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Abstract. We prove that the optimal cluster problem for the sum of the first Robin
eigenvalue of the Laplacian, in the limit of a large number of convex cells, is asymptot-
ically solved by (the Cheeger sets of) the honeycomb of regular hexagons. The same
result is established for the Robin torsional rigidity.

1. Introduction and statement of the results

Given an open bounded Lipschitz domain Ω in R2 and a real parameter β 6= 0, we denote
by λ1(Ω, β) and τ(Ω, β) the first Robin eigenvalue of the Laplacian in Ω and the Robin
torsional rigidity of Ω with coefficient β. They are defined as

(1) λ1(Ω, β) := min
u∈H1(Ω)\{0}

∫
Ω |∇u|

2 + β
∫
∂Ω u

2∫
Ω u

2
, τ−1(Ω, β) := min

u∈H1(Ω)\{0}

∫
Ω |∇u|

2 + β
∫
∂Ω u

2( ∫
Ω |u|

)2 .

For the eigenvalue problem, the corresponding Euler-Lagrange equation is given by{
−∆u = λ1(Ω, β)u in Ω
∂u
∂ν + βu = 0 on ∂Ω .

For the torsional rigidity, the Euler-Lagrange equation requires more attention (see for
instance [2]), specifically in the case β < 0. For positive β, the minimizer solves{

−∆u = 1 in Ω
∂u
∂ν + βu = 0 on ∂Ω

while for negative β, the Euler-Lagrange equation may involve a free boundary problem. It
is not the purpose of the present paper to discuss this issue, as we focus only on the energy
values defined in (1). Without any attempt of completeness, we refer to [9, 10, 11] for some
recent papers in shape optimization involving free boundaries with Robin conditions.
While there is a wide literature about optimal partitions for the first Dirichlet Laplacian
eigenvalue (see for instance [3, 4, 6, 15, 16, 23, 24, 25, 31]), to the best of our knowledge the
study of the same kind of problem for the first Robin Laplacian eigenvalue is a completely
unexplored field.
Object of this paper are the optimization problems

rk(Ω, β) =


inf
{∑k

i=1 λ(Ei, β) : {Ei} ∈ Ck(Ω)
}

if β > 0

sup
{∑k

i=1 λ(Ei, β) : {Ei} ∈ Ck(Ω)
}

if β < 0
(2)
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where Ck(Ω) denotes the class of convex k-clusters Ω ⊂ R2, meant as families of k convex
bodies contained into Ω and having mutually disjoint interiors, and, for any β ∈ R \ {0},
λ(Ω, β) may be either λ1(Ω, β) or τ−1(Ω, β).
We are interested in particular in the asymptotic behaviour of rk(Ω, β) in the limit as
k → +∞. Our main motivation is a conjecture due to Caffarelli and Lin [12] which
predicts that, for the analogous problems in which λ(Ω, β) is replaced by the first Dirichlet
Laplacian eigenvalue, an optimal configuration is asymptotically given by a packing of
regular hexagons, similarly to the case of perimeter minimizing partitions settled by Hales
in the celebrated paper [22] (see also [14] for a quantitative formulation).
Very recently, in [8] this conjecture has been proved to hold if one takes the Cheeger
constant in place of the Dirichlet eigenvalue, and the cells of the partitions are a priori
assumed to be convex. Recall that the Cheeger constant of Ω (about which a detailed
account can be found for instance in [28, 29]) is defined by

(3) h(Ω) := inf

{
Per(E,R2)

|E|
: E measurable , E ⊆ Ω

}
,

where Per(E,R2) denotes the perimeter of E in the sense of De Giorgi.
Clearly, the fact that the notion of Cheeger constant is purely geometrical makes the
analysis of optimal partitions, started by Caroccia in [13], much more manageable with
respect to the case of eigenvalues. Nevertheless, the approach proposed in [8] does not rely
specifically on the definition of h(Ω), but rather on the validity of a discrete Faber-Krahn
inequality (which in case of the Cheeger constant has been proved in [7]) and on some
other geometric properties, like the monotonicity upon inclusions of sets and a scaling
behaviour; and in fact, the proof given in [8] adapts also to other shape functionals for
which a polygonal version of Faber-Krahn inequality is available, such as for instance a
power of perimeter or the logarithmic capacity (see [32]).
Now, a polygonal Faber-Krahn inequality for eigenvalues of the Laplacian is a long-
standing conjecture by Pólya, for which a proof is still missing (see for instance [26]);
thus the conjecture by Caffarelli-Lin remains open.
Under Robin boundary conditions, neither for the first Laplacian eigenvalue nor for tor-
sional rigidity, polygonal isoperimetric inequalites are known (even for triangles); further-
more, neither λ1(Ω, β) nor τ(Ω, β) behave monotonically under inclusions. At this point,
our results about the honeycomb conjecture for such Robin functionals should sound some-
what unexpected. We stress that we keep the assumption that the cells of the partitions
are convex. In case of the first Robin eigenvalue, we prove:

Theorem 1. Let rk(Ω, β) be defined by (2), with λ(Ω, β) := λ1(Ω, β). Then there holds

lim
k→+∞

|Ω|1/2

k3/2
rk(Ω, β) = βh(H) ,

where h(H) denotes the Cheeger constant of the unit area regular hexagon.

Theorem 1 is obtained as a consequence of the analogous result proved in [8] for the
Cheeger constant, combined with a tight control of the Robin eigenvalues in terms of
the quotient perimeter over area (cf. Proposition 9 below) when the number of cells is
increasing. The idea is that, when there is a great amount of cells Ei, thanks to the
non-scale invariance of the Robin eigenvalue, for a sufficiently large number of indices i,
the value of λ1(Ei, β) turns out to be comparable to β|∂Ei|/|Ei|, so that the partition
behaves like a Cheeger one. From a technical point of view, the key point is to prove that
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this comparison can be made uniform, except for a negligible number of cells, which do
not affect the asymptotical behavior as k → +∞.
In case of the Robin torsional rigidity, we prove:

Theorem 2. Let rk(Ω, β) be defined by (2), with λ(Ω, β) := τ−1(Ω, β). Then there holds

lim
k→+∞

|Ω|1/2

k3/2
rk(Ω, β) = βh2(H) ,

where h2(H) denotes the 2-Cheeger constant of the unit area regular hexagon.

The notion of 2-Cheeger constant appearing in the statement of Theorem 2 is a variant of
the classical definition (3) of Cheeger constant; precisely, the 2-Cheeger constant of a set
Ω is given by

(4) h2(Ω) := inf

{
Per(E,R2)

|E|2
: E measurable , E ⊆ Ω

}
.

This generalization of Cheeger constant has already appeared in the literature, actually
with the square of volume replaced by an arbitrary power with exponent α > 1/2, see
[18, 19, 30].
In the same fashion as Theorem 1 is obtained by applying the analogous result proved in [8]
for the Cheeger constant, combined with a tight control of the Robin eigenvalues in terms
of the quotient perimeter over area, Theorem 2 is obtained by applying the analogous
result for the 2-Cheeger constant, combined with a tight control of the Robin torsion in
terms of the quotient perimeter over the square of the area. Actually, in order to prove
Theorem 1, we need as a first step to settle a honeycomb-type result for the 2-Cheeger
constant analogous to the one proved in [8] for the Cheeger constant. In turn, this requires
to obtain a discrete Faber-Krahn inequality for the 2-Cheeger constant in the vein of [7]
(but dealing just with convex polygons).
As a consequence of Theorems 1 and 2, we can also determine the asymptotic behaviour
of similar problems where the energy is of supremal rather than additive type. Setting

Rk(Ω, β) =


inf
{

max
i=1,...,k

λ(Ei, β) : {Ei} ∈ Ck(Ω)
}

if β > 0

sup
{

min
i=1,...,k

λ(Ei, β) : {Ei} ∈ Ck(Ω)
}

if β < 0 .
(5)

we have:

Corollary 3. (i) If Rk(Ω, β) is defined by (5), with λ(Ω, β) := λ1(Ω, β), there holds

lim
k→+∞

|Ω|1/2

k1/2
Rk(Ω, β) = βh(H) ;

(ii) If Rk(Ω, β) is defined by (5), with λ(Ω, β) := τ−1(Ω, β), there holds

lim
k→+∞

|Ω|1/2

k1/2
Rk(Ω, β) = βh2(H) .

The detailed proofs of our results are presented hereafter with the following outline.
In Section 2, we provide some results about the 2-Cheeger constant which may have an
autonomous interest, by showing by particular that it satisfies the honeycomb conjecture
(with convex cells).
In Section 3, we establish some intermediate results towards the proofs of Theorems 1 and
2, which are crucial to make the connection between optimal Robin partitions and optimal
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Cheeger partitions: they consist essentially in settling good upper and lower bounds for
λ1(Ω, β) and τ(Ω, β) in terms of geometrical quantities, holding under the assumption
that the domain Ω is convex. Actually, in case of the Robin Laplacian eigenvalue and for
β > 0, an alternative simpler proof can be obtained by exploiting for the lower bound
more rough inequalities not requiring convexity; nevertheless, since this direct approach is
somehow related to the first eigenvalue and does not work for the Robin torsional rigidity,
we preferred to follow the same guideline for both cases (see the final Remark 15 for more
detailed comments in this direction).
Sections 4, 5, and 6 contain respectively the proofs of Theorems 1, Theorem 2 and Corollary
3.

2. An auxiliary result about optimal 2-Cheeger partitions

The 2-Cheeger constant shares many features with the classical one. For instance, it is
easy to check, by using the same arguments as for the classical Cheeger constant, that a 2-
Cheeger set C2(Ω) (namely a solution to problem (4)) always exists; moreover a 2-Cheeger
set is connected, its boundary is of class C1 and meets necessarily ∂Ω (and this occurs

tangentially), and ∂C2(Ω) ∩ Ω is made by arcs of circle (of radius
(
2|C2(Ω)|h2(Ω)|

)−1
).

We refer the interested reader to the proofs given in [30] for a similar notion of α-Cheeger
constant.
In this section we present some focused results about the 2-Cheeger constant, with the
final scope of proving that it satisfies the honeycomb conjecture under convexity constraint
on the cells, thus extending the result proved in [8] for the classical Cheeger constant.
We consider the following shape optimization problem, where Pn denotes the class of
convex polygons with at most n sides:

(6) min
{
|Ω|3/2h2(Ω) : Ω ∈ Pn

}
.

Notice that, since the functional Ω 7→ h2(Ω) is homogenoues of degree −3 under dilations,

multiplying it by |Ω|3/2 we find a scale invariant functional. In particular, it turns out that
problem (6) is well-posed. Moreover, in the next lemma we establish that the 2-Cheeger
radius of an optimal polygon is uniquely determined through an explicit representation
formula involving just three geometrical quantities: |∂Ω|, |Ω|, and the functional Λ(Ω)
defined by

(7) Λ(Ω) :=
∑
i

cot
(θi

2

)
.

being θ1, . . . , θN the inner angles of Ω. The analogous result for the Cheeger constant can
be found in [7], in a more general setting not requiring convexity.

Lemma 4. There exists a solution to problem (6), and any optimal polygon Ω admits a
unique 2-Cheeger set C2(Ω), which is determined by the equality

(8) ∂C2(Ω) ∩ Ω =
⋃{

Γα : α ∈ Θ(Ω)
}
,

where Θ denotes the family of inner angles of Ω and, for any α ∈ Θ, Γα is an arc of circle
tangent to the two sides of ∂Ω forming the angle α, of radius

(9) r2(Ω) =
|Ω|

|∂Ω|+
√
|∂Ω|2 − 3|Ω|

(
Λ(Ω)− π

) .
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Moreover, the 2-Cheeger constant of Ω is given by

(10) h2(Ω) =
|∂Ω| − 2r2(Ω)

(
Λ(Ω)− π

)[
|Ω| − (r2(Ω))2

(
Λ(Ω)− π

)]2 .
Proof. The existence of an optimal polygon is straightforward: since we minimize over a
closed subclass of the class of convex polygons a continuous and dilation invariant func-
tionals, it is enough to apply the direct method of the Calculus of Variations working with
the Hausdorff convergence.
In order to get the equality (8), assume that Ω ∈ PN is a solution to problem (6), and let
C2(Ω) be a 2-Cheeger set of Ω. Then it is readily seen that C2(Ω) must touch every side
of Ω. (Namely, if by contradiction there exists a side which is not touched by C2(Ω), we

could construct a domain Ω̃, still belonging to PN , such that that C2(Ω) ⊂ Ω̃ ⊂ Ω. Then

|Ω̃| < |Ω| and h2(Ω̃) = h2(Ω), so that |Ω|3/2h2(Ω) > |Ω̃|3/2h2(Ω̃), against the optimality
of Ω).
As a consequence of the facts that C2(Ω) meets every side of Ω and it is connected,
we obtain that all the arcs of circle contained into ∂C2(Ω) ∩ Ω must be tangent to two
consecutive sides of Ω.
Let us show that, for any α ∈ Θ(Ω), there exists an arc of type Γα such that Γα ⊆
∂C2(Ω)∩Ω. Let α ∈ Θ(Ω) be fixed, and let Ωα,r be the domain obtained by “smoothing”
the corner α by means of an arc of cirumference of radius r, tangent to the two sides of
∂Ω forming the angle α. It is readily seen by geometric arguments that, for r sufficiently
small,

Per(Ωα,r,Ω) = |∂Ω| − 2r cot
(α

2

)
+ (π − α)r

and

|Ωα,r| = |Ω| − r2 cot
(α

2

)
+
(π − α

2

)
r2 .

Then,

Per(Ωα,r)

|Ωα,r|2
=
|∂Ω| − 2r

[
tan

(
π−α

2

)
− (π−α2 )

]{
|Ω| − r2

[
tan

(
π−α

2

)
−
(
π−α

2

)]}2 .

Since the term in squared parenthesis is positive, we immediately see that the inequality
Per(Ωα,r)
|Ωα,r|2 < |∂Ω|

|Ω|2 is satisfied for r sufficiently small.

In order to get the optimal radius, we have to minimize the function

f(r) :=

|∂Ω| − 2r
[ ∑
α∈Θ(Ω)

[
tan

(
π−α

2

)]
− π−α

2

]
{
|Ω| − r2

[ ∑
α∈Θ(Ω)

[
tan

(
π−α

2

)]
− π−α

2

]}2 =
|∂Ω| − 2r

(
Λ(Ω)− π

){
|Ω| − r2

(
Λ(Ω)− π

)}2 .

In a neigbourhood of an optimal radius, this function is equal to or larger than the 2-
Cheeger constant of Ω. In particular, we point out that f(r) is strictly larger than h2(Ω)
if r is above the critical value r for which two distinct arcs, each one tangent to two sides
of ∂Ω, lie on the same circumference (this can be easily seen by taking as a test in the
definition of h2(Ω) the intersection of the two sets obtained by smoothing two consecutive
angles by an arc of circumference of radius r + ε: the quotient between perimeter and
squared area of this test is strictly smaller than f(r + ε)).
Therefore, we proceed to determine the critical points of f .
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By studying the first derivative f ′(r), it is easy to see that f is increasing in the interval
(r−, r+) between the two roots of f ′,

r± :=
|Ω|

|∂Ω| ∓
√
|∂Ω|2 − 3|Ω|

(
Λ(Ω)− π

) ,
so that f attains its minimum at r−, which gives the value of the 2-Cheeger radius r2(Ω).
We have thus concluded the proof of (8)-(9), and (10) follows by definition.

�

Relying on Lemma 4, we obtain that the 2-Cheeger constant satisfies the following discrete
Faber-Krahn inequality on convex polygons:

Proposition 5. The regular n-gon solves problem (6), with corresponding infimum equal
to

(11) γ(n) :=

(
2
√
n tan

(
π
n

)
+
√
n tan

(
π
n

)
+ 3π

)3

8
(
n tan

(
π
n

)
+
√
n tan

(
π
n

)√
n tan

(
π
n

)
+ 3π + π

) .
Proof. Thanks to the Lemma 4, if Ω is an optimal polygon for problem (6), we can write

the cost functional h2(Ω)|Ω|3/2 as a function depending only on the isoperimetric quotient

I(Ω) := |∂Ω|
|Ω|1/2 and on the constant Λ(Ω) introduced in (7). Indeed, starting from the

equality (10), some straightforward computations give

h2(Ω)|Ω|3/2 = Φ(I(Ω),Λ(Ω)) ,

where

Φ(x, y) :=
x− 2(y−π)√

x2−3y+3π+x(
1− y−π(√

x2−3y+3π+x
)2
)2 .

We observe that Λ(Ω) and I(Ω) obey the inequalities

I2(Ω) ≥ 4Λ(Ω) ≥ 4Λ(Ω∗n) = 4n tan
(π
n

)
(> 4π) .

The former is the isoperimetric inequality for convex polygons (see for instance [17]), and
becomes an equality when the polygon is circumscribed to a disk; the latter, recalling the
definition of Λ(Ω), comes from the convexity of the map t 7→ cot(t) on the interval (0, π/2),
and becomes an equality whan all the inner angles of the polygon are equal.
We are thus led to minimize the function Φ(x, y) on the admissible region

An :=
{

(x, y) : x2 ≥ 4y ≥ 4n tan
(π
n

)}
.

We claim that the map y 7→ Φ(x, y) is decreasing. Indeed, let us show that

(12)
∂Φ(x, y)

∂y
= −x

3 + (x2 + 12π − 12y)
√
x2 − 3y + 3π

4 (x2 − 4y + 4π)2 ≤ 0 if (x, y) ∈ An ,

or equivalently that

(13) Ψ(x, y) := x3 + (x2 + 12π − 12y)
√
x2 − 3y + 3π ≥ 0 if (x, y) ∈ An .
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Since
∂Ψ(x, y)

∂y
= −

27
(
x2 − 4y + 4π

)
2
√
x2 − 3y + 3π

≤ 0 if (x, y) ∈ An ,

in order to obtain (13) it is enough to show that

η(x) := Ψ
(
x,
x2

4

)
= x3 + (6π − x2)

√
x2 + 12π ≥ 0 if x ≥ 2

√
n tan

(π
n

)
.

The latter inequality is readily checked, since the function η turns out to be monotone
decreasing, and satisfies the following asymptotic expansion as x→ +∞:

η(x)

x3
∼ 54π2

x4
+ o
( 1

x4

)
.

We have thus proved (12), yielding

Φ(x, y) ≥ Φ
(
x,
x2

4

)
=

(√
x2 + 12π + 2x

)3

16
(
x
(√

x2 + 12π + x
)

+ 4π
) =: ζ(x) .

Next we observe that the map x 7→ ζ(x) is increasing for x ≥ 2
√
n tan

(
π
n

)
. Indeed, we

have

ζ ′(x) =
3
(
x
(√

x2 + 12π − x
)

+ 12π
)

64π
≥ 0 if x ≥ 2

√
π .

We conclude that the minimum of Φ(x, y) over the region An is attained at

(xn, yn) :=
(

2

√
n tan

(π
n

)
, n tan

(π
n

)
)
,

corresponding to the case when the convex polygon Ω is at the same time circumscribed to
a disk and with all the inner angles equal, that is, Ω is the regular polygon. Accordingly,
the expression of γ(n) in (11) is found by evaluating Φ at (xn, yn).

�

Finally, we arrive at the following honeycomb-type result, which extends to the case of
the 2-Cheeger constant Corollary 9 in [8]:

Proposition 6. There holds

(14) lim
k→+∞

|Ω|3/2

k5/2
inf
{ k∑
i=1

h2(Ei) : {Ei} ∈ Ck(Ω)
}

= h2(H) ,

where h2(H) denotes the 2-Cheeger constant of the unit area regular hexagon.

Proof. The equality (14) follows by applying Theorem 2 in [8]. One has just check that as-
sumptions (H1), (H2), (H3) therein are fulfilled. Assumptions (H1) and (H2) are satisfied,
because the map Ω 7→ h2(Ω) is monotone decreasing under inclusions and homogeneous
of degree −3 under domain dilations. It remains to check assumptions (H3): according
to Remark 4 (ii) in [8], in view of Proposition 5, it is enough to check that the map

n 7→ γ(n)2/5 admits a decreasing and convex extension on [2,+∞). This can be done by
elementary computations by exploiting the explicit expression of γ(n) given in (11). �
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Corollary 7. There holds

(15) lim
k→+∞

|Ω|3/2

k5/2
inf
{ k∑
i=1

|∂Ei|
|Ei|2

: {Ei} ∈ Ck(Ω)
}

= h2(H) ,

where h2(H) denotes the 2-Cheeger constant of the unit area regular hexagon.

Proof. Set mk(Ω) and m̃k(Ω) the infima at the r.h.s. of (15) and (14) respectively. The
corollary follows straigthforward from Proposition 6 by noticing that mk(Ω) = m̃k(Ω). In-
deed, let {Ei} ∈ Ck(Ω). The inequality h2(Ei) ≤ |∂Ei|/|Ei|2 yields immediately m̃k(Ω) ≤
mk(Ω). Conversely, since h2(Ei) = |∂C(Ei)|/|C(Ei)|2, there holds

∑
i h2(Ei) ≥ mk(Ω),

which yields m̃k(Ω) ≥ mk(Ω). �

3. Some intermediate results

We proceed separately in the cases of λ1(Ω, β) and τ−1(Ω, β). The results of this section
heavily rely on some works by Giorgi-Smits and Sperb in the former case, and by Keady-
McNabb in the latter case (see [20, 21, 27, 33]).

3.1. Preliminaries to the proof of Theorem 1.

Remark 8. It will be useful to keep in mind the following scaling law, which can be easily
checked by change of variables:

(16) λ1(tE, β) =
1

t2
λ1(E, tβ) ∀t > 0 .

Proposition 9. [upper and lower bounds for λ1(Ω, β)] Let E be an open bounded Lipschitz
set, and let µ2(E) denote the first nonzero eigenvalue of the Neumann Laplacian in E.
There holds:

λ1(E, β) ≤ β |∂E|
|E|

∀β ∈ R \ {0}(17)

λ1(E, β) ≥ 1
1

µ2(E) + |E|
β|∂E|

∀β > 0(18)

lim
β→0

λ1(E, β)

β
=
|∂E|
|E|

.(19)

Proof. The upper bound (17) is trivially obtained by taking as a test function u ≡ 1 in
the definition of λ1(E, β). The lower bound (18) is due to Sperb, see [33]. The asymptotic
behaviour (19) is a direct consquence of (17)-(18) in case β → 0+ but requires a further
control from below in case β → 0−, see for instance [20, eq.(5)]. �

Proposition 10. [estimate of λ1(Ω, β) by the width] Assume β > 0. Let E be an open
bounded convex set, and let w(E, ξ) denote the width of E in some fixed direction ξ (i.e.,
the distance between two support planes of E orthogonal to ξ). For every δ > 0, there
exists a positive constant C1 = C1(β, δ) such that

w(E, ξ) < δ ⇒ λ1(E, β) ≥ C1

w(E, ξ)
.
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Proof. Throughout the proof, we write for brevity w in place of w(E, ξ). We proceed in
two steps. First we obtain the inequality

(20) λ1(E, β) ≥ 1

w2
λ1(I, wβ)

where I = (−1/2, 1/2) denotes the unit interval of the real line (and its Robin eigenvalue
is meant in dimension 1) and then we show that the quotient

(21)
λ1(I, wβ)

w

admits a positive finite limit as w → 0+.
To prove (20), we slice E in the direction ξ. Namely, we denote by Eξ the projection of E

onto the direction ξ⊥, and for every x ∈ Eξ we set (ax, bx) := E ∩ (x + Rξ). By Fubini’s
Theorem, if u is a first eigenfunction for λ1(E, β), we have

λ1(E, β) =

∫
E |∇u|

2 + β
∫
∂E u

2∫
E u

2

≥

∫
Eξ

∫ bx
ax
|∇u|2(x, y) dy dx+ β

∫
Eξ

[u2(ax) + u2(bx)] dx∫
Eξ

∫ bx
ax
u2(x, y) dy dx

≥ min
x∈Eξ

∫ bx
ax
|∇u|2(x, y) dy + β[u2(ax) + u2(bx)]∫ bx

ax
u2(x, y) dy

≥ min
x∈Eξ

λ1((ax, bx), β) ≥ λ1

((
− w

2
,
w

2

)
, β
)

=
1

w2
λ1(I, wβ) .

where in the last line we have used the decreasing monotonicity of the map B 7→ λ1(B, β)
holding for balls B for any β > 0, and the scaling property (16).
To compute the limit of the quotient in (21), we solve the b.v.p. which defines λ :=
λ1(I, α), that is we search for an even function on I which satisfies{

−u′′ = λu in I

u′
(

1
2

)
+ αu

(
1
2

)
= 0 .

We have u(x) = cos(
√
λx), and imposing the boundary condition we get the following

relation between α and λ:

(22)
α2

λ+ α2
= sin2

(√λ
2

)
.

In the limit as α → 0, we have λ → 0; moreover, dividing (22) by λ and passing to the
limit as α→ 0, we get

(23) lim
α→0

α2

λ(λ+ α2)
=

sin2
(√

λ
2

)
λ

=
1

4
.

We observe that α2 = o(λ); indeed, using (22), we see that

4α2

λ
∼ α2

sin2
(√

λ
2

) = λ+ α2 → 0 .



10

Therefore, (23) can be rewritten as

lim
α→0

α2

λ2 + o(λ2)
=

1

4
,

yielding limα→0
α
λ = 1

2 . We conclude that

lim
w→0

λ1(I, wβ)

w
= 2β.

�

3.2. Preliminaries to the proof of Theorem 2.

Remark 11. The Robin torsion satisfies a scaling law analogue to (16), which in this case
reads:

(24) τ−1(tE, β) =
1

t4
τ−1(E, tβ) ∀t > 0 .

Proposition 12. [upper and lower bounds for τ−1(Ω, β)] Let E be an open bounded Lips-
chits set with unit outer normal ν, and let Σ∞(E) :=

∫
E u∞, being u∞ the unique solution

to the boundary value problem 
−∆u = 1 in E

uν = − |E||∂E| on ∂E∫
∂E u = 0 .

There holds:

τ−1(E, β) ≤ β |∂E|
|E|2

∀β ∈ R \ {0}(25)

τ−1(E, β) ≥ 1

Σ∞(E) + |E|2
β|∂E|

∀β > 0(26)

lim
β→0

τ−1(E, β)

β
=
|∂E|
|E|2

.(27)

For the proof of Proposition 12 we need the following result; similar statements for the
first Robin eigenvalue can be found in [1, Lemma 1] and [21, Lemma 2.2].

Lemma 13. Let E be an open bounded Lipschitz domain.

(i) There exists a constant ME such that∫
∂E
u2 ≤

∫
E
|∇u|2 +ME

(∫
E
|u|
)2

∀u ∈ H1(E) .

(ii) One can find ηE > 0 such that, for every η ≥ ηE, there exists a constant C(η) > 0,
infinitesimal as η → +∞, such that∫

∂E
u2 ≤ η

∫
E
|∇u|2 +

|∂E|
|E|2

(
1 + C(η)

)( ∫
E
|u|
)2

∀u ∈ H1(E) .
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Proof. (i) By Lemma 1 in [1], there exists a constant C > 0 such that∫
∂E
u2 ≤ 1

2

∫
E
|∇u|2 + C

∫
E
u2 ∀u ∈ H1(E) .

Then it is enough to show the following claim: for any given C > 0, there exists M > 0
sufficiently large such that

(28) C

∫
E
u2 ≤ 1

2

∫
E
|∇u|2 +M

(∫
E
|u|
)2

∀u ∈ H1(E) .

The claim is readily cheked by contradiction. Assume there exists a sequence Mn → +∞
such that, for every n ∈ N, there exists un ∈ H1(E), with

∫
E u

2
n = 1, satisfying

(29) C ≥ 1

2

∫
E
|∇un|2 +Mn

(∫
E
|un|

)2
.

Then the sequence {un} turns out to be bounded in H1(E) so that, up to passing to a (not
relabeled) subsequence, it converges to some function u weaky in H1(E) and strongly both
in L1(E) and L2(E). Recalling that

∫
E u

2
n = 1 for every n, we find

∫
E u

2 = 1, whereas
recalling that Mn → +∞, the inequality (29) implies

∫
E |u| = 0, contradiction.

(ii) We proceed by contradiction. If statement (ii) is false, we can find δ > 0 and a sequence
{un} ⊂ H1(E) such that, for every n ∈ N,∫

∂E
u2
n ≥ n

∫
E
|∇un|2 +

|∂E|
|E|2

(1 + δ)
(∫

E
|un|

)2
.

The above inequality implies in particular that
∫
E |∇un|

2 6= 0 for every n ∈ N (otherwise
un is constant and we get a contradiction since δ > 0). Then we can define the functions
vn := un( ∫

E |∇un|2
)1/2 , which satisfy

(30)

∫
∂E
v2
n ≥ n+

|∂E|
|E|2

(1 + δ)
(∫

E
|vn|
)2
.

On the other hand, from statement (i), and taking into account that
∫
E |∇vn|

2 = 1, we
know that

(31)

∫
∂E
v2
n ≤ 1 +ME

(∫
E
|vn|
)2
.

Combining the two inequalities (30) and (31), we obtain a contradiction concluding the
proof, provided we are able to show that the sequence

∫
E |vn| remains bounded. Assume

this is not the case. Then, the sequence wn := vn∫
E |vn|

satisfies
∫
E |∇wn|

2 → 0. Since∫
E |wn| = 1, by exploiting claim (28) obtained above in the proof of statement (i), we

infer that that {wn} remains bounded in H1(E). Hence, up to subsequences, it converges
weakly in H1(E) and strongly in L1(E) to some limit w which satisfies

∫
E |w| = 1 and∫

E |∇w|
2 = 0. It follows that w is uniquely determined as 1

|E| . By uniqueness of this limit,

the whole sequence turns out converge strongly in H1(E) to w, and hence also strongly
in L2(∂E). Then (30) implies

|∂E|
|E|2

= lim
n

∫
∂E
w2
n ≥
|∂E|
|E|2

(1 + δ) ,

contradiction.
�
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Proof of Proposition 12. For the upper bound (25), it’s enough to take u ≡ 1 in the
definition of τ−1(E, β). The lower bound (26) is due to Keady-McNabb, see [27, inequality
(4.9)]. Let us prove the asymptotic behaviour (27). The limit as β → 0+ is obtained
immediately by combining the bounds (25) and (26). It remains to compute the limit

as β → 0−. The inequality lim inf
β→0−

τ−1(E,β)
β ≥ |∂E||E|2 follows immediately from (25). Let us

show the converse inequality for the limsup. To that aim, we apply Lemma 13 by choosing
η = − 1

β and taking as a function u the solution to the Robin torsion problem, normalized

so that
∫
E |u| = 1. We obtain

τ−1(E, β)

β
=

∫
∂E
u2 +

1

β

∫
E
|∇u|2 ≤ |∂E|

|E|2
(
1 +C

(
− 1

β

))( ∫
E
|u|
)2

=
|∂E|
|E|2

(
1 +C

(
− 1

β

))
.

It follows that lim sup
β→0−

τ−1(E,β)
β ≤ |∂E||E|2 as required. �

Proposition 14. [estimate by the width] Assume β > 0. Let E be an open bounded
convex set, and let w(E, ξ) denote the width of E in some fixed direction ξ (i.e., the
distance between two support planes of E orthogonal to ξ). For every δ > 0, there exists a
positive constant C1 = C1(β, δ) such that

w(E, ξ) < δ ⇒ τ−1(E, β) ≥ C1

w3(E, ξ)
.

Proof. We proceed in a similar way as in the proof of Proposition 10. We still set w :=
w(E, ξ), and I := (−1/2, 1/2), and we proceed again in two steps, showing first that

(32) τ−1(E, β) ≥ 1

w4|Eξ|
τ−1(I, wβ)

and second that the quotient

(33)
τ−1(I, wβ)

w

admits a positive finite limit as w → 0+.
To prove (32), we proceed by slicing. With the same notation as in the proof of Proposition
10, by using Fubini’s Theorem and Hölder inequality, if u is the solution to the Robin
torsion problem, we have

τ−1(E, β) =

∫
E |∇u|

2 + β
∫
∂E u

2( ∫
E |u|

)2

≥

∫
Eξ

∫ bx
ax
|∇u|2(x, y) dy dx+ β

∫
Eξ

[u2(ax) + u2(bx)] dx( ∫
Eξ

∫ bx
ax
|u(x, y)| dy dx

)2

≥ 1

|Eξ|
min
x∈Eξ

∫ bx
ax
|∇u|2(x, y) dy + β[u2(ax) + u2(bx)]( ∫ bx

ax
|u(x, y)| dy

)2

≥ 1

|Eξ|
min
x∈Eξ

τ−1((ax, bx), β) ≥ 1

|Eξ|
τ−1

((
− w

2
,
w

2

)
, β
)

=
1

w4|Eξ|
λ1(I, wβ) .
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where in the last line we have used the decreasing monotonicity of the map B 7→ τ−1(B, β)
holding for balls B for any β > 0, and the scaling property (24).
To compute the limit of the quotient in (33), we solve the b.v.p. which defines τ−1(I, α),
that is we search for an even function on I which satisfies{

−u′′ = 1 in I

u′
(

1
2

)
+ αu

(
1
2

)
= 0 .

We find u(x) = −x2

2 + 1
2α + 1

8 , with
∫
I u(x) dx = 1

12 + 1
2α .

We conclude that

lim
w→0

τ−1(I, wβ)

w
= lim

w→0

1

w

1
1
12 + 1

2wβ

= 2β .

�

4. Proof of Theorem 1

We start from the following fact: setting

(34) mk(Ω) = inf
{ k∑
i=1

|∂Ei|
|Ei|

: {Ei} ∈ Ck(Ω)
}

there holds

(35) lim
k→+∞

|Ω|1/2

k3/2
mk(Ω) = h(H)

This is obtained immediately by applying Corollary 9 in [8], and arguing as in the proof
of Corollary 7.
We now proceed separately in the two cases β > 0 and β < 0, assuming without loss of
generality that |Ω| = 1.

• Case β > 0.

In view of (17) in Proposition 9 and (35) , we have

(36) lim sup
k→+∞

rk(Ω, β)

k3/2
≤ lim sup

k→+∞
β
mk(Ω)

k3/2
= βh(H)

We are going to show that

(37) lim inf
k→+∞

rk(Ω, β)

k3/2
≥ lim inf

k→+∞
β
mk(Ω)

k3/2
= βh(H)

By (36) , we can choose k sufficiently large so that, for every k ≥ k, it holds

(38)
rk(Ω, β)

k3/2
≤ 2βh(H) .

Then, for every k ≥ k, we let {ω∗1, . . . , ω∗k} be a convex cluster in Ω such that

(39)
k∑
i=1

λ1(ω∗i , β) ≤ rk(Ω, β) + 1
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For a given ε > 0, we introduce the class of convex bodies such that the ratio between the
width in a direction orthogonal to a diameter and the diameter is at least ε. We denote
it by

Conv(ε) :=
{

E ∈ K2 :
w(E , ξ)

diam(E )
≥ ε for some ξ ∈ S1 orthogonal to a diameter

}
.

Then we consider the following families of indices associated with the clusters {ω∗1, . . . , ω∗k}
θk,ε :=

{
i ∈ {1, . . . , k} : ω∗i ∈ Conv(ε)

}
, θck ,ε :=

{
1 , . . . , k

}
\ θε .

We can estimate rk(Ω;β) from below as follows

(40) 1 + rk(Ω, β) ≥
k∑
i=1

λ1(ω∗i , β) ≥
∑
i∈θk,ε

λ1(ω∗i , β) .

We are thus led to introduce the auxiliary problems

(41) rk,ε(Ω, β) := inf
{ ∑
i∈θk,ε

λ1(Ei, β) : {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}
.

In order to show (37), we are going to exploit the lower bound (40), and to estimate from
below rk,ε(Ω, β) in terms of the corresponding auxiliary problems

(42) mk,ε(Ω) := inf
{ ∑
i∈θk,ε

|∂Ei|
|Ei|

: {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}
.

We divide the remaining of the proof in three steps.

Step I: for k large enough, it holds

(43) ]θk,ε ≥ (1− Cε1/3)k ,

where C stands for a positive constant, not depending on k nor on ε. Consequently,

(44) lim
k→+∞

mk,ε(Ω)

(]θk,ε)3/2
= h(H) .

Let us first observe that (44) is a straightforward consequence of (43). Indeed, by definition
it is clear that mk,ε(Ω) ≥ mk(Ω) On the other hand, provided ε < 1/2, we have H ∈
Conv(ε), so that a configuration which is asymptotically optimal, in the limit as k → +∞,
for mk(Ω) is admissible for mk,ε(Ω). This yields (44) since, by (43), we know that ]θk,ε ∼ k
as k → +∞.
In order to estimate the cardinality of θk,ε, we first obtain a bound on the width of the
cells ω∗i and Ω∗i . Hereafter we denote for brevity di and wi the diameter of such cells, and
their width in the direction orthogonal to a diameter.
We have

(45) 1 = |Ω| ≥
k∑
i=1

|ω∗i | ≥
1

2

k∑
i=1

diwi ≥
1

2

∑
i∈θcε

w2
i

ε

where we have used the fact that, by convexity, the area of each cell is bounded from
below by (diwi)/2 and the fact that, by definition, for cells in θck,ε, it holds di ≥ wi/ε.
Now we must proceed to estimate the cardinality of θk,ε.
Starting from (45) and using Proposition 10, the elementary inequality between the 2-mean
and the (−1)-mean, inequality (39), and inequality (38), we obtain, for k large enough:
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1 ≥ 1

2ε

∑
i∈θck,ε

w2
i ≥

C2
1

2ε

∑
i∈θck,ε

( 1

λ1(ω∗i , β)

)2

≥ C2
1

2ε

(]θck,ε)
3( ∑

i∈θck,ε

λ1(ω∗i , β)
)2 ≥

C2
1

2ε

(]θck,ε)
3(

3βh(H)k3/2
)2 .

Hence inequality in (43) is satisfied, for k large enough, with C =
(

18β2h2(H)
C2

1

)1/3
.

Step II: For k large enough, the infima rk,ε(Ω, β) and mk,ε(Ω, β) introduced in (41) and
(42) satisfy

(46) lim inf
k→+∞

rk,ε(Ω, β)

k3/2
≥ (1− ε)β lim inf

k→+∞

mk,ε(Ω)

k3/2
.

Let {Ei} be a cluster in C]θk,ε(Ω), with Ei ∈ Conv(ε). In order to estimate λ1(Ei, β), we
introduce the following constant depending only on ε:

Kε := inf
{
µ2(E)|E| : E ∈ Conv(ε)

}
.

Notice that Kε is strictly positive (and attained) because the family Conv(ε) is closed in
the Hausdorff topology. Then we distinguish the cells of the cluster {Ei} into two disjoint
subclasses, in which we are able to provide respectively a lower and an upper bound for
λ1(Ei, β).

Class 1 : cells with β|∂Ei| ≤ εKε. For such cells, it holds

(47) λ1(Ei, β) ≥ (1− ε)β |∂Ei|
|Ei|

.

Namely, using the lower bound (18) given by Proposition 9, we have

λ1(Ei, β) ≥ 1
1

µ2(Ei)
+ |Ei|

β|∂Ei|

= β
|∂Ei|
|Ei|

(
1− β|∂Ei|

β|∂Ei|+ µ2(Ei)|Ei|

)
.

Therefore, the required estimate (47) is satisfied provided

β|∂Ei|
β|∂Ei|+ µ2(Ei)|Ei|

≤ ε ,

which holds for cells of Class 1, as the inequality β|∂Ei| ≤ εKε ≤ εµ2(Ei)|Ei| is in
force.

Class 2 : cells with β|∂Ei| > εKε. For such cells, it holds

(48) λ1(Ei, β) ≤ β |∂Ei|
|Ei|

≤ 32β2

ε2Kε
.

Namely, using the upper bound (17) given by Proposition 9, and the elementary
estimates |∂Ei| ≤ 4di, |Ei| ≥ 1

2diwi (being di the diameter of Ei, and wi its width
in a direction orthogonal to a diameter), we obtain

λ1(Ei, β) ≤ β |∂Ei|
|Ei|

≤ β 4di
1
2diwi

=
8β

wi
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Therefore, the required estimate (48) is satisfied provided

(49) wi ≥
ε2Kε

4β

which holds for cells of Class 2. Indeed for such cells the inequality 4diβ ≥ εKε

is in force, which yields di ≥ εKε
4β . In turn, the latter inequality implies (49) since

Ei ∈ Conv(ε).

Now we proceed to prove the estimate in (46). Let {Ei} be a cluster in C]θk,ε(Ω), with
Ei ∈ Conv(ε). We set for brevity

θ
(1)
k,ε({Ei}) :=

{
i ∈ θk,ε : Ei is of Class 1

}
θ

(2)
k,ε({Ei}) :=

{
i ∈ θk,ε : Ei is of Class 2

}
.

We start by noticing that, in the limit as k → +∞, the infimum which defines mk,ε(Ω)
has the same asymptotic behaviour if we restrict the the sum to indices in the family

θ
(1)
k,ε({Ei}). More precisely, we have:

(50)

lim inf
k→+∞

1

k3/2
inf
{ ∑
i∈θk,ε

|∂Ei|
|Ei|

: {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}

=

lim inf
k→+∞

1

k3/2
inf
{ ∑
i∈θ(1)k,ε({Ei})

|∂Ei|
|Ei|

: {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}
.

Indeed, on one hand we know from (43) and (44) that

(51) mk,ε(Ω) = inf
{ ∑
i∈θk,ε

|∂Ei|
|Ei|

: {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}
∼ h(H )k3/2 ;

on the other hand, for any admissible cluster {Ei} in C]θk,ε(Ω), with Ei ∈ Conv(ε), by
(48) we have

(52)
∑

i∈θ(2)k,ε({Ei})

|∂Ei|
|Ei|

≤ 32β

ε2Kε
k ,

where the quantity 32β
ε2Kε

is independent of k. Then (50) follows by (51) and (52).
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Now, exploiting (47) and (50), we obtain

lim inf
k→+∞

rk,ε(Ω, β)

k3/2
= lim inf

k→+∞

1

k3/2
inf
{ ∑
i∈θk,ε

λ1(Ei, β) : {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}

≥ lim inf
k→+∞

1

k3/2
inf
{ ∑
i∈θ(1)k,ε({Ei})

λ1(Ei, β) : {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}

≥ (1− ε)β lim inf
k→+∞

1

k3/2
inf
{ ∑
i∈θ(1)k,ε({Ei})

|∂Ei|
|Ei|

: {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}

= (1− ε)β lim inf
k→+∞

1

k3/2
inf
{ ∑
i∈θk,ε

|∂Ei|
|Ei|

: {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}

= (1− ε)β lim inf
k→+∞

mk,ε(Ω)

k3/2
.

Step III: The lower bound (37) holds true.

By (40), (43), and (46), we have

(53)

lim inf
k→+∞

1 + rk(Ω, β)

k3/2
= lim inf

k→+∞

rk,ε(Ω, β)

k3/2
≥ (1− ε)β lim inf

k→+∞

mk,ε(Ω)

k3/2

= (1− ε)β lim inf
k→+∞

(]θk,ε
k

)3/2 mk,ε(Ω)

(]θk,ε)3/2

≥ (1− ε)β
(
1− Cε1/3

)3/2
lim inf
k→+∞

mk,ε(Ω)

(]θk,ε)3/2
.

By (53) and (44), we conclude that

lim inf
k→+∞

rk(Ω, β)

k3/2
≥ (1− ε)β

(
1− Cε1/3

)3/2
h(H) .

Eventually, in the limit as ε→ 0+, we obtain (37).

• Case β < 0.
In view of inequality (17) given by Proposition 9 and the asymptotic equality (35), and
taking into account that β < 0, we have

lim sup
k→+∞

rk(Ω, β)

k3/2
= lim sup

k→+∞

1

k3/2
sup

{ k∑
i=1

λ1(Ei, β) : {Ei} ∈ Ck(Ω)
}

≤ lim sup
k→+∞

1

k3/2
sup

{ k∑
i=1

β
|∂Ei|
|Ei|

: {Ei} ∈ Ck(Ω)
}

= lim sup
k→+∞

β

k3/2
inf
{ k∑
i=1

|∂Ei|
|Ei|

: {Ei} ∈ Ck(Ω)
}

= lim sup
k→+∞

β mk(Ω)

k3/2
= βh(H) .
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To prove the converse estimate, since |Ω| = 1, we observe that for every ε > 0 there exists
kε such that for every k ≥ kε, the set Ω contains the convex k-cluster

(54)
{(1− ε

k

) 1
2
C(H) , . . . ,

(1− ε
k

) 1
2
C(H)

}
given by k copies of the Cheeger set C(H) of the unit area regular hexagon, each one
scaled so to have area 1−ε

k . Hence, using also the asymptotic behaviour (19) and the
scaling property (16), we get

lim inf
k→+∞

rk(Ω, β)

k3/2
= lim inf

k→+∞

1

k3/2
sup

{ k∑
i=1

λ1(Ei, β) : {Ei} ∈ Ck(Ω)
}

≥ lim inf
k→+∞

1

k3/2
k λ1

((1− ε
k

) 1
2
C(H), β

)
= lim inf

k→+∞

1

k3/2

k2

(1− ε)
λ1

(
C(H),

(1− ε)1/2β

k1/2

)
= lim inf

k→+∞

1

k3/2

k2

(1− ε)
(1− ε)1/2β

k1/2

|∂C(H)|
|C(H)|

=
1

(1− ε)1/2
βh(H) .

Since ε > 0 is arbitrary, the proof is concluded. �

5. Proof of Theorem 2

On the basis of the results established in Section 3.2, the proof of Theorem 2 proceeds
along the same line as the proof of Theorem 1. Hence we present it more concisely, often
referring to the proof of Theorem 1 whenever the two proofs are basically the same. We
still assume that |Ω| = 1, and we now set

(55) mk(Ω) = inf
{ k∑
i=1

|∂Ei|
|Ei|2

: {Ei} ∈ Ck(Ω)
}

• Case β > 0.

In view of inequality (25) in Proposition 12 and Corollary 7, we have

(56) lim sup
k→+∞

rk(Ω, β)

k5/2
≤ lim sup

k→+∞
β
mk(Ω)

k5/2
= βh2(H)

We have to prove that

(57) lim inf
k→+∞

rk(Ω, β)

k5/2
≥ lim inf

k→+∞
β
mk(Ω)

k5/2
= βh2(H) .

By (56), we can choose k sufficiently large so that, for every k ≥ k, it holds

(58)
rk(Ω, β)

k5/2
≤ 2βh2(H) .

Then, for every k ≥ k, we let {ω∗1, . . . , ω∗k} be a convex cluster in Ω such that

(59)
k∑
i=1

τ−1(ω∗i , β) ≤ rk(Ω, β) + 1 .
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For a given ε > 0, we introduce the class of convex bodies Conv(ε) defined as in the proof
of Theorem 1, and accordingly we consider the families of indices θk,ε associated with the
cluster {ω∗1, . . . , ω∗k} as done in such proof.

Also in the present setting, we have the lower bound

(60) 1 + rk(Ω, β) ≥
k∑
i=1

τ−1(ω∗i , β) ≥
∑
i∈θk,ε

τ−1(ω∗i , β) .

Hence we introduce the auxiliary problems:

rk,ε(Ω, β) := inf
{ ∑
i∈θk,ε

τ−1(Ei, β) : {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}

(61)

mk,ε(Ω) := inf
{ ∑
i∈θk,ε

|∂Ei|
|Ei|2

: {Ei} ∈ C]θk,ε(Ω) , Ei ∈ Conv(ε)
}
.(62)

We divide the remaining of the proof in three steps.

Step I: for k large enough, it holds

(63) ]θk,ε ≥ (1− Cε3/5)k ,

where C stands for a positive constant, not depending on k nor on ε. Consequently,

(64) lim
k→+∞

mk,ε(Ω)

(]θk,ε)3/2
= h(H) .

The equality (64) is deduced from (63) exactly in the same way as in the proof of Theorem
1. We proceed to prove the estimate (63). Denoting by di and wi the diameter of the
cells ω∗i or Ω∗i , and their width in the direction orthogonal to a diameter, we still have the
inequality obtained in (45), namely

(65) 1 ≥ 1

2

∑
i∈θcε

w2
i

ε
.

– Estimate of ]θk,ε. Starting from (65) and using Proposition 14, the elementary inequality

between the
(

2
3

)
-mean and the (−1)-mean, inequality (58), and inequality (59), we obtain,

for k large enough:

1 ≥ 1

2ε

∑
i∈θck,ε

w2
i ≥

C
2/3
1

2ε

∑
i∈θck,ε

τ2/3(ω∗i , β)

≥ C
2/3
1

2ε

(]θck,ε)
5/3( ∑

i∈θck,ε

τ−1(ω∗i , β)
)2/3

≥ C
2/3
1

2ε

(]θck,ε)
5/3(

3βh2(H)k5/2
)2/3

.

Hence inequality (63) is satisfied, for k large enough, with C =
(

72β2h22(H)

C2
1

)1/5
.
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Step II: For k large enough, the infima rk,ε(Ω, β), and mk,ε(Ω, β), introduced in (61)-(62)
satisfy

(66) lim inf
k→+∞

rk,ε(Ω, β)

k3/2
≥ (1− ε)β lim inf

k→+∞

mk,ε(Ω)

k3/2
.

Let {Ei} be a cluster in C]θk,ε(Ω), with Ei ∈ Conv(ε). In order to estimate τ−1(Ei, β), we
introduce the following constant depending only on ε:

Kε := inf
{

(Σ∞(E))−1|E|2 : E ∈ Conv(ε)
}
,

the constant Σ∞(E) being defined as in Proposition 12. We observe that Kε is strictly
positive and attained because the family Conv(ε) is closed in the Hausdorff topology, and
the functional (Σ∞(E))−1|E|2 is continuous and scale-invariant (indeed, Σ∞ is easily seen
from its definition to be homogeneous of degree 4 under dilations). Then we distinguish
the cells of the cluster {Ei} into the same two subclasses as in the proof of Theorem 1.

Class 1 : cells with β|∂Ei| ≤ εKε. For such cells, it holds

(67) τ−1(Ei, β) ≥ (1− ε)β |∂Ei|
|Ei|2

.

Namely, using the lower bound (26) given by Proposition 12, we have

τ−1(Ei, β) ≥ 1

Σ∞(Ei) + |Ei|2
β|∂Ei|

= β
|∂Ei|
|Ei|2

(
1− Σ∞(Ei)

Σ∞(Ei) + |Ei|2
β|∂Ei|

)
.

Therefore, the required estimate (67) is satisfied provided

Σ∞(Ei)

Σ∞(Ei) + |Ei|2
β|∂Ei|

≤ ε ,

which holds since cells of Class 1 satisfy β|∂Ei| ≤ εKε ≤ ε(Σ∞(Ei))
−1|Ei|2.

Class 2 : cells with β|∂Ei| > εKε. For such cells, it holds

(68) τ−1(Ei, β) ≤ β |∂Ei|
|Ei|2

≤ 45 β4

ε5K3
ε

.

Namely, using the upper bound (25) given by Proposition 12, the elementary
estimates |∂Ei| ≤ 4di, |Ei| ≥ 1

2diwi, and the fact that we are dealing with cells of
Class 2 in Conv(ε), which satisfy in particular 4diβ ≥ εKε, we get

τ−1(Ei, β) ≤ β |∂Ei|
|Ei|2

≤ β 4di
1
4d

2
iw

2
i

=
16β

diw2
i

≤ 16β

ε2d3
i

≤ 16β

ε2
(
εKε
4β

)3 =
45 β4

ε5K3
ε

.

Now, having at our disposal the bounds (67) and (68) for cells of Class 1 and Class 2
respectively, the estimate in (66) can be proved in the analogous way as in Theorem 1.
The idea is that the infimum which defines mk,ε(Ω) has the same asymptotic behaviour if
we restrict the the sum to indices i ∈ θk,ε({Ei}) such that Ei is of Class 1. It is enough
to follow the proof of (46), with the obvious modifications in the scaling factors, and
exploiting (67)-(68) in place of (47)-(48).

Step III: The lower bound (57) holds true. On can repeat the same arguments used for
Step III in the proof of Theorem 1, with the obvious modifications (in particular, we
exploit (60), (63), (66), and (64)).
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• Case β < 0. We address the reader to the proof of Theorem 1 in case β < 0, which
runs exactly in the same way after suitably modifying the scaling factors. �

6. Proof of Corollary 3

We give the proof only in case (i), as case (ii) is completely analogous.
• Case β > 0. From the definition of Rk(Ω, β), we have kRk(Ω, β) ≥ rk(Ω, β), so that

lim sup
k→+∞

|Ω|1/2

k1/2
Rk(Ω, β) ≥ lim sup

k→+∞

|Ω|1/2

k3/2
rk(Ω, β) = βh(H) ,

where in the last equality we have applied Theorem 1.
To prove the converse inequality, assume |Ω| = 1, and observe that for every ε > 0 there
exists kε such that for every k ≥ kε, the set Ω contains the convex k-cluster

(69)
{(1− ε

k

) 1
2
C(H) , . . . ,

(1− ε
k

) 1
2
C(H)

}
given by k copies of the Cheeger set C(H) of the unit area regular hexagon, each one
scaled so to have area 1−ε

k . We get

lim inf
k→+∞

Rk(Ω, β)

k1/2
≤ lim inf

k→+∞

1

k1/2
λ1

((1− ε
k

) 1
2
C(H), β

)
= lim inf

k→+∞

1

k1/2

k

1− ε
λ1

(
C(H),

β(1− ε)1/2

k1/2

)
= lim inf

k→+∞

1

k1/2
k
β

k1/2

1

(1− ε)1/2

|∂C(H)|
|C(H)|

=
1

(1− ε)1/2
βh(H) .

The parameter ε > 0 being arbitrary, we conclude the proof.
• Case β < 0. From the definition of Rk(Ω, β), we have in this case kRk(Ω, β) ≤ rk(Ω, β),
so that

lim inf
k→+∞

|Ω|1/2

k1/2
Rk(Ω, β) ≤ lim inf

k→+∞

|Ω|1/2

k3/2
rk(Ω, β) = βh(H) ,

where in the last equality we have applied Theorem 1.
To prove the converse inequality, we proceed as above. We assume without loss of gen-
erality that |Ω| = 1, and we exploit the fact that asymptotically Ω contains the convex

k-cluster
{(

1−ε
k

) 1
2
C(H) , . . . ,

(
1−ε
k

) 1
2
C(H)

}
to obtain

lim inf
k→+∞

Rk(Ω, β)

k1/2
≥ lim inf

k→+∞

1

k1/2
k λ1

(C(H)

k1/2
, β
)

= βh(H) .

�

Remark 15. For β > 0, a more direct proof of Theorem 1 (and consequently of Corollary
3 (i)) can be performed by using the following lower bound in place of (18):

(70) λ1(Ω, β) ≥ βh(Ω)− β2 .

We point out that this inequality, which must be attributed to Bossel [5], holds true
without any assumption on Ω. It is in general quite rough (for instance, the right hand
side can have negative sign for some Ω and β), but it becomes useful as soon as the Cheeger
constant h(Ω) becomes large, which is typically the case in a partition with a large number
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of cells. For the sake of completeness, we enclose a short independent proof. Recall that
the functional formulation of the Cheeger constant reads

(71) h(Ω) = inf
v∈BV (R2)\{0},v=0 on R2\Ω

|Dv|(R2)∫
Ω |v|

.

Then, letting u be a first Robin eigenfunction, extended to 0 out of Ω, and taking v = u2

in the minimization problem (71), gives

βh(Ω) ≤
β
∫

Ω |∇(u2)|+ β
∫
∂Ω u

2∫
Ω u

2
=
β
∫

Ω 2|u∇u|+ β
∫
∂Ω u

2∫
Ω u

2

≤
∫

Ω |∇u|
2 + β2

∫
Ω u

2 + β
∫
∂Ω u

2∫
Ω u

2
= λ1(Ω, β) + β2 ,

which is exactly (70). Now, by exploiting such estimate, it is immediate to obtain the
required inequality (37) in the proof of Theorem 1.
We emphasize that this more direct approach does not work for the Robin torsional ridigity,
which still requires the finer inequality on convex sets. Indeed, Bossel’s approach seem to
be unadaptable to the case of torsional rigidity; as well, by arguing as above one arrives
at the lower bound

(72) τ−1(Ω, β) ≥ β

|Ω|
h(Ω)− β2

|Ω|
,

which does not allow obtain the required inequality (57) in the proof of Theorem 2. Instead,
(72) may be used to prove the statements analougue to Theorem 2 and Corollary 3 (ii)
for the more unusual functional λ(Ω, β) := |Ω|τ−1(Ω, β).
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