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ABSTRACT. We present the fractional perimeter as a set-function interpo-
lation between the Lebesgue measure and the perimeter in the sense of
De Giorgi. Our motivation comes from a new fractional Boxing inequal-
ity that relates the fractional perimeter and the Hausdorff content and
implies several known inequalities involving the Gagliardo seminorm of
the Sobolev spaces Wα,1 of order 0 < α < 1.

1. INTRODUCTION AND MAIN RESULTS

In the forthcoming work [10], the authors established a family of es-
timates that in some sense interpolate the classical Boxing inequality of
W. Gustin [6] and a trivial endpoint for the Lebesgue measure:

Theorem 1. There exists a constant C > 0 depending only on the dimension
d ≥ 1 such that

Hd−α∞ (U) ≤ Cα(1− α)Pα(U),

for every bounded open subset U ⊂ Rd, uniformly with respect to α ∈ (0, 1).
Here, for a measurable set A ⊂ Rd,

Hd−α∞ (A) := inf

{ ∞∑
i=0

ωd−αr
d−α
i : A ⊂

∞⋃
i=0

B(xi, ri)

}
(1.1)

is the Hausdorff content of dimension (d− α) and

(1.2) Pα(A) := 2

ˆ
A

ˆ
Rd\A

dy dz

|y − z|α+d

is the fractional perimeter of A.

When combined with a straightforward counterpart of the coarea for-
mula for the fractional Sobolev space Wα,1(Rd), one obtains the following
trace inequality for every continuous function u ∈Wα,1(Rd):ˆ

Rd
|u|dµ ≤ Cα(1− α)

ˆ
Rd

ˆ
Rd

|u(x)− u(y)|
|x− y|α+d

dy dx,(1.3)

where µ is any nonnegative Borel measure in Rd such that µ(B(x, r)) ≤
ωd−αr

d−α for all balls B(x, r). This estimate is a strong form of Sobolev’s
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inequality which implies the classical embedding of Wα,1 into L
d

d−α , its
Lorentz-space improvement, and also Hardy’s inequality.

The proof in [10] does not utilize interpolation, and in fact the authors do
not know of any framework that allows one to interpolate the Hausdorff
content. The fractional perimeter, however, is often thought of as an object
which is intermediate between the perimeter (in the sense of De Giorgi)
and the Lebesgue measure. For example, one has the fractional Gagliardo-
Nirenberg inequality inherited from that for BV functions (see e.g. Propo-
sition 4.2 in [2] or Proposition 15.6 in [9]):

α(1− α)Pα(U) ≤ C |U |1−α Per (U)α,(1.4)

for all α ∈ (0, 1), as well as the asymptotics

(1.5) lim
α→0

αPα(U) = C ′|U | and lim
α→1

(1− α)Pα(U) = C ′′ Per (U),

that allows recovery of the endpoints; see [3, 5, 7].
The purpose of this note is to give a sense in which the fractional perime-

ter is intermediate between the perimeter and the Lebesgue measure. To
this end, let us recall some results that follow from a routine application of
the real interpolation theory. First, one has

Pα(A) = [χA]Wα,1(Rd) :=

ˆ
Rd

ˆ
Rd

|χA(y)− χA(z)|
|y − z|α+d

dy dz,

that is, the fractional perimeter of a measurable set A ⊂ Rd is the Gagliardo
semi-norm on Wα,1(Rd) applied to the function χA. The fractional Sobolev
space Wα,1(Rd) is itself a Besov space which arises in the real interpola-
tion of L1(Rd) and Ẇ 1,1(Rd) with parameter α (see e.g. Corollary 4.13 and
Eq. (4.42) in [1]):

Ẇα,1(Rd) = (L1, Ẇ 1,1)α,

though in the real interpolation method one encounters a variety of equiv-
alent semi-norms. Indeed, a convenient method for computing the semi-
norm of a function f ∈ (L1, Ẇ 1,1)α is to introduce the K-functional

K(t, f, L1, Ẇ 1,1) := inf
f=f1+f2

‖f1‖L1(Rd) + t‖∇f2‖L1(Rd),

where t > 0 and the infimum is taken over all decompositions f = f1 + f2
such that f1 ∈ L1(Rd) and f2 ∈ Ẇ 1,1(Rd). One then obtains a semi-norm
on the interpolation space (L1, Ẇ 1,1)α via the formula

[f ]W̃α,1(Rd) := α(1− α)
ˆ ∞
0

t−αK(t, f, L1, Ẇ 1,1)
dt

t
,

for which one can show

[f ]W̃α,1(Rd) ∼ α(1− α)[f ]Wα,1(Rd);
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see [8]. Here, the symbol ∼ indicates that both quantities are comparable,
uniformly with respect to α ∈ (0, 1). While this is a standard approach
to Ẇα,1(Rd), it has the defect of not being applicable to the characteristic
functions of sets, even sets of finite perimeter, to deduce estimate (1.4) and
some type of analogue to the limits (1.5). This is not a serious setback, as it
is not difficult to show the equivalence

K(t, f, L1, Ẇ 1,1) = K(t, f, L1, ˙BV ),

which is connected to the assertion that the Gagliardo closure of Ẇ 1,1 is
˙BV . This can be deduced from the literature, for example, through an ap-

plication of Lemma 2 of the paper of Cwikel [4, pp. 216-217] and as a result
one obtains

Ẇα,1(Rd) = (L1, ˙BV )α.(1.6)

This yields Eq. (1.4) directly from the classical theory, while an analogue to
Eq. (1.5),

lim
α→0

[χA]W̃α,1(Rd) = |A| and lim
α→1

[χA]W̃α,1(Rd) = Per(A),

follows (cf. [8]) from the fact that the pair (L1(Rd), ˙BV (Rd)) is normal, i.e.

lim
t→∞

K(t, f, L1, ˙BV ) = ‖f‖L1(Rd) and lim
t→0

K(t, f, L1, ˙BV )

t
= |Df |(Rd).

These results motivate us to define a fractional perimeter intrinsic to in-
terpolation, which is

P̃α(A) := [χA]W̃α,1(Rd) = α(1− α)
ˆ ∞
0

t−αK(t, χA, L
1, ˙BV )

dt

t
,

for which standard interpolation arguments yield the following refinements
to Eq. (1.4) and (1.5) (whose proofs we supply for the convenience of the
reader).

Theorem 2. If A ⊂ Rd is a set of finite perimeter, then one has

P̃α(A) ≤ |A|1−α Per (A)α,

and
lim
α→0

P̃α(A) = |A| and lim
α→1

P̃α(A) = Per (A).

Yet this approach still views sets of fractional finite perimeter as interme-
diate between L1 and ˙BV , while one might wish to use directly the spaces
of sets of finite Lebesgue measure and those of finite perimeter. We here
pursue this approach, though as these are not linear spaces we prefer to do
so via the penalty functional

K(t, A) = inf
U⊂Rd

|A4U |+ tPer (U),
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where the infimum is taken over all open sets U ⊂ Rd of finite perimeter
and A4U := (A \U)∪ (U \A) is the symmetric difference between the sets
A and U . Notice that

K(t, χA, L
1, ˙BV ) ≤ K(t, A),

and so we might hope to use K(t, A) directly in the computation of the
fractional perimeter. Indeed, we have

Theorem 3. For any Lebesgue measurable set A ⊂ Rd and t > 0, one has

K(t, χA, L
1, ˙BV ) = K(t, A)

and so in particular

P̃α(A) = α(1− α)
ˆ ∞
0

t−αK(t, A)
dt

t
.

Moreover, the argument in interpolation that demonstrates the equiva-
lence between the semi-norms [f ]Wα,1 and [f ]W̃α,1 easily gives the following
geometric interpretation of the penalization functionalK (see Theorem 4.12
and (4.42) in [1]):

Theorem 4. For any Lebesgue measurable set A ⊂ Rd and t > 0, one has

K(t, A) ∼ sup
h∈B(0,t)

|(A+ h)4A|.

When one recalls the elementary comparison

sup
h∈B(0,t)

|(A+ h)4A| ∼
 
B(0,t)

|(A+ h)4A| dh,

we find

P̃α(A) ∼ α(1− α)
ˆ ∞
0

t−α
( 

B(0,t)
|(A+ h)4A| dh

)
dt

t

and then Fubini’s theorem yields P̃α(A) ∼ α(1 − α)Pα(A). This completes
our work on describing the space of sets of fractional finite perimeter as
being between the space of sets of finite Lebesgue measure and the space
of sets of finite perimeter.

2. PROOFS OF THE MAIN RESULTS

Proof of Theorem 2. Given a set with finite perimeter A ⊂ Rd, for every t > 0

we have

K(t, A) ≤ tPer (A) and K(t, A) ≤ |A|.
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Thus, for r > 0 to be explicitly chosen later on,ˆ ∞
0

t−αK(t, A)
dt

t
=

ˆ r

0
t−αK(t, A)

dt

t
+

ˆ ∞
r

t−αK(t, A)
dt

t

≤ Per (A)

ˆ r

0
t−α dt+ |A|

ˆ ∞
r

t−1−α dt

= Per (A)
r1−α

1− α
+ |A|r

−α

α
.

Minimizing the right-hand side with respect to r we getˆ ∞
0

t−αK(t, A)
dt

t
≤ 1

α(1− α)
|A|1−α Per (A)α.

To conclude, it suffices to observe that

lim
t→∞

K(t, A) = |A| and lim
t→0

K(t, A)

t
= Per (A),

which immediately implies the limits for P̃α(A). �

Proof of Theorem 3. Observe that ‖χA−χU‖L1(Rd) = |A4U | and |DχU |(Rd) =
Per (U). The decomposition χA = (χA−χU )+χU thus yields the inequality

K(t, χA, L
1, ˙BV ) ≤ K(t, A),

and so we must prove the reverse inequality.
For every f ∈ ˙BV (Rd) and t > 0, we begin by showing that

(2.1) K(t, f, L1, ˙BV ) = inf
f=f1+f2
f2∈C∞c (Rd)

‖f1‖L1(Rd) + t‖Df2‖L1(Rd).

The inequality ≤ is immediate since the infimum in the left-hand side is
taken over a larger class of decompositions of f . For the reverse inequality,
we let η > 0 and f = f1 + f2 be such that f2 ∈ ˙BV (Rd) and

‖f1‖L1(Rd) + t|Df2|(Rd) ≤ K(t, f, L1, ˙BV ) + η.

Take g2 ∈ C∞c (Rd) such that

‖f2 − g2‖L1(Rd) ≤ η and |Dg2|(Rd) ≤ |Df2|(Rd) +
η

t
.

The decomposition f = (f1 + f2 − g2) + g2 satisfies

‖f1 + f2 − g2‖L1(Rd) + t|Dg2|(Rd)

≤ ‖f1‖L1(Rd) + ‖f2 − g2‖L1(Rd) + t|Dg2|(Rd)

≤ K(t, f, L1, ˙BV ) + 3η.

Since η > 0 is arbitrary, this concludes the proof of the identity (2.1).
By Eq. (2.1), we may thus restrict our attention to decompositions χA =

(χA−g)+g with g ∈ C∞c (Rd). We first observe that the choiceU := {|g| > s}
with s ∈ (0, 1) satisfies

(2.2) A4U ⊂
(
{|χA − g| ≥ s} \A

)
∪
(
{|χA − g| ≥ 1− s} ∩A

)
.
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We now explain how to make a suitable choice of s. To this end, by Cava-
lieri’s principle and the classical coarea formula we have

ˆ ∞
0
|{|χA − g| ≥ s}|ds+ t

ˆ ∞
0

Per({|g| > s}) ds

= ‖χA − g‖L1(Rd) + t‖Dg‖L1(Rd).

By comparison of integrals and an affine change of variables we have

ˆ ∞
0
|{|χA − g| ≥ s}|ds

≥
ˆ 1

0
|{|χA − g| ≥ s}|ds

=

ˆ 1

0

(
|{|χA − g| ≥ s} \A|+ |{|χA − g| ≥ 1− s} ∩A|

)
ds.

Thus,

ˆ 1

0

(
|{|χA − g| ≥ s} \A|+ |{|χA − g| ≥ 1− s} ∩A|+ tPer ({|g| > s})

)
ds

≤ ‖χA − g‖L1(Rd) + t‖Dg‖L1(Rd).

Take s ∈ (0, 1), depending on t, such that the open set {|g| > s} is smooth
and

|{|χA − g| ≥ s} \A|+ |{|χA − g| ≥ 1− s} ∩A|+ tPer ({|g| > s})
≤ ‖χA − g‖L1(Rd) + t‖Dg‖L1(Rd).

In view of (2.2) we get

K(t, A) ≤ |A4U |+ tPer (U) ≤ ‖χA − g‖L1(Rd) + t‖Dg‖L1(Rd).

Taking the infimum of the right-hand side with respect to g we deduce the
reverse inequality. �

Proof of Theorem 4. Let h ∈ B(0, t). For every subsetU ⊂ Rd of finite perime-
ter, by the triangle inequality in L1 and the translation invariance of the
Lebesgue measure we have

|(A+ h)4A| = ‖χA+h − χA‖L1(Rd)

≤ ‖χA+h − χU+h‖L1(Rd) + ‖χA − χU‖L1(Rd) + ‖χU+h − χU‖L1(Rd)

= 2|A4U |+ |(U + h)4U |.

Since U has finite perimeter, |(U +h)4U | ≤ C1 |h|Per (U), and since |h| ≤ t
this implies

|(A+ h)4A| ≤ 2|A4U |+ C1|h|Per (U) ≤ C2K(t, A).
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To get the reverse comparison, take a smooth mollifier ρ supported in
the ball B(0, t) and write

χA = (ρ ∗ χA − χA) + ρ ∗ χA.

Observe that

‖ρ ∗ χA − χA‖L1(Rd) ≤ sup
h∈B(0,t)

|(A+ h)4A|,

while
´
Rd Dρ = 0 and the fact that we can choose ρ such that ‖Dρ‖L∞(Rd) ≤

C3/t implies

‖D(ρ ∗ χA)‖L1(Rd) ≤
ˆ
Rd

ˆ
Rd
|Dρ(h)|[χA+h(x)− χA(x)] dhdx

≤ C3

t
sup

h∈B(0,t)
|(A+ h)4A|.

It thus remains to argue as in the proof of Theorem 3 and takeU = {ρ∗χA >
s} for some suitable s ∈ (0, 1). �
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