

Remark 3.15. The assumption µ>2 in Theorem 3.14 is related to Serrin’s classification [80]
of non-uniformly elliptic equations. In particular, Serrin showed that the classical Dirichlet
problem for equations with a well-defined Bernstein genre gB is generally solvable if and only
if one has gB≤1. On the contrary, for gB>1 general solvability fails if a part of the boundary
has negative generalized mean curvature. In our setting the same phenomenon occurs. In fact,
µ essentially corresponds to gB+1, and revisiting the arguments of this section we see that µ>2
was needed to construct an integrand with (3.18); compare Remark 3.2. In turn (3.18) was
exploited in Lemma 3.13 which gives (for large M) non-attainment of the boundary values on
a negatively curved part of boundary. Finally, this non-attainment implies that the classical
Dirichlet problem is not solvable.
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4 Local boundedness

In this section we will prove Theorem 1.11. Let us briefly sketch the proof. We will start
with an approximation procedure based on the application of Ekeland’s variational principle
in the Dirichlet class D = u0 + W 1,1

0 (Ω,RN ). Then exploiting the structure condition (H3)
we will use Moser’s iteration technique to obtain interior Lp(k)-estimates for the functions uk
in a minimizing sequence. Since the exponents p(k) tend to ∞, we may deduce the claimed
L∞-estimate for minimizers u.

We assume that the hypotheses of Theorem 1.11 are valid, and we fix a generalized minimizer
u ∈ BV (Ω,RN ) of F in D. Then by Theorem 1.8 there exists a minimizing sequence (wk)k∈N

for F in D such that wk converges to u in L1(Ω,RN ). Passing possibly to a subsequence we
may assume

F [wk] ≤ inf
D
F +

1

k2
.

Next we will apply Lemma 2.11 to the functional F on the Dirichlet class D. Here, D is endowed
with the metric dD defined by

dD(u, v) :=

∫

Ω

|∇u−∇v| dx for u, v ∈ D .

With respect to this metric the semicontinuity assumption in Lemma 2.11 is satisfied as a
consequence of Fatou’s lemma. Applying Lemma 2.11 to each wk we get functions uk ∈ D such
that

dD(uk, wk) ≤
1

k
, (4.1)

F [uk] ≤ F [w] +
1

k
dD(uk, w) for all w ∈ D . (4.2)

In particular, (4.1) implies by Poincaré’s inequality that uk − wk converges to 0 strongly in
W 1,1(Ω,RN ) and thus we have the convergence

uk −→
k→∞

u strongly in L1(Ω,RN ) (4.3)

to the given minimizer u. For every ϕ ∈W 1,1
0 (Ω,RN ) we know by (4.2) that the function

R → R, a 7→ F [uk + aϕ] +
|a|
k

∫

Ω

|∇ϕ| dx

has a minimum at 0. Writing down the first-order criteria for this minimality we have

d

da a=0+

[
F [uk+aϕ] +

a

k

∫

Ω

|∇ϕ| dx
]
≥ 0 ,

d

da a=0−

[
F [uk+aϕ]−

a

k

∫

Ω

|∇ϕ| dx
]
≤ 0 .

Computing the derivatives we then end up with the perturbed Euler equation

∣∣∣∣
∫

Ω

∇f(∇uk) · ∇ϕdx
∣∣∣∣ ≤

1

k

∫

Ω

|∇ϕ| dx for all ϕ ∈W 1,1
0 (Ω,RN ) . (4.4)

In the following lemmas we will implement the announced variant of Moser’s iteration tech-
nique, permanently assuming that the hypotheses of Theorem 1.11 hold. In particular, we will
use the structure condition (H3).
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Lemma 4.1. We fix t≥1 and suppose that (4.4) holds for uk ∈ D with k ≥ 2t
γ
. Then we have

|uk|t ∈ L1
loc(Ω) =⇒ |uk|t ∈ W 1,1

loc (Ω) ,

and moreover for every s≥1 and every η ∈ C∞
cpt(Ω) with Mη := maxΩ |∇η| > 0 the following

Caccioppoli type estimate holds true:
∫

Ω

|∇(ηs|uk|t)| dx ≤ C(t2+s)tMη

[
M−t

η λtt−t

∫

Ω

ηt+s−1 dx+

∫

Ω

ηs−1|uk|t dx
]
.

Here, C depends only on Nn, γ, and Γ.

Proof. We first recall that by Lemma 2.7 and Lemma 2.8 we have

|∇f(z)| ≤ C , (4.5)

∇f(z) · z ≥ γ|z| − λ . (4.6)

We define for H>0 the truncation operator THy := min{y,H}. Setting ϕ := ηs(TH |uk|)t−1uk
we compute

∇ϕ = sηs−1(TH |uk|)t−1uk ⊗∇η + ηs(TH |uk|)t−1∇uk
+ ηs(t−1)|uk|t−3uk ⊗ (uTk∇uk)1{|uk|≤H}

(where the right-hand side is to be understood as 0 at the zeros of uk) and

|∇ϕ| ≤ sηs−1(TH |uk|)t−1|uk||∇η|+ tηs(TH |uk|)t−1|∇uk| . (4.7)

In particular, we infer ϕ ∈ W 1,1
0 (Ω,RN ) and thus we may use ϕ as a test function in (4.4).

Rearranging the terms and using (4.5) we come out with

∫

Ω

ηs
[
(TH |uk|)t−1∇f(∇uk) · ∇uk + (t−1)|uk|t−3(uTk∇f(∇uk)) · (uTk∇uk)1{|uk|≤H}

]
dx

≤ Cs

∫

Ω

ηs−1|uk|t|∇η| dx+
1

k

∫

Ω

|∇ϕ| dx .

Next we use (4.6) for the first and (H3) for the second term on the left-hand side. We shift the
terms containing λ to the right-hand side and get

γ

∫

Ω

ηs(TH |uk|)t−1|∇uk| dx ≤ λt

∫

Ω

ηs|uk|t−1 dx+ Cs

∫

Ω

ηs−1|uk|t|∇η| dx +
1

k

∫

Ω

|∇ϕ| dx .

Employing (4.7) we remove the remaining occurrence of ∇ϕ on the right-hand side and find

γ

∫

Ω

ηs(TH |uk|)t−1|∇uk| dx ≤ λt

∫

Ω

ηs|uk|t−1 dx+ Cs

∫

Ω

ηs−1|uk|t|∇η| dx

+
t

k

∫

Ω

ηs(TH |uk|)t−1|∇uk| dx .

Thus, for k ≥ 2t
γ

we may absorb the last term, and passing to the limit H→∞ via Fatou’s
lemma, we arrive at

∫

Ω

ηs|uk|t−1|∇uk| dx ≤ C

[
λt

∫

Ω

ηs|uk|t−1 dx + sMη

∫

Ω

ηs−1|uk|t dx
]
.

By the inequality
|∇(ηs|uk|t)| ≤ tηs|uk|t−1|∇uk|+ sMηη

s−1|uk|t

we deduce ∫

Ω

|∇(ηs|uk|t)| dx ≤ C(t2 + s)
[
λ

∫

Ω

ηs|uk|t−1 dx+ tMη

∫

Ω

ηs−1|uk|t dx
]
.

A final application of Young’s inequality gives the claimed estimate.
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Combining Lemma 4.1 with Sobolev’s embedding we deduce a reverse Hölder inequality:

Lemma 4.2. We fix t≥1 and suppose that (4.4) holds for uk ∈ D with k ≥ 2t
γ
. Then for

concentric balls Br(x0)⊂BR(x0)⊂Ω and η ∈ C∞
cpt(Ω) with 1Br(x0) ≤ η ≤ 1BR(x0) and |∇η| ≤

2
R−r

we have

[
1

Rn

∫

BR(x0)

(ηn|uk|)
n

n−1 tη−n dx

]n−1
n

≤ CP

Rt3

R−r

[
(R−r)tλtt−t +

1

Rn

∫

BR(x0)

(ηn|uk|)tη−n dx

]

with a constant CP ≥ 1, depending only on n, N , γ, and Γ.

Proof. We set s := 1−n+nt and note 1≤s≤nt. With this choice of s the claim follows from the
previous lemma by Sobolev’s embedding.

Proof of Theorem 1.11. We will iterate the inequality in Lemma 4.2. To this aim we introduce
for j ∈ N ∪ {0} and k ∈ N the abbreviations

tj :=
( n

n− 1

)j
,

Ψk(j) :=

[
1

Rn

∫

BR(x0)

(ηn|uk|)tjη−n dx

] 1
tj

,

Aj :=

(
CPRt

3
j

R− r

) 1
tj

,

where CP denotes the constant from Lemma 4.2. With this terminology the estimate in
Lemma 4.2 reads

Ψk(j+1) ≤ Aj

[
R− r

tj
λ+Ψk(j)

]
provided that k ≥ 2tj

γ
,

and iterating this inequality we conclude for m ∈ N

Ψk(m+1) ≤
m∑

l=0

( m∏

j=l

Aj

)
R − r

tl
λ+

( m∏

j=0

Aj

)
Ψk(0) provided that k ≥ 2tm

γ
.

At this stage we may pass to the limit k→∞. To this end we define Ψ(j) analogous to Ψk(j),
but with u instead of uk. Then using Fatou’s lemma on the left-hand side and the strong
convergence in (4.3) on the right-hand side, we may omit the indices k in the last formula. Since
the infinite product

∞∏

j=0

Aj =
( CPR

R− r

)∑∞
j=0

(
n−1
n

)j ∞∏

j=0

t
3
tj

j =
( CPR

R− r

)n( n

n− 1

)3∑∞
j=0 j

(
n−1
n

)j

converges, we infer

Ψ(m+1) ≤ C
( R

R− r

)n[
(R− r)λ

∞∑

l=0

(n− 1

n

)l
+Ψ(0)

]
.

Passing m→ ∞ and applying Lemma 2.1 we end up with

sup
Br(x0)

|u| ≤ C
( R

R − r

)n[
(R− r)λ +

1

Rn

∫

BR(x0)

|u| dx
]
.
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5 Uniqueness

Up to the end of Section 5.3 we will impose the hypotheses of Theorem 1.10 on the integrand
f and we will consider bounded generalized minimizers of the integral F in (1.1) which are a
priori in the space BV (Ω,RN ) ∩ L∞(Ω,RN ). If a boundedness condition for an approximating
sequence is imposed, then by a result of [15] there exists one such minimizer which is in fact
in W 1,1(Ω,RN ), with an additional L logL-bound for the derivative. Basically following the
estimates of [15] we will now prove that this regularity result is valid for each minimizer.

Let us briefly sketch our line of argument. As in Section 4 we apply Ekeland’s variational
principle in Section 5.1 to construct a minimizing sequence (uk)k∈N which stays close to the given
minimizer u. However, this approach leads to the occurrence of an additional perturbation term.
We will show that it is convenient — in particular for the purposes of Section 5.2 — to apply
Ekeland’s principle in the Sobolev spaceW−1,1 leading to a rather harmless14 perturbation. We
remark that even though Ekeland’s principle is nowadays a standard tool, this particular way
of applying seems to be new.

Proceeding with the proof we exploit that u is in L∞ via a suitable regularization procedure,
which is partially inspired by arguments of [26]. In this way we derive some uniform exponential
integrability for the sequence uk. In the next step we establish estimates involving ∇2uk and
then we provide uniform L logL-estimates for ∇uk. In Section 5.3 we complete the regularity
proof, and we deduce Theorem 1.10 and Corollary 1.13. Finally, Section 5.4 is devoted to the
proof of Theorem 1.16 and Theorem 1.3.

Now let us go into the details.
First we observe that ∇f is bounded by Lemma 2.7 and thus F is Lipschitz, that is

|F [w̃]− F [w]| ≤ L‖w̃ − w‖W 1,1(Ω,RN ) for all w, w̃ ∈ W 1,1(Ω,RN ) , (5.1)

where the constant L depends only on Nn and Γ and is fixed for the remainder of the section.
For the purpose of proving regularity we fix an arbitrarily given bounded generalized mini-

mizer u of F in a Dirichlet class, say D̃ = ũ0 +W 1,1
0 (Ω,RN). Setting

M := sup
Ω

|u| (5.2)

we then have
u ∈ BV (Ω,RN ) ∩ L∞

M (Ω,RN )

(see (2.1) for the definition of L∞
M ). By Gagliardo’s result [40, Teorema 1.II] and a cut-off

argument there exists a function

u0 ∈ W 1,1(Ω,RN ) ∩ L∞
M (Ω,RN )

which coincides with u on ∂Ω in the sense of trace. By Lemma 2.9 u minimizes with respect to
its own boundary values, precisely u is a generalized minimizer of F not only in D̃ but also in

D := u0 +W 1,1
0 (Ω,RN ) .

5.1 Regularization and approximation

In this subsection we implement the announced approximation procedure relying on the appli-
cation of Lemma 2.11 in W−1,1.

By Lemma 2.3 there exists a sequence (wk)k∈N in D such that

wk converges to u in L1(Ω,RN) (5.3)

14We could work with even weaker perturbations. Actually, instead of W−1,1(Ω,RN ) we might employ every
complete metric space into which W−1,1(Ω,RN ) is continuously embedded.
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and (Ln, Dwk) converges strictly to (Ln, Du) in the sense of measures on Ω. Moreover, as the
following argument shows we may assume that (wk)k∈N is a sequence in L∞

M (Ω,RN ).
Indeed, if (wk)k∈N were not in L∞

M (Ω,RN ), we would replace it by the truncated sequence
(w̃k)k∈N defined by

w̃k(x) :=




wk(x) if |wk(x)| ≤M
wk(x)

|wk(x)|
M if |wk(x)| > M

for x ∈ Ω and k ∈ N .

Since u and u0 are in L
∞
M (Ω,RN ) the functions w̃k are still in D and converge to u in L1(Ω,RN ).

Noting
|∇w̃k| ≤ |∇wk| , (5.4)

we moreover find that Dw̃k converges to Du weakly-∗ in the sense of measures on Ω. Then using
(5.4) again and invoking semicontinuity we find that (Ln, Dw̃k) converges strictly to (Ln, Du)
in the sense of measures on Ω.

By the continuity part of Theorem 2.4 (applied as in Remark 2.5; recall u = u0 on ∂Ω) we
deduce

F [wk] = FD[wk] −→
k→∞

FD[u] = inf
D
F ,

where we used (1.9) for the last equality. Thus the sequence (wk)k∈N is minimizing for F in D.
Replacing (wk)k∈N by a subsequence, if necessary, we assume that

F [wk] ≤ inf
D
F +

1

8k2
(5.5)

holds for all k ∈ N.
We now fix some number

p > n , (5.6)

depending only on the dimension n. In order to work with a W 1,p-regularization we reduce
to a minimizing sequence of class W 1,p: First approximating the boundary values we choose a
sequence15 (u0;k)k∈N in W 1,p(Ω,RN ) ∩ L∞

M (Ω,RN ) such that

‖u0;k − u0‖W 1,1(Ω,RN ) ≤
1

8Lk2

holds for all k ∈ N, where L is the constant from (5.1). Then we define

Dk :=
(
u0;k +W 1,p

0 (Ω,RN )
)

and we record that Dk ⊂ W 1,p(Ω,RN ) holds by the above choice of u0;k. Since wk−u0 is in

W 1,1
0 (Ω,RN ) ∩ L∞

2M (Ω,RN ), we may find a function vk ∈ Dk ∩ L∞
3M (Ω,RN ) with

‖(vk − u0;k)− (wk − u0)‖W 1,1(Ω,RN ) ≤
1

8Lk2

and consequently

‖vk − wk‖W 1,1(Ω,RN ) ≤
1

4Lk2
. (5.7)

Using (5.1) we get

inf
D
F = inf

u0+W
1,p
0 (Ω,RN )

F ≤ inf
Dk

F +
1

8k2

15Such a sequence can be obtained, for instance, by mollifying an extension of u0 to all of Rn
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and invoking (5.5) we come up with

F [vk] ≤ F [wk] +
1

4k2
≤ inf

D
F +

3

8k2
≤ inf

Dk

F +
1

2k2
.

We choose16 a convex C2-function g : RN → [0,∞) such that for all y ∈ RN we have

g(y) = 0 whenever |y| ≤ 1 ,

exp(|y|4) ≤ 3 + g(y) .

In particular, g grows exponentially. Next, we introduce the abbreviations

Vk := 1 +

∫

Ω

(1+|∇vk|2)
p
2 dx ,

fk(z) := f(z) +
1

2Vkk2
(1+|z|2) p

2 ,

and we notice that (H2) and some computations give

[
γ(1 + |z|)−3 +

c

Vkk2
(1 + |z|)p−2

]
|z̃|2 ≤ ∇2fk(z)(z̃, z̃)

≤
[
Γ(1 + |z|)−1 +

C

Vkk2
(1 + |z|)p−2

]
|z̃|2

(5.8)

for all z, z̃ ∈ RNn, with constants c and C depending only17 on n and N . Moreover, letting

Fk[w] :=





∫

Ω

fk(∇w) dx +

∫

Ω

g
( w

3M

)
dx for w ∈ Dk

∞ for w ∈W−1,1(Ω,RN ) \ Dk

we define auxiliary functionals Fk. Noting g
(

vk
3M

)
≡ 0, we have

Fk[vk] ≤ F [vk] +
1

2k2
≤ inf

Dk

F +
1

k2
≤ inf

W−1,1(Ω,RN )
Fk +

1

k2
,

and from Lemma 2.6 we deduce that Fk is lower semicontinuous with respect to convergence
in the norm of W−1,1(Ω,RN ); thus we may apply Ekeland’s variational principle to each Fk

coming out with a sequence (uk)k∈N in W−1,1(Ω,RN ) such that

‖uk − vk‖W−1,1(Ω,RN ) ≤
1

k
, (5.9)

Fk[uk] ≤ Fk[w] +
1

k
‖w − uk‖W−1,1(Ω,RN ) for all w ∈ W−1,1(Ω,RN) . (5.10)

In particular, we have

∫

Ω

[
γ|∇uk|+

1

2Vkk2
(1+|∇uk|2)

p
2 +g

( uk
3M

)]
dx ≤ Fk[uk] ≤ Fk[vk]+

1

k
‖vk−uk‖W−1,1(Ω,RN ) <∞ ,

from which we infer uk ∈ Dk. To get another estimate for the left-hand side of the previous
inequality we go through the above considerations, use the right-hand side of (H1), and estimate

Fk[vk] ≤
C

k2
+ FD[u] ≤ C

( 1

k2
+ Ln(Ω) + |Du|(Ω)

)

16Such a function g can be constructed by mollifying
[
exp(|y|4)−A

]
+
, where exp(1)<A<3 is a parameter.

17Dependence on p is not listed explicitly since p was chosen depending (only) on n.
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with the result
∫

Ω

[
|∇uk|+

1

Vkk2
(1+|∇uk|2)

p
2 + exp

(∣∣∣ uk
3M

∣∣∣
4)]

dx ≤ C
( 1

k2
+ Ln(Ω) + |Du|(Ω)

)
(5.11)

for all k ∈ N, where C depends only on γ and Γ. Now we return to the minimality property
in (5.10). Using first-order criteria for minimality as for (4.4) we come up with the perturbed
Euler equation

∣∣∣∣
∫

Ω

∇fk(∇uk) · ∇ϕdx +

∫

Ω

∇g
( uk
3M

)
· ϕ

3M
dx

∣∣∣∣ ≤
1

k
‖ϕ‖W−1,1(Ω,RN )

for all ϕ ∈W 1,p
0 (Ω,RN ) .

(5.12)

We record that in view of (5.6) and Sobolev’s embedding18 we have

uk ∈ L∞(Ω,RN ) , (5.13)

and thus here and in the following the integrals involving g are finite.

5.2 Estimates for first and second derivatives

Next exploiting (5.12) we will derive some estimates for the functions uk. In fact, we will first
establish some estimates for the second derivatives, and then we will derive a uniform L logL-
bound for the first derivatives.

Let us start proving that the second derivatives exist and are square integrable.

Lemma 5.1. For the sequence (uk)k∈N in W 1,p(Ω,RN ), constructed in Section 5.1, we have

uk ∈W 2,2
loc (Ω,R

N ) and (1+|∇uk|)p−2|∇2uk|2 ∈ L1
loc(Ω,R

N) .

Proof. In this proof we establish estimates which are not uniform in k and thus we allow that
all our constants depend on k. For s ∈ {1, 2, 3, . . . , n} and h ∈ R we use the notation

∆s
hv(x) :=

v(x+ hes)− v(x)

h

for difference quotients, where es denotes the sth canonical basis vector in Rn. Now we consider
a nonnegative function η ∈ C∞

cpt(Ω) and suppose |h| < dist(spt η, ∂Ω). Testing (5.12) with
ϕ = ∆s

−h(η
2∆s

huk), using partial integration for difference quotients, and discarding the small

factor 1
k
in (5.12) we find

∫

Ω

η2∆s
h[∇fk(∇uk)] ·∆s

h∇uk dx

+ 2

∫

Ω

η∆s
h[∇fk(∇uk)] · (∆s

huk ⊗∇η) dx +

∫

Ω

η2∆s
h

[
∇g
( uk
3M

)]
· ∆

s
huk
3M

dx

≤ ‖∆s
−h(η

2∆s
huk)‖W−1,1(Ω,RN )

≤
∫

Ω

|∆s
−h(η

2∆s
huk)| dx

≤
∫

Ω

|∂s(η2∆s
huk)| dx ≤

∫

Ω

η2|∆s
h∇uk| dx+ 2

∫

Ω

η|∆s
huk ⊗∇η| dx .

18Most of the arguments in this section would work in a simpler way with the choice p=2. However, it is at
this point that we are forced to take p according to (5.6).
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Here we also used (2.2) and a standard estimate for difference quotients. By the convexity of g
we get

∆s
h

[
∇g
( uk
3M

)]
(x) · ∆

s
huk(x)

3M

=

∫ 1

0

∇2g
((1− t)uk(x) + tuk(x+ hes)

3M

)
dt
(∆s

huk(x)

3M
,
∆s

huk(x)

3M

)
≥ 0 .

Now we introduce for every x ∈ spt η the positive symmetric bilinear form

Ax
k :=

∫ 1

0

∇2fk((1−t)∇uk(x) + t∇uk(x+ hes)) dt .

We infer
∫

Ω

η2A•
k(∆

s
h∇uk,∆s

h∇uk) dx

≤ −2

∫

Ω

ηA•
k(∆

s
h∇uk,∆s

huk ⊗∇η) dx+

∫

Ω

η2|∆s
h∇uk| dx+ 2

∫

Ω

η|∆s
huk ⊗∇η| dx .

Using Young’s inequality for the positive forms A•
k and absorbing a term on the left-hand side

we get

∫

Ω

η2A•
k(∆

s
h∇uk,∆s

h∇uk) dx

≤ 4

∫

Ω

A•
k(∆

s
huk ⊗∇η,∆s

huk ⊗∇η) dx + 2

∫

Ω

η2|∆s
h∇uk| dx+ 4

∫

Ω

η|∆s
huk ⊗∇η| dx . (5.14)

Now we recall from [41, Lemma 2.1] that for all z1, z2 ∈ RNn there holds

∫ 1

0

(1 + |(1− t)z1 + tz2|)p−2 dt ≥ c(1 + |z1|+ |z2|)p−2 .

Using this in (5.8) we have in particular

c

Vkk2
(1+|∇uk(x)|)p−2|ξ|2 ≤ Ax

k(ξ, ξ) ≤
(
Γ +

C

Vkk2
(1+|∇uk(x)|+|∇uk(x+ hes)|)p−2

)
|ξ|2

with constants depending only on n and N . With these estimates for A•
k we find

∫

Ω

η2(1+|∇uk|)p−2|∆s
h∇uk|2 dx

≤ C

[ ∫

Ω

(1+|∇uk(x)|+|∇uk(x+ hes)|)p−2|∇η|2|∆s
huk|2 dx

+

∫

Ω

η2|∆s
h∇uk| dx+

∫

Ω

η|∇η||∆s
huk| dx

]

for a constant C depending only on n, N , Γ, k, and Vk. Employing Young’s inequality and
absorbing again we arrive at
∫

Ω

η2(1+|∇uk|)p−2|∆s
h∇uk|2 dx ≤ C sup

Ω
(η2+|∇η|2)

∫

Ω

(1 + |∆s
huk|2 + |∆s

huk|p + |∇uk|p) dx .

Letting h → 0 and exploiting uk ∈ W 1,p(Ω,RN ) we deduce the first claim, that is uk ∈
W 2,2

loc (Ω,R
N ). Moreover, ∆s

h∇uk converges strongly in L2
loc(Ω,R

Nn) to ∂s∇uk, and the second
claim follows via Fatou’s lemma.
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Next, as in [15, Lemma 3.2] we derive uniform estimates involving the second derivatives
∇2uk.

Lemma 5.2. For the sequence (uk)k∈N in W 1,p(Ω,RN), constructed in Section 5.1, there holds

∫

Ω

η2
[ |∇2uk|2
(1+|∇uk|)3

+
1

Vkk2
(1+|∇uk|)p−2|∇2uk|2

]
dx

≤ C sup
Ω

(η2/k+|∇η|2)
( 1

k2
+ Ln(Ω) + |Du|(Ω)

)
. (5.15)

where η ∈ C∞
cpt(Ω) is a nonnegative function, and C depends only on n, N , γ, Γ, but not on k.

Proof. We first record that (5.8) yields in particular

|∇2fk(z)| ≤ C(1 + |z|)p−2 , (5.16)

where C depends only on n, N , Γ, k, and Vk. From Lemma 5.1 we deduce

(1+|∇uk|)p−2|∇2uk| ∈ L
p

p−1

loc (Ω)

via Hölder’s inequality, and by the chain rule we get

∂s
[
∇fk(∇uk)

]
= ∇2fk(∇uk)(∂s∇uk, · ) ∈ L

p
p−1

loc (Ω, (RNn)∗)

for s ∈ {1, 2, . . . , n}. Keeping (5.13) in mind, we also have

∂s
[
∇g
( uk
3M

)]
= ∇2g

( uk
3M

)(∂suk
3M

, ·
)
∈ Lp

loc(Ω, (R
N )∗) .

For ψ ∈ C∞
cpt(Ω,R

N ) we next use ϕ = −∂sψ as a test function in (5.12). Using also (2.3) we get
∫

Ω

∇2fk(∇uk)(∂s∇uk,∇ψ) dx+

∫

Ω

∇2g
( uk
3M

)(∂suk
3M

,
ψ

3M

)
dx ≤ 1

k
‖∂sψ‖W−1,1(Ω,RN )

≤ 1

k

∫

Ω

|ψ| dx .
(5.17)

Taking into account the above integrability properties, a standard approximation argument
shows that (5.17) holds in fact for every ψ ∈ W 1,p

cpt (Ω,R
N). Next we reason that the inequality

is still valid for ψ := η2∂suk, even though this function need not be in W 1,p
cpt (Ω,R

N ). To

this end we first plug in ψh := η2∆s
huk ∈ W 1,p

cpt (Ω,R
N ) with small |h|. Then ψh converges

to ψ strongly in Lp(Ω,RN ) as h → 0, and furthermore going back to the last formula in
the proof of Lemma 5.1 we infer that ∇ψh remains bounded in the weighted Lebesgue space

L̃2 := L2(Ω,RNn; (1+|∇uk|)p−2 · Ln). It follows that ∇ψh converges weakly to ∇ψ in L̃2. By
(5.16), Hölder’s inequality, and Lemma 5.1, the mapping

ψ 7→
∫

Ω

∇2fk(∇uk)(∂s∇uk,∇ψ) dx

defines a continuous linear form on L̃2. Hence passing to the limit h → 0 and exploiting the
above convergences we find that (5.17) still holds for ψ = η2∂suk as claimed. Now we repeat
the arguments from the proof of Lemma 5.1, just in terms of derivatives rather than difference
quotients. Proceeding in this way up to (5.14) (and keeping the factor 1

k
this time) we come

out with
∫

Ω

η2∇2fk(∇uk)(∂s∇uk, ∂s∇uk) dx

≤ 4

∫

Ω

∇2fk(∇uk)(∂suk ⊗∇η, ∂suk ⊗∇η) dx+
2

k

∫

Ω

η2|∂suk| dx . (5.18)
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Invoking the estimates for ∇2fk in (5.8) and summing over s yields

∫

Ω

η2
[ |∇2uk|2
(1+|∇uk|)3

+
1

Vkk2
(1+|∇uk|)p−2|∇2uk|2

]
dx

≤ C sup
Ω

(η2/k+|∇η|2)
∫

Ω

(
|∇uk|+

1

Vkk2
(1+|∇uk|)p

)
dx .

Taking into account (5.11) we arrive at the claim.

We next adapt the proof of [15, Theorem 4.1] to our situation and derive a uniform L logL-
estimate for the gradients ∇uk. To this end we test (5.12) once more and we employ both the
uniform bounds given by (5.11) and the estimate from Lemma 5.2.

Lemma 5.3. For the sequence (uk)k∈N in W 1,p(Ω,RN ), constructed in Section 5.1, and every
ball B2r(x0) ⊂ Ω we have
∫

Br(x0)

|∇uk| log(1+|∇uk|2) dx ≤ C
(
λ+

M +Mr +M2

k
+
M

r
+
M2

r2

)( 1

k2
+ Ln(Ω) + |Du|(Ω)

)

with a constant C depending only on n, N , γ, and Γ, and in particular independent of k. Here,
M was defined in (5.2) as supΩ |u|.
Proof. We will use the following estimates, which are available by Lemma 2.7, Lemma 2.8, and
the properties of g:

|∇f(z)| ≤ C , (5.19)

∇f(z) · z ≥ γ|z| − λ , (5.20)

∇g(y) · y ≥ 0 . (5.21)

Now we consider a cut-off function η ∈ C∞
cpt(Ω) satisfying 1Br(x0) ≤ η ≤ 1B2r(x0) and |∇η| ≤ 2

r

on Ω. Then we define
ϕ := η2uk log(1+|∇uk|2)

and compute for every s ∈ {1, 2, . . . , n}

∂sϕ = 2η(∂sη)uk log(1+|∇uk|2) + η2(∂suk) log(1+|∇uk|2) + 2η2uk
∇uk · ∂s∇uk
1+|∇uk|2

. (5.22)

Since ϕ is not immediately admissible in (5.12), we first plug in the approximations ϕh :=
η2uk log

(
1+
∑n

i=1 |∆i
huk|2

)
. In view of (5.13) ϕh converges to ϕ in Lp(Ω,RN) and moreover

one finds that ∇ϕh remains bounded19 in L̃2 := L2(Ω,RNn; (1+|∇uk|)p−2 · Ln) for h → 0.
Consequently, arguing as in the proof of Lemma 5.2 we may test (5.12) with ϕ. Taking into
account (5.21) and (2.2) we infer

∫

Ω

∇fk(∇uk) · ∇ϕdx ≤ 1

k

∫

Ω

|ϕ| dx .

Now we apply the above formula for ∂sϕ on the left-hand side of the last inequality. Then we
shift all the terms containing uk itself to the right-hand side. We get
∫

Ω

η2∇fk(∇uk) · ∇uk log(1+|∇uk|2) dx

≤
∫

Ω

|∇fk(∇uk)| |uk|
(
2η|∇η| log(1+|∇uk|2) + 2η2

|∇uk| |∇2uk|
1+|∇uk|2

)
dx

+
1

k

∫

Ω

η2|uk| log(1+|∇uk|2) dx .

19Evidently, ∂sϕh is given by a formula analogous to (5.22). To control the second term on the right-hand side

of this formula in L̃2 we use the fact that ∇uk ∈ L
q
loc

(Ω,RNn) holds for some q > p. The latter integrability
follows in turn from Lemma 5.1 by the chain rule and Sobolev’s embedding.
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In the next step we recall ∇fk(z) = ∇f(z)+ p
2Vkk2 (1+ |z|2) p−2

2 z and use (5.19) on the right-hand

side of the previous inequality. Moreover, we estimate log(1+t2) ≤ 4
√
t and η|∇η| ≤ 2

r
coming

out with
∫

Ω

η2∇fk(∇uk) · ∇uk log(1+|∇uk|2) dx

≤ C

[(1
k
+
1

r

) ∫

Ω

|uk|
(
|∇uk|

1
2 +

1

Vkk2
(1+|∇uk|)p−

1
2

)
dx

+

∫

Ω

η2|uk|
|∇2uk|
1+|∇uk|

dx+

∫

Ω

η2|uk|
Vkk2

(1+|∇uk|)p−2|∇2uk| dx
]

=: C[Ik + IIk + IIIk] .

(5.23)

To control Ik we use Young’s inequality, 1
Vkk2 ≤ 1, and (5.11) as follows:

Ik ≤ 3
(M
k
+
M

r

) ∫

Ω

[∣∣∣ uk
3M

∣∣∣
2

+
∣∣∣ uk
3M

∣∣∣
2p

+ |∇uk|+
1

Vkk2
(1+|∇uk|)p

]
dx

≤ C
(M
k
+
M

r

) ∫

Ω

[
exp

(∣∣∣ uk
3M

∣∣∣
4)

+ |∇uk|+
1

Vkk2
(1+|∇uk|)p

]
dx

≤ C
(M
k
+
M

r

)( 1

k2
+ Ln(Ω) + |Du|(Ω)

)
.

The term IIIk in (5.23) is estimated similarly, but additionally exploits (5.15):

IIIk ≤ 3Mr

∫

Ω

η2

Vkk2
(1+|∇uk|)p−2|∇2uk|2 dx+

3M

r

∫

Ω

[∣∣∣ uk
3M

∣∣∣
p

+
1

Vkk2
(1+|∇uk|)p

]
dx

≤ C
(Mr

k
+
M

r

)( 1

k2
+ Ln(Ω) + |Du|(Ω)

)
.

Finally, we treat IIk via the Orlicz-Young inequality from Lemma 2.12, Young’s inequality,
(5.15), and (5.11): We have

IIk = 3M

∫

Ω

η2
|∇2uk|

(1+|∇uk|)
3
2

√∣∣∣ uk
3M

∣∣∣
2

(1+|∇uk|) dx

≤ 3M

∫

Ω

η2
|∇2uk|

(1+|∇uk|)
3
2

√
exp

(∣∣∣ uk
3M

∣∣∣
2)

+ |∇uk| log(1+|∇uk|2) dx

≤ 9(Mr+M2ε−1)

∫

Ω

η2
|∇2uk|2

(1+|∇uk|)3
dx+

M

r

∫

Ω

exp
(∣∣∣ uk

3M

∣∣∣
2)
dx

+ ε

∫

Ω

η2|∇uk| log(1+|∇uk|2) dx

≤ C
(Mr +M2ε−1

k
+
M

r
+
M2ε−1

r2

)( 1

k2
+ Ln(Ω) + |Du|(Ω)

)

+ ε

∫

Ω

η2|∇uk| log(1+|∇uk|2) dx

for all ε>0. Now we collect the estimates for the right-hand side of (5.23). We come out with
∫

Ω

η2∇fk(∇uk) · ∇uk log(1+|∇uk|2) dx

≤ C
(M +Mr +M2ε−1

k
+
M

r
+
M2ε−1

r2

)( 1

k2
+ Ln(Ω) + |Du|(Ω)

)

+ Cε

∫

Ω

η2|∇uk| log(1+|∇uk|2) dx . (5.24)
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Next we deal with the left-hand side of (5.24). Recalling the definition of fk and (5.20) we have
∇fk(z) · z ≥ γ|z| − λ. Using this with log(1+t2) ≤ 2t and once more (5.11) we find

∫

Ω

η2∇fk(∇uk) · ∇uk log(1+|∇uk|2) dx

≥ γ

∫

Ω

η2|∇uk| log(1+|∇uk|2) dx− λ

∫

Ω

log(1+|∇uk|2) dx

≥ γ

∫

Ω

η2|∇uk| log(1+|∇uk|2) dx− Cλ
( 1

k2
+ Ln(Ω) + |Du|(Ω)

)
.

At this point we fix ε such that Cε ≤ γ
2 holds for the constant C in (5.23). Combining the

previous estimate with (5.24) we arrive at

γ

2

∫

Ω

η2|∇uk| log(1+|∇uk|2) dx ≤ C
(
λ+

M +Mr +M2

k
+
M

r
+
M2

r2

)( 1

k2
+Ln(Ω)+|Du|(Ω)

)
,

and the claim follows by the choice of η.

5.3 Proofs of the uniqueness results

In this subsection we will prove Theorem 1.10 and Corollary 1.13.

Proof of Theorem 1.10. Regularity. To prove the regularity results we continue working with
the generalized minimizer u and the minimizing sequence (uk)k∈N from Section 5.1, which were
investigated in Section 5.2. By (5.3), (5.7), and (5.9) we have

uk −→
k→∞

u in the norm of W−1,1(Ω,RN) . (5.25)

However, from (5.11) we deduce that a subsequence of (uk)k∈N converges weakly-∗ inBV (Ω,RN ),
and (5.25) is only needed to identify u as the limit. In particular,

∇uk · Ln converges weakly-∗ to Du in the sense of measures on Ω .

Now we introduce the convex function Φ(z) := |z| log(1+ |z|2). In view of the above convergence
we may apply the semicontinuity part of Theorem 2.4 as in Remark 2.5, but with Φ in place of
f , to deduce

∫

Br(x0)

Φ(∇u) dx +

∫

Br(x0)

Φ∞
( dDsu

d|Dsu|
)
d|Dsu| ≤ lim inf

k→∞

∫

Br(x0)

Φ(∇uk) dx .

By Lemma 5.3 we arrive at

∫

Br(x0)

Φ(∇u) dx+
∫

Br(x0)

Φ∞
( dDsu

d|Dsu|
)
d|Dsu| ≤ C

(
λ+

M

r
+
M2

r2

)
(Ln(Ω)+ |Du|(Ω)) . (5.26)

In particular, the right-hand side and thus also the left-hand side of the last estimate is finite.
Since Φ∞(z) = ∞ holds for z 6= 0 and B2r(x0) is an arbitrary ball in Ω, this means that Dsu
vanishes, u ∈W 1,1(Ω,RN ) holds, and moreover we have Φ(∇u) ∈ L1

loc(Ω).
L logL-estimate. We recall from the beginning of Section 5 that u minimizes with respect

to its own boundary values. From this observation it follows that u still minimizes on any ball
B2r(x0) ⊂ Ω and thus (5.26) still holds if we replace Ω by B2r(x0) (and M by supB2r(x0) |u|) on
the right-hand side. Since we have already argued that Dsu vanishes, this yields the estimate of
Theorem 1.10 — apart from the quadratic occurrence of supB2r(x0) |u|. To establish the precise

form of the claim we finally reason that the term M2

r2
in (5.26) can be removed. Since this

refinement is of secondary importance, we just outline how it is achieved:
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We revisit the arguments of this section, and exploiting that the W 1,1-regularity of u and a
uniform L logL-bound for ∇uk are already available, we now modify the treatment of the term
IIk on the right-hand side of (5.23) as follows. We obtain

IIk ≤Mr

∫

Ω

η2
|∇2uk|2

(1+|∇uk|)3
dx+

1

Mr

∫

Ω

η2|uk|2(1+|∇uk|) dx =:MrJk +
1

Mr
JJk

by Young’s inequality, and Jk is handled via (5.15) as before. In order to deal with JJk we
make use of Theorem B.2. Actually, it is not difficult to verify the assumptions of Theorem B.2
(i) for the sequence (uk)k∈N (but we skip the details here), and thus strong convergence uk → u
in W 1,1(Ω,RN ) follows. For a suitable subsequence we infer (ukl

,∇ukl
) → (u,∇u) a. e. on Ω,

and moreover we estimate via Young’s inequality and Lemma 2.12

∫

spt η

|uk|2|∇uk|
√
log(1+|uk|4|∇uk|2) dx

≤
∫

spt η

|uk|2|∇uk|
√
log(1+|∇uk|2) dx+

∫

spt η

|uk|2|∇uk|
√
log(1+|uk|4) dx

≤
∫

spt η

|∇uk| log(1+|∇uk|2) dx+ C

∫

spt η

|uk|4|∇uk| dx

≤ C(1+M4)

[∫

spt η

|∇uk| log(1+|∇uk|2) dx+

∫

Ω

exp
(∣∣∣ uk

3M

∣∣∣
4)
dx

]
.

In view of Lemma 5.3 and (5.11) the right-hand side of the last estimate remains bounded as
k→∞ and hence the sequence (η2|uk|2(1+|∇uk|))k∈N is uniformly integrable on Ω. By Vitali’s
convergence theorem we conclude

lim inf
k→∞

JJk ≤ lim
l→∞

JJkl
=

∫

Ω

η2|u|2(1+|∇u|) dx ≤M2(Ln(Ω)+|Du|(Ω))

and the refined version of (5.26) follows.
Uniqueness. Let us consider two bounded generalized minimizers u and v for F in an

arbitrary Dirichlet class D. If ∇u 6= ∇v holds on a set of positive measure, then the strict
convexity of f and the convexity of f∞ give the following contradiction:

FD
[u+ v

2

]
<

1

2
(FD[u] + FD[v]) = min

BV (Ω,RN )
FD .

Thus we have ∇u = ∇v. Since we have already proved that Dsu and Dsv vanish, this means
Du = Dv and since Ω is connected, the claim u = v+y follows by the constancy theorem.

Proof of Corollary 1.13. The claims follow20 from Theorem 1.10 and Theorem 1.11, and in fact
there are only a few points which need to be addressed:

Regularity. Concerning regularity the relevant point is that Theorem 1.11 just provides in-
terior L∞

loc-regularity while Theorem 1.10 assumes global boundedness. However, by the same
simple reasoning as for the L logL-estimate in the proof of Theorem 1.10 we know that gen-
eralized minimizers also minimize on subdomains with respect to their own boundary values.
Thus we may still apply Theorem 1.10 on subdomains and this suffices to conclude Dsu = 0
and |∇u| log(1+|∇u|2) ∈ L1

loc(Ω).
L logL-estimate. We combine the estimates from Theorem 1.10 and Theorem 1.11 (in the

latter one we replace r with 2r and R with 3r) getting

∫

Br(x0)

|∇u| log(1+|∇u|2) dx ≤ C

(
1 +

1

rn+1

∫

B3r(x0)

|u| dx
)∫

B2r(x0)

(1+|∇u|) dx .

20Assuming λ≥Γ (which is not restrictive) the assumption f(0)≤λ in Theorem 1.10 and Theorem 1.11 is valid.
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Now we would like to apply Poincaré’s inequality but this is not immediately possible since the
mean value ux0,3r of u on B3r(x0) need not vanish. However, the function u−ux0,3r is still a
generalized minimizer with respect to its own boundary values on B3r(x0) and thus the last
estimate still holds if we replace u by u−ux0,3r. Now we are in the position to apply Poincaré’s
inequality, and we conclude the claimed estimate.

Uniqueness. Once the regularity part of the Corollary is proved uniqueness follows. Actually,
we may repeat the simple argument from the end of the proof of Theorem 1.10.

5.4 The set of generalized minimizers

In this subsection we will work explicitly with the definition of FD in order to prove Theo-
rem 1.16. Moreover, we will finally establish Theorem 1.3.

For the moment we just suppose that f : RNn → [0,∞) is convex with (H1) and for u0 ∈
W 1,1(Ω,RN ) we write as usual

D = u0 +W 1,1
0 (Ω,RN)

for the corresponding Dirichlet class.
Let us start with simple observations about the set of generalized minimizers.

Lemma 5.4. For any u ∈ BV (Ω,RN ) the set of possible additive constants

Y := {y ∈ R
N : u+y is a generalized minimizer of F in D}

is convex, closed, and bounded in RN .

Proof. All properties will be derived from the definition of FD in (1.8). First, since f and f∞

are convex, also the functional FD is convex and the convexity of Y follows. Now let us consider
a sequence yk → y in RN . Then lower semicontinuity of f∞ and Fatou’s lemma give

FD[u+y] ≤ lim inf
k→∞

FD[u+yk] ,

where yk and y occur only in the third term in (1.8). Thus yk ∈ Y implies y ∈ Y , and Y is
closed. Finally, if |yk| → ∞, then Fatou’s lemma gives

lim inf
k→∞

FD[u+yk] = ∞ ,

which is impossible for yk ∈ Y . Consequently, Y is bounded.

Lemma 5.5. Suppose that generalized minimizers of F in D are unique up to additive constants.
If one minimizer u attains the boundary values, i. e. u = u0 on ∂Ω, then minimizers are fully
unique.

Proof. For 0 6= y ∈ RN there holds

FD[u+y] = FD[u] +

∫

∂Ω

f∞(−y ⊗ νΩ) dHn−1 .

The last integral is positive and thus u+y is not minimizing.

Now we provide a proof of Theorem 1.16 which makes substantial use of (a particular case
of) Lemma 6.2 below. We remark that (H4) is involved only implicitly through this lemma.

Proof of Theorem 1.16. We recall that by assumption generalized minimizers of F in D are
unique up to additive constants. Now we fix some generalized minimizer u and consider the set
Y defined in Lemma 5.4. We will show that Y is contained in a 1-dimensional subspace of RN .

Indeed, let us assume that Y is not contained in a 1-dimensional subspace. Then we can
find linearly independent elements y1, y2 ∈ Y . Since u+y1 and u+y2 are both generalized
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minimizers, by Lemma 6.2 we can write u + J1y1 = u0 and u + J2y2 = u0 on ∂Ω with some
functions J1, J2 : ∂Ω → R. However, this may only happen if J1 and J2 vanish and thus u = u0
holds Hn−1-a. e. on ∂Ω. In this situation Lemma 5.5 gives Y = {0} and thus Y is always
contained in a 1-dimensional subspace.

Now, taking into account the properties of Y from Lemma 5.4, it follows that Y is a compact
interval in RN . We define y0 as the center point of Y and may then write Y as {y0 + ty : t ∈
[−1, 1]} for some y ∈ RN . Setting u := u+y0 we arrive at the claim.

Proof of Theorem 1.3. In view of Corollary 1.13 and Theorem 1.16 it only remains to verify the
hypotheses (H1), (H2), (H3), and (H4) for the density eλ(z) =

√
λ2 + |z|2 with λ>0. However,

(H1) is obvious, (H2) can be verified by an explicit computation of ∇2eλ, (H3) (with λ=0)
follows from the discussion of (1.10) in the introduction, and (H4) is valid by Remark 1.15.

6 Non-uniqueness and boundary behavior

In this section we derive Theorem 1.17 and Theorem 1.4, and we discuss additional aspects of
the boundary behavior of generalized minimizers.

We start again with a simple lemma.

Lemma 6.1. Suppose that g is a strictly convex norm on Rm in the sense of Definition 1.14.
If for y1, y2 ∈ Rm with y1 6=0 there occurs equality

g(y1 + y2) = g(y1) + g(y2)

in the triangle (or convexity) inequality of g, then there holds

y2 = ry1 for some r ≥ 0 .

Proof. For y2=0 there is nothing to prove. In the case y2 6=0 we assume by homogeneity g(y2) =

1. With the abbreviations λ := g(y1)
1+g(y1)

and ỹ1 := y1

g(y1)
we have g(ỹ1) = 1 and g(λỹ1+(1−λ)y2) =

g
(

y1+y2

1+g(y1)

)
= 1. Now Definition 1.14 gives y2 = ỹ1 and the claim follows.

As usual we work in the remainder of this section with a Dirichlet class

D = u0 +W 1,1
0 (Ω,RN ) ,

where u0 ∈ W 1,1(Ω,RN ) is fixed. Moreover, we suppose from now on that f : RNn → [0,∞) is
convex with (H1) and (H4). The next lemma makes substantial use of (H4) and is the core of
the proof of both Theorem 1.16 and Theorem 1.17.

Lemma 6.2. Consider a generalized minimizer u of F in D and a constant 0 6= y ∈ R
N .

Then u+y is another generalized minimizer of F in D if and only if there exists some function
J̃ : ∂Ω → R \ (0, 1) with the following two properties:

∫

{J̃≤0}
f∞(−y ⊗ νΩ) dHn−1 =

∫

{J̃≥1}
f∞(y ⊗ νΩ) dHn−1 , (6.1)

u+ J̃y = u0 Hn−1-a. e. on ∂Ω . (6.2)

Proof. We introduce the abbreviation

gx(y) := f∞(y ⊗ νΩ(x)) for y ∈ R
N , (6.3)

and note that by (H4) gx is a strictly convex norm on RN for Hn−1-a. e. x ∈ ∂Ω. Now we go
back to the Definition of FD in (1.8) and observe that the terms in FD[u] and FD[u+y] which
involve only the derivatives coincide. Therefore, a necessary and sufficient condition for u+y to
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be a minimizer is that the remaining boundary integrals are also equal, in the terminology of
(6.3) this means ∫

∂Ω

g•(u0−u−y) dHn−1 =

∫

∂Ω

g•(u0−u) dHn−1 . (6.4)

Now let us prove the backwards implication of the lemma by checking that (6.4) holds if a

function J̃ with the above properties exists. Indeed, using (6.2), homogeneity, and (6.1) we find
∫

∂Ω

g•(u0−u−y) dHn−1 =

∫

{J̃≤0}
(1−J̃) g•(−y) dHn−1 +

∫

{J̃≥1}
(J̃−1) g•(y) dHn−1

=

∫

{J̃≤0}
(−J̃) g•(−y) dHn−1 +

∫

{J̃≥1}
J̃ g•(y) dHn−1

=

∫

∂Ω

g•(u0−u) dHn−1 .

To establish the forwards implication we assume that u+y is a minimizer and we thus have
(6.4). By Lemma 5.4 also u+y/2 is a minimizer and therefore

∫
∂Ω g•(u0−u−y/2) dHn−1 must

also coincide with the two integrals in (6.4). Now we notice on the one hand that by the triangle
inequality for g• there holds

2g•(u0−u−y/2) = g•(2u0−2u−y) ≤ g•(u0−u) + g•(u0−u−y) . (6.5)

On the other hand by the preceding considerations integrating both sides of (6.5) gives the same
value. Thus, Hn−1-a. e. we must have equality in (6.5). At points of ∂Ω where u0 = u holds we

obviously have (6.2) with J̃ = 0. Therefore, we now restrict our considerations to points with
u0−u 6= 0. At those points we infer via Lemma 6.1 that u0−u−y = R(u0−u) holds, where R is a
nonnegative function (notice R 6=1). Solving the last equation for u0−u we have u0−u = 1

1−R
y,

and thus (6.2) holds with J̃ = 1
1−R

(taking values in R \ [0, 1)). Hence, we have constructed a

function J̃ with (6.2). Now (6.1) follows essentially by the same computation which we made
for the backwards direction.

Proof of Theorem 1.17. By Theorem 1.16 the set of all generalized minimizers of F in D may
be written as

{u+ ty : t ∈ [−1, 1]} ,
where y 6= 0 by the non-uniqueness assumption. In particular, u−y and u+y are minimizers.
Applying Lemma 6.2 to these two minimizers (with 2y in place of y) we come up with a function

J̃ : ∂Ω → R \ (0, 1) such that (6.1) and

u− y + 2J̃y = u0

hold. If we now define (∂Ω)+ := {J̃ ≥ 1}, (∂Ω)− := {J̃ ≤ 0}, and

J :=

{
2J̃−1 if J̃ ≥ 1 ,

1−2J̃ if J̃ ≤ 0 ,

then most of the claims of Theorem 1.17 are visible. In particular, (6.1) gives (1.11).
However, even though we have by now established the inequalities inf(∂Ω)− J ≥ 1 and

inf(∂Ω)+ J ≥ 1, obtaining equality requires the following additional reasoning. In fact, if we

had inf(∂Ω)+ J > 1, then we would also have s := inf{J̃≥1} J̃ > 1. Consequently, we could

apply (the reverse direction of) Lemma 6.2 (with the minimizer u−y, the constant 2sy, and the

function 1
s
J̃) to conclude that u−y+2sy is a minimizer. However, by the characterization of the

set of all minimizers from the beginning of the proof u−y+2sy is not a minimizer and thus we
must have inf(∂Ω)+ J = 1. A similar argument gives inf(∂Ω)− J = 1.
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Proof of Theorem 1.4. As it was already mentioned in the proof of Theorem 1.3 at the end of
Section 5 the integrands eλ satisfy all the relevant hypotheses (H1), (H2), (H3), (H4). Moreover,
(1.12) is obviously satisfied by eλ and uniqueness up to constants (which was implicitly assumed)
holds by Theorem 1.3. Thus, all the hypotheses of Theorem 1.17 and Remark 1.18 are available
and Theorem 1.4 follows as a particular case of these statements.

In the remainder of this section we deal with the size of the sets where the boundary data
are attained. We first record the following simple consequence of Theorem 1.17:

Corollary 6.3. Assume that we are in the situation of Theorem 1.16 with y 6=0. Then all
generalized minimizers, apart from the extremal ones u±y, nowhere attain the boundary data,
that is

u+ ty 6= u0 Hn−1-a. e. on ∂Ω for all t ∈ (−1, 1) .

In view of Corollary 6.3 it only remains to study the boundary behavior of the extremal
minimizers u±y. To fix notation let us write down the two alternative situations,

either y = 0 and Hn−1(∂Ω ∩ {u = u0}) = λHn−1(∂Ω)

or y 6= 0 and Hn−1(∂Ω ∩ {u± y = u0}) = λ±Hn−1(∂Ω) ,
(6.6)

where λ ∈ [0, 1] is arbitrary, and λ+, λ− ∈ [0, 1) are such that λ+ + λ− ≤ 1 holds (note that the
cases λ+=1 and λ−=1 are ruled out by Lemma 5.5). We now show by a modification of Santi’s
counterexample (see [74] and Section 3.3) that indeed all the situations in (6.6) may occur.

Proposition 6.4. Let n=2, N=1 and let us continue using the terminology of Theorem 1.16.
Given arbitrary numbers λ ∈ [0, 1] and λ+, λ− ∈ [0, 1) with λ++λ− ≤ 1 each of the two situations
in (6.6) occurs with these given parameters for some bounded Lipschitz domain Ω, some smooth
integrand f : R2 → [0,∞) satisfying (H1), (H2), (H3), and (H4), and some Dirichlet class
D = u0 +W 1,1

0 (Ω).

Remark 6.5. The following proof shows that the examples for y=0 already work for the model
integral E1, while for y 6=0 examples for E1 can only be constructed if max{λ+, λ−} ≤ 1

2 holds.
In view of Theorem 1.4 the latter restriction in the case y 6=0 is necessary since each of the sets
(∂Ω)+ and (∂Ω)− is half of ∂Ω and moreover we have

∂Ω ∩ {u± y = u0} ⊂ (∂Ω)± .

Proof of Proposition 6.4. The proof is divided into two parts, which correspond to the two alter-
native situations in (6.6). Both parts are based on the following basic strategy. We begin with
Santi’s example of non-uniqueness. More specifically, we consider the generalized minimizers
û+y from Proposition 3.11 (or some variant). Then we modify — a posteriori — the boundary
values, and we infer from Lemma 2.9 that û+y is still minimizing, for suitable y, with respect
to the new boundary values. We will see below that the construction can be adjusted in such a
way that for the modified problem each of the situations in (6.6) occurs.

Part 1 is concerned with the first of the two situations in (6.6). Given an arbitrary λ ∈ [0, 1]
we work with Santi’s two-dimensional domain ΩS from Section 3.3 and we decompose the
boundary ∂ΩS into ∂+ΩS := {x ∈ ∂ΩS : x1x2 > 0} and ∂−ΩS := {x ∈ ∂ΩS : x1x2 < 0}.
Moreover, we choose ũ0 ∈ W 1,1(ΩS) with ũ0 = ±M on ∂±ΩS for some constant M>2 which
is fixed in the following. By Proposition 3.11 (applied to the model integral E1) there exists a

generalized minimizer û of E1 in D̃ := ũ0 +W 1,1
0 (ΩS) with supΩS

|û| ≤ 2. Now we choose an

H1-measurable function Ĵ : ∂ΩS → [0,M−2] such that we have

H1(∂ΩS ∩ {Ĵ = 0}) = λH1(∂ΩS) ,
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and additionally we require that the essential infimum of Ĵ is 0 on both ∂+ΩS and ∂−ΩS . Then
we take some u0 ∈W 1,1(ΩS) with

u0(x) = û(x) ± Ĵ(x) for H1-a. e. x ∈ ∂±ΩS .

By construction u0 is a convex combination of û and ũ0 on ∂ΩS, and Lemma 2.9 implies that
û is a generalized minimizer of E1 in D := u0 +W 1,1

0 (ΩS). Moreover, from the definition of u0
and the choice of Ĵ we have

H1(∂ΩS ∩ {û = u0}) = λH1(∂ΩS) .

It remains to reason that û is the unique generalized minimizer in D. Let us assume that
this were not the case. Then, taking without loss of generality y > 0 we decompose ∂ΩS into
the disjoint sets (∂ΩS)± from Theorem 1.4, and we infer from that theorem that the generalized
minimizer û is bounded away from u0 on at least one of the sets (∂ΩS)±. In particular, û satis-
fies û < u0 on (∂ΩS)+ or û > u0 on (∂ΩS)−. In view of û ≤ u0 on ∂+ΩS and û ≥ u0 on ∂−ΩS

this implies that one of the inclusions (∂ΩS)± ⊂ ∂±ΩS holds. Since the sets (∂ΩS)± and ∂±ΩS

have the same measure, we in fact have equality (∂ΩS)± = ∂±ΩS up to a set of H1-measure
zero. Consequently, û is bounded away from u0 on one of the sets ∂±ΩS which contradicts the

above choice of Ĵ . In conclusion, we must have uniqueness, in other words y=0.

Part 2 deals with the second situation in (6.6). Before proving the general claim we briefly
mention that in the case max{λ+, λ−} ≤ 1

2 one may work with a slight modification of the
arguments from Part 1. Actually, this reasoning leads — in accordance with Remark 6.5 — to
an example for the model integral E1 on ΩS .

Next we treat the general case, with arbitrary numbers λ± ∈ [0, 1) such that λ+ + λ− ≤ 1
holds. Reversing the sign of y in (6.6) corresponds to interchanging the roles of λ+ and λ−, and
thus it suffices to treat the case λ+ ≤ 1

2 in the following. We now use the 1-parameter family
of domains Ωr

S from the beginning of Section 3.3, and we let ∂+Ω
r
S := {x ∈ ∂Ωr

S : x1x2 > 0}
and ∂−Ωr

S := {x ∈ ∂Ωr
S : x1x2 < 0}. In the following we modify the shape of Ωr

S by a linear
transformation in order to adjust the ratio between the sizes of ∂+Ω

r
S and ∂−Ωr

S . We consider
the endomorphism

Lr :=
1

2

(
r + 1

r
r − 1

r

r − 1
r

r + 1
r

)

of R2 (with eigenvalues r and 1
r
, corresponding eigenvectors

(
1
1

)
and

(
1
−1

)
, and determinant 1),

and we are interested in the transformed domain LrΩ
r
S . We claim that there exists an r≥1 such

that we have
H1
(
Lr∂+Ω

r
S

)

H1
(
Lr∂Ωr

S

) ≥ λ+ and
H1
(
Lr∂−Ωr

S

)

H1
(
Lr∂Ωr

S

) ≥ λ− . (6.7)

In order to establish (6.7) we record that the four points (± 1
4 ,± 1

4 ) are contained in ∂Ωr
S for

all values of r. Moreover, the intersections of ∂Ωr
S with the coordinate axes can be written as

(±ξr, 0) and (0,±ξr) with some ξr>
1
2 , and explicit computations give limr→∞ ξr = 1

2 . Hence
Ωr

S converges to the square Q := {x∈R2 : |x1|+|x2|< 1
2} as r→∞. We now compare LrΩ

r
S and

the rectangle LrQ with edges of length r√
2
and 1√

2r
. Without going into detailed computations

let us record that the length of the arcs of Lr∂Ω
r
S exceeds the length of the corresponding edges

of Lr∂Q at most by 2r(ξr− 1
2 ), and we thus have

H1
(
Lr∂+Ω

r
S

)

H1
(
Lr∂Ωr

S

) ≤
2 1√

2r
+ 4r(ξr−1

2 )

2 r√
2
+ 2 1√

2r

−→
r→∞

0 .

Moreover, the quantity
H1(Lr∂+Ωr

S)
H1(Lr∂Ωr

S
) depends continuously on r and takes the value 1

2 for r=1.

Thus, for λ+>0 (remember λ+≤1
2 ) we always find an r≥1 with

H1(Lr∂+Ωr
S)

H1(Lr∂Ωr
S
) = λ+, and because
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of λ+ + λ− ≤ 1 the assertions in (6.7) follow. Furthermore, for λ+=0 we choose an r≥1 with
H1(Lr∂+Ωr

S)
H1(Lr∂Ωr

S
) ≤ 1−λ− and (6.7) follows also in this case.

From now on we may thus fix r≥1 with (6.7). It is not difficult to check that the assertions
of Proposition 3.11 still hold for the integral E1 on Ωr

S (instead of ΩS), with some bound M0,
depending only on r, in place of 2f(0). Then composing all the functions under consideration
with L−1

r we transform the minimization problem to LrΩ
r
S , and we come out with the following

statement. We introduce the integrand ẽ1(z) :=
√
1 + |zLr|2 for z ∈ Rn, which satisfies (H1),

(H2), (H3), and (H4), and for w ∈W 1,1(LrΩ
r
S) we consider

Ẽ1[w] :=

∫

LrΩr
S

ẽ1(∇w(x)) dx =

∫

Ωr
S

√
1 + |∇(w ◦ Lr)|2 dx

where the last equality exploits detLr=1. Fixing M > M0 + 1 for the remainder of the proof
we choose ũ0 ∈ W 1,1(LrΩ

r
S) such that ũ0(x) = ±M holds on Lr∂±Ωr

S , and we set D̃ := ũ0 +

W 1,1
0 (LrΩ

r
S). Then there exists a generalized minimizer û of Ẽ1 in D̃ such that supLrΩr

S
|û| ≤M0

holds. Moreover, û+y is minimizing in D for every y ∈ R with |y| ≤ 1.
Finally, we conclude the proof similarly to Part 1. In view of (6.7) we choose an H1-

measurable function Ĵ : Lr∂Ω
r
S → [1,M−M0] such that we have

H1(Lr∂±Ω
r
S ∩ {Ĵ = 1}) = λ±H1(Lr∂Ω

r
S) ,

and additionally21 we require that the essential infimum of Ĵ is 1 on both Lr∂+Ω
r
S and Lr∂−Ωr

S .
Taking some u0 ∈ W 1,1(LrΩ

r
S) with

u0(x) = û(x) ± Ĵ(x) for H1-a. e. x ∈ Lr∂±Ω
r
S

we find that u0 is a convex combination of û+y and ũ0 on ∂ΩS, and by Lemma 2.9 û+y is
a generalized minimizer of Ẽ1 in D := u0 +W 1,1

0 (LrΩ
r
S), for every y ∈ R with |y| ≤ 1. In

particular, we have non-uniqueness, that is y 6=0. Additionally, by the choice of u0 and Ĵ we
have

H1(Lr∂Ω
r
S ∩ {û± 1 = u0}) = λ±H1(Lr∂Ω

r
S) .

Thus it just remains to argue that û+1 and û−1 are extremal minimizers. However, if one of
them were not extremal, then by Theorem 1.17 it would be bounded away from u0 on Lr∂Ω

r
S

which contradicts the above requirement for the infima of Ĵ . In conclusion, we have constructed
an example such that the second situation in (6.6) occurs, and the proof is complete.

A (Semi)continuity and existence

This section is concerned with the functional FD from (1.8), where

D = u0 +W 1,1
0 (Ω,RN)

with u0 ∈ W 1,1(Ω,RN ) is a fixed Dirichlet class. In the following Theorem A.1 we summarize
continuity properties of FD, which are essentially known from [43]. Then we give a proof of
these properties, which is based on (a supplement to) Theorem 2.4 and follows the lines of [43].
Finally, we derive Theorem 1.8 as a corollary of Theorem A.1 combined with Lemma 2.3.

Theorem A.1. Suppose that f : RNn → [0,∞) is convex with (H1) and that (uk)k∈N is a
sequence in BV (Ω,RN ) which converges in L1(Ω,RN ) to some u ∈ BV (Ω,RN ).

21The requirement for the infima is relevant only if λ+ = 0 or λ− = 0 holds.
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• Semicontinuity part. There holds

FD[u] ≤ lim inf
k→∞

FD[uk] .

• Continuity part. If the equality

|(Ln, Du)|(Ω) +
∫

∂Ω

|u0 − u| dHn−1 = lim
k→∞

[
|(Ln, Duk)|(Ω) +

∫

∂Ω

|u0 − uk| dHn−1

]

is valid, then there holds
FD[u] = lim

k→∞
FD[uk] .

Moreover, if f : RNn → [0,∞) is strictly convex22 and f∞ is a strictly convex norm, then
the reverse implication is also true.

Next we briefly sketch a proof of Theorem A.1 which is based on the following ideas from
[43]. Fix a bounded Lipschitz domain Ω̃ containing Ω and a W 1,1-extension ũ0 of u0 from Ω to

Ω̃. For all w ∈ BV (Ω,RN ) define w̃ ∈ BV (Ω̃,RN ) by

w̃ :=

{
w on Ω

ũ0 on Ω̃ \ Ω
.

Then [6, Corollary 3.89] provides the formula

Dw̃ = Dw + (u0−w) ⊗ νΩ1∂Ω · Hn−1 +∇u01Ω̃\Ω · Ln , (A.1)

where Dw is viewed as a measure on Ω̃ with support in Ω. Hence, FD[w] can be written — in
contrast to (2.7) we here include the boundary integral in FD — as

FD[w] =

∫

Ω̃

f̄
( d(Ln, Dw̃)

d|(Ln, Dw̃)|
)
d|(Ln, Dw̃)| −

∫

Ω̃\Ω
f(∇ũ0) dx , (A.2)

where f̄ is the function from (2.6), and where the last integral is independent of w. Having
represented FD in this way we give a

Proof of the semicontinuity part of Theorem A.1. We assume supk∈N
FD[uk] < ∞. Then by

the coercivity condition in (H1) it follows that ũk converges to ũ weakly-∗ in BV (Ω,RN ). In
view of (A.2) we may apply Theorem 2.4 and Remark 2.5 to FD, and we infer that FD[u] ≤
lim infk→∞ FD[uk] holds.

Before proving the continuity part of Theorem A.1 we deal with a lemma concerning a strict
convexity property of f̄ .

Lemma A.2. Suppose that f : RNn → [0,∞) is strictly convex with (H1) and that f∞ is
a strictly convex norm. Then the function f̄ from (2.6) is a strictly convex 1-homogeneous
function, where the strictness is to be understood in the following sense: The implication23

f̄(χ1 + χ2) = f̄(χ1) + f̄(χ2) =⇒ χ1 = 0 or χ2 = rχ1 for some r ≥ 0 . (A.3)

holds for all χ1, χ2 ∈ [0,∞)×RNn.

22The strict convexity of f is meant in the usual sense, that is f(λz1 + (1−λ)z2) < λf(z1) + (1−λ)f(z2) for
all λ ∈ (0, 1) and z1 6=z2 in RNn.

23The convexity property in (A.3) is closely related to the strict convexity of norms; see Definition 1.14 and
Lemma 6.1. However, f̄ need not be positive outside {0} and thus — even if we extend it onto R1+Nn — it
need not be a norm.
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Proof. According to Remark 2.5 f̄ is convex and 1-homogeneous, so it remains to establish (A.3).
To this end we assume that the hypothesis of (A.3) holds for χ1 = (t1, z1) and χ2 = (t2, z2) in
[0,∞)×RNn, and we distinguish the following cases. If t1 = t2 = 0 holds, the claim follows from
(2.6) and Lemma 6.1. If t1 > 0 and t2 > 0 hold, then the strict convexity of f gives z1

t1
= z2

t2
as

claimed since otherwise the computation

f̄(χ1 + χ2) = (t1+t2)f
( t1
t1+t2

· z1
t1

+
t2

t1+t2
· z2
t2

)
< t1f

(z1
t1

)
+ t2f

(z2
t2

)
= f̄(χ1) + f̄(χ2)

would result in a contradiction. In the case t1 > 0 = t2 we have by 1-homogeneity and convexity

2f̄(χ1 + χ2) = f̄(2t1, 2z1 + 2z2) ≤ f̄(t1, z1) + f̄(t1, z1 + 2z2)

≤ f̄(t1, z1) + f̄(t1, z1) + f̄(0, 2z2) = 2
[
f̄(χ1) + f̄(χ2)

]
.

However, by assumption the terms on the very left and the very right of the latter estimate
coincide and in particular we must have f̄(2t1, 2z1 +2z2) = f̄(t1, z1) + f̄(t1, z1 +2z2). From the
previous case we then get z2 = 0. Hence, we arrive at χ2 = 0, and thus the claim is established
also for t1 > 0 = t2. Finally, the case t2 > 0 = t1 follows by exchange of the variables.

Moreover, we record a supplement to Theorem 2.4 which was also obtained in [73]24; compare
[43, Theorem 1.6], [10, Theorem 2.1], and [54, Theorem 3]. The following version involving cones
has not been stated up to now but is a direct outcome of the respective proofs; see for instance
Theorem 2.38 and Theorem 2.39 in [6].

Theorem A.3. Consider a sequence (µk)k∈N of finite Rm-valued Radon measures on Ω which
converges weakly-∗ to a finite Rm-valued Radon measure µ on Ω. Moreover, assume that µk and
µ take values in some closed convex cone K in Rm. If

∫

Ω

f̄
( dµ
d|µ|

)
d|µ| = lim

k→∞

∫

Ω

f̄
( dµk

d|µk|
)
d|µk| . (A.4)

holds for one strictly convex 1-homogeneous function f̄ : K → [0,∞) in the sense of (A.3) (with
K in place of [0,∞)×RNn), then (A.4) holds for all continuous and 1-homogeneous functions
f̄ : K → [0,∞).

Proof of the continuity part of Theorem A.1. We first recall (A.1) and (A.2), and we record that
if one of the two equalities in the continuity part of Theorem A.1 holds, then ũk converges to ũ
weakly-∗ in BV (Ω,RN). Thus, we deduce from (A.2) and Theorem A.3 that FD is continuous
along (uk)k∈N for every integrand f , once it is shown to be continuous for one integrand f such
that the corresponding function f̄ is strictly convex in the sense of (A.3). In turn, (A.3) is
available by Lemma A.2 if f is strictly convex with (H1) and f∞ is a strictly convex norm.

Since the last properties are valid for the integrand e1 from Section 1.1, the above reasoning
gives in particular

ED
1 [u] = lim

k→∞
ED
1 [uk] =⇒ FD[u] = lim

k→∞
FD[uk] (A.5)

for every f : RNn → [0,∞) which is convex with (H1). Moreover, if f is even strictly convex
and f∞ is a strictly convex norm, then the reverse implication in (A.5) also holds. Rewriting
the first two terms in the definition (1.3) of ED

1 as in Remark 2.5 we have proven the claims.

Proof of Theorem 1.8. We first assume that an arbitrary u ∈ BV (Ω,RN ) is given, and we
work with an approximating sequence (wk)k∈N in W 1,1(Ω,RN ) such that each wk coincides
with u0 on ∂Ω, such that wk converges to u in L1(Ω,RN ), and such that |(Ln, Dwk)|(Ω) con-
verges to |(Ln, Du)|(Ω) +

∫
∂Ω

|u0−u| dHn−1. The existence of such a sequence follows from

24The reader should note that a mistake in the translation of the respective statement from [73] was pointed
out in [10].
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[16, Lemma B.2], the appropriate generalization of [16, Lemma B.1] and Lemma 2.3. By the
continuity part of Theorem A.1 we get

FD[u] = lim
k→∞

FD[wk] = lim
k→∞

F [wk] .

We have thus shown that ‘≥’ holds in (1.9). However, the reverse inequality is trivially valid
and (1.9) is proved.

It remains to establish the claimed characterization.
If u is a generalized minimizer of F in D, then the above reasoning gives

lim
k→∞

F [wk] = FD[u] = inf
D
F ,

and hence wk is a minimizing sequence for F in D which converges to u in L1(Ω,RN ).
Conversely, if we consider a minimizing sequence for F in D, converging in L1(Ω,RN ) to

u ∈ BV (Ω,RN ), then by the semicontinuity part of Theorem A.1 we have FD[u] ≤ infD F . In
view of (1.9) u is a generalized minimizer of F in D.

B Additional remarks on the Dirichlet problem

In this section we further investigate the minimization problem for the integral

F [w] :=

∫

Ω

f(∇w) dx

from (1.1) in a Dirichlet class
D = u0 +W 1,1

0 (Ω,RN)

with u0 ∈ W 1,1(Ω,RN ). We provide some additional statements which are essentially conse-
quences of Corollary 1.13 and Theorem 2.4. Though there are no innovative arguments in this
section, it seems that the results do not occur explicitly in the literature, not even in the scalar
case or for area minimizing graphs.

As a common feature the following statements are based on the assumption that some
function u ∈ BV (Ω,RN ), mostly a generalized minimizer, satisfies

u = u0 in the sense of trace on ∂Ω . (B.1)

Unfortunately, apart from those for area minimizing graphs (compare the end of Section 1.2 and
of the present section) there are no convenient criteria for having (B.1).

Full uniqueness.

Proposition B.1. Suppose that f : RNn → [0,∞) is strictly convex with (H1) and that u is a
generalized minimizer of F in D. If u ∈ D holds, then u is the unique generalized minimizer of
F in D.

Proof. We assume that v ∈ BV (Ω,RN) is another generalized minimizer of F in D. Then the
uniqueness argument from the proof of Theorem 1.10 in Section 5.3 gives ∇u = ∇v on Ω. Since
we assume u ∈ D, we moreover have Dsu = 0 and u = u0 on ∂Ω. Thus, from the equality
FD[u] = FD[v] we get

∫

Ω

f∞
( dDsv

d|Dsv|
)
d|Dsv|+

∫

∂Ω

f∞((u0−v)⊗ νΩ) dHn−1 = 0 .

Since f∞(z) > 0 holds for z 6= 0, this implies Dsv = 0 and v = u0 on ∂Ω. Consequently, we
have Du = Dv and u = v on ∂Ω and by the constancy theorem we deduce u = v on Ω.
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Strong/strict convergence of minimizing sequences. The next result states that a se-
quence which converges in energy already converges in a good sense provided that the limit
function satisfies (B.1). In fact, we supply a tripartite statement: The first part deals with
strong convergence of sequences in W 1,1(Ω,RN), the second part concerns strict convergence of
sequences in BV (Ω,RN ), and the third part regards convergence of traces.

Theorem B.2. Suppose that f : RNn → [0,∞) is convex with (H1). Moreover, consider a
sequence (uk)k∈N in BV (Ω,RN ) which converges in L1(Ω,RN) to u ∈ BV (Ω,RN), and assume
that there holds

FD[uk] −→
k→∞

FD[u] .

Finally, suppose that
u = u0 on ∂Ω .

(i) If f is strictly convex and the sequence (uk)k∈N and u are in W 1,1(Ω,RN ), then uk con-
verges strongly to u in W 1,1(Ω,RN ).

(ii) If f is strictly convex and f∞ is a strictly convex norm, then uk converges strictly to u in
BV (Ω,RN ) (in the sense of Definition 2.2).

(iii) The trace of uk converges to the trace of u in L1(∂Ω,RN ;Hn−1).

Before proving Theorem B.2 we apply it to minimizing sequences:

Corollary B.3 (Strong/strict convergence of minimizing sequences). Suppose that f : RNn →
[0,∞) is strictly convex with (H1) and that u is a generalized minimizer of F in D with

u = u0 on ∂Ω .

(i) If u is in W 1,1(Ω,RN ), then every minimizing sequence for F in D converges strongly to
u in W 1,1(Ω,RN ).

(ii) If f∞ is a strictly convex norm, then there exists a minimizing sequence for F in D which
converges strictly to u in BV (Ω,RN ).

Remark B.4. Under additional hypotheses the W 1,1-assumption in Corollary B.3 (i) is guar-
anteed by Theorem 1.10; compare Corollary B.6 below.

Proof of Corollary B.3. To establish (i) we show that every minimizing sequence for F in D
has a subsequence converging to u in W 1,1(Ω,RN ). To prove this claim we first exploit the
coercivity of f and conclude that every minimizing sequence has a subsequence converging in
L1(Ω,RN) to some limit v ∈ BV (Ω,RN). By Theorem 1.8 v is a generalized minimizer of F
in D, and if u ∈ D holds, then Proposition B.1 gives u = v. At this point Theorem B.2 (i)
guarantees strong convergence uk −→

k→∞
u in W 1,1(Ω,RN ).

The claim in (ii) follows from Theorem 1.8 and Theorem B.2 (ii).

The proof of Theorem B.2 begins with one more lemma on convex functions.

Lemma B.5. Suppose that f : Rm → R is strictly convex and consider z ∈ Rm and a sequence
(zk)k∈N in Rm. If f(z)+f(zk)−2f

(
zk+z

2

)
converges to 0, then zk converges to z.

Proof. For ease of notation let us assume z=0. As a straightforward consequence of the convexity
inequality for f ,

[0,∞) → R, r 7→ f(rξ)− 2f
(
r
ξ

2

)
is non-decreasing (B.2)
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for every ξ ∈ Rm. Now let us assume that zk does not converge to 0. Possibly passing to a
subsequence we then have |zk| ≥ ε for some ε > 0, and zk

|zk| → ω for some ω ∈ Rm with |ω| = 1.

Exploiting (B.2) we conclude

f(0) + f(zk)− 2f
(zk
2

)
≥ f(0) + f

(
ε
zk
|zk|

)
− 2f

(
ε
zk

2|zk|
)

−→
k→∞

f(0) + f(εω)− 2f
(
ε
ω

2

)
.

By the strict convexity of f the limit on the right-hand side of the previous formula is positive,
and thus f(0)+f(zk)−2f

(
zk
2

)
does not converge to 0.

Proof of Theorem B.2 (i). Due to the assumption u = u0 on ∂Ω the boundary integrals in the
expression FD[u] + FD[uk] − 2FD[uk+u

2

]
cancel out. Moreover, by the semicontinuity part of

Theorem A.1 we have

lim
k→∞

FD[uk] = FD[u] ≤ lim inf
k→∞

FD
[uk+u

2

]
.

All in all — exploiting Dsu = 0 = Dsuk — we get

lim sup
k→∞

∫

Ω

[
f(∇u) + f(∇uk)− 2f

(∇uk+∇u
2

)]
dx

= FD[u] + lim
k→∞

FD[uk]− 2 lim inf
k→∞

FD
[uk+u

2

]
= 0 .

However, by the convexity of f the integrands f(∇u) + f(∇uk)− 2f
(∇uk+∇u

2

)
are nonnegative

and hence converge to 0 in L1(Ω). Passing once more to a subsequence we infer convergence
pointwise a. e. on Ω, and by Lemma B.5 we deduce ∇uk → ∇u a. e. on Ω. Fatou’s lemma (note
that (H1) gives f(∇uk)+f(∇u)−γ|∇uk−∇u| ≥ 0) yields

2FD[u] =

∫

Ω

2f(∇u) dx ≤ lim inf
k→∞

∫

Ω

[
f(∇uk) + f(∇u)− γ|∇uk−∇u|

]
dx

≤ lim
k→∞

FD[uk] + FD[u]− γ lim sup
k→∞

∫

Ω

|∇uk−∇u| dx

= 2FD[u]− γ lim sup
k→∞

∫

Ω

|∇uk−∇u| dx .

In conclusion, we obtain strong convergence uk −→
k→∞

u in W 1,1(Ω,RN ) as claimed.

Proof of Theorem B.2 (ii). From the coercivity condition in (H1) we deduce that uk converges
to u not only in L1(Ω,RN ) but also weakly-∗ in BV (Ω,RN ). Therefore it suffices to prove

lim
k→∞

|Duk|(Ω) = |Du|(Ω) (B.3)

To this end we apply the continuity part of Theorem A.1 twice: By the backwards implication
we find

|(Ln, Du)|(Ω) +
∫

∂Ω

|u0 − u| dHn−1 = lim
k→∞

[
|(Ln, Duk)|(Ω) +

∫

∂Ω

|u0 − uk| dHn−1

]
,

and then using the forwards implication for the integrand e0 from Section 1.1 we arrive at

ED
0 [u] = lim

k→∞
ED
0 [uk] .

Taking into account the definition (1.3) and u = u0 on ∂Ω the last equality just means

|Du|(Ω) = lim
k→∞

[
|Duk|(Ω) +

∫

∂Ω

|u0 − uk| dHn−1

]
.
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By the semicontinuity of the variation (which is a special case of Theorem 2.4) we also know

|Du|(Ω) ≤ lim inf
k→∞

|Duk|(Ω) .

Combining the last two formulas we end up with (B.3).

Under the strict convexity assumptions of part (ii) of Theorem B.2 the preceding arguments
also yield the convergence of traces. The following arguments establish this convergence in the
more general setting of part (iii).

Proof of Theorem B.2 (iii). As in the proof of part (ii) uk converges to u weakly-∗ in BV (Ω,RN).
Thus, we may apply Theorem 2.4 as explained in Remark 2.5 to the measures Duk coming out
with
∫

Ω

f(∇u) dx+

∫

Ω

f∞
( dDsu

d|Dsu|
)
d|Dsu| ≤ lim inf

k→∞

[ ∫

Ω

f(∇uk) dx +

∫

Ω

f∞
( dDsuk
d|Dsuk|

)
d|Dsuk|

]
.

Moreover, exploiting the hypothesis u = u0 on ∂Ω we find

∫

Ω

f(∇u) dx+

∫

Ω

f∞
( dDsu

d|Dsu|
)
d|Dsu| = FD[u] = lim

k→∞
FD[uk]

= lim inf
k→∞

[ ∫

Ω

f(∇uk) dx+
∫

Ω

f∞
( dDsuk
d|Dsuk|

)
d|Dsuk|

]
+lim sup

k→∞

∫

∂Ω

f∞((u0−uk)⊗νΩ) dHn−1 .

Combining the last formulas we arrive at

lim
k→∞

∫

∂Ω

f∞((u0−uk)⊗ νΩ) dHn−1 = 0 .

Since u=u0 holds on ∂Ω, the left-hand inequality in (H1) gives the claimed convergence.

Continuous dependence on the boundary data. We now record another result on strong
convergence which follows from the regularity result in Corollary 1.13 combined with Theo-
rem B.2. An abstract reformulation of the result will be given below.

Corollary B.6. Suppose that f : RNn → [0,∞) is C2 with (H1), (H2), and (H3), and that
(u0;k)k∈N is a sequence in W 1,1(Ω,RN ) such that the trace of u0;k converges to the trace of
u0 in L1(∂Ω,RN ;Hn−1). Moreover, assume that uk and u are generalized minimizers of F in
Dk := u0;k +W 1,1

0 (Ω,RN ) and D = u0 +W 1,1
0 (Ω,RN), respectively, and that

u = u0 on ∂Ω .

Then uk converges strongly to u in W 1,1(Ω,RN ).

Proof. We first note that by Corollary 1.13 the sequence (uk)k∈N and u are in W 1,1(Ω,RN ). In
particular, since we are also assuming u = u0 on ∂Ω, we have u ∈ D. Moreover, by Lemma 2.7
f∞ is Lipschitz continuous and thus there holds

∣∣FDk [w]− FD[w]
∣∣ ≤ L

∫

∂Ω

|u0;k − u0| dHn−1 for all w ∈ BV (Ω,RN ) ,

where the positive constant L depends only on Nn and Γ. Using this together with the mini-
mality of uk we get

FD[uk] ≤ FDk [uk] + L

∫

∂Ω

|u0;k − u0| dHn−1

≤ FDk [u] + L

∫

∂Ω

|u0;k − u0| dHn−1

≤ FD[u] + 2L

∫

∂Ω

|u0;k − u0| dHn−1 .
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Now the assumed convergence of the traces and the minimality of u give

FD[uk] −→
k→∞

FD[u] = inf
BV (Ω,RN )

FD .

Exploiting the coercivity in (H1) and passing to a subsequence we deduce that uk converges
in L1(Ω,RN ). By the semicontinuity part of Theorem A.1 the limit function is a generalized
minimizer and by the uniqueness result in Proposition B.1 it coincides with u. Now we are in
the position to apply Theorem B.2 (i) which yields the claim.

Imposing the assumptions of Corollary B.6 on the integrand f we are interested in maps
which assign to a given Dirichlet class D = u0+W

1,1
0 (Ω,RN ) — more precisely to the trace

of u0 which determines D — a generalized minimizer of F in D. By Corollary 1.13 these
generalized minimizers are in W 1,1(Ω,RN ) and unique up to constants, but in general they are
not fully unique. However, there are several ways of designating a specific generalized minimizer
corresponding to each class, for instance if additionally (H4) holds, we may take the minimizer
u from Theorem 1.16. All possible ways of choosing generalized minimizers are represented by
resolvent operators

R : L1(∂Ω,RN ;Hn−1) →W 1,1(Ω,RN)

defined on the trace space which have the following property for all u0 ∈W 1,1(Ω,RN ):

R maps the trace of u0 onto a generalized minimizer of F in u0+W
1,1
0 (Ω,RN ) .

Moreover, let us introduce the class Af ;Ω of attained boundary values in L1(∂Ω,RN ;Hn−1),
that is the set of all traces of functions u0 ∈ W 1,1(Ω,RN) such that some generalized minimizer
of F in u0 +W 1,1

0 (Ω,RN ) coincides with u0 on ∂Ω. In view of Lemma 2.9 we may equivalently
say that Af ;Ω is the set of all traces of generalized minimizers of F , in all Dirichlet classes in
W 1,1(Ω,RN ).

With this terminology Corollary B.6 can be rephrased — keeping in mind Proposition B.1 —
by saying that the traces in Af ;Ω are continuity points of the resolvent operators:

Corollary B.7. Suppose that f satisfies the hypothesis of Corollary B.6. Moreover, consider
a resolvent operator R in the above sense and endow both L1(∂Ω,RN ;Hn−1) and W 1,1(Ω,RN )
with the strong topology. Then R is continuous at all points of Af ;Ω.

We briefly comment on the composition ∇ ◦ R with the gradient operator, that is we map
onto the gradient of a generalized minimizer instead of the minimizer itself. The map

∇ ◦R : L1(∂Ω,RN ;Hn−1) → L1(Ω,RNn)

is also continuous at all points of Af ;Ω. But moreover ∇ ◦ R is uniquely determined by f and
Ω, and thus it might be the most reasonable object to study in this context.

The Dirichlet problem with L
1 data. In the remainder of this section we assume that

the hypotheses of Corollary B.6 are valid for some given integrand f . We recall that as the
crucial assumption of this section we assumed that a generalized minimizer u of F in D =
u0 +W 1,1

0 (Ω,RN ) satisfies (B.1), that is u = u0 on ∂Ω. If (B.1) holds, then by Corollary 1.13
we have u ∈ D. Consequently, u is a minimizer in the usual sense (i. e. u realizes the minimum
not only on the left-hand side but even on the right-hand side of (1.9)) and moreover the
preceding results apply to u. In view of all these properties we think that it is natural to ask for
which Dirichlet classes D (B.1) holds. Since D is determined by the trace of u0, this question
can be reformulated in the terminology of the preceding paragraph as follows:

What can be said about the class Af ;Ω of attained boundary values?
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Let us summarize what is known about this question. For particular choices of f and Ω and
for certain symmetric boundary data it is possible to perform a reduction to a 1-dimensional
problem as in Section 3.2 and Section 3.3, and to decide in this way whether the boundary data
are in Af ;Ω or not. A contribution which goes beyond such particular symmetric situations
is Miranda’s boundary continuity result [66, 67] for area minimizing graphs in the scalar case
N=1. This result implies that if ∂Ω has nonnegative mean curvature, then Ae1;Ω contains all
traces which are Hn−1-a. e. continuous. An interesting example, which highlights the sharpness
of Miranda’s result, was provided by Baldo and Modica [11]. For the two-dimensional unit ball
B2

1 they constructed a bounded and everywhere discontinuous boundary datum which is not in
Ae1;B2

1
. In particular, this implies that Ae1;B2

1
is strictly smaller than L1(∂B2

1 ,R
N ;Hn−1). In

our opinion it would be interesting to investigate in more detail the attainment of L1 boundary
data and the class Ae1;B2

1
— or even the classes Af ;Ω with more general f and Ω.

C Non-autonomous integrals

Here, we briefly discuss variational integrals depending explicitly on the independent variable,
that is we consider functionals of the form

F [w] :=

∫

Ω

f( · ,∇w) dx for w : Ω → R
N

with an integrand f : Ω × RNn → [0,∞). Basically, the results in this paper extend to this
more general setting without requiring significantly new ideas if the assumptions (H1), (H2),
(H3), and all notions of convexity are imposed on the functions f(x, · ), uniformly in x. In
particular, with an analogous definition of generalized minimizers the (semi)continuity results
of Appendix A, the characterization of generalized minimizers in Theorem 1.8, and the existence
result of Corollary 1.9 carry over almost25 verbatim; compare [73, 43, 7, 6].

In order to state a generalization of Theorem 1.10 we follow [23, Section 3] (see also [16,
Chapter 4.2.2.2]), and we impose the following additional assumptions on the derivatives of f :

∣∣∣ ∂
∂xi

∇zf(x, z)
∣∣ ≤ Γ , (C.1)

∣∣∣ ∂2

∂x2
i

∇zf(x, z)
∣∣∣ ≤ Γ , (C.2)

∣∣∣ ∂
∂xi

∇2
zf(x, z)(z̃1, z̃2)

∣∣∣ ≤ Γ
[∣∣∇2

zf(x, z)(z̃1, z̃2)
∣∣+ (1+|z|)−2|z̃1| |z̃2|

]
(C.3)

for all z, z̃1, z̃2 ∈ RNn, x ∈ Ω and i ∈ {1, . . . , n}.
Theorem C.1. Assume that f : Ω × RNn → [0,∞) is continuous and that (H1) and (H2)
hold for all functions f(x, · ), uniformly in x ∈ Ω. Moreover, suppose that (C.1), (C.2), and
(C.3) are valid, where all the occurring derivatives exist and are continuous on Ω×RNn. Then
bounded generalized minimizers of F in D are unique up to additive constants. Furthermore,
each such generalized minimizer u ∈ BV (Ω,RN ) ∩ L∞(Ω,RN ) satisfies

u ∈W 1,1(Ω,RN ) and |∇u| log(1+|∇u|2) ∈ L1
loc(Ω) .

Theorem C.1 can be proved following the strategy of Section 5 and handling the additional
terms as in [23, Section 3]. The crucial point is to provide variants of Lemma 5.1 and Lemma 5.2.
Here, (C.1) is needed in order to establish Lemma 5.1, while (C.2) and (C.3) are used to get
uniform estimates for some additional terms in the proof of Lemma 5.2. We omit further details.

As for Theorem 1.10, the boundedness assumption in Theorem C.1 can be derived either
from the maximum principles in Appendix D or from a straightforward adaptation of Section 4
to integrals with x-dependency.

25In the non-autonomous case one assumes additionally that the functions f(x, z) and f∞(x, z) are (lower
semi)continuous in (x, z).
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Remark C.2. It is not possible to weaken the assumption (H2) in Theorem C.1. Actually, if
(H2) is replaced by (H2µ) with some µ>3, then by virtue of a counterexample in [23, Section
4] (based on previous ideas in [43]) generalized minimizers need not be in W 1,1. However, it is
not clear whether it is possible to construct a corresponding counterexample in the autonomous
setting.

D Maximum principles

Next we briefly discuss two maximum principles (and the corresponding minimum principles)
for minimizers in W 1,1(Ω,RN ) and generalized minimizers in BV (Ω,RN ), respectively. These
principles apply to component functions of minimizers in the vectorial case and work under quite
weak assumptions on the integrands — even though we do not intend to state them in maximal
generality. The first, quite simple principle is proved by a standard argument (compare [29]).
The second principle for generalized minimizers is somewhat more involved but still follows the
same idea. Our main interest is in a corollary of the second principle (Corollary D.3) which
provides the L∞-bound needed in Theorem 1.10 and Theorem C.1.

Now we start by stating the principles for minimizers in W 1,1(Ω,RN ). We consider integrals

F [w] :=

∫

Ω

f( · ,∇w) dx for w ∈ W 1,1(Ω,RN) (D.1)

with a Borel function f : Ω×RNn → [0,∞). We fix α ∈ {1, 2, . . . , N} and we write zα ∈ Rn for
the αth row of z. We assume that whenever we fix some x ∈ Ω and all the entries of z except
those in zα then

the function R
n → R, zα 7→ f(x, z) has a unique minimum at 0 . (D.2)

In particular, (D.2) is satisfied if f is strictly convex and even in zα. Comparing this with the
conditions of Section 1.2 we record that either of the conditions (1.10) and (1.12) implies even
dependence on all variables.

Theorem D.1. Assume that f : Ω × RNn → [0,∞) is a Borel function which satisfies (D.2)
for some fixed α ∈ {1, 2, . . . , N}. Moreover, suppose that u ∈ W 1,1(Ω,RN ) is a minimizer of
the integral F from (D.1), that is F [u] ≤ F [w] for all w ∈ u+W 1,1

0 (Ω,RN ). Then one has

sup
Ω
uα = sup

∂Ω
uα and inf

Ω
uα = inf

∂Ω
uα .

Proof. We only prove the maximum principle. By a standard property of traces we have
sup∂Ω u

α ≤ supΩ u
α. Hence, if M := sup∂Ω u

α is infinite, there is nothing to prove. Other-
wise we compare u with w ∈W 1,1(Ω,RN ) defined by

wβ :=

{
uβ for β 6= α

min{uα,M} for β = α
.

Then we have ∇wα = 1{uα≤M} · ∇uα, and thus it holds Ln-a. e. on Ω either ∇wα = ∇uα or

∇wα = 0 6= ∇uα. Additionally, we evidently have ∇wβ = ∇uβ for β 6= α. Using the assumption
(D.2) we infer

f( · ,∇w) ≤ f( · ,∇u) Ln-a. e. on Ω with equality only where ∇u = ∇w . (D.3)

Moreover, since uα ≤ M holds on ∂Ω, we have w = u on ∂Ω, w is admissible as a comparison
function for the minimality property, and we have

∫

Ω

f( · ,∇u) dx ≤
∫

Ω

f( · ,∇w) dx .

In view of the last inequality we must have equality in (D.3), and thus ∇u = ∇w holds Ln-a. e.
on Ω. Taking into account u = w on ∂Ω it follows that uα = wα ≤M holds Ln-a. e. on Ω.
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Next we state the principles for generalized minimizers in BV (Ω,RN ). To this end we
consider integrals

F [w] :=

∫

Ω

f( · ,∇w) dx+

∫

Ω

g
(
· , dD

sw

d|Dsw|
)
d|Dsw| +

∫

∂Ω

g( · , (u0−w) ⊗ νΩ) dHn−1 (D.4)

with u0 ∈ W 1,1(Ω,RN ), f as above, and a Borel function g : Ω × RNn → [0,∞), which is
1-homogeneous in its second argument. Of course we are interested in the case where g is the
recession function of f . However, for the purposes of the next statement this relation is irrelevant
and we just require that whenever we fix x ∈ Ω and all the entries of z except those in zα then

the function R
n → R, zα 7→ g(x, z) is strictly increasing in the radial directions. (D.5)

Reformulating (D.5) as a formula we require that for all x ∈ Ω and z, ξ ∈ RNn we have the
implication

ξβ = zβ for β 6= α ,

zα 6= 0, ξα = tzα with some t ∈ [0, 1)

}
=⇒ g(x, ξ) < g(x, z) .

In particular, (D.5) is satisfied if g is a strictly convex norm (in the sense of Definition 1.14) in
z and even in zα.

Theorem D.2. We fix u0 ∈ W 1,1(Ω,RN ), α ∈ {1, 2, . . . , N}, a Borel function f : Ω×RNn →
[0,∞) with (D.2), and a Borel function g : Ω × RNn → [0,∞) which is 1-homogeneous in the
second argument and satisfies (D.5). Moreover, we suppose that u ∈ BV (Ω,RN ) minimizes F
from (D.4), that is F [u] ≤ F [w] for all w ∈ BV (Ω,RN ). Then we have

sup
Ω
uα = sup

∂Ω
uα ≤ sup

∂Ω
uα0 and inf

Ω
uα = inf

∂Ω
uα ≥ inf

∂Ω
uα0 .

Proof. It suffices to establish for M ∈ R the implications

uα ≤M Hn−1-a. e. on ∂Ω =⇒ uα ≤M Ln-a. e. on Ω (D.6)

and

uα0 ≤M Hn−1-a. e. on ∂Ω =⇒ uα ≤M Ln-a. e. on Ω . (D.7)

We start by assuming uα ≤M on ∂Ω, and— proceeding similarly to the proof of Theorem D.1 —
we use the comparison function w ∈ BV (Ω,RN) defined by

wβ :=

{
uβ for β 6= α

min{uα,M} for β = α
.

We first note that w can be written as the composition of u with a Lipschitz function and
that Dw can be computed by an adequate version of the chain rule. Since we only change
one component function, it suffices to apply the chain rule [6, Theorem 3.99] for real-valued26

functions which yields the formulas

∇wα = 1{uα≤M}∇uα ,
Dcwα = 1{uα≤M} ·Dcuα ,

Djwα =
min{(uα)+,M} −min{(uα)−,M}

(uα)+ − (uα)−
·Djuα ,

26In this context the chain rule for real-valued functions is much simpler than its vectorial counterpart [6,
Theorem 3.101].
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where Dswα = Dcwα+Djwα is the decomposition into the Cantor part and the jump part and
(uα)± are the traces of uα on the set of approximate jump points of uα; see [6, Chapter 3] for
further details. Additionally, we evidently have Dwβ = Duβ for β 6= α.

Now we notice that (D.3) still holds by the same reasoning as in the proof of Theorem D.1.
Moreover, from the formulas for Dcwα and Djwα we infer that Dsw is absolutely continuous
with respect to |Dsu| and

Dswα = χ ·Dsuα

for some Borel function χ : Ω → [0, 1]. By the 1-homogeneity of g and assumption (D.5) we
deduce

∫

Ω

g
(
· , dD

sw

d|Dsw|
)
d|Dsw| =

∫

Ω

g
(
· , dD

sw

d|Dsu|
)
d|Dsu| ≤

∫

Ω

g
(
· , dD

su

d|Dsu|
)
d|Dsu|

with equality only if Dsu = Dsw .

(D.8)

Additionally, from the minimality of u we have F [u] ≤ F [w]. Since uα ≤ M and thus w = u
hold on ∂Ω, the boundary integrals in F [u] and F [w] are the same, and in view of (D.3) and
(D.8) it follows that also the other integrals coincide, that is we have equality in (D.3) and (D.8)
and consequently Du = Dw. Taking into account u = w on ∂Ω we arrive at uα = wα ≤ M on
Ω and (D.6) is proved.

To prove (D.7) we assume uα0 ≤ M on ∂Ω, we still use the comparison function w, and we
observe that the arguments leading to (D.3) and (D.8) remain unchanged. However, this time
we supply an additional argument to establish w = u on ∂Ω. Exploiting uα0 ≤ M on ∂Ω and
the definition of w we get

uα0−wα = χ̃(uα0−uα) on ∂Ω

for some χ̃ : ∂Ω → [0, 1]. Applying (D.5) we then find

g( · , (u0−w)⊗ νΩ) ≤ g( · , (u0−u)⊗ νΩ) Hn−1-a. e. on ∂Ω

with equality only where u = w .
(D.9)

Now invoking the minimality property F [u] ≤ F [w] as before we derive equality in (D.3), (D.8),
and (D.9), that is Du = Dw and u = w on ∂Ω. We infer uα = wα ≤ M on Ω and (D.7) is
proved.

One may formulate several variants of Theorem D.1 and Theorem D.2. Here, we provide
only one more principle which is relevant in connection with Theorem 1.10 and Theorem C.1.

Corollary D.3. Suppose that the hypotheses of Theorem D.2 are valid for all α ∈ {1, 2, . . . , N}
instead of just one. Then for M ≥ 0 we have

|u0| ≤M Hn−1-a. e. on ∂Ω =⇒ |u| ≤M
√
N Ln-a. e. on Ω .

Proof. From Theorem D.2 we get |uα| ≤M on Ω for all component functions uα. Summing up
we arrive at |u| ≤M

√
N on Ω.
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[47] E. Giusti, Direct Methods in the Calculus of Variation, World Scientific Publishing, Singapore, 2003.

[48] E. Giusti and M. Miranda, Un esempio di soluzioni discontinue per un problema di minimo relativo ad un
integrale regolare del calcolo delle variazioni, Boll. Unione Mat. Ital., IV. Ser. 1 (1968), 219–226.

[49] C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals, Duke Math. J. 31

(1964), 159–178.

[50] G. Gregori, Generalized solutions for a class of non-uniformly elliptic equations in divergence form, Com-
mun. Partial Differ. Equations 22 (1997), 581–617.

[51] C. Hamburger, Regularity of differential forms minimizing degenerate elliptic functionals, J. Reine Angew.
Math. 431 (1992), 7–64.
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