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Abstract. We prove that, in the limit as k → +∞, the hexagonal honeycomb solves
the optimal partition problem in which the criterion is minimizing the largest among
the Cheeger constants of k mutually disjoint cells in a planar domain. As a by-product,
the same result holds true when the Cheeger constant is replaced by the first Robin
eigenvalue of the Laplacian.

1. Introduction and statement of the results

Consider the following optimal partition problem

(1) Mk(Ω) = inf
{

max
j=1,...,k

h(Ωj) : {Ωj} ∈ Ak(Ω)
}
,

where Ω is an open bounded subset of R2 with a Lipschitz boundary, h(·) is the Cheeger
constant, and Ak(Ω) is the class of k-clusters of Ω, meant as families of k Borel sets
with finite perimeter which are contained into Ω and have Lebesgue negligible mutual
intersections.
Let us recall that the Cheeger constant of Ω is defined by

(2) h(Ω) := inf

{
Per(E,R2)

|E|
: E measurable , E ⊆ Ω

}
,

where Per(E,R2) denotes the perimeter of E in the sense of De Giorgi. We refer to the
review papers [15, 17] and the numerous references therein for an account of the broad
literature about the Cheeger constant.
Optimal partitions for the Cheeger constant have been firstly studied by Caroccia in [6],
where he gives some existence and regularity results for the similar problem

(3) mk(Ω) = inf
{ ∑
j=1,...,k

h(Ωj) : {Ωj} ∈ Ak(Ω)
}
.

The main motivation he brings to study problem (3) is finding some bound for the same
problem for the first Dirichlet eigenvalue of the Laplacian, λ1(Ω). (Recall indeed that
λ1(Ω) is bounded from below by (h(Ω)/2)2, as proved by Cheeger himself in [7].) Actually,
for problem (3) with λ1 in place of the Cheeger constant, a long-standing conjecture by
Caffarelli and Lin predicts that, in the limit as k → +∞, an optimal configuration is given
by a packing of regular hexagons [5]1.
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1The question is commonly known in the literature (see e.g. [6]) as the Caffarelli-Lin conjecture: in fact a

precise mathematical formulation was given in [5], along with the first asymptotic estimates. Nevertheless,
the history of the problem seems to be longer. The first predictive formulation of the conjecture appears in
a list of open problems proposed by K. Burdzy in a conference in Matrei in 2005 https://people.kth.se/
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More recently, problems of the kind (1) and (3) have been studied in [3], where it is shown
that, under the a priori requirement that all the cells of the partitions are convex, the
honeycomb conjecture holds true under the form

(4) lim
k→+∞

|Ω|1/2

k1/2
Mk(Ω) = h(H) , lim

k→+∞

|Ω|1/2

k3/2
mk(Ω) = h(H) ,

where H denotes the unit area regular hexagon.
Clearly, the convexity assumption made on the cells in [3] is quite stringent. Nevertheless,
as a first approach, it seemed reasonable to attack the problem under this restriction,
since, also in the case of perimeter minimizing partitions, the case of convex polygonal
cells was much simpler and indeed it was settled a long time before the celebrated result
by Hales [10] (see Fejes Tóth [9]).
Goal of this paper is to prove the honeycomb conjecture for the Cheeger constant in full
generality, i.e. with no convexity constraint on the cells.
We focus our attention on problem (1). Our strategy consists in considering first the case
when Ω has a special geometry, that for the sake of simplicity we assume to be that of
an equilateral triangle T (but other shapes, for instance a rectangle, could do the same
job), and obtaining an inequality for Mk(T ), with k fixed. The choice of treating first the
case of a simple geometry comes along with our variational approach of the inequality: we
work with an optimal partition and take significant advantage from optimality. For that
reason we need to have a complete and simple description of this one. The conjecture will
follow in full generality, once this special geometric case is proved. In order to deal with
Mk(T ), we introduce the auxiliary problems

(5) Mk,p(T ) = inf
{[ k∑

j=1

hp(Ωj)
]1/p

: {Ωj} ∈ Ak(T )
}
, p ≥ 1 ,

and we set
M̃k,p(T ) := max

j=1,...,k
h(Ωp

j ) ,

being {Ωp
1, . . . ,Ω

p
k} an optimal cluster for problem (5). Note that there is an abuse of

notation, since M̃k,p(T ) depends on the choice of {Ωp
1, . . . ,Ω

p
k}, but we keep this simple

notation as the dependence on the optimal cluster is not important for our purposes.

It is easy to see that M̃k,p(T ) converges to Mk(T ) in the limit as p→ +∞ (see Section 5).

Then we prove that both M̃k,p(T ) and Mk(T ) satisfy the following hexagonal lower bound,
being k fixed:

Theorem 1. Let T be an equilateral triangle. For every p ≥ 1, there holds

(6)
|T |

1
2

k
1
2

M̃k,p(T ) ≥ h(H).

Consequently, we have

(7)
|T |

1
2

k
1
2

Mk(T ) ≥ h(H).

~laptev/ESF/05/Matrei/problems.html, and it is motivated by some numerical computations originating
in older papers [4, 8] modeling particle systems. It is also worth to notice that a related version of this
conjecture, involving the minimization of the maximum among the first eigenvalues of the cells, appears
to be mathematically formulated in a paper by B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, who
learned the question from M. van den Berg (see [11]).
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Theorem 1 is the keystone of our approach. Hereafter is an attempt of enlightening the
main ideas upon which our proof is based:

• Optimal clusters satisfy an existence, regularity, and structure result, which is
essentially a variant of the one valid in the case p = 1 treated by Caroccia (see
Proposition 8).
• As a consequence of the structure result, each cell of an optimal cluster is Cheeger

of itself and enjoys the following key property. If we call “inner Cheeger boundary”
of a cell the inner parallel set at distance to the boundary equal to the inverse of the
Cheeger constant, then the oriented area enclosed by such inner Cheeger boundary
turns out to be related to the Cheeger constant of the cell itself by a very simple
equation (see Proposition 18, eq.(15)). It can be read as the transposition of
a well-known relation between the Cheeger set of convex bodies and their inner
parallel sets. In turn, this leads to a crucial representation formula for the Cheeger
constant of an optimal cell in terms of its area and of the length of its inner
Cheeger boundary (see Proposition 18, eq.(16)). Such representation formula can
be regarded as the initial seed of our proof.
• Starting from the representation formula, the optimality of the hexagonal hon-

eycomb comes out by combining a lower bound for the total length of the inner
Cheeger boundaries, with an upper bound for the total area of the cells. Both are
quite delicate. In particular, the former is obtained by applying Hales’ hexagonal
isoperimetric inequality [10, Theorem 4], going through the analysis of the collec-
tive behaviour of those inner Cheeger boundaries. The latter requires a careful
estimate of the area of the empty chamber, which is carried over through some
topological and geometrical arguments (see Proposition 14).

Next, as a consequence of Theorem 1, we are able to consider the case when the equilateral
triangle is replaced by k-triangle, that is a region of triangular shape formed by k hexagons.
More precisely, for k = l(l+1)/2, by k-triangle, we mean a connected set which is obtained
as the union of k hexagons lying in a tiling of R2 made by a family of copies of a regular
hexagon and having the “rough” shape of an equilateral triangle with l cells on each side
(precisely, all the centers of those hexagons lie on the boundary and inside an equilateral
triangle).
We obtain that, for any fixed k, the energy of a k-triangle (denoted by Tk), suitably scaled,
is precisely that of the regular hexagon:

Theorem 2. Let Tk be a k-triangle. There holds

(8)
|Tk|

1
2

k
1
2

Mk(Tk) = h(H).

Finally, relying on Theorem 2 and using a blow-up argument, we obtain that the hon-
eycomb conjecture for the Cheeger constant holds true for every Lipschitz domain Ω in
the following asymptotic form (which is exactly the same as in [3], without the convexity
assumption on the cells):

Theorem 3. For every open bounded Lipschitz domain Ω, and every p ≥ 1, there holds

(9) lim
k→+∞

|Ω|1/2

k1/2
Mk(Ω) = h(H)

Remark 4 (Asymptotic behaviour for partitions of the Robin-Laplacian eigen-
values). It is worth noticing that, as a consequence of the above result and Corollary



4

3 (i) together with Remark 15 in [2], the same result as Theorem 3 holds true if in the
definition of Mk(Ω) the Cheeger constant h(Ωj) is replaced by the first eigenvalue of the
Laplacian under Robin boundary conditions, λ1(Ωj , β). Precisely, given β > 0 (fixed),
λ1(Ωj , β) is the lowest positive number for which the equation{

−∆u = λ1(Ωj , β)u in Ωj
∂u
∂ν + βu = 0 on ∂Ωj .

has a non trivial solution.

Remark 5 (Weyl asymptotic for the k-th Cheeger constant). The quantity Mk(Ω)
is also called the k-th Cheeger constant of Ω (see the recent paper [18] and references
therein), and an equivalent of this notion is intensively studied on graphs, for clustering
purposes (see e.g. [14]).
Loosely speaking, for the 1-Laplacian operator, the k-th Cheeger constant can be inter-
preted as a counterpart of the k-th eigenvalue. In this perspective, Theorem 3 can also
be interpreted as an asymptotic formula of Weyl type [12] for the k-th Cheeger constant,
since it can be rephrased as

Mk(Ω) =
k

1
2

|Ω|
1
2

(
√
π +

4
√

12) + o(k
1
2 ).

The plan of the paper is the following. In Section 2, we establish all the preparatory
results which concern the properties of optimal clusters; the results of this section relay
on the work of Caroccia [6]. Next we give the intermediate results of topological nature
in Section 3, and the key representation result involving the inner Cheeger boundary in
Section 4. The proofs of Theorems 1, 2, and 3, are then given in Section 5. Finally in
Section 6, we collect some auxiliary geometrical lemmas needed for the estimate of the
area of the empty chamber.

2. About optimal clusters

This section is devoted to the study of optimal clusters for problem (5), in case Ω is an
equilateral triangle T : in Section 2.1 we give a structure result along the same line of the
one proved by Caroccia for p = 1; in Section 2.2 we fix some important consequences of
the structure result; in Section 2.3 we associate with an optimal cluster a planar graph,
which will be used as fundamental tool to establish the topological results stated in the
next section.

2.1. A structure result for optimal clusters.

Definition 6. We denote by A the family of Jordan domains Ω of class C1 contained into
T such that Ω is Cheeger set of itself, and the (positively oriented) boundary ∂Ω is the
union of an even number of nontrivial arcs alternating a free arc and a junction arc. A free
arc is an arc of circle of algebraic curvature h(Ω) with at least one endpoint in the interior
of T . A junction arc may be either an inner junction arc or a border junction arc. An
inner junction arc is an arc of circle of algebraic curvature strictly less than h(Ω) (possibly
0), with both the endpoints in the interior of T . An outer junction arc is a curve, with
both the endpoints on ∂T , which is union of segments lying in ∂T and arcs of circle of
curvature h(Ω).
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Remark 7. We point out that A does not contain any ball, firstly because the number of
circular arcs must be even, and also because, if B is a ball of radius R, it holds h(B) = 2

R ,
so that the curvature is not equal to h(B). For a similar reason, A does not contain any
stadium-domain (that is, the convex envelope of two balls). As a further example it is
easy to check that, among all convex domains obtained from a square by “rounding off”
the corners with four circular arcs, only the Cheeger set of the square lies in the class A.

Proposition 8 (properties of an optimal cluster). For every fixed p ≥ 1:

(i) problem (5) admits a solution in which each cell is Cheeger of itself, hereafter
denoted by {Ω1, . . . ,Ωk};

(ii) each cell Ωj is a simply connected set of class C1;

(iii) each cell Ωj belongs to the family A introduced in Definition 6; moreover:
– any inner junction arc for Ωj is also an inner junction arc for another set

Ωl, and its curvature, seen from Ωj, is given by

(10) Kj,l =

hp(Ωj)
|Ωj | −

hp(Ωl)
|Ωl|

hp−1(Ωj)
|Ωj | + hp−1(Ωl)

|Ωl|

;

– any free arc for Ωj can intersect ∪l 6=j∂Ωl on at most a finite number of points;
moreover, the opening angle of any portion of a free arc which does not contain
intersection points with ∪l 6=j∂Ωl is strictly less than π.

Proof. For p = 1 the existence, regularity and structure of optimal clusters of problem (5)
have been discussed in [6]. For p > 1, the arguments are precisely the same, without any
significant difference. For the convenience of the reader, we highlight the main steps, and
refer to [6] for details.

(i) We replace the original problem (5) by the following one

(11) inf
{[ k∑

j=1

(H1(∂∗Ωj)

|Ωj |

)p]1/p
: {Ωj} ∈ Ak(T )

}
.

We trivially get an upper bound for the value of the above infimum by referring to some
configuration (e.g. k disjoint balls). As a consequence, there exists a constant M > 0 such
that, for any minimizing sequence (Ωn

1 , . . . ,Ω
n
k), it holds

k∑
j=1

(H1(∂∗Ωn
j )

|Ωn
j |

)p
≤Mp.

Combined with the isoperimetric inequality, this implies that the measures |Ωn
j | remain

bounded from below. As well, we get the upper bound

H1(∂∗Ωn
j ) ≤M |T |.

Consequently, the existence of optimal clusters for problem (11) follows by standard com-
pactness/lower semicontinuity arguments in BV . Each set of an optimal configuration
is self Cheeger, otherwise this would contradict optimality. Moreover, every solution to
problem (11) is also solution to the original problem (5). Let us denote such a solution by
(Ω1, . . . ,Ωk).
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(ii) All sets Ωj of the optimal cluster obtained in statement (i) are (locally, inside T ) quasi-
minimizers for the perimeter, and hence they are equivalent to open sets with boundary
having C1,α regularity (inside T ), with any α ∈ (0, 1

2).
For p = 1 the quasi minimality argument is given in [6, Theorem 3.6], but the proof
does not depend on p. Roughly speaking, together with the minimality in (11), the
key points are that each set Ωj is self Cheeger and has an algebraic curvature (in a
distributional sense) not larger than a constant (in our case M). So, we know that each
set Ωj is equivalent to an open set with smooth boundary. A priori, the set Ωj may
not be connected. In case that Ωj is not connected, two connected components have
necessarily to lie at positive distance, and we can choose one of them and replace Ωj with
this component. The energy in (11) does not change. So we know that all sets Ωj are
connected. As a consequence, the vertices of T do not belong to any of the boundaries
∂Ωj , since cutting out by a line a piece of Ωj near the corner, would strictly decrease its
Cheeger constant.
Moreover, each set is simply connected. Indeed, if a set Ωj is not simply connected, we
analyze one hole (which is smooth) and translate it inside Ωj up to a new contact point
with ∂Ωj . This new set is also optimal, contradicting the regularity.

(iii) We analyze now the structure of the boundary. Following the same arguments as
for p = 1 in [6, Proposition 5.4 and Proposition 5.5], there are no triple points (meaning
that a point of T may belong to at most two boundaries ∂Ωj , ∂Ωl), and the boundary of
Ωj is a finite union of arcs of circle. Moreover, looking at a piece of arc of circle which
is common to ∂Ωj and ∂Ωl, one can write optimality conditions, which lead precisely to
the expression of the algebraic curvature (seen from Ωj) given by (10). We see from (10)
that Kj,l is strictly less than h(Ωj). If we look now at a piece of arc of circle from ∂Ωj

lying in a neighborhood of a point which has a positive distance from ∪l 6=j∂Ωl, we get
from optimality that the curvature has to be equal to h(Ωj). As a consequence of the C1-
regularity, two such pieces of arc from ∂Ωj meeting at a point which belongs to ∪l 6=j∂Ωl

have to be part of a unique arc of curvature h(Ωj). In this way, we identify clearly the
boundary of Ωj as an ordered union of free arcs of circle of algebraic curvature equal to
h(Ωj) alternating with junction arcs which may be inner or border ones. �

Remark 9. We point out that part of the information on the properties of an optimal
cluster given in Proposition 8 could be obtained in a direct way by applying to each cell a
structure result by Ambrosio, Caselles, Masnou and Morel for measurable sets with finite
perimeter in two dimensions, which are indecomposable in the sense of geometric measure
theory (see [1]).

2.2. Consequences of the structure result. As an outcome of Proposition 8, the
structure of an optimal cluster for problem (5) is quite rigid. For later use, it is important
to fix in particular the following facts.

– Connected components of the empty chamber. By empty chamber, we mean the set
Ω0 := T \ ∪mj=1Ωj . Every connected component c(Ω0) of the empty chamber is a Jordan

domain. If c(Ω0) has a positive distance from ∂T , its boundary is a union of free arcs. If
c(Ω0) touches ∂T , two possibilities may occur: either ∂c(Ω0) is union of some free arcs
and some segments on ∂T , or ∂c(Ω0) is union of two segments lying on consecutive sides
of ∂T and a piece of a border junction arc (and this may occur only around the corners).
We point out in particular that, if we endow ∂c(Ω0) with a positive orientation, all the
arcs of circle have negative curvatures −h(Ωj), being Ωj the neighbouring cells. Thus, as
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a consequence of the sign of the curvatures, ∂c(Ω0) contains at least three arcs (meant as
arcs of circle or segments).

– Cells sharing several inner junction arcs. Two cells Ωj ,Ωl may share several inner
junction arcs. In this case, two consecutive inner junction arcs need to enclose another
cell. More precisely assume that, following the orientation of ∂Ωj , we find two consecutive
inner junction arcs γ1 and γ2, and let us denote by P the final point of γ1 and by Q the
initial point of γ2. Consider the curve γ starting on P , following ∂Ω1 up to Q and then
following ∂Ω2 up to P (still in the positive sense). Then, γ has necessarily to enclose
another cell, different from Ωj ,Ωl. Indeed, γ does not contain any other inner junction arc
between Ω1 and Ω2, because we have chosen two consecutive inner junction arcs. Thus,
the only possibility for γ not to enclose another cell would be that on ∂Ω1 the curve from
P to Q is a free arc, and on ∂Ω2 the curve from Q to P is also a free arc. This is not
possible, since the curvature of both free arcs, seen from Ωj and Ωl, are positive.

– Cells sharing several border junction arcs with ∂T . A cell Ωj may share several border
junction arcs with ∂T . However, in the alternation of free and junction arcs, two border
junction arcs cannot be consecutive. Indeed, between two border junction arcs, there is
a free arc having one endpoint in the interior of T , so that an inner junction arc starts
at such endpoint. Notice also that a border junction arc may contain different segments
lying in ∂T ; if this is the case, due to the sign of the curvature of the free arcs, these
segments cannot lie on the same side of T , but belong necessarily to distinct sides of T ;
consequently, they can be either 2, or at most 3.

2.3. Construction of the canonical graph associated with an optimal cluster.
Thanks to the properties of an optimal cluster for problem (5) described so far, we are
ready to associate with it a planar graph.

Definition 10. We call canonical graph associated with an optimal cluster for problem
(5) the planar graph having the following vertices and edges:
– Vertices: To each cell Ωj , j = 1, . . . , k we associate a vertex Xj . Also to the set R2 \ T
we associate a vertex, denoted X0. We have thus k+ 1 vertices. To draw a representation
of the graph in the plane, the vertices can be chosen as arbitrary points in the interior of
Ωj and R2 \ T respectively.
– Edges. We distinguish the families Ein and Eout of inner and outer edges, namely edges
of the graph which join two distinct vertices Xj , Xl (j, l ∈ {1, . . . , k}), or a vertex Xj with
X0, respectively. The family Ein is constructed as follows: to every couple (Ωj ,Ωl) which
share an inner junction arc, we associate an edge by joining Xj to Xl through such arc.
The family Eout is constructed as follows: to every cell Ωj having a border junction arc on
∂T , we associate an edge by joining Xj to X0 through such arc.

Remark 11. Each face of the canonical graph associated with an optimal cluster for prob-
lem (5) has at least 3 edges. To prove this claim, it’s enough to observe that a face of the
graph can be delimited neither by just two inner edges nor by just two outer edges.
Indeed, two cells may share several inner junction arcs, so that two vertices Xj , Xl may be
connected by multiple inner edges; however, we know from Section 2.2 that two consecutive
inner junction arcs need to enclose another cell, and therefore no face of the graph can be
delimited by just two inner edges.
Likewise, a cell may share several border junction arcs with ∂T , but we know from Section
2.2 that they cannot be consecutive, and therefore no face of the graph can be delimited
by just two outer edges.
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3. Intermediate topological results

In this section we give two results needed for the proof of Theorem 1, both obtained via
the analysis of the canonical graph associated with an optimal cluster: in Proposition 12
we give an upper bound for the average of the number of junction arcs, and in Proposition
14 we provide an estimate from below for the area of the empty chamber.

Proposition 12 (average of number of junction arcs). For a fixed p ≥ 1, let {Ω1, . . . ,Ωk}
be an optimal cluster for problem (5) which satisfies the properties stated in Proposition
8. Let 2Λj, j = 1, . . . , k be the number of oriented arcs which compose ∂Ωj, so that Λj
is the number of junction arcs in ∂Ωj. Let Eout be the cardinality of the family Eout of
outer edges of the canonical graph associated with the cluster {Ω1, . . . ,Ωk} according to
Definition 10. Then the following inequality holds:

k∑
j=1

Λj + Eout + 6 ≤ 6k.

Proof. We denote by V = k+ 1 the number of vertices, E the number of edges, and F the
number of sides in the canonical graph associated with the optimal cluster {Ω1, . . . ,Ωk}.
Since every edge borders 2 faces, and each face has at least 3 edges (by Remark 11), there
holds

2E ≥ 3F .

Then, using the Euler formula

V − E + F = 2,

we obtain

3k − 3 ≥ E.
Setting Ein and Eout the cardinalities of the families Ein and Eout of inner and outer edges
according to Definition 10, we get 3k − 3 ≥ Ein + Eout, or equivalently

(12) 6k − 6 ≥ 2Ein + 2Eout.

Then the conclusion is obtained by noticing that

(13) 2Ein + Eout =
k∑
j=1

Λj .

Indeed, let’s count the total number of junction arcs: any inner junction arc is counted
twice, and corresponds to an edge in Ein; any border junction arc is counted once, and
corresponds to an edge in Eout. �

Definition 13. We set:

– ∆r the curvilinear triangle bounded by three concave arcs of circle with opening
angles π/3 and radius r, pairwise mutually tangent at a common endpoint;

– ∆̂r the region bounded by two concave arcs of circle with opening angles π/2 and
radius r, mutually tangent at a common endpoint, and a line segments tangent to
such arcs at their (noncommon) endpoints;

–
̂̂
∆r the region bounded by a concave arc of circle with opening angle 2π/3 and
radius r, and two line segments tangent to such arc at its endpoints, forming an
angle of π/3.
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Figure 1. The three types of empty regions: ∆, ∆̂,
̂̂
∆

Proposition 14 (area of the empty chamber). For a fixed p ≥ 1, let {Ω1, . . . ,Ωk} be an
optimal cluster for problem (5) which satisfies the properties stated in Proposition 8. Then

the area of the empty chamber Ω0 = T \
⋃k
j=1 Ωj satisfies

(14) |Ω0| ≥ (2k − 2)|∆r∗ |+ 3| ̂̂∆r∗ |

Proof. We call empty room a collection of (one or more) connected components of the
empty chamber which are enclosed by a face of the canonical graph, and which are not of

type
̂̂
∆ (namely are not around a corner of T ).

We observe that the area of the empty chamber can be estimated from below by the
global area of all the empty rooms (the inequality may be strict because there may be
cells touching ∂T which are not connected by any outer edge to R2 \ T ).
Then, we proceed to minimize the global area of the empty rooms. To that aim, we
modify the canonical graph associated to the optimal cluster so that each face has exactly
3 edges. The modification consists in adding a certain number of formal edges for every
empty room having on its boundary more than 3 arcs.
Given such an empty room C0, there exists a family of m ≥ 3 disks D1, . . . , Dm of centers
P1, . . . , Pm and radii r1, . . . , rm, with

d(Pi, Pi+1) = ri + ri+1 ∀i = 1, . . . ,m− 1

d(Pi, Pj) ≥ ri + rj ∀i, j ∈ {1, . . . ,m}, |i− j| ≥ 2,

(where d(·, ·) denotes the Euclidean distance and all angles ∠Pi−1PiPi+1 are strictly less
than π), such that one of the following situation occurs:

(a) d(P1, Pm) = r1 + rm, and ∂C0 ⊆ ∂D1 ∪ . . . ∂Dm;

(b) d(P1, Pm) > r1 +rm, D1, Dm are tangent to one side S of T , and ∂C0 ⊆ S∪∂D1∪
. . . ∂Dm; ;

(c) d(P1, Pm) > r1 + rm, D1, Dm are are tangent to two consecutive sides S′, S′′ of T ,
and ∂C0 ⊆ S′ ∪ S′′ ∪ ∂D1 ∪ . . . ∂Dm.

Now, according to the above cases (a)-(b)-(c), the modification of the graph runs as follows.

If we are in situation (a), we label the cells around C0 by 1, . . . ,m, and then we add edges
joining the couples

(m, 2), (2,m− 1), (m− 1, 3), . . .

(see Figure 2).
If we are in situation (b) or (c), we do the same kind of procedure starting with the edge
(1,m), namely we add edges joining the couples

(1,m), (m, 2), (2,m− 1), (m− 1, 3), . . .

(see Figure 3).
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Figure 2. Formal topological modification of the graph in situation (a)

Figure 3. Formal topological modification of the graph in situations (b)
and (c)

Notice that the fact that the radii of the disks in Figures 2 and 3 are all equal is not
relevant to the present topological purposes, and in any case can be a posteriori justified
by the results in the Appendix.
By construction, for the graph thus modified, each face has exactly 3 edges. Hence, we
have 2E = 3F . Recalling that V = k + 1, the Euler formula V − E + F = 2 gives
F = 2k− 2. Then some easy but lengthy geometrical arguments, that we postpone to the
Appendix (see Lemmas 19, 20, and 21), imply that the global area of all the empty rooms
is not smaller than (2k− 2)∆r∗ , plus the contribution coming from 3 curvilinear triangles

in the corners, each one of area | ̂̂∆r∗ |.
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4. An intermediate result on the inner Cheeger boundary

Definition 15. Let Ω belong to the class A introduced in Definition 6. Let Γ := ∂Ω, and
let r := h(Ω)−1 be the radius of the free arcs.
We call inner Cheeger boundary of Ω the “inner parallel curve at distance r from Γ”
(namely the set of points in Ω lying at distance r from Γ), endowed with the same orien-
tation as Γ.

Remark 16. We can make the following observations.

(i) The inner Cheeger boundary Γr may have self intersection points.
(ii) If Γl, l = 1, . . . , 2Λ, are the arcs of Γ according to Definition 6, we can decompose

Γr as Γ1
r∪· · ·∪Γ2Λ

r , where Γlr denotes the inner parallel curve at distance r from Γl,
and the free arcs are labelled with an odd number. Then, for l odd the inner parallel
curve Γlr is formally reduced to a point. For l even, Γlr is uniquely determined as
follows: if Γl is an arc of circle with center C l and nonzero curvature K l, Γlr is the

arc of circle obtained by applying an homothety of center C l and ratio 1 − K(Γl)
h(Ω)

to Γl; if Γl is a line segment, then Γlr is the line segment obtained by moving Γl in
the direction of the inner normal to Γ at distance r from its original position.

Definition 17. Let Ω belong to the class A introduced in Definition 6, and let Γr denote
its inner Cheeger boundary according to Definition 15. We call inner Cheeger area of Ω
the oriented area enclosed by Γr, and we denote it by A(Γr). Namely,

A(Γr) =
∑
h

m(Uh)|Uh| ,

where the sum is extended to the bounded connected components Uh of R2 \ Γr, |Uh| is
the Lebesgue measure of Uh, and the number m(Uh) ∈ Z is the index of any point of Uh
with respect to the oriented curve Γr.

The following result is crucial to our purposes. It can be regarded as a transposition, valid
within the class A, of a well-known result for the inner Cheeger set of convex bodies due
to Kawohl and Lachand-Robert (see Theorem 1 in [13]); we also refer to [16] for a recent
extension to domains ‘without necks’.

Proposition 18 (representation via inner Cheeger set). Let Ω belong to the class A
introduced in Definition 6. Let Γr and A(Γr) be its inner Cheeger boundary and inner
Cheeger area according to Definitions 15 and 17. There holds:

A(Γr) = πr2(15)

|Ω| = rH1(Γr) + 2πr2 .(16)

Proof. We are going to show the validity of the following Steiner-type formulas:

H1(∂Ω) = H1(Γr) + 2πr(17)

|Ω| = A(Γr) + rH1(Γr) + πr2(18)

Taking into account that H
1(∂Ω)
|Ω| = 1

r , the required equalities (15) and (16) will follow.

To prove (17)-(18), we need to consider the following angles (see Figure 4):

θi:= the opening angles of odd arc of radius r;

αi:= the opening angles of even arcs of radius ri > r and negative curvature;

βi:= the opening angles of even arcs of radius ri > r and positive curvature.
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Figure 4. The geometry of the inner Cheeger set

We claim that the above angles obeys the following rule:

(19)
∑
i

θi +
∑
i

βi −
∑
i

αi = 2π ,

where the sums are extended to the families of all angles of each type.
In order to prove (19), we consider the oriented polygon P having vertices

O1T1,2O2T2,3 . . . ONTΛ,1 ,

where Ti,i+1 is the touching point between the curves Γi and Γi+1, Λ is as in Remark 16,
and Oi is defined as follows:

– if Γi is a circular arc, Oi is the center of the disk containing Γi;

– if Γi is a line segment, Oi is an arbitrary point of Γi.

We are going to compute the sum of the inner angles of the polygon P . To that aim, we
distinguish the following types of pairs of consecutive curves in ∂Ω:

Type 1: an odd arc of radius r - an even arc of radius > r and negative curvature;

Type 2: an odd arc of radius r - an even arc of radius > r and positive curvature;

Type 3: an odd arc of radius r - an even line segment.

We denote by Ni the number of pairs of type i which are contained in ∂Ω. For i = 1, 2, 3,
each pair of type i contributes with 4 vertices of P .
Therefore, the sum of the inner angles of P equals

(20) [4(N1 +N2 +N3)− 2]π .

On the other hand, the contribution given to the sum of the inner angles by the pairs

of each type is listed below. Setting for brevity T̂j,j+1 := ∠OjTj,j+1Oj+1, and Ôj :=
Tj−1,jOjTj,j+1, we have

Type 1 : Ô2i−1 = 2π − θ, T̂2i−1,2i = π, Ô2i = α, T̂2i,2i+1 = π;

Type 2 : Ô2i−1 = 2π − θ, T̂2i−1,2i = 0, Ô2i = 2π − β, T̂2i,2i+1 = 0;

Type 3 : Ô2i−1 = 2π − θ, T̂2i−1,2i = π
2 , Ô2i = π, T̂2i,2i+1 = π

2 .
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From this table we see that the sum of the inner angles of P is:

(21) −
∑
i

θi +
∑
i

αi −
∑
i

βi + 4π(N1 +N2 +N3) .

Imposing the equality between the expressions in (20) and (21), we obtain the required
formula (19).
Now, relying on the equality (19), we are ready to prove (17)-(18). We introduce the
following notation:

– if Γi is a circular arc, we denote by r(= h(Ω)) or ri(> r) its radius;

– if Γi is a line segment, we denote by `i its length.

By direct computation, recalling Definition 15, we have

(22) H1(∂Ω) =
∑
i

θir +
∑
i

αiri +
∑
i

βiri +
∑
i

`i

(23) H1(Γr) =
∑
i

αi(ri + r) +
∑
i

βi(ri − r) +
∑
i

`i .

By subtracting and using (19), we get

H1(∂Ω)−H1(Γr) =
[∑

i

θi −
∑
i

αi +
∑
i

βi

]
r = 2πr ,

which proves (17).
Now we turn our attention to (18). We observe that

(24) |Ω| =
∫

Γ
x dy and A(Γr) =

∫
Γr

x dy .2

To compute the above integrals, we use the decompositions

Γ = Γ1 ∪ · · · ∪ Γ2Λ and Γr = Γ1
r ∪ · · · ∪ Γ2Λ

r ,

and we introduce the oriented line segments

Sri := [T ri−1,i, Ti−1,i] ,

where Ti−1,i is the touching point between Γi−1 and Γi, and and T ri−1,i is the touching

point between Γi−1
r and Γir (with the conventions Γ0 := Γ2Λ and Γ0

r := Γ2Λ
r ). We have

(25)

∫
Γ
x dy −

∫
Γr

x dy =
2Λ∑
i=1

[ ∫
Γi

x dy −
∫

Γi
r

x dy
]

=

2Λ∑
i=1

[ ∫
Γi

x dy −
∫

Γi
r

x dy +

∫
Sr
i

x dy −
∫
Sr
i+1

x dy
]
.

By construction, for every i = 1, . . . , N , the curve Sri + Γi − Sri+1 − Γir is the positively
oriented boundary of a Jordan domain Di. Thus, each addendum of the last sum in (25)
is equal to the Lebesgue measure of Di, which is easily computed as follows:

2 Indeed, by the Gauss-Green Theorem, if U is a Jordan domain with positively oriented, piecewise
smooth boundary ΓU , for any f ∈ C1(Ω) it holds

∫∫
U

∂f
∂x

dx dy =
∫

ΓU
f dy; in particular, taking f(x, y) = x,

we get |U | =
∫

ΓU
x dy. Applying this formula respectively to Ω and to the bounded connected components

of R2 \ Γr, we obtain the equalities in (24).
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– if Γi is an arc of radius r and opening angle θi, then Γir is a concentric arc of radius
0, so that

|Di| =
θi
2
r2 ;

– if Γi is a negatively curved arc of radius ri > r and opening angle αi, then Γir is a
concentric arc of radius radius ri + r, so that

|Di| =
αi
2

[
(ri + r)2 − r2

i

]
= αirir +

αi
2
r2 ;

– if Γi is a positively curved arc of radius ri > r and opening angle βi , then Γir is a
concentric arc of radius ri − r, so that

|Di| =
βi
2

[
r2
i − (ri − r)2

]
= βirir −

βi
2
r2 ;

– if Γi is a line segment of length `i, then Γir is a parallel line segment of the same
length, so that

|Di| = `ir .

Summing up, we obtain

|Ω| −A(Γr) =

∫
Γ
x dy −

∫
Γr

x dy =
2Λ∑
i=1

|Di|

=
[∑

i

θi
2

+
∑
i

αi
2
−
∑
i

βi
2

]
r2 +

[∑
i

αiri +
∑
i

βiri

]
r +

∑
i

`ir .

Next, we subtract from the above expression rH1(Γr), that we compute from (23). We
get

|Ω| −A(Γr)− rH1(Γr) =
[∑

i

θi
2
−
∑
i

αi
2

+
∑
i

βi
2

]
r2 .

Eventually, we invoke (19) and we obtain (18). �

5. Proof of Theorems 1, 2, and 3.

5.1. Proof of Theorem 1. Let us prove inequality (6). We take an optimal partition
{Ω1, . . . ,Ωk} for problem (5). We set

h(Ωj) = hj = r−1
j ∀j = 1, . . . , k

max
j=1,...,k

hj = h∗ = r−1
∗ .

We now divide the proof of (6) in 4 steps.

Step 1. For every j = 1, . . . , k, we apply Proposition 18 to the cell Ωj . We denote by Γrj
the inner Cheeger boundary of Ωj .
By (16), we have

(26) |Ωj | = rjH1(Γrj ) + 2πr2
j .

multiplying by h2
j , we have

(27) h2
j |Ωj | − hjH1(Γrj ) = 2π .
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We look at the polynomial x 7→ pj(x) := |Ωj |x2 − H1(Γrj )x. By (26) we have that hj is
larger that the largest root of p, namely

(28) hj >
H1(Γrj )

|Ωj |
.

Then, since h∗ ≥ hj , we have pj(h∗) ≥ pj(hj), and we infer from (27) that

(29) h2
∗|Ωj | ≥ h∗H1(Γrj ) + 2π .

We conclude this step by summing the above inequality over j:

(30) h2
∗

k∑
j=1

|Ωj | ≥ h∗
k∑
j=1

H1(Γrj ) + 2πk .

Step 2. In order to estimate from below the r.h.s. of (30), we are going to use Hales
hexagonal isoperimetric inequality. According to (15) we have A(Γrj ) = πr2

j for every j.
Therefore

A
( Γrj√

πr2
∗

)
=
πr2

j

πr2
∗
≥ 1 ,

so that

min
{
A
( Γrj√

πr2
∗

)
, 1
}

= 1 .

On the inner Cheeger boundary Γrj , we fix the following family Nj of nodes: first, we take
as nodes all the points which are at distance rj from an odd free arc of ∂Ωj (in equivalent
terms, any such node joins two arcs of Γrj which are parallel to two consecutive even
junction arcs of ∂Ωj separated by a free arc); then, we add the following “exceptional
nodes”: if a border junction arc of ∂Ωj contains different segments lying on ∂T , we take
as nodes also the points in Γrj which are at distance rj from the endpoints of all these
segments.

Accordingly, we write Γrj = Γ1
rj ∪ · · · ∪ Γ

Nj
rj , where Nj is the cardinality of the family of

nodes Nj , and, for i = 1, . . . , Nj , Γirj is the (oriented) portion of Γrj delimited by two

consecutive nodes ni−1, ni (with the convention n0 = nNj ).
Now, we set T (Γrj ) the (truncated) deficit associated to the oriented curve Γrj and the
family Nj . Namely,

T (Γrj ) :=

Nj∑
i=1

x(Γirj ) ∧ 1 ∨ (−1) ,

where x(Γirj ) is the signed area enclosed by the oriented curve Γirj ∪ [ni, ni−1].

Then, Hales’ hexagonal isoperimetric inequality [10, Theorem 4] gives

(31) H1
( Γrj√

πr2
∗

)
≥ − 1

πr2
∗
T (Γrj )

4
√

12− (Nj − 6)0.0505 + 2 4
√

12.

where 2 4
√

12 is the perimeter of the unit area regular hexagon.
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Figure 5. The positive contribution of the polygonal deficit

We now multiply (31) by
√
π, and we sum over j = 1, . . . , k, taking into account that:

−
k∑
j=1

T (Γrj ) ≥ 0(32)

−
k∑
j=1

(Nj − 6) ≥ 0(33)

To obtain (32), we observe that each piece of curve Γirj is an arc of circle, possibly of zero

curvature (in particular, thanks to the addition of the exceptional nodes, Γirj cannot be

a broken line). If Γirj has zero curvature, it produces a zero deficit. If Γirj has a nonzero

curvature, it is parallel to a junction arc between Ωj and another cell Ωl, so that it produces
two deficits. Assume the curvature of Γirj , seen from Ωj , has a negative sign. Then the

deficit x(Γirj ) (the dashed region in Figure 5) has a negative sign, while the deficit x(Γirl)

(the black region in Figure 5) has a positive sign, being in absolute value smaller than the
previous one. This is simply due to the fact that the two regions which contribute to the
deficit are homothetic, with a ratio larger than one. We conclude that (32) holds true.
To obtain (33), we observe that

(34)

k∑
j=1

Nj ≤
k∑
j=1

Λj + 3 ≤ 6k ,

where the second inequality holds true by Proposition 12. To obtain the first equality in
(34), we observe that the arcs of Γrj are in bijection with the junction arcs in ∂Ωj , except
for the extra arcs created in Γrj by exceptional nodes. Now, the maximal possible number
of such extra arcs is 3: in fact, recalling that distinct segments contained into a unique
border junction arc must lie on different sides of T (see end of Section 2.2), we see that
the configuration containing the highest number of extra arcs (equal 3) is the one in which
there are 3 border junction arcs, each one containing 2 segments (lying on consecutive
sides of T ).
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By (31), (32), and (33), we get the following lower bound for the r.h.s. of (30)

(35) h∗

k∑
j=1

H1(Γrj ) + 2πk ≥ k
[
2
√
π 4
√

12 + 2π
]
.

Step 3. By elementary computation, we know that |∆r∗ | = r2
∗
2 (2
√

3 − π) and | ̂̂∆r∗ | =
r2
∗
3 (3
√

3−π). In order to estimate from above the l.h.s. of (30), we exploit Proposition 14.
Inequality (14), together with the computations above, imply

|Ω0| ≥ 2k|∆r∗ |.
So

|Ω0| ≥ k(2
√

3− π)
1

h2
∗
,

yielding

(36) h2
∗

k∑
j=1

|Ωj | ≤ h2
∗(|T | − |Ω0|) ≤

[
h2
∗|T | − k(2

√
3− π)

]
.

Step 4 (conclusion). We put together the information coming from the previous three
steps. By (30), (35), and (36), we have:

|T |
k
h2
∗ ≥ π + 2

√
3 + 2

√
π 4
√

12 =
[12 sin(π6 ) +

√
12π sin(π3 )√

12 sin(π3 )

]2
= [h(H)]2 .

This concludes the proof of (6).

We now turn to the proof of (7). In order to deduce it from (6), it is enough to check

that M̃k,p(Ω) converges to Mk(Ω) in the limit as p → +∞. In fact, this follows from the
inequalities

(37) Mk(T ) ≤ M̃k,p(T ) ≤ k1/pMk(T ) ,

which are readily obtained as follows. If {Ωp
1, . . . ,Ω

p
k} is an optimal solution for Mk,p(T ),

and {Ω∞1 , . . . ,Ω∞k } is an optimal solution for Mk(T ), we have

Mk(T ) ≤ max
j=1,...,k

h(Ωp
j ) = M̃k,p(T )

k[Mk(T )]p ≥
k∑
i=1

hp(Ω∞j ) ≥
k∑
i=1

hp(Ωp
j ) ≥ max

j=1,...,k
hp(Ωp

j ) = [M̃k,p(T )]p .

�

5.2. Proof of Theorem 2. Let k be fixed. Clearly, from the definition of Mk(Tk) and
from the geometry of Tk, precisely since Tk contains the k-cluster made by k copies of H,
it holds

|Tk|
1
2

k
1
2

Mk(Tk) ≤ h(H).

Assume by contradiction that the strict inequality holds, namely

(38) Mk(Tk) = (1− δ)h(H)
k

1
2

|Tk|
1
2

, with δ ∈ (0, 1) .
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Let T be the equilateral triangle of fixed area, say equal 1. For every η ∈ N, T contains
a family of mutually disjoints k-triangles {T ik }i=1,...,η, having the same area, infinitesimal
as η tends to +∞, and such that

(39) lim
η→+∞

∣∣T \ η⋃
i=1

T ik
∣∣ = 0 .

By Theorem 1, we have

(40) Mηk(T ) ≥ h(H)(ηk)1/2 .

On the other hand, by using assumption (38) (applied to each of the k-triangles {T ik }, for
i = 1, . . . , k), we infer that there exists a (ηk)-cluster of T whose cells have a Cheeger

constant not larger than (1− δ)h(H) k
1
2

|T i
k |

1
2

. Thus,

(41) Mηk(T ) ≤ (1− δ)h(H)
k

1
2

|T ik |
1
2

.

By combining (40) and (41), we obtain

(1− δ) ≥ (η|T ik |)1/2 .

In the limit as η → +∞, the above inequality gives a contradiction: indeed, in view of
(39), we have lim

η→+∞
η|T ik | = |T | = 1. �

5.3. Proof of Theorem 3. Once proved Theorem 2, the way Theorem 3 is deduced is
the same as in case of convex cells treated in [3]. Thus we limit ourselves to indicate the
strategy, referring to [3] for the detailed arguments.
First, one shows that the equality (8) in Theorem 2 extends to the case in which the
k-triangle Tk is replaced by a “k-cell” Σk, meant as a connected set of arbitrary shape
obtained as the union of k hexagons lying in a tiling of R2 made by a family of copies
of a regular hexagon. The passage from a k-triangle to a k-cell is performed as follows.
For simplicity, and without loss of generality, we can assume that |Σk| = k. Since Σk

contains a k-clusters made by k copies of H, it holds Mk(Σk) ≤ h(H). Assume by
contradiction that Mk(Σk) < h(H). This means that there exists a k-cluster {Ωj} of Σk

such that maxj=1,...,k h(Ωj) < h(H). We can assume (up to shrinking a little bit the sets
Ωj) that each of them is at positive distance from ∂Σk. Then we embedd Σk into a big
k′-triangle Tk′ , with k′ > k, and we consider the k′-cluster of Tk′ which is made by Ωj (for

j = 1, . . . , k) union H̃j (for j = 1, . . . , k′ − k), where H̃j are slight deformations of the

copies of H contained into Tk′ \ Σk, constructed so that h(H̃j) < h(H) (this can be done
by continuity and since we have assumed dist(Ωj , ∂Σk) > 0). We have thus constructed a
k′-cluster of Tk′ in which each cell has a Cheeger constant strictly less than h(H), against
the equality (8).
Now, using the equality (8) for k-cells, it is possible to show separately the inequalities

lim sup
k→+∞

|Ω|1/2

k1/2
Mk(Ω) ≤ h(H) and lim inf

k→+∞

|Ω|1/2

k1/2
Mk(Ω) ≥ h(H)

via a blow up argument. More precisely, the upper bound inequality is proved by dilating
Ω so that it is well approximated from inside with a k-cell, and using just the homogeneity
and decreasing monotonicity of Mk(·) by domain inclusion. The lower bound inequality is
proved by dilating Ω so that it is well approximated frou outside with a k-cell, and using
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now, besides the behaviour of Mk(·) under dilations and inclusions, the crucial information
that (8) holds for k-cells. �

6. Appendix: geometrical estimates for the empty chamber

We give here three geometrical lemmas, in which we estimate from below the area of the
region V bounded by a “closed chain” of consecutive tangent disks (Lemma 19), by an
“open chain” of consecutive tangent disks and a segment (Lemma 20), and by an “open
chain” of consecutive tangent disks and two line segments forming an angle of π/3 (Lemma
21).
These results are needed in the proof of Proposition 14 in order to estimate from below the
global area of all the empty rooms. More precisely, referring to the proof of Proposition
14, Lemma 19, 20 and 21 concern respectively the area of an empty room of type (a), (b),
and (c): it turns out to be not smaller than the number of faces associated with the room
in the modified graph times the area of a curvilinear triangle ∆r∗ , with the addition of an

extra curvilinear triangle
̂̂
∆r∗ in case (c).

As usual, we denote by d(·, ·) the Euclidean distance.

Lemma 19. Let D1, . . . , Dm be a family of m ≥ 3 disks of centers P1, . . . , Pm and radii
r1, . . . , rm such that

d(Pi, Pi+1) = ri + ri+1 ∀i = 1, . . . ,m

d(Pi, Pj) > ri + rj ∀i, j ∈ {1, . . . ,m}, |i− j| ≥ 2

∠Pi−1PiPi+1 < π ∀i = 1, . . . ,m.

(with the conventions m+ 1 = 1 and 0 = m).
Setting V the complement in R2 of the unbounded connected component of R2 \ ∪mi=1Di,
and r∗ := min{r1, . . . , rm}, there holds

|V | ≥ (m− 2)|∆r∗ | .

Proof. We search for a configuration of the disks D1, . . . , Dm which minimizes the area of
V . The existence of an optimal configuration is immediate, since we deal with a finite-
dimensional problem. However, since the constraints are not closed, possibly an optimal
configuration is degenerated, meaning it may exhibit some aligned triple of consecutive
centers (∠Pi−1PiPi+1 = π) and/or some touching non-consecutive discs (d(Pi, Pj) = ri+rj
with |i− j| ≥ 2).
The statement will be obtained by induction on m.
Initial step. Let m = 3. We have to show that the area of a curvilinear triangle bounded by
three concave arcs of circle of radii r1, r2, r3 is minimal when the three radii are equal. Let
us show that, if one of the three radii, say r2, is strictly larger than r∗, we can perturb the
configuration of the three disks {D1, D2, D3} so to decrease the measure of the bounded
connected component V of R2 \

(
D1 ∪ D2 ∪ D3

)
. The perturbation we consider is the

following one: we keep D1 and D3 fixed, and we change D2 into a new disk D̂2 which

has radius r̂2 strictly smaller than r2 and is tangent to D1 and D3. Denoting by V̂ the

the bounded connected component of R2 \
(
D1 ∪ D̂2 ∪ D3

)
, we claim that the inclusion

V̂ ⊂ V holds. Indeed, if we choose a system of coordinates so that P1 = (0, 0), and
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Figure 6. Proof of Lemma 19: initial step (left) and induction step (right)

P3 = (r1 + r3, 0), we have P2 = (x0, y0), with

(42)

x0 =
r2

1 + (r1 + r3)2 + 2r1r2 − r2
3 − 2r3r2

2(r1 + r3)

y0 =

√
(r1 + r2)2 − ((r1 − r3)(r1 + r3 + 2r2) + (r1 + r3)2)2

4(r1 + r3)2
.

The geometry is represented in Figure 6, left.
The derivatives of the angles

θ1 := ∠P2P1P3 = arctan
( y0

x0

)
and θ3 := ∠P2P3P1 = arctan

( y0

r1 + r3 − x0

)
with respect to r2 are positive, since they are easily computed as

(43)

∂θ1

∂r2
=

2r1r3

(r1 + r3)(r1 + r2)
√
− r1r3((r1+r3)2−(r1+r3+2r2)2)

(r1+r3)2

∂θ3

∂r2
=

2r1r3

(r1 + r3)(r2 + r3)
√
− r1r3((r1+r3)2−(r1+r3+2r2)2)

(r1+r3)2

.

The inequalities ∂θ1
∂r2

> 0 and ∂θ3
∂r2

> 0 imply the inclusion V̂ ⊂ V . In fact, the following

simple geometric argument shows that ∂D2 ∩ ∂D̂2 ∩ ∂V̂ = ∅. Let a disk of radius r̂2 roll
from the position when it is externally tangent to D1 at its tangency point with D2, to

the final position when it agrees with D̂2. During this movement the intersection points
between the boundary of the rolling disk and ∂D2 are: 1 point at the initial time, then
2 points, and eventually 2, 1 or 0 points at the final time, all these intersections lying

outside V̂ . In any case, at the final time no intersection point can belong to ∂V̂ , i.e.

∂D2 ∩ ∂D̂2 ∩ ∂V̂ = ∅.

Induction step. Assume the statement holds true for up to m− 1 disks, and let us show it
holds true also for m disks. Two cases may occur for an optimal configuration of m disks.

Case 1 : d(Pi, Pj) = ri + rj for some i, j with j 6= i+ 1 (equivalently, V is disconnected).
With no loss of generality, let i = 1 and 2 < j < m. Consider the two disjoint families
of disks F ′ := {D1, . . . , Dj} and F ′′ := {Dj , Dj+1, . . . Dm, D1}. They have cardinalities j
and m+ 2− j, both strictly smaller than m. Hence, letting V ′ and V ′′ be respectively the
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complements of the unbounded connected components of R2\∪Di∈F ′Di and R2\∪Di∈F ′′Di,
by induction it holds

|V ′| ≥ (j − 2)|∆r∗ | and |V ′′| ≥ (m+ 2− j − 2)|∆r∗ | = (m− j)|∆r∗ | .
Since by construction V ′ ∩ V ′′ = ∅, and V = V ′ ∪ V ′′, we obtain that |V | ≥ (m− 2)|∆r∗ |.
This concludes the proof in Case 1.

Case 2 : d(Pi, Pj) > ri + rj for all i, j with j 6= i + 1 (equivalently, V is connected). We
start by proving the following claim:

(44) ri = r∗ ∀i = 1, . . . ,m .

Namely, let us we show that, if one of the radii r1, . . . , rm is strictly larger than r∗, we can
perturb the configuration of the disks {D1, . . . , Dm} so to decrease the measure of V . The
perturbation we use is similar as the one considered in the initial step: assuming without
loss of generality that r2 < r∗, we keep all the disks fixed except D2, and we change D2 into

a new disk D̂2 which has radius r̂2 strictly smaller than r2 and is tangent to D1 and D3. We

remark that such a disk D̂2 exists because by assumption the centers P1, P2, and P3 of the
three involved disks are not aligned. Notice also that the perturbation we are considering
is admissible because, in the case 2 we are dealing with, it holds d(P2, Pj) > r2 + rj
for all j 6= 1, 3, which in particular ensures that the new configuration still satisfies the

assumptions of the proposition. Denoting by V̂ the bounded connected component of

R2 \
(
D1 ∪ D̂2 ∪D3

)
, we claim that the inclusion V̂ ⊂ V holds. The proof is similar as in

the initial step. We choose a system of coordinates so that P1 = (0, 0), and P3 = (l, 0),
with l > r1 + r3. Accordingly, equations (42) and (43) are now replaced by

(45)

x0 =
l2 + r2

1 + 2r1r2 − r2
3 − 2r3r2

2l

y0 =

√
(r1 + r2)2 − (l2 + (r1 − r3)(r1 + r3 + 2r2))2

4l2
.

and

(46)

∂θ1

∂r2
=

(l + r1 − r3)(l − r1 + r3)

l(r1 + r2)
√
− (l+r1−r3)(l−r1+r3)(l2−(r1+r3+2r2)2)

l2

∂θ3

∂r2
=

(l + r1 − r3)(l − r1 + r3)

l(r3 + r2)
√
− (l+r1−r3)(l−r1+r3)(l2−(r1+r3+2r2)2)

l2

.

Since the above derivative are positive, the inclusion V̂ ⊂ V can be obtained as in the
initial step, and the proof of (44) is concluded.
To achieve our proof in case 2, it remains to show that a contradiction is reached as soon as
we have m ≥ 4. Since we have proved condition (44), we are reduced to show the following
assertion: given a number m ≥ 4 of disks D1, . . . , Dm with equal radius r∗, and centers
P1, . . . , Pm such that d(Pi, Pi+1) = 2r∗, d(Pi, Pj) > 2r∗ if j 6= i+1, it is possible to perturb
their configuration so to decrease the area of V . The perturbation we consider consists
in keeping D1 and D4 fixed, and moving just D2 and D3, so that they remain tangent
to each other and to D1, D4 respectively. Notice that such perturbation is admissible
because d(P2, Pj) > 2r∗ for all j 6= 1, 3 and similarly d(P3, Pj) > 2r∗ for all j 6= 2, 4. Since
(44) holds, showing that the area of V decreases is equivalent to showing that the area of
the quadrilateral with vertices P1, P2, P3, P4 decreases. Assume without loss of generality
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that 2r∗ = 1, and let l the distance between P1 and P4. We have l ≥ 1, with equality if
m = 4. We name t the angle formed by the side of length l and one of its adjacent sides,
see Figure 6, right.
By the assumption on the angles ∠Pi−1PiPi+1, our quadrilateral is convex, and its area is
given by

ϕ(t) :=
1

4

√
(l2 − 2l cos t+ 1) (−l2 + 2l cos t+ 3) +

1

2
l sin t .

We have

ϕ′(t) =
1

2
l

(
sin t

(
−l2 + 2l cos t+ 1

)√
(l2 − 2l cos t+ 1) (−l2 + 2l cos t+ 3)

+ cos t

)
.

Hence the inequality ϕ′(t) ≥ 0 is equivalent to

cos2 t
(
l2 − 2l cos t+ 1

) (
−l2 + 2l cos t+ 3

)
− sin2 t

(
−l2 + 2l cos t+ 1

)2 ≥ 0 ,

and, in turn, to (
1− l2

) (
4 cos2 t− 4l cos t+ l2 − 1

)
≥ 0 .

Taking into account that l ≥ 1, we have ϕ′(t) ≥ 0 if and only if

4 cos2 t− 4l cos t+ l2 − 1 ≤ 0 .

The above inequality is satisfied on the interval Il :=
[
0, arccos

(
l−1
2

)]
. Indeed, setting

y := cos t, the roots of the polynomial pl(y) := 4y2− 4ly+ l2− 1 are l±1
2 , so that pl(y) ≤ 0

on the interval
[
l−1
2 , l+1

2

]
, which contains Il (because 1 ≤ l+1

2 ).
Therefore, the minimum of ϕ(t) is achieved as t→ 0, so that no nondegenerate quadrilat-
eral can be optimal, and our proof is achieved. �

Lemma 20. Let D1, . . . , Dm be a family of m ≥ 3 disks of centers P1, . . . , Pm and radii
r1, . . . , rm, contained into a half-plane H delimited by a straight line tangent to D1 and
Dm, such that

d(Pi, Pi+1) = ri + ri+1 ∀i = 1, . . . ,m− 1

d(Pi, Pj) > ri + rj ∀i, j ∈ {1, . . . ,m}, |i− j| ≥ 2

∠Pi−1PiPi+1 < π ∀i = 1, . . . ,m

(where P0, Pm+1 are the orthogonal projections on R2 \H of P1, Pm).
Setting V the complement in H of the unbounded connected component of H \∪mi=1Di, and
r∗ := min{r1, . . . , rm}, there holds

|V | ≥ (m− 2)|∆r∗ |+ |∆̂r∗ |(≥ (m− 1)|∆r∗ |) ;

Proof. Similarly as in the proof of Lemma 20, we search for a (possibly degenerated)
optimal configuration of the disks D1, . . . , Dm which minimizes the area of V , and we
argue by induction on m.

Initial step. Let m = 3. Let us show that the area of the region V bounded by three
concave arcs lying on disks D1, D2, D3 with (D1, D2) and (D2, D3) mutually tangent, and
a straight line γ tangent to both D1 and D3, is minimal when the three radii are equal to

r∗, and V is the (disjoint) union ∆r∗∪∆̂r∗ . The fact that the three radii must be equal can
be proved in the very same way as done in the initial step of the proof of Lemma 19. Then
we are reduced to minimize the area of the pentagon P0P1P2P3P4 represented in Figure
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Figure 7. Proof of Lemma 20: initial step (left) and induction step (right)

7, left. Assuming without loss of generality that 2r∗ = 1, and setting t := ∠P3P1P2, the
area of such pentagon is given by

ϕ(t) := cos t (1 + sin t) , t ∈
[
0,
π

3

]
.

Then it is immediate to see that ϕ′(t) ≥ 0 if and only if t ∈
[
0, π6

]
, so that the minimum

of ϕ on the interval
[
0, π3

]
is equal to

min
{
ϕ(0), ϕ

(π
3

)}
= ϕ

(π
3

)
= |∆r∗ |+ |∆̂r∗ | .

Induction step. Assume the statement holds true for up to m− 1 disks, and let us show it
holds true also for m disks. Two cases may occur for an optimal configuration of m disks.

Case 1: V is disconnected. Two subcases may occur:

Case 1a: The family {D1, . . . Dk} can be decomposed as the union of two disjoint sub-
families F ′ and F ′′, of cardinalities j and m+ 1− j (both strictly smaller than m), both
satisfying the assumptions of Lemma 20. In this case, letting V ′ and V ′′ be respectively
the complements in H of the unbounded connected components of H \ ∪Di∈F ′Di and
H \ ∪Di∈F ′′Di, by induction it holds

|V ′| ≥ (j − 2)|∆r∗ |+ |∆̂r∗ | and |V ′′| ≥ (m− j − 1)|∆r∗ |+ |∆̂r∗ | .
Since by construction V ′ ∩ V ′′ = ∅, and V = V ′ ∪ V ′′, we obtain

|V | ≥ (m− 3)|∆r∗ |+ 2|∆̂r∗ | ≥ (m− 2)|∆r∗ |+ |∆̂r∗ | .

Case 1b: The family {D1, . . . Dk} can be decomposed as the union of two disjoint subfam-
ilies F ′ and F ′′, of cardinalities j and m+ 2− j (both strictly smaller than m), such that
one on them, say F ′, satisfies the assumptions of Lemma 19, and the other one satisfies
the assumptions of Lemma 20. In this case, letting V ′ and V ′′ be respectively the comple-
ments in H of the unbounded connected components of H \∪Di∈F ′Di and H \∪Di∈F ′′Di,
by Lemma 20 and induction, it holds

|V ′| ≥ (j − 2)|∆r∗ | and |V ′′| ≥ (m− j)|∆r∗ |+ |∆̂r∗ | .
Since by construction V ′ ∩ V ′′ = ∅, and V = V ′ ∪ V ′′, we obtain

|V | ≥ (m− 2)|∆r∗ |+ |∆̂r∗ | ,
The proof of the induction step in Case 1 is concluded.

Case 2: V is connected. In this case, we preliminary observe that the equality (44) must
be satisfied, otherwise the configuration cannot be optimal (the proof is exactly the same
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as in Case 2 of the induction step in the proof of Lemma 19). Then, we consider a straight
line tangent to both D1 and Dm−1 such that D1, . . . , Dm−1 are contained into a half-plane

H̃ delimited by such line. We set V ′ := V ∩ H̃ and V ′′ := V ∩ (R2 \ H̃), see Figure 7, right.

By induction, we have |V ′| ≥ (m − 3)|∆r∗ | + |∆̂r∗ |. On the other hand, we observe that
V ′′ contains a copy of ∆r∗ (with strict inclusion, since we are dealing with case 2); hence
we have |V ′′| ≥ |∆r∗ |. Since by construction V ′ ∩ V ′′ = ∅, and V = V ′ ∪ V ′′, we obtain

that |V | ≥ (m− 2)|∆r∗ |+ |∆̂r∗ |, concluding the proof of the induction step also in Case 2.

Lemma 21. Let D1, . . . , Dm be a family of m ≥ 3 disks of centers P1, . . . , Pm and radii
r1, . . . , rm, contained into a sector S of opening angle π/3 delimited by two half lines
tangent respectively to D1 and Dm, such that

d(Pi, Pi+1) = ri + ri+1 ∀i = 1, . . . ,m− 1

d(Pi, Pj) > ri + rj ∀i, j ∈ {1, . . . ,m}, |i− j| ≥ 2

∠Pi−1PiPi+1 < π ∀i = 1, . . . ,m

(where P0, Pm+1 are the orthogonal projections on R2 \Q of P1, Pm).
Setting V the complement in S of the unbounded connected component of S \ ∪mi=1Di, and
r∗ := min{r1, . . . , rm}, there holds

|V | ≥ (m− 2)|∆r∗ |+ |∆̂r∗ |+ |
̂̂
∆r∗ | ≥ (m− 1)|∆r∗ |+ |

̂̂
∆r∗ | .

Figure 8. Proof of Lemma 21: initial step (left) and induction step (right)

Proof. We argue again by induction on m.

Initial step. Let m = 3. Let us show that the area of the region V bounded by three
concave arcs lying on disks D1, D2, D3 with (D1, D2) and (D2, D3) mutually tangent, and
two half-lines forming an angle of π/3 and tangent respectively to D1 and D3, is minimal

when the three radii are equal to r∗, and V is the (disjoint) union ∆r∗∪∆̂r∗∪
̂̂
∆r∗ . The fact

that the three radii must be equal can be proved in the usual way as Lemmas 19 and 20.
Then we observe that, since by assumption the angle ∠P1P2P3 is strictly less than π, there
exists a straight line γ tangent to both D1 and D3 such that D1, D2, D3 are contained into
a halfplane delimited by γ. We set V ′ the region delimited by our three concave arcs and
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γ, and V ′′ := V \ V ′. By Lemma 20, we have |V ′| ≥ |∆r∗ |+ |∆̂r∗ |, so that we are reduced

to show that |V ′′| ≥ | ̂̂∆r∗ |. It is not restrictive to prove the latter inequality in the setting

when d(P1, P3) = r1 + r3 (because in such setting |V ′| = |∆r∗ |+ |∆̂r∗ |, and |V ′′| becomes
strictly smaller than in the case when d(P1, P3) > r1+r3). It is readily seen that minimizing
|V ′′| is equivalent to minimizing the area of the pentagon P0P1P3P4O, being O the origin
of the two half-lines which delimit S, see Figure 8, left. Setting t := ∠P4P3P1 − 2π

3 , by
elementary computations the area of such pentagon is given by

ϕ(t) :=
r2
∗
3

[
6 sin t+ 3 sin(2t) + 6

√
3 cos t+

√
3 cos(2t) + 4

√
3
]
, t ∈

[
0,
π

2

]
,

and the minimum of the map ϕ on the interval [0, π2
]

is attained at t = π
2 . This yields

ϕ(t) ≥ (2 +
√

3)r2
∗, which corresponds to the case V ′′ =

̂̂
∆r∗ .

Induction step. Assume the statement holds true for up to m− 1 disks, and let us show it
holds true also for m disks. Two cases may occur for an optimal configuration of m disks.

Case 1: V is disconnected. Two subcases may occur:

Case 1a: The family {D1, . . . Dk} can be decomposed as the union of two disjoint sub-
families F ′ and F ′′, of cardinalities j and m+ 1− j (both strictly smaller than m), such
that one of them, say F ′, satisfies the assumptions of Lemma 20, and the other one, say
F ′′ satisfies the assumptions of Lemma 21. Letting V ′ and V ′′ be respectively the comple-
ments in S of the unbounded connected components of S \ ∪Di∈F ′Di and S \ ∪Di∈F ′′Di,
by Lemma 20 and induction, we have

|V ′| ≥ (j − 2)|∆r∗ |+ |∆̂r∗ | and |V ′′| ≥ (m− j − 1)|∆r∗ |+ |∆̂r∗ |+ |
̂̂
∆r∗ | .

Since by construction V ′ ∩ V ′′ = ∅, and V = V ′ ∪ V ′′, we obtain

|V | ≥ (m− 3)|∆r∗ |+ 2|∆̂r∗ |+ |
̂̂
∆r∗ | ≥ (m− 2)|∆r∗ |+ |∆̂r∗ |+ |

̂̂
∆r∗ | .

Case 1b: The family {D1, . . . Dk} can be decomposed as the union of two disjoint sub-
families F ′ and F ′′, of cardinalities j and m+ 2− j (both strictly smaller than m), such
that one of them, say F ′, satisfies the assumptions of Lemma 19, and the other one, say
F ′′ satisfies the assumptions of Lemma 21. Letting V ′ and V ′′ be respectively the comple-
ments in S of the unbounded connected components of S \ ∪Di∈F ′Di and S \ ∪Di∈F ′′Di,
by Lemma 19 and induction, we have

|V ′| ≥ (j − 2)|∆r∗ | and |V ′′| ≥ (m− j)|∆r∗ |+ |∆̂r∗ |+ |
̂̂
∆r∗ | .

Since by construction V ′ ∩ V ′′ = ∅, and V = V ′ ∪ V ′′, we obtain

|V | ≥ (m− 2)|∆r∗ |+ |∆̂r∗ |+ |
̂̂
∆r∗ | .

The proof of the induction step in Case 1 is concluded.

Case 2: no disk Dj , with j 6= 1,m, is tangent to a half-line which delimits S (equivalently,
V is connected). In this case, we observe that the equality (44) must be satisfied, with

the usual proof. Then, we consider a sector S̃ of opening angle π/3 delimited by two
half-lines: one of them is the same tangent to D1 which delimits the original sector S,

and the other one is tangent to Dm−1. We set V ′ := V ∩ S̃ and V ′′ := V ∩ (R2 \ S̃), see

Figure 8, right. By induction, we have |V ′| ≥ (m− 3)|∆r∗ |+ |∆̂r∗ |+ |
̂̂
∆r∗ |. Moreover, V ′′

contains a copy of ∆r∗ (with strict inclusion, since we are dealing with case 2); hence we
have |V ′| ≥ |∆r∗ |. Since by construction V ′ ∩ V ′′ = ∅, and V = V ′ ∪ V ′′, we obtain that
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|V | ≥ (m− 2)|∆r∗ |+ |∆r∗ |+ |
̂̂
∆r∗ |, concluding the proof of the induction step also in Case

2.
�
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