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Abstract. The parabolic obstacle problem for the fractional Laplacian naturally
arises in American option models when the assets prices are driven by pure jump
Lévy processes. In this paper we study the regularity of the free boundary. Our
main result establishes that, when s > 1

2 , the free boundary is a C1,α graph in x
and t near any regular free boundary point (x0, t0) ∈ ∂{u > ϕ}. Furthermore, we
also prove that solutions u are C1+s in x and t near such points, with a precise
expansion of the form

u(x, t)− ϕ(x) = c0
(
(x− x0) · e+ κ(t− t0)

)1+s
+

+ o
(
|x− x0|1+s+α + |t− t0|1+s+α

)
,

with c0 > 0, e ∈ Sn−1, and a > 0.

1. Introduction

Obstacle problems of the form

min
{
Lv, v − ϕ

}
= 0 in Rn × (0, T ), (1.1)

v(T ) = ϕ in Rn, (1.2)

arise in the study of optimal stopping problems for stochastic processes. When the
underlying stochastic process is a pure-jump Lévy process, then L is a (backward)
parabolic integro-differential operator of the form

Lv(x, τ) = −∂τv −
∫
Rn

(
v(x+ z, τ)− v(x, τ)−∇v(x, τ) · zχB1(z)

)
µ(dz),

where µ is the Lévy measure (or jump measure).
An important motivation for studying such problems comes from mathematical

finance [Mer76], where this type of obstacle problems is used to model rational prices
of American options. In that context, the obstacle ϕ is a payoff function, T is the
expiration date of the option, and the set {v = ϕ} is called the exercise region; see
the book [CT04] for a description of the model.
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Here we assume that the underlying Lévy process is stable (i.e., scale invariant)
and rotationally symmetric. Then, after the change of variable t = T − τ , problem
(1.1)-(1.2) becomes

min
{
∂tu+ (−∆)su, u− ϕ

}
= 0 in Rn × (0, T ],

u(·, 0) = ϕ in Rn,
(1.3)

where ϕ : Rn → R is a smooth obstacle, and

(−∆)sw(x) = cn,s p.v.

∫
Rn

(w(x)− w(x+ z))
dz

|z|n+2s
, s ∈ (0, 1).

Note that the scaling of the parabolic equation ∂tu + (−∆)su = 0 changes com-
pletely depending on the value of s: while for s > 1/2 space scales slower than
time (as in the case of the classical heat equation s = 1), for s = 1/2 the scaling is
hyperbolic (i.e., time and space scale in the same way), and for s < 1/2 space scales
faster than time.

The regularity of solutions to this problem was studied by Caffarelli and the second
author in [CF13]. Our goal here is to investigate the structure and regularity of the
free boundary ∂{u = ϕ}. Note that in the American option model the strategy
changes discontinuously along the boundary of the exercise region {u = ϕ}, and
thus it is important to understand the geometry and regularity of this set [LS09].

Because the analysis of the regularity of the set ∂{u = ϕ} is based on blow-up
arguments, the way space and time rescale with respect to each other play a crucial
role in the analysis. As we shall explain in Section 1.2, the most relevant regime for
applications to finance is s ∈ (1

2
, 1), hence we shall focus on this case. As explained

in detail below, our main result establishes that the free boundary ∂{u = ϕ} is C1,α

in x and t near regular points.

1.1. Known results. In the elliptic case —which corresponds to the case T = ∞
in the optimal stopping model— the regularity of solutions and free boundaries is
quite well understood. Indeed, by the results of Caffarelli-Salsa-Silvestre [CSS08],
solutions u are C1+s(Rn) and at any free boundary point x0 ∈ ∂{u = ϕ} we have
the following dichotomy:

(a) either 0 < c r1+s ≤ supBr(x0)(u− ϕ) ≤ C r1+s

(b) or supBr(x0)(u− ϕ) ≤ C r2

Moreover, set of regular points (a) is an open subset of the free boundary, and it is
locally a C1,α graph.

After the results of [CSS08], the set of singular points —those at which the contact
set has zero density— was studied by Garofalo and Petrosyan in case s = 1

2
[GP09].

Then, still when s = 1
2
, De Silva-Savin and Koch-Petrosyan-Shi proved that the

regular set is C∞ [DS14, KPS15]. Under a superharmonicity assumption on the
obstacle ϕ, the authors established in [BFR15] a complete characterization of free
boundary points analogous to the one of the classical Laplacian, obtained in the
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seminal paper by Caffarelli [Caf77]. More recently, the results of [CSS08] have
also been extended to more general nonlocal operators in [CRS16]. Finally, in a
very recent preprint [FS17], Focardi and Spadaro established for the first time the
rectifiability of the free boundary in the thin obstacle problem with zero obstacle.

Despite all these developments for the elliptic problem, much less is known in
the parabolic setting (1.3). The only result is due to Caffarelli and the second
author: in [CF13], they showed the optimal C1+s

x spatial regularity of solutions, as

well as the C
1+s−ε

2s
t time regularity of solutions for all ε > 0. However, nothing was

known about the regularity of the free boundary in the parabolic setting. The main
reason for this lack of results is due to the fact that the approaches used in the
stationary case completely fail in the evolutionary setting. Indeed, the main tool to
study the free boundary is based on classifications of blow-up profiles, and the papers
[CSS08, GP09, BFR15] all use monotonicity-type formulas that do not seem to exist
in the parabolic setting. Also, although the recent paper [CRS16] circumvents the
use of monotonicity formulas by combining Liouville and Harnack’s type techniques,
the methods there do not to apply in our context. Hence, completely new ideas and
techniques need to be introduced in the parabolic setting.

1.2. Main result. Our main theorem extends the results of [CSS08] to the parabolic
setting (1.3) when s > 1

2
, and establishes the C1,α regularity of the free boundary in

x and t near regular points. The result is new even in dimension n = 1, and reads
as follows (here and throughout the paper, we denote by Qr(x0, t0) = Br(x0)× (t0−
r2s, t0 + r2s) the parabolic cylinder of size r around (x0, t0)):

Theorem 1.1. Let s ∈ (1
2
, 1), let ϕ ∈ C4(Rn) be an obstacle satisfying

‖Dkϕ‖L∞(Rn) <∞ for 1 ≤ k ≤ 4, (1.4)

and let u be the solution of (1.3).
Then, for each free boundary point (x0, t0) ∈ ∂{u = ϕ}, we have:

(i) either

0 < c r1+s ≤ sup
Qr(x0,t0)

(u− ϕ) ≤ C r1+s,

(ii) or

0 ≤ sup
Qr(x0,t0)

(u− ϕ) ≤ Cε r
2−ε for all ε > 0.

Moreover, the set of points (x0, t0) satisfying (i) is an open subset of the free boundary
and it is locally a C1,α graph in x and t, for some small α > 0.

Furthermore, for any point (x0, t0) satisfying (i) there is r > 0 such that u ∈
C1+s
x,t (Qr(x0, t0)), and we have the expansion

u(x, t)− ϕ(x) = c0

(
(x− x0) · e+ κ(t− t0)

)1+s

+
+ o
(
|x− x0|1+s+α + |t− t0|1+s+α

)
,

for some c0 > 0, e ∈ Sn−1, and κ > 0.
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It is important to notice that the assumption s > 1
2

is necessary for the previous
result to hold. Indeed, by the examples constructed in [CF13], the structure of the
free boundary would be different when s ≤ 1

2
. More precisely, it was shown in [CF13,

Remark 3.7] that if s = 1
2

then there are global solutions which are homogeneous

of degree 1 + β for any 1
2
≤ β < 1. This means that when s = 1

2
there will be free

boundary points satisfying neither (i) nor (ii), and there is no “gap” between the
homogeneities 1 + s and 2 as in Theorem 1.1.

From the financial modeling point of view, the assumption s > 1
2

is natural. For
example, it was shown in [MS95] that the scaling exponent of an economic index
(Standard & Poor’s 500) is around 2s = 1.4 (remarkably constant) over the six-year
period 1984-1989. Furthermore, in American option models the obstacle (payoff)
ϕ has frequently linear growth at infinity [LS09, CT04], and in that case s > 1

2
is

needed for problem (1.3) to be well posed. Notice also that our assumption (1.4)
does allow the obstacle ϕ to have linear growth at infinity.

1.3. Related problems. In the elliptic case, the obstacle problem for the frac-
tional Laplacian is equivalent to a thin obstacle problem in Rn+1, also known as the
Signorini problem when s = 1

2
. A parabolic version of the Signorini problem has

been recently studied in [DGPT13, ACM16].
We emphasize that, although the time-independent version of the problem studied

in [DGPT13, ACM16] is equivalent to the obstacle problem for the half-Laplacian,
the parabolic problem is of completely different nature from the one considered
in the present paper. In particular, notice that for the parabolic Signorini prob-
lem in [DGPT13, ACM16] one has Almgren-type and other monotonicity formulas
(analogous to the elliptic ones used in [CSS08, GP09]), while no such monotonicity
formulas are known for our problem (1.3).

1.4. Structure of the paper. The paper is organized as follows. In Section 2 we
prove the semiconvexity of solutions in (x, t). In Section 3 we classify all global
convex solutions to the obstacle problem with subquadratic growth at infinity. In
Section 4 we show that, at any regular point, a blow-up of the solution u converges
in the C1 norm to a global convex solution with subquadratic growth. In Section 5
we prove that that the free boundary is Lipschitz in x and t near regular points. In
Section 6 we show that the regular set is open, and that it is C1,α in x. Finally, we
prove in Section 7 that the free boundary is C1,β in x and t near regular points, and
in Section 8 we establish Theorem 1.1.

2. Preliminaries

In this Section we provide some preliminary results. First, we establish the semi-
convexity of solutions in x and t. The proof is similar to [ACM16, Theorem 2.1] or
[CF13, Lemma 3.1].
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Lemma 2.1 (Semiconvexity in (x, t)). Let ϕ be any obstacle satisfying (1.4), and u
be the solution to (1.3). Let ξ = (αe, β) ∈ Rn × R, with e ∈ Sn−1 and α2 + β2 = 1.
Then, we have

uξξ := ∂ξξu ≥ −Ĉ,
where constant Ĉ depends only on ϕ.

Proof. We use a penalization method: it is well known that the solution u can be
constructed as the limit of uε as ε→ 0, where uε are smooth solutions of

∂tu
ε + (−∆)suε = βε(u

ε − ϕ) in Rn × (0, T ),

uε(·, 0) = ϕ+
√
ε at t = 0,

with βε(z) = e−z/ε; see [CF13, Lemma 3.1].
Then, differentiating the equation twice and using that β′′ε ≥ 0, we get

∂tu
ε
ξξ + (−∆)suεξξ ≥ β′ε(u

ε − ϕ)(uεξξ − ϕξξ) in Rn × (0, T ).

In particular, since β′ε ≤ 0 we have

∂t(u
ε
ξξ + C0) + (−∆)s(uεξξ + C0) ≥ β′ε(u

ε − ϕ)(uεξξ + C0) in Rn × (0, T ),

where
C0 := ‖uεξξ(·, 0)‖L∞(Rn)

≤ α2‖∂eeuε(·, 0)‖L∞(Rn) + 2αβ‖∂e∂tuε(·, 0)‖L∞(Rn) + β2‖∂ttuε(·, 0)‖L∞(Rn)

≤ 1 + ‖D2ϕ‖L∞(Rn) + ‖∇(−∆)sϕ‖L∞(Rn) + ‖(−∆)2sϕ‖L∞(Rn)

≤ C
(

1 + ‖∇ϕ‖L∞(Rn) + ‖D2ϕ‖L∞(Rn) + ‖D3ϕ‖L∞(Rn) + ‖D4ϕ‖L∞(Rn)

)
<∞

thanks to (1.4). Here, to bound ∂ttu
ε(·, 0), we used that ∂tu

ε(·, 0) = e−1/
√
ε−(−∆)sϕ,

and that

∂ttu
ε + (−∆)s∂tu

ε = β′ε(u
ε − ϕ)∂tu

ε = −1

ε
βε(u

ε − ϕ)∂tu
ε.

Hence, letting t→ 0, this yields

∂ttu
ε(·, 0) = (−∆)2sϕ− 1

ε
e−1/

√
ε
(
e−1/

√
ε − (−∆)sϕ

)
,

and when ε→ 0 the last term goes to zero, therefore

|∂ttuε(·, 0)| ≤ |(−∆)2sϕ|+ 1 + |(−∆)sϕ|
for ε small enough.

Using again that β′ε ≤ 0, it follows that β′ε(u
ε − ϕ)(uεξξ + C0) ≥ 0 whenever

uεξξ +C0 ≤ 0. Thanks to this fact, it follows that the function w := min{0, uεξξ +C0}
satisfies

∂tw + (−∆)sw ≥ 0 in Rn × (0, T ).

Moreover, by the definition of C0, we have w ≡ 0 at t = 0. Thus, by the minimum
principle we get w ≥ 0, or equivalently uεξξ + C0 ≥ 0. Letting ε → 0 we get the
desired result. �
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Throughout Sections 3, 4, 5, and 6, we will use the extension problem for the
fractional Laplacian. Namely, we will use that, for each fixed t, the function u(x, t)
can be extended to a function u(x, y, t) satisfying{

u(x, 0, t) = u(x, t) in Rn,
Lau(x, y, t) = 0 in Rn+1

+ ,

where Rn+1
+ = Rn+1 ∩ {y > 0} and

Lau := divx,y
(
ya∇x,yu

)
, a = 1− 2s.

As shown in [MO69, CS07], with this definition the fractional Laplacian can be
computed as a (weighted) normal derivative of such extension u(x, y, t), namely

−cn,a lim
y↓0

ya∂yu(x, y, t) = (−∆)su(x, t) in Rn.

Therefore, our solution u(x, y, t) to (1.3) satisfies

Lau = 0 in {y > 0} × (0, T ],

min
{
∂tu− cn,a lim

y↓0
ya∂yu, u− ϕ

}
= 0 on {y = 0} × (0, T ],

u(·, 0, t) = ϕ at t = 0.

Furthermore, given a free boundary point (x0, t0) ∈ ∂{u = ϕ}, we denote

v(x, y, t) := u(x, y, t)− ϕ(x) +
1

4(1− s)
∆ϕ(x0) y2. (2.1)

With this definition it follows that v = u− ϕ on {y = 0}, and that
Lav = yag(x) in Rn+1

+ × [0, T ] \ {v(x, 0, t) = 0},
v ≥ 0, on {y = 0},
cn,a limy↓0 y

a∂yv = ∂tv, on {v(x, 0, t) > 0},
v(x, 0, 0) = 0,

(2.2)

where g(x) := ∆ϕ(x0)−∆ϕ(x0). Also, using the regularity of the obstacle (here we
only need ϕ ∈ C2,1), it follows that

|g(x)| ≤ C|x− x0| and |∇g(x)| ≤ c. (2.3)

Finally, throughout the paper, given r ∈ (0,∞], Qr will denote the following (para-
bolic) cylinders in Rn+1

+ ,

Qr(x0, t0) := Br(x0)×
(
t0 − r2s, t0 + r2s

)
, and Qr := Qr(0, 0),

while Qr will denote cylinders in Rn,

Qr(x0, t0) := Br(x0)×
(
t0 − r2s, t0 + r2s

)
, and Qr := Qr(0, 0).

Here, Br and Br denote balls in Rn+1
+ and Rn, respectively, i.e.,

Br(x0) :=
{

(x, y) ∈ Rn+1
+ : |x− x0|2 + y2 ≤ r2

}
, Br = Br(0),

Br(x0) := {x ∈ Rn : |x− x0| ≤ r}, Br = Br(0).
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3. Classification of global convex solutions

Because solutions to our problem are semiconvex in space-time (see Lemma 2.1),
the blow-up profiles that we shall consider will be convex in space-time. Hence, it
is natural to classify global convex solutions.

The main result of this section is the next theorem, which classifies all global
convex solutions to the obstacle problem under a growth assumption on u. Recall
that Q∞ = {(x, y, t) ∈ Rn+1

+ × (−∞,∞)} and that a = 1− 2s.

Theorem 3.1. Let s > 1
2
, and let u ∈ C(Q∞) satisfy

Lau = 0 in Q∞ ∩ {y > 0}
min {∂tu− cn,a limy↓0 y

a∂yu, u} = 0 on Q∞ ∩ {y = 0}
D2
x,tu ≥ 0 on Q∞

u ≥ 0, ∂tu ≥ 0 on Q∞ ∩ {y = 0}.

(3.1)

Assume in addition that u(0, 0, 0) = 0, and that u satisfies the growth control

‖u‖L∞(QR) ≤ R2−ε for all R ≥ 1. (3.2)

Then, either u ≡ 0 or

u(x, y, t) = K u0(x · e, y)

for some e ∈ Sn−1 and K > 0, where u0 is the unique global solution to the elliptic
problem for n = 1 that is convex in the first variable and satisfying ‖u0‖L∞(Q1) = 1.
Namely, u0 is given by

u0(z, y) =
2−s

1− s
(√

z2 + y2 + z
)s(

z − s
√
z2 + y2

)
∀ (z, y) ∈ R2

+,

and satisfies u0(z, 0) = (z+)1+s on {y = 0}.

To prove it, we need some lemmas. First, we show the following technical lemma.

Lemma 3.2. Assume w ∈ C(Q∞) satisfies, for some µ > 0,

‖w‖L∞(QR) ≤ Rµ for all R ≥ 1.

Then, there is a sequence Rk →∞ for which the rescaled functions

wk(x, y, t) :=
w(Rkx,Rky,R

2s
k t)

‖w‖L∞(QRk )

satisfy

‖wk‖L∞(QR) ≤ 2Rµ for all R ≥ 1.

Proof. Set

θ(ρ) := sup
R≥ρ

R−µ‖w‖L∞(QR).

Note that, thanks to our assumption, θ is bounded by 1 on [1,∞).
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Since by construction θ is nonincreasing, for every k ∈ N there is Rk ≥ k such
that

(Rk)
−µ‖w‖L∞(QRk ) ≥

1

2
θ(k) ≥ 1

2
θ(Rk). (3.3)

With this choice we see that, for any R ≥ 1, we have

‖wk‖L∞(QR) =
‖w‖L∞(QRkR)

‖w‖L∞(QRk )

≤ θ(RkR)(RkR)µ

1
2
θ(Rk)(Rk)µ

≤ 2Rµ,

where, in the last inequality, we used the monotonicity of θ. �

We also need the following Liouville-type result.

Lemma 3.3. Let u ∈ C(Rn+1
+ ) be a function satisfying

Lau = 0 in Rn+1
+

D2
xu ≥ 0 in Rn+1

+

|u(x, y)| ≤ C(1 + |x|+ |y|)2−ε in Rn+1
+

u ≥ 0 on {y = 0}
limy↓0 y

a∂yu ≥ 0 on {y = 0}
u(0, 0) = 0

limy↓0 y
a∂yu(0, y) = 0.

(3.4)

Then u ≡ 0.

Proof. We begin by noting that combining the equation Lau = 0 with the convexity
of u in x, it follows that

∂y(y
a∂yu) = −ya∆xu ≤ 0 in Rn+1

+ . (3.5)

Thanks to this fact, fixed R > 0, for any x ∈ Rn and y ∈ [0, R] we have

u(x, 2R)− u(x, y) =

∫ 2R

y

za∂yu(x, z)
dz

za
≤ ya∂yu(x, y)

∫ 2R

y

dz

za

= ya∂yu(x, y)
(2R)1−a − y1−a

1− a
.

Hence, if we set v(x, y) := ya∂yu(x, y), combining the above estimate with the third
and fifth property in (3.4) we deduce that

v ≥ 0 on {y = 0}, v ≥ −CaR1+a−ε on ∂
(
BR × [0, R]

)
∩ {y > 0},

where Ca > 0 is independent of R. Also, since Lau = 0, it follows by a direct
computation that L−av = 0.

Consider now the barrier

bR(x, y) := −n+ 1

1− a
y1+a −

|x|2 − n
1−a y

2

R1−a .
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We note that L−abR = 0 and

bR = 0 on {y = 0}, bR ≤ −R1+a on ∂
(
BR × [0, R]

)
∩ {y > 0},

Hence, given δ > 0, it follows by the maximum principle that, for all R ≥ Rδ

sufficiently large,

v ≥ δ bR in BR × [0, R].

Letting R→∞ this implies that

v ≥ −δ n+ 1

1− a
y1+a in Rn+1

+ ,

so, by letting δ → 0, we deduce that v ≥ 0 in Rn+1
+ .

On the other hand, it follows by (3.5) and the last property in (3.4) that v(0, y) =
ya∂yu(0, y) ≤ 0 for all y ≥ 0, thus v(0, y) = 0 for all y ≥ 0.

This proves that v is a non-negative solution of L−av = 0 in Rn+1
+ that vanishes

at some interior point, hence it is identically zero by the strong maximum principle.
Since v ≡ 0 we deduce that ∂yu ≡ 0. Hence, by the forth and sixth property in

(3.4), it follows that u ≥ 0 in Rn+1
+ and u(0, y) = 0 for all y ≥ 0. Since Lau = 0

in Rn+1
+ , applying again the strong maximum principle we obtain that u ≡ 0, as

desired. �

We can now prove the main result of this section.

Proof of Theorem 3.1. If u ≡ 0 then there is nothing to prove. Hence, we assume
that u is not identically zero.

The key step in the proof is the following:

Claim. The contact set {u = 0} ∩ {y = 0} contains a line of the form {(x, t) : x =
x0 for some x0 ∈ Rn}.

Let us prove it by contradiction. Assume the Claim is not true, and let

Λ := {u = 0} ∩ {y = 0}.

Then, since u is convex in space-time, also the set Λ is convex in the (x, t)-space.
Hence, there exist p ∈ Rn and some κ ∈ R such that Λ ⊂ {t ≤ x · p+ κ}.

We now perform a blow-down of our solution using a parabolic scaling (recall
s > 1

2
), and we show that we get a solution to the same problem but with contact

set contained in {t ≤ 0}. Indeed, let us consider the rescaled functions

Uk(x, y, t) :=
u(Rkx,Rky,R

2s
k t)

‖u‖QRk
,
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with Rk → ∞ given by Lemma 3.2. Then, the functions Uk ≥ 0 are convex in x
and t, and satisfy (recall that a = 1− 2s)

LaUk = 0 in Q∞ ∩ {y > 0}
∂tUk = cn,a limy↓0 y

a∂yUk on (Q∞ ∩ {y = 0}) \ Λk

Uk = 0 on Λk

∂tUk ≥ 0 on Q∞ ∩ {y = 0},

(3.6)

Uk(0, 0, 0) = 0, ‖Uk‖L∞(Q1) = 1, and

‖Uk‖L∞(QR) ≤ 2R2−ε for all R ≥ 1.

Moreover, we have

Λk ⊂ {R2s
k t ≤ Rkx · p+ κ} = {t ≤ Ra

kx · p+R−2s
k κ}. (3.7)

By the C1+α regularity estimates of [CF13], a subsequence of the functions Uk con-
verge in C1

loc to a nontrivial solution U∞ to the same equation satisfying U∞(0, 0, 0) =
0 and ‖U∞‖L∞(Q1) = 1. Also, because Uk are obtained as blow-downs of the convex
function u, it follows from (3.7) that Λ∞ ⊂ {t ≤ 0} (recall that a = 1− 2s < 0.

To see that this is not possible, we define w(x, y) := U∞(x, y, 0) and we claim that
w satisfies all the assumptions in (3.4). Indeed, all the properties except the fifth
and the last one follow easily from the construction of U∞. To check the other two
properties we notice that, since U∞ satisfies (3.6) and Λ∞ ⊂ {t ≤ 0},

cn,a lim
y↓0

ya∂yU∞(x, y, t) = ∂tU∞(x, y, t) ≥ 0 ∀ t > 0.

Also, since U∞ ≥ 0 and U∞(0, 0, 0) = 0, we deduce that ∂tU∞(0, 0, 0) = 0. Hence, it
follows by the C1+α regularity estimates of [CF13] that

cn,a lim
y↓0

ya∂yw(x, y) = lim
t↓0

∂tU∞(x, y, t) ≥ 0,

and

cn,a lim
y↓0

ya∂yw(0, y) = ∂tU∞(0, 0, 0) = 0,

as desired.
This allows us to apply Lemma 3.3 to w and deduce that w ≡ 0. This proves that

U∞ = 0 at t = 0. Hence, since U∞ solves the “extension version” of the fractional
heat equation, by uniqueness of solutions we deduce that U∞ ≡ 0 for all t ≥ 0. On
the other hand, since ∂tU∞ ≥ 0 and U∞ ≥ 0, we get U∞ ≡ 0 for all t ≤ 0. This
proves that U∞ ≡ 0 in Q∞, a contradiction to the fact that ‖U∞‖L∞(Q1) = 1.

Thus, the Claim is proved.

Using the Claim, we notice that u is a convex function in x and t that vanishes
on a line of the form {x = x0}. This implies that u is independent of t, thus
u(x, y, t) = u(x, y) (see, e.g., [CRS16, Lemma 4.3]). By the (elliptic) classification
result in [CSS08, Section 5], we get the desired result. �
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4. Regular points and blow-ups

The aim of this Section is to prove that, whenever (ii) in Theorem 1.1 does not
hold, then a blow-up of u(x, t) at (x0, t0) converges in the C1 norm to the 1D solution
(x · e)1+s

+ for some e ∈ Sn−1.
Recall that we denote

Qr(x0, t0) = Br(x0)×
(
t0 − r2s, t0 + r2s

)
, and Qr = Qr(0, 0).

According to Theorem 1.1, we next define regular free boundary points.

Definition 4.1. We say that a free boundary point (x0, t0) ∈ ∂{u = ϕ} is regular if

lim sup
r↓0

‖u− ϕ‖L∞(Qr(x0,t0))

r2−ε =∞ (4.1)

for some ε > 0. Notice that if a free boundary point (x0, t0) is not regular, then
‖u− ϕ‖L∞(Qr(x0,t0)) = O(r2−ε) for all ε > 0, so (ii) in Theorem 1.1 holds.

The definition of regular free boundary point is qualitative. We will also need the
following quantitative version.

Definition 4.2. Let ν : (0,∞)→ (0,∞) be a nonincreasing function with

lim
ρ↓0

ν(ρ) =∞.

Given ε > 0, we say that a free boundary point (x0, t0) ∈ ∂{u = ϕ} is regular with
exponent ε > 0 and modulus ν if

sup
r≥ρ

‖u− ϕ‖L∞(Qr(x0,t0))

r2−ε ≥ ν(ρ). (4.2)

The main result of this section is the following. It states that at any regular free
boundary point (x0, t0) there is a blow-up sequence that converges to (e · x)1+s

+ for
some e ∈ Sn−1.

Proposition 4.3. Let ϕ ∈ C4(Rn) be any obstacle satisfying (1.4), and v be the
function given in (2.1), with s ∈ (1

2
, 1).

Assume that (x0, t0) is a regular free boundary point with exponent ε > 0 and
modulus ν. Then, given δ > 0 and r0 > 0, there is

r = r(δ, ε, ν, r0, n, s, ϕ) ∈ (0, r0)

such that ‖u− ϕ‖L∞(Qr(x0,t0)) ≥ 1
2
r2−ε and the rescaled function

vr(x, y, t) :=
v(x0 + rx, ry, t0 + r2st)

‖v‖L∞(Qr(x0,t0))

satisfies ∣∣vr(x, y, t)− u0(x · e, y)
∣∣+
∣∣∇vr −∇u0

∣∣+ |∂tvr| ≤ δ in Q1 (4.3)

for some e ∈ Sn−1. Here, u0 = u0(x · e, y) is the unique global solution given by the
classification Theorem 3.1.
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For this, we will need the following result, whose proof is essentially the same as
the one of Lemma 3.2.

Lemma 4.4. Assume w ∈ L∞(Q1) satisfies ‖w‖L∞(Q1) = 1 and, for some µ > 0,

sup
ρ≤r≤1

‖w‖L∞(Qr)

rµ
≥ ν(ρ)→∞ as ρ→ 0.

Then, there is a sequence rk ↓ 0 for which ‖w‖L∞(Qrk ) ≥ 1
2
rµk , and for which the

rescaled functions

wk(x) =
w(rkx, rky, r

2s
k t)

‖w‖L∞(Qrk )

satisfy

‖wk‖L∞(QR) ≤ 2Rµ for all 1 ≤ R ≤ 1

rk
.

Moreover, 1/k ≤ rk ≤ (ν(1/k))−1/µ.

Proof. Defining
θ(ρ) := sup

ρ≤r≤1
r−µ‖w‖L∞(Qr),

we note that θ is nonincreasing and that, by our assumption,

θ(ρ) ≥ ν(ρ)→∞ as ρ ↓ 0.

Hence, for every k ∈ N it suffices to choose rk ≥ 1
k

such that

(rk)
−µ‖w‖L∞(Qrk ) ≥

1

2
θ(1/k) ≥ 1

2
θ(rk),

and one concludes as in the proof of Lemma 3.2. �

To prove Proposition 4.3 we will also need the following result, that follows by
compactness from Theorem 3.1.

Lemma 4.5. Given δ > 0, there is

η = η(δ, ε, n, s) > 0

such that the following statement holds:
Let v : Q1/η → R satisfy v(0, 0) = 0, ∇v(0, 0) = 0,

|Lav| ≤ η in Q1/η ∩ {y > 0}
min

{
∂tv − cn,a limy↓0 y

1−2s∂yv, v
}

= 0 on Q1/η ∩ {y = 0}
vξξ ≥ −η on {y = 0}
v ≥ 0, ∂tv ≥ 0 on {y = 0}

(4.4)

with
‖v‖L∞(QR) ≤ R2−ε for all 1 ≤ R ≤ 1/η, (4.5)

and
‖v‖L∞(Q1) = 1. (4.6)
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Then, ∣∣v(x, y, t)− u0(x · e, y)
∣∣+
∣∣∇v −∇u0

∣∣+ |∂tv| ≤ δ in Q1

for some e ∈ Sn−1.

Proof. The proof is by compactness and contradiction. Assume that for some δ > 0
we have sequences ηk ↓ 0 and vk satisfying vk(0, 0) = 0, ∇vk(0, 0) = 0, (4.4), (4.5),
(4.6), but∣∣vk(x, y, t)−u0(x ·e, y)

∣∣+∣∣∇vk−∇u0

∣∣+ |∂tvk| ≥ δ in Q1 for all e ∈ Sn−1. (4.7)

By the regularity estimates in [CF13], we have

‖vk‖C1,α
x,t (QR) ≤ C(R) for all R ≥ 1,

with C(R) depending on R but independent of k. Thus, up to taking a subsequence,
the functions vk converge in C1

loc to a function v∞ that solves (3.1), (3.2), (4.6),
v∞(0, 0) = 0 and ∇v∞(0, 0) = 0.

Since ‖v∞‖L∞(Q1) = 1, it follows by the classification result in Theorem 3.1 that

v∞(x, y, t) ≡ u0(x · e, y), for some e ∈ Sn−1.

This proves that vk → u0(x · e, y) in the C1
loc norm, which contradicts (4.7) for k

large enough. �

We can now prove Proposition 4.3.

Proof of Proposition 4.3. We may assume that ‖u−ϕ‖L∞(Q1(x0,t0)) = 1, and let v be
given by (2.1).

Let η = η(δ, ε, n, s) > 0 be the constant given by Lemma 4.5, let rk be the sequence
given by Lemma 4.4 with µ = 2− ε, and set

vk(x, y, t) :=
v(x0 + rkx, rky, t0 + r2s

k t)

‖v‖L∞(Qrk (x0,t0))

.

Then, recalling (2.2) and (2.3), the functions vk satisfy
Lavk = gk in {y > 0}
min

{
∂tvk − cn,a limy↓0 y

1−2s∂yvk, vk
}

= 0 on {y = 0}
vk ≥ 0, ∂tvk ≥ 0 on {y = 0}

(4.8)

with

|gk(x)| = (rk)
2|∆ϕ(x0 + rkx)−∆ϕ(x0)|
‖v‖L∞(Qrk (x0,t0))

≤ C(rk)
2

(rk)2−ε ≤ C(rk)
ε,

with C depending only on ϕ.
Moreover, by Lemma 2.1, for any e ∈ Sn−1

∂eevk(x, y, t) =
(rk)

2∂eev(rkx, rky, r
2s
k t)

‖v‖L∞(Qrk (x0,t0))

≥ −Ĉ(rk)
ε,
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and

∂ttvk(x, y, t) =
(rk)

4s∂ttv(rkx, rky, r
2s
k t)

‖v‖L∞(Qrk (x0,t0))

≥ −Ĉ(rk)
4s+ε−2 ≥ −Ĉ(rk)

ε.

on {y = 0}. Similarly, for any ξ = αe+ βt, with |α|2 + |β|2 = 1, we get

∂ξξvk ≥ −Ĉ(rk)
ε on {y = 0}.

Furthermore, we have

‖vk‖L∞(QR) ≤ R2−ε for all 1 ≤ R ≤ 1/rk, (4.9)

and

‖vk‖L∞(Q1) = 1, vk(0, 0) = 0, ∇vk(0, 0) = 0. (4.10)

Therefore, taking k large enough, by Lemma 4.5 we obtain∣∣vk(x, y, t)− u0(x · e, y)
∣∣+
∣∣∇vk −∇u0

∣∣+ |∂tvk| ≤ δ in Q1

for some e ∈ Sn−1. Notice that, thanks to Lemma 4.4, it suffices to take k large
enough so that

(rk)
ε ≤ (ν(1/k))−1/(2−ε) ≤ η,

where η is given by Lemma 4.5. In particular, the scaling parameter r can be taken
depending only on δ, n, s, r0, ϕ, ε, and the modulus ν. �

5. Lipschitz regularity of the free boundary in x and t

The aim of this Section is to prove the Lipschitz regularity in x of the free boundary
in a neighborhood (in x and t) of any regular free boundary point (x0, t0). In fact,
the result gives also the C1

x regularity of the free boundary at the point (x0, t0).
Let be (x0, t0) a regular point of the free boundary. Throughout this section, v

will denote the function defined in (2.1). Recall that v satisfies (2.2).
The main result of this section is the following.

Proposition 5.1. Assume that (x0, t0) is a regular free boundary point with exponent
ε > 0 and modulus ν, and let v be the function defined in (2.1). Then, there is
e ∈ Sn−1 such that for any ` ∈ (0, 1) there exists r > 0 such that

∂e′v ≥ 0 in Qr(x0, t0), for all e′ ∈ Sn−1 with e′ · e ≥ `√
1 + `2

. (5.1)

Moreover, we have

∂e′v ≥
1

8
|∇xv| in Qr(x0, t0), for all e′ ∈ Sn−1 with e′ · e ≥ 1

2
. (5.2)

Furthermore, given η > 0 and κ > 0, the radius r > 0 can be taken such that the
rescaled function

vr(x, y, t) =
v(x0 + rx, ry, t0 + r2st)

‖v‖L∞(Qr(x0,t0))

(5.3)
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satisfies

0 < γ ∂evr ≤ ∂tvr ≤ κ ∂evr in Q1, (5.4)

and

∂evr ≥ c1 > 0 in Q1 ∩ {(x− x0) · e ≥ η}, (5.5)

∂evr ≥ c2 y
2s in Q1. (5.6)

Here, the constant r > 0 depends only on `, κ, η, ν, n, and s; the constant c1 > 0
depends only on `, η, ν, n, and s; the constant c2 > 0 depends only on `, ν, n, and
s; and the constant γ > 0 depends on u and the free boundary point (x0, t0).

As a direct consequence of Proposition 5.1, we obtain the following.

Corollary 5.2. Let ϕ ∈ C4(Rn) be any obstacle satisfying (1.4), and u be the
solution to (1.3), with s ∈ (1

2
, 1). Assume that (x0, t0) is a regular free boundary

point with exponent ε > 0 and modulus ν.
Then, there is r > 0 such that the free boundary is Lipschitz in x and t in

Qr(x0, t0). More precisely, after a rotation in the x-variables, we have

∂{u(x, t) = ϕ(x)} ∩Qr(x0, t0) ≡ {xn = G(x′, t)} ∩Qr(x0, t0),

where x = (x′, xn) ∈ Rn−1 × R, and G : Rn−1 × R→ R is Lipschitz.
Furthermore, the free boundary is C1 in x at the point (x0, t0), in the sense that

for any ` > 0 there exists r = r(`, ε, ν, n, s) > 0 such that

[G]Lipx(Qr(x0,t0)) ≤ `.

Proof. The result follows from Proposition 5.1. Indeed, (5.1) implies that the level
sets of the function u−ϕ are `-Lipschitz in x, while (5.4) implies that the level sets
of the function u− ϕ are uniformly Lipschitz in t. �

To prove Proposition 5.1 we will need the following parabolic version of [CSS08,
Lemma 7.2].

Lemma 5.3. Let be Γ ⊆ Q1 ⊆ Rn × [0, T ], set cn,a := min

{
1
8

√
s(1+a)
n

,
(√

s
8

)1/s
}

,

and let h : Q1 → R be a continuous function satisfying the following properties for
some positive constants γ, c0, and θ:

(H1) |Lah| ≤ γ ya in Q1 ∩ {y > 0}.
(H2) cn,a limy↓0 y

a∂yh = ∂th in Q1 \ Γ.
(H3) h ≥ 0 on Γ.
(H4) h > −θ on Q1 ∩ {0 < y < cn,a}.
(H5) h ≥ c0 on Q1 ∩ {y ≥ cn,a}.

If γ ≤ c0 and θ ≤ s c0
64

, then

h ≥ c0y
2s in Q1/2. (5.7)
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Proof. We prove (5.7) by contradiction. Hence, we suppose there exists (x0, y0, t0) ∈
Q1/2 such that h(x0, y0, t0) < c0y

2s
0 . Notice that, thanks to (H5), y0 < cn,a. Hence,

we define

Q :=

{
(x, y, t) : |x− x0| <

1

4
, t0 −

1

4
< t < t0, 0 < y < cn,a

}
,

we consider the a-harmonic polynomial P given by

P (x, y, t) := |x− x0|2 + 2s(t0 − t)−
n

a+ 1
y2 − y2s,

and we set

w(x, y, t) := h(x, y, t) + τP (x, y, t)− γ

2(a+ 1)
y2,

where γ > 0 is as in (H1) and τ < c0. Then, thanks to (H1)-(H3), since a = 1− 2s
and ∂tP = cn,a limy↓0 y

a∂yP , we have that
Law = Lah− γ ya ≤ 0 in Q
w ≥ τP > 0 on Γ

cn,a limy↓0 y
a∂yw = ∂tw in (Q∩ {y = 0}) \ Γ

w(x0, y0, t0) ≤ h(x0, y0, t0)− τ y2s
0 < 0.

(5.8)

Since (x0, y0, t0) ∈ Q, it follows by the maximum principle that w must have a
negative minimum at some point (x1, y1, t1) that belongs to the parabolic boundary
∂PQ of Q. Moreover, by the second and third equations in (5.8), we deduce that
w(x, 0, t) can attain its minimum only on the parabolic boundary of Q ∩ {y = 0}.
Therefore, we deduce that (x1, y1, t1) ∈ ∂PQ∩ {y > 0}.

We now study now the sign of the function w in each part of ∂PQ∩ {y > 0} to
get a contradiction. Notice that, with our choice of cn,a,

n

a+ 1
y2 + y2s ≤ s

64
+

s

64
=

s

32
∀ y ∈ [0, cn,a] (5.9)

- If y = cn,a, it follows by (H5) and (5.9) that

w ≥ c0 −
s c0

32
− s γ

128n
> 0, (5.10)

provided γ ≤ c0.
- If |x− x0| = 1/4 and y ∈ [0, cn,a], then it follows by (H4) and (5.9) that

w ≥ −θ + c0

(
1

16
− s

32

)
− s γ

128n
> 0 (5.11)

provided γ ≤ c0 and θ ≤ c0
64
.

- If t = t0 − 1/4, using again (H5) we obtain that

w ≥ −θ + c0

(s
2
− s

32

)
− s γ

128n
> 0

provided γ ≤ c0 and θ ≤ s c0
4
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Hence, if γ ≤ c0 and θ ≤ s c0
64

, this shows the desired contradiction provided γ ≤ c0

and θ ≤ s c0
64

, concluding the proof. �

We now prove Proposition 5.1.

Proof of Proposition 5.1. Given η > 0 and κ > 0, fix δ ∈ (0, ηs).
Consider the rescaled function vr defined in (5.3) where r > 0 is given by Propo-

sition 4.3 and v is defined in (2.1). Thus, it follows that for some e ∈ Sn−1

|∇vr(x, y, t)−∇u0(x, y)|+ |∂tvr(x, y, t)| ≤ δ in Q1.

Let us fix consider ` > 0 small and e′ ∈ Sn−1 such that

e′ · e ≥ `√
1 + `2

≥ `

2
.

Then,

∂e′vr ≥ ∂e′u0 − δ, κ ∂e′vr − ∂tvr ≥ κ ∂e′u0 − δ in Q1. (5.12)

In particular we get that

∂evr ≥ ((x− x0) · e)s+ − δ ≥ ηs − δ in Q1 ∩ {(x− x0) · e ≥ η},

thus (5.5) is satisfied with c1 := ηs − δ > 0.

Denoting by Cr := ‖v‖L∞(Qr(x0,t0)), it follows by Proposition 4.3 that

Cr ≥
1

2
r2−ε (5.13)

where ε > 0. Moreover

Lavr =
r2−a

Cr
(Lav)(x0 + rx, ry, t0 + r2st).

Also, recalling (2.2) and that 1− a = 2s, we see that on the set {vr(x, 0, t) > 0} it
holds

cn,a lim
y↓0

ya∂yvr =
r

Cr
cn,a lim

y↓0

(
ya(∂yv)(x0 + rx, ry, t0 + r2st)

)
=

r1−a

Cr
∂tv(x0 + rx, ry, t0 + r2st)

= ∂tvr(x, y, t).

Hence, we have proved that
Lavr = r2

Cr
yag(x0 + rx) in Rn+1

+ × [0, T ] \ {vr(x, 0, t) = 0},
vr ≥ 0, on {y = 0},
cn,a limy↓0 y

a∂yvr = ∂tvr on {vr(x, 0, t) > 0},
v(x, 0, 0) = 0.

(5.14)
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Reducing the size of η if needed and taking δ sufficiently small, we can take the
partial derivative ∂e′ (resp. κ∂e′ − ∂t) in (5.14), and using (2.3), (5.12), (5.13), and
Lemma 5.3, we deduce that

∂e′vr ≥ c2y
2s (resp. κ ∂e′vr − ∂tvr ≥ c2y

2s) in Q1/2 (5.15)

provided δ is sufficiently small. In particular, this proves (5.6) and the last inequality
in (5.4). Moreover, using that vr is a rescaling of v, (5.15) implies that

∂e′v ≥ 0 in Qr/2(x0, t0),

so (5.1) follows (up to replace r by r/2).

We next prove (5.2). For that, let θ ∈ Sn−1. Since by Proposition 4.3

|2∂evr − ∂θvr − 2∂eu0 − ∂θu0| ≤ 3δ,

applying as before the Lemma 5.3 to 2∂evr − ∂θvr, we conclude that

2∂evr ≥ ∂θvr for any direction θ ∈ Sn−1,

therefore

2∂evr ≥ |∇xvr| in Q1/2. (5.16)

On the other hand, since we also have

|4∂e′vr − ∂evr − 4∂e′u0 − ∂eu0| ≤ 5δ,

we can also apply Lemma 5.3 to 4∂e′vr−∂evr for any vector e′ ∈ Sn−1 with e′ ·e ≥ 1/2
to get

4∂e′vr ≥ ∂evr in Q1/2. (5.17)

Hence, it follows by (5.16) and (5.17) that

∂e′vr ≥
1

8
|∇xvr|, for any e′ · e ≥ 1/2,

which yields (5.2) with r/2 in place of r.

Finally, we prove the first inequality in (5.4). For this we simply notice that, since
∂tvr > 0 in {vr > 0} (by the strong maximum principle), there exists c > 0 such
that

∂tvr ≥ c > 0 in Q1 ∩ {x · e ≥ cn,a},
where cn,a is defined in Lemma 5.3. Thus

∂tvr − γ ∂evr ≥ c/2 in Q1 ∩ {x · e ≥ cn,a},

provided that γ > 0 is small enough, and we conclude that ∂tvr ≥ γ∂evr in Q1/2 as
before. �

To finish this section, we prove higher regularity in time for the solution u at any
regular point.
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Proposition 5.4. Let ϕ be an obstacle satisfying (1.4), let u be the solution of (1.3)
with s ∈ (1

2
, 1), and let (x0, t0) be a regular free boundary point with exponent ε > 0

and modulus ν. Then

‖∂tu‖Csx,t(Qr(x0,t0)) + ‖∇u‖Csx,t(Qr(x0,t0)) ≤ C,

where C and r > 0 depend only on n, s, ε, and ν.

Proof. Let v = u− ϕ. By the results of [CF13], we know that

‖∇u‖Csx(Qr(x0,t0))) ≤ C.

Notice that, since ϕ is independent of t, it is enough to prove the desired regularity
of v. For that purpose, note that by Corollary 5.2 the free boundary is Lipschitz
in x and t. Hence, by (5.4) and the optimal C1+s

x regularity of solutions in space
established in [CF13] we get that

0 < ∂tv < C ∂ev ≤ C dsx ≤ C dsp in Qr(x0, t0), (5.18)

where dx(x, t) := dist(x, {v(·, t) = 0}) denotes the Euclidean distance in Rn×{t} to
the free boundary, and dp the parabolic one in Rn × R.

Let (x̄, t̄) be any point in {v > 0} ∩Qr(x0, t0), set R := dp(x̄, t̄)/2 > 0, and define

w(x, t) := ∂tv(x0 +R(x− x0), t0 +R2s(t− t0)).

Fix e ∈ Sn−1. By (5.18) and interior regularity estimates for the fractional heat
equation (see for example [FR15, Theorem 1.3] or [S14, Theorem 2.2]), it follows
that

sup
t∈[−1/2,0]

[w]C1
x(B1/2) ≤ C Rs and sup

t∈[−1/2,0]

[w]Csx(B1/2) ≤ C Rs.

Therefore the previous inequalities imply that

sup
t∈(t0−R

2s

2
,t0]

‖∇∂tv‖L∞(BR/2(x0)) ≤ Cdp(x̄, t̄)
s−1, sup

t∈(t0−R
2s

2
,t0]

‖∂tv‖Csx(BR/2(x0)) ≤ C.

Since this can be done for any (x̄, t̄) ∈ {v > 0} ∩ Qr(x0, t0), and using again that
(thanks to the Lipschitz regularity of the free boundary) dx and dp are comparable,
we deduce that

|∇∂tv| ≤ C1d
s−1
x in Qr(x0, t0), and ‖∂tv‖Csx(Qr(x0,t0)) ≤ C. (5.19)

Now, by (5.18) and (5.19) we have that, for any e ∈ Sn−1,

|(∂ev)1−s(∂tev)s| ≤ C.

The previous inequality implies that

|∂t(∂ev)
1
s | ≤ C,

that is, (∂ev)
1
s ∈ Lipt, which yields in particular that

‖∇v‖Csx,t(Qr(x0,t0)) ≤ C. (5.20)
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Recalling that ∂tv and ∇v vanish on the contact set, the previous inequality com-
bined with (5.4) implies that

|∂tv(x1, t1 + τ)− ∂tv(x1, t1)| ≤ C0|τ |s (5.21)

for all points (x1, t1) in {v = 0} ∩Qr/2(x0, t0) and any τ ∈ (0, r/2).

We now prove that (5.21) yields ∂tv ∈ Cs
t (Qr/8(x0, t0)). First, recall that ∂ttv ≥

−Ĉ by Lemma 2.1. Hence, if ψ ∈ C∞c (Q2r(x0, t0)) is a nonnegative function with
ψ ≡ 1 in Qr(x0, t0), we have∫

Qr(x0,t0)

(∂ttv + Ĉ) dx dt ≤
∫
Qr(x0,t0)

(∂ttv + Ĉ)ψ dx dt

=

∫
Q2r(x0,t0)

(
v ∂ttψ + Ĉ ψ

)
dx dt ≤ C.

In particular, this implies that the function

w(x, t) :=
∂tv(x, t+ τ)− ∂tv(x, t)

τ s

belongs to L1(Qr/2(x0, t0)) with a bound independent of τ ∈ (0, r/2).
Since w solves the fractional heat equation in the set {v > 0}, and it is bounded

by C0 on {v = 0} ∩ Qr/2(x0, t0) by (5.21), the function w̃ := max(w,C0) is a
subsolution in Qr/2(x0, t0) which belongs to L1(Qr(x0, t0)). Considering a cut-off
function ψ ∈ C∞c (Br(x0)) with ψ ≡ 1 in B3r/8(x0), we see that ŵ := w̃ψ solves

∂tŵ + (−∆)sŵ ≤ −(−∆)s[(1− ψ)w̃] in Qr/4(x0, t0).

Since (−∆)s[(1−ψ)w̃] is universally bounded insideQr/4(x0, t0), we can apply [CD16,
Corollary 6.2] to deduce that w̃ ∈ L∞(Qr/8(x0, t0)). This proves that

∂tv(x, t+ τ)− ∂tv(x, t)

τ s
≤ C in Qr/8(x0, t0) ∀ τ ∈ (0, r/2),

which implies that ∂tv ∈ Cs
t (Qr/8(x0, t0)), as desired. �

6. C1,α regularity of the free boundary in x

We prove now that the free boundary is C1,α in x near regular points. For this,
we need some steps: first, we show that the set of regular points is open; then, by
the results of the previous section, we deduce that the regular set is C1

x; finally, by
using the results in [RS15], we conclude the C1,α

x regularity of the free boundary.
We will need the following result (see [RS15, Lemma 4.1]) which states the exis-

tence of a positive subsolution of homogeneity s + γ vanishing outside of a convex
cone that is very close to a half space.
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Lemma 6.1. Let s ∈ (0, 1), and e ∈ Sn−1. For every γ ∈ (0, s) there is η > 0 such
that the function

Φ(x) :=

(
e · x− η

4
|x|
(

1− (e · x)2

|x|2

))s+γ
+

satisfies {
(−∆)sΦ ≤ −cγ dγ−s < 0 in Cη
Φ = 0 in Rn \ Cη,

where

Cη :=

{
x ∈ Rn : e · x

|x|
>
η

4
|x|
(

1− (e · x)2

|x|2

)}
, d(x) := dist(x,Rn \ Cη).

Here the constants cγ and η depend only on γ and s.

Using the previous Lemma, we now show that if (x0, t0) is a regular free boundary
point, then all free boundary points in a neighborhood of (x0, t0) are also regular.

Proposition 6.2. Assume that (x0, t0) is a regular free boundary point with exponent
ε > 0 and modulus ν. Set γs := min {2s− 1, 1− s}. For any γ ∈ (0, γs) there are r >
0 and c > 0 such that, for every free boundary point (x1, t1) ∈ ∂{u = ϕ}∩Qr(x0, t0),
we have

u(x1 + λe, t1) ≥ cλ1+s+γ, ∂eu(x1 + λe, t1) ≥ cλs+γ. (6.1)

In particular, every point on ∂{u = ϕ}∩Qr(x0, t0) is regular with exponent 1−s−γ
2

> 0

and modulus of continuity ν̃(ρ) := cρ(s+γ−1)/2.

Proof. Fix 0 < γ < γs, and let η > 0 and Cη be given by Lemma 6.1 (note that
γs < s).

Let v be given by (2.1), and vr be defined as in (5.3). Also, let κ > 0 be a small
number to be fixed later. By Proposition 5.1 and Corollary 5.2, there exists e ∈ Sn−1

and r > 0 small enough such that (5.4) holds and

(x1 + Cη/4) ∩B2(x1) ⊂ {vr(·, t) > 0} ∀ x1 ∈ {vr(·, t) > 0} ∩B1/4, ∀ t ∈ (−1, 1).

Noticing that the function vr solves{
Lavr = yag(x) in Q1 ∩ {y > 0}
cn,a limy↓0 y

1−2s∂yvr = ∂tvr on Q1 ∩ {y = 0} ∩ {vr > 0}.

with

g(x) :=
r2∆ϕ(x0)− r2(∆ϕ)(x0 + rx)

‖v‖L∞(Qr(x0,t0))

, |∇g| ≤ C1r
1+ε,

as in (5.19) it follows by (5.4) combined with interior estimates that

|∇∂tvr| ≤ Cκds−1
x

for some C independent of κ.
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Now, fix t ∈ (−1, 1) and define

w(x, y) := ∂evr(x, y, t).

Thanks to the previous considerations, choosing r small enough we have{
|Law| ≤ κya in B2 ∩ {y > 0}
| limy↓0 y

1−2s∂yw| ≤ Cκds−1
x on B2 ∩ {y = 0} ∩ {w > 0}.

Moreover, by (5.5) and (5.6) we have

w ≥ c1 > 0 in the set B2 ∩ {x · e ≥ η/16}. (6.2)

and
w ≥ c1y

2s in B2. (6.3)

We want to use the function Φ in Lemma 6.1 as a subsolution at any free boundary
point of w near 0. To this aim we note that, as a consequence of (6.2), if x1 is a free
boundary point close to 0 then

x1 · e ≤ η/16. (6.4)

Denote Φ(x, y) the extension of Φ(x) in Rn+1
+ , which satisfies

LaΦ = 0 in {y > 0}
limy↓0 y

1−2s∂yΦ ≥ cγ d
γ−s
x on {y = 0} ∩ Cη

Φ = 0 on {y = 0} \ Cη.
We recall that Φ can be written via the Poisson formula as

Φ(x, y) = Cn,s y
2s

∫
Rn

Φ(z, 0)

(|x− z|2 + y2)(n+2s)/2
dz ∀ y > 0 (6.5)

(see [CS07, Section 2.4]).
Consider now x1 ∈ ∂{w = 0} ∩B1/4, and define the function

ψ(x, y) := c2Φ(x− x1, y) +
κ

4(1− s)
y2,

so that
Laψ = κya ≥ Law in B1(x1) ∩ {0 < y < η}. (6.6)

Recalling that (x1 + Cη) ∩ B1(x1) ⊂ {w > 0} (see (6.2)), we have

cn,a lim
y↓0

y1−2s∂yψ = −(−∆)sΦ ≥ c2cγ d
γ−s
x

≥ κds−1
x ≥ lim

y↓0
y1−2s∂yw on B1(x1) ∩ {y = 0} ∩ (x1 + Cη), (6.7)

provided that κ > 0 is small enough. Also

ψ = 0 ≤ w on
(
B1(x1) ∩ {y = 0}

)
\ (x1 + Cη), (6.8)

and it follows by (6.3) that

ψ ≤ w on B1(x1) ∩ {y = η} (6.9)
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provided c2 and κ are sufficiently small.
We now check what happens on ∂B1(x1) ∩ {0 < y < η}. First of all we see that,

thanks to (6.2),

ψ ≤ w on ∂B1(x1) ∩ {x · e > η/16} ∩ {0 < y < η} (6.10)

provided c2 and κ are sufficiently small. Finally, since Φ vanishes on a uniform
neighborhood N ⊂ Rn of ∂B1(x1) ∩ {y = 0} ∩ {x · e ≤ η/16}, it follows by (6.5)
that ϕ ≤ C y2s on N × [0, η]. This implies that ψ ≤ C(c2 + κ)y2s on N × [0, η], that
combined with (6.3) proves that

ψ ≤ w on ∂B1(x1) ∩ {x · e ≤ η/16} ∩ {0 < y < η} (6.11)

if c2 and κ are sufficiently small. Hence, combining (6.6), (6.7), (6.8), (6.9), (6.10),
and (6.11), it follows by the maximum principle that w ≥ ψ in B1(x1). In particular
we deduce that

w(x, 0) ≥ ψ(x, 0) = c2Φ(x− x1) in B1 ∩ {y = 0}.

and recalling that Φ is homogeneous of degree s+ γ, we find

∂evr(x1 + λe, 0, t) = w(x1 + λe, 0) > c3λ
s+γ

for λ ∈ (0, 1). Integrating in λ, we get vr(x1 + λe, 0, t) ≥ c4λ
1+s+γ for λ ∈ (0, 1).

Since 1 + s + γ < 2, this means that (x1, t) is a regular free boundary point for

vr, with ε = 1
2
(1 − s − γ) and ν̃(ρ) = c4ρ

1
2

(s+γ−1). Since (x1, t) was arbitrary in
B1/4 × (−1, 1) and vr is a rescaled version of u− ϕ, the Proposition follows. �

Using the previous result, we find the following.

Corollary 6.3. Assume (x0, t0) is a regular point. Then, there is r > 0 such that
the free boundary is C1

x in Qr(x0, t0), with a uniform modulus of continuity.

Proof. By Proposition 6.2, all free boundary points in Qr(x0, t0) are regular, with a
uniform exponent ε > 0 and modulus ν. Thus, by Corollary 5.2 the free boundary
is C1

x at all such points, with a uniform modulus of continuity. �

Finally, using the results of [RS15], we deduce that the set of regular free boundary
points is C1,α in x.

Corollary 6.4. Assume (x0, t0) is a regular point. Then, there is r > 0 such that
the free boundary is C1,α

x in Qr(x0, t0), for some small α > 0.
Furthermore, there exists c > 0 such that, for every free boundary point (x1, t1) ∈

Qr(x0, t0) ∩ ∂{u = ϕ}, we have

(u− ϕ)(x, t1) = c(x1, t1)d1+s
x (x, t1) + o(|x− x1|1+s+α),

where c(x1, t1) ≥ c and dx(x, t) = dist(x, {u(·, t) = ϕ}).
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Proof. Let (x1, t1) ∈ Qr(x0, t0) ∩ ∂{u = ϕ} be any free boundary point, and set

w(x) := u(x+ x1, t1)− ϕ(x+ x1).

Also, denote Ω := {w > 0} and recall that, by Corollary 6.3, Ω is C1 in a neigh-
borhood of the origin. After a rotation, we may assume that the normal vector
to ∂Ω at the origin is en. Recall also that 0 is a regular free boundary point
with an exponent ε > 0 and a modulus ν which are independent of the point
(x1, t1) ∈ Qr(x0, t0)∩∂{u = ϕ}. Throughout the proof, C and c will denote positive
constants independent of x1 and t1.

First, we rescale the function w as

wk(x) =
w(rkx)

rk‖∇w‖L∞(Brk )

, ∇wk(x) =
(∇w)(rkx)

‖∇w‖L∞(Brk )

,

along a sequence rk → 0 such that ‖∇w‖L∞(Brk ) ≥ c(rk)
1−ε, ‖∇wk‖L∞(B1) = 1, and

|∇wk(x)| ≤ C(1 + |x|1−ε)
(compare with Lemma 4.4). On the other hand, recalling that

(−∆)sw = −(−∆)sϕ− ∂tu,
it follows by (1.4) and (5.19) that

|(−∆)s∂ew| ≤ C(1 + ds−1
x ) in Ω ∩Br

for all e ∈ Sn−1. This implies that the rescaled functions wk satisfy

|(−∆)s∂ewk| ≤ κ(1 + ds−1
x ) in Ω ∩Br/rk

for k large enough, with κ > 0 as small as desired.

Consider e ∈ Sn−1 with e · en ≥ 1/2. Then, it follows by (5.1) and (5.2) that, for
k large enough, ∂ewk ≥ 0 in B1/κ and supB1

∂ewk ≥ c > 0. This allows us to apply
[RS15, Theorem 1.3] (see also Remark 5.5 therein) and deduce that∥∥∥∥ ∂ewk∂enwk

∥∥∥∥
Cα(Ω∩B1)

≤ C

for all such e ∈ Sn−1. In particular, setting e = (ei + en)/
√

2, i = 1, ..., n − 1, and
using that wk is a rescaled version of w, choosing k large enough but fixed, the
previous inequality yields ∥∥∥∥ ∂eiw∂enw

∥∥∥∥
Cα(Ω∩Br)

≤ C, (6.12)

for some r > 0 small.
Now, notice that the normal vector ν̂(x) to the level set {w = λ} for λ > 0 can

be written as

ν̂(x) =
∇w
|∇w|

(x) = (ν̂1(x), ..., ν̂n(x)),
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ν̂i(x) =
∂eiw/∂enw√∑n
j=1(∂ejw/∂enw)2

.

Hence, (6.12) implies that |ν̂(x)− ν̂(y)| ≤ C|x− y|α whenever x, z ∈ {w = λ} ∩Br,
with C independent of λ > 0. Letting λ→ 0, we find that ∂{w = 0} ∩Br is C1,α.

Finally, once we know that Ω is of class C1,α, we can apply in [RS15, Theorem
1.2] (see also Remark 3.4 therein) to deduce that find

‖∂ew/dsx‖Cα(Ω∩Br) ≤ C

for some α > 0, which yields

u(x, t1)− ϕ(x) = c(x1, t1)d1+s
x (x, t1) + o(|x− x1|1+s+α).

Finally, by (6.1) in Proposition 6.2, we deduce c(x1, t1) ≥ c > 0. �

7. C1,β regularity of the free boundary in x and t

We finally prove that the free boundary is C1,β both in x and t

Proposition 7.1. Let ϕ ∈ C4(Rn) be an obstacle satisfying (1.4), and u be the
solution to (1.3), with s ∈ (1

2
, 1). Assume that (x0, t0) is a regular free boundary

point with exponent ε > 0 and modulus ν, and let G : Rn−1 × R → R be as in
Corollary 5.2. Then G is of class C1,β

x′,t inside Qr(x0, t0) for some small β > 0.

Proof. Let v = u− ϕ.
For every free boundary point (x1, t1) ∈ Qr(x0, t0) ∩ ∂{u = ϕ}, by Corollary 6.4

we have the expansion∣∣v(x, t1)− c(x1, t1)d1+s
x (x, t1)

∣∣ ≤ C|x− x1|1+s+α for t = t1, (7.1)

where c(x1, t1) ≥ c > 0, and dx(x, t) = dist(x, {u(·, t) = ϕ}).
If ν̂(x′, t) ∈ Sn−1 is the normal vector (in x) to the free boundary at (x′, G(x′, t), t),

then denoting by c(x′, t) := c(x′, G(x′, t), t), and using that, by Corollary 6.4, the
function x′ 7→ G(x′, t) is of class C1,α inside Qr(x0, t0), it follows by (7.1) that∣∣∣v(x, t)− c(x′, t)

(
{x− (x′, G(x′, t))} · ν̂(x′, t)

)1+s

+

∣∣∣ ≤ C
∣∣x− (x′, G(x′, t))

∣∣1+s+α
.

(7.2)
Our objective is to prove that the functionG(x′, t) is of class C1+β in the t-variable.

For this, we first show that c(x′, t) is Cγ
t for some γ > 0.

For that purpose, let us consider two free boundary points (x′, G(x′, t), t) and
(x′, G(x′, t + τ), t + τ) in Qr(x0, t0), with τ > 0 small. We fix a number h ∈ (0, 1)
with h� τ > 0 and we next compare the expansions (7.2) at the points

A := (x′, G(x′, t) + h, t),

B := (x′, G(x′, t) + h, t+ τ),

to show that c(x′, t) is Cγ in the t-variable.
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On the one hand, by (7.2) at the point A we have∣∣∣v(A)− c(x′, t)
(
(0, h) · ν̂(x′, t)

)1+s

+

∣∣∣ ≤ C h1+s+α. (7.3)

On the other hand, (7.2) at the point B gives∣∣∣v(B)− c(x′, t+ τ)
(
(0, h+G(x′, t+ τ)−G(x′, t)) · ν̂(x′, t+ τ)

)1+s

+

∣∣∣
≤ C|h+G(x′, t+ τ)−G(x′, t)|1+s+α. (7.4)

Now, since G(x′, t) is Lipschitz in t (by Corollary 5.2), and ν̂(x′, t) is Cα in x′, we
find

|ν̂(x′, t)− ν̂(x′, t+ τ)| ≤ C τα/2. (7.5)

Indeed, by C1+α
x regularity of G we have

|G(x̄′, t)−G(x′, t)−∇x′G(x′, t) · (x̄′ − x′)| ≤ C|x̄′ − x′|1+α.

Combining this estimate with the same one at time t+ τ , and using that

|G(x′, t+ τ)−G(x′, t)| ≤ C τ (7.6)

(since G is Lipschitz in t), we find

(x̄′ − x′) ·
(
∇x′G(x′, t)−∇x′G(x′, t+ τ)

)
≤ C τ + C|x̄′ − x′|1+α.

Choosing x̄′ such that |x̄′ − x′| = τ 1/2 and x̄′ − x′ points in the same direction as
∇x′G(x′, t)−∇x′G(x′, t+ τ), we deduce that∣∣∇x′G(x′, t)−∇x′G(x′, t+ τ)

∣∣ ≤ C τ 1/2 + C τα/2 ≤ C τα/2. (7.7)

Thus, since ν̂(x′, t) is the normal vector to the graph of G, (7.5) follows.
Using (7.5) and (7.6), and recalling that h� τ , it follows from (7.4) that∣∣∣v(B)− c(x′, t+ τ)

(
(0, h) · ν̂(x′, t)

)1+s

+

∣∣∣ ≤ C h1+s+α/2 + C τ 1+s.

Combining the previous inequality with (7.3), we find∣∣v(B)− v(A)
∣∣ ≥ (c(x′, t+ τ)− c(x′, t)

)(
(0, h) · ν̂(x′, t)

)1+s

+
− C h1+s+α/2 − C τ 1+s

Now, if r is small enough, then by Corollary 5.2 we know that ν̂(x′, t) · en ≥ 1
2
,

therefore∣∣v(B)− v(A)
∣∣ ≥ 1

2

∣∣c(x′, t+ τ)− c(x′, t)
∣∣h1+s − C h1+s+α/2 − C τ 1+s. (7.8)

Using that v is Lipschitz in t, this yields

|v(A)− v(B)| ≤ C τ,

so, by (7.8), ∣∣c(x′, t+ τ)− c(x′, t)
∣∣h1+s ≤ C h1+s+α/2 + C τ.

Thus, choosing h =
√
τ , we deduce∣∣c(x′, t+ τ)− c(x′, t)

∣∣ ≤ C hα/2 + C h2−1−s ≤ C hα/2 = C τα/4,
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provided that α ∈ (0, 1− s). Hence, this proves that c(x′, t) in (7.3) is Cγ in t with
γ = α/4.

Using this, we now show that ∂tG(x′, t) is Cβ in t. We compare the expansions
(7.2) at the three points

A = (x′, G(x′, t) + h, t)

B = (x′, G(x′, t) + h, t+ τ)

C = (x′, G(x′, t) + h, t− τ),

with h� τ .
As before, by (7.4) and (7.5) we have∣∣∣v(B)− c(x′, t+ τ)

{
(0, h+G(x′, t+ τ)−G(x′, t)) · ν̂(x′, t)

}1+s

+

∣∣∣ ≤ C h1+s+α/2.

Now, using that c(x′, t) is C
α/4
t , this yields∣∣∣v(B)− c(x′, t)

(
h+G(x′, t+ τ)−G(x′, t)

)1+s(
en · ν̂(x′, t)

)1+s

+

∣∣∣ ≤ C h1+s+α/4.

Analogously, we have∣∣∣v(C)− c(x′, t)
(
h+G(x′, t− τ)−G(x′, t)

)1+s(
en · ν̂(x′, t)

)1+s

+

∣∣∣ ≤ C h1+s+α/4.

Therefore, combining the previous two inequalities with (7.3), we find∣∣v(B) + v(C)− 2v(A)
∣∣

≥ c(x′, t)
∣∣h1+s

(
(1 + a)1+s + (1 + b)1+s − 2

)∣∣ (en · ν̂(x′, t)
)1+s

+
− C h1+s+α/4,

where

a :=
G(x′, t+ τ)−G(x′, t)

h
, b :=

G(x′, t− τ)−G(x′, t)

h
.

Recalling that G is Lipschitz in t (see Corollary 5.2), since h � τ we observe that
|a| � 1 and |b| � 1. Also, since ν̂(x′, t) · en ≥ 1

2
and c(x′, t) ≥ c > 0,∣∣v(B) + v(C)− 2v(A)

∣∣ ≥ c
∣∣h1+s

(
(1 + a)1+s + (1 + b)1+s − 2

)∣∣− C h1+s+α/4. (7.9)

Hence, since∣∣(1 + a)1+s + (1 + b)1+s − 2
∣∣ ≥ c|a+ b| for a, b small,

it follows from (7.9) that∣∣v(B) + v(C)− 2v(A)
∣∣ ≥ c hs

∣∣G(x′, t+ τ) +G(x′, t− τ)− 2G(x′, t)
∣∣− C h1+s+α/4.

Finally, using that u ∈ C1+s
t (by Proposition 5.4), we get that∣∣v(B) + v(C)− 2v(A)

∣∣ ≤ C τ 1+s,

therefore ∣∣G(x′, t+ τ) +G(x′, t− τ)− 2G(x′, t)
∣∣ ≤ C h1+α/4 + C τ 1+sh−s.
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Setting h = τ
1+s

1+s+α/4 , this gives∣∣G(x′, t+ τ) +G(x′, t− τ)− 2G(x′, t)
∣∣ ≤ C τ 1+β,

with β = αs
4+4s+α

> 0. Now, it is a standard fact that this bound implies that

G ∈ C1+β
t . In particular, this yields ∂tG is Cβ

t .

Note that, as a consequence of Corollary 6.4 and (7.7) we know that ∇x′G ∈ Cβ
x′,t.

Although a priori we do not have informations about the regularity of ∂tG with
respect to x′, we can still conclude that G ∈ C1,β

x′,t (thus, in particular, ∂tG ∈ Cβ
x′,t).

Indeed, fix (x′0, t0) and consider (h′, τ) ∈ Rn−1 × R small. Then, using that

∂tG ∈ Cβ
t and ∇x′G ∈ Cβ

x′,t, we have

G(x′0 + h′, t0 + τ) = G(x′0, t0 + τ) +
(∫ 1

0

∇x′G(x′0 + sh′, t0 + τ) ds
)
· h′

= G(x′0, t0) + ∂tG(x′0, t0) τ +O(|τ |1+β) +∇x′G(x′0, t0) · h′

+
(∫ 1

0

∇x′G(x′0 + sh′, t0 + τ)−∇x′G(x′0, t0) ds
)
· h′

= G(x′0, t0) + ∂tG(x′0, t0) τ +O(|τ |1+β)

+∇x′G(x′0, t0) · h′ +O
(
(|h′|β + |τ |β)|h′|

)
= G(x′0, t0) + ∂tG(x′0, t0) τ +∇x′G(x′0, t0) · h′

+O(|h′|1+β + |τ |1+β).

This proves G separates from its first order Taylor expansion by at most |x′|1+β +

|t|1+β, thus G ∈ C1,β
x′,t as desired. �

8. Proof of Theorem 1.1

Let (x0, t0) ∈ ∂{u = ϕ} be a regular free boundary point —that is, a free boundary
point at which (ii) does not hold.

By Propositions 5.4 and 7.1, we have that u ∈ C1+s
x,t (Qr(x0, t0)) and the free

boundary is C1+β
x,t in Qr(x0, t0), for some β > 0 and r > 0. By Corollary 6.4, for any

free boundary point (x1, t1) ∈ Qr(x0, t0) we have the expansion

u(x, t1)− ϕ(x) = c(x1, t1)d1+s
x + o

(
|x− x0|1+s+α

)
.

Also, by the C1,β regularity of the free boundary in x and t, we have

d1+s
x =

(
e · (x− x0) + κ(t− t0)

)1+s

+
+ o
(
|x− x0|1+s+β + |t− t0|1+s+β

)
,

for some e ∈ Sn−1 and κ ∈ R. Moreover, by monotonicity in t we have κ ≥ 0, and
in fact, by (5.4) in Proposition 5.1, we get κ > 0.

Combining the previous identities, and using that (x1, t1) 7→ c(x1, t1) is of class
Cα/4 in x and t (see the proof of Proposition 7.1), we deduce that

u(x, t)−ϕ(x) = c(x0, t0)
(
e · (x−x0) +κ(t− t0)

)1+s

+
+ o
(
|x−x0|1+s+γ + |t− t0|1+s+γ

)
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with γ := min{α/4, β}, c(x0, t0) > 0, κ > 0, and e ∈ Sn−1. In particular this yields
supQr(x0,t0)(u− ϕ) = c(x0, t0)r1+s + o(r1+s+γ), and the theorem follows. �
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