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Abstract. This paper deals with fracture mechanics in periodically perforated domains.
Our aim is to provide a variational model for brittle porous media. For the sake of
simplicity we will restrict our analysis to the case of anti-planar elasticity.

Given the perforated domain Ωε ⊂ R
N (ε being an internal scale representing the size

of the periodically distributed perforations), we will consider a total energy of the type

Fε(u) :=

Z

Ωε

|∇u(x)|2 dx + HN−1(Su).

Here u is in SBV (Ωε) (the space of special functions of bounded variation), Su is the set
of discontinuities of u, which is identified with a macroscopic crack in the porous medium
Ωε, and HN−1(Su) stands for the (N − 1)-Hausdorff measure of the crack Su. Critical
points of the total energy are, according to Griffith’s theory, stable configurations of the
cracked body.

We study the asymptotic behavior of the functionals Fε in terms of Γ-convergence
as ε → 0. As a first (non-trivial) step we show that the domain of any limit functional
is SBV (Ω) despite the degeneracies introduced by the perforations. Then we provide
explicit formula for the bulk and surface energy densities of the Γ-limit, representing in
our model the effective elastic and brittle properties of the porous medium, respectively.
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1. Introduction

There is a huge mathematical literature concerning the dependence of solutions of partial dif-
ferential equations, as well as minimum problems, on their domain of definition. In particular it
has been largely studied the asymptotic behavior for minimizers un defined in varying domains Ωn
with homogenizing small holes, usually referred to as perforated domains (we refer to the books
[10], [12], [19]). Typically the integral functionals to be minimized depend on u and on its gradient,
and on the perforations it is imposed either a Dirichlet type boundary condition (see [9], [17], [20],
[25], [35], [38], [39] and the references therein) or a Neumann type boundary condition (see [1], [2],
[3], [14], [15], [18], [21], [37] and the references therein). Under standard growth assumptions this
kind of minimization problems can be settled in the framework of Sobolev spaces.

The aim of this paper is to study the problem of periodic homogenization of small holes in the
framework of fracture mechanics, i.e., for total energies involving not only a bulk term, but also a
surface term, obtaining in the homogenized limit a variational model for brittle porous media. The
homogenizing holes represent traction free micro-cracks in the body, so that our analysis will focus
on natural Neumann boundary conditions on the perforations. The case of Dirichlet conditions has
been considered in [32] in connection with the study of the asymptotic limit of obstacle problems
for Mumford-Shah type functionals (see [36]) in perforated domains.

From a mathematical point of view, the minimization of total energies involving both bulk and
surface terms can be settled within the theory of SBV -deformations. The functional space SBV
of special functions of bounded variation has been introduced by De Giorgi and Ambrosio [26] to
deal with free discontinuity problems arising in image segmentation (see [36]), and was proposed
by Ambrosio and Braides [4] as a suitable framework for fracture mechanics.

Variational models to describe equilibria of brittle hyperelastic bodies have been largely de-
veloped in the recent years. Inspired by Griffith’s theory of crack propagation, these models in
fracture mechanics are based on the assumption that the cracked deformed configuration of the
body is reached through a minimization process driven by the competition of surface and bulk
energies. The surface energy represents the energy dissipated to break atomic bonds, and hence
spent to enlarge the crack, while the bulk energy represents the elastic energy stored in the body,
and partially released during the crack growth.

Let us consider for a while a non-porous brittle body (i.e., without perforations). We will
consider for simplicity the case of generalized antiplanar elasticity, in which Ω ⊂ RN represents
a section of a cylindrical body (in the relevant physical case we have N = 2), the displacement
function u ∈ SBV (Ω) is assumed to be scalar, and the crack is implicitly identified with the set Su
of discontinuities of u. Concerning the total energy, we will consider for simplicity the following
model case

E(u) :=

∫

Ω

|∇u(x)|2 dx+ HN−1(Su). (1.1)

Here HN−1 stands for the (N − 1)-Hausdorff measure, so that if N = 2 and Su is a smooth curve
HN−1(Su) is just the usual length of the crack. More general energies could be considered, as for
instance surface energies eventually depending also on the normal ν of the crack, due to anisotropy
of the body, while the dependence on the opening of the crack for cohesive models would require
a specific analysis. Critical points (and in particular minimum points) of the total energy (1.1)
represent stable configurations of the cracked domain according to Griffith’s theory.
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To study the effect that the perforations have on the variational problem, let us begin by
discussing the case of a single crack K present in the body. Assume that K is a closed subset of Ω
and that in Ω\K the elastic behavior of the body is unperturbed, so that the density of the elastic
energy remains the same in Ω \K, while the surface energy will be dissipated only to enlarge the
pre-existing crack K. We have that the total energy is given now by

E(K,u) :=

∫

Ω\K

|∇u(x)|2 dx+ HN−1(Su \K). (1.2)

This kind of energy plays an essential role in the variational approaches to quasi-static crack
growth as proposed by Francfort and Marigo [30] and developed in many subsequent papers in the
framework of SBV -functions (we refer to [29], [23], [33] and to the references therein).

We model the presence of homogenizing cracks considering a sequence Kε := ε(K + ZN ), with
ε → 0 and K closed, and studying the asymptotic behavior in terms of Γ-convergence of the
corresponding energy functionals Fε(u) := E(Kε, u)

1. The bulk and surface energy densities of the
Γ-limit Fhom will represent the effective elastic and brittle properties of the porous brittle medium.
Since we do not prescribe the shape of the holes, we will refer to them as micro-cracks.

A similar mathematical problem has been considered in [33] in connection to stability properties
of equilibria in fracture mechanics for sequences of (N−1)-rectifiable sets satisfying HN−1(Kn) ≤ c.
In that case they prove that the Γ-limit of the functionals E(Kn, ·) has still the form (1.2), where
K is a suitable (N − 1)-rectifiable set which represents the limit fracture, in a suitable sense,
corresponding to the sequence Kn. In that model the fractures Kn represent the cracks created
in the body during a load process. Therefore the assumption HN−1(Kn) ≤ c is very natural in
their setting, meaning that Kn have finite energy according to Griffith’s theory. Our situation of
periodically distributed cracks Kε = ε(K+ZN ) is very different, having Kε by definition diverging
area as ε→ 0. Indeed, in our case the homogenizing micro-cracks will affect both bulk and surface
energies in the Γ-convergence process.

Our main result is two-fold: in the first part of the paper we deal with the natural lack of
coercivity of the problem, establishing a compactness property for sequences with equi-bounded
energies, under some natural assumptions ensuring that Kε does not disconnect the body. Fur-
thermore we prove that the energy functionals Fε Γ-converge (with respect to a suitable topology)
to the functional Fhom given by

Fhom(u) :=

∫

Ω

fhom(∇u) dx+

∫

Su

ghom (νu) dHN−1, (1.3)

where fhom and ghom are defined through formulas below, and represent the material properties
of the porous medium.

Concerning fhom we have

fhom(ξ) := inf

{∫

Q\K

|∇w + ξ|2dx : w ∈ W 1,2
♯ (Q \K)

}
, (1.4)

where Q is the unit cube and W 1,2
♯ (Q\K) denotes the class of Q-periodic functions in W 1,2(Q\K),

i.e. Sobolev functions on Q \K whose traces on opposite faces of Q coincide.
This homogenization formula is well known in the context of periodic homogenization in Sobolev

spaces and represents the effective energy density in perforated domains subject to Neumann
conditions (see for instance [1]). It turns out that the same formula represents the effective bulk

1In our anti-planar setting both the crack Su and the perforations Kε are defined in a horizontal section Ω of
the cylindrical body and they are assumed to be invariant with respect to the vertical direction of the body. This
assumption has to be understood as a mere mathematical simplification of the problem.
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energy density also for brittle materials. In this respect we conclude that there is no interaction
between macroscopic cracks and micro-cracks for the elastic properties of a brittle porous medium.

Passing to the density of the homogenized surface energy ghom, for all (a, b, ν) ∈ R×R×SN−1

let ua,b,ν : RN → R be given by

ua,b,ν(y) :=

{
b if y · ν ≥ 0

a if y · ν < 0.
(1.5)

The surface energy density ghom : RN → [0,+∞) is given by

ghom(ν) := lim
ε→0+

inf
w∈P (Qν\Kε)

{HN−1(Sw \Kε) : w = u0,1,ν on a neighbourhood of ∂Qν}. (1.6)

Above Qν is any unit cube centered at the origin with one face orthogonal to ν, and P (Qν \Kε)
is the family of characteristic functions (see (2.3)). We show the existence of the limit in (1.6) in
Lemma 5.8. Note that formula (1.6) involves only locally constant functions. We deduce that the
toughness of the porous medium does not depend on the elastic properties of the corresponding
non-porous material.

Let us finally discuss our result under a slight different perspective. The porous brittle material
in our model has been obtained by homogenizing a constituent material with holes. The problem
can be settled in the framework of homogenization of composite materials, in which one of the
constituent materials is the void. From a mathematical point of view, we deal with energy densities
fast oscillating with respect to x, taking values in 0 and 1, and the presence of the coefficient 0 (that
is of the void) brings high degeneracy into the problem. Homogenization problems in SBV spaces
have been largely studied in the last years, as for instance in [5], [6], [13]. Our homogenization
formulas extend those given in the mentioned papers to our context, in which the homogenizing
coefficients do not satisfy standard ellipticity conditions. The lack of ellipticity produces many
specific difficulties in our analysis, the most remarkable being in the proof of suitable compactness
properties for minimizers. In this respect, our approach has been to provide new Poincaré type
inequalities in SBV in dimension two, which allow us to truncate the minimizers at suitable levels
around each perforation. In view of this, we can extend the minimizers by means of standard
cut-off techniques inside the perforations, filling the holes with good control of the total energy.
Finally we are in a position to use Ambrosio’s compactness results for sequences in SBV with
bounded energy. The general N -dimensional case is then recovered by a slicing argument, using
the results obtained in dimension two. A different approach to the problem, based on excision
techniques introduced by De Giorgi, Carriero and Leaci [27] (see also [8, Chapter 7]), has been
developed in the recent paper [16]. Their approach provides, as for the Sobolev setting, a family
of uniformly bounded extension operators to fill the holes.

The paper is organized as follows. In Section 2 we provide some preliminary results used in
the rest of the paper. In Section 3 we set the mathematical framework to study the asymptotic
behavior of energy functionals Fε. In Section 4 we provide a Poincaré type inequality in SBV in
dimension two, and we prove suitable compactness properties for sequences with bounded energy.
In Section 5 we prove the Γ-convergence result of the functionals Fε, and in Section 6 we give
the analogous Γ-convergence result for energy functionals taking into account Dirichlet boundary
conditions on ∂Ω. Finally, in Section 7 we will discuss the validity of our results for more general
energy functionals.

2. Preliminaries

In this section we will fix some notation and introduce some notions of geometric measure theory
we will need in the sequel.
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For every r, s with 0 < r < s we set

Qr := {x ∈ RN : ‖x‖∞ < r/2}, Qr,s := {x ∈ RN : r/2 < ‖x‖∞ < s/2}, (2.1)

and, for simplicity the unitary cube Q1 by Q.
Throughout the paper Ω is a bounded open subset of RN with Lipschitz boundary and A(Ω)

denotes the family of all open subsets of Ω. Let A ∈ A(Ω). We denote by SBV (A) the space of
special functions of bounded variation, and by SBV 2(A) the subspace

SBV 2(A) := {u ∈ SBV (A) : ∇u ∈ L2(A),HN−1(Su) < +∞}.
Here HN−1 stands for the (N − 1)-dimensional Hausdorff measure, and Su denotes the jump set
of u. For the notations and the general theory concerning the function space SBV (A) we refer
the reader to [8]. We indicate by SBV0(A) the subset of piecewise constant functions in SBV (A)
defined by

SBV0(A) := {u ∈ SBV (A) : ∇u = 0 for LN a.e. x ∈ A}. (2.2)

Moreover let us consider the family of sets with finite perimeter in A, which will be identified by
the functional space P (A) defined by

P (A) = {u ∈ SBV0(A) : u(x) ∈ {0, 1} for LN a.e. x ∈ A}. (2.3)

2.1. Rectifiable Sets and Coarea Formula. In this subsection we recall the definition of rec-
tifiable sets and several notions dealing with the tangential calculus which can be developed on
them (see [8, Definition 2.57] and [8, Proposition 2.76]).

Definition 2.1. Let E ⊂ RN be an Hm-measurable set. We say that E is countably Hm-rectifiable

if E = N ∪
⋃

i≥1

Γi where Hm(N) = 0 and each Γi is the graph of a function fi ∈ C1(Rm,RN).

Countably Hm-rectifiable sets E have nice tangential properties. In particular, they can be
endowed with a tangent space Tanm(E, x), called approximate tangent space, for Hm a.e. x ∈ E.
Essentially, this follows from the locality property of the tangent space of C1 graphs and the
decomposition of E into such sets (see [8, Proposition 2.85] and [8, Definition 2.86]).

Furthermore, any Lipschitz function f : RN → Rk exhibits good differentiability properties on
E. Indeed, it turns out that the restriction of f to the affine space x+Tanm(E, x) is differentiable
for Hm a.e. x ∈ E. The tangential differential of f on E at x, dEfx, is then defined as the
restriction of the differential dfx to Tanm(E, x) for Hm a.e. x ∈ E (see [8, Definition 2.89] and [8,
Theorem 2.90]).

Given this, we can state a version of the Coarea formula valid on countably rectifiable sets (see
[8, Theorem 2.93]).

Theorem 2.2. Let f : RN → Rk be a Lipschitz function and let E ⊂ RN be a countably Hm-
rectifiable set, with m ≥ k. Then the function t → Hm−k(E ∩ f−1(t)) is Lk measurable in Rk,
E ∩ f−1(t) is countably Hm−k-rectifiable for Lk a.e. t ∈ Rk and

∫

E

Ck(d
Efx)dHm(x) =

∫

Rk

Hm−k(E ∩ f−1(t)) dt. (2.4)

In the formula above Ck(d
Efx) is the k-dimensional coarea factor of dEfx defined by

Ck(d
Efx) =

√
det((dEfx) ◦ (dEfx)∗)

where (dEfx)
∗ : Rk → (Tanm(E, x))∗ is the transpose operator.

3. Formulation of the problem

In this section we will introduce the perforated domains Ωε and the energy functionals Fε.
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3.1. The perforated domain. We consider a closed subset K of the open unitary cube Q such
that Q \K is connected. For every ε > 0 set

Kε := ε(K + ZN ),

and

Ωε := Ω \Kε.

The sets Kε represent the ε-perforations, while Ωε the perforated domains.

3.2. The energy functionals. Let us fix a boundary datum ψ (which is the trace of a function)
in W 1,2(Ω) ∩ L∞(Ω) and introduce the functionals Fψ

ε : L1(Ω) → [0,+∞] defined by

Fψ
ε (u) :=





∫

Ωε

|∇u|2 dx + HN−1(Sψ,εu ) if u ∈ SBV 2(Ωε)

+∞ otherwise in L1(Ω)
(3.1)

where

Sψ,εu := (Su ∩ Ωε) ∪ {x ∈ ∂Ω ∩ ∂Ωε : ψ(x) 6= u(x)} ,
and the inequality is intended in the sense of traces. The set Sψ,εu takes into account the crack
formed inside Ωε, and the part of ∂Ωε ∩ ∂Ω where u does not agree with the imposed deformation
ψ (which is thus considered as part of the crack which has reached the boundary).

Our aim is to study the asymptotic behavior of the energy functionals Fψ
ε defined in (3.1) as

ε → 0 in terms of Γ-convergence with respect to a suitable topology and to prove compactness
properties for sequences of corresponding of minimizers.

Remark 3.1. The choice of the L1 setting is rather natural since it provides suitable compactness
properties for minimizers (see Section 4). In this respect we notice that compactness for sequences
of functions with bounded energy cannot hold in general since the energy functionals are not
affected by the values of the functions inside the holes Kε. Nevertheless we will see that we
can assign the values inside Kε for sequences with bounded energy in order to gain compactness.
Furthermore any limit point obtained with this procedure is uniquely determined by the values
outside the holes Kε. Indeed, it is easy to prove that if (uε), (vε) ⊂ L1(Ω) are such that uε → u in
L1(Ω), vε → v in L1(Ω) and uε ≡ vε in Ωε, then u = v LN a.e. in Ω.

4. Compactness

The main aim of this section is to prove a compactness result in SBV 2 for suitable extensions of
sequences of functions in L1(Ωεn) with bounded energy, where (εn) is a fixed vanishing sequence.
This result will allow us to identify the domain of any Γ-limit of the functionals Fψ

ε defined in
(3.1) and to take advantage of integral representation techniques.

We will consider only sequences uniformly bounded in L∞. This framework is not restrictive
in our setting of the problem, since the boundary datum ψ is in L∞, and the energy functionals
decrease by truncation. Therefore we can assume the minimizing sequences to have L∞ norm
bounded by that of ψ.

First we focus on sequences of functions defined in more regular perforated domains obtained
substituting the original reference set K with the larger one Q1−2δ, defined according to (2.1)
where 0 < δ < dist (K, ∂Q) is a fixed parameter (see Figure 1). In addition, let us set

R := {x ∈ Q : dist (x, ∂Q) < δ}, Rn := εn(R+ ZN ) ∩ Ω. (4.1)



FRACTURE MECHANICS IN PERFORATED DOMAINS 7

Notice that R = Q1−2δ,1. Throughout the section (vn) will be a sequence in L1(Rn) bounded in
energy and in L∞, i.e., satisfying

∫

Rn

|∇vn|2 dx + HN−1(Svn) ≤ c, ‖vn‖L∞(Rn) ≤ ‖ψ‖L∞(Rn), (4.2)

where c is a constant independent of n.
In our applications the functions vn will be given by the restriction to Rn of functions un ∈ L1(Ω)

with uniformly bounded energy. In view of Remark 3.1 the cluster points of (un) in L1(Ω) (suitably
modified on Kεn) are determined by those of (vn) (suitably extended on Ω).

For these sequences (vn) we provide the existence of suitable BV and SBV 2 extensions (these
last ones only in the 2 dimensional case) preserving an uniform bound of the corresponding en-
ergy. By a slicing argument and taking advantage of Remark 3.1 we will then prove that, up to
subsequences, we have convergence in L1(Ω) to a function belonging to SBV 2(Ω) (see subsection
4.3).

The desired compactness result for sequences defined on general perforated sets Ωεn will be then
achieved by an approximation argument (see subsection 4.4).
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Figure 1. The “larger” obstacle Q1−2δ and the related perforated domain Rn

Under assumption (4.2) we establish the following results (see subsections 4.1, 4.2, and 4.3,
respectively):

(1) BV -compactness : there exist functions ṽn, v ∈ BV (Ω) such that ṽn ≡ vn in Rn and, up to
a subsequence, ṽn → v in L1(Ω);

(2) 2-dimensional SBV 2-compactness : if N = 2 there exist functions v̂n, v ∈ SBV 2(Ω) such
that v̂n ≡ vn in Rn and, up to a subsequence, v̂n → v in L1(Ω);

(3) N -dimensional SBV 2-closure: if ṽn → v in L1(Ω) and ṽn ≡ vn in Rn then v is in SBV 2(Ω).

The most difficult part of this program is to prove the 2-dimensional SBV 2-extension result in
(2). The hypothesis on the dimension comes into play only into a technical result, Lemma 4.3,
where the smallness of a set in terms of area and perimeter implies some estimate on the diameter
of its ”connected components”. In view of this estimate we are able to prove a Poincaré type
inequality in SBV (see Theorem 4.8), which allows us to perform the construction of the functions
v̂n in (2) without creating new jumps. Moreover if the original sequence (vn) belongs to W 1,2(Rn)
or to SBV0(Rn) then (v̂n) belongs to W 1,2(Ω), SBV0(Ω), respectively.

4.1. BV -compactness. Here we prove a compactness result in BV (Ω).
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Proposition 4.1 (Compactness in BV (Ω)). Let (vn) ⊂ L1(Rn) be a sequence such that

sup
n

(|Dvn|(Rn) + ‖vn‖L∞(Rn)) < +∞,

then there exist functions ṽn ∈ BV (Ω) such that

ṽn ≡ vn on Rn and |Dṽn|(Ω) + ‖ṽn‖L∞(Ω) ≤ c(|Dvn|(Rn) + ‖vn‖L∞(Ω))

for a constant c independent of n. In particular, up to a subsequence, (ṽn) converges to v in L1(Ω)
for some v ∈ BV (Ω).

Proof. Let us fix some notation: for i ∈ ZN set Qin := εn(i + Q), Rin := εn(i + R) ∩ Ω. Let also
In = {i ∈ ZN : Qin ∩ ∂Ω 6= ∅}, and for every Qin ⊂ Ω set

mi
n :=

1

|Rin|

∫

Rin

vn(x) dx, (4.3)

and

ṽn(x) :=






vn(x) if x ∈ Rin,

mi
n if x ∈ Qin \Rin, i /∈ In

0 elsewhere in Ω.

(4.4)

We claim that (ṽn) defined above satisfies the thesis. Indeed, by construction ṽn ≡ vn on Rn and
‖ṽn‖L∞(Ω) ≤ ‖vn‖L∞(Rn). Standard trace results in BV (see [8, Theorems 3.84, 3.87]), yield that
the function ṽn belongs to BV (Ω) with distributional derivative

Dṽn = Dvn Rn +
∑

i∈ZN

Dṽn (∂Rin ∩Qin),

and
Dṽn (∂Rin ∩Qin) = ((tr(vn) −mi

n)ν∂Rin)HN−1 (∂Rin ∩Qin),
where tr(vn) is the trace left by vn on the boundary ∂Rin. Since by hypothesis supn |Dvn|(Rn) <
+∞, to conclude it suffices to give an uniform estimate of the total variation of Dṽn concentrated
on the union of ∂Rin ∩Qin.

To this aim notice that #In ≤ c/εN−1
n , with c depending only on HN−1(∂Ω) since ∂Ω is

Lipschitz. Here # denotes the cardinality of the relevant set. Thus, taking into account that
HN−1(∂Rin) ≤ cεN−1

n and that supn ‖ṽn‖L∞(Rn) < +∞, we deduce supn
∑
i∈In

|Dṽn|(∂Rin) <

+∞. Furthermore, to control |Dṽn|(∂Rin ∩ Qin) for i 6∈ In we use a scaling argument and the
continuity of the Trace Operator on R (see [8, Theorem 3.87]). For i /∈ In let win : R → R be
defined as win(y) = vn(εn(i+ y)). It is easy to check that win ∈ BV (R), the mean value of win on
R equals mi

n, and |Dwin|(R) = ε1−Nn |Dvn|(Rin). Moreover, there exists a positive constant c(R)
independent of n such that∫

∂R∩Q

|tr(win) −mi
n| dHN−1 ≤ c(R)|Dwin|(R). (4.5)

A scaling argument gives
∫

∂Rin∩Q
i
n

|tr(vn) −mi
n| dHN−1 = εN−1

n

∫

∂R∩Q

|tr(win) −mi
n| dHN−1,

from which we infer that for every i /∈ In

|Dṽn|(∂Rin ∩Qin) =

∫

∂Rin∩Q
i
n

|tr(vn) −mi
n| dHN−1 ≤ c(R)|Dvn|(Rin)

and this gives the desired estimate. The rest of the statement is a direct consequence of the BV
compactness theorem (see [8, Theorem 3.23]).
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Remark 4.2. The BV compactness result still holds if we replace the δ-neighbourhood Rn with
any connected neighborhood C of ∂Q with Lipschitz continuous boundary. It is also possible to
consider varying domains Cn, provided they ensure the continuity of the trace operator together
with a uniform estimate on the relative constants.

4.2. Compactness in SBV 2(Ω): the case N = 2. This subsection is focused on SBV compact-
ness properties in dimension two. In this setting given a sequence (vn) ⊂ L1(Rn) with bounded
energy (see (4.2)) we construct an SBV 2(Ω) extension with uniform control on the increase of the
energy. In order to do that, we first extend any function v ∈ SBV 2(R) with quantified small jump
set (see Proposition 4.9) to a function v̂ ∈ SBV 2(Q) such that v ≡ v̂ in R and

∫

Q

|∇v̂|2 + HN−1(Sbv) ≤ c

(∫

R

|∇v|2 + HN−1(Sv)

)
,

with c independent of v and depending only on the geometry of R. Then, the extension for vn
is obtained by exploiting the periodicity of the problem by repeating the construction in each
εn-square contained in Ω in which vn has small jump set (up to the usual scaling argument) and
using the BV -extension ṽn in the holes of the remaining squares (see Proposition 4.11 for more
details).

To describe briefly the idea to accomplish the extension in the case of fixed geometry consider
a function v ∈ SBV 2(R), and by a standard argument based on composition with bilipschitz
functions we assume that v ∈ SBV 2(Qr0,1), with 1 − 2dist(K, ∂Q) < r0 < 1 − 2δ. Set now
r2 = 1− 2δ and let r1 ∈ (r0, r2) be arbitrarily chosen. In Theorem 4.8 and Proposition 4.9 we will
show that if the jump set of v is sufficiently small we are able to modify v in a region containing
Qr0,r1 and contained in Qr0,r2 . The construction acts by truncating v at suitable levels, in such a
way that this truncated function has oscillation on Qr0,r1 controlled in terms of |Dav|(Qr0,r2), and
above all without creating any new jump. In view of this Poincaré type inequality the extension
of v to the whole Q is obtained by joining it smoothly to a suitable constant through a cut-off
function (see Figure 2 for a sketch of the construction).
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K

mv

ϕmv + (1 − ϕ)v

δ

original function

costant area

interpolation area

v

0

r2/2 = 1/2 − δ

r1/2

r0/2

Figure 2. Definition of v̂ in different areas

Let us begin with the truncation procedure that we set primarily for functions in SBV0. Let us
fix some more preliminary notation. As already mentioned we fix positive radii r0, r1, r2 as follows

r0 ∈ (1 − 2dist(K, ∂Q), 1 − 2δ), r2 = 1 − 2δ, r1 ∈ (r0, r2). (4.6)

Moreover, for every s ∈ R we denote by Es the s sub-level of v in Qr1,r2 , i.e.,

Es := {x ∈ Qr1,r2 : v(x) ≤ s}, (4.7)
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and by med(v) a median of v in Qr1,r2 , namely

med(v) := sup{s ∈ R : |Es| ≤ |Qr1,r2 |/2}. (4.8)

In formula above, the 2-dimensional Lebesgue measure L2 has been indicated with | · |, a notation
that we will use for the rest of the subsection.

Lemma 4.3 (Truncation Lemma in SBV0(Qr1,r2)). For every v ∈ SBV0(Qr1,r2) with H1(Su) <
(r2 − r1)/2, the set I = {r ∈ (r1, r2) : H0(∂Qr ∩ Sv) = 0} is such that L1(I) > 0. In particular,
for L1 a.e. r ∈ I the trace of v on ∂Qr is constant.

Proof. Set

J := {r ∈ (r1, r2) : H0(∂Qr ∩ Sv) ≥ 1},
then the thesis is equivalent to proving that L1(J) < r2 − r1 (see [8, Theorem 3.87]).

In order to estimate L1(J) we use the Coarea Formula 2.2 applied with k = 1, m = 1, f(y) =
‖y‖∞ and E = Sv. A simple computation shows that dSvfx = 〈∇f(x), ν⊥v (x)〉ν⊥v (x) for H1 a.e.
x ∈ Su, so that

C1(d
Svfx) = |〈∇f, ν⊥v (x)〉|.

Since |∇f | = 1 L2 a.e. in R2, by (2.4) we infer

L1(J) ≤
∫

J

H0(∂Qr ∩ Sv) dr ≤ 2H1(Sv) < r2 − r1,

from which the result follows.

Remark 4.4. The same inequality can also be obtained by using classical slicing results (separately
in suitable sectors of Qr1,r2), instead of the Coarea Formula.

In the following we will deal with one-dimensional sections of a set of finite perimeter E.
To make the framework rigorous we could fix a L2-representant of E, e.g., E+ = {x ∈ R2 :
lim supr→0+ r

−2|Br(x) ∩ E| > 0}. A careful reading shows anyway that all the statements below
are independent of the L2 representant of E.

Given a set of finite perimeter E, we denote by ∂∗E the essential boundary of E [8, Definition
3.60]. By applying Lemma 4.3 to the characteristic function of a set with finite perimeter we
immediately deduce the following corollary.

Corollary 4.5. For any set of finite perimeter E ⊆ Qr1,r2 with H1(∂∗E) < (r2−r1)/2 there exists
a set of positive L1 measure in (r1, r2) such that for any r in this set either H1(E ∩ ∂Qr) = 0 or
H1(E ∩ ∂Qr) = H1(∂Qr).

Under some additional conditions on the smallness of both |E| and H1(∂∗E) the previous result
can be refined.

Lemma 4.6. There exists a constant C1 ∈ (1,+∞) depending only on r1 and r2 such that
the following holds true. For any set of finite perimeter E ⊆ Qr1,r2 , with |E| ≤ |Qr1,r2 |/2
and H1(∂∗E) ≤ (r2 − r1)/C1, there exists a set I ⊆ (r1, r2) of positive L1 measure such that
H1(E ∩ ∂Qr) = 0 for L1 a.e. r ∈ I.

Proof. Let us set

I := {r ∈ (r1, r2) : H1(∂Qr ∩E) = H1(∂Qr)}
J := {r ∈ (r1, r2) : 0 < H1(∂Qr ∩E) < H1(∂Qr)}.

We have to prove that if C1 is large enough, then L1(I ∪ J) < r2 − r1.
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By the Coarea Formula we have
∫ r2

r1

H1(∂Qr ∩ E) dr = 2|E|.

If c̃ is the constant of the Relative Isoperimetric Inequality in Qr1,r2 (see formula (3.43) in [8]), an
elementary rearrangement argument gives

∫ r1+L1(I)

r1

4r dr ≤
∫

I

H1(∂Qr) dr =

∫

I

H1(∂Qr ∩ E) dr

≤ 2|E| ≤ 2c̃
(
H1(∂∗E)

)2 ≤ 2
c̃

C2
1

(r2 − r1)
2,

from which we immediately obtain

L1(I) ≤
√
c̃

C1
(r2 − r1). (4.9)

In order to estimate L1(J) we notice that H0(∂Qr ∩ ∂∗E) ≥ 1 for L1 a.e. r ∈ J , so that by the
Coarea Formula we infer

L1(J) ≤
∫

J

H0(∂Qr ∩ ∂∗E) dr ≤ 2H1(∂∗E) ≤ 2
r2 − r1
C1

. (4.10)

From (4.9) and (4.10) we easily conclude.

Remark 4.7. In dimension greater than 2 the result of Lemma 4.3 is no more true. Indeed, one
can exhibit sets with small perimeter intersecting the boundary of each Qr in a set of positive
HN−1 measure. In this case an analogous of Lemma 4.3 should deal with a suitable quantification
of the measure of the subset intersecting the boundary of each cube. We didn’t investigate further
this kind of result since our tecniques allow us to prove the closure and compactness result in any
dimension arguing by sections, taking advantage of the 2 dimensional case.

From Lemma 4.3 we can deduce a (localized) Poincaré type inequality for functions in
SBV (Qr0,1).

Theorem 4.8 (A Poincaré type inequality in SBV (Qr0,1)). Let C1 be as in Lemma 4.3 and let
v ∈ SBV (Qr0,1) with H1(Sv) ≤ (r2 − r1)/4C1. Then there exist a function denoted by T (v) in
SBV (Qr0,1) and a constant mv ∈ R satisfying

i) T (v) = v in R;
ii) |DT (v)| ≤ |Dv| in Qr0,1 in the sense of measures;
iii) ‖T (v) −mv‖L∞(Qr0,r1 ) ≤ 4C1|Dav|(Qr1,r2)/(r2 − r1).

Proof. If |Dav|(Qr1,r2) = 0 we apply Lemma 4.3 and select r̄ ∈ (r1, r2) such that the trace of v on
∂Qr̄ is constant. In particular, choosing mv equal to such a constant and setting T (v) := mv in
Qr̄ all the conditions of the theorem are satisfied.

Otherwise we have |Dav|(Qr1,r2) > 0, then the BV Coarea Formula (see [8, Theorem 3.40])
implies

∫ med(v)

med(v)−4C1|Dav|(Qr1,r2)/(r2−r1)

H1(∂∗Es \ Sv) ds ≤
∫

R

H1(∂∗Es \ Sv) ds = |Dav|(Qr1,r2),

where Es is the sub-level of v in Qr1,r2 defined in (4.7) and med(v) is defined in (4.8). By the
Mean Value Theorem, there exists s′ ∈ (med(v) − 4C1|Dav|(Qr1,r2)/(r2 − r1),med(v)) such that

H1(∂∗Es′ \ Sv) ≤ (r2 − r1)/4C1
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and so
H1(∂∗Es′) ≤ H1(∂∗Es′ \ Sv) + H1(Sv) ≤ (r2 − r1)/2C1. (4.11)

Analogously, we can find s′′ ∈ (med(v),med(v) + 4C1|Dav|(Qr1,r2)/(r2 − r1)) such that

H1(∂∗Es′′ ) ≤ (r2 − r1)/2C1. (4.12)

Set E = Es′ ∩ (Qr1,r2 \Es′′ ), then the definition of median (4.8) and the choice s′ < med(v) yield
|E| ≤ |Qr1,r2 |/2. In addition, H1(∂∗E) ≤ (r2 − r1)/C1 by (4.11) and (4.12). Apply Lemma 4.6 to
the set E defined above and find r̄ ∈ (r1, r2) with H1(E ∩ ∂Qr̄) = 0. Set T (v) := s′ ∨ v ∧ s′′ in
Qr0,r̄, T (v) = v in Q \Qr̄ and mv := med(v). The thesis follows easily by construction.

Proposition 4.9 (An Extension result). There exists a constant C2 > 0 depending only on
r0, r1, r2 such that for any v ∈ SBV 2(R) with H1(Sv) ≤ (r2 − r1)/4C1 there exists v̂ ∈ SBV 2(Q)
such that v̂ = v in R, ‖∇v̂‖L2(Q) ≤ C2‖∇v‖L2(R) and HN−1(Sbv) ≤ C2HN−1(Sv). Moreover, if

v ∈ W 1,2(R) (v ∈ SBV0(R)), then v̂ ∈W 1,2(Q) (v ∈ SBV0(Q)).

Proof. Thanks to the regularity of the sets Qr,s, by a standard tecnique that relies on inner
composition with bilipschitz functions (see [8] and [7]) we may assume the function v to be extended
in Qr0,1 in such a way that

∫

Qr0,1

|∇v|2 dx ≤ c

∫

R

|∇v|2 dx, HN−1(Sv) ≤ cHN−1(Sv ∩R),

for a universal constant c > 0 depending only on the geometry of R.
Let now T (v) and mv be as in Theorem 4.8. If v ∈ SBV0(Qr0,1) define v̂ simply by extending

T (v) to the whole of Q with constant value mv. Otherwise, we consider a cut-off function ϕ ∈
C1(Q, [0, 1]) such that ϕ ≡ 0 on Qr0 , ϕ ≡ 1 on Qr1,1. Define the function v̂ on Q as v̂ :=
ϕT (v) + (1 − ϕ)mv. A straightforward computation shows that

∫

Q

|∇v̂|2dx ≤
∫

Qr0,1

|∇v|2dx+ c

∫

Qr0,r1

|T (v) −mv|2 dx. (4.13)

Taking into account iii) of Theorem 4.8 and using Jensen inequality we obtain
∫

Qr0,r1

|T (v) −mv|2 dx ≤ c

∫

Qr1,r2

|∇v|2dx. (4.14)

From (4.13) and (4.14), noticing that Sbv ⊆ Sv, the thesis follows.

Remark 4.10. We notice that with the same techniques used in the proof of Proposition 4.9 one
can prove an extension result for functions v in SBV (R) with H1(Sv) ≤ (r2− r1)/4C1 to functions
which are in SBV (Q).

We are now in a position to prove the compactness of sequences (vn) satisfying (4.2).

Proposition 4.11 (Compactness in SBV 2(Ω), Ω ⊂ R2). Let (vn) ∈ L1(Rn) be satisfying (4.2).
Then there exist functions v̂n ∈ SBV 2(Ω) satisfying v̂n ≡ vn in Rn such that (up to a subsequence)
(v̂n) converges in L1(Ω) to some v ∈ SBV 2(Ω).

Proof. Set Jn = {i ∈ ZN : either Qin 6⊂ Ω or H1(Svn ∩ Qin) > εn(r2 − r1)/4C1} with C1 as in
Lemma 4.3. For every i ∈ Jn we define v̂n on Qin to be equal to the BV extension ṽn defined
in Proposition 4.1. By the Lipschitz regularity of ∂Ω and the fact that supnH1(Svn) < +∞ we
deduce that #(Jn) ≤ c/εn. This together with the assumption sup ‖vn‖L∞(Rn) < +∞ provides
the estimate ∫

∪i∈JnQ
i
n

|∇v̂n|2 dx+ HN−1(Sv̂n ∩ ∪i∈JnQ
i
n) ≤ c
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for some c independent of n.
Let us now consider a square Qin contained in Ω and satisfying H1(Svn ∩Qin) ≤ εn(r2−r1)/4C1.

Let vin : R → R be defined as vin(y) = vn(εn(i + y)). It can be checked that vin satisfies the
hypotheses of Proposition 4.9. Let v̂in ∈ SBV 2(Q) be its extension provided by Proposition 4.9
and define v̂n as v̂in scaled back to Qin. Using a standard scaling argument, we obtain

‖∇v̂n‖L2(Qin) ≤ C2‖∇vn‖L2(Rin), H1(Sbvn ∩Qin) ≤ C2H1(Svn ∩Rin), ‖v̂n‖L∞(Ω) ≤ ‖vn‖L∞(Rn).

The compactness then follows by Ambrosio’s SBV Theorem (see [8, Theorem 4.8]).

4.3. Compactness in SBV 2(Ω): the general case. Let us turn our attention to prove that in
dimension greater than 2 the L1 limit of any (extension of) (vn) as in (4.2) is actually in SBV 2(Ω).
We argue by a slicing procedure that allow us to infer the result from Proposition 4.11.

Proposition 4.12 (SBV 2 closure). Let (vn) ⊂ L1(Rn) be a sequence as in (4.2) and let v be the
L1 limit of some sequence (ṽn) ⊂ L1(Ω), with ṽn ≡ vn in Rn. Then v ∈ SBV 2(Ω).

Proof. First note that by Remark 3.1 v is also the L1 limit of the sequence of extensions constructed
in Proposition 4.1, thus we deduce that v ∈ BV (Ω).

We argue by a slicing procedure that allows us to use the result in Proposition 4.11. Let Vi,j be
the 2-dimensional subspace in RN generated by the vectors ei, ej of the canonical base. We use
the standard notation V ⊥

i,j to denote the space orthogonal to Vi,j .

Given z ∈ V ⊥
i,j we denote by vi,j,z the restriction of the function v to the planar set Ωi,j,z :=

(Vi,j + z) ∩ Ω. We claim that for HN−2 a.e z ∈ V ⊥
i,j the function vi,j,z belongs to SBV 2(Ωi,j,z),

and ∫

V ⊥
i,j

(∫

Ωi,j,z
|∇vi,j,z |2dH2 + H1(Svi,j,z )

)
dHN−2(z) < +∞. (4.15)

Once claim (4.15) is proved we conclude the proof of the Proposition as follows. Fix 1 ≤ i, j ≤ N ,
and let z ∈ V ⊥

i,j be such that
∫

Ωi,j,z
|∇vi,j,z |2dH2 + H1(Svi,j,z ) := M(z) < +∞. (4.16)

For every fixed t ∈ R let us set Li,j,z,t := Ω∩{tej+sei+z, s ∈ R}, and let vi,j,z,t be the restriction
of v to Li,j,z,t. By (4.16) and standard one-dimensional slicing theory, we have that for almost
every t ∈ R the function vi,j,z,t belongs to SBV 2(Li,j,z,t), and moreover

∫

R

(∫

Li,j,z,t
|∇vi,j,z,t|2 dH1 + H0(Svi,j,z,t)

)
dt ≤M(z). (4.17)

Integrating (4.17) with respect to z and taking into account (4.15), (4.16) we conclude that for
almost all ξ ∈ e⊥i , setting Li,ξ := Ω ∩ {s ei + ξ, s ∈ R}, the restriction vi,ξ of v to Li,ξ belongs to
SBV 2(Li,ξ), and again by one-dimensional slicing theory

∫

e⊥i

(∫

Li,ξ
|∇vi,ξ|2 dH1 + H0(Svi,j,z,t)

)
dHN−1(ξ) < +∞. (4.18)

Since the choice of the direction ei is arbitrary, we have that (4.18) holds true for all 1 ≤ i ≤ N .
By standard slicing argument we deduce that v ∈ SBV 2(Ω), that concludes the proof of the
proposition using the claim.

It remains to prove the claim (4.15). Let us set Rzn := Rn ∩ Ωi,j,z and

Mn(z) :=

∫

Rzn

|∇vi,j,zn |2dH2 + H1(Svi,j,zn
).
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In view of (4.2), by Fubini Theorem and standard slicing arguments we have that
∫

V ⊥
i,j

Mn(z) dHN−2(z) ≤ c. (4.19)

Hence for HN−2-a.e. z ∈ V ⊥
i,j the values lim infnMn(z) are finite and the restriction vi,j,zn of vn

to Rzn belongs to SBV 2(Rzn).
Let us fix z ∈ V ⊥

i,j such that, up to a subsequence not relabeled, Mn(z) is bounded uniformly in

n. We observe that for given n the set Rzn either coincides with Ωi,j,z , or with the two dimensional
δ-neighbourhood of the grid

εn(([−1/2, 1/2]2 \ [−1/2 + δ, 1/2− δ]2) + Z2) ∩ Ωi,j,z

which we label as Rn(Ω
i,j,z). In both cases we can apply Proposition 4.11 to the sequence (vi,j,zn )

on Rn(Ωi,j,z) and get functions wi,j,zn with wi,j,zn ≡ vi,j,zn on Rn(Ωi,j,z) satisfying
∫

Ωi,j,z
|∇wi,j,zn |2dH2+H1(Swi,j,zn

) ≤ c′
∫

Rn(Ωi,j,z)

|∇vi,j,zn |2dH2+c′H1(Svi,j,zn
∩Rn(Ωi,j,z)) ≤ c′Mn(z).

(4.20)
where c′ is a constant depending only on δ and the fixed geometry of the perforations. In particular,
a two-dimensional argument analogous to Lemma 3.1 implies that wi,j,zn converge to vi,j,z for HN−2

a.e. z ∈ V ⊥. Finally, (4.20) and Ambrosio’s SBV theorem yield
∫

Ωi,j,z
|∇vi,j,z |2dH2 + H1(Svi,j,z ) ≤ c′ lim inf

n
Mn(z).

Integrating with respect to z, in view of (4.19) and using Fatou Lemma we conclude
∫

V ⊥
i,j

(∫

Ωi,j,z
|∇vi,j,z |2 dH2 + H1(Svi,j,z )

)
dHN−2(z)

≤ c′
∫

V ⊥
i,j

lim inf
n

Mn(z)dHN−2(z) ≤ c′ lim inf
n

∫

V ⊥
i,j

Mn(z)dHN−2(z) < +∞.

This concludes the proof of the claim (4.15) and of the Proposition.

4.4. L1-compactness. In this section we will state the compactness result for sequences of func-
tions on the perforated domains bounded in energy. In the sequel we will need the following
Lemma

Lemma 4.13. Let K be a closed set in Q. Then there exists a sequence of sets (Cm) in Q that
are closures of open sets with Lipschitz boundary such that Cm+1 ⊂⊂ Cm, and ∩m≥1C

m = K.
In particular the sequence (Cm) converges to K in the Hausdorff metric on Q̄, and (χCm) converges
to χK in L1(Q).

Moreover, if Q \K is connected we can choose the sets Cm such that Q \ Cm is connected.

Proof. For every m ∈ N consider an open set Am with Lipschitz boundary such that

{x ∈ Q : dist(x,K) > 1/m} ⊂⊂ Am ⊂⊂ {x ∈ Q : dist(x,K) > 1/(m+ 1)}. (4.21)

The existence of such as a set can be justified by taking a finite covering of the set {x ∈ Q :
dist(x,K) > 1/(m + 1)} made of balls compactly contained in {x ∈ Q : dist(x,K) > 1/m} and
slightly traslating them in order to avoid cusp singularities. Then the first part of the statement
is proved choosing Cm as the closure of the complementary of Am.

Assume now that Q \K is connected. Let Bm denote the connected component of Am whose
closure contains ∂Q, and set Cm = Q \ Bm. Clearly Cm is the closure of an open set with
Lipschitz boundary and Q \Cm = Bm is connected. Moreover since Bm, Bm+1 are two connected
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components intersecting in a “neighbourhood” of ∂Q, by construction we have Bm ⊂⊂ Bm+1, and
thus Cm+1 ⊂⊂ Cm ⊂⊂ Q.

To conclude we prove that ∩m≥1C
m = K. As Cm ⊇ {x ∈ Q : dist(x,K) ≤ 1/m}, therefore

∩m≥1C
m ⊇ K. On the other hand, with fixed x0 ∈ Q \K and x1 ∈ B1, there exists a continuous

curve γ : [0, 1] → Q \K such that γ(0) = x0 and γ(1) = x1 by the connectedness of Q \K. Let
η = dist (K, γ([0, 1])), then η > 0 and x0 ∈ Bm for any m > [1/η]. Hence, x0 6∈ ∩m≥1C

m, and
this yields the claim.

Theorem 4.14 (L1-Compactness for (un)). Let (un) ⊂ L1(Ωn) be a sequence satisfying
∫

Ωn

|∇un|2 dx+ HN−1(Sun) + ‖un‖L∞(Ωn) ≤ c (4.22)

for some constant c independent of n. Then there exists u ∈ SBV 2(Ω) and a sequence (wn) ⊂
L1(Ω), with wn ≡ un in Ωn, such that (up to a subsequence) (wn) converges to u in L1(Ω).

Proof. For any m ∈ N let Cm be as in Lemma 4.13, that is a closed set with Lipschitz continuous
boundary containing K such that Q \ Cm is connected. Set

Cmn :=
⋃

z∈Z

εn(z + Cm), Ωmn := Ω \ Cmn .

By applying Remark 4.2 to the perforated domain Ωmn we deduce that there exists a subsequence
(not relabeled for convenience) (ũmn ) converging in L1(Ω) to some um ∈ BV (Ω), with ũmn ≡ un on
Ωmn . Actually, by Remark 3.1 we infer that the limit function um does not depend on m; and thus
we drop the superscript m and denote it only by u.

A diagonalization argument allows us to find a sequence (ũmn(m)) which converges to u in L1(Ω).

Finally set

wm(x) :=

{
ũmn(m)(x) if x ∈ Kn(m);

un(m)(x) if x ∈ Ωn(m).

To conclude notice that the set {x ∈ Ω : wm(x) 6= ũmn(m)(x)} is contained in Cmn(m) \Kn(m) so that

(wm) converges to u in measure and hence, since wm are uniformly bounded in L∞, wm → u in
L1(Ω). Finally, in view of Proposition 4.12 we conclude that u ∈ SBV 2(Ω).

Remark 4.15. It is clear that if we remove the assumption thatQ\K is connected the compactness
result does not hold true anymore. For instance, it suffices to consider K = Q1/4,1/2 and un to be
equal to 1 in all the inner squares (rescaled and translated copies of Q1/4) and 0 otherwise.

Nevertheless the compactness still stands in a weaker form. Indeed, let Ω̃n be the connected
component of Ωn containing εnZ

N , then it is possible to prove that for any (un) ⊂ L1(Ωn) as in

(4.22) there exists a subsequence (wn) with wn ≡ un on Ω̃n, and locally constant in Ωn \ Ω̃n, such
that (up to a subsequence) (wn) converges to u in L1(Ω) for some u ∈ SBV 2(Ω).

5. The Γ-convergence result

In the sequel we study the asymptotics as ε→ 0 of the family of functionals Fψ
ε defined in (3.1).

In order to apply the direct methods of Γ-convergence we localize the energy functionals and for
simplicity we first neglect the boundary conditions. We will set the problem in the ambient space
L2(Ω) and we represent the Γ-limit of Fε with respect to the L2-topology only on SBV 2(Ω)∩L2(Ω).
This formulation fits with the study of asymptotic behavior of minimizers of the functionals Fψ

ε

taking into account a L∞ boundary datum ψ (see Section 6 and the related discussion therein).
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For every A ∈ A(Ω) and ε > 0 we set Aε = A \ Kε and we introduce the functionals Fε :
L2(Ω) ×A(Ω) → [0,+∞] defined for every A ∈ A(Ω) by

Fε(u,A) :=





∫

Aε

|∇u|2 dx+ HN−1(Su ∩Aε) if u ∈ SBV 2(A),

+∞ otherwise in L2(Ω).
(5.1)

Theorem 5.1. For every A ∈ A(Ω) the family (Fε(·, A)) Γ-converges to some functional
Fhom(·, A) with respect to the L2 topology. Moreover the functional Fhom(·, A) restricted to
SBV 2(A) is given by

Fhom(u,A) :=

∫

A

fhom(∇u) dx+

∫

Su∩A

ghom (νu) dHN−1, (5.2)

where fhom and ghom are defined in (1.4) and (1.6), respectively.

The proof of Theorem 5.1 will be a consequence of several preliminary results (see Propositions
5.3, 5.4, 5.6 and 5.9). The first step is to show the compactness property in the sense of Γ-
convergence of Fε and the integral representation of its Γ-limit F . These results follow by standard
arguments in Γ-convergence; we will limit ourselves to provide the related references.

We start with the so called Fundamental Estimate (see [13, Proposition 3.1]).

Lemma 5.2. Let (Fε) be defined as in (5.1). For every η > 0 and for every A′, A, B ∈ A(Ω),
with A′ ⊂⊂ A, there exists a constant M > 0 such that: for every ε > 0 and for every u ∈
SBV 2(A), v ∈ SBV 2(B) there exists a function ϕ ∈ C∞

0 (A) with ϕ = 1 on A′, 0 ≤ ϕ ≤ 1 and

Fε(ϕu+ (1 − ϕ)v,A′ ∪B)

≤ (1 + η)(Fε(u,A) + Fε(v,B)) +M‖u− v‖2
L2((A\A′)∩B). (5.3)

The Fundamental Estimate and standard arguments of the localization methods of Γ-
convergence imply the following result (see [24] and [13]).

Proposition 5.3. Let (εn) be a positive vanishing sequence. Then there exists a subsequence (εjn)
of (εn) and a functional F : L2(Ω) ×A(Ω) → [0,+∞] such that for every A ∈ A(Ω)

F(·, A) = Γ- lim
n

Fεjn (·, A).

Moreover F satisfies the following properties

(a) the set function F(u, ·) is the restriction to A(Ω) of a Radon measure on Ω for every fixed
u ∈ SBV 2(Ω)∩L2(Ω), and the functional F(·, A) is local and L2(A) lower semicontinuous
for every A ∈ A(Ω);

(b) for every A ∈ A(Ω) with A ⊂⊂ Ω and for every y ∈ RN such that y + A ⊂ Ω and
u ∈ SBV 2(A) we have F(u(· − y), A+ y) = F(u,A);

(c) for every z ∈ R, A ∈ A(Ω) and u ∈ SBV 2(A) ∩ L2(A) we have F(u + z,A) = F(u,A).

By taking into account the integral representation results of [11] we get the following result.

Proposition 5.4. Assume that (Fεn(·, A)) Γ-converges to a functional F(·, A) for every A ∈ A(Ω).
Then there exist Borel functions f : RN → [0,+∞] and g : R × SN−1 → [0,+∞] such that for
every A ∈ A(Ω) and u ∈ SBV 2(A)

F(u,A) =

∫

A

f(∇u)dx+

∫

Su∩A

g(u+ − u−, ν) dHN−1. (5.4)
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Proof. To prove the result we apply the integral representation Theorem 1 [11]. In order to match
the assumptions of that result we need to extend F(·, A), A ∈ A(Ω), to SBV 2(A) by relaxation
with respect to the L1 topology and then to use a perturbation argument to enforce the growth
condition from below.

In this respect let us consider the functional F(·, A) extended to SBV 2(A) as follows

F(u,A) := inf{lim inf
n

F(un, A), un → u in L1(A)}.

By a truncation argument it possible to check that this relaxation procedure does not change the
value of F on SBV 2(A) ∩L2(A). Thanks to Proposition 5.3, conditions (H1)-(H3) in Theorem 1
[11] are satisfied, namely F is a variational semicontinuous functional on SBV 2(Ω) × A(Ω) with
respect to the L1 topology.

In order to enforce the growth condition from below (H4) let us fix δ > 0 and consider the
functional

Fδ(u,A) = F(u,A) + δ

∫

A

|∇u|2dx+ δ

∫

Su∩A

(1 + |u+ − u−|) dHN−1.

According to Theorem 1 of [11] there exist Borel functions f δ : A × R × RN → [0,+∞], gδ :
A× R × R × SN−1 → [0,+∞] for which

Fδ(u,A) =

∫

A

f δ(x, u,∇u)dx +

∫

Su∩A

gδ(x, u+, u−, νu) dHN−1

for every A ∈ A(Ω) and u ∈ SBV 2(A).
Thanks to properties (b) and (c) in Proposition 5.3 we conclude that both f δ and gδ are

independent of x, that f δ does not depend on u, and that gδ depends on (u+, u−) only through
their difference so that we may write gδ = gδ(u+ − u−, ν). By construction the families (f δ)δ>0,
(gδ)δ>0 are increasing in δ, hence we can set f = limδ→0+ f δ, g = limδ→0+ gδ. To conclude we use
the pointwise convergence of (Fδ(·, A))δ>0 to F(·, A) and the Monotone Convergence Theorem.

Remark 5.5. A more refined argument actually shows that g is independent of (u+, u−), so that
(5.4) rewrites as

F(u,A) =

∫

A

f(∇u)dx+

∫

Su∩A

g(νu) dHN−1.

We will derive directly such a result in Proposition 5.9 where we prove the equality g = ghom.

In the next proposition we identify the bulk density of all Γ-cluster points of (Fε) to be fhom.
We will use the standard notation [·] for the integer part.

Proposition 5.6. Assume that (Fεn(·, A)) Γ-converges to a functional F(·, A) for every A ∈ A(Ω).
Then for every ξ ∈ RN

f(ξ) = fhom(ξ), (5.5)

where f is the bulk energy density of F(·, A), and fhom is defined in (1.4).

Proof. For the sake of simplicity we assume that the unitary cube Q is contained in Ω. Fix ξ ∈ RN ,
we begin with proving inequality f(ξ) ≤ fhom(ξ). To this aim consider any w ∈ W 1,2

♯ (Q \ K),

extend it to 0 on K and define wn(x) = εnw(x/εn). We have (wn) ∈ L2(Q) ∩W 1,2(Q \Kεn) and
(wn) converges to 0 in L2(Q). Moreover, setting vn(x) = wn(x)+ ξ ·x, by periodicity and a change
of variables it follows

Fεn(vn, Q) =

∫

Q\Kεn

|∇w(x/εn) + ξ|2dx ≤ εNn

(
1 +

[
1

εn

])N ∫

Q\K

|∇w + ξ|2dx.
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Since (vn) converges to ξ · x in L2(Q) we deduce

f(ξ) = F(ξ · x,Q) ≤ lim inf
n

Fεn(vn, Q) ≤
∫

Q\K

|∇w + ξ|2dx,

taking the infimum with respect to w we conclude.

The proof of the opposite inequality fhom(ξ) ≤ f(ξ) will be split into several steps. Let us first
deal with regular perforations K, namely we assume that K is the closure of an open set with
Lipschitz boundary (with Q \K connected).

Consider a sequence (wn) ∈ L2(Q) converging to ξ · x in L2(Q) and such that

f(ξ) = F(ξ · x,Q) = lim
n

Fεn(wn, Q).

Since Fεn decreases by truncation we may also suppose ‖wn‖L∞(Q) ≤ ‖ξ ·x‖L∞(Q) for every n ∈ N.
We first use a blow-up type argument in order to get from (wn) a new sequence whose energy has
not increased and whose jump set is vanishing (see Step 1 in Proposition 5.2 [13]).

Step 1. Reduction to a recovery sequence with vanishing jumps. More precisely, we prove that
there exist a diverging sequence (jn) ⊆ N and (vn) ⊆ L2(Q) such that

(a) (vn) converges to ξ · x in L2(Q);
(b) ‖vn‖L∞(Q) ≤ ‖ξ · x‖L∞(Q) for every n ∈ N;

(c) limnHN−1(Svn ∩ (Q \K1/jn)) = 0;
(d) lim supn F1/jn(vn, Q) ≤ f(ξ).

Fix a sequence (jn) ⊂ N to be chosen later, let Qi
n = jnεn(i +Q) be a cube among those of type

jnεn(i+Q) ⊂ Q, i ∈ ZN , which satisfies
[

1

jnεn

]N
Fεn(wn, Qi

n) ≤ Fεn(wn, Q). (5.6)

Define vn ∈ L2(Q) to be

vn(x) =
1

jnεn
wn(jnεn(i + x)) − ξ · i,

then a simple change of variables entails

‖vn − ξ · x‖L2(Q) = (jnεn)
−(1+N/2)‖wn − ξ · x‖L2(Qi

n). (5.7)

It is easy to check that we may choose (jn) in such a way that jn → +∞, jnεn → 0 and (5.7)
vanishes as n→ +∞. So that (a) is established.

Moreover, the choice of Qi
n in (5.6) implies by changing variables

HN−1(Svn \K1/jn)

= (jnεn)
1−NHN−1(Swn ∩ (Qi

n \Kεn)) ≤ (jnεn)
1−N

[
1

jnεn

]−N
Fεn(wn, Q)

and
∫

Q\K1/jn

|∇vn|2dx = (jnεn)
−N

∫

Qi
n\Kεn

|∇wn|2dx ≤ (jnεn)
−N

[
1

jnεn

]−N
Fεn(wn, Q),

from which we deduce (c) and (d), respectively.
Eventually, statement (b) follows by truncating vn at levels ±‖ξ · x‖L∞(Q).

Next we refine the recovery sequence to obtain a sequence with Sobolev regularity. To do this
we employ by now standard techniques to truncate gradients.
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Step 2. Reduction to a recovery sequence in Sobolev spaces. In this step we prove that for
every fixed cube Q′ ⊂⊂ Q there exists (un) ⊆W 1,2(Q′) such that

(a′) (un) converges to ξ · x in L2(Q′);
(b′) ‖un‖L∞(Q′) ≤ ‖ξ · x‖L∞(Q) for every n ∈ N;
(d′) lim supn F1/jn(un, Q

′) ≤ f(ξ).

Following an argument of Larsen [34, Lemma 2.1] we can modify vn in order to construct a function
ṽn ∈W 1,∞(Q \K1/jn) such that

lim
n

LN ({x ∈ Q \K1/jn : ṽn(x) 6= vn(x)}) = 0 (5.8)

and

sup
n

∫

Q\K1/jn

|∇ṽn|2dx < +∞.

Up to a truncation argument, thanks to Step 1 (b), we may assume also that ‖ṽn‖L∞(Q) ≤ ‖ξ ·
x‖L∞(Q). Furthermore, by taking advantage of the connectedness of Q \ K and of the Lipschitz
regularity assumption on K we employ classical extension results to fill the holes (see [1, Theorem
2.1], and also [22]). More precisely, with fixed Q′ ⊂⊂ Q we extend ṽn to the full Q′ (we keep the
notation ṽn for the extended function) with ṽn ∈ W 1,2(Q′) and supn ‖ṽn‖W 1,2(Q′) < +∞. Then

[31, Lemma 1.2] provides a sequence (un) ∈W 1,2(Q′) such that

lim
n

LN ({x ∈ Q′ : ṽn(x) 6= un(x)}) = 0, (5.9)

and (|∇un|2) is equi-integrable on Q′. Up to the usual truncation argument we may assume also
that ‖un‖L∞(Q′) ≤ ‖ξ · x‖L∞(Q).

By collecting (5.8) and (5.9) we infer

lim
n

LN ({x ∈ Q′ \K1/jn : un(x) 6= vn(x)}) = 0. (5.10)

Since (|∇un|2) is equi-integrable, by Step 1 (c) and (d) we get

lim sup
n

∫

Q′\K1/jn

|∇un|2dx = lim sup
n

∫

(Q′\K1/jn )\{un 6=vn}

|∇un|2dx

= lim sup
n

∫

(Q′\K1/jn)\{un 6=vn}

|∇vn|2dx ≤ lim sup
n

∫

Q\K1/jn

|∇vn|2dx ≤ f(ξ),

so that (d′) is established.
Let us pass to the proof of (a′). Given any subsequence of (un) by Sobolev embedding

we may extract a further subsequence (ujn) converging to a function u in L2(Q′). Set ϕn =
χ(Q′\K1/jn )\{ujn 6=vjn}, then by (5.10) (see also Remark 3.1) (ϕn) converges to 1 − LN (K) weak ∗
L∞(Q′). By taking into account Step 1 (a), (ϕn(ujn − vjn)) converges to (1 − LN (K))(u − ξ · x)
weak L1(Q′), and since ϕn(ujn − vjn) = 0 LN a.e. on Q′ we deduce that u = ξ · x LN a.e. on
Q′. Furthermore, Urysohn property implies (a′), i.e. the whole sequence (un) converges to ξ · x in
L2(Q′). This concludes the proof of Step 2.

Step 3. Conclusion. Let us first prove fhom(ξ) ≤ f(ξ) for K Lipschitz regular. In this case the
classical homogenization result for Sobolev spaces in perforated domains (see [12, Theorem 19.1])
and Step 2 entail

LN (Q′)fhom(ξ) ≤ lim inf
n

F1/jn(un, Q
′) ≤ f(ξ).

The thesis follows as LN (Q′) → 1−.

Finally we recover the general case (without assuming further regularity on K) through an
approximation argument. More precisely consider a generic closed set K (with Q \K connected)
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and let (Cm) be a sequence as in Lemma 4.13. Let fmhom : RN → [0,+∞] be defined as fhom in
(1.4) with K there substituted by Cm, i.e.

fmhom(ξ) = inf

{∫

Q\Cm
|∇w + ξ|2 : w ∈W 1,2

♯ (Q \ Cm)

}
.

It is clear that fmhom ≤ fm+1
hom ≤ fhom, we claim that

sup
m
fmhom = fhom. (5.11)

Indeed, for every m ∈ N let wm ∈W 1,2
♯ (Q \ Cm), with

∫
Q\C1 wmdx = 0, be such that

∫

Q\Cm
|∇wm + ξ|2dx ≤ fmhom(ξ) +

1

m
.

Note that for every fixed M > 0

sup
m≥M

∫

Q\CM
|∇wm + ξ|2dx ≤ fhom(ξ) + 1 < +∞.

In particular, the sequence (wm)m≥M is bounded inW 1,2(Q\CM ) by Poincaré-Wirtinger inequality
for every M . Then a diagonal argument implies the existence of a subsequence (wjm) weakly pre-

compact in W 1,2(Q \CM ) for every M . Denote by w a cluster point, then w ∈W 1,2
♯ (Q \CM ) for

every M and
∫

Q\CM
|∇w + ξ|2dx ≤ lim inf

m

∫

Q\CM
|∇wjm + ξ|2dx ≤ sup

m
fmhom(ξ).

By letting M → +∞ we infer that actually w ∈ L2
loc(Q \K), ∇w ∈ L2(Q \K,RN ) and

∫

Q\K

|∇w + ξ|2dx ≤ sup
m
fmhom(ξ). (5.12)

In particular, it is easy to check that the truncated functions wj = (w ∧ j) ∨ (−j) belong to

W 1,2
♯ (Q \K) and for every M

fhom(ξ) ≤
∫

Q\K

|∇wj + ξ|2dx

=

∫

(Q\K)\{|w|≥j}

|∇w + ξ|2dx+ |ξ|2LN ((Q \K) ∩ {|w| ≥ j})

≤
∫

Q\K

|∇w + ξ|2dx+ |ξ|2
(
LN ((Q \ CM ) ∩ {|w| ≥ j}) + LN (CM \K)

)
.

Since w ∈ L2(Q \ CM ) we have LN ((Q \ CM ) ∩ {|w| ≥ j}) → 0 as j → +∞, so that

lim sup
j

∫

Q\K

|∇wj + ξ|2dx ≤
∫

Q\K

|∇w + ξ|2dx + |ξ|2LN (CM \K). (5.13)

Eventually from (5.12) and (5.13) we deduce

fhom(ξ) ≤ sup
m
fmhom(ξ) + |ξ|2LN (CM \K),

and inequality (5.11) follows as M → +∞.

Finally denote by Fm
εn the functional defined in (5.1) with Cm in place of K, then Fm

εn ≤ Fεn .
Up to extracting a further subsequence we assume that (Fm

εn(·, A)) Γ-converges to a functional
Fm(·, A) for every A ∈ A(Ω). By Step 1 and 2 we know that the bulk energy density of Fm is
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fmhom, and by construction fmhom(ξ) ≤ f(ξ) for every m ∈ N. Hence, we derive fhom(ξ) ≤ f(ξ) from
(5.11).

Remark 5.7. The argument above entails the existence of a minimizer for the minimum problem
defining fhom in (1.4) in a suitable Deny-Lions type space (see [28]).

In order to prove the counterpart of Proposition 5.6 for the surface term we first show that the
limit defining ghom exists. To this aim we introduce some extension procedure.

Given any ν ∈ SN−1, let {ν1, . . . , νN−1} any collection of unitary vectors such that
{ν1, . . . , νN−1, ν} form an orthonormal basis of RN with unit cell Qν . Given w ∈ P (Qν \ Kε)
such that w = u0,1,ν (defined in (1.5)) on a neighbourhood of ∂Qν , we regard w as extended
to RN as follows. First we extend it on Qν by setting w ≡ u0,1,ν in Kε, then on the strip
S = {x ∈ RN : |〈x, ν〉| ≤ 1/2} by 1-periodicity in directions ν1, . . . , νN−1, and finally we set
w ≡ u0,1,ν on {x ∈ RN : |〈x, ν〉| ≥ 1/2}.
Lemma 5.8. For every ν ∈ SN−1 there exists the limit as ε→ 0+ of mε(ν), where

mε(ν) = inf
w∈P (Qν\Kε)

{HN−1(Sw \Kε) : w = u0,1,ν on a neighbourhood of ∂Qν}.

Proof. Let ε, σ, η > 0 be fixed, with σ ≤ ε, and let ν1, . . . , νN−1 be unitary vectors as above. Fix
w ∈ P (Qν \ Kε) such that w = u0,1,ν on a neighbourhood of ∂Qν , and regard it as extended to
RN as explained above.

Consider the strip Sσ/ε = {x ∈ RN : |〈x, ν〉| ≤ σ/(2ε)} and its decomposition into cubes of the

family Λ =
{
σ
ε (i+Qν) : i ∈ ⊕N−1

k=1 νkZ
}
, where ⊕N−1

k=1 νkZ is the N − 1 dimensional integer lattice

generated by ν1, . . . , νN−1. Moreover let I =
{
i ∈ ⊕N−1

k=1 νkZ : σ
ε (i+Qν) ⊂ ηQν

}
, then a simple

counting argument gives

#I ≤
(εη
σ

)N−1

. (5.14)

Define wσ : Qν → {0, 1} by u0,1,ν on Qν \ Sσ/ε and on each cube of the family Λ intersecting
Qν \ ηQν , and let wσ(x) = w(εx/σ) otherwise on Sσ/ε.

By construction wσ ∈ P (Qν \Kσ) and wσ = u0,1,ν on Qν \ ηQν , and since Swσ ∩ (Qν \ ηQν) ⊆
{x ∈ RN : 〈x, ν〉 = 0} ∩ (Qν \ ηQν), we have HN−1(Swσ ∩ (Qν \ ηQν)) ≤ 1 − ηN−1. Furthermore
(5.14), the 1-periodicity of w in directions ν1, . . . , νN−1, and a scaling argument imply

HN−1(Swσ \Kσ) ≤ #I
(σ
ε

)N−1

HN−1(Sw \Kε) + 1 − ηN−1 (5.15)

≤ ηN−1HN−1(Sw \Kε) + 1 − ηN−1.

Passing to the infimum on the class of admissible functions on both sides of (5.15) and then on
the superior limit as σ → 0+ and the inferior limit as ε→ 0+ we infer

lim sup
σ→0+

mσ(ν) ≤ ηN−1 lim inf
ε→0+

mε(ν) + 1 − ηN−1,

and the thesis follows as η → 1−.

In the next proposition we identify the surface density of all Γ-cluster points of (Fε) to be ghom.

Proposition 5.9. Assume that (Fεn(·, A)) Γ-converges to a functional F(·, A) for every A ∈ A(Ω).
Then for every (a, b, ν) ∈ R × R × SN−1

g(b− a, ν) = ghom(ν), (5.16)

where g is the surface energy density of F(·, A) and ghom is defined in (1.6).
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Proof. Fix (a, b, ν) ∈ R × R × SN−1. We start with inequality g(b− a, ν) ≤ ghom(ν).
To this aim fixed ε > 0 consider any w ∈ P (Qν \Kε) such that w = u0,1,ν on a neighbourhood

of ∂Qν, regarded as extended to RN with the convention adopted before Lemma 5.8. Define
wn(x) = a+ (b− a)w(εx/εn), then a simple change of variables gives

‖wn − ua,b,ν‖L2(Qν) ≤ |b− a|
(εn
ε

)N/2(
1 +

[
ε

εn

])(N−1)/2

‖w − u0,1,ν‖L2(Qν),

so that (wn) converges to ua,b,ν in L2(Qν). Moreover, a straightforward calculation implies

Fεn(wn, Q
ν) = HN−1(Swn ∩ (Qν \Kεn))

= HN−1(Swn ∩ {x ∈ Qν \Kεn : |〈x, ν〉| ≤ εn/(2ε)})

≤
(εn
ε

)N−1
(

1 +

[
ε

εn

])N−1

HN−1(Sw ∩ (Qν \Kε)).

Taking the limit as n→ +∞ we infer

F(ua,b,ν , Q
ν) ≤ lim inf

n
Fεn(wn, Qν) ≤ HN−1(Sw ∩ (Qν \Kε)),

by passing first to the infimum on all suchw’s and then to the limit as ε→ 0+ inequality g(b−a, ν) ≤
ghom(ν) follows by Lemma 5.8.

The proof of the opposite inequality ghom(ν) ≤ g(b − a, ν) will be split into three steps. To fix
notations we will assume a ≤ b. Consider a sequence (wn) ∈ L2(Qν) converging to ua,b,ν in L2(Qν)
and such that

g(b− a, ν) = F(ua,b,ν , Q
ν) = lim

n
Fεn(wn, Q

ν).

By a truncation argument we may also suppose a ≤ wn ≤ b for every n ∈ N. First we use a
blow-up type argument as in [13, Proposition 6.2], in order to get from (wn) a new sequence whose
energy has not increased in the limit and whose gradient energy is vanishing.

Step 1. Reduction to a recovery sequence with vanishing gradients. We prove that there exist
a diverging sequence (jn) ∈ N and (vn) ∈ L2(Qν) such that

(a) (vn) converges to ua,b,ν in L2(Qν);
(b) a ≤ vn ≤ b for every n ∈ N;
(c) limn

∫
Qν\K1/jn

|∇vn|2dx = 0;

(d) lim supn F1/jn(vn, Q
ν) ≤ g(b− a, ν).

Fix a sequence (jn) ⊂ N to be chosen later, let Qi
n = jnεn(i+Qν) be a cube among those of type

jnεn(i+Qν) ⊂ Qν , i ∈ ⊕N−1
k=1 νkZ, satisfying
[

1

jnεn

]N−1

Fεn(wn, Q
i
n) ≤ Fεn(wn, Q

ν). (5.17)

Define vn ∈ L2(Qν) to be vn(x) = wn(jnεn(i + x)), then a simple change of variables entails

‖vn − ua,b,ν‖L2(Qν) = (jnεn)
−N/2‖wn − ua,b,ν‖L2(Qi

n). (5.18)

It is easy to check that we may choose (jn) in such a way that jn → +∞, jnεn → 0 and (5.18)
vanishes as n→ +∞. So that (a) is established.

Moreover, the choice of Qi
n in (5.17) implies by changing variables

HN−1(Svn \K1/jn) = (jnεn)
1−NHN−1(Swn ∩ (Qi

n \Kεn))

≤ (jnεn)
1−N

[
1

jnεn

]1−N
Fεn(wn, Q)
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and
∫

Q\K1/jn

|∇vn|2dx = (jnεn)
2−N

∫

Qi
n\Kεn

|∇wn|2dx ≤ (jnεn)
2−N

[
1

jnεn

]1−N
Fεn(wn, Q),

from which we deduce (c) and (d), respectively. Eventually, statement (b) follows straightforward.
In the next step the BV Co-area Formula (see [8, Theorem 3.40]) allows us to select suitable

sublevels of the sequence in Step 1 whose perimeters is controlled by the energy functionals (see
[13, Proposition 6.2]). Subsequently we use a geometric truncation argument, similar to that
called transfer of jump set performed in [29], in order to obtain a sequence in SBV0 matching the
boundary conditions.

Step 2. Reduction to a recovery sequence in SBV0(Q
ν) satisfying the boundary conditions.

We prove that there exists (v̂n) ∈ SBV0(Q
ν) such that

(a′) (v̂n) converges to ua,b,ν in L2(Qν);
(b′) v̂n assumes only the values a, b for every n ∈ N;
(c′) v̂n = ua,b,ν on a neighbourhood of ∂Qν;
(d′) lim supn F1/jn(v̂n, Q

ν) ≤ g(b− a, ν).

Indeed, let us consider the sets Ent = {x ∈ Qν : vn(x) < t}, Et = {x ∈ Qν : ua,b,ν(x) < t}.
Thanks to property (a) of Step 1 Ent → Et in measure for H1 a.e. t and the BV Coarea Formula
(see [8, Theorem 3.40]) yields

∫ b

a

HN−1(∂∗Ensn \K1/jn) ds ≤ |Dvn|(Qν \K1/jn). (5.19)

Note that the absolute continuous part of |Dvn|(Qν \K1/jn) can be estimated by using the Hölder
inequality, while for the singular part is sufficient to take into account that thanks to property (b)
of Step 1 |v+

n − v−n | ≤ (b− a). Hence we can refine inequality (5.19) and obtain

∫ b

a

HN−1(∂∗Ensn \K1/jn) ds ≤ (b − a)F1/jn(vn, Q
ν) +

(∫

Qν\K1/jn

|∇vn|2dx
)1/2

. (5.20)

By using the Mean Value Theorem in (5.19) and by using property (c) of Step 1 in (5.20), we may
choose sn ∈ (a, b) such that we have convergence in measure of the sublevels Ensn and

lim sup
n

HN−1(∂∗Ensn \K1/jn) ≤ lim sup
n

F1/jn(vn, Q
ν). (5.21)

Set En = Ensn . Taking into account that ua,b,ν is piecewise constant in Qν we easily infer that En
tends in measure to the lower half cube. Let us now fix η ∈ (0, 1/2) and set

Q−
η := {x ∈ Qν : −η < 〈x, ν〉 < 0}, Q+

η := {x ∈ Qν : 0 < 〈x, ν〉 < η}.
Since En ∩ Q−

η tends to Q−
η in measure and En ∩ Q+

η tends to zero in measure, recalling that

LN (Q−
η ) = LN (Q+

η ) = η, for n large enough, we have that

LN (En ∩Q−
η ) > η − η2, LN (En ∩Q+

η ) ≤ η2.

Therefore, thanks to Fubini’s Theorem we may find a scalar s̄ in a set of positive measure in (0, η)
such that

HN−1(En ∩ {x ∈ Qν : 〈x, ν〉 = −s̄}) ≥ 1 − η, HN−1(En ∩ {x ∈ Qν : 〈x, ν〉 = s̄}) ≤ η.

Finally set

H−
n := {x ∈ Qν : dist(x, ∂Qν) ≤ η, −s̄ ≤ 〈x, ν〉 ≤ 0},

H+
n := {x ∈ Qν : dist(x, ∂Qν) ≤ η, 0 < 〈x, ν〉 < s̄},
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and consider functions v̂ηn defined by

v̂ηn(x) :=

{
a in {x ∈ Qν : 〈x, ν〉 ≤ −s̄} ∪ (Q−

η ∩En) ∪ ((Q+
η ∩ En) \H+

n ) ∪H−
n ,

b everywhere else in Qν .

By construction v̂ηn ∈ SBV0(Q
ν) and property (a′), (b′), (c′) are satisfied. In addition, by taking

into account (5.21) we get

lim sup
n

F1/jn(v̂ηn, Q
ν) = lim sup

n
HN−1(Sbvηn \K1/jn)

≤ lim sup
n

HN−1(∂∗Ensn \K1/jn) +O(η) ≤ lim sup
n

F1/jn(vn, Q
ν) +O(η),

where O(η) → 0 as η → 0+. Finally we get a sequence (v̂n) satisfying property (d′), as well as (a′),
(b′), (c′), by taking a positive vanishing sequence (ηn) and a standard diagonalization argument.

Step 3. Conclusion. Let un = (v̂n−a)/(b−a). Then un coincides with u0,1,ν on a neighborhood
of ∂Qν and converges to u0,1,ν in L2(Qν). Eventually

ghom(ν) ≤ lim sup
n

HN−1(Sun \K1/jn) = lim sup
n

F1/jn(v̂n, Q
ν) ≤ g(b− a, ν).

6. Matching boundary conditions

In this section we extend our asymptotic analysis adding a Dirichlet boundary condition on the
fixed boundary ∂Ω. We present a Γ-convergence result for (suitable restrictions of) the functionals
Fψ
ε defined in (3.1) and prove the convergence of the associated minimum problems. This last result

will be a consequence of standard Γ-convergence theory once the equicoercivity of the associated
minimum configurations is proved (see [24, Theorem 7.4]).

Since we are interested mainly in the asymptotic behavior of minimizers we restrict ourselves
to the domain SBV 2(Ω) ∩ L2(Ω). Indeed, as already mentioned at the beginning of Section 4,
the functionals Fψ

ε are decreasing by truncation, and thus we can limit our analysis to functions
equibounded in L∞(Ω). According to this, we investigate the Γ-convergence of (Fψ

ε ) on the L1-
subspace SBV 2(Ω) ∩ L2(Ω). In this respect, it is also clear that the convergence property is not
affected by the choice of any Lp topology in which the study of the Γ-limit is set.

We begin with the Γ-convergence analysis. It exploits the result in the unconstrained case
proved in Theorem 5.1.

Theorem 6.1. The family (Fψ
ε ) Γ-converges to some functional Fψ

hom with respect to the L2(Ω)

topology. Moreover the functional Fψ
hom restricted to SBV 2(Ω) is given by

Fψ
hom(u) :=

∫

Ω

fhom(∇u) dx+

∫

Sψu

ghom (νu) dHN−1, (6.1)

where Sψu := Su ∪ {x ∈ ∂Ω : ψ(x) 6= u(x)}, and fhom, ghom are defined in (1.4) and (1.6), respec-
tively.

Proof. Consider an open set Ω̃ with Ω ⊂⊂ Ω̃, and let F̃ε : SBV 2(Ω̃)∩L2(Ω̃) → [0,+∞] be defined

as in (5.1) with A replaced by Ω̃. By Theorem 5.1 we have that the functionals F̃ε Γ-converge to

the functional F̃hom defined as in (5.2) with A replaced by Ω̃.
In order to prove the Γ-liminf inequality for the functionals Fψ

ε , let uε → u in L2(Ω), and set

ũε (respectively ũ) equal to uε (respectively u) in Ω, and equal to ψ in Ω̃ \Ω. Taking into account
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that ψ ∈ W 1,2(Ω̃), we have that

F̃ε(ũε) ≤ Fψ
ε (ũε) +

∫

Ω̃\Ω

|∇ψ|2 dx,

and thus by the Γ-liminf inequality for the functionals F̃ε we get

Fψ
hom(u) ≤ F̃hom(ũ) ≤ lim inf Fψ

ε (ũε) +

∫

Ω̃\Ω

|∇ψ|2 dx.

We deduce the Γ-liminf inequality for the family (Fψ
ε ) by absolute continuity of Lebesgue integral

by letting Ω̃ decrease to Ω.
Let us pass to the Γ-limsup inequality. To this aim let u ∈ SBV 2(Ω) ∩ L2(Ω) and let ũ be its

extension to Ω̃ defined to be equal to ψ in Ω̃ \ Ω. Taking into account the fundamental estimate

in Lemma 5.2 it is easy to infer the existence of a recovery sequence (ũε) for the functionals F̃ε
satisfying

lim F̃ε(ũε) = F̃hom(ũ),

with ũε ≡ ψ on Ω̃ \ Ω. Therefore, setting uε to be the restriction of ũε to Ω we have

lim supFψ
ε (uε) ≤ lim F̃ε(ũε) = F̃hom(ũ) = Fψ

hom(u) +

∫

Ω̃\Ω

fhom(∇ψ)dx.

Again, since the term
∫
Ω̃\Ω

fhom(∇ψ)dx can be chosen arbitrarily small, we deduce the Γ-limsup

inequality for the functionals Fψ
ε .

Before investigating the convergence of the minimum problems associated to Fψ
ε , we recall that

for any u ∈ L1(Ω) the value Fψ
ε (u) (as well as Fε(u)) is not affected by that of u in the sets Ω\Ωε.

Due to this fact, a real compactness result for sequences of minimizers cannot hold unless K is
negligible. Hence, in the general case, the next theorem can be thought as a selection principle of
compact minimizing sequences in L1(Ω). We recall also that, since the energy functionals decrease
by truncations, we can always assume that the minimizers uε satisfy ‖uε‖L∞(Ω) ≤ ‖ψ‖L∞(Ω).

Theorem 6.2. For any ε > 0 let uε ∈ L1(Ωε) be a minimizer for Fψ
ε with ‖uε‖L∞(Ω) ≤ ‖ψ‖L∞(Ω).

Then there exists a family (wε) ⊂ L1(Ω) which is compact in L1(Ω) and such that wε ≡ uε in Ωε
for any ε > 0 (in particular wε are minimizers for Fψ

ε ). Moreover, any cluster point u of wε is a

minimizer for Fψ
hom.

Proof. We can apply Theorem 4.14, obtaining the desired sequence (wε) ⊂ L1(Ω). The fact that

any cluster point u of wε is a minimizer for Fψ
hom is a direct consequence of the Γ-convergence

result given in Theorem 6.1 (see [24, Theorem 7.4]).

7. Further results

In the present section we extend the asymptotic analysis performed in Sections 5, 6 for the
Mumford-Shah energy in periodically perforated domains to more general free-discontinuity ener-
gies. We limit ourselves to state the generalizations of Theorems 5.1, 6.1, 6.2, being the proofs
analogous and only technically more demanding (e.g., in the coercive case see [13, Section 8]).

In the following we keep the notation fixed in Sections 5, 6. Furthermore, let p ∈ (1,+∞) and
consider f : RN × RN → [0,+∞), g : RN × SN−1 → [0,+∞) two Borel functions. We suppose
that f satisfies

(f1) f(·, ξ) is 1-periodic for every ξ ∈ RN ,
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(f2) there exist two constants c1, c2 > 0 such that for every (x, ξ) ∈ RN × RN

c1|ξ|p ≤ f(x, ξ) ≤ c2(1 + |ξ|p),
and that g satisfies

(g1) g(·, ν) is 1-periodic for every ν ∈ SN−1,
(g2) g(x,−ν) = g(x, ν) for every (x, ν) ∈ RN × SN−1,
(g3) there exist two constants c3, c4 > 0 such that for every (x, ν) ∈ RN × SN−1

c3 ≤ g(x, ν) ≤ c4.

Then we introduce the family of functionals Gψε : Lp(Ω) → [0,+∞] defined by

Gψε (u) =





∫

Ωε

f
(x
ε
,∇u

)
dx+

∫

Sψ,εu

g
(x
ε
, νu

)
dHN−1 u ∈ SBV p(Ω),

+∞ otherwise in Lp(Ω).
(7.1)

We are now in a position to extend the results of Theorems 5.1, 6.1, 6.2 to the family to (Gψε ).

Theorem 7.1. The family (Gψε ) Γ-converges to some functional Gψhom with respect to the Lp(Ω)

topology. Moreover, the functional Gψhom restricted to SBV p(Ω) is given by

Gψhom(u) :=

∫

Ω

fhom(∇u) dx +

∫

Sψu

ghom (νu) dHN−1,

where the bulk energy density fhom : RN → [0,+∞) is the convex function given by

fhom(ξ) = lim
ε→0+

inf

{∫

Q\Kε

f
(x
ε
,∇w + ξ

)
dx : w ∈W 1,p

♯ (Q \Kε)

}
, (7.2)

and the surface energy density ghom : SN−1 → [0,+∞) is the BV -elliptic function given by

ghom(ν) = lim
ε→0+

inf
w∈P (Qν\Kε)

{∫

Sw\Kε

g
(x
ε
, νw

)
dHN−1 : w = u0,1,ν on a neighborhood of ∂Qν

}
.

Moreover, if uε are minimizers for Gψε satisfying ‖uε‖L∞(Ω) ≤ ‖ψ‖L∞(Ω), then there exists a family
(wε) ⊂ Lp(Ω) which is compact in Lp(Ω) and such that wε ≡ uε in Ωε for any ε > 0 (in particular

wε are minimizers for Gψε ). Any cluster point u of wε is a minimizer for Gψhom.

Remark 7.2. In case f(x, ·) is convex for all x ∈ RN formula (7.2) can be specialized (see [12,
Remark 19.2]), and reduces to the cell minimization formula

fhom(ξ) = inf

{∫

Q\K

f (x,∇w + ξ) dx : w ∈W 1,p
♯ (Q \K)

}
.
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