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Abstract. We consider multiple integrals of the Calculus of Variations of the form E(u) =´
W (x, u(x), Du(x)) dx where W is a Carathéodory function finite on matrices satisfying an

orientation preserving or an incompressibility constraint of the type, detDu > 0 or detDu = 1,
respectively. Under suitable growth and lower semicontinuity assumptions in the u variable we
prove that the functional

´
W qc(x, u(x), Du(x)) dx is an upper bound for the relaxation of E

and coincides with the relaxation if the quasiconvex envelope W qc of W is polyconvex and
satisfies p growth from below for p bigger then the ambient dimension. Our result generalises
a previous one by Conti and Dolzmann [2] relative to the case where W depends only on the
gradient variable.
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1. Introduction

In a recent paper [2] Conti and Dolzmann proved an interesting relaxation result concerning
functionals of the type

E(u) =

ˆ
Ω
W (Du(x)) dx,

where the function W : Rn×n → [0,+∞] is finite and continuous on the set of n × n matrices
with positive determinant Rn×n+ := {F ∈ Rn×n : detM > 0} and W ≡ +∞ elsewhere. Under
suitable assumptions on the behaviour of W (F ) as |F | → +∞ or detF → 0, they prove that
the L1 relaxation of E on W 1,p(Ω;Rn) is given by

E∗(u) =

ˆ
Ω
W qc(Du(x)) dx,

provided that the quasiconvex envelope

W qc(F ) = inf

{ 
B1

W (Dϕ(x)) dx : ϕ ∈W 1,∞(B1,Rn), ϕ(x) = Fx for x ∈ ∂B1

}
.

is indeed a polyconvex function. As far as we know, this is the first relaxation result where the
energy functional takes into account the orientation preserving constraint detDu > 0. The im-
portance of such a constraint is evident in the theory of nonlinear elasticity where it is assumed
as a replacement of the more complicated requirement of the injectivity of the deformation u
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along with the condition that the potential energy diverges as the determinant of u is positive
and converges to zero. The authors also prove a similar result in the case that detDu = 1 is
assumed to hold almost everywhere.

In this note we extend the previous result to the case where W is a Carathéodory function
depending also on x and u. More precisely, as in [2], we first prove that the L1 relaxation of E
on W 1,p(Ω;Rn) can be bounded from above as follows

E∗(u) ≤
ˆ

Ω
W qc(x, u(x), Du(x)) dx, (1.1)

provided that W is controlled by |u|p + |F |p + θ(F ) for some p ≥ 1 and θ : Rn×n+ → [0,+∞) is
a continuous function satisfying the following sub-multiplicative inequality (see [1])

θ(FG) ≤ C0(1 + θ(F ))(1 + θ(G)), ∀F,G ∈ Rn×n+ .

To prove (1.1) one has to construct a sequence of W 1,p(Ω;Rn) functions uj converging to u in
L1(Ω;Rn) and such that

lim sup
j

ˆ
Ω
W (x, uj(x), Duj(x)) dx ≤

ˆ
Ω
W qc(x, u(x), Du(x)) dx.

Such a sequence cannot be obtained by adding small variations to u since this operation would
not preserve the determinant constraint. Instead, following [2], one has to construct uj by com-
posing u with inner variations ϕj having positive determinant. Note that, if W were continuous
in the gradient variable uniformly with respect to (x, u) the proof of (1.1) would go exactly as
in [2]. Therefore in our case the idea is to try to reduce to this case by finding two compact sets
K ⊂ Ω, H ⊂ Rn such that |Ω \K| is small, W is continuous in K ×H × Rn×n+ , u|K is continu-

ous and u(K) ⊂ H. Then the upper-bound could be proved by constructing an approximating
sequence uj converging uniformly to u in K and such that uj(K) ⊂ H. However if uj = u ◦ ϕj
the last inclusion does not hold. Therefore, in order to restore this kind of argument, one needs
to rely on more delicate density estimates (see Lemma 3.2).

Finally, the matching lower bound required to complete the proof of the relaxation formula
follows by standard lower-semicontinuity results under the assumptions that p ≥ n, W qc is
polyconvex and θ(F ) ≥ η(detF ) for some convex function η : R→ (0,+∞] with limt→0+ η(t) =
+∞.

2. Setting of the problem and preliminary results

We denote by Ω ⊂ Rn an open bounded set with Lipschitz boundary. Given a measurable set
E ⊂ Rn we denote by |E| its n-dimensional Lebesgue measure. For x ∈ Rn and r > 0 we denote
by Br(x) the open ball of radius r centred at x and we set Br := Br(0). Given f ∈ L1

loc(Rn) we
define its precise representative at x to be f(x) at every Lebesgue point and 0 otherwise. Given
a measurable set E ⊂ Rn we say that E has density one at x ∈ Rn if x is a Lebesgue point
for the characteristic function χ

E
of E. Throughout the paper we shall denote by C a positive

constant whose value may change from line to line.

We assume that W : Ω × Rn × Rn×n+ → [0,+∞) is a Carathéodory function, that is such that

for a.e. x ∈ Ω W (x, ·, ·) is continuous and for all (u, F ) ∈ Rn × Rn×n+ W (·, u, F ) is measurable.
We assume that W satisfies the following set of assumptions: there exist C0 > 0 and p ≥ 1 such
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that
1

C0
(|u|p + |F |p + θ(F )) ≤W (x, u, F ) ≤ C0 (1 + |u|p + |F |p + θ(F )) , (2.2)

where θ : Rn×n+ → [0,+∞) is a continuous function such that for all F,G ∈ Rn×n+

θ(FG) ≤ C0(1 + θ(F ))(1 + θ(G)). (2.3)

In what follows we will make use of a characterisation of Charathéodory functions due to Scorza-
Dragoni (see [3, Chp. VIII, Sec. 1.3]).

Theorem 2.1. [Scorza-Dragoni] Let E ⊂ Rm be a Borel set. A mapping f : Ω × E → [0,+∞]
is a Carathéodory function if and only if for all compact sets K ⊂ Ω and all ε > 0, there exists
a compact set Kε ⊂ K such that |K \ Kε| ≤ ε for which the restriction of f to Kε × E is
continuous.

In the following we shall always assume that W is extended outside Rn × Rn+ by setting
W (x, u, F ) := +∞ for all (x, u) ∈ Ω× Rn and F such that detF ≤ 0.
Given (x0, u0) ∈ Ω×Rn, we denote by W qc : Ω×Rn×Rn×n → [0,+∞] the quasi-convex envelope
of W defined as

W qc(x0, u0, F ) = inf

{ 
B1

W (x0, u0, Dϕ(x)) dx : ϕ ∈W 1,∞(B1,Rn), ϕ(x) = Fx for x ∈ ∂B1

}
.

(2.4)
Note that if detF ≤ 0 then W qc(x0, u0, F ) = +∞.
The next result is proved in [2, Lemma 3.1] and generalises the continuity properties of the
convolution operator between Lp spaces.

Lemma 2.2. Let ψ ∈ W 1,∞(Br;Br), g ∈ L1(Br), f ∈ L1(B2r(x0)), for some x0 ∈ Rn and
r > 0. Then there exists a measurable set E ⊂ Br(x0) of positive measure with the following
property. For any y0 ∈ E the function

f̃(x) = f(ψ(x− y0) + y0)g(x− y0)

belongs to L1(Br(y0)) and

‖f̃‖L1(Br(y0)) ≤
1

|Br|
‖f‖L1(B2r(x0))‖g‖L1(Br). (2.5)

3. The orientation preserving case

In this section we state our main result in the orientation preserving case.

In the next lemma we prove some of the main properties of the quasiconvex envelope W qc of W .

Lemma 3.1. Let W satisfy the assumption (2.2) and (2.3). Then there exists a Borel function

W̃ qc : Ω× Rn × Rn×n+ → [0,+∞) such that for almost every x ∈ Ω W̃ qc(x, ·, ·) = W qc(x, ·, ·),

(u, F ) ∈ Rn × Rn×n+ 7→ W̃ qc(x, u, F ) is upper semicontinuous

and for almost every x ∈ Ω, u ∈ Rn and F ∈ Rn×n+ it holds

1

C0
(|u|p + |F |p + θqc(F )) ≤ W̃ qc(x, u, F ) ≤ C0 (1 + |u|p + |F |p + θ(F )) , (3.6)
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where C0 is the constant in (2.2). Assume moreover that for almost every x0 ∈ Ω and all u0 ∈ Rn
there exists a modulus of continuity ω0 : (0,+∞) → (0,+∞) such that for all u ∈ Rn and for
all F ∈ Rn×n+

W (x0, u0, F ) ≤W (x0, u, F ) + ω0(|u− u0|)(1 +W (x0, u, F )). (3.7)

Then W qc is a Carathéodory function and satisfies (3.7).

Proof. Since W is a Carathéodory function, by Theorem 2.1 there exists an increasing sequence
of compact sets Ki ⊂ Ω such that |Ω \

⋃
iKi| = 0 and W is continuous when restricted to

Ki ×Rn ×Rn×n+ . As a result, in order to prove the first part of the lemma, it is enough to show

that the function W qc(x, u, F )χ
Ki

is upper semicontinuous on Ω×Rn ×Rn×n+ for all i ∈ N and
to set

W̃ qc(x, u, F ) =

{
W qc(x, u, F ) if x ∈

⋃∞
i=1Ki

0 otherwise.

Let (xh, uh, Fh) → (x, u, F ). Note that the upper semicontinuity of W qcχ
Ki

follows trivially if

xh 6∈ Ki for h large. Hence, without loss of generality we may assume that x, xh ∈ Ki for all
h ∈ N. Fix ϕ ∈W 1,∞(B1,Rn) such that ϕ(x) = Fx on ∂B1. Without loss of generality we may
assume that

´
B1
W (x, u,Dϕ(y)) dy ≤ C. Then, given γ > 0 we can write 

B1

W (xh, uh, FhF
−1Dϕ(y)) dy −

 
B1

W (x, u,Dϕ(y)) dy

=
1

|B1|

ˆ
B1∩{detDϕ<γ}

(
W (xh, uh, FhF

−1Dϕ(y))−W (x, u,Dϕ(y))
)
dy

+
1

|B1|

ˆ
B1∩{detDϕ≥γ}

(
W (xh, uh, FhF

−1Dϕ(y))−W (x, u,Dϕ(y))
)
dy.

Observe that the first integral on the right hand side is controlled by

C

ˆ
B1∩{detDϕ<γ}

(1 +W (x, u,Dϕ(y))) dy,

hence it converges to zero, uniformly with respect to h as γ → 0. The second integral tends to
zero thanks to the uniform continuity of W on the compact subsets of Ki×Rn×Rn×n+ . Therefore,
taking first the limsup as h→ +∞ and then letting γ → 0 we have

lim sup
h

W qc(xh, uh, Fh) ≤ lim sup
h

 
B1

W (xh, uh, FhF
−1Dϕ(y)) dy ≤

 
B1

W (x, u,Dϕ(y)) dy.

Taking the infimum over ϕ the upper semicontinuity follows by the definition of quasiconvex en-
velope in (2.4). Again using definition (2.4) we have that inequality (3.6) follows from (2.2). Sim-
ilarly, if W satisfies (3.7), the same holds for W qc. In order to prove that W qc is a Carathéodory
function it is enough to show that for a.e. x ∈ Ω the function (u, F ) 7→ W qc(x, u, F ) is lower
semicontinuous. This property follows by combining (3.7) for W qc with the fact that for a.e.
x ∈ Ω and for all u ∈ Rn the function W q,c(x, u, ·) is quasiconvex in Rn×n+ hence continuous ([2,
Lemma 3.4]). �

In what follows we shall assume that the function θ satisfies

θ(F ) ≤ C(1 + θqc(F )), (3.8)

for some C > 0. The next lemma provides the key ingredients to prove the upper-bound estimate
on the energy in (3.21).
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Lemma 3.2. Let W : Ω × Rn × Rn×n+ → [0,+∞) be a Carathéodory function satisfying (2.2)
and (2.3) and such that W qc is Carathéodory too. Let K ⊂ Ω be a compact set such that W and
W qc are both continuous in K ×Rn ×Rn×n+ and that u|K is continuous. Assume moreover that

there exists M > 0 such that for a.e. x ∈ K

|u(x)|+ |Du(x)| ≤M, detDu(x) ≥ 1

M
.

Given ε > 0, for a.e. x0 ∈ K there exists r0 ∈ (0, 1) such that for all 0 < r < r0 there exist
y0 ∈ Br(x0), z ∈W 1,p(B2r(x0);Rn) with z = u in B2r(x0) \Br(y0), such thatˆ

Br(y0)
W (x, z(x), Dz(x)) dx ≤

ˆ
Br(y0)

(W qc(x, u(x), Du(x)) + ε) dx, (3.9)

ˆ
Br(y0)

|z(x)− u(x)|p dx ≤ C1r
p

ˆ
Br(y0)

(1 +W (x, u(x), Du(x))) dx, (3.10)

where C1 > 0 is a constant depending only on n, p and C0.

Proof. In what follows we will explicitly indicate the dependence of the constants on the various
parameters by a subscript. Let x0 ∈ K be a a Lebesgue point for u, Du and θ(Du) where K
has density one. We set u0 = u(x0) and F = Du(x0). Let ϕε ∈ W 1,∞(B1;Rn) be such that
ϕε(x) = Fx on ∂B1 and 

B1

W (x0, u0, Dϕε(y)) dy ≤W qc(x0, u0, F ) + ε. (3.11)

For r > 0 we set ϕε,r(x) = rϕε(
x
r ). Clearly we have that

‖Dϕε,r‖L∞(Br) ≤ cε (3.12)

for some cε > 0 independent of r. Given δ > 0 there exists rδ > 0 such that for all 0 < r < rδ 
B2r(x0)

(|χ
K

(x)− 1|+ |u(x)− u0|p + |Du(x)− F |p + |θ(Du(x))− θ(F )|) dx ≤ δ. (3.13)

We now apply Lemma 2.2 with f(x) = |u(x) − u0|p + |Du(x) − F |p + |θ(Du(x)) − θ(F )|),
g = 1 + θ(F−1Dϕε,r) and ψ = F−1ϕε,r. Note that by [1, Theorem 1] ψ(Br) ⊂ Br. Using the
uniform bound (3.12) and the assumption (2.3) we have that ‖g‖L1(Br) ≤ Cε|Br|. Therefore
thanks to (2.5) we get the existence of y0 ∈ Br such that 

B
(1 + θ(Dv(x)))(|u(v(x))− u0|p + |Du(v(x))− F |p + |θ(Du(v(x)))− θ(F )|) dx ≤ Cεδ. (3.14)

where B = Br(y0) and where we have set

v(x) =

{
F−1ϕε,r(x− y0) + y0 if x ∈ Br(y0)

x if x ∈ Ω \Br(y0).

Define z ∈W 1,p(Ω;Rn) as z(x) = u(v(x)) and choose γ = γε > 0 such thatˆ
Br∩{detDϕε,r≤γ}

(1 + θ(Dϕε,r(x))) dx ≤ ε

C̃ε
|Br|, (3.15)

for all r < 1, where C̃ε > 0 is a constant that will appear below. Note that this choice of γ
independent of r is possible since ϕε,r(x) = rϕε(

x
r ) and thanks to (3.11), (2.2) and (2.3). In
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what follows, to shorten notation we set ϕ̂ε,r(x) = ϕε,r(x − y0). We now split the difference of
the two integrals in (3.9) as follows

ˆ
B
W (x, z(x), Dz(x))−W qc(x, u(x), Du(x)) =

ˆ
B
W (x, z(x), Dz(x))−W (x0, u0, Dz(x))

+

ˆ
B
W (x0, u0, Dz(x))−W (x0, u0, Dϕ̂ε,r(x)) +

ˆ
B
W (x0, u0, Dϕ̂ε,r(x))−W qc(x0, u0, F )

+

ˆ
B
W qc(x0, u0, F )−W qc(x0, u0, Du(x)) +

ˆ
B
W qc(x0, u0, Du(x))−W qc(x, u(x), Du(x))

= N1 + V1 + V2 + V3 +N2.

Note that the terms Vi in the previous chain of equalities already appear in the proof of [2,
Lemma 3.2] and can be treated as therein. Thus we start by estimating the terms Ni which are
produced by the dependence of W on x and u. To this end we set for σ ∈ (0, 1)

Eσ := {x ∈ Ω : |u(v(x))− u0|p + |Du(v(x))− F |p ≤ σ}.

In order to estimate N1 we split B in four mutually disjoint subsets as follows. First, using (2.2),

(2.3), (3.14) and (3.15) there exists C̃ε > 0 depending on ε but not on r and γ, such that

ˆ
B∩{detDϕ̂ε,r≤γ}

W (x, z(x), Dz(x))−W (x0, u0, Dz(x)) dx

≤ C̃ε
ˆ
B
|u(v(x))− u0|p + |Du(v(x))− F |p + |θ(Du(v(x)))− θ(F )| dx (3.16)

+ C̃ε

ˆ
B∩{detDϕ̂ε,r≤γ}

(
1 + θ(Dϕ̂ε,r(x))

)
dx ≤ C̃εδ|B|+ ε|B|.

Observe now that there exists σε depending only on γ (hence on ε) such that if 0 < σ < σε
on the set B ∩K ∩ {detDϕ̂ε,r ≥ γ} ∩ Eσ we have that detDz ≥ γ/2, |Dz| ≤ CεM , |z| ≤ 2M .
Therefore by the uniform continuity of W on compact subsets of K × Rn × Rn×n+ , there exists
rε such that for 0 < r < rε and for σε sufficiently small

ˆ
B∩K∩{detDϕ̂ε,r≥γ}∩Eσ

|W (x, z(x), Dz(x))−W (x0, u0, Dz(x))| dx ≤ ε|B|. (3.17)

Arguing as in the proof of (3.16) we have

ˆ
B∩K∩{detDϕ̂ε,r≥γ}\Eσ

|W (x, z(x), Dz(x))−W (x0, u0, Dz(x))| dx (3.18)

≤ Cε
ˆ
B\Eσ

(1 + θ(Dv(x)))(1 + |u(v(x))− u0|p + |Du(v(x))− F |p + |θ(Du(v(x)))− θ(F )|) dx

≤ Cε
σ

ˆ
B\Eσ

(1 + θ(Dv(x)))(σ + |u(v(x))− u0|p + |Du(v(x))− F |p + |θ(Du(v(x)))− θ(F )|) dx

≤ Cε
σ
δ|B|,
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where the last inequality follows from (3.14) and the fact that σ < |u(v(x))−u0|p+ |Du(v(x))−
F |p for x ∈ Ω \ Eσ.ˆ

B\K∩{detDϕ̂ε,r≥γ}
|W (x, z(x), Dz(x))−W (x0, u0, Dz(x))| dx (3.19)

≤ Cε
ˆ
B

(1 + θ(Dv(x)))(|u(v(x))− u0|p + |Du(v(x))− F |p + |θ(Du(v(x)))− θ(F )|) dx

+ C

ˆ
B\K∩{detDϕ̂ε,r≥γ}

(1 + θ(Dv(x))) dx ≤ Cεδ|B|+ Cε|B2r(x0) \K| ≤ Cεδ|B|

where in the last two inequalities we used first (3.13) and then (3.14). Combining the previous
estimates, for all 0 < r < min{rδ, rε} and for all 0 < σ < σε we have that

N1 ≤ |B|
(
Cεδ + 2ε+

Cε
σ
δ
)
.

In order to estimate N2 we split it in two terms

N2 =

ˆ
B\K

W qc(x0, u0, Du(x))−W qc(x, u(x), Du(x)) dx (3.20)

+

ˆ
B∩K

W qc(x0, u0, Du(x))−W qc(x, u(x), Du(x)) dx

The first integral in (3.20) is estimated by

C

ˆ
B\K

(1 + |u(x)− u0|p + |Du(x)− F |p + |θ(Du(x)− θ(F )|) dx ≤ Cδ|B|

thanks to (3.13). We recall that on K we have that |u(x)| + |Du| ≤ M , that detDu ≥ 1
M

and that u|K is continuous. Therefore, by the uniform continuity of W qc on compact subsets of

K ×Rn×Rn×n+ , the second integral can be estimated by ε|B| provided 0 < r < rε for a suitable
rε. In conclusion we have that, if r < min{rε, rδ}

N2 ≤ (Cδ + ε)|B|.

We now turn to the estimates of the Vi terms. To estimate V1 it is enough to split the integral
into the three sets B ∩ {det ϕ̂ε,r ≤ γ}, B ∩ {det ϕ̂ε,r ≥ γ} ∩ {x ∈ Ω : |Du(v(x))− F |p ≤ σ} and
B ∩ {det ϕ̂ε,r ≥ γ} ∩ {x ∈ Ω : |Du(v(x)) − F |p ≥ σ}. The integral on the first set is estimated
as in (3.16). The second one is estimated as in (3.17), using the continuity of W (x0, u0, ·) and
the third one as in (3.18) and the third one is estimates inside and outside K as in (3.18) and
(3.19). In conclusion there exist σε and rε such that if 0 < r < min{rε, rδ} and 0 < σ < σε we
have

V1 ≤
(
Cεδ + 2ε+ Cε

δ

σ

)
|B|.

By (3.11)

V2 ≤ ε|B|.
The term V3 can be estimated by splitting B into the three sets B∩K∩{x ∈ B : |Du(x)−F |p ≤
σ},B∩K∩{x ∈ B : |Du(x)−F |p ≥ σ} andB\K. Recalling that onK it holds that |Du(x)| ≤M ,
detDu ≥ 1

M , by the uniform continuity of W qc(x0, u0, ·) on compact sets of Rn×n+ we conclude
that the integral on B ∩K ∩ {x ∈ B : |Du(x)− F |p ≤ σ} is controlled by ε|B| provided σ < σε
for σε sufficiently small. The integral on the set B ∩K ∩ {x ∈ B : |Du(x) − F |p ≥ σ} can be
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treated as in (3.18) and hence estimated by C δ
σ |B| if r < rδ. Finally the integral over the set

B \K is estimated by

C

ˆ
B\K

(1 + |Du(x)− F |p + |θ(Du(x))− θ(F )|) dx ≤ Cδ|B|

for 0 < r < rδ. On gathering together all the previous estimates, we eventually deduce that for
0 < r < min{rε, rδ} and for 0 < σ < σε we have

ˆ
B
W (x, z(x), Dz(x))−W qc(x, u(x), Du(x)) dx ≤

(
Cεδ + 7ε+ Cε

δ

σ

)
|B|.

On choosing σ =
√
δ and δ < σ2

ε sufficiently small we get that there exists a radius r0, ultimately
depending only on ε, such that, if r < r0 (3.9) holds with ε replaced by Cε for some constant C
independent of ε. Finally (3.10) is a consequence of Poincaré inequality and of (2.2). �

Theorem 3.3. Let W : Ω × Rn × Rn×n+ → [0,+∞) be a Carathéodory function satisfying as-
sumptions (2.2) and (2.3) and such that W qc is Carathéodory too. Assume that (3.8) holds.Then

there exists a sequence uj ∈ W 1,p(Ω;Rn) such that uj − u ∈ W 1,p
0 (Ω;Rn), uj ⇀ u weakly in

W 1,p(Ω;Rn) and such that

lim sup
j

ˆ
Ω
W (x, uj(x), Duj(x)) dx ≤

ˆ
Ω
W qc(x, u(x), Du(x)) dx. (3.21)

Proof. Throughout the proof we may assume that W (·, u,Du) ∈ L1(Ω), otherwise by (3.8) and
Lemma 3.1 also the right hand side of (3.21) equals +∞.
Given ε > 0, to prove the theorem it is enough to construct a function uε such that

ˆ
Ω
W (x, uε(x), Duε(x)) dx ≤

ˆ
Ω
W qc(x, u(x), Du(x)) dx+ Cε,

ˆ
Ω
|uε(x)− u(x)|p dx ≤ ε

(ˆ
Ω

1 +W (x, u(x), Du(x)) dx

)
.

Let E := {x ∈ Ω : |u(x)| + |Du(x)| ≤ M, detDu(x) ≥ 1
M } where M > 0 is chosen so that

|Ω \ E| < |Ω|/8. Since both W and W qc are Carathéodory functions there exists a compact set
K ⊂ E with |Ω \K| ≤ |Ω|/8 such that W, W qc are continuous in K × Rn × Rn×n+ and u|K is

continuous too. By applying Lemma 3.2 there exists a null set N such that for all x ∈ K\N there
exists rx such that C1r

p
x < ε with the property that for all 0 < r < rx there exists y ∈ Br(x)

and a function z ∈ W 1,p(B2r(x);Rn), z = u on B2r(x) \ Br(y) and such that (3.9) and (3.10)
hold.
Set F :=

{
B2r(x) : x ∈ K \N,B2r(x) ⊂ Ω, 0 < r < rx

}
. By Vitali-Besicovitch covering theo-

rem there exists a sequence of pairwise disjoint balls B2rj (xj) ∈ F such that |K \
⋃
j B2rj (xj)| =

0. We denote by yj and zj the corresponding points and functions obtained via Lemma 3.2

applied to the ball B2rj (xj). We fix m ∈ N such that |K \
⋃m
j=1B2rj (xj)| ≤ |Ω|/8 and we set

C1 :=
⋃m
j=1Brj (yj). Denote now by w1 ∈W1,p(Ω;Rn) the function defined as follows

w1(x) =

{
zj(x) x ∈ Brj (yj)
u(x) x ∈ Ω \ C1.
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Note that by construction w1 = u on ∂Ω andˆ
C1

W (x,w1(x), Dw1(x)) dx ≤
ˆ
C1

(
W qc(x, u(x), Du(x)) + ε

)
dx, (3.22)

ˆ
C1

|w1(x)− u(x)|p dx ≤ ε
ˆ
C1

1 +W (x, u(x), Du(x)) dx. (3.23)

Finally we observe that

|Ω \ C1| ≤ |Ω \K|+
∣∣∣K \ m⋃

j=1

B2rj (xj)
∣∣∣+
∣∣∣ m⋃
j=1

B2rj (xj) \ C1

∣∣∣ ≤ |Ω|
8

+
|Ω|
8

+
|Ω|
2

=
3

4
|Ω|. (3.24)

We now iterate the previous construction in Ω \C1 thus finding a compact set C2 ⊂ Ω \C1 with

|Ω \ C1 \ C2| ≤
3

4
|Ω \ C1| ≤

(3

4

)2
|Ω|

and a function w2 ∈ W 1,p(Ω \ C1) with w2 = u on ∂(Ω \ C1) satisfying (3.22) and (3.23) with
C1 replaced by C2. Further iterating this argument k times we eventually find compact sets
Cj ⊂ Cj−1 for j ∈ {3, . . . , k} with

|Ω \
k⋃
j=1

Cj | ≤
(3

4

)k
|Ω|

and functions wj ∈W 1,p(Ω\
⋃j−1
i=1 Ci) with wj = u on ∂(Ω\

⋃j−1
i=1 Ci) satisfying (3.22) and (3.23)

with C1 replaced by Cj . Setting uε(x) = wj(x) for x ∈ Cj , and uε(x) = u(x) for x ∈ Ω \
⋃k
j=1Cj

we have ˆ
Ω
|uε(x)− u(x)|p dx ≤ ε

ˆ
Ω

1 +W (x, u(x), Du(x)) dx

and
ˆ

Ω
W (x, uε(x), Duε(x)) dx =

k∑
j=1

ˆ
Cj

W (x,wj(x), Dwj(x)) dx+

ˆ
Ω\

⋃k
j=1 Cj

W (x, u(x), Du(x)) dx

≤
ˆ

Ω
ε+W qc(x, u(x), Du(x)) dx+ ε

provided k is chosen so large that the measure of Ω \
⋃k
j=1Cj is sufficiently small. �

By combining the previous theorem with well-known lower semicontinuity results we obtain the
following relaxation theorem.

Theorem 3.4. Let p ≥ n and W : Ω × Rn × Rn×n+ → [0,+∞) be a Charathéodory function
such that (2.2),(2.3), (3.7) and (3.8) hold. Assume moreover that there exists a convex function
η : (0,+∞)→ (0,+∞) with

lim
t→0+

η(t) = +∞. (3.25)

such that for all F ∈ Rn × Rn+
θ(F ) ≥ η(detF ).

Set W := +∞ outside Rn×n+ and define W qc as in (2.4). Finally set for all u ∈ L1(Ω;Rn)

E(u) =

ˆ
Ω
W (x, u(x), Du(x)) dx and E∗(u) =

ˆ
Ω
W qc(x, u(x), Du(x)) dx.
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If for a.e. x ∈ Ω and for all u ∈ Rn the function W qc(x, u, ·) is polyconvex, then E∗ is the
relaxation of E with respect to the L1 convergence, i.e.,

E∗(u) = inf{lim inf
j

E(uj) : uj → u in L1(Ω;Rn)}.

Proof. Thanks to Theorem 3.3 to prove the representation formula for E∗ it is enough to show
that given uj , u with uj → u in L1(Ω;Rn) thenˆ

Ω
W qc(x, u,Du) dx ≤ lim inf

j

ˆ
Ω
W qc(x, uj , Duj) dx. (3.26)

To this end we may assume that the lim inf on the right hand side is actually a limit and that
it is finite. Then, thanks to (3.6), (3.8) and recalling that W qc(x, u, F ) = +∞ if detF ≤ 0, the
sequence uj is bounded in W 1,n(Ω;Rn) and detDuj(x) > 0 for a.e. x ∈ Ω. Therefore, by a well-
known result in [5], we have that detDuj is bounded in L logL(Ω) and thus, up a subsequence
we may assume that detDuj converges weakly in L1(Ω) to detDu and that the same holds true
for all the lower order minors. Observe also that from assumption (3.25) we have also thatˆ

Ω
η(detDu(x)) dx <∞,

hence detDu(x) > 0 for a.e. x ∈ Ω.
Recall that by assumption on W qc and by Lemma 3.1 we know that there exists a Carathéodory
function g : Ω × Rn × G where G = Rk × (0,+∞) and k is the number of all minors of order
1 ≤ i ≤ (n−1) of an n×n matrix with g(x, u, ·) convex for almost every x ∈ Ω and for all u ∈ Rn.
At this point (3.26) follows from well-known lower semicontinuity results (see for instance [4,
Theorem 4.5]). Note that this theorem is stated in the case G = RN . However it is easily checked
that the same proof holds also in our setting with the only modification needed in the proof of
[4, Lemma 4.3] where the function zL must be replaced by

zL =

{
z if |z| < L

z0 otherwise,

for a fixed z0 ∈ B. �

4. The incompressible case

In this section we consider the incompressible case.

We denote by Σ ⊂ Rn×n+ the set of n × n matrices F with detF = 1. In this section we will

consider an integrand W : Ω × Rn × Rn×n+ → [0,+∞] such that W (x, u, F ) = +∞ if F 6∈ Σ.
Moreover we will assume that W restricted to Ω×Rn ×Σ is a Carathéodory function and that
there exist C2 > 0 and p ≥ 1 such that for almost every x ∈ Ω and for all (u, F ) ∈ Rn × Σ

1

C2
(|u|p + |F |p) ≤W (x, u, F ) ≤ C2 (1 + |u|p + |F |p) . (4.27)

We now observe that on defining W qc as in (2.4), we get that for almost every x ∈ Ω and for
all u ∈ Rn, W qc(x, u, F ) = +∞ if and only if F 6∈ Σ. Indeed, if F 6∈ Σ there exists no Lipschitz
function ϕ such that ϕ(x) = Fx on ∂B1 with detϕ(x) ≡ 1 for almost every x ∈ B1. On the
other hand, if F ∈ Σ, W qc(x, u, F ) ≤W (x, u, F ).

The next lemma can be proved with the same arguments as in the proof of Lemma 3.1.
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Lemma 4.1. Let W : Ω × Rn × Σ → [0,+∞) satisfy the assumption (4.27). Then there exists

a Borel function W̃ qc : Ω × Rn × Σ → [0,+∞) such that for almost every x ∈ Ω, W̃ qc(x, ·, ·) =
W qc(x, ·, ·),

(u, F ) ∈ Rn × Σ 7→ W̃ qc(x, u, F ) is upper semicontinuous

and for almost every x ∈ Ω, u ∈ Rn and F ∈ Σ it holds

1

C2
(|u|p + |F |p) ≤W qc(x, u, F ) ≤ C2 (1 + |u|p + |F |p) ,

where C2 is the constant in (4.27). Assume moreover that for almost every x0 ∈ Ω and all
u0 ∈ Rn there exists a modulus of continuity ω0 : (0,+∞) → (0,+∞) such that for all u ∈ Rn
and for all F ∈ Σ

W (x0, u0, F ) ≤W (x0, u, F ) + ω0(|u− u0|)(1 +W (x0, u, F )). (4.28)

Then W qc is a Carathéodory function and satisfies (4.28).

The next Lemma is the analogous of Lemma 3.2, which in the incompressible case simplifies
both in the statement and in the proof.

Lemma 4.2. Let W : Ω× Rn × Σ→ [0,+∞) be a Carathéodory function satisfying (4.27) and
such that W qc is Carathéodory too. Let K ⊂ Ω be a compact set such that W and W qc are both
continuous in K×Rn×Σ and that u|K is continuous. Assume moreover that there exists M > 0

such that for a.e. x ∈ K
|u(x)|+ |Du(x)| ≤M.

Given ε > 0, for a.e. x0 ∈ K there exists r0 ∈ (0, 1) such that for all 0 < r < r0 there exist
y0 ∈ Br(x0), z ∈W 1,p(B2r(x0);Rn) with z = u in B2r(x0) \Br(y0), such thatˆ

Br(y0)
W (x, z(x), Dz(x)) dx ≤

ˆ
Br(y0)

(W qc(x, u(x), Du(x)) + ε) dx, (4.29)

ˆ
Br(y0)

|z(x)− u(x)|p dx ≤ C3r
p

ˆ
Br(y0)

(1 +W (x, u(x), Du(x))) dx,

where C3 > 0 is a constant depending only on n, p and C2.

Proof. The proof goes as for Lemma 3.2 and it is actually simpler.
Let x0 ∈ K be a point where K has density one and a Lebesgue point for u, Du such that
F = Du(x0) ∈ Σ. We set u0 = u(x0). Let ϕε ∈W 1,∞(B1;Rn) such that ϕε(x) = Fx on ∂B1 and 

B1

W (x0, u0, Dϕε(y)) dy ≤W qc(x0, u0, F ) + ε

For r > 0 we set ϕε,r(x) = rϕε(
x
r ). Clearly we have that

‖Dϕε,r‖L∞(Br) ≤ cε
for some cε > 0 independent of r. Given δ > 0 there exists rδ > 0 such that for all 0 < r < rδ 

Br(x0)
(|χ

K
(x)− 1|+ |u(x)− u0|p + |Du(x)− F |p) dx ≤ δ. (4.30)

Set for x ∈ Br(x0), v(x) = F−1ϕε,r(x−x0)+x0. Thanks to [1, Theorem 1], v(Br(x0)) ⊂ Br(x0).
Therefore there exists a constant Cε such that for all 0 < r < rδ 

B
|u(v(x))− u0|p + |Du(v(x))− F |p dx ≤ Cεδ, (4.31)
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where B = Br(x0). We define z ∈ W 1,p(Ω;Rn) as z(x) = u(v(x)) if x ∈ B and as z(x) = u(x)
for x ∈ Ω \B. To shorten notation we set ϕ̂ε,r(x) = ϕε,r(x− x0). We now split the difference of
the two integrals in (4.29) as followsˆ

B
W (x, z(x), Dz(x))−W qc(x, u(x), Du(x)) =

ˆ
B
W (x, z(x), Dz(x))−W (x0, u0, Dz(x))

+

ˆ
B
W (x0, u0, Dz(x))−W (x0, u0, Dϕ̂ε,r(x)) +

ˆ
B
W (x0, u0, Dϕ̂ε,r(x))−W qc(x0, u0, F )

+

ˆ
B
W qc(x0, u0, F )−W qc(x0, u0, Du(x)) +

ˆ
B
W qc(x0, u0, Du(x))−W qc(x, u(x), Du(x))

= P1 + P2 + P3 + P4 + P5.

We give the details of the estimates of P1 and P5, since the remaining terms are treated as in
Lemma 3.2. Given σ ∈ (0, 1) we set

Eσ := {x ∈ Ω : |u(v(x))− u0|p + |Du(v(x))− F |p ≤ σ}.
In order to estimate P1 we split B in three mutually disjoint subsets as follows. Observe now
that on the set B ∩K ∩ Eσ we have that |Dz| ≤ CεM + 1, |z| ≤ M + 1. Therefore, thanks to
the uniform continuity of W on compact subsets of K ×Rn×Σ there exists σε and rε such that
for 0 < σ < σε and 0 < r < rεˆ

B∩K∩Eσ
|W (x, z(x), Dz(x))−W (x0, u0, Dz(x))| dx ≤ ε|B|.

Arguing as in the proof of (3.16) we haveˆ
B∩K\Eσ

|W (x, z(x), Dz(x))−W (x0, u0, Dz(x))| dx

≤ Cε
ˆ
B\Eσ

1 + |u(v(x))− u0|p + |Du(v(x))− F |p dx

≤ Cε
σ

ˆ
B\Eσ

σ + |u(v(x))− u0|p + |Du(v(x))− F |p dx ≤ Cε
σ
δ|B|,

where the last inequality follows from (4.31) and from the fact that σ < |u(v(x)) − u0|p +
|Du(v(x))− F |p for x ∈ Ω \ Eσ. Finally we estimateˆ

B\K
|W (x, z(x), Dz(x))−W (x0, u0, Dz(x))| dx

≤ Cε
ˆ
B\K

1 + |u(v(x))− u0|p + |Du(v(x))− F |p dx ≤ Cεδ|B|

where in the last two inequalities we used first (4.30) and then (4.31). In order to estimate P5

we first split it in two terms

P5 =

ˆ
B\K

W qc(x0, u0, Du(x))−W qc(x, u(x), Du(x)) dx (4.32)

+

ˆ
B∩K

W qc(x0, u0, Du(x))−W qc(x, u(x), Du(x)) dx

The first integral in (4.32) is estimated by

C

ˆ
B\K

(1 + |u(x)− u0|p + |Du(x)− F |p dx ≤ Cδ|B|
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thanks to (4.30). We recall that on K we have that |u(x)|+|Du| ≤M and that u|K is continuous.

Therefore, by the uniform continuity of W qc on compact sets of K×Rn×Σ, the second integral
can be estimated by ε|B| provided 0 < r < rε for a suitable rε. Therefore we have that if
0 < r < min{rδ, rε}

P5 ≤ (Cδ + ε)|B|.
Estimating the other terms as in Lemma 3.2 we conclude that if 0 < r < min{rδ, rε} and
0 < σ < σε we haveˆ

B
W (x, z(x), Dz(x))−W qc(x, u(x), Du(x)) dx ≤

(
Cεδ + Cε+ Cε

δ

σ

)
|B|.

To conclude the proof we argue as in the final part of Lemma 3.2. �

By repeating the same construction as in Theorem 3.3 we get

Theorem 4.3. Let W : Ω×Rn×Σ→ [0,+∞) be a Carathéodory function satisfying assumption
(4.27) and such that W qc is Carathéodory too. Then there exists a sequence uj ∈ W 1,p(Ω;Rn)

such that uj − u ∈W 1,p
0 (Ω;Rn), uj ⇀ u weakly in W 1,p(Ω;Rn) and such that

lim sup
j

ˆ
Ω
W (x, uj(x), Duj(x)) dx ≤

ˆ
Ω
W qc(x, u(x), Du(x)) dx.

As in the previous section we can now give the following relaxation result in the incompressible
case.

Theorem 4.4. Let p ≥ n and W : Ω × Rn × Σ → [0,+∞) be a Charathéodory function such
that (4.27) and (4.28) hold. Define W qc as in (2.4) and extend W and W qc to +∞ outside Σ.
Finally set for all u ∈ L1(Ω;Rn)

E(u) =

ˆ
Ω
W (x, u(x), Du(x)) dx and E∗(u) =

ˆ
Ω
W qc(x, u(x), Du(x)) dx.

If for a.e. x ∈ Ω and for all u ∈ Rn the function W qc(x, u, ·) is polyconvex, then E∗ is the
relaxation of E with respect to the L1 convergence, i.e.,

E∗(u) = inf{lim inf
j

E(uj) : uj → u in L1(Ω;Rn)}.
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