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Abstract. The aim of this paper is to study new classes of Riemannian manifolds en-

dowed with a smooth potential function, including in a general framework classical canon-

ical structures such as Einstein, harmonic curvature and Yamabe metrics, and, above all,

gradient Ricci solitons. For the most rigid cases we give a complete classification, while

for the others we provide rigidity and obstruction results, characterizations and nontrivial

examples. In the final part of the paper we also describe the “nongradient” version of this

construction.

1. Introduction

Let (M, g) be a n-dimensional, n ≥ 3, smooth Riemannian manifold with metric g. It is

well known that the geometry of (M, g) is encoded in its Riemann curvature tensor Riem.

Since Riem is a quite involved 4-tensor depending on g (and on the choice of a “compatible”

connection ∇), it is natural to define and study some canonical metrics satisfying, in a

suitable sense, a simple curvature condition. Typically, there are two possible approaches,

the algebraic and the analytic one.

In the first case, one imposes the constancy of Riem, or of its algebraic traces, namely the

Ricci curvature Ric and the scalar curvature R. To be more precise and to fix the notation,

we say that (M, g) ∈ SF (space form), (M, g) ∈ E (Einstein manifold) or (M, g) ∈ Y

(Yamabe metric), if, for some λ ∈ R, the Riemannian metric g on M satisfies

Riem =
λ

2(n− 1)
g ? g , Ric = λ g , R = nλ ,

respectively. Here, and in the rest of the paper, ? denotes the standard Kulkarni-Nomizu

product of symmetric 2-tensors. Clearly, the three classes of Riemannian manifolds intro-

duced above satisfy

SF ⊂ E ⊂ Y

and it is well known that, in dimension n = 3, SF = E.
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On the other hand, from the analytic point of view, the aim is to simplify the curvature

by imposing some differential condition. A quite natural and not too restrictive way to

do this is to consider curvature tensors belonging to the kernel of a first order linear

differential operator. Some well known conditions of this type can be given by saying that

(M, g) belongs to

• LS if ∇(Riem) = 0 (locally symmetric metrics);

• PR if ∇(Ric) = 0 (metrics with parallel Ricci curvature);

• HC if div(Riem) = 0 (harmonic curvature metric).

Note that, by Bianchi identities, we can redefine the class Y of Yamabe metrics using the

condition div(Ric) = 0 or, equivalently, ∇R = 0. Here and in the rest of the paper div

denotes the divergence operator (see Section 3 for the definition). Obviously, SF ⊂ LS ⊂
PR and, by Bianchi identities, PR ⊂ HC, E ⊂ HC ⊂ Y. Thus, we have the inclusions

(1.1)

LS ⊂ PR

⊂ ∪ ∪ ∩
SF ⊂ LSE ⊂ E ⊂ HC ⊂ Y

where, by definition, LSE := LS ∩ E (locally symmetric Einstein metrics). Note that, in

dimension n ≥ 4, all the inclusions are strict.

This classes of metrics certainly do not exhaust all the possible canonical metrics on a

Riemannian manifold: our choice is essentially made in such a way that Einstein metrics

(and Ricci solitons, as we will see) are the “cornerstone” of our construction, and the

conditions that we impose are consequently focused on the Ricci tensor. We note that,

in principle, one could also consider “higher order” conditions, such as ∇k Riem = 0 or

∇k Ric = 0, k ≥ 2, but these relations give rise again to LS and PR, respectively, by

the results in [46, 50]. However, one can consider other higher order analytic curvature

conditions in order to generalize locally symmetric metrics, such as, for instance, the class

of semi-symmetric spaces introduced by Cartan in [19].

The class SF is the most rigid, since, up to quotients, it contains only Sn, Rn and Hn

with their standard metrics. Locally symmetric spaces LS were classified by Cartan [18],

while, from the de Rham decomposition theorem ([6]), PR metrics are locally Riemannian

products of Einstein metrics. On the other hand, given any compact manifold M , there

always exists a Riemannian metric g such that (M, g) ∈ Y (see e.g. [41]). The remaining

classes are more flexible. In particular E and HC, in the last decades, have been studied by

many researchers, also for their connections with Physics in General Relativity and Yang-

Mills Theory. In fact, these metrics arise naturally as solutions of the Euler-Lagrange

equations of some variational problems. More precisely, in dimension n ≥ 3, the class E of
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Einstein metrics coincides with the set of critical points of the Einstein-Hilbert functional

S(g) :=

∫
M

RdVg

on the space of volume one metrics, while the HC equation arises in studying in a given

Riemannian vector bundle π : E → M critical metric connections ∇ for the Yang-Mills

functional

YM(∇) :=
1

2

∫
M

|R∇|2dVg ,

where R∇ is the curvature of the connection ∇. Yang-Mills connections are characterized

by d∗R∇ = 0, where d∗ is the formal adjoint (with respect to the standard volume form

dVg) of the exterior differential d acting on E-valued differential forms on (M, g) (see e.g.

[28]). Note that d∗ becomes the ordinary divergence operator div when E = TM and ∇
is the Levi-Civita connection of g. In view of the Bianchi identity dR∇ = 0, this means

that the curvature of any Yang-Mills connection is harmonic with respect to the standard

Hodge Laplacian ∆H := dd∗ + d∗d, acting on two forms.

The aforementioned canonical metric structures, which have been the subject of extensive

investigations in the last decades and are by now considered “classical”, can be thought

as solutions of PDEs of the form F[g] = 0, where F is a differential operator acting on

the metric g. The related literature is enormous, and we don’t even try to give here a

comprehensive bibliography: the interested reader can consult for instance the well-known

[6] and references therein.

In recent years many mathematicians have focused their research on more general struc-

tures, considering particular conditions that involve the curvature of a metric and a po-

tential, that is, a smooth function defined on the underlying manifold (metric measure

spaces, conformal invariants, Einstein-type manifols, dilaton fields, etc.) In this situation,

it is natural to study solutions (g, f), with f ∈ C∞(M), of F[g, f ] = 0, where F is again

a differential operator now acting on the metric g and on the potential f . A particularly

important example arises from the pioneering works of Hamilton [36] and Perelman [47]

towards the solution of the Poincaré conjecture in dimension three: indeed, with their

seminal papers they have generated a flourishing activity in the research of self-similar

solutions, or solitons, of the Ricci flow. From the static point of view, these structures are

characterized by the condition

Ricf := Ric +∇2f = λ g ,
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where Ricf is the Bakry-Emery Ricci tensor, f ∈ C∞(M) is called the potential, λ ∈ R
and ∇2 is the Hessian. In this case, we say that (M, g, f) ∈ Ef (gradient Ricci soliton).

It is apparent that this is a reasonable generalization of the Einstein condition which,

interpreted as a global prescription on the Ricci curvature of g, was firstly considered by

Lichnerowicz (see e.g. [11]). In particular, if (M, g) ∈ E then (M, g, f = c ∈ R) ∈ Ef , and

we can add another inclusion to the previous diagram as follows:

LS ⊂ PR

⊂ ∪ ∪ ∩
SF ⊂ LSE ⊂ E ⊂ HC ⊂ Y

∩
Ef

The main aim of this paper is to propose a “potential” generalization of the previous

framework, that is, we introduce and begin to study new classes of privileged metrics g on

Riemannian manifolds M endowed with smooth potentials function f , which extend the

diagram above. We first give the following

Definition 1.1. Let (M, g) be a n-dimensional, n ≥ 3, Riemannian manifold with metric

g. We say that the triple (M, g, f) belongs to

• SFf (f -space forms) if there exist f ∈ C∞(M) and λ ∈ R such that

Riemf := Riem +
1

n− 2

(
∇2f − ∆f

2(n− 1)
g
)

? g =
λ

2(n− 1)
g ? g ;

• LSEf (f -locally symmetric Einstein metrics) if there exist f ∈ C∞(M) and λ ∈ R
such that

∇
(

Riemf

)
= 0 and Ricf = λg ;

• Ef (gradient Ricci solitons) if there exist f ∈ C∞(M) and λ ∈ R such that

Ricf = λ g ;

• HCf (f -harmonic curvature metrics) if there exists f ∈ C∞(M) such that

div
(
e−f Riem

)
= 0 ;

• Yf (f -Yamabe metrics) if there exists f ∈ C∞(M) such that

div
(
e−f Ric

)
= 0 , i.e. ∇R = 2 Ric(∇f, ·) .

Moreover, we say that (M, g, f) belongs to

• LSf (f -locally symmetric metrics) if there exists f ∈ C∞(M) such that

∇
(

Riemf

)
= 0 ;
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• PRf (metrics with parallel Bakry-Emery Ricci tensor) if there exists f ∈ C∞(M)

such that

∇
(

Ricf
)

= 0 .

Note that we recover the corresponding sets in (1.1) when ∇f = 0 on M ; in this latter

case, we say that the structure is trivial. In particular, some computations (see Section 4)

show that

(1.2)

LS ⊂ PR

⊂ ∪ ∪ ∩
SF ⊂ LSE ⊂ E ⊂ HC ⊂ Y

∩ ∩ ∩ ∩ ∩
SFf ⊂ LSEf ⊂ Ef ⊂ HCf ⊂ Yf

⊂ ∩ ∩ ∪
LSf ⊂ PRf

Remarks:

1. We observe that, with the exception of HCf and Yf , all the classes introduced in Def-

inition 1.1 represent Riemannian metrics for which the associated “f -curvatures”

(Riemf and Ricf ) satisfies simple algebraic/analytic conditions. On the other hand,

to define the classes HCf and Yf , we impose the vanishing of the divergence of the

“weighted” tensors e−f Riem and e−f Ric instead of considering the apparently nat-

ural relations

div
(

Riemf ) = 0 and div
(

Ricf
)

= 0 .

In fact, it turns out that these latter are not good candidates since, for instance,

gradient Ricci solitons (Ef ) satisfy the second but, in general, not the first condi-

tion. To clarify this apparent discrepancy in Definition 1.1, in Section 4 we prove

equivalent conditions characterizing these classes showing, in particular, that HCf

and Yf can be defined (in a precise way) by means of the Bakry-Emery Ricci tensor

Ricf , giving to this latter a prominent role. This is perfectly reasonable, since the

equation div(Riem) = 0, defining HC, is, as a matter of fact, a condition on Ric.

2. As we have already observed, gradient Ricci solitons, besides being important in

Ricci flow theory, represent a natural generalization of Einstein metrics: the sym-

metric 2-tensor ∇2f , the Hessian of the potential f , measures how much the man-

ifold deviates from being Einstein and the Bakry-Emery Ricci tensor Ricf replaces

Ric. On the other hand, the “trace part” of the curvature tensor is given by
1

n−2 A ? g, where A is the Schouten tensor A := Ric− R
2(n−1)g. It is then natural to
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consider a corresponding generalization of the Riemann tensor, Riemf , adding to

Riem the 4-tensor

1

n− 2

(
∇2f − ∆f

2(n− 1)
g
)

? g .

3. The equation of gradient Ricci solitons (Ef ) can be obtained by tracing the one

defining SFf . Thus, in principle, we could have introduced f -Yamabe metrics via

algebraic simplification by tracing the Ef equation, obtaining

Rf := R + ∆f = nλ

for some λ ∈ R. We know that this condition alone (if not coupled with other

constraints, see Definition 2.4 below) is too “weak” to define a meaningful set of

metrics, since, for instance, on every compact Riemannian manifold (M, g) one can

always find a smooth function f solving this equation for a suitable λ ∈ R. On

the other hand, thinking of it as a prescribed scalar curvature problem, given any

function f ∈ C∞(M), we could always find a solution (i.e. a metric) if λ ≤ 0, or if

λ > 0 and M admits a metric with positive scalar curvature (see the seminal works

of Kazdan and Warner [38, Theorem 6.4]).

4. It is well known that compact gradient shrinking, steady and expanding Ricci soli-

tons Ef can be characterized as critical points of the F and W, W− functionals,

respectively (see e.g. [15]). On the other hand, the class HCf arises naturally

in studying critical metric connections ∇ in a given Riemannian vector bundle

π : E →M for the “weighted” Yang-Mills functional

YMf (∇) :=
1

2

∫
M

|R∇|2e−fdVg ,

that leads to the so called Yang-Mills-Dilaton field theory. A simple computation,

following the one for YM (see e.g. [12]), shows that weighted Yang-Mills connec-

tions are characterized by d∗fR
∇ = 0, where d∗f is the formal adjoint of the exterior

differential d with respect to the weighted volume form e−fdVg (see [14]). Note

that d∗f becomes the f -divergence operator ef div(e−f ) when E = TM and ∇ is

the Levi-Civita connection of g. By Bianchi identity dR∇ = 0, this means that the

curvature of any weighted Yang-Mills connection is weighted harmonic with respect

to the weighted Hodge Laplacian

∆H
f := dd∗f + d∗fd .

5. In our discussion we have so far considered only the case of dimension greater than

three. We observe that in dimension n = 2, the geometry of a Riemann surface



A POTENTIAL GENERALIZATION OF SOME CANONICAL RIEMANNIAN METRICS 7

(M, g) is contained in the scalar curvature R. In particular, Ric = R
2
g and the

equation defining Yf yields

∇
(
e−fR

)
= 0 ⇐⇒ R = Cef ,

for some C ∈ R. This is equivalent to the classical problem of prescribing (with

sign) the Gauss (scalar) curvature of a Riemann surface. By the seminal works

of Kazdan and Warner [38], it follows that, on a compact surface M , given any

smooth function f , there exists a Riemannian metric g such that (M, g, f) ∈ Yf (in

the zero genus case, a solution is the scalar flat metric).

6. We will see that, as one can expect, the classes SFf , LSf , LSEf and PRf do not

differ too much from their classical counterparts, as we will show in Propositions

2.1 and 2.2; however, they still contain some interesting Riemannian spaces, such

as generalized cylinders (with Gaussian potential) and the Bryant soliton.

The paper is organized in the following sections:

Contents

1. Introduction 1

2. Main results 7

3. Definitions and some useful formulas 10

4. Canonical metrics revisited: equivalent conditions 14

5. The rigid classes: SFf , LSf , LSEf and PRf 17

6. The class HCf : rigidity results, characterizations and examples 19

7. The class Yf : a possible generalization of the Yamabe problem, obstructions

and examples 24

8. Nongradient canonical metrics 27

9. Final remarks and open problems 32

References 34

2. Main results

In this section we present some of the main results of the paper, concerning all of

the classes introduced above. To simplify the exposition, we will always assume (M, g)

complete, even if clearly not needed in most of the results, and the dimension n ≥ 3.
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We begin with the classification of f -space forms. Observe that, in dimension n = 3, we

have SFf = Ef ; in higher dimension n ≥ 4, in Section 5 we will prove the following

Proposition 2.1. Let (M, g, f) ∈ SFf , then

• if λ > 0, (M, g, f) is isometric, up to quotients, to either
(
Sn, gSn , f = c ∈ R

)
,(

R× Sn−1, dr2 + gSn−1 , f = λ
2
r2
)

or to
(
Rn, gRn , f = λ

2
|x|2
)
;

• if λ = 0, (M, g) is isometric, up to quotients, to either
(
Rn, gRn , f = c ∈ R

)
or the

Bryant soliton.

• if λ < 0, around any regular point of f the manifold (M, g) is locally a warped

product with codimension one fibers of constant sectional curvature. Moreover, if

the Ricci curvature is nonnegative, (M, g) is rotationally symmetric.

We recall that the Bryant soliton, constructed in [13], is the unique (up to homotheties)

rotationally symmetric gradient steady Ricci solitons with positive sectional curvature.

As far as the classes LSf and LSEf are concerned, note that, in dimension n = 3,

LSf = PRf and LSEf = Ef ; in higher dimension n ≥ 4, again in Section 5, we prove

Proposition 2.2. If (M, g, f) ∈ LSf , then (M, g, f) ∈ LS ∪ SFf . Furthermore, if

(M, g, f) ∈ LSEf , then either (M, g, f) ∈ LSE ∪ SFf or it is isometric, up to quotients,

to a Riemannian product
(
Rk × N, gRk + gN , f = λ

2
|x|2k
)
, k ≥ 1, with N ∈ LSE being a

(n− k)-dimensional locally symmetric Einstein manifold.

The previous results are a consequence of the fact that the equations defining f -space

forms and f -locally symmetric metrics imply strong conditions on the Weyl tensor W , as

we will see in Section 4, since they involve the full f -curvature tensor Riemf . On the other

hand, when one imposes conditions only on Ricf , that is on the trace part of Riemf , it is

reasonable to expect rigidity only assuming further conditions on the traceless part, i.e.

W . The next theorem extends to the HCf class the well known result concerning the local

structure of locally conformally flat gradient Ricci solitons.

Theorem 2.3. Let (M, g, f) ∈ HCf . If (M, g) is locally conformally flat, then, around any

regular point of f , it is locally a warped product with codimension one fibers of constant

sectional curvature.

It is well known that compact locally conformally flat gradient Ricci solitons have con-

stant curvature (see e.g. [32]). We will see that such a conclusion cannot be extended to

manifolds in HCf , since we can construct rotationally symmetric examples on S1 × Sn−1

(see Section 6).
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In order to state the next results, we first recall that, as we have already observed,

HC ⊂ Y, i.e. harmonic curvature metrics have constant scalar curvature. This is not true

in general for the potential counterpart HCf , but, for instance, on gradient Ricci solitons

it holds that Rf = R + ∆f = nλ. Thus, it is natural to introduce the following

Definition 2.4. Let (M, g, f) be a n-dimensional manifold with Riemannian metric g and

f ∈ C∞(M). We say that (M, g, f) ∈ HCλf if (M, g, f) ∈ HCf and, for some λ ∈ R,

Rf := R + ∆f = nλ.

Note that Ef ⊂ HCλf ⊂ HCf and also, by a simple computation, PRf ⊂ HCλf . We will

see in a short while that the class HCλf (and HCf , in some cases) coincides with Ef under

some additional conditions. First, we recall that in dimension four, under the topological

condition τ(M) 6= 0, Bourguignon in [10] proved that HC = E (where τ is the signature of

M). Moreover, the classical Hirzebruch signature formula says that

48π2τ(M) =

∫
M

|W+|2 −
∫
M

|W−|2 ,

where W+ and W− are the self-dual and anti-self-dual parts of the tensor W , respectively.

In the next theorem we extend Bourguignon’s result in the HCλf case, and, more generally,

in the HCf case, under an additional regularity assumption (which is automatically satisfied

by HC metrics, as proved in [31]).

Theorem 2.5. Let M be a four dimensional compact manifold with τ(M) 6= 0. Then,

i) (M, g, f) ∈ HCf and, in harmonic coordinates, g and f are real analytic if and only

if (M, g, f) ∈ Ef .

ii) (M, g, f) ∈ HCλf if and only if (M, g, f) ∈ Ef .

Note that gradient Ricci solitons satisfy the analyticity assumption, but we do not know

in general if this is true for metric in HCf .

We recall that a metric is half conformally flat if it is self-dual or anti-self-dual, namely

if W− = 0 or W+ = 0, respectively (see [6, chapter 13, section C] for a nice overview). As

a simple consequence of Theorem 2.5 we have

Corollary 2.6. Let M be a four dimensional compact manifold and let (M, g, f) ∈ HCλf .

If (M, g) is half conformally flat but not conformally flat, then

i) if λ > 0, (M, g) is isometric to CP2 with its canonical metric;

ii) if λ = 0, the universal covering of (M, g) is isometric to a K3 surface with the

Calabi–Yau metric;

iii) if λ < 0, (M, g) ∈ E with negative scalar curvature.
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In general dimension n ≥ 3 we can prove, assuming positive sectional curvature, the

following extension of a Berger result (see [6]).

Proposition 2.7. Let (M, g) be a n-dimensional, n ≥ 3, compact manifold with positive

sectional curvature. Then (M, g, f) ∈ HCλf if and only if (M, g, f) ∈ Ef .

A classical result by Tachibana ([49]) says that if (M, g) ∈ HC, with positive curvature

operator, then (M, g) is, up to quotients, the round sphere; in the HCλf case we have

Corollary 2.8. Let (M, g) be a n-dimensional, n ≥ 3 compact manifold with positive

curvature operator. If (M, g, f) ∈ HCλf , then f is constant and (M, g) is isometric, up to

quotients, to Sn.

Finally, in Section 6, following Derdzinski ([27]) we construct a family of compact Rie-

mannian manifolds in HCf , which are not gradient Ricci solitons; we also exhibit an explicit

noncompact example.

As far as the class Yf is concerned, in Section 7 we construct another family of examples

and we also prove an obstruction result to the existence of f -Yamabe metrics in a given

conformal class, in the same spirit of the classical work of Kazdan and Warner ([39]) con-

cerning the prescribed scalar curvature problem. Note that, in dimension 2, this connection

has already been observed in the Introduction. In the particular case of the sphere, the

obstruction reads as

Proposition 2.9. If f ∈ C∞(Sn) is a first spherical harmonic on the round sphere (Sn, g0),

then there are no conformal metrics g ∈ [g0] such that (M, g, f) ∈ Yf .

It is interesting to note that the same functions f on Sn (spherical harmonics) give

obstructions in specifying (conformally) the gradient of the scalar curvature in two different

ways: ∇R = ∇f (i.e. prescribed scalar curvature, R = f up to constants) and ∇R =

2 Ric(∇f) (i.e., f -Yamabe metrics).

3. Definitions and some useful formulas

In this section we collect some useful definitions and properties of various geometric

tensors, and fix our conventions and notation. To perform computations, we freely use

the method of the moving frame, referring to a local orthonormal (co)frame of the n-

dimensional Riemannian manifold (M, g). In some situations we will use 〈X, Y 〉 instead of

g(X, Y ), for X, Y ∈ X(M). We also fix the index range 1 ≤ i, j, . . . ≤ n and we recall that

the Einstein convention of summing over the repeated indices will be adopted throughout

the article.
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3.1. General definitions. The (1, 3)-Riemann curvature tensor of a Riemannian manifold

(M, g) is defined as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z .

In coordinates we have Rl
ijk

∂
∂xl

= R
(
∂
∂xj
, ∂
∂xk

)
∂
∂xi

and we denote by Rijkl = δimR
m
jkl its (0, 4)-

version that we call Riem. The Ricci tensor Ric is obtained by the contraction Rik = δjlRijkl

and R = δikRik will denote the scalar curvature. We recall that, in dimension n = 2, all

the geometry of the manifold is encoded in the scalar curvature, since Ric = R
2
g.

The so called Weyl tensor is defined by the following decomposition formula (see [34,

Chapter 3, Section K]) in dimension n ≥ 3,

Wijkl = Rijkl −
1

n− 2
(Rikδjl −Rilδjk +Rjlδik −Rjkδil)

+
R

(n− 1)(n− 2)
(δikδjl − δilδjk) .(3.1)

The Weyl tensor shares the symmetries of the curvature tensor. Moreover, as it can be

easily seen by the formula above, all of its contractions with the metric are zero, i.e. W is

totally trace-free. In dimension three, W is identically zero on every Riemannian manifold,

whereas, when n ≥ 4, the vanishing of the Weyl tensor is a relevant condition, since it is

equivalent to the local conformal flatness of (M, g). We also recall that in dimension n = 3,

local conformal flatness is equivalent to the vanishing of the Cotton tensor

(3.2) Cijk = Rij,k −Rik,j −
1

2(n− 1)

(
Rkδij −Rjδik

)
,

where Rij,k = ∇kRij and Rk = ∇kR denote, respectively, the components of the covariant

derivative of the Ricci tensor and of the differential of the scalar curvature. By direct

computation, we can see that the Cotton tensor C satisfies the following symmetries

(3.3) Cijk = −Cikj, Cijk + Cjki + Ckij = 0 ,

moreover it is totally trace-free,

(3.4) Ciik = Ciji = Cikk = 0 ,

by its skew–symmetry and Schur lemma. Furthermore, it satisfies

(3.5) Cijk,i = 0,

see for instance [25, Equation 4.43]. We recall that, for n ≥ 4, the Cotton tensor can also

be defined as one of the possible divergences of the Weyl tensor:

(3.6) Cijk =

(
n− 2

n− 3

)
Wtikj,t = −

(
n− 2

n− 3

)
Wtijk,t.
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A computation shows that the two definitions coincide (see e.g. [1]).

The Bach tensor, first introduced in general relativity by Bach, [3], is by definition

(3.7) Bij =
1

n− 3
Wikjl,lk +

1

n− 2
RklWikjl =

1

n− 2
(Cjik,k +RklWikjl).

A computation using the commutation rules for the second covariant derivative of the

Weyl tensor or of the Schouten tensor (see [25]) shows that the Bach tensor is symmetric

(i.e. Bij = Bji); it is also evidently trace-free (i.e. Bii = 0). It is worth reporting here

the following interesting formula for the divergence of the Bach tensor (see e.g. [17] for its

proof)

(3.8) Bij,j =
n− 4

(n− 2)2
RktCkti.

Since we will use in the sequel of the paper, we recall the definition of the Kulkarni-

Nomizu product of two symmetric two-tensors α, β:(
α? β)ijkt = αikβjt − αitβjk + αjtβik − αjkβit .

In particular, when β = g, we have the following expression for the divergence of α? g:

(3.9)
(
α? β)tijk,t = αtj,tδik − αtktδij + αik,j − αij,k .

Finally, we recall that a Codazzi tensor T is a symmetric (0, 2)-tensor satisfying the Codazzi

equation

Tij,k = Tik,j.

For a general overview on Codazzi tensors, we refer to [6, Section 16C].

3.2. Ricci solitons. We recall here some useful equations satisfied by every gradient Ricci

soliton (M, g, f) ∈ Ef . By definition,

(3.10) Rij + fij = λgij, λ ∈ R,

where fij = ∇i∇jf are the components of the Hessian of f (see e.g. [32]).

Lemma 3.1. Let (Mn, g) be a gradient Ricci soliton of dimension n ≥ 3. Then the

following equations holds:

Rf := R + ∆f = nλ,

∇R = 2 Ric(∇f, ·), i.e. Ri = 2ftRit,

R + |∇f |2 = 2λf + c, for some c ∈ R,

Rij,k −Rik,j = −Rtijk,t = −ftRtijk.
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The tensor D, here denoted by D∇f to distinguish it from its “generic” counterpart DX

(see Section 8), was introduced by Cao and Chen in [16] and turned out to be a fundamental

tool in the study of the geometry of gradient Ricci solitons (more in general for gradient

Einstein-type manifolds, see [25]). In components it is defined as

D∇fijk =
1

n− 2
(fkRij − fjRik) +

1

(n− 1)(n− 2)
ft(Rtkδij −Rtjδik)(3.11)

− R

(n− 1)(n− 2)
(fkδij − fjδik).

The D∇f tensor is skew-symmetric in the second and third indices (i.e. D∇fijk = −D∇fikj ) and

totally trace-free (i.e. D∇fiik = D∇fiki = D∇fkii = 0). Note that our convention for the tensor

D differs from that in [16].

If (M, g,X) is a Ricci soliton structure on (M, g), with X ∈ X(M), the defining equation

becomes

Rij +
1

2
(Xij +Xji) = λδij.

Moreover we have (see [25])

RX := R + div(X) = nλ;

∇R = 2 Ric(X, ·) + div
(
AX
)
, i.e. Ri = 2XtRit +Xit,t −Xti,t,

where AX is the antisymmetric part of the covariant derivative of X; in components,

(AX)ij = Xij −Xji.

Finally, we recall the following formula due to Böchner, [52], and rediscovered many

times in recent years.

Lemma 3.2. Let X be a vector field on the Riemannian manifold (M, g). Then

div (LXg)(X) =
1

2
∆|X|2 − |∇X|2 + Ric(X,X) +∇X(divX) ,

or in coordinates(
Xiji +Xjii

)
Xj =

1

2
∆|X|2 − |∇X|2 +RijXiXj +XjjiXi .
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4. Canonical metrics revisited: equivalent conditions

LS ⊂ PR

⊂ ∪ ∪ ∩
SF ⊂ LSE ⊂ E ⊂ HC ⊂ Y

∩ ∩ ∩ ∩ ∩
SFf ⊂ LSEf ⊂ Ef ⊂ HCf ⊂ Yf

⊂ ∩ ∩ ∪
LSf ⊂ PRf

The aim of this section is to present equivalent conditions characterizing some of the

classes in Definition (1.1); for the sake of completeness and to highlight the similarities and

the differences with the “potential” counterpart, we report the well known characterizations

of the classical structures.

Here (M, g) will be a smooth Riemannian manifold of dimension n ≥ 3 with metric g.

First we recall that the decomposition in (3.1) can be globally (and orthogonally) written,

using the Schouten tensor A = Ric− R
2(n−1)g, as

(4.1) Riem = W +
1

n− 2
A ?g.

It this then natural to introduce a new tensor, that we call Af (the f -Schouten tensor), in

such a way that

Riemf := Riem +
1

n− 2

(
∇2f − ∆f

2(n− 1)
g
)

? g = W +
1

n− 2
Af ?g.

It turns out that Af := Ricf − Rf

2(n−1)g (recall that Ricf = Ric +∇2f and Rf = R + ∆f).

The classes SF and SFf . A standard computation using Bianchi identities and the

constancy of the scalar curvature shows that

(M, g) ∈ SF ⇐⇒ Riem =
λ

2(n− 1)
g ? g ⇐⇒

W = 0

Ric = λg

In a similar fashion, using the constancy of Rf , we have

(4.2) (M, g, f) ∈ SFf ⇐⇒ Riemf =
λ

2(n− 1)
g ? g ⇐⇒

W = 0

Ricf = λg
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Note that SF ⊂ E and SFf ⊂ Ef ; moreover, in dimension n ≥ 4 every f -space form is a

locally conformally flat gradient Ricci soliton (see Proposition 2.1 and Section 5 for more

details).

The classes LS and LSf (and also LSE and LSEf). One has

∇Riem = ∇W +
1

n− 2
∇
(

A ?g
)
.

Moreover, ∇A = 0 implies the constancy of R, and is thus equivalent to ∇Ric = 0. By

orthogonality,

(M, g) ∈ LS ⇐⇒ ∇Riem = 0 ⇐⇒

∇W = 0

∇Ric = 0

and analogously

(4.3) (M, g, f) ∈ LSf ⇐⇒ ∇Riemf = 0 ⇐⇒

∇W = 0

∇Ricf = 0

Note that LS ⊂ PR and LSf ⊂ PRf . Moreover, since by definition LSE = LS ∩ E and

LSEf = LSf ∩ Ef , we get

(M, g) ∈ LSE ⇐⇒

∇Riem = 0

Ric = λg
⇐⇒

∇W = 0

Ric = λg

and analogously

(4.4) (M, g, f) ∈ LSEf ⇐⇒

∇Riemf = 0

Ricf = λg
⇐⇒

∇W = 0

Ricf = λg

For the general discussion on the consequences of the previous equivalences, see again

Section 5.

The classes HC and HCf . By Bianchi identities, div(Riem)ijk = Rtijk,t = Rik,j−Rij,k; in

particular, from the decomposition (3.1), on every Riemannian manifolds (n ≥ 3) it holds(
n− 3

n− 2

)
Rtijk,t = Wtijk,t +

(n− 3)

2(n− 1)(n− 2)
(Rjδik −Rkδij).

This implies

(M, g) ∈ HC ⇐⇒ Ric is a Codazzi tensor ⇐⇒

div (W ) = 0

∇R = 0
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Moreover, a simple computation shows also that

(M, g) ∈ HC ⇐⇒ div [E ? g] = 0

where E := Ric−R
2
g is the Einstein tensor, which has the property div (E) = 0.

As far as HCf metrics are concerned, we have the

Lemma 4.1. The following conditions are equivalent:

a) (M, g, f) ∈ HCf ;

b) The Bakry-Emery Ricci tensor, Ricf , is a Codazzi tensor.

c) (M, g, f) satisfies

(4.5)

Cijk + ftWtijk = D∇fijk

Ri = 2ftRti

where D∇f is the tensor defined in (3.11).

Proof. The equivalence a)⇔ b) follows from the commutation fjkt − fjtk = fiRijkt and(
e−fRijkt

)
i

= e−f (Rijkt,i − fiRijkt) = e−f (Rjt,k −Rjk,t − fiRijkt)

= e−f
(
(Ricf )jt,k − (Ricf )jk,t

)
.

If (M, g, f) ∈ HCf , we have

Rtijk,t − ftRtijk = 0,

that is,

Rij,k −Rik,j = −ftRtijk.

Using in the previous relation the definition of the Cotton tensor C and D∇f , the decom-

position of the Riemann curvature tensor (3.1) and Ri = 2ftRti we get the equivalence

a)⇔ c). �

If n ≥ 4, Lemma 4.1 and equation (3.6) immediately imply

(M, g, f) ∈ HCf ⇐⇒ Ricf is a Codazzi tensor ⇐⇒

Wtijk,t =
(
n−3
n−2

)(
ftWtijk −D∇fijk

)
∇R = 2 Ric(∇f, ·)
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Let Ef := Ricf −Rf

2
g. In analogy with the classical case we call it f -Einstein tensor. From

the commutation rule fijk − fikj = ftRtijk and from equation (3.9), we have

div(Ef ? g)ijk =
(
ftjt −

1

2
fttj

)
δik −

(
ftkt −

1

2
fttk

)
δij +

(
Rik,j −Rij,k

)
+ ftRtikj

− 1

2

[
(Rf )jδik − (Rf )kδij

]
=

1

2

(
Rk − 2ftRtk

)
δij −

1

2

(
Rj − 2ftRtj

)
δik +

(
Rik,j −Rij,k

)
+ ftRtikj

Now, if div [Ef ? g] = 0, tracing the previous relation we obtain ∇R = 2 Ric(∇f, ·). Hence

0 =
(
Rik,j −Rij,k

)
+ ftRtikj = ef div(e−f Riem)ijk ,

i.e. (M, g, f) ∈ HCf . Note that the converse is also true, and thus

(M, g, f) ∈ HCf ⇐⇒ div [Ef ? g] = 0(4.6)

Moreover the latter equivalence enables us to define the non-gradient counterpart of HCf ,

as we will see in Section 8.

The classes Y and Yf . Obviously, by Bianchi identities one has

(M, g) ∈ Y ⇐⇒ ∇R = 0 ⇐⇒ div(Ric−Rg) = 0 .

As far as Yf metrics are concerned, since(
Ef ? g

)
isks

= (n− 2)
(

Ricf −Rfg
)
ik
,

we have

(M, g, f) ∈ Yf ⇐⇒ ∇R = 2 Ric(∇f, ·) ⇐⇒ div (Ricf −Rfg) = 0

and, again, the latter equivalence enables us to define the non-gradient counterpart of Yf
(see again Section 8).

5. The rigid classes: SFf , LSf , LSEf and PRf

LS ⊂ PR

⊂ ∪ ∪ ∩
SF ⊂ LSE ⊂ E ⊂ HC ⊂ Y

∩ ∩ ∩ ∩ ∩
SFf ⊂ LSEf ⊂ Ef ⊂ HCf ⊂ Yf

⊂ ∩ ∩ ∪
LSf ⊂ PRf
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First of all we observe that, as in the case of PR, if (M, g, f) ∈ PRf , i.e. ∇Ricf = 0

on M , from the de Rham decomposition theorem, then (M, g, f) is locally a Riemannian

product of gradient Ricci solitons (see e.g. [6, Sect. 16.12(i)] for a general splitting result

concerning Codazzi tensor with constant eigenvalue).

SFf : proof of Proposition 2.1. Let (M, g, f) ∈ SFf . First we observe that, in dimen-

sion n = 3, SFf = Ef . Thus, from the classification of three dimensional gradient shrinking

solitons, if λ > 0, then (M, g) is isometric, up to quotients, to either S3 or R × S2 or R3.

On the other hand, if n ≥ 4, from the conditions (4.2), (M, g, f) is a locally conformally

flat gradient Ricci soliton. Proposition 2.1 now follows from the classifications results in

the shrinking ([45, 53, 48]), steady ([16, 21]) and expanding ([21]) cases. To the best of our

knowledge, the complete classification of locally conformally flat, gradient expanding Ricci

solitons is still open; however it is known that around any regular point of f the mani-

fold (M, g) is locally a warped product with codimension one fibers of constant sectional

curvature.

LSf and LSEf : proof of Proposition 2.2. Let (M, g, f) ∈ LSf . As we have already

observed, in dimension n = 3, LSf = PRf . If n ≥ 4, from equation (4.3) we have that

(M, g, f) ∈ PRf and the Weyl tensor is parallel, ∇W = 0. In particular, by a classical

result of Roter (see [29]), either ∇Riem = 0 or W = 0. In the first case (M, g, f) ∈ LS,

while in the second case we are left with a locally conformally flat manifold with∇Ricf = 0.

Again, by de Rham decomposition theorem, we have just two possibilities: (M, g, f) ∈ Ef

with W = 0 and thus, from equation (4.2), (M, g, f) ∈ SFf ; (M, g) splits as the product of

two locally symmetric factors (a line with a space form or two space forms with opposite

constant curvature and same dimension). In this latter case, (M, g, f) ∈ LS.

Now let (M, g, f) ∈ LSEf . In dimension n = 3, LSEf = Ef , while if n ≥ 4, by the

previous discussion, either (M, g, f) ∈ SFf ∩ Ef = SFf , or (M, g, f) ∈ LS ∩ Ef . In this

case, in particular, the manifold is a gradient Ricci solitons which is also locally a product of

Einstein metrics. Considering the universal cover and using classical results on concircular

(gradient) vector fields (see e.g. [51]), we have that we can only have two type of factors in

the decomposition: the Euclidean space or a (locally symmetric) Einstein manifold. This

concludes the proof.
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6. The class HCf : rigidity results, characterizations and examples

LS ⊂ PR

⊂ ∪ ∪ ∩
SF ⊂ LSE ⊂ E ⊂ HC ⊂ Y

∩ ∩ ∩ ∩ ∩
SFf ⊂ LSEf ⊂ Ef ⊂ HCf ⊂ Yf

⊂ ∩ ∩ ∪
LSf ⊂ PRf

First of all, we recall that (M, g, f) ∈ HCf if and only if div
(
e−f Riem

)
= 0 or, equiva-

lently, from Lemma 4.1, if and only ifCijk + ftWtijk = D∇fijk

Ri = 2ftRti,

where

D∇fijk =
1

n− 2
(fkRij − fjRik) +

1

(n− 1)(n− 2)
ft(Rtkgij −Rtjgik)

− R

(n− 1)(n− 2)
(fkgij − fjgik).

Proof of Theorem 2.3. Let (M, g, f) ∈ HCf ; by the assumption of local conformal

flatness, both the Cotton and the Weyl tensor vanish on M . From Lemma 4.1 we get that

the tensor D∇f vanishes. Contracting with ∇f and using equation Ri = 2ftRti, we obtain

0 = (n− 1)(n− 2)Dijkfk = (n− 1)|∇f |2Rij − (n− 1)Rikfkfj

+Rtkftfkgij −Rtjftfi − |∇f |2Rgij +Rfifj

= (n− 1)|∇f |2Rij − |∇f |2Rgij −
n− 1

2
Rifj −

1

2
fiRj +

1

2
〈∇R,∇f〉gij +Rfifj .

By symmetry, we get Rifj = Rjfi, i.e. dR ∧ df = 0. In particular, ∇f is an eigenvector of

the Ricci tensor and, from 2 Ric(∇f,∇f) = 〈∇R,∇f〉 we obtain

0 = (n− 1)|∇f |2Rij − |∇f |2Rgij −
n

2
Rifj + Ric(∇f,∇f)gij +Rfifj .

Now, around a regular point of f , pick any orthonormal frame e1, . . . , en which diagonalize

the Ricci tensor. Since ∇f is an eigenvector of Ricci, without loss of generality we can

set e1 = ∇f
|∇f | . Denote by µk, k = 1, . . . , n the corresponding eigenvalues. Then, for every

k ≥ 2, we have

0 = |∇f |2
(
(n− 1)µk −R + µ1

)
.
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Thus, around a regular point of f , one has µk = 1
n−1(R − µ1) for every k ≥ 2. In

particular, around a regular point of f , either the Ricci is proportional to the metric or it

has an eigenvalue of multiplicity (n− 1) and another of multiplicity 1.

Now suppose that f is not constant. We have shown that either the metric is locally

Einstein (thus of constant curvature), or the Ricci tensor has two eigenvalues of multiplicity

1 and (n− 1). In the first case, the manifold must be locally isometric to a space form. In

the second case, since the Cotton tensor C vanishes, the Schouten tensor Ric− 1
2(n−1)Rg

is a Codazzi tensor with at most two distinct eigenvalues of multiplicity 1 and (n − 1).

Hence, by general results on Codazzi tensors with this property (see [43, 6, 23]) we get

that the manifold (M, g) is locally a warped product with codimension one fibers. Since

the manifold is locally conformally flat, the fibers must have constant sectional curvature.

This concludes the proof of Theorem 2.3.

Proof of Theorem 2.5 and Corollary 2.6. First of all we recall the decomposition of

the bundle two forms Λ2 in dimension four

(6.1) Λ2 = Λ+ ⊕ Λ− .

These subbundles are by definition the eigenspaces of the Hodge operator

? : Λ2 → Λ2

corresponding respectively to the eigenvalue ±1. In the literature, sections of Λ+ are called

self-dual two-forms, whereas sections of Λ− are called anti-self-dual two-forms. Now, since

the curvature tensor Riem may be viewed as a map R : Λ2 → Λ2, according to (6.1) we

have the curvature decomposition

R =

 W+ + R
12
I

◦
Ric

◦
Ric W− + R

12
I

 ,

where

W = W+ +W−

and the self-dual and anti-self-dual W± are trace-free endomorphisms of Λ±, I is the

identity map of Λ2 and
◦

Ric represents the trace-free Ricci curvature Ric−R
4
g. Recall the

Hirzebruch signature formula (see e.g. [6])

48π2τ(M) =

∫
M

|W+|2 −
∫
M

|W−|2 .
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Assume that τ(M) 6= 0 and let (M, g, f) ∈ HCf , for some potential function f ; assume

also that, in harmonic coordinates, g and f are real analytic. From Lemma 4.1, the Bakry-

Emery Ricci tensor Ricf is Codazzi. In particular the following property holds:

Lemma 6.1. Let T be a Codazzi tensor on a four dimensional Riemannian manifold

(M, g). Then, at any point x where T is not a multiple of g, the endomorphisms W+ of

Λ+ and W− of Λ− have equal spectra at x.

This result was proved by Bourguignon [10] (see also [30]) and used in the context of

manifolds with harmonic curvature. By analyticity, it implies that either Ricf is propor-

tional to the metric (i.e. (M, g, f) ∈ Ef ), or W+ and W− have equal spectra on M . But

this contradicts the topological assumption on τ(M) and the first part of Theorem 2.5 is

proved.

Assume now that (M, g, f) ∈ HCλf , without imposing extra regularity on g ad f . We

have that

(6.2) div
(
e−f Riem

)
= 0 and R + ∆f = nλ .

From Lemma 4.1, the Bakry-Emery Ricci tensor Ricf is a Codazzi tensor with constant

trace. Equivalently,

◦
Ricf := Ricf −

Rf

n
g

is a trace-free Codazzi tensor. In particular, we have the following regularity lemma which

follows from a general results of Kazdan [37] (see also [35, 20] for some applications).

Lemma 6.2. Let
◦
T be a, non-trivial, trace-free Codazzi tensor on a Riemannian manifold

(M, g) and let Ω0 = {x ∈Mn : |
◦
T |(x) 6= 0 }. Then Vol (M \ Ω0) = 0.

Using this, together with Lemma 6.1, one has that either
◦

Ricf ≡ 0 (i.e. (M, g, f) ∈ Ef ),

or ∫
M

|W+|2 =

∫
M

|W−|2 ,

which again contradicts the assumption τ(M) 6= 0, and the second part of Theorem 2.5 is

proved.

Finally, Corollary 2.6 follows immediately from Theorem 2.5 ii) and the classification of

half conformally flat gradient Ricci solitons in [26].
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Proof of Proposition 2.7 and Corollary 2.8. Let (M, g, f) ∈ HCλf . Then
◦

Ricf is a

trace-free Codazzi tensor. In particular (see [6] or [20]), the following Weitzenböck formula

holds

(6.3)
1

2
∆|

◦
Ricf |2 = |∇

◦
Ricf |2 −Rikjl(

◦
Ricf )ij(

◦
Ricf )kl +Rjk(

◦
Ricf )ij(

◦
Ricf )ik .

Let {ei}, i = 1, . . . , n, be the set of the eigenvectors of
◦

Ricf and let µi be the corresponding

eigenvalues. Moreover, let kij be the sectional curvature defined by the two-plane spanned

by ei and ej. One has

−Rikjl(
◦

Ricf )ij(
◦

Ricf )kl+Rjk(
◦

Ricf )ij(
◦

Ricf )ik = −
n∑

i,j=1

µiµjkij+
n∑

i,j=1

µ2
i kij =

∑
i<j

(µi−µj)2kij ≥ 0 ,

since kij > 0 for all i, j = 1, . . . , n. Using this and integrating the Weitzenböck formula,

we get that
◦

Ricf has to be zero on M , i.e. (M, g, f) ∈ Ef . This proves Proposition 2.7.

Corollary 2.8 simply follows from Proposition 2.7 and the classification of compact gra-

dient Ricci solitons with positive curvature operator (see [8]).

Two examples. We construct two examples of Riemannian manifolds in HCf , following

the construction for the harmonic curvature case given by Derdzinski in [27], following

the same notation to highlight the similarities. Let I ⊆ R be an interval, F ∈ C∞(I) a

smooth positive function on I and (N, h) an (n − 1)-dimensional Einstein manifold with

constant scalar curvature k. We consider the warped product manifold
(
M = I ×N, g =

dt2 + F (t)h
)

. Letting the indices i, j, k run through 1, . . . , n − 1 and given a local chart

t = x0, x1, . . . , xn−1 for I ×N , we have g00 = 1, g0i = 0, gij = F hij and the components of

the Ricci tensor Ric and its covariant derivative ∇Ric are given by

R00 = −n− 1

4

(
2q′′ + (q′)2

)
, R0i = 0 ,(6.4)

Rij =

(
k

n− 1
− 1

4
eq
(

2q′′ + (n− 1)(q′)2
))

hij ,

∇0R00 = −n− 1

2

(
q′′′ + q′q′′

)
, ∇0Ri0 = ∇iR00 = 0 ,

∇0Rij = −
(

k

n− 1
q′ +

1

2
eqq′′′ +

n− 1

2
eqq′q′′

)
hij ,

∇iR0j = −
(

k

2(n− 1)
+
n− 2

4
eqq′q′′

)
hij , ∇kRij = 0 ,(6.5)
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where q = logF . Since ∇0Ri0 = ∇iR00 = Rpi00fp = 0, the condition div(e−f Riem) = 0 is

equivalent to

(6.6) ∇0Rij −∇iR0j +R0ji0∇0f = 0 .

Using the expression of the Riemann curvature tensor in terms of the Christoffel symbols

and the fact that Γj0i = 1
2
q′hij, Γi00 = Γ0

i0 = Γ0
00 = 0, one has

R0ij0 = ∂0Γ
j
i0 − ∂iΓ

j
00 + Γpi0Γ

j
0p − Γp00Γ

j
ip

= ∂0

(1

2
q′hij

)
+ Γki0Γ

j
0k

=
1

4

(
2q′′ + (q′)2

)
hij .

Hence, equation (6.6) is equivalent to the following differential equation for the function q

(6.7) q′′′ +
n

2
q′q′′ +

k

n− 1
e−qq′ =

1

2

(
2q′′ + (q′)2

)
f ′ .

First of all, a simple computations shows that the choice k = 0,

q(t) = t2 f(t) =
n

2
log(1 + t2)

gives a solution to the equation. Hence we have that, given any (n − 1)-dimensional

Riemannian Ricci flat manifold (N, h), one has(
M = R×N, g = dt2 + et

2

h, f(t) =
n

2
log(1 + t2)

)
∈ HCf .

Now we want to construct a compact example. Integrating equation (6.7), we get

(6.8) q′′ +
n

4
(q′)2 − k

n− 1
e−q =

1

2

∫ (
2q′′ + (q′)2

)
f ′ .

Now, we suppose that, given a function q defined on some interval I, we can find f solving

(6.9)
1

2

(
2q′′ + (q′)2

)
f ′ =

εk

n− 1
q′e−q ,

for some ε > 0. Plugging this into (6.8), we reduce problem in solving

(6.10) q′′ +
n

4
(q′)2 − k − ε

n− 1
e−q =

4

n
C ,

for some constant C ∈ R. Letting ϕ := e
n
4
q, we obtain the ODE

(6.11) ϕ′′ − n(k − ε)
4(n− 1)

ϕ1− 4
n = Cϕ ,
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for some constant C ∈ R. It was shown in [27, Theorem 1] that, if k > ε and C < 0,

this equation have non-constant positive periodic smooth solutions, defined in R. Now, let

ϕ = e
n
4
q be a solution, then from the equation (6.10), one has

2q′′ + (q′)2 =
8

n
C − n− 2

2
(q′)2 +

2(k − ε)
n− 1

e−q ≤ 8

n

(
C +

2(k − ε)
n− 1

)
< 0

provided C < −2(k−ε)
n−1 . Then, under this assumption, we can always integrate equation

(6.9) and find the potential function f .

Now, let (N, h) be a compact (n − 1)-dimensional Einstein manifold with (constant)

positive scalar curvature k > ε > 0; choose a non-constant, positive, periodic function

F on R such that ϕ = F
n
4 satisfies (6.11) for some constant C < −2(k−ε)

n−1 ; and choose

f = f(t) solving equation (6.9). Then, following the precise construction in [27, Section 3],

we can define a compact Riemannian quotient of
(
R×N, g = dt2 +F (t)h, f(t)

)
, (M̃, g̃, f̃),

such that M̃ is diffeomorphic to S1 × N and g̃ has weighted harmonic curvature, namely

(M̃, g̃, f̃) ∈ HCf .

7. The class Yf : a possible generalization of the Yamabe problem,

obstructions and examples

LS ⊂ PR

⊂ ∪ ∪ ∩
SF ⊂ LSE ⊂ E ⊂ HC ⊂ Y

∩ ∩ ∩ ∩ ∩
SFf ⊂ LSEf ⊂ Ef ⊂ HCf ⊂ Yf

⊂ ∩ ∩ ∪
LSf ⊂ PRf

In this section we consider the class of Riemannian manifolds (M, g, f) ∈ Yf , i.e. satis-

fying the condition

(7.1) ∇R = 2 Ric(∇f, ·) .

This equation is a meaningful generalization of the one for Yamabe metrics (Y) and can

be seen as a very special prescription on the gradient of the scalar curvature, connecting

the Ricci tensor with its trace via the potential function.

From this point of view, it is natural to study the following problems on a given manifold

M :
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(A) having fixed f ∈ C∞(M), there exists a metric g such that (M, g, f) ∈ Yf?

(B) having fixed f ∈ C∞(M) and a metric g0, there exists a conformal metric g ∈ [g0]

such that (M, g, f) ∈ Yf?

More generally, one could ask the question

(C) there exist a metric g and a smooth function f ∈ C∞(M) such that (M, g, f) ∈ Yf?

Clearly the answer to (C) is positive, since it is always possible to construct a (complete)

metric with constant (negative) scalar curvature ([2] and [7]). Furthermore, when f is

constant, (B) boils down to the well known Yamabe problem, which is completely solved

when M is compact (see e.g. [41]).

In the same spirit of the work of Kazdan and Warner (see [39]), here we prove some

obstructions to problem (B), reserving to subsequent works a thorough study of problems

(A) and (B) in the case f nonconstant.

First of all we recall that a smooth vector field X is a conformal vector field on (M, g)

if and only if

(7.2) LXg =
2 div (X)

n
g ,

where LXg denotes the Lie derivative of the metric in the direction X. Equation (7.1),

together with the the well known Kazdan-Warner identity (see [39, 9]), gives the following

integral condition for compact f -Yamabe metrics. For the sake of completeness, we include

a simple proof.

Lemma 7.1. If M is compact and (M, g, f) ∈ Yf , then, for every conformal vector field

X on (M, g), one has ∫
M

Ric(∇f,X) dV = 0 .

Proof. From equation (7.1) and the fact that X satisfies

Xij +Xji =
2 div (X)

n
gij ,

one has

2

∫
M

Ric(∇f,X) dV =

∫
M

〈∇R,X〉 dV =
2n

n− 2

∫
M

◦
Rij,jXi dV

= − n

n− 2

∫
M

◦
Rij

(
Xij +Xji

)
dV = 0 ,

where we have used integration by parts and Bianchi identity for the trace-less Ricci tensor
◦
Ric, i.e. in coordinates

◦
Rij = Rij − R

n
δij. �
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When (M, g0) supports a nontrivial (nonvanishing) conformal gradient vector field, the

previous lemma gives an obstruction to the existence of a f -Yamabe metric in the conformal

class [g0].

Corollary 7.2. Let (M, g0) be a compact Riemannian manifold and X = ∇f , f ∈ C∞(M),

be a nontrivial conformal gradient vector field on (M, g0). Then, there are no conformal

metrics g ∈ [g0] such that (M, g, f) ∈ Yf .

Proof. Let g ∈ [g0]. By the conformal invariance of equation (7.2), we have that X = ∇f
is also a conformal vector field for (M, g), i.e. the potential function f satisfies

∇2f =
∆f

n
g ,

where all the covariant derivatives refer to the metric g. Integrating Bochner formula

1

2
∆|∇f |2 = |∇2f |2 + Ric(∇f,∇f) + 〈∇f,∇∆f〉

on M , one obtain∫
M

Ric(∇f,∇f) dV =

∫
M

|∆f |2 dV −
∫
M

|∇2f |2 dV =
n− 1

n

∫
M

|∆f |2 dV .

Suppose now that (M, g, f) ∈ Yf . Then, using Lemma 7.1 with X = ∇f , we obtain

∆f = 0, i.e. f is constant on M , which is a contradiction. �

In particular, from this result Proposition 2.9 in Section 2, namely we have the following:

Proposition 7.3. If f ∈ C∞(Sn) is a first spherical harmonic on the round sphere (Sn, g0),

then there are no conformal metrics g ∈ [g0] such that (M, g, f) ∈ Yf .

Note that, by a classical result of Tashiro [51], every compact manifold supporting a

nontrivial (nonvanishing) conformal gradient vector field is conformal to the round sphere

Sn.

An example. Let I ⊆ R be an interval, F ∈ C∞(I) a smooth positive function on I

and (N, h) an (n − 1)-dimensional manifold with Ricci curvature ρ. As in Section 6, we

consider the warped product manifold
(
M = I ×N, g = dt2 +F (t)h

)
. Letting the indices

i, j, k run through 1, . . . , n − 1 and given a local chart t = x0, x1, . . . , xn−1 for I × N , we

have g00 = 1, g0i = 0, gij = F hij and the components of the Ricci tensor Ric are given by

R00 = −n− 1

4

(
2q′′ + (q′)2

)
, R0i = 0 ,(7.3)

Rij = ρij −
1

4
eq
(

2q′′ + (n− 1)(q′)2
)
hij .
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where q = logF . Suppose that (N, h) has constant scalar curvature k. Then, the scalar

curvature of (M, g) is given by

R = −n− 1

4

(
4q′′ + n(q′)2

)
+ ke−q .

On the other hand, if the potential function f is radial, then

Ric(∇f) = g00R00f
′ = −n− 1

4

(
2q′′ + (q′)2

)
f ′ .

Thus, equation (7.1) is equivalent to the following ODE

q′′′ +
n

2
q′q′′ +

k

n− 1
e−qq′ =

1

2

(
2q′′ + (q′)2

)
f ′ .

Notice that this equation coincide with (6.7). Hence, again the choice k = 0 and

q(t) = t2 f(t) =
n

2
log(1 + t2)

gives a solution to the equation. In this case we have that, given any (n− 1)-dimensional

Riemannian scalar flat manifold (N, h), one has(
M = R×N, g = dt2 + et

2

h, f(t) =
n

2
log(1 + t2)

)
∈ Yf .

Moreover, if (N, h) is not Ricci flat, it is easy to see that (M, g, f) /∈ HCf .

On the other hand, following the construction in Section 6, given any compact (n− 1)-

dimensional manifold (N, h) with constant positive scalar curvature k > 0, we can construct

a f -Yamabe metric on a compact manifold M diffeomorphic to S1×N . As before, if (N, h)

is not Einstein, then this solution (M, g, f) /∈ HCf .

8. Nongradient canonical metrics

We provide here the complete generalization of the framework constructed in the previous

sections to the nongradient setting. Again, the starting of our analysis are Ricci solitons,

namely Riemannian manifolds (M, g) for which there exists a vector field X ∈ X(M) such

that

RicX := Ric +
1

2
LXg = λg

for some constant λ ∈ R, where LXg denotes the Lie derivative of the metric in the direction

X. In this we case we say that (M, g,X) ∈ EX . In this section we use the following notation:

EX := RicX −RX

2
g, RX := R + div(X) and AX the antisymmetric part of the ∇X, i.e., in

local coordinates, AX
ij = Xij −Xji, in such a way that ∇X = 1

2

(
AX + LXg

)
. If X = ∇f

for some smooth potential function f , then the soliton is a gradient Ricci soliton (Ef ); note

that, in this case, AX = 0 and 1
2
LXg = ∇2f .
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It follows from the work of Perelman [47] (see [32] for a direct proof) that any compact

Ricci soliton is actually a gradient Ricci soliton. In particular it is well known that, if

λ ≤ 0, then (M, g,X) ∈ E. Moreover, Naber [44] has shown that any shrinking (λ > 0)

Ricci soliton with bounded curvature has a gradient soliton structure. On the other hand,

steady (λ = 0) and expanding (λ < 0) Ricci solitons which do not support a gradient

structure were found in [40, 42, 5, 4].

In order to introduce the nongradient counterparts of the f -canonical metrics that we

have introduced in Definition 1.1, we note that we have defined the classes HCf and Yf

imposing the vanishing of the divergence of the “weighted” tensors e−f Riem and e−f Ric.

Fortunately, we have shown in Section 4 that these structures can be characterized using

the tensor Ricf : this allows us to give the following

Definition 8.1. Let (M, g) be a n-dimensional, n ≥ 3, Riemannian manifold with metric

g. We say that the triple (M, g,X) belongs to

• SFX (X-space forms) if there exist X ∈ X(M) and λ ∈ R such that

RiemX := Riem +
1

n− 2

(1

2
LXg −

div(X)

2(n− 1)
g
)

? g =
λ

2(n− 1)
g ? g ;

• LSEX (X-locally symmetric Einstein metrics) if there exist X ∈ X(M) and λ ∈ R
such that

∇
(

RiemX

)
= 0 and RicX = λg ;

• EX (Ricci solitons) if there exist X ∈ X(M) and λ ∈ R such that

RicX = λ g ;

• HCX (X-harmonic curvature metrics) if there exist X ∈ X(M) such that

div [EX ? g] = 0 .

• YX (X-Yamabe metrics) if there exist X ∈ X(M) such that

∇R = 2 Ric(X, ·) + div(AX)

where div(AX)i = AX
ij,j = Xij,j −Xji,j.

Moreover, we say that (M, g, f) belongs to

• LSX (X-locally symmetric metrics) if there exist X ∈ X(M) such that

∇
(

RiemX

)
= 0 ;

• PRX (metrics with parallel X-Ricci tensor) if there exist X ∈ X(M) such that

∇
(

RicX
)

= 0 .
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Note that, when X = ∇f , we recover the corresponding sets in (1.2); in this latter case,

we say that the structure is gradient. In particular, we have

LSf ⊂ PRf

⊂ ∪ ∪ ∩
SFf ⊂ LSEf ⊂ Ef ⊂ HCf ⊂ Yf

∩ ∩ ∩ ∩ ∩
SFX ⊂ LSEX ⊂ EX ⊂ HCX ⊂ YX

⊂ ∩ ∩ ∪
LSX ⊂ PRX

The class SFX. Using the constancy of RX = R + div(X), which follows tracing twice

the definition equation, we have

(M, g, f) ∈ SFX ⇐⇒ RiemX =
λ

2(n− 1)
g ? g ⇐⇒

W = 0

RicX = λg

Note that SFX ⊂ EX ; moreover, in dimension n ≥ 4 every X-space form is a locally

conformally flat Ricci soliton. In particular, using the results in [22], the analogue of

Proposition 2.1 holds.

The classes LSX and LSEX. One has

∇RiemX = ∇W +
1

n− 2
∇
(

AX ?g
)

where AX := RicX − RX

2(n−1)g. Moreover, ∇AX = 0 implies the constancy of RX , and is thus

equivalent to ∇RicX = 0. By orthogonality,

(M, g, f) ∈ LSX ⇐⇒ ∇RiemX = 0 ⇐⇒

∇W = 0

∇RicX = 0

and, obiouvsly,

(M, g, f) ∈ LSEX ⇐⇒

∇RiemX = 0

RicX = λg
⇐⇒

∇W = 0

RicX = λg

Even in this more general situation, the analogue of Proposition 2.2 holds. Note that,

for the LSEX , one has to use general results for homothetic vector fields contained, for

instance, in [51].
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The class HCX. By definition

(M, g,X) ∈ HCX ⇐⇒ div [EX ? g] = 0 ,

where EX = RicX −RX

2
g and RX = R + div(X). We claim that

(M, g,X) ∈ HCX ⇐⇒ RicX is a Codazzi tensor ⇐⇒

Wtijk,t =
(
n−3
n−2

)(
XtWtijk −DX

ijk

)
∇R = 2 Ric(X, ·) + div(AX)

where

DX
ijk =

1

n− 2
(XkRij −XjRik) +

1

(n− 1)(n− 2)
(XtRtkδij −XtRtjδik)

− R

(n− 1)(n− 2)
(Xkδij −Xjδik)

+
1

2
(Xkji −Xjki) +

1

2(n− 1)
[(Xtkt −Xktt)δij − (Xtjt −Xjtt)δik].

This definition follows from a previous work of the authors [25], where we derived the so

called integrability conditions for nongradient Ricci solitons.

Assume div [EX ? g] = 0. From equation (3.9) one has

(EX)tj,tδik − (EX)tk,tδij = (EX)ij,k − (EX)ik,j .

Tracing,

div(EX) =
1

2
∇RX ⇐⇒ div(RicX) = ∇RX .

A simple computation now shows that

div [EX ? g] = 0 ⇐⇒ (RicX)ij,k − (RicX)ik,j = 0 ,

i.e. RicX is a Codazzi tensor.

We prove now the second equivalence. Assume that RicX is a Codazzi tensor. Then, by

definition, we have

(8.1) (RicX)ij,k = (RicX)ik,j ⇐⇒ Rij,k +
1

2

(
(Xijk +Xjik

)
= Rik,j +

1

2

(
(Xikj +Xkij

)
.

In particular, tracing with respect to i, j, we deduce that

Rk =
(
Xktt +Xtkt

)
− 2Xttk

=
(
Xktt +Xtkt

)
− 2Xtkt + 2XtRtk

= 2XtRtk +
(
Xktt −Xtkt

)
= 2XtRtk + AX

kt,t ,
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i.e.

(8.2) ∇R = 2 Ric(X, ·) + div(AX) .

Moreover, going back to (8.1), one has

Rij,k −Rik,j =
1

2

(
Xikj −Xijk

)
+

1

2

(
Xkij −Xjik

)
.

Now we have, using again the commutation ruleXijk−Xikj = XtRtijk and Bianchi identities

Rij,k −Rik,j = Cijk +
1

2(n− 1)

(
Rkδij −Rjδik

)
,

1

2

(
Xikj −Xijk

)
=

1

2
XtRtikj

and
1

2

(
Xkij −Xjik

)
=

1

2

(
Xkji −Xjki

)
+XtRtikj .

Thus

Cijk +
1

2(n− 1)

(
Rkδij −Rjδik

)
= XtRtikj +

1

2
AX
kj,i .

Inserting in the previous relation the decomposition of the curvature tensor and equation

(8.2), we obtain

Cijk +XtWtikj = DX
ijk ,

since DX can be written using AX as follows

DX
ijk =

1

n− 2
(XkRij −XjRik) +

1

(n− 1)(n− 2)
(XtRtkδij −XtRtjδik)

− R

(n− 1)(n− 2)
(Xkδij −Xjδik)

+
1

2
AX
kj,i −

1

2(n− 1)

(
AX
kt,tδij −AX

jt,tδik
)
.

Equation (3.6) immediately implies

RicX is a Codazzi tensor ⇐⇒

Wtijk,t =
(
n−3
n−2

)(
XtWtijk −DX

ijk

)
∇R = 2 Ric(X, ·) + div(AX)

From the equivalence

(M, g,X) ∈ HCX ⇐⇒ RicX is a Codazzi tensor

and the fact that compact Ricci solitons are gradient, it follows that all the results con-

cerning compact HCf metrics in Section 2 can be extended to the nongradient setting,

defining the class HCλX in the natural way.
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The class YX. In analogy with the gradient case, a simple computation shows that

(M, g, f) ∈ YX ⇐⇒ div (RicX −RXg) = 0 .

Moreover, we can prove the following obstruction result which extend to the nongradient

setting Corollary 7.2.

Proposition 8.2. Let (M, g0) be a compact Riemannian manifold and X ∈ X(M) be

a non-Killing conformal vector field on (M, g0). Then, there are no conformal metrics

g ∈ [g0] such that (M, g,X) ∈ YX .

Proof. Let g ∈ [g0]. By the conformal invariance of equation (7.2), we have that X is also

a conformal vector field for (M, g). Assume that (M, g,X) ∈ YX , i.e.

∇R = 2 Ric(X, ·) + div(AX)

where div(AX)i = AX
ij,j = Xij,j −Xji,j. By Kazdan-Warner identity, we have

(8.3)

∫
M

Ric(X,X) dV +
1

2

∫
M

〈div(AX), X〉 dV = 0 .

Integrating Bochner formula in Lemma 3.2 and using the conformal vector field equation,

one has ∫
M

Ric(X,X) dV =

∫
M

|∇X|2 dV +
n− 2

n

∫
M

| div(X)|2 dV .

On the other hand

1

2

∫
M

〈div(AX), X〉 dV = −1

2

∫
M

(Xij −Xji)Xij

= −1

2

∫
M

|∇X|2 dV +
1

2

∫
M

XijXji dV

= −
∫
M

|∇X|2 dV +
1

n

∫
M

| div(X)|2 dV .

Putting these identity in (8.3), we obtain div(X) = 0. Thus X must be a Killing vector

field, and this contradicts the assumption. �

9. Final remarks and open problems

To conclude, we present a short list of comments and open questions, which could be

the subject of further investigations.
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1. In section 7 we showed an obstruction to problem (B), that is a possible generaliza-

tion of the Yamabe problem related to the class Yf . A simple computation using

the conformal changes of the scalar and Ricci curvature (see e.g. [6]) shows that

(M, g̃, f) = (M, e2ug, f) ∈ Yf if and only if the function u solves the PDE

∇∆u+ (n− 2)∇2u(∇u, ·)−
(

2∆u+ (n− 2)|∇u|2 − 1

n− 1
R
)
∇u− 1

2(n− 1)
∇R

(9.1)

= −Ric(∇f, ·) +
n− 2

n− 1
∇2u(∇f, ·) +

1

n− 1

(
∆u+ (n− 2)|∇u|2

)
∇f − n− 2

n− 1
〈∇u,∇f〉∇u.

Note that, commuting the first term, this equation is second order problem with

respect to the gradient of the conformal factor u. Now we ask: there exist sufficient

conditions on ∇f to ensure that (B) has a positive answer, or, equivalently, to

ensure the existence of solution of (9.1)? Are there other obstructions to the latter,

different from Corollary 7.2? As far as the problem (A) is concerned, are there any

obstructions at all? Clearly, all the previous questions could also be asked for the

class YX .

2. In Sections 6 and 7 we constructed some examples of HCf and Yf metrics, re-

spectively, using warped products. Can we construct other examples, apart from

gradient Ricci solitons Ef , possibly “non-warped”? Can we construct examples of

HCλf? Moreover, what can we say in the nongradient cases HCX and YX? Since

compact Ricci solitons EX are gradient, it would be interesting to construct a com-

pact example of HCX metric, with X “genuinely” nongradient (that is, not of the

form X = ∇f + Y , where Y is a Killing vector field). Compare also with 5. below.

3. In the positive (sectional) curvature case we have seen, in Proposition 2.7, that

the class HCλf coincide with the one of gradient Ricci solitons Ef . Are there other

characterizations? What is the role of the so-called Hamilton identity R+ |∇f |2−
2λf = C, C ∈ R, which is valid for gradient Ricci solitons?

4. Inspired by the classification results for Ricci solitons, we could study, for instance,

the following problems:

a. If M is compact and (M, g, f) ∈ HCλf , with λ ≤ 0, is it true that (M, g) ∈ E?

b. If M is three dimensional, compact and (M, g, f) ∈ HCλf , with λ > 0, is it

true that (M, g) is isometric, up to quotients, to the round sphere S3? More

generally, can we classify complete 3-dimensional manifolds which belong to

the class HCλf with λ > 0?

c. If (M, g) is compact and locally conformally flat, and (M, g, f) ∈ HCλf , is it

true that (M, g) ∈ SF? Note that, since in section 6 we constructed locally
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conformally flat examples of HCf metrics, for the latter class this result is

clearly false.

d. Gradient Ricci solitons can be classified by imposing conditions on the Weyl

tensor which are weaker than local conformal flatness (e.g. harmonic Weyl

curvature [33], Bach flatness [17], higher order vanishing conditions [24]). Can

we prove similar results for HCf metrics?

5. As we saw in Section 8, compact Ricci solitons EX are gradient. What can we

say about the classes HCX , HCλX and YX in the compact case? Are there natu-

ral geometric conditions ensuring the “gradientness” for these classes (even in the

noncompact setting)?
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