Fundamental solution for the ()-Laplacian and sharp
Moser-Trudinger inequality in Carnot groups”

Zoltéan M. Balogh! Juan J. Manfredi ¥
Department of Mathematics Department of Mathematics
University of Pittsburgh University of Pittsburgh
301 Thackeray Hall 301 Thackeray Hall
Pittsburgh, PA 15260 Pittsburgh, PA 15260

zobl@pitt.edu manfrediOpitt.edu

Jeremy T. Tyson®
Department of Mathematics
State University of New York
Stony Brook, NY 11794-3651

tyson@math.sunysb.edu

November 21, 2001

Abstract

For a general Carnot group G' with homogeneous dimension ) we prove the existence of a
fundamental solution of the @-Laplacian whose exponential is a homogeneous norm on G. This
implies a representation formula for smooth functions on GG which is used to prove the sharp
Carnot group version of the celebrated Moser-Trudinger inequality.

1 Introduction

Let GG be a Carnot group i.e. a simply connected stratified Lie group with homogeneous dimension
Q. It has been known since the work of Varopoulos [21], [22] and Saloff-Coste [17], that the following
version of the Sobolev inequality holds on G

(1.1) ([1rer dw)l/q < Coo( [ Wor@P dx)l/p,

provided that 1 < p < ) and ]l) — % = é, where |V f| stands for the horizontal gradient of a
function f € C§°(G). By completion of C§°(() under the norm || f||,+||Vo f||, the above inequality
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holds for functions in the horizontal Sobolev space HWOLP(G). We refer to the Section 2 for a more
detailed account on this terminology and background results of analysis on Carnot groups.

In the case p = ) the Sobolev inequality (1.1) turns into the Trudinger inequality stated as
follows. There exist constants Ag > 0 and ¢y > 0 such that for any domain Q C G, |Q| < co and
fe HWOI’Q(Q) the following inequality holds:

1 19" (w)
. — Ag———= | d .
(12) |Q|/Qexp( Q||vof||8'> tE

where Q' = Q/(Q — 1) is the dual exponent of Q.

This statement has been first established by Trudinger [20] in the Euclidean space R™. In the
setting of Carnot groups (1.2) was proven by Saloff-Coste in [18].

It is by now known that appropriate versions of the Sobolev inequality (1.1) and Trudinger’s
inequality (1.2) hold even in general metric spaces. We refer to [10] for a comprehensive recent
account on this subject.

However, to find the values of the best constants €', , in (1.1) and Ag and ¢g in (1.2) is a much
more delicate matter. For the Sobolev inequalities (1.1) the value of the best constant in R” was
found by Talenti in [19]. Moser [14] was the one who proved Trudinger’s inequality (1.2) in R”
with sharp exponent A, = anj.

In the setting of Carnot groups not much is known about sharp constants. The only results
that have so far been proven are in the case of the Heisenberg group H™ - the simplest non-trivial
Carnot group. For the Sobolev inequality (1.1) in the case p = 2 the value of

Cy 2nsz = (A7) 'n 2 (D(n + 1)) 77

has been determined by Jerison and Lee [12]. The value of the best constant in (1.1) in the
remaining cases p # 2 is still open even for the Heisenberg group.

Concerning the Moser-Trudinger inequality (1.2) we note the recent paper of Cohn and Lu [6]
who found the value of the sharp exponent Ag in the Heisenberg group H™ to be

Ag = Q(2r"T(1/2)T((Q - 1)/2)T(Q/2) "' T(n)™H)'~"

Here (Q = 2n 4 2 and as before Q' = Q/(Q — 1).

As main result of this paper we establish the Moser-Trudinger inequality (1.2) with a sharp
constant Ag for general Carnot groups. The best exponent Ag is given in terms of an integral on
a “unit sphere” of the horizontal gradient of a certain homogeneos norm. We compute explicitely
the value of Ag for H-type groups. Inspired by the proof of Cohn and Lu [6], our appraoch is based
on the method of Adams [1]. The method uses an estimate of the one dimensional non-increasing
rearrangement of the convolution of two functions due to 0’Neil [15]. This reasoning avoids the
difficult problem of studying the behaviour under symmetrization of the L, norm of the horizontal
gradient. Our starting point is to prove a representation formula for C3® functions in terms of their
horizontal gradient and fundamental solution of the )-Laplace equation which has independent
interest. The proof is based on recent results from [2] about the existence of singular solutions of
the @-Laplace equation with some additional nice properties.

The paper is organized as follows: in Section 2 we recall terminology and some backgraound
results. In Section 3 we prove the existence of fundamental solution of the )-Laplacian whose
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exponential defines a homogenous norm. In Section 4 we give the proof of the Moser-Trudinger
inequality with best constant Ag. In Section 5 we calculate the value of Ag for H-type groups.

2 Background results

Let us start by introducing some notation and terminology related to analysis on Carnot groups.

A Carnot group is a connected, simply connected, nilpotent Lie group G of dimension at least
two with graded Lie algebra g = Vi @ --- @ V, so that [V}, V] = Viy fori = 1,2,...,r — 1 and
[V1,V,:] = 0. The integer r > 1 is called the step of G. We denote the neutral element of G by 0
and we identify elements of g with left-invariant vector fields on G in the usual manner.

We fix throughout this paper an inner product (,)o in Vi with associated orthonormal basis
X1,..., Xk Relative to this basis, we construct the horizontal tangent subbundle HTG of the
tangent bundle TG with fibers HT,G = span{X;(z),... , Xy(2)}, 2 € G. A left-invariant vector
field X on G is said to be horizontal if it is a section of the horizontal tangent bundle.

As a simply connected nilpotent group, G is diffeomorphic with g =R™, m =>"7_, dim V;, via
the exponential map exp : g — G. We identify an element g € G with (21, ..., @k, thq1, ... tm) €
R™ by the formula

k m
(2.1) g = exp (Z z; X; + Z tiTZ)

=1 1=k+1

where Tx41,...,T, denotes a set of nonhorizontal vectors extending Xy,..., X} to a basis for all
of g.

The Haar measure on G is induced by the exponential mapping from the Lebesgue measure on
g = R™. Throughout this paper, statements involving measure theory are always understood to be
with respect to Haar measure.

The horizontal divergence of a vector field

k m
n= Z%’Xrl- Z Wi
=1

i=k+1
is given by

k
(2.2) divon =Y Xi(gi).

=1

Note that the (Euclidean) divergence of a horizontal vector field agrees with its horizontal diver-
gence; this can be seen by calculating the divergence relative to the basis Xq,..., Xg, Tkt1,--- I
for g. We refer to [3] for the details of this calculation.

Let U be a domain in . For f € LL (U) we say that the horizontal gradient of f ewists in the

loc

sense of distributions if there exists a horizontal vector field v = > v;X;, v; € Ll (U), so that

loc
/<v,77>0dx:—/ fdivonda
U U
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for all smooth compactly supported vector fields 1. We write Vo f := v for the horizontal gradient
of f. When f € C1(U), Vo f is the unique horizontal vector field in U defined by the equation

(Vof, X)o= X(f)

for all horizontal vector fields X. For p > 1, we say that w : U — R is in the horizontal Sobolev
space HWLP(U) if w € LP(U) and Vou exists in the sense of distributions and [|Voul|o € LP(U).

For t > 0 we define &; : g — g by setting §;(X) = t*X if X € V; and extending by linearity. Via
conjugation with the exponential map, & induces an automorphism of GG onto itself which we also
denote by §;. Then (d;)¢¢ is the one-parameter family of so-called dilations of G and

de(6e(x),0(y)) = tde (z, y), x,y € G.

The Jacobian determinant of §; (relative to Haar measure) is everywhere equal to t?, where
T
Q=> idimV,
=1

is the so-called homogeneous dimension of G.

By a homogeneous norm on G we mean any continuous and positive function f on G\ {0} which
satisfies the conditions f(8;(¢)) =tf(g) forall ¢ > 0 and f(g~') = f(g9). Any homogeneous norm f
can be extended continuously to all of G by setting f(0) = 0. For example, the Carnot norm |-|¢
is a homogeneous norm.

Let us assume that G is a Carnot group of homogeneous dimension ¢) > 3. (This restriction
rules out only the cases ¢ = R and (G = R?, in which case our results are classical.) Let U be a
domain in G and let 1 < p < co. A function f € HWY(U) is said to be a (weak) solution to the
p-sub-Laplace equation in U if

(2.3) /U Vo f[157%(of, Vob)o dz = 0

for all test functions ¢ € C5°(U). In case f € C*(U) standard methods show that (2.3) is equivalent
with the partial differential equation

k
(2.4) Dopf = div(|IVofll§*Vof) = Y Xi(IVofllg " Xif) = 0

=1

which is the Euler-Lagrange equation for the variational integral

(2.5) £ [ INosl

(Note that we have used the inner product structure on V; in (2.4) to identify the horizontal
cotangent space HT3G = (H1TpG)* = V¥ with the horizontal tangent space HToG = V.)

We call f p-harmonic if it satisfies (2.3) in U; the operator A, is called the p-sub-Laplace
operator.t Section 4 of [11] contains the basic nonlinear potential theory of p-harmonic functions
in arbitrary Carnot groups.

YAs f is a solution of the p-sub-Laplacian equation, it would be more precise to call f p-sub-harmonic. We avoid
this terminology because of the obvious confusion that would arise with the usual notion of subharmonicity.
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In the linear case p = 2 we write Ag = Ag o = Zle X;X;. Thisis Kohn’s sub-Laplacian operator
on (G, which represents a subelliptic Carnot analog of the classical Laplacian; the harmonic analysis
associated with A has been a subject of considerable investigation, see, e.g., [8], [7], [9], [16], [13],
[4]. Note in particular that by a result of Folland [7, Theorem 2.1] in any Carnot group G there
exists a unique fundamental solution uy to the equation for the 2- Laplace operator which is smooth
away from 0 and homogeneous of degree 2 — Q): up 06 = 2= Q.

In the non-linear case p # 2 there are existence results but there is no theory to give us
smoothness of solutions of the p-Laplacian except for the particular cases of Heisenberg or H-type
groups [5], [11], [3]. In this paper we are primarily interested in the conformal case p = Q). We know
from Proposition 4.16 in [11] that there exists a weak solution ug of the Q-Laplace equation (the so-
called singular solution) that is continuous on G'\ 0, has a prescribed singularity lim,_,o ug(z) = oo
at 0 € (¢ and asymptotic behaviour lim,_,., ug(z) = —oo at co. According to a recent result in [2]
this singular solution has the additional property that its exponential is a homogoneneous norm.
To be more precise let us recall the exact statement from [2] as:

Theorem 2.6. Let G be a Carnot group with homogeneous dimension () and let ug be a singular
solution for the Q-laplacian with pole at 0 € G. There exists a constant ag > 0 such that the
function N(z) = exp(—aguqg(z)) is a homogeneous norm on G (i.e. it satisfies N (6;z) = tN(z)).

Let us denote by S = {N = 1} be the “unit sphere” with respect to the homogeneous norm N
from Theorem 2.6. We shall need the following version of the integration in polar coordinates from

[9).

Proposition 2.7. There exists a Radon measure do on S such that for any f € LY(G) we have

(2.8) /Gf(x) do = /OOO/Sf(&Su) s97L do(u) ds .

The following lemma will be important in the next section:

Lemma 2.9.

IVoN|, € L9(S,do) .

Proof. From Theorem 2.6 ug(z) = % log ﬁ One can easily check that composition of a smooth

function with a horizontal Sobolev function is again a horizontal Sobolev function and the chain
rule holds almost everywhere. This gives:

_ [VoN(z)|

(2.10) |Voug(z)| = N@) forae. 2 €G .

By assumption ug € HWllo’cQ (G\{0}) and therefore:

(2.11) / |Voug|“(z) dz < oo,
B(0,2)\B(0,1)

where B(0,r) = {N < r}.
Applying Proposition 2.7 we see from (2.10) and (2.11) that
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(2.12) / / WoN sV do(u) ds < oo .

On the other hand by Theorem 2.6 we have that N is homogeneous of degree 1: N(d,u) = s
for s > 0,u € S. This implies that |VoN| is homogeneous of degree 0 (see eg. [9]) which gives
|[VoN (d,u)] = VoN (u)| for s > 0 and a.e. v € 5. Using these relations (2.12) takes the form:

/ /|V0N(u)|Q do(u) % ds:logQ/ VoV ()| Qo () < oo |
1 S S

proving the lemma.

Remark 2.13. In the Moser-Trudinger inequality the following constant

(2.14) cg = /S|V0N(u)|Q do(u)

will play a crucial role.

3 Fundamental solution for the ()-Laplacian

In this section we prove the existence of the fundamental solution of the Q-Laplacian with some
additional properties that are crucial in the proof of the Moser-Trudinger inequality. The main
result of this section is the following theorem.

Theorem 3.1. Let GG be a Carnot group with homogeneous dimension () and let ug be the singular
solution of the QQ-Laplacian from Theorem 2.6. Then up to a constant multiple ug is a fundamnetal
solution of the ()-Laplacian, i.e. for some bg € R

(3.2) diV(|VOUQ|Q_2VOUQ) = bQ -6
in the sense of distribitions.

Proof. We shall use Theorem 2.6 so we consider N(z) = exp(—agug(z)) which is a homogeneous
norm. Then (3.2) is equivalent to

N|9—2
le(% VO ) = —dQ(S
In fact we shall show that
VoN|Q-2
(3.3) div (% . VON) = —cg -9,

where ¢g is given in (2.14).
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We have to show that for any f € C§°(G)

)92
(3.4) 10 = ~3' [ (Faf ). Vo o Sor o= de
We know that for h € C5°(G'\ {0})
)92
(3.5) /G<Voh($),V0N($)>o % dr = 0,

moreover, by a standard density argument (3.5) is true for all functions h € HW3 (G \ {0}).
For 0 < r < 1/2 consider the following auxiliary function

17 N($)§r7
or(2) = @log%, r< N(z)<2r,
0 N(z) > 2r.

Define f. = f-¢,. We check first that f — f,. € HWOLQ(G \ {0}).
To continue the proof we apply (3.5) to h = f — f, and obtain

VN ()|
[ s vav o T o

[VoN (2)|972
= Vof-(x), VoN (z dx
/B(o,zr)\B(o,r)< o () Vo (e N(x)9-!

Let us write the right hand side of the above equality as «,. + f,, where

(3.6)

_ VoV (2)[#2
a, = /B(O,zr)\B(o,r)99r($)<voj[($)7VON(&C»O N(2)@-1 dx

_ Vo (2)[?2
= /B(o,m\Bm,r)f(x)wwr(x)’VON(MO NaeT

We show now that a, — 0 and 3, — —cg - f(0) as r — 0. To check the first claim we use
integration in polar coordinates:

v [VoN (2)]9!
ar S OO/ —
o] < 11Vl Bo2r\B(,) NO7Hz)

(3.7) = ||Voflls /T/S|V0N(u)|Q_1 do(u) ds

dz

= (||Vof||Oo / |V0N(u)|Q_1 da(u)) r —-0as-r—0,
S
where we used that

/|V0N(u)|Q_1 do(u) < oo
S
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which follows by Lemma 2.9. For the second claim we notice that

_ L YN@ e o, 2r) \ B(0, 1),

2) = log2 N(=)
Vogr (2) {07 z € G\ (B(0,2r)\ B(0,r)),

and so

[VoN ()92
Voer(x), VoN (2
/B(o,zr)\B(o,r)< o#r(#), Vol (#))o N (2)@-1

1 / [VoN (z)|9
= — ——— dx
log2 Jpo2n\Boy NO()

1

2r 1
= “log2 /r /S|V0N(u)|Q do(u) B ds = —cq .

Using this calculation we can write

_ [VoN (2)|9*
Br=—cq f(0) + /B(OJT)\B(OJ)(J”(QC) = f(0){Vopr(2), VolN (2))o NG dx
= _CQ f(O) —I_wr 9
where
lw,| < sup |f(z) — f(0)]-cg—0, asr—0.

z€B(0,2r)\B(0,r)

O

The crucial ingredient in the proof of the Moser-Trudinger inequality is the following represen-
tation formula.

Theorem 3.8. Let G be a Carnot group of homogeneous dimension (). There exists a homogeneous

norm N with log N € HWLC (G\{0}) such that for any f € C§°(G) the following formula holds:

loc

u)|@—2
(3.9) flv)= —cél /G<Vof(vu_1),V0N(u)>o % du

Proof. For v =0 formula (3.9) is just formula (3.4) from the proof of Theorem 3.1. For a general
v € G (3.9) is obtained by group translation. O

Remark 3.10. Formula (3.9) was recently obtained by Cohn and Lu in the case of the Heisenberg
group [6] by a different method using a direct calculation with the explicit formula of N. It is
remarkable that (3.9) holds in general Carnot groups and its proof uses just the properties (and
not the explicit formula) of the homogeneous norm N.
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4  Moser-Trudinger inequality with sharp constant

For a domain Q C G we denote by HWOI’Q(Q) the horizontal Sobolev space of functions f € L% ()
supported in © such that |Vof| € L9. We use the notation || for the Haar measure of a measurable
set X C (.

Theorem 4.1. Let GG be a Carnot group with homogeneous dimension (). Denote by Ag = () -
CQl_l, where Q' = Q/(Q — 1) and cqg is given in (2.14). There exists a constant ¢y such that for
any domain Q C G,|Q] < oo and f € HWOLQ(Q) the following inequality holds:

1 |£19" ()
. — Ag—————= ] d .

If Aq is replaced by any greater number the statement is false.

Proof. The proof uses ideas from [6] and [1] and representation formula 3.9.
It is enough to prove Theorem 4.1 for f € C§°(€2). Representation formula (3.9) implies

(4.3) flv) < 5! [Voflxg(v)
where Vo N ()]
g(u) = W :

and h * g stands for the convolution of two functions on GG given by

hxg(v)= /Gh(vu_l)g(u) du .

Let us introduce some notation. For a non-negative function F defined on G we consider its
non-increasing rearrangement

F*(t)=inf {s >0 : ap(s) < t},

where

ap(s)={uweG: Fu)>s}.

Then for any measurable function p : [0, 00) — [0, 00)
[ oty dn = [ o) ds.
G 0
We also consider the average of the rearrangement

F**(t):% /0 P (s) ds .

To estimate the rearrangement of the convolution we shall apply O’Neil’s lemma [15] which is
valid in Carnot groups (even in more general setting)

(4.4) (hxg)" (t) < (hxg)™ () <R (t)g™(t) + /too h*(s)g*(s) ds .
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In our case
VoN (u)|9-1!
bl = Vaf (o) and ) = UL

To calculate g*(t) denote by u* the d-projection of u € G onto S defined by the condition

U = Oy (u*).
With this notation it is easy to see that

1 N
ag(s)={ueG: glu)>s} ={veG: N(u)<s @T|VoN(u)|} .
By integration in polar coordinates

@
Q-1

STTVoN (u) o s
ay(s) = /S/O r dr do(u™) = 0 cq .

This implies that

Inequality (4.4) becomes

1

s (vl < () 7 (er® [ vase ass [T 1vur s as)

We shall estimate the right side of (4.5) by using the following lemma from [1].

Lemma 4.6. Let a(s,t) be a non-negative measurable function on (—oo,00) X [0,00) such that

a(s,t) <1 whenever 0 < s <t and

0 0 , 1/Q’
sup (/ + / a(s, t)? ds) =b<oo.
t>0 —00 t

Then there exists a constant co = co(Q,b) such that for ® > 0 with [~ P (s) ds < 1 it follows
that

/000 exp(—H (1)) dt < ¢ ,

Hit)=t- (/Oo als, 1) ®(s) dS)QI .

— 00

where

To apply Lemma 4.6 assume that [, [Vof|9(u) du < 1. Setting ®(s) = (|Q|e‘5)1/Q Vo fl*(1Q2]e~?)
obtain

o0 12|
/ 9 (s) ds :/ (IVof]*(s)€ ds :/ Vo f|?(u) du<1.
0 0 Q
The auxiliary function a(s,t) is defined to be

0, if —oo < s<0,
a(s,t) =<1, if s < t,
t—s
Qe , ift <s < oo,
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which gives

0 0 , 1/Q’
sup (/ + / a(s,t)Q ds) = Q.
t>0 —00 t

By a direct computation we obtain

o0 |
0

— 00

Qle—t 2| /
Vofl*(s) ds + /| Vel 57 s
Qle—t

According to the conclusion of Lemma 4.6

(4.7)

/ T mH) g
0

o0 , el 2 o \¢
:/ exp(—t + (Q e/ ImYe / IVofl*(s) ds—|—/ IVof]*(s) s~/ ds) ) dt
0 0

|€2le=*

<Co.

To prove the estimate in the first statement of Theorem 4.1 we start with (4.3) and (4.5):
[ exp(aglri® @) do < [ expaoi? (Vosl + g(e)?) do
o o o
= [ explaacg? (Vosl )7 (s)) ds
0

€2 , , t o , Q'
S/O exp(Ag(Qeg )™ (Qt_l/Q /0 Vo fI™(s) d8+/t Vof["(s) s71/% dS) ) dt .

Since Ag = chl_l we obtain
/Qexp(AQ|f|Ql(v)) dv
2] , t 0o , Q'
< / exp (Qt_l/Q / IVofl"(s) ds—l—/ Vo f|*(s) s~/ ds) dt .
0 0 t

We now make in (4.7) the change of variables ¢ — |Q|e~" and notice that the middle part of (4.7)
coincides with right side of (4.8). This concludes the proof of the first statement of the theorem.

To prove the second statement let @ = B ={u € G: N(u) < 1}.

Let us assume that for some 5 > 0

7w
) |BI/ (IIVof||Q> s

for all f € HW}®(B). For 0 < r < 1 denote by B, = {u € G : N(u) < r} and consider the

function
fT(U) - {(log(l/r))_l log N_I(U)7 on B \ Br7
1 on B, .
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It follows that

(log(1/r))~" el on B\ B,,

IVoir|(u) = {0, on B, .

Integrating in polar coordinates yields

w)[1° ot
(1905, 11)® = ( [ om0 d“)

= (log(1/r))™ (// WO 5“|Q s@1 s da(u))Ql_l.

We use again the homogeneity of N: N (d,u) = s which implies |VoN (d,u)| = |VoN (u)|. We
obtain

(I¥ofil1Q)?" = (log(1/r) ™" (e@)?" .
Using (4.9) and the fact that f, =1 on B, we have

B,
||B|| exp (68?—1 10g(1/7‘)) S Co .

Since |B,|/|B| = r? = exp(—Q log(1/r)) we conclude that

1
&

B=Qcy
exp | ——=—— log(1/r) | < ¢ forany 0 <r < 1.
Q

This implies that 8 < ch_l = Ag.
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