GLOBAL REGULARITY FOR THE FREE BOUNDARY IN THE
OBSTACLE PROBLEM FOR THE FRACTIONAL LAPLACIAN
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ABSTRACT. We study the regularity of the free boundary in the obstacle problem
for the fractional Laplacian under the assumption that the obstacle ¢ satisfies
Ap < 0 near the contact region. Our main result establishes that the free bound-
ary consists of a set of regular points, which is known to be a (n — 1)-dimensional
C1® manifold by the results in [7], and a set of singular points, which we prove
to be contained in a union of k-dimensional C'-submanifold, k =0,...,n — 1.

Such a complete result on the structure of the free boundary was known only in
the case of the classical Laplacian [3,[5], and it is new even for the Signorini problem
(which corresponds to the particular case of the %—fractional Laplacian). A key
ingredient behind our results is the validity of a new non-degeneracy condition
SUDE (g) (U — ) > cr?, valid at all free boundary points z.

1. INTRODUCTION AND MAIN RESULTS

1.1. The obstacle problem for the fractional Laplacian. Given a smooth func-
tion ¢ : R® — R, the obstacle problem for the fractional Laplacian can be written
as

{ min{u — ¢, (~A)*u} =0 in R, (1.1)

limyg oo u(x) =
where

(—A)u(r) = cps PV/ (u(x) — u(z + z))kfi%, s€(0,1),

n

is the fractional Laplacian.

This kind of obstacle problems naturally appear when studying the optimal stop-
ping problem for a stochastic process, and in particular they are used in the pricing
of American options. Indeed, the operator (—A)® corresponds to the case where the
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underlying stochastic process is a stable radially symmetric Lévy process. We pro-
vide in the Appendix a brief informal description of the optimal stopping problem
and its relation to (|1.1)).

In addition to this application, the obstacle problem for the fractional Lapla-
cian appears in many other contexts, for instance when studying the regularity of
minimizers of some nonlocal interaction energies in kinetic equations (see [9]).

1.2. Tts local version and the Signorini problem. Although the fractional
Laplacian is a non-local operator, it is possible to localize the above problem via
the so-called “extension method” (see 22 B])f] More precisely, one adds an extra
variable y € (0,00) and consider the function u(x,y) defined as the solution of
u(z,0) = wu(z) inR"
{ Lyju(z,y) = 0 in R

where R = R" x (0, 00) and
Lot := —div,, (Jy|*Veyt),  a:=1-2s. (1.2)

This function u can be obtained by minimizing the energy

min{/ [y|*|Veyv)? dedy : v(z,0) = u(:c)},
R+

and satisfies

lin |y[*y (2, y) = (—A)"u(z) in R™. (1.3)

Moreover, & can be extended to the whole space R"*! by even reflection, that is,
u(z,y) = u(x, —y), and then (1.1)) becomes equivalent to

u(r,0) > @(x) inR"
L = 0 in R\ {(2,0) : u(z) = o(z)}, (1.4)
Ly > 0 in R+, '
U(z,y) — 0 as |(z,y)| — oo.

Notice that when s = % then a = 0 and L, = A, ,, so we recover the Signorini prob-
lem (also called “lower dimensional obstacle problem” for the classical Laplacian).
This problem is interesting not only when stated on the whole space R"*1, but also
in bounded domains  C R™"*! which are symmetric with respect to the hyperplane
{y = 0} (see for instance [4, [0, 2]).

Here we consider for simplicity the case when Q = B, is the unit ball in R**!,
although our argument generalizes immediately to convex domains. Since all our
discussion holds for any s € (0,1), we shall directly consider the local version of
for all s, although the most interesting case is when s = % So, we set By :=

IThe extension problem for the fractional Laplacian was first discovered by Molchanov and
Ostrovskii [22], and was known in the probability community since many years. However, it seems
that this paper went unnoticed in the PDE community. We thank Rodrigo Banuelos for pointing
out to us this reference.
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By N {y = 0}, we consider an obstacle ¢ : By — R such that ¢|sp, < 0, and we let
u : B; — R be the solution of

(x,0) = @(x) onBin{y=0},
L = 0 in B\ ({y =0} N {u=¢}), (1.5)
Laﬂ Z 0 on Bl? '
T =0 on 0By,

where we use the notation u(z) = @(z,0). Although often the assumption that u
vanished on 0B; is armless and it is just made to simplify the notation, for our
results it will play a crucial role.

Remark 1.1. Since w is uniquely defined once its trace u on {y = 0} is given, by
abuse of notation we shall say that a function u : R” — R (resp. u : B; — R) solves

(1.4) (resp. (1.5)) if its L,-extension in R™*! (resp. in B;) is a solution of (1.4)
(resp. (L.5)).

The main questions for both problems ([1.4)) and (1.5 are the regularity of u and
the one of the boundary of the contact set {u = ¢} (also called “free boundary”).
We next discuss the known regularity results on these questions.

1.3. Known results. Let us briefly discuss the known results about the regularity
of the solution u and of the free boundary 0{u = ¢}. Before explaining the results in
the fractional case, we first recall what is known in the case of the classical Laplacian.

e The classical case. When s = 1 (i.e.,, when the operator is the classical
Laplacian) the obstacle problem (1.1)) is by now well understood. Essentially, the
main results establish that the solution v € O, and whenever Ay < —cy < 0 then:
- the blow-up of u at any free boundary point is a unique homogeneous polynomial
of degree 2;

- the free boundary splits into the union of a set of regular points and a set of
singular points;

- the set of regular points is an open subset of the free boundary of class C1%;

- singular points are locally contained into a stratified union of C* submanifolds.
We refer to the classical papers of Caffarelli [3, 5] or to the recent book [24] for more
details.

e The fractional case. For the fractional Laplacian, the first results obtained
were for the Signorini problem (corresponding to or when s = %) in [
Athanasopoulos and Caffarelli obtain the optimal C'%/2 regularity of the solution u
when ¢ = 0. The general case s € (0, 1) for and was investigated later by
Silvestre and Caffarelli-Silvestre-Salsa [25] [7], where the authors established, even
for ¢ # 0, the optimal C'** regularity.

Concerning the regularity of the free boundary, in [2] Athanasopoulos, Caffarelli,
and Salsa investigate the Signorini problem for ¢ = 0 and consider the so-called
“regular points”, consisting of the set of points where the blow-up of u at xg has
homogeneity 1+ s (s = %), proving that this is an open subset of the free boundary
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of class C1®. This result was then extended to any s € (0,1) by Caffarelli, Salsa,
and Silvestre [7] for every smooth obstacle ¢ # 0.

Subsequently, again in the particular case s = %, in [16] Garofalo and Petrosyan
investigated the structure of the set of singular points, that is the set of free boundary
points where the contact set {u = ¢} has zero density, proving a stratification results
for such points in terms of the homogeneity of the blow-ups of u. More recently, other
generalizations and approaches to the Signorini and fractional obstacle problem have
been investigated in [I8] 23] 17, [15].

However, despite all these recent developments, the full structure of the free

boundary was far from being understood: first of all, it was not even known whether
the free boundary had Hausdorff dimension n — 1. In particular, a priori the free
boundary could be a fractal set. Secondly, the definitions of regular and singular
points from [7] and [16] do not exhaust all possible free boundary points, in the sense
that they do not exclude the existence of other type of free boundary points, and a
priori the union of regular and singular points may consists of a very small fraction
of the whole free boundary. Thus, the complete description of the free boundary
was an open problem, even for the case s = %
1.4. Statement of the results. The aim of this paper is to show that, for both
problems and , under the assumption that the obstacle ¢ satisfies Ay <
—co < 0, regular and singular points do exhaust all possible free boundary points
(actually, in the case of the global problem we only need the weaker inequality
Ap < 0). In addition, we show that singular points are locally contained into a
stratified union of C'' submanifolds, allowing us to obtain the same structure result
on the free boundary as in the case s = 1.

It is important to point out that, since our problem is non-local, one does need
a global assumption in order to obtain such a result (this in contrast with the case
s = 1, where all the assumptions are local). In our case the global assumption is
hidden in the fact that either we are considering the obstacle problem set in the
whole R", or for the local case we are imposing zero boundary conditions. It is easy
to see that these assumptions are necessary (see Remark below).

Before stating our result we introduce some notation: given an obstacle ¢ and a
solution u to (1.4]) or (1.5 (recall the convention from Remark [1.1)), we define the

free boundary as
I'(u) == 0{u= ¢} CR™

A free boundary point xy € I'(u) is called singular if the contact set {u = ¢} has
zero density at g, that is, if

lim HU =p}N Br(ﬂUo)‘ _
40 | By (20)]

On the other hand, a free boundary point xy € I'(u) is called regular if the homo-
geneity of the blow-up at zy is 1 + s.

(1.6)
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We denote by I'ys(u) the set of regular points, and ' (u) the set of singular points
(the reason for this notation will be clear from the theorem below). Our main result
is the following:

Theorem 1.2. Let u be:
(A) either a solution to the “global” problem (1.4), with ¢ : R™ — R satisfying

@ € C*7(R™), Ap <0 in{p >0}, 0+ {p >0} CCR", (1.7)

for some v > 0;
(B) or a solution to the “local” problem (1.5)), with ¢ : By — R satisfying

€ C*(By), Ap < —cop <0 in{p>0}, 0#{p>0}Ccc B, (1.8)
for some co > 0 and v > 0.

Then, at every singular point the blow-up of u is a homogeneous polynomial of degree
2, and the free boundary can be decomposed as

[(u) = Tiys(u) UTs(u),

where 'y y5(u) (resp. Ta(u)) is a open (resp. closed) subset of I'(u).

Moreover, Tyy4(u) is a (n — 1)-dimensional manifold of class C%*, while Ty (u)
can be stratified as the union of {T%(u)}r=o..n1, where T5(u) is contained in a
k-dimensional manifold of class C*.

As mentioned above, the C** regularity of 'y ,(u) was established in [7], so the
main point of our result is the fact that I'(u) \ I'iys(u) consists only of singular
points, that the blow-up of u at these points has homogeneity 2, and that I's(u) can
be stratified into C!' submanifolds. We remark that, if the obstacle is C*°, then also
the set I'1;5(u) is of class C*° [11], 19, 20].

A key ingredient in the proof of Theorem is the non-degeneracy condition

sup (u — @) > cr?, (1.9)

By (z0)
which we prove at all free boundary points xy. Thanks to this fact we can show that
the homogeneity m of any blow-up satisfies m < 2. Then, by the results of [7] we
know that m < 2 implies in fact that m = 1 4+ s, and thus we only have to study
the set of free boundary points with homogeneity m = 2. For this, building upon
some ideas used in [16] for the case s = %, we show that the set I's(u) is contained
in a union of k-dimensional C'' submanifolds, & = 0,...,n — 1. Notice that in [16]
the authors could only show that the set of singular free boundary points with even
homogeneity is contained into a countable union of submanifolds, while our result
proves that, for any k = 0,...,n — 1, there exists one k-dimensional C' manifold
(not necessarily connected) which covers the whole set I'5(u).

The paper is organized as follows. In Section [2| we introduce some definition and
show some basic properties of solutions. In Section [3| we prove the non-degeneracy
at free boundary points. In Section 4] we prove an Almgren-type frequency formula.
In Section |5| we show that blow-ups are homogeneous of degree either 1 + s or 2.
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In Section [6] we prove a Monneau-type monotonicity formula that extend the one
obtained in [16] for s = 1. Finally, in Section we show uniqueness of blow-ups and
establish Theorem [L.2]

Acknowledgments. BB has been partially supported by a postdoctoral fellow-
ship given by Fundacién Ramén Areces (Spain) and MTM2013-40846-P, MINECO.
AF has been partially supported by NSF Grant DMS-1262411 and NSF Grant DMS-
1361122.

2. PRELIMINARIES

2.1. Existence and uniqueness of solutions. Although this is not the focus of
our paper, we make few comments about the existence of solutions to problems
and under the assumption that ¢ : R" — R is a continuous function
satisfying either {¢ > 0} CC R" or {¢ > 0} CC By, depending on the problem we
are considering.

The existence and uniqueness of solutions to (|1.5]) is standard: @ is the unique
minimizer of the variational problem

min{ |y|“|Vx7yv|2dxdy s v(+,0) > o, Vo, = 0}.
By

On the other hand, one must be a bit more careful with (1.4): a possible way to
construct a solution is to consider the limit as R — oo of the minimizers ug to the
problem

min{/ Y| Vayv)? dedy = v(-,0) > ¢, v|os, = 0}.
Br

It is easy to check (by a comparison principle) that ug > 0 in Bi and that ug <
Up|g, if R < R, so u := limp_,o ur exists and solves the first three relations in
. The only nontrivial point is whether u vanishes at infinity, and this is actually
false in some cases (this fact was already observed in [25]).

To understand this point, consider first the simpler case n = 1 and s = 1 (even
if we only consider s € (0, 1), the case s = n = 1 allows one to understand what is
happening). This corresponds to take the limit of ug as R — oo, where uz minimizes
the Dirichlet energy in Br among all functions v > ¢ vanishing on 0Bg. Since the
functions ug are harmonic (hence linear) outside the contact region {ur = ¢}, it is
not difficult to check that the limit of ug is the constant function u = maxg . In
particular we see that u /4 0 as |z| — oo.

We now show that
5 € (0,%) ifn=1,
se€ (0,1) ifn>2.

To see this, consider the fundamental solution of (—A)*® given (up to a multiplicative
constant) by

u(z,y) >0 as|(z,y)| = o0 for { (2.1)

1

- |2

Gns(z) : r e R"\ {0},
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and extends it to R**! as

~ ly
Gns x, = Gn,s z
o= [ Gt

|25

)(n+28) /2

It can be easily checked that this functions satisfies
LoGrs=0 inR™N\{0},  L,Gp,>0 inR"

(see for instance [8, Section 2.4]), so we can use this function as a barrier for our
solution u. More precisely, consider M > 1 large enough so that M G, s > .

Then it follows by comparison that ugp < M CNJW in R"* for all R > 0, and letting

R — 0o we obtain that © < M én,s. Since the latter function vanishes at infinity
when s € (0,3) and n =1 or s € (0,1) and n > 2, this proves (2.1).

The discussion above shows why the cases s € [%, 1) and n = 1 are critical: the
Green function does not vanish at infinity. Still it is worth noticing that, even in
these cases, one could generalize our results to the solution constructed above as
the monotone limit of the functions ur. However, to have a cleaner statement with
precise boundary conditions at infinity, we have preferred to state our results for
solutions to ([1.4)).

2.2. A useful transformation. In Section [4] we shall prove an Almgren-type fre-
quency formula to study free boundary points where the blow-ups of our solution
u have homogeneity at most 2. While the study of free boundary points where the
homogeneity is strictly less than 2 was essentially done in [7], to investigate points
with homogeneity equal to 2 it will be important to replace u — ¢ with a suitable
variant of it for which the L, operator is very small.

More precisely, given u solving either or , given a free boundary point
xo € I'(u) we define

ﬁ {Ap(z0) y* + (VAP)(20) - (T — 20) 42} . (2.2)

Ux()(x? y) = ﬂ(l’, y)_¢($)+
First of all notice that
v(2,0) = u(z) — ()
for all z € R™, hence v™(z,0) > 0. Furthermore, by (1.4)) and (1.7)) (resp. (1.5) and
(1.8])), we have
[Lov™(z,9)] = |yl*|=(Asp)(@) + (Aup)(@0) + (& — 20) - V(Asp)(20)))|
< Clyl*l — o™, (2.3)
for every (z,y) € R"™\ {(2,0): v*(x,0) = 0} (resp. for every (z,y) € B\
{(x,0) : v®™(z,0) = 0}). Finally it is also important to observe that, since ¢ € C?7,
then v™ depends continuously on xg.

Throughout the paper, we shall use v instead of v™ whenever the dependence on
point xq is clear. Also, given a point zy € R™, we denote by B,.(zo,0) the ball in
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R™*! of radius 7 centered at (z,0), by B (20, 0) the upper half ball B, (z, 0) R,
and by B, (zq) the ball in R" of radius r centered at .

3. NONDEGENERACY

As mentioned in the introduction, a key ingredient in the proof of Theorem [1.2]is
the validity of the non-degeneracy condition at every free boundary point xg.
We now give two different proofs of it, depending whether we are in the global or in
the local situation.

We begin with the global case. Recall that problems and are equivalent,

so we can use either formulations.

Lemma 3.1. Let u solve the obstacle problem , with o satisfying . Then
there exist constants c1,m1 > 0 such that the following holds: for any zq € T'(u) we
have

sup (u— ) > cyr? Vr e (0,r).

By (wo)
Proof. Let us consider the function w := (—A)*u. Notice that w > 0, and w cannot
be identically 0 as otherwise u would be a s-harmonic function globally bounded on
R™, hence constant. Since u vanishes at infinity this would imply that « = 0, which
is impossible since by assumption () # {¢ > 0} C {u > 0}.

Since w = (—A)®u vanishes in the set {u > ¢}, for any point x; € {u > ¢} we

have (2)d
- B —w(z)dz
(=A) TPw(ry) = ¢y PV /]R” |2y — 2[n+20-5) <0,

where the last inequality follows from the fact that w = 0. In particular, by com-
pactness, we see that there exist constants cg, 79 > 0 such that

(=A)'"Fw(zy) < —cp <0

for any 21 € {u > ¢} with dist (1, '(u)) < 7. Now, since u is a global solution, by
the semigroup property of the fractional Laplacian we obtain that

(—A)u = (—A)'*w < —¢ in Uy :={u> ¢} n{dist(-,I(v)) <ro}. (3.1)

We now observe that, since u > 0 on the contact set, again by compactness there
exists a constant hg > 0 such that

© > hy in {u = ¢}.
In particular, by continuity of ¢, there exists r; € (0, %) such that
>0 inU ={u>e}tn{dist(T(u) <2r}. (3.2)

Consider now an arbitrary point z; € Uy with dist(-, F(u)) < ry, and take r € (0,77).
Since U; C Uy, it follows by (3.1)), (3.2), and (L.7)), that the function u; := u — ¢
satisfies

Auy > ¢ in {u; >0} N B,(z1) =1 AN B,(z1),
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or equivalently

Co 2
us(z) ;== uy(x) — —|ox —x
(@) = @)~ o
is sub-harmonic in A N B,.(z1). Hence, by the maximum principle,
0<up(x;) < sup ug= sup us,
AﬂBT»(JH) 8(AﬂB,-(a:1))

and noticing that us < 0 on A N B,.(z1) we deduce that

&
0< sup up < sup uy —cir?, = iy
ANOB,(21) OB (1) 2n

Since x; € U; was arbitrary, the result follows by letting 21 — g . U

We now consider the local case. As we shall see we now need a slightly stronger
assumption on the obstacle, namely that Ap < —c¢y < 0. Notice that this is exactly
the same assumption needed in the obstacle problem for the classical Laplacian,
and it is a peculiarity of the global problem and the non-locality of the fractional
Laplacian that allowed us to weaken this hypothesis in the previous lemma.

Lemma 3.2. Let u solve the obstacle problem (1.5)), with ¢ satisfying (L.8)). Then
there exist constants c1,m > 0 such that the following holds: for any xo € T'(u) we
have

sup (u—) >cr*  Vre (0,m).
Br(zo0)

Proof. As in the proof of Lemma ([3.1)) we observe that, since v > 0 on the contact
set, by compactness there exists a constant hy > 0 such that

© > hg in {u=p}.
In particular, by (1.8]) and the continuity of ¢, there exists r; > 0 such that
©>0 in Uy := {u> ¢} N {dist(-,(v)) <2r} CC B.

Consider now an arbitrary point x; € U; with dist(-7 F(u)) < rq, define the function
Co
2n+2(1 +a)

where ¢y is the constant in ([1.8)), and consider r € (0, 7).
Since

w(x,y) = u(z,y) — () (Jo — =1 +4°)

Lii=0 in{y#0}U{{y=0}n{u>e}}
we get that

Low(z,y) = Laa(z,y) — |y|*(Ap(z) + ¢) >0 in T,

where

U :=B(21,0)\ {y=0}N{u=¢}) CC B
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Hence, since w < 0 in {y = 0} N{u = ¢} and w(z1,0) > 0, the maximum principle
yields

0 < w(z;) < supw = supw. (3.3)
U ouU

Noticing that OU = 9B, (z1,0)U ({y = 0} N{u = ¢}) and w < 0 in ({y =0} N{u =
¢}), it follows by (3.3) that

sup w > 0,
OB (x1,0)
so, letting x1 — o, we get
~ Co 2 - Co 9
sup (4 —¢) — ————1r°> sup (u—¢)— ——r°>0. (34
Br(ro70)< ) 2n + 2(1 + a) 8Br(:c0,0)( ) 2n + 2(1 + a) ( )

To conclude the proof we now show that this supremum is attained for {y = 0}.

To prove this we first notice that, by symmetry, u(z,y) = u(z, —y). Also, since
L,u >0, L,u = 0 outside the contact set {u = ¢}, and ulgp, = 0, it follows by the
maximum principle that @ > 0 in B; and that u attains its maximum on the contact
set {u = p}. Hence, using again that u = 0 on 9B;, we deduce that

ly|*0yu <0 on 0By N{y >0}, lim ly|“Oyu(z,y) <0 on {u=p}.
y—0

Also, since u is even in y and it is smooth outside the contact set, we have
lim |y|*0yu(x,y) =0 on {u > p}.
y—0t

Thus, since the function y?d,u is L_,-harmonic in B; (as can be easily checked by
a direct computation), it follows by the maximum principle that y*d,u < 0 in B},
that is, u is decreasing with respect to y inside B;". Since @ is even in y this proves
that

u(z,y) < u(z,0) =u(x) V(z,y) € B,

and (3.4)) yields

~ Co 9
sup (u—¢) = sup (u—¢)> ——F——7",
Br(aso)( ) Br(gy070)( ) 2n+2(1+a)

as desired. 0

Remark 3.3. It is worth noticing that the proof of Lemma works also in R"+!,
but has the drawback (with respect to Lemma of requiring that Ay < —¢y < 0.

In any case, it is important to observe that the non-degeneracy estimate at free
boundary points is a “global” property, in the sense that it crucially relies on the
fact that we are either studying the obstacle problem in the whole R™ or we are
assuming zero boundary conditions: indeed, while always holds independently
of the value of u on 9B;, we need to know that RT 2 y — u(x,y) is decreasing to
prove non-degeneracy (see the proof of Lemma .

To show that non-degeneracy does mot holds in bounded domains even if one
assumes the obstacle ¢ to be C*° and uniformly concave, consider a s-harmonic
function u in By which satisfies D?u < —Id in B, /2 (the existence of such a function
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follows for instance from [12]). Then, by taking as obstacle a smooth function ¢ < u
satisfying D?p < —Id, u(0) = ¢(0), and such that supp (v — ¢) < % for r small,
we see that non-degeneracy fails.

We now want to transfer these non-degeneracy informations to the function v(x,y) =
v™(x,y) defined in (2.2)). Before doing that, we need the following weak-Harnack
estimate:

Lemma 3.4. Let z € R™ v >0, and let w satisfy Lyw < |y|®f in B,.(z). Then

] ) 1/2
p = C (g [ Witwtdedy) 4 Ol
B,/3(2) " B ()

for some constant C' depending only on n and s.

Proof. The result follows from the classical elliptic estimates of Fabes, Kenig, and
Serapioni [14]. Namely, write z = (z,7) € R” x R and define

1
U(z,y) = meHLOO(BT(z))(W -z’ + (y—9)?),

so that L,y = _|y|a’|f”L°°(Br(z))-
In this way w := w + ¢ satisfies L,w < 0, and by [14, Theorem 2.3.1] we get

] 1/2
sup w < C (m/ |y|*w? dx dy> .
BT/Z(Z) r Br(z)

The result then follows easily noticing that 0 < ¢ < Cr?||f]| (s, (z)) inside B,(z).
U

We can now prove the following:

Corollary 3.5. Let u solve:
(A) either the obstacle problem (1.4)), with ¢ satisfying (1.7));
(B) or the obstacle problem (1.5)), with ¢ satisfying (1.8)).

Let 1,1 be as in Lemma[3.1] (in case (A)) or Lemma (in case (B)). Also, let
xg € R™ be a free boundary point, and let v = v™ be defined as in (2.2). Then

sup v(x,0) > ¢;r? Vr e (0,r). (3.5)
By (zo)

Moreover there exist positive constants co and ro, independent of xq, such that
/ lylo(z,y)* dedy > cyr™™ o Ve (0,1,). (3.6)
BT(J;0,0)

Proof. Since v(z,0) = u(x) — p(z), (3.5) follows immediately from Lemmas |3.143.2]

so we only need to prove (3.6]).
For this we define the function v* := max{v, 0} in R"*! and notice that, by (2.3),

Lot (z,y) < Cly|*|z — x0)"t  in {v" > 0}.
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Since vt > 0 we see that L, <0 in the set {v™ = 0}, therefore
Lot < Cly|a — zo[™™ in R™M. (3.7)
This allows us to apply Lemma [3.4] to deduce that
1 , 1/2
sup v* < C (T/ ly[*v™| dxdy) + C ¥t
B,2(2) e e

for any z € R™*!. In particular, applying the estimate above with z = (g, 0), (3.5

gives
1 2 1/2 7\ 2
- a —+ r o 3+’Y
¢ <7””+1+“ /Br(zo,o) o] da dy) = (2) Cr,
hence
[ bR drdy > e
BT(IO,O)
for r small enough, as desired. 0

4. FREQUENCY FORMULA

The main objective of this section is to establish an Almgren-type frequency
formula similar to the ones in [7, [16]. More precisely we prove the following:

Proposition 4.1. Let u solve:

(A) either the obstacle problem (1.4)), with ¢ satisfying (1.7));
(B) or the obstacle problem (1.5)), with ¢ satisfying (1.8)).
Let xg € I'(u) be a free boundary point, let v = v™ be defined as in (2.2), and set

H*(r,v) = / |y|*®. (4.1)
OB (x0,0)

Also, let v > 0 be as in (1.7)-(1.8]). Then there exist constants Cy, ro > 0, indepen-
dent of xg, such that the function

d
i & (r,v) == (r + Cor?) o log max { 1" (r,v), r"Ter2L
r

is monotone nondecreasing on (0,ry). In particular the limit lim, o ™ (r,v) =
D™ (0", v) exists.

To simplify the notation we shall denote ® = ®*° and ‘H = H™ when no confusion
is possible. We notice that the result above is a modification of the one established
in [7, Theorem 3.1], which corresponds to the case v = 0 in our Proposition [4.1]
There the authors can assume v = 0 since they only study free boundary points
where the blow-ups of u have homogeneity strictly less than 2. However, since our
main focus is to study free boundary points with homogeneity 2, we need to add
a parameter v > 0 (and, for the same reason, we need to consider the function v

instead of © — ¢). Notice that, in the case s = %, a similar Almgren-type frequency
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formula was used in [16] to study singular points of homogeneity 2m with m integer.
When m = 1, their frequency formula corresponds to v = 1 in Proposition [4.1]

To prove Proposition we can assume without loss of generality that zy = 0.
We will denote by 0B, (resp. B,) the sets 0B, (zo,0) = 9B,(0,0) (resp. B,(xo,0) =
B.(0,0)). Also, we shall use primes to denote derivatives with respect to r.

Before proving Proposition we establish an auxiliary lemma that provides us
with some upper bounds for the functions

Gy i= [t amd A= [ =g G2

OB,

Lemma 4.2. Let v be as in Proposition[{.1, and define
D(r,v) == / || Vo2, (4.3)

Then there exist constants C, ¥ > 0, independent of xg, such that

H(r,v) < C (rD(r,v) + rHetor) for all r € (0,7), (4.4)
and

G(r,v) < C (r*D(r,v) 4 r" o) for allr € (0,7). (4.5)

Proof. Notice that, by our assumption on the positivity set of ¢ (see —),
the contact set {u = @} is compact. In particular, in the local case, there exists
7 > 0 such that B;(xg) C By for every z € I'(u).

Let us consider xyp = 0 and 0 < r < 7. Then by [7, Lemma 2.9] it follows that

1
o)z o [ plre-cr,
oB;

wn+arn+a

so one can follow the proof of |7, Lemma 2.13] to get

/ |y‘av2 < CT/ \y|a|Vv|2 +Cr(n+a)+6+2'y.

OB, B,

The previous inequality proves (4.4), and integrating it with respect to r we obtain
(4.5)- O

Following the ideas developed in [7], we now prove the main result of this section.

Proof of Proposition[{.1 As observed in [T, Proof of Theorem 3.1], in order to prove
that ®(r,v) is increasing one can concentrate in each of the two values for the
maximum separately.

Since in the case

O(r,v) = (r+ Cor?) dir log r" Tt 4H27 — (1 4+ Cyr)(n + a + 4 + 27)

the function ®(-,v) is clearly monotonically increasing, it is enough to prove that
®'(r,v) > 0 in the case H(r,v) > rrratitdy,
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First of all we notice that, since
H(r,v) = r”*“/ ly|“v?(ra, ry),
oB1
it follows that

H(r,v) = (n+a) —H(:’ v)

2 [ et Votrary) - ()
0By

H(r,v)

= (n+a) +2Z(r,v), (4.6)

where

Z(r,v) = /BB \y[“va:D(r,v)~l—/ vdiv(|y|*Vo)

T

= D(r,v)— / Lo (4.7)

(recall that div(|y|*Vv) = —L,v). Hence
Z(r,v)

O(r,v) = (n+a)(1+ Cor)+2r(1+ Cor) Hiro)’ (4.8)
and it is enough to show that r (1 + Cyr) 71{((:7;)) is monotone. For that purpose we
note that, since

’ n+a—1 2 . a a,?2
D (Tv U) = D(Tu U) - ((SL’, y) ’ VU) le(|y| VU) +2 |y Uys
4 rJB, B,
it follows by (4.7]) that
—1 -1
o) = 2207 100) - m/ vdiv(|y|*Vv)
T T B,

2
— —/ ((a:, y) - Vv) div(|y|*Vv) + 2/ |y[“v§ +/ vdiv(|y|*Vo).
B, 0B,

r

B,

Thus, recalling that div(|y|*Vv) = —L,v, by (4.6) and the Cauchy-Schwarz inequal-
ity we obtain

7
%log (r(1+007") (r, v)) > Co E(r,v),

H(r,v)) = 14+ Cor
where
~ (o, 2((@.9) - 0) + (1 a = Do) L) + [y vLav
E(ryv) == T 0) . (4.9)
Since 7 +chor > % provided r < ry = Cio and Cy can be chosen arbitrarily large,

to conclude the proof it will be enough to show that £(r,v) is bounded indepen-
dently of r. For that, we will estimate separately each term of the numerator and
denominator of this function.
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Since v satisfies (2.3)) outside {v = 0} N {y = 0} while v L,v = 0 on the set
{v =0}N{y = 0} (because L,v is a signed measure), using the Cauchy-Schwarz
inequality, (4.7)), and Lemma [1.2] we obtain that

Z(r,v) = D(r,v)—/ vLav:D(r,v)—/B\{ }vLav
T +\1v=0

1/2 1/2
> D(r,v>—2( / |y|av2) ( / |y|-a<Lav>2) (4.10)
- B \{v=0}
1/2
> Dlr,v) - 2G(r, )2 ( |y|“|x|2<1+7>)
B
> D(r,v) — 2G(r,v)Y/ 2" I

> D(rv) - C (D(T, U)l/an+%+a+2+'y + r(n+1)+2(7+2)+a> L (411)

Similarly, since (z,y) - Vo = 0 on the set {v =0} N{y = 0} we get

1/& ((z,y) - Vv)Lgv

’
1

—/ v Lgv / v L,v
T JB. B,

< CD(r,v) /2 41 (4.12)

and

max {

)

} <C (D(Ta 0)1/2rn+%+a+1+7 + Tn+2('y+2)+a>.

(4.13)

Thus, it follows by (4.9)-(4.13) that

D 1/2, ntlre 44 n+2(y+2)+a

)l <C A -
D(r,v) = C (D, 0) 20544247 4204250

Now, recalling that H(r,v) > r"Tet4+27 thanks to (4.4) we get

D(r,v) > cr"totdtay, (4.14)
and the previous inequality implies that

CD 1/2, e 1y gy
()] < SRR
D(r,v)

Thanks to (4.14) we finally obtain that |E(r,v)| < C, as desired. O

Remark 4.3. We note here that, from the computations done in the previous proof

(see (.7) and (4.8))), if H(r,v) > Cr"Tat4+27 then

O(r,v) = (1 + Cyr) ((n+a) + 2N (r,v) —2r (4.15)

fBT v Lyv
H(r,v) |’
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where
r yl* Vo> rD T,V
N LT 120
Jos, lyl*v H(r,v)
is the classic Almgren’s frequency function. As we shall see in the next section,

thanks to the non-degeneracy condition that we proved in the previous section, the
last term in (4.15]) goes to zero as r | 0 and therefore

P(0",v)=n+a+2N(0",u).

5. BLow-UPS

In this section we will use the Almgren-type monotonicity formula and the non-
degeneracy results of the previous sections to show that, at any free boundary point,
there exists a blow-up vy which is homogeneous and whose degree is either m = 1+ s
or m = 2.

Proposition 5.1. Let v,r¢ be as in Proposition[{.1 Then
O(0%,v) =n+a+2m
with
m=1+s or m = 2.

Moreover there exists a constant C > 0, independent of the free boundary point x,
such that

H(r,v) < Crmtet2m™ e e (0,1), (5.1)
and for every € > 0 there exists 1.5, > 0 such that
H(r,v) > rrot2mte e e (0,7 ,,). (5.2)

Proof. Let m be such that
P(0",v) =n+a+2m.

We claim that m < 2.
Indeed, since ® is monotone nondecreasing (by Proposition , it follows by the
definition of m and ® that, for every € > 0,

d
n+a+2m < (r+ Cor?) d—logmax {H(r,v), rTH <nta+2m+ g,
r

for r sufficiently small (more precisely, while the first inequality holds for all r €
(0,79), for the second inequality one needs to take r small enough, the smallness
possibly depending both on zj and ¢). Integrating with respect to r, this implies
that there exists a constant Cy such that

log r™tet2m 4 €} > log max {H(r,v), 7" > Jogpntet2mte/2 _ oy (5.3)

In particular the first inequality above yields the validity of (5.1)) with C' = €.
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Integrating ((5.1]) with respect to r and recalling that H = G’ (see (4.2))) we obtain
/ |y|“|v(:c,y)\2 dx dy < Crn+a+2m+1 Vr e (0,7’(]),
B,-(xo,O)

that combined with proves that m < 2.

Assuming now without loss of generality that e < 2, since m < 2 we see that the
inequality rntetdt2y < pntatdte < o=Crpndat2mte/2 Lo]ds for r < 1, so follows
by the second inequality in (5.3)).

To conclude the proof we notice that, if m < 2, we can take € > 0 such that
2m + ¢ < 4. In this way, if we set

d, = (M>1/2, (5.4)

rn—i—a

it follows by (/5.2]) that
oo dy
hm;g% 3 =00, (5.5)

and [7, Lemma 6.2] shows that the only possible homogeneity for a blow-up of v is
1+ s. U

Remark 5.2. Notice that, as in (4.10]), the Cauchy-Schwarz inequality and ({2.3))

yields
/ v L,v
Br(x0,0)

Also, since G’ = H, it follows by (5.1)) that

g(r7 ’U) S C_frn+a+2m+1’

/ v L,v
Br (330,0)

Since m < 2, choosing € < v in ([5.2)) we see that

< CG(r,v) /2Tt (5.6)

therefore

< Ottty e € (0, 7). (5.7)

f L,v
) By (z0,0) U Ha
St H(r,v)

Therefore, as we announced in Remark , taking the limit as » — 07 in (4.15) we
obtain

(5.8)

O(0%,v) = (n+a)+2N(0F,v), (5.9)

that is, the value m in Proposition [5.1] coincides with the value of the classic Alm-
gren’s formula for the point zq € T'(u).

We next show the following;:
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Proposition 5.3. Let v = v™ be as in Proposition[{.1], set
_d™(0",v) —n—a
— 5 ’

(5.10)

and let
v(zg + T, 1Y)

dy
be a blow-up sequence, where d, is defined in . Then, up to a subsequence, v,
converge as v — 0 to a homogeneous function vy, which is nonnegative in {y = 0}
and homogeneous of degree m.

v (7, y) = v (2, y) =

Moreover:
(a) either
m=1+s and vo(,0) = ¢ ((x — xp) - v)}F*
for some v € S*™t and some positive constant c;
(b) or
m = 2, vo(2,0) is a polynomial of degree 2,

and xq is a singular point.

Proof. We follow the proof of 7, Lemma 6.2] (see also [16]).

First, without loss of generality we can assume that xy = 0 € I'(u). Since
H(r,v) > r"Tet 27 for r small (this follows by with & = 2v) and the fre-
quency function ®(r,v) = ®*(r,v) is monotone nondecreasing (by Proposition [4.1]),

using (4.7) we get
S IV g v Lo

< P(r,v) < P(rg,v) < C, 0<7r<reg,

H(r,v)
and ((5.8)) yields
Js, 1y1°[Vol®
r Hio) = C, 0<r«

Taking into account the definition of v, the previous inequality is equivalent to

ly|*| Vo, |* < C, 0<r<l.
B1

Also, it follows by the definition of d, that ||v,||L2a5, y) = 1.

This implies that the sequence {v,} is uniformly bounded in the Hilbert space
H'(By, |y|*), so, up to a subsequence that we will still denote by {v,}, there exists
a function vy € H'(By, |y|*) such that

v, — g weakly in H'(By, |y|*),
v, — U strong in L*(0By, |y|*), (5.11)

v, — g a.e. in Bj.
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Moreover, it follows from the optimal regularity for the fractional obstacle problem
proved in [7] that ||vr|\011,s(61) < C. Hence, applying [7, Lemma 4.4] we conclude
that, up to a subsequence,

v — strongly in H'(By,|y|?) and in CL%(By) for all a < s. (5.12)

loc

We note here that, thanks to (2.3) and (/5.2)), we have
2

r a
| Lave(2,y)] < Cd—TMIyI 2|+

< CrttmeE2 e g outside {v, =0} N {y = 0}

for r sufficiently small. So, since m < 2, choosing ¢ < v and letting » — 0% we get
vo(x,0) > 0 inR™,
Lovo(z,y) = 0 in R"™\ {(2,0) : vy(x,0) = 0}, (5.13)
Lovo(z,y) > 0 in R™HL
In addition, since ||v,|| 28, yj=) = 1, (0.11]) implies that
llvoll2o8,,1yjey = 1, so in particular vy # 0. (5.14)
Now, thanks to (5.9)-(5.12) we can take the limit in the frequency formula and get

N(p,vo) = lim N(p,v,) = lim N(rp,v) =m.
r—0t r—07t

This implies that the classical Almgren’s frequency formula N(-,vg) is constant,
hence vy is a homogeneous function of degree m in B 2 (see [8, Theorem 6.1]). Also,
by Proposition [5.1 we know that m = 1+ s or m = 2. We now distinguish between
these two cases.

If m =1+ s, since is satisfied, [7, Lemma 6.2 and Proposition 5.5] imply
that vo(z) = c(x - v)1*, for some v € S*1.

If m = 2 we now show that 0 = z is a singular point and that vy is a homogeneous
polynomial of degree 2. For this we suitably modify an argument used in [0,
Theorem 1.3.2] for the Signorini problem.

Let us consider A := - so that P(z,y) := |z|* — A|y|* satisfies L,P(z,y) = 0
in R**1. By we see that the nonnegative measure u := L,vg is supported on

{y = 0}. In addition, since vy and P are homogeneous of degree 2, it holds

(,y) - VP(z,y) =2P(x,y),  (z,9)- Voo(z,y) =2vw0(z,y)  V(z,y),
hence if ¥ € C§°(R"™) is a radial nonnegative function we get

(z,y)
[z ]? + [y/?
= P(x,y)V\I/(:E,y)Vvo(x,y) \V/(l',y)
Also, since p is supported on {y = 0} and P = |z|? > 0 on {y = 0} we see that
0 < (u, ¥ |af’) = (u, ¥ P).

vo(z,y) VU(z,y) - VP(z,y) = 2vo(z,y) P(z,y) VU (x,y) -
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Thus, integrating by parts and using that L,P = 0 we obtain

0<(uVlz]?) = (Lavo,\DP>:/ ly|*Vvg - V(¥ P)

RTH»I

:/ yI* (U VP - Vg + P Vg - V)
Rn+1

- / ly|* (W vg LyP —vg V¥ - VP + PVV - Vuy) =0,
Rn+1

that is
O—/ |z|? U (z,0) du(x).
{y=0}

Since ¥ > 0 is arbitrary it follows by the equation above that u = cdy for some
¢ > 0. However, since p is 0-homogeneous (being a second order derivative of a
2-homogeneous function), the only possibility is that g = 0, that is L,ug = 0 in the
whole R"**. Applying [7, Lemma 2.7], we can then conclude that vy is a polynomial
of degree 2.

Being a polynomial, the set {vg = 0} N {y = 0} cannot have positive measure
unless vg(+,0) = 0, which would imply that vy = 0 in R"™ a contradiction to
(5.14). This proves that the contact set {vg = 0} N {y = 0} has measure zero for
any possible blow-up vy, which combined with implies that holds for

xo = 0. Il
Remark 5.4. Let us note here that, thanks to Proposition [5.1, we can define

Dips(u) == {zo € D(u) : (0", v) =n+a+2(1+5s)}, (5.15)

Do(u) := {zg € T(u) : @™(0",0) =n+a+4}, (5.16)

and the decomposition I'(u) = I'yys(u) U T'a(u) holds. Also, again by Proposition
5.3 we see that the set I'ij(u) consists of regular points, and I'>(u) consists of
singular points. Furthermore, because the map g — ®*° (0", v™) can be written
as the infimum over r of the continuous maps zo — ®*(r,v™), we deduce that
xo — D7 (0T, v™) is upper-semicontinuous, hence I'y4(u) (resp. T's(u)) is an open
(resp. closed) subset of I'(u). Finally, since the contact set {u = ¢} is compact (by
our assumption on the positivity set of ¢, see (L.7)-(L.8)), both I'(u) and I's(u) are
compact sets.

6. MONNEAU-TYPE MONOTONICITY FORMULA

In the previous section we showed that free boundary points belong either to
I'14s(u) or to I'y(u). Our goal here is to establish a Monneau-type monotonicity
formula that will be later used to establish uniqueness of blow-ups for points in I'y (u).
This Monneau-type monotonicity formula, stated next, extends the one established
in [16] for s = 1. Our proof essentially follows the arguments in [I6], although we
slightly simplify some of the computations.
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From now on we denote by s the set of 2-homogeneous quadratic polynomials
po(z,y) satisfying
Leps =0 in R™™ pa >0 for {y =0}, pa(x,y) = pa(z, —y),
that is
By = {p2(2,y) = (Az,z) — by® : A € R™" symmetric, A > 0, A# 0, Lyps =0} .
Our Monneau-type monotonicity formula reads as follows.

Proposition 6.1. Let u solve:

(A) either the obstacle problem (L.4), with ¢ satisfying (L.7));

(B) or the obstacle problem (L.5), with ¢ satisfying (L.8).
Then there exists a constant Cyy > 0 such that the following holds:

Let zg € Ty(u), let v = 0" be defined as in (2.2)), and let py € P,. Also, let v >0
be as in —. Then the quantity

X 1 a 2
M®(r,v,p2) == /azs - ly|* (v(, y) = pa(x — 20, 9))
r(Z0,

satisfies
d
d_MxO(r7U7p2) 2 _CM Tﬁy_l Vr € (07T0)a
r

where rq is as in Proposition [{.1]

The rest of this Section is devoted to the proof of Proposition [6.1, For that we
will need the following lower bound on a suitable Weiss-type energy:

Lemma 6.2. Let v be as in Proposition [6.1], and let ro be as in Proposition [{.1]
Then there exists a constant Cy, > 0 such that the following holds:
The quantity

) 1 . 2 .
W O(T’U> a W—(H_S/B-(aro 0) ’y| ’vv|2 N m/?B (%0,0) ‘y’ U2

satisfies

W (r,v) > =Cy r? Ve (0,79). (6.1)

Proof. We will use the Almgren-type monotonicity formula obtained in the previous
sections. Since there is not possible confusion along this proof, we will use the
notation ¢ = ¢*°, H = H* T =71 and D = D*.

First, by definition of T'y(u) (see (5.16)) we see that ®(0",v) = n + a + 4. Thus,
by the monotonicity of ®(-,v) on (0,79) (see Proposition [£.1)), for any r € (0,7) we
have that either
H (r,v)
H(r,v)

®(r,v) = (r+ Cor?) >n+a+4 (6.2)

or
H(r,v) < prrotit2y, (6.3)
We split the proof of (6.1)) in two cases.
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- Case 1. If (6.2)) holds then it follows by (4.6) that

A
(r + Cor?) (n—:a+2 (m))) >n+a+4,

H(r,v)
that is
Z(r,v) n+a Z(r,v)
2 > 4 — Cyr* 2
n+a-+ TH(T7U>_n+a+ ol ( . + 7—[(7’,1}) ,
and sincer("j“—i—Z?I{(g;jl;))) < O(r,v) < C we get
Z(r,v) Co o (n+a _Z(rv)
> 2 — — 2 >2—-Cr.
T”H,(r,v) - 2 " r + H(r,v)) — "

Hence, since m = 2, recalling , , and we obtain

Cr" et 4 (rD(r,v) — 2H(r,v)) > —=CrH(r,v) > —Cr"T*,
which gives that W*(r,v) > —C'r > —=Cr7 (as v < 1), as desired.
- Case 2. 1f holds then we simply use that D(r,v) > 0 to obtain

1 2
Tn+a+3D(T’ U) B pntatd

which concludes the proof of (6.1).

H(r,v) > —Cr® > -Cr7,

We can now prove Proposition [6.1]

Proof of Proposition[6.1. Without loss of generality we can assume 2o = 0. Set

w := v — py and let us use the notation z = (z,y) € R"". Then

| 2

d d @
%M‘To(r,v,m) = —/ lyl*[w(rz)[*

dr Jos, r
B 2 2w(rz)(rz - Vw(rz) — 2w(rz))
B /881 ! o

= m/% ly|“w(z - Vw — 2w).

T

We now claim that

T 1 a 1+
W (r,v) Sm/asr ly|*w(z - Vw — 2w) + Cr 7.

(6.4)

(6.5)

Indeed, since L,p; = 0 in R™™! and p, is 2-homogeneous, it is easy to check that
W (r,ps) = 0. Hence, using again that L,p, = 0 and that z - Vpy = 2p, (by the
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2-homogeneity), integrating by parts we get

We(rv) = WP (r,v) — W*(r, ps) (6.6)

1 P
= — (Vw2 +2Vw - Vpy) — ——— @ (w242
raT3 /B yI* (IVwl +2Vw- Vi) = —= /%T ly|* (w® + 2wpsy)

1 " 1
— e [ WP i [ 2wk
2 p
- a AV _9 s 0 9
+'rn+a+4 /8& [y|*w (2 - Vp2 — 2p2) ntatd /8& ly|“w

1 a 2 a
= W—QH/B i |Vw|2—m/% ly|“w?. (6.7)

Using now that py < C'r? in B, and arguing as we did in Remark to obtain (5.7)),

we get
/ w Low / (p2 —v) Lqv
B, B,

where for the first equality we used again that L,p, = 0. Integrating by parts in
(6.7) and using the previous bound, we conclude that
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and ((6.5)) follows.
Finally, combining (6.4)) and (6.5 and using Lemma we get
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and the proposition is proved. O

7. UNIQUENESS OF BLOW-UPS AND PROOF OF THEOREM [I.2]

We saw in the previous sections that blow-ups are homogeneous of order m, and
either m = 1+ s or m = 2. When the blow-up at xg is of order m = 1+ s, it follows
by [T, Theorem 7.7] that xq is a regular point and that the free boundary is a C1*e
(n — 1)-dimensional surfaces in a neighborhood of z,. When the blow-up at xq is
of order m = 2, then x( belongs to the set of singular points, but we still have not
proved anything about the regularity of this set.

By Proposition we know that all blow-ups of the function v™ at xy € I'y(u)
are homogeneous polynomials of order 2. However, it may happen that one gets
different polynomials over different subsequences. We prove in this section that this
does not happen, i.e., we show uniqueness of the blow-up. Moreover, we also prove
continuity of the blow-up profiles with respect to zy. This will yield the regularity
of the set I';(u), and thus to our main result Theorem [1.2]
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We start with the following.

Lemma 7.1. Let u solve:

(A) either the obstacle problem (1.4)), with ¢ satisfying (1.7));

(B) or the obstacle problem (1.5)), with ¢ satisfying (1.8)).
Let 1 be as in Lemma[3.1) or Lemma let ro be as in Proposition and set
7 := min{ro/2,r1}. Then there exist constants Cy,c_ > 0 such 