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Abstract. In a fixed domain of RN we study the asymptotic behaviour of optimal clusters
associated to α-Cheeger constants and natural energies like the sum or maximum: we prove

that, as the parameter α converges to the “critical” value
(
N−1
N

)
+

, optimal Cheeger clusters

converge to solutions of different packing problems for balls, depending on the energy under
consideration. As well, we propose an efficient phase field approach based on a multiphase
Gamma convergence result of Modica-Mortola type, in order to compute α-Cheeger constants,
optimal clusters and, as a consequence of the asymptotic result, optimal packings. Numerical
experiments are carried over in two and three space dimensions.

1. Introduction and statement of the results

Let N ≥ 2 be the space dimension and α > N−1
N be a fixed constant. For every bounded

measurable subset E of RN , we define its α-Cheeger constant by

(1) hα(E) := min{H
N−1(∂∗Ω)

|Ω|α
: Ω ⊆ E, Ω measurable}.

Above, HN−1 denotes the (N−1)-dimensional Hausdorff measure and, if Ω∗ has finite perimeter,
∂∗Ω is its reduced boundary, in the measure theoretical sense. If Ω is the empty set or it has

positive measure but does not have finite perimeter, the ratio H
N−1(∂∗Ω)
|Ω|α is assumed by convention

to be equal to +∞.
For α = 1, definition (1) corresponds to the classical Cheeger constant, which was thoroughly

studied in the last years, see for instance the review papers [19, 23]; for α 6= 1, and strictly larger
than the scale invariance exponent N−1

N , the notion of α-Cheeger constant is a variant which has
appeared in the literature more recently, we refer in particular to [24] and references therein.

Object of this paper are the following optimal partition problems

(2) min
{

max
i=1,...,k

hα(Ei) : (E1, . . . , Ek) ∈ Pk(D)
}

(3) min
{ k∑
i=1

hα(Ei) : (E1, . . . , Ek) ∈ Pk(D)
}
,

where D is a given open bounded Lipschitz subset of RN , and

Pk(D) =
{

(E1, . . . , Ek) : ∀i, j = 1, . . . , k, Ei ⊆ D, Ei ∩ Ej = ∅, Ei measurable
}
.

Notice that the condition that the union of the sets Ei covers the given box D (up to a
negligible set) is not required in the definition Pk(D), so that there is some abuse of notation
in adopting the usual epithet of optimal “partitions” as done above, and in the sequel we prefer
to speak rather about “clusters”. Thus, solutions of (2)-(3) will be generically called α-Cheeger
clusters.
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For α = 1, problem (3) has been firstly studied by Caroccia in the paper [10], where the
existence of solutions and some regularity results for the free boundaries are obtained. In fact,
for arbitrary α > N−1

N , the existence of solutions (E1, . . . , Ek) for both problems (2)-(3) is quite
immediate, and for convenience of the reader it will be briefly discussed in Section 2 below. On
the other hand, the analysis of their qualitative properties may require some more attention (in
particular for the maximum problem (2)), but it is not our purpose to discuss here regularity
issues.

Let us also mention that the asymptotics as k → +∞ of the energies in (2)-(3) has received
a lot of attention in some recent works focused on the honeycomb conjecture. Actually this
celebrated conjecture, which was proved by Hales [15] for cells of equal area minimizing the
total perimeter, was already formulated in the context of the classical Cheeger constant in [10],
in relationship with a conjecture by Caffarelli and Lin involving optimal partitions of spectral
type [8]. A proof of the honeycomb conjecture for the α-Cheeger constant when α = 1 and
α = 2 has been obtained very recently, respectively in [7] and in [6], under the restriction the
the admissible clusters are made by convex cells.

In this paper, we are interested in the study of α-Cheeger clusters. Our aim is twofold. A first
purpose is to get qualitative results describing the behaviour of α-Cheeger clusters, in the limit

when α→
(
N−1
N

)
+

or α→ +∞. A second purpose is to give an efficient phase field numerical

approach for the computation of optimal α-Cheeger clusters and, as a consequence of their
asymptotic behaviour, of optimal packings of balls in arbitrary boxes D. The theoretical results
are presented and discussed in the two subsections hereafter. Proofs and numerical results are
then given respectively in Sections 2 and 3.

1.1. Limiting behaviour of α-Cheeger clusters. Our main asymptotical results show that,

as α→
(
N−1
N

)
+

, solutions to problems (2) and (3) converge to solutions to two different optimal

packing problems for balls. More precisely: solutions of problem (2) converge to a solution of
the classical packing problem, which consists in finding k mutually disjoint equal balls with
maximal radius in D; solutions of problem (3) converge to a solution of a more peculiar packing
problem, which consists in finding k mutually disjoint balls in D maximizing the product of their
volumes. The statements read as follows, where the L1(D,Rk)-convergence has to be meant as
the convergence of the characteristic functions {1Ωα1

, . . . , 1Ωαk
} of solutions of (4) or (6) to the

characteristic functions of balls {1B(x1,r1), . . . , 1B(xk,rk)} solving (5) or (7).

Theorem 1. As α→
(
N−1
N

)
+

, up to subsequences, a solution to

(4) min
{

max
i=1,...,k

HN−1(∂∗Ωi)

|Ωi|α
: {Ωi} ∈ Pk(D)

}
converges in L1(D,Rk) to a family of balls solving the following optimal packing problem

(5) max
{
r : ∃{xi, ri ≥ r}i=1,...,k , B(xi, ri) ⊂ D , B(xi, ri) ∩B(xj , rj) = ∅

}
.

Theorem 2. As α→
(
N−1
N

)
+

, up to subsequences, a solution to

(6) min
{ k∑
i=1

HN−1(∂∗Ωi)

|Ωi|α
: {Ωi} ∈ Pk(D)

}
converges in L1(D,Rk) to a family of balls solving the following optimal packing problem

(7) max
{ k∏
i=1

ri : ∃{xi, ri}i=1,...,k , B(xi, ri) ⊂ D , B(xi, ri) ∩B(xj , rj) = ∅
}
.
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When α→ +∞, we are not able to give a complete description of the asymptotic behaviour of
α-Cheeger clusters. Nevertheless we observe that, in case of problem (4), such behaviour seems to
be related to an optimal partition problem into cells of equal volume which minimize the product
of their perimeters. This question is naturally linked to the possible validity of a stronger version
of the classical honeycomb conjecture solved by Hales. The picture is detailed in the statement
given hereafter, along with a conjecture. For every k ∈ N, we call k-cell a connected region
obtained as the union of k unit area regular hexagons taken from the hexagonal tiling of R2.

Proposition 3. As α → +∞, up to subsequences a solution to problem (4) converges in
L1(D,Rk) to a partition of D into k mutually disjoint subsets of equal measure. Moreover,
if N = 2, D is a k-cell, and Conjecture 4 below holds true, this partition is the hexagonal one.

Conjecture 4. Let D be a k-cell. Then we expect that Hales’ celebrated result [15] can be
strengthened into the following product-version of the honeycomb conjecture:

min
{ k∏
i=1

H1(∂∗Ωi) : {Ωi} ∈ Pk(D) , |Ωi| = 1
}

=
(
H1(∂H)

)k
.

The proof of this new conjecture seems to be non-trivial, as it would require a product form
of the hexagonal isoperimetric inequality in the spirit of Hales. It is not a purpose of this paper
to discuss such issue in detail. We limit ourselves to support the validity of the conjecture by
performing a few simulations using algorithms similar to those introduced in [22], the difference
coming from the presence of the logarithmic function. In fact, in order to avoid numerical
instabilities, we minimize the logarithm of the product of perimeters:

min
{ k∑
i=1

log
(
H1(∂∗Ωi)

)
: {Ωi} ∈ Pk(D) , |Ωi| = 1

}
.

The numerical results presented in Figure 1 are performed for 8, 16 and 32 cells in the torus (the
choice of the torus instead of a k-cell is based on the observation that, if Conjecture 4 would fail
on some k-cell which tiles the plane, then it will also fail on the torus).

Figure 1. Illustration of Conjecture 4 for 8, 16, 32 cells in the torus

Concerning the asymptotic behaviour of α-Cheeger clusters for problem (6) when α → +∞,
the same arguments used to obtain Proposition 3 can be used to show that, up to subsequences,
a solution to such problem converges as well in L1 to a partition of D into k mutually disjoint
subsets of equal measure. Anyway in this case we have no conjecture about the optimization
problem solved by this limit configuration.

1.2. Phase field approach for computing α-Cheeger clusters and optimal packings.
There exist various works in the literature dealing with the computation of the Cheeger sets of
a given domain D (which corresponds to take α = 1 and k = 1), using techniques related to
convex optimization as, for instance, [11]. In [9] the authors exploit a projection algorithm in
order to solve a more general weighted Cheeger problem, while in [18] a convex hull method is
used for the optimization in the class of convex bodies. In [16] a characterization of the Cheeger
set for convex domains is given, which can easily provide an algorithm for the computation
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of the Cheeger set for convex polygons. To our knowledge, no algorithm was implemented
for the numerical computation of Cheeger clusters. An algorithm for computing numerically
partitions of minimal length was introduced in [22], based on the approximation of perimeter
by Γ-convergence using the classical Modica-Mortola theorem [21].

Our approach is as well of Γ-convergence type and relies on the Modica-Mortola theorem for
the approximation of the perimeter term, at the numerator in the α-Cheeger ratio. Nevertheless,
two difficulties arise: on one hand, even for the computation of the α-Cheeger constant of a set
(corresponding to the case k = 1), one has to handle the approximation of the measure term
in the denominator. This is done by considering a sufficiently high Lp-norm of the phase field
function, as the more natural L1 or L2 norms are not suitable. Precisely, the measure of the set

is efficiently approximated by the L
2N
N−1 -norm, this choice being available for every α. On the

other hand, one has to cope with the collective behaviour of the different phases and the empty
regions, this being handled in the spirit of the partitioning algorithm introduced in [5], with the
novelty of the presence of the empty regions. The outcoming Γ-convergence result reads:

Theorem 5. For any fixed α > N−1
N and p > 1 , the functional

F (Ω1, . . . ,Ωk) :=
k∑
i=1

(HN−1(∂∗Ωi)

|Ωi|α
)p

is the Γ-limit as ε→ 0 in L1(D,Rk) of the sequence

Fε(u1, . . . , uk) :=
k∑
i=1

(ε ∫D |∇ui|2dx+ 9
ε

∫
D u

2
i (1− ui)2( ∫

D |ui|
2N
N−1dx

)α )p
if ui ∈ H1

0 (D), ui ≥ 0,
∑k

i=1 ui ≤ 1, and +∞ if not .

In the above statement, the separation of phases is related to the constraints ui ≥ 0,
∑k

i=1 ui ≤
1, and to the fact that each phase will naturally converge to a bang-bang configuration. In order

to avoid handling the constraint
∑k

i=1 ui ≤ 1, we use a penalization approach inspired by the
paper of Caffarelli and Lin [8]. Namely, we slightly change our functional by introducing the
penalty term 1

ε

∑
1≤i<j≤k

∫
D u

2
iu

2
jdx. This term enhances the separation of phases during the

computational process and avoids (at least the) local minima consisting on flat functions at
an intermediate level between 0 and 1. At the same time, the presence of this term, together
with the bounds 0 ≤ ui ≤ 1, still ensure that the Γ-convergence holds. Thus we obtain the
following corollary, which is the main practical tool for the numerical implementation our phase
field approach:

Corollary 6. For any fixed α > N−1
N and p > 1, the functional

F (Ω1, . . . ,Ωk) :=
k∑
i=1

(HN−1(∂∗Ωi)

|Ωi|α
)p

is the Γ-limit as ε→ 0 in L1(D,RN ) of the sequence

(8) Fε(u1, . . . , uk) :=

k∑
i=1

(ε ∫D |∇ui|2dx+ 9
ε

∫
D u

2
i (1− ui)2( ∫

D |ui|
2N
N−1dx

)α )p
+

1

ε

∑
1≤i<j≤k

∫
D
u2
iu

2
jdx

if ui ∈ H1
0 (D), 0 ≤ ui ≤ 1 and +∞ if not .

Our algorithm is very efficient in computing clusters or just Cheeger sets in arbitrary boxes
D, in two or three space dimensions. In Section 3, we give several numerical experiments
with different values of α and k, in R2 and in R3. In particular, for α close to the critical

value
(
N−1
N

)
+

, we recover some classical results for optimal circle/sphere packings, underlining

the interest of Theorems 1 and 2. The literature related to circle packings is quite vast, and
efficient algorithms are known to work for thousands of cells. However, they rely on heuristic



5

combinatorial and geometric ideas in order to search for the optimal configuration (see for
instance [14, 20]). Our approach is a global one: we initialize each cell with a random density
function and we perform a direct gradient based optimization to reach the final configuration.
This approach works rather well in the cases we considered. We underline the fact that the search
of optimal circle packings is a non-smooth problem. The desired configuration corresponds to
maximizing the minimal distance between centers while minimizing the size of the container.
Any standard gradient descent algorithm will get stuck as soon as the pairwise distances between
centers contain repeated minimal values. The method we present can consistently get near an
optimal candidate, or even produce a good starting point for other algorithms.

2. Proofs

Throughout this section, we set ωN := HN−1(∂B)/|B|
N−1
N , being B a ball in RN .

Existence of α-Cheeger clusters. Before giving the proofs of our results, for the benefit
of the reader we briefly discuss the existence of solutions to problems (2) and (3) for a fixed
α > N−1

N . This question relies on classical compactness results in BV -spaces and, for α = 1 and
problem (3), has been extensively discussed in [10]. For shortness, we only deal with problem
(2) (the arguments being the same for problem (3)). Assume that {Ωn

1 , . . . ,Ω
n
k} are elements of

Pk(D) such that

max
i=1,...,k

HN−1(∂∗Ωn
i )

|Ωn
i |α

−→ inf
{

max
i=1,...,k

HN−1(∂∗Ωi)

|Ωi|α
: {Ωi} ∈ Pk(D)

}
as n→ +∞.

One has first to observe that

(9) lim inf
n→+∞

|Ωn
i | > 0 ∀i = 1, . . . , k .

Indeed, we can assume that there exists some M > 0 such that maxi=1,...,k
HN−1(∂∗Ωni )
|Ωni |α

≤ M .

Then, using the isoperimetric inequality on each cell Ωn
i we get

ωN
1

|Ωn
i |
α−N−1

N

≤ H
N−1(∂∗Ωn

i )

|Ωn
i |α

≤M,

hence, (9) is true. Exploiting also the fact that

HN−1(∂∗Ωn
i ) ≤M |D|k,

we get that the sequence (1Ωni
)n is bounded in BV (D). By standard compactness results, we

can assume that, up to a subsequence, it converges strongly in L1(D) to some limit which can
be written as 1Ωi . For i 6= j, the sets Ωi and Ωj are disjoint and, in view of (9), they have
strictly positive measure. Moreover, by lower semicontinuity of the perimeter, we have

lim inf
n→+∞

HN−1(∂∗Ωn
i ) ≥ HN−1(∂∗Ωi),

hence {Ω1, . . . ,Ωk} is a solution to problem (2).

Proof of Theorem 1. We write α = N−1
N + δ for some δ > 0, and we consider the auxiliary

problems

Mk,δ(D) := min
{

max
i=1,...,k

(
HN−1(∂∗Ωi)

ωN |Ωi|
N−1
N

+δ

) 1
δ

: {Ωi} ∈ Pk(D)
}

= min
{

max
i=1,...,k

(
HN−1(∂∗Ωi)

ωN |Ωi|
N−1
N

) 1
δ 1

|Ωi|
: {Ωi} ∈ Pk(D)

}
,

which have the same optimal clusters as our initial problems (4).
If D contains k mutually disjoint balls of radius rD, we have

(10) Mk,δ(D) ≤ 1

|BrD |
.
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Then, if {Ω1
δ , . . .Ω

k
δ} is an optimal cluster for M δ

k (D), we have

(11)

(
HN−1(∂∗Ωδ

i )

ωN |Ωδ
i |
N−1
N

) 1
δ 1

|Ωδ
i |
≤ 1

|BrD |
∀i = 1, . . . , k .

Using (11) and the isoperimetric inequality, we get

(12) |Ωδ
i | ≥ |BrD | ∀i = 1, . . . , k .

Moreover, using (11) and the upper bound |Ωδ
i | ≤ |D|, we get

(13) HN−1(∂∗Ωδ
i ) ≤ ωN |D|

N−1
N

( |D|
|BrD |

)δ
∀i = 1, . . . , k .

We deduce that a (not relabeled) subsequence of {Ωδ
1, . . .Ω

δ
k} converges in L1(D,Rk) to a limit

cluster, that we denote by {Ω1, . . . ,Ωk}, satisfying |Ωi| ≥ |BrD |. Let us show first that all the
sets Ωi’s are balls, and then that they solve the optimal packing problem (5).

By using the definitions of Mk,δ(D) and rD, we have the following estimate:

HN−1(∂∗Ωδ
i )

|Ωδ
i |
N−1
N

+δ
≤ ωN (Mk,δ(D))δ ≤ ωN

|BrD |δ
∀i = 1, . . . , k .

Then, passing to the liminf as δ → 0, we obtain

HN−1(∂∗Ωi)

|Ωi|
N−1
N

≤ ωN ∀i = 1, . . . , k ,

which implies that the sets Ωi’s are balls.
Let us show that they solve the optimal packing problem (5). Denote by r1, . . . rk the radii

of Ω1, . . .Ωk, set rmin := min{r1, . . . , rk} and let r∗ denote the maximal radius in the optimal
packing problem (5). Clearly, by the definition of r∗, it holds r∗ ≥ rmin. On the other hand,
since D contains k mutually disjoint balls of radius r∗, by definition of Mk,δ(D) we have

Mk,δ(D) ≤ 1

|Br∗ |
.

Hence the inequalities (11) and (12) are in force with r∗ in place of rD and therefore, passing to
the limit as δ → 0, we obtain

|Ωi| ≥ |Br∗ | ∀i = 1, . . . , k .

Then rmin ≥ r∗ and we conclude that rmin = r∗. �

Proof of Theorem 2. We write α = N−1
N + δ for some δ > 0, and we set

mk,δ(D) := min
{ k∑
i=1

HN−1(∂∗Ωi)

ωN |Ωi|
N−1
N

+δ
: {Ωi} ∈ Pk(D)

}
,

(where we have introduced just for convenience the constant ωN with respect to our initial
problems (6)).

Let (Ωδ
1, . . . ,Ω

δ
k) be an optimal cluster for mk,δ(D). From the inclusion Ωδ

i ⊂ D, we know
that

(14) lim sup
δ→0

|Ωδ
i |δ ≤ lim sup

δ→0
|D|δ = 1 ∀i = 1, . . . , k .

We claim that

(15) lim
δ→0
|Ωδ
i |δ = 1 ∀i = 1, . . . , k .

Indeed, if D contains k mutually disjoint balls of radius rD, we have

(16)

k∑
i=1

1

|Ωδ
i |δ
≤

k∑
i=1

HN−1(∂∗Ωδ
i )

ωN |Ωδ
i |
N−1
N

1

|Ωδ
i |δ

= mk,δ(D) ≤ k

|BrD |δ
.
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In the limit as δ → 0, up to passing to a subsequence such that {|Ωδ
i |δ} converges, we find

k∑
i=1

1

limδ→0 |Ωδ
i |δ
≤ k .

In view of (14), the above inequality implies that necessarily (15) is satisfied.
Now we observe that, by the isoperimetric inequality, there holds

HN−1(∂∗Ωδ
1)

ωN |Ωδ
1|
N−1
N

1

|Ωδ
1|δ

+
k∑
i=2

1

|Ωδ
i |δ
≤

HN−1(∂∗Ωδ
1)

ωN |Ωδ
1|
N−1
N

1

|Ωδ
1|δ

+

k∑
i=2

HN−1(∂∗Ωδ
i )

ωN |Ωδ
i |
N−1
N

1

|Ωδ
i |δ

= mk,δ(D) ≤ k

|BrD |δ
.

In the limit as δ → 0+, thanks to (15), we deduce that

(17) lim sup
δ→0

HN−1(∂∗Ωδ
1)

ωN |Ωδ
1|
N−1
N

≤ 1 ,

which implies in particular

(18) lim sup
δ→0

HN−1(∂∗Ωδ
1) ≤ ωN |D|

N−1
N .

By repeating the same argument for every i = 2, . . . , k, we obtain that that the perimeters of
Ωδ
i are bounded from above for every i = 1, . . . , k.
Next, let us show that the measures of Ωδ

i are bounded from below for every i = 1, . . . , k. We
exploit once again the isoperimetric inequality to write

k∑
i=1

exp
(
δ log

1

|Ωδ
i |

)
=

k∑
i=1

1

|Ωδ
i |δ
≤

k∑
i=1

HN−1(∂∗Ωδ
i )

ωN |Ωδ
i |
N−1
N

1

|Ωδ
i |δ

= mk,δ(D) ≤ k

|BrD |δ
.

By using the elementary inequality et ≥ 1 + t for every t ∈ R, we deduce that

k − δ log
( k∏
i=1

|Ωδ
i |
)
≤ k

(γNrND )δ
,

or equivalently

log
( k∏
i=1

|Ωδ
i |
)
≥ k1

δ

(
1− 1

(γNrND )δ

)
,

where γN denotes the measure of the unit ball in RN .
Since the right hand side of the above inequality remains bounded as a function of δ in a

neighbourhood of δ = 0, and since logarithm is monotone increasing, we infer that the product
of the measures of Ωδ

i ’s remains bounded from below. Since each of these measures is bounded
from above (by the measure of D), we conclude that |Ωδ

i | is bounded below for every i = 1, . . . , k.
So far, we have obtained that, for every i = 1, . . . , k, the sets Ωδ

i have perimeters bounded from
above and measures bounded from below uniformly as δ → 0+; hence, up to a (not relabeled)
subsequence, they admit a k-uple of (non trivial) limit sets, and from inequalities (17) we see
that these limit sets are necessarily balls. Let us denote them by (B0

1 , . . . , B
0
k), and let us show

that they solve the optimal packing problem (7).
To that aim, we are going to estimate from above and from below the quotient

mk,δ(D)− k
δ

.

On one hand, if (B∗1 , . . . , B
∗
k) are balls which solve the optimal packing problem (7), taking them

as a test cluster in the definition of mk,δ(D), we get the upper bound

mk,δ(D)− k
δ

≤ 1

δ

k∑
i=1

( 1

|B∗i |δ
− 1
)

=

k∑
i=1

1

δ

(
exp

(
δ log

1

|B∗i |

)
− 1
)
.
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Hence,

(19) lim sup
δ→0

mk,δ(D)− k
δ

≤ log
( k∏
i=1

1

|B∗i |

)
.

On the other hand, by applying as usual the isoperimetric inequality, we have

mk,δ(D)− k
δ

≥ 1

δ

k∑
i=1

( 1

|Ωδ
i |δ
− 1
)
.

Now we exploit the fact that |Ωδ
i | → |B0

i | as δ → 0+, so that, for every fixed η > 0, we can find

δ = δ(η) such that

|Ωδ
i | ≤ |(1 + η)B0

i | ∀δ ≤ δ(η) , ∀i = 1, . . . , k .

Therefore,

mk,δ(D)− k
δ

≥ 1

δ

k∑
i=1

( 1

|(1 + η)B0
i |δ
− 1
)
.

Then, by arguing as above and using the arbitrariness of η, we arrive at

(20) lim sup
δ→0

mk,δ(D)− k
δ

≤ log
( k∏
i=1

1

|B0
i |

)
.

Eventually, combining (19) and (20), we obtain

k∏
i=1

1

|B0
i |
≥

k∏
i=1

1

|B∗i |
.

By the definition of B∗i , the above inequality holds necessarily with equality sign, which amounts
to say that the limit balls B0

i maximize the product of volumes of a family of k mutually disjoint
balls contained into D, namely they solve problem (7). �

Proof of Proposition 3. Let (Ωα
1 , . . . ,Ω

α
k ) by a solution to problem (4), and assume α →

+∞. Assuming without loss of generality that |D| = k, we consider a k-uple (Ω̂1, . . . , Ω̂k) ∈
Pk(D) of sets with finite perimeter, such that |Ω̂i| = 1 for every i = 1, . . . , k. Then we have

(21)
HN−1(∂∗Ωα

i )

|Ωα
i |α

≤ C := max
i=1,...,k

|∂∗Ω̂i| ∀i = 1, . . . , k .

By applying the isoperimetric inequality, we obtain

ωN |Ωα
i |

N−1
N

|Ωα
i |α

≤ C ∀i = 1, . . . , k ,

or equivalently

|Ωα
i | ≥

(ωN
C

) 1

α−N−1
N ∀i = 1, . . . , k .

Hence,

(22) lim inf
α→+∞

|Ωα
i | ≥ 1 ∀i = 1, . . . , k .

Moreover, from inequality (21), we know that

k∑
i=1

(HN−1(∂∗Ωα
i )

C

) 1
α ≤

k∑
i=1

|Ωα
i | ≤ k .

Thus, by using the elementary inequality et ≥ 1 + t for every t ∈ R, we arrive at

1

α

k∑
i=1

log
(HN−1(∂∗Ωα

i )

C

)
≤ 0 ,
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which means that

(23)
k∏
i=1

HN−1(∂∗Ωα
i ) ≤ Ck .

We observe that, by (22), HN−1(∂∗Ωα
i ) is bounded from below for every i = 1, . . . , k; then

inequality (23) ensures that HN−1(∂∗Ωα
i ) is also bounded from above for every i = 1, . . . , k. We

conclude that (Ωα
1 , . . . ,Ω

α
k ) admits a limit in L1, hereafter denoted by (Ω∞1 , . . . ,Ω

∞
k ), and in

view of (22) this limit turns out to be a partition of D.

Finally, if N = 2 and D is a k-cell, by taking the sets Ω̂i’s in (21) equal to the k-copies of H
which compose the k-cell, inequality (23) implies

(24)

k∏
i=1

H1(∂∗Ω∞i ) ≤
(
H1(∂H)

)k
.

Therefore, if Conjecture 4 is satisfied, we conclude that

k∏
i=1

H1(∂∗Ω∞i ) ≤ min
{ k∏
i=1

H1(∂∗Ωi) : {Ωi} ∈ Pk(D) , |Ωi| = 1
}
.

Hence the above inequality holds with equality sign, and the partition {Ω∞i } is optimal for the
minimization problem at the right hand side. �

Proof of Theorem 5. We prove separately the so-called Γ-liminf and Γ-limsup inequalities
(see the monograph [12] for an introduction to Γ-convergence).

Γ-liminf inequality. Let uεi ∈ H1
0 (D) \ {0}, such that (uε1, . . . , u

ε
k)

L1(D,Rk)−→ (u1, . . . , uk) and

lim sup
ε→0

Fε(u
ε
1, . . . , u

ε
k) < +∞.

In a first step, we notice the existence of a constant M , such that for small ε and for every i we
have

ε

∫
D
|∇uεi |2dx+

9

ε

∫
D

(uεi )
2(1− uεi )2dx ≤M |D|α.

From the Modica-Mortola theorem, we get that ui ∈ BV (D, {0, 1}), hence ui = 1Ωi , where Ωi

are pairwise disjoint and satisfy

HN−1(∂∗Ω) ≤ lim inf
ε→0

ε

∫
D
|∇uεi |2dx+

9

ε

∫
D

(uεi )
2(1− uεi )2dx.

Let us prove that Ωi 6= ∅. We know that

ε

∫
D
|∇uεi |2dx+

9

ε

∫
D

(uεi )
2(1− uεi )2dx ≤M

(∫
D

(uεi )
2N
N−1dx

)α
.

Setting δ := 2N
N−1α− 2 > 0 and using the Cauchy-Schwartz inequality on the left hand side, we

get

6

∫
D
|∇uεi |uεi (1− uεi )dx ≤M‖uεi‖2+δ

L
2N
N−1 (D)

,

or, by the chain rule,

6

∫
D

∣∣∣∇((uεi )
2

2
− (uεi )

3

3

)∣∣∣dx ≤M‖uεi‖2+δ

L
2N
N−1 (D)

.

Using the Sobolev inequality with a dimensional constant SN , we get

6SN‖
(uεi )

2

2
− (uεi )

3

3
‖
L

N
N−1 (D)

≤M‖uεi‖2+δ

L
2N
N−1 (D)

.

Since 0 ≤ uεi ≤ 1 we get
(uεi )

2

2 − (uεi )
3

3 ≥ (uεi )
2

6 so

SN‖uεi‖2
L

2N
N−1 (D)

≤M‖uεi‖2+δ

L
2N
N−1 (D)

,
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or
SN
M
≤ ‖uεi‖δ

L
2N
N−1 (D)

.

Passing to the limit, we get |Ωi| ≥ SN
M . Since

∫
D(uεi )

2N
N−1dx → |Ωi| 6= 0, the Γ-liminf property

occurs.

Γ-limsup inequality. For one single set, the Modica-Mortola theorem gives the procedure of
constructing the recovering sequence. For partition problems we refer to the paper by Baldo [1],
where the recovering sequence requires more attention because of the exact partition requirement

which is obtained via the constraint ∀x ∈ D,
∑k

i=1 ui(x) = 1. Since in our problem we do not
have a complete partition of the set D, we can give a direct proof as follows.

Let (Ω1, . . . ,Ωk) be pairwise disjoint measurable subsets of D with finite perimeter. Let us
fix a positive constant δ > 0. For a usual convolution kernel (ρη)η, we have

(25) (
k∑
i=1

1Ωi) ∗ ρη ≤ 1,

and we claim that we can choose η small enough such that for every i = 1, . . . , k we can find
ti ∈ (1

2 , 1) such that the set Aδi := {1Ωi ∗ ρη > ti} is smooth and

HN−1(∂Aδi ) ≤ HN−1(∂∗Ωi) + δ,

|Aδi∆Ωi| ≤ δ.
Indeed, from the Sard theorem, we know that almost all levels are smooth. From the strict

convergence ρη ∗ 1Ωi
BV−→ 1Ωi , we get that∫ 1

0
|∇ρη ∗ 1Ωi |dx→ HN−1(∂∗Ωi),

and the co-area formula gives the existence of a level t > 1
2 such that

HN−1(∂∗Ωi) ≥ lim sup
η→0

HN−1(∂{ρη ∗ 1Ωi > t}).

On the other hand, from (25) and the choice of ti >
1
2 , the sets Aδi are disjoint, at positive

distance. Using now the Modica-Mortola theorem, we can find recovering sequences uεi
L1(D)→ 1Aδi

with

lim sup
ε→0

ε

∫
D
|∇uεi |2dx+

9

ε

∫
D

(uεi )
2(1− uεi )2dx ≤ HN−1(∂Aδi ).

Choosing, a sequence δn → 0, by a diagonal procedure we can find εn small enough such that
the Γ-limsup property holds, and moreover uεni u

εn
j = 0. �

Proof of Corollary 6. The proof is implicitly contained into the one of Theorem 5. In
particular, we point out that the choice of the recovering sequence for the Γ-limsup property is
also suitable for the penalized functionals. �

3. Numerical results

In order to discretize the functional (8), we consider a rectangular box D in R2 or R3 endowed
with a finite differences uniform grid with M discretization points along each axis direction.
A function u will be numerically represented by its values at the grid points. We use basic
order 1 centered finite differences in order to compute the gradient terms |∇ui|, and basic
quadrature formulas to compute all integrals. Similar approaches were already used in [22] and
[4]. Moreover, in [4, Section 4] detailed expressions of the gradient with respect to each of the
grid point variables of (8) are given for the Modica-Mortola term. The other integrals, like the
denominator of Fε and the penalization terms, are approximated by their arithmetic mean along
the grid. The optimization is done using a LBFGS quasi-Newton method implemented in Matlab
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[25]. The algorithm uses information on a number of previous gradients, 5 in our computations,
in order to build an approximation of the Hessian. In addition to being more efficient in avoiding
local minima than a simple gradient descent algorithm, the LBFGS algorithm recalled above
allows us to impose pointwise bounds for every variable, fact which is important in our approach.
This also motivated us to use a penalized approach, rather than a projected gradient approach.
The optimization procedure is presented in Algorithm 1.

Algorithm 1 Optimization procedure

Require: · M : initial discretization parameter (M = 20 in 2D, M = 10 in 3D)
· k: number of cells
· d: dimension
· maxit: maximal number of iterations
· ε ∈ [1/M, 4/M ]: Modica-Mortola parameter
· tol: stopping criterion
· n: number of refinements chosen so that the final resolution is as good as we want (in

our case 2n−1M > 300 in 2D and 2n−1M > 100 in 3D)
1: Initialize densities u1, .., uk as k random vectors of Md elements
2: step = 1
3: repeat
4: if step> 1 then
5: M ← 2M
6: interpolate linearly the previous densities (ui)

k
i=1 on the new grid

7: end if
8: Run the LBFGS optimization procedure [25] with the following parameters

· starting point (ui)
k
i=1 (random for first step, interpolated from the previous optimization

result for the next steps)
· tolerances and maximum number of iterations: tol = 10−8, maxit = 10000
· function to optimize: (8). Value and gradient are computed at each iteration
· pointwise upper and lower bounds 0 ≤ ui ≤ 1.

9: The previous algorithm returns the optimized densities (ui)
n
i=1

10: step = step+1 (go to next step)
11: until step> n

return the k density functions

Since we perform an optimization of a non-convex functional, there is no guarantee of con-
vergence to a global minimum. In order to avoid local minima, we choose as initialization some
random densities for each of the functions ui. Moreover, in order to avoid the rapid convergence
to a characteristic function and to diminish the effects of the non-convex potential, we choose
the parameter ε equal to 1/M , where M is the number of discretization points along each axis
direction. The parameter ε dictates the width of the interface where the functions ui go from
0 to 1. Sometimes it is useful to consider larger values of ε, 2/M or 4/M , to allow the cells to
move more freely.

In order to reduce the number of iterations needed to reach an optimum, we propose a grid
refinement procedure as already noted in [5] and [4]. We perform an initial optimization on a
grid of rather low size with M ∈ [20, 50]. Then we interpolate the result on a finer grid, usually
doubling the discretization parameter, and we continue the optimization on this refined grid. We
continue until we reach the desired level of accuracy. In 2D we can easily perform computations
on grids of size up to 400× 400 while in 3D we go up to 100× 100× 100. Our current algorithm
works well if the number of cells is not too large. When considering many phases, computations
become more costly and memory costs become larger. It is possible to use techniques from [2]
in order to address these issues. The idea is that, when dealing with partitioning or multiphase
problems in the phase-field context, one could restrict the computation in a neighborhood of
the significant part of each cell, for example {ui > δ}, for a given threshold δ > 0. This could
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significantly reduce the computational and memory cost of the computations and could allow
the use of the algorithm for many cells. However, this goes beyond the scope of this article.

Even if we choose to work on finite differences grid we may still compute α-Cheeger sets
and α-Cheeger clusters corresponding to non-rectangular domains. For a general domain D we
consider a rectangular box D′ ⊃ D on which we construct the finite differences grid. We set all
functions involved in the computations to be equal to zero on grid points outside D and set the
gradient to be equal to zero on the same points lying outside D. In this way the optimization
is made only on points inside the desired domain D.

It is also possible to use a finite element framework in order to minimize (8) on general
domains. In [4, Section 3] you can find a detailed presentation of such a finite element framework
in the context of Modica-Mortola functionals. Once the mass and rigity matrices for the Lagrange
P1 finite elements are obtained, all functionals needed in our computations can be expressed as
vector matrix products.

Now we exemplify the use of the proposed algorithm for computing α-Cheeger sets, α-Cheeger
clusters and optimal packings. We make available an implementation of the algorithm described
above which can be found online at the following link: https://github.com/bbogo/Cheeger_

patch. This implementation uses the finite element framework for the optimization of (8).
As detailed below it is also possible, for convex domains, to compare the Cheeger sets found
by minimizing (8) with the exact Cheeger sets obtained by using the representation formula
provided by Kawohl and Lachand-Robert in [16].

• Computation of α-Cheeger sets. In this case, corresponding to k = 1, there is no
need to use the penalization term. We optimize directly the non-penalized ratio between the
Modica-Mortola ratio and the volume term with constraints 0 ≤ u ≤ 1. Examples can be seen
in Figure 2 for a domain in R2 and in Figure 3 for a domain in R3.

Figure 2. The α-Cheeger set for a non-convex set in 2D, for α ∈ {0.5001, 0.75, 1, 2}.

Figure 3. The α-Cheeger set for a regular tetrahedron in 3D, for α ∈ {0.667, 0.9, 1, 2}.

In order to test the accuracy of our method we compare our algorithm with an implementation
of the Kawohl & Lachand-Robert explicit formula for finding Cheeger sets (α = 1) associated
to convex sets in 2D [16]. As can be seen in Figure 4 the relaxation algorithm we propose is
quite precise. We represent with red the ε-level set of the result obtained when minimizing 8
and with dotted blue the result obtained using the algorithm described in [16]. We justify the
choice of the ε-level set by the fact that we impose the boundary condition u = 0 on the density.
Choosing a level set corresponding to a larger value would correspond to a contour which does
not touch the boundary of D, contrary to the known behaviour of Cheeger sets. In the test
cases presented below the results given by the two algorithms are almost indistinguishable. The

https://github.com/bbogo/Cheeger_patch
https://github.com/bbogo/Cheeger_patch
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0.0040 0.0030 0.0030 0.0037

Figure 4. Comparison between results obtained when minimizing (8) (red) and
the Kawohl & Lachand-Robert formula (dotted-blue). Relative errors for the
Cheeger constants are also given.

relative errors, i.e. |h(ωap)−h(ω)|/h(ω) are also provided. Here h(ω) is the Cheeger constant of
ω and ωap is the approximated Cheeger set obtained when minimizing 8. The computed errors
are small in view of the fact that the Cheeger sets are computed with a relaxed formulation. As
expected, working on finer meshes leads to better approximations both of the Cheeger sets and
of the Cheeger constants.
• Computation of α-Cheeger clusters. Some examples of Cheeger clusters can be seen

in Figure 5. One can notice immediately that the cells are not necessarily convex, for instance
when D is a square and n = 5. The results in the periodic case are in accordance with results
in [7, 6].

Figure 5. Cheeger clusters for problem (3) in a square: 5 cells, 12 cells, 16 cells (periodical).

• Computation of optimal packings. To this aim, we exploit Theorem 1 and we compute
α-Cheeger clusters for α very close to N−1

N and p very “large”, which in our computations means

at most 100. Choosing the parameter α close to N−1
N forces the cells in the optimal configurations

to be close to disks. We choose to use a p-norm approach since this regularizes the non-smooth
problem of minimizing the maximal radius of a family of disks. The minimization of a p-norm
instead of the ∞-norm is a natural idea, already used in [3] for the study of partitions of a
domain which minimize the largest fundamental eigenvalue of the Dirichlet-Laplace operator.

We want to be able to quantify our results, so we use a local refinement procedure as a
post-treatment. At the end of the optimization process we have access to the density functions
associated to the α-Cheeger cells, which are approximately smoothed characteristic functions of
disks. Using these density functions we approximate the precise location of the centers of the
disks by computing the barycenter of the 0.5 level-set of each density function. Then we use a
very basic local-optimization routine in order to get a precise description of the circle packing
that can be compared with existing results in the literature. The algorithm just computes the
pairwise distances between centers of the disks and between the centers and the boundary and
uses Matlab’s algorithm fmincon with the option active-set to perform a gradient-free local
optimization of the current configuration. We note that the refinement algorithm is not at all
adapted for solving alone the problem, given random starting points for the centers. It is only
useful for locally optimizing the circle packing configuration once localization is obtained by our
approximation procedure.
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It is possible to apply this algorithm for computing both optimal circle packings for domains
in R2 or optimal sphere packings for domains in R3. In the planar case, we present some
computational results in Figure 6. In our test cases the numerical algorithm based on the Γ-
convergence result combined with the post-treatment algorithm generally produce configurations
which are comparable to the best known results in the literature. We recall that one of the first
papers regarding the circle packings in a circle was authored by Kravitz in 1967 [17]. In this
paper we can find a conjecture regarding the 19-circle packing in a disk. The optimality of this
19-packing, presented in Figure 6, was proved by Fodor in [13]. Extensive numerical results up to
thousands of circles were performed and collected on the website http://www.packomania.com/,
maintained by Eckard Specht. In all cases, we compared our results with best ones available,
listed on the above cited website. The numerical algorithm manages to capture the right results
in cases where the optimal circle packing configuration is unique and rigid, like the case of 19
disks in a circle or 28 disks in an equilateral triangle. Moreover, we are able to capture the best
known results even in cases where the solution is not unique, like in the case when we have 18
disks in a circle.

Figure 6. Circle packing examples in 2D for problem (5): density representation
and local optimization.

Some examples of computations of optimal spherical packings for domains in R3 are presented
in Figure 7. In this case, we observe again a good convergence to the best known configurations.

Figure 7. Sphere packing examples in 3D for problem (5).

http://www.packomania.com/
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