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Abstract. We investigate the minimization of configurational energies of

Brenner type. These include two- and three-body interaction terms which
favor the alignment of first neighbors. In particular, such configurational en-

ergies arise in connection with the molecular-mechanical modeling of covalent

sp-bonding in carbon.
Ground states in three dimensions are characterized and the stability of

chains and rings is discussed. The interaction energy is then augmented with

terms corresponding to weaker interactions favoring the stratification of con-
figurations. This gives rise to stratified structures which are reminiscent of

nanoscrolls and multi-wall nanotubes. Optimal stratified configurations are
identified and their geometry is discussed.

1. Introduction

Carbon forms a variety of different nanostructures, ranging from three-dimen-
sional diamond, to two-dimensional graphene and graphite, fullerenes, and nan-
otubes. This rich phenomenology originates from the nature of covalent bonding in
carbon, which may show either sp3-, sp2-, or sp1-orbital hybridization favoring spe-
cific bond angles between adjacent bonds [7, 44]. In particular, sp3 bonding arises
in diamond whereas sp2 bonds arise in locally two-dimensional configurations like
graphene and nanotubes.

A strong research activity is presently directed to carbyne (linear acetylenic car-
bon), namely a long chain of sp1-bonded carbon atoms [26]. Theoretical predictions
indicate carbyne as a remarkable structure, stable up to 3000 K and having a spe-
cific strength of the order of 108 Nm/Kg. This makes carbyne the strongest known
material, 105-times stronger than conventional steel [21, 22].

The actual synthesis of carbyne chains is a very delicate technical task [3] and
currently drives a competition between different groups worldwide. As we write, the
current record of the longest chain amounts to more than 6000 atoms and has been
obtained by caging carbyne within a double-walled carbon nanotube [33]. Carbyne
is also known to roll-up into rings, which then may combine in a variety of carbon
clusters [23].

The aim of this note is to analyze locally one-dimensional, chain-like structures
within the framework of Molecular Mechanics [1]. Carbon configurations are mod-
eled as a collection of atoms interacting via a configurational energy of Brenner type
[4, 5], see (1). This is given in terms of classical, mass-spring potentials and takes
into account both attractive-repulsive two-body first-neighbor interactions, mini-
mized at some given bond length, and three-body terms favoring alignment between
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adjacent bonds, i.e. sp1 bonds, see also [38, 39]. The specific assumptions on the
interaction energy are introduced and discussed in Section 2.

Our first result is a complete characterization of chain-like ground states in three
dimensions (Theorem 3.2). We prove that the unique (up to isometries) ground
state with n atoms is a straight, uniformly spaced configuration for n small and a
planar ring for n large. This pairs well with the local minimality analysis of the
same structures from [34].

We then extend the reach of the theory by addressing stratified configurations.
These emerge quite naturally by the effect of weaker bonds (so called π-bonds)
which operate between sp1- and sp2-bonded structures. A first example of such
occurrence is graphite, where sp2 platelets are bonded to form a three-dimensional
structure. Other examples are multi-wall nanotubes [24] and nanoscrolls [25], con-
sisting of a stratification of different locally-two-dimensional tubes. Carbon onions
[6], namely multi-shell fullerenes, are again stratified configurations [42].

Figure 1. Schematics of stratified carbon nanostructures as sec-
tions (bold) of a multi-wall nanotube (left), a nanoscroll (middle),
and a carbon onion (right).

As a first, very schematic modelization of sections of multi-wall nanotubes, nano-
scrolls, or carbon onions we focus here on stratifications of one-dimensional struc-
tures. The idea is to augment the configurational energy already introduced above
for carbyne by a term favoring the stratification of atoms the same site. Details
in this direction are given in Section 4. A delicate balance between bonding and
stratification ensues, giving rise to specific stratified configurations. Our second
main result (Theorem 4.3) identifies such stratified ground states as the number
of atoms grows. As we shall see, stratified ground states are not a mere layering
of multiple nonstratified ground states and stratification drives the emergence of
distinguished geometries.

In order to put our work in perspective, we provide here a brief account of crys-
tallization results for carbon nanostructures. Global minimality results have to be
traced back to E & Li [11], where graphene is proved to be a ground state in two
dimensions: By assuming the three-body energy term to favor sp2 bonding, the
thermodynamic limit for a large number of particles, namely n→∞, is ascertained
to correspond to a suitably compressed regular hexagonal lattice. This result corre-
sponds to a three-body version of the seminal theory by Theil [40] who considered
Lennard-Jones-like two-body interactions. In the context of thermodynamic limits,
Farmer, Esedoḡlu, & Smereka [14] recover the hexagonal lattice in the ther-
modynamic limit by assuming the three-body energy term to favor sp1 bonding
instead, namely in the very setting of Brenner interactions of this paper.

In the setting of finite crystallization, namely for the number n of atoms being
finite, two-dimensional ground states of sp2 interactions are proved to be patches
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of the hexagonal lattice in [29]. These are generically not unique and can be char-
acterized in terms of a discrete isoperimetric inequality [9]. In particular, one can
quantitatively check the emergence of a hexagonal Wulff shape as the number of
atoms increases.

This paper delivers, to our knowledge, the first crystallization results based on
global minimization in three dimensions for a finite number of atoms. Proving fi-
nite crystallization in three dimensions is a daunting task, for all of the available
techniques hinge on lower dimensional concepts [10, 32]. The results of this paper
are no exception, since we also use lower dimensional properties, specifically con-
vexity and planarity, and succeed in taming three-dimensionality by exploiting the
essentially one-dimensional nature of the objects in study.

Let us however mention that some three-dimensional crystallization result in
the thermodynamic limit case n → ∞ is already available. Specifically, Sütő [36,
37] discusses the emergence of periodic and aperiodic infinite-volume ground state
configurations for some specific class of pair interaction potentials, and Flatley &
Theil [41] prove the minimality of the face-centered cubic lattice under Lennard-
Jones-type interactions.

As for local minimality (stability) one has to record the convexity argument in
[29] where it is checked that the two fullerenes C20 and C60 are stable. These
ideas have then been extended in [34], where the stability of corannulene, diamond,
and lonsdaleite is also addressed. Local minimality is also employed as a selection
criterion among different carbon-nanotube and fullerene geometries in [17, 27, 28],
also in relation with their behavior under traction. The literature here is vast
and we limit ourselves in mentioning [2, 15, 46] among many others. In [12] El
Kass & Monneau prove a Saint Venant principle under long-range, purely two-
body interactions. The Cauchy-Born hypotesis for carbon nanotubes under traction
is rigorously validated in the sp2 case in [18], see also [27] for some numerical
evidence. As for the modelization of stratified carbon configurations, the reader is
referred to [19] where a continuum model accounting for the polygonalization effect
in multi-walled nanotubes is investigated. This has indeed been modeled via one-
dimensional chains in the plane in the thesis [31]. A rigorous discrete-to-continuum
theory relating planar chains to the Elastica Functional is in [13].

2. Configurational energy

As mentioned in the Introduction, we model carbon configurations within the
frame of Molecular Mechanics [1] by identifying them with the positions of the
nuclei, namely with collections of points in the three-dimensional space. To all
configurations X = {x1, . . . , xn} of n atoms in R3 we associate a configurational
energy E : R3n → R ∪ {∞} given by

E(X) = E2(X) + E3(X) :=
1

2

∑
i 6=j

v2(|xi−xj |) +
1

2

∑
(i,j,k)∈T

v3(θijk), (1)

modeled on the sp-covalent bonds in carbon [7]. This results in what is usually
referred to as Brenner-like potential [4, 14]. The configurational energy E is the
sum of a two-body term E2, depending solely on the mutual distance of the atoms,
and a three-body contribution E3, depending on bond angles instead (see below).
The lower semicontinuous two-body interaction density v2 : [0,∞) → R ∪ {∞} is
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assumed to be of attractive-repulsive type and short-ranged. In particular, we ask
for

−1 = v2(1) < v2(r) ∀r 6= 1, (2)

v2(r) =∞ ∀r < 1− ε, (3)

v2(r) = 0 ∀r > 1 + ε (4)

where ε > 0 is some given small parameter. Condition (2) expresses the fact
that atomic bonds have a preferential bond length, here normalized to 1. This is
clearly an idealization, since bond lengths are heavily depending on chemistry and
geometry.

Assumption (3) corresponds to atomic repulsion: no pair of atoms can be closer
than 1 − ε. Correspondingly, condition (4) expresses the fact that interactions
are short-ranged (see below). We say that the two atoms xi and xj are bonded
or that there exists a bond between xi and xj iff 1 − ε < |xi − xj | < 1 + ε. To
all configurations we associate the respective bond graph resulting from taking the
atomic positions as vertices and the existing bonds as edges, represented as straight
segments. Note that such segments cannot cross each other if ε is chosen to be small
enough.

Figure 2. Configurations and their bond graph.

In the following we specify the indexes corresponding to bonded atoms (first
neighbors) as

N =
{

(i, j) ∈ {1, . . . , n} × {1, . . . , n} : 1− ε < |xi − xj | < 1 + ε
}
.

Note that (i, j) ∈ N iff (j, i) ∈ N , so that all bonds are counted twice in N . This
motivates the occurrence of the factor 1/2 in the definition of E2. Assumptions
(3)-(4) entail that indeed the sum in E2 can be equivalently restricted to pairs
(i, j) ∈ N , whenever E2 is finite.

The three-body interaction energy E3 is responsible for the topology of the bond
graph and it is modulated by the three-body interaction density v3 : [0, π]→ [0,∞).
This is assumed to be lower semicontinuous, twice-differentiable at π, and such that

0 = v3(π) < v3(θ) ∀θ 6= π, v′3(π) = 0, (5)

favoring indeed angles of amplitude π. The angle θijk in the definition of E is the
angle formed by the segments (xi, xj) and (xk, xj) that is not greater than π, see
Figure 3. The index set T is defined as

T =
{

(i, j, k) : (i, j) ∈ N, (j, k) ∈ N, i 6= k
}
.

Note that (i, j, k) ∈ T iff (k, j, i) ∈ T , so that bond angles are counted twice in the
sum defining E3. This motivates the occurrence of the factor 1/2 in front of such
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xk

xj

xi
θijk

Figure 3. The bond angle θijk.

sum. Under the above provisions, the energy E turns out to be invariant upon
relabeling of the atoms.

Assumption (5) favors bond angles of amplitude π. Still, some quantification
is needed in order to give rise to chain-like minimizers (note that in the extremal
case v3 = 0 ground states are subsets of the triangular lattice in two dimensions
[10, 20, 32, 45]). We hence assume three-body interactions to be strong enough to
determine the local one-dimensional topology of the ground-state bond graph. In
particular, we ask that

each atom of a ground state has at most two neighbors and

all bond angles are at least θmin ∈ (0, π).
(6)

This happens to be the case if v3 is large enough in parts of its domain. We present
here a sufficient condition in this direction.

Proposition 2.1 (Local one-dimensional geometry). Under assumptions (2)-(5)
condition (6) follows for ε small and v3 > 12 on (0, 2π/3].

Proof. As the kissing number (i.e., the maximal number of disjoint unit spheres
that are tangent to a given unit sphere) in three dimensions is 12 [8], we start by
noting that the parameter ε can be chosen so small that each ground-state atom
has at most 12 neighbors. In order to check this, one has to consider a slight variant
of the kissing problem, where the central sphere has radius 1 + ε and the touching
spheres have the smaller radius 1−ε. We claim that, for small ε, the kissing number
kε for the case of spheres with different radii 1 + ε and 1− ε is still 12. This follows
by a continuity argument. Assume this to be not the case and center the central
sphere in 0 ∈ R3. Then, for all ε > 0 one can find at least 13 centers of small
spheres xiε ∈ R3, i = 1, . . . , 13 with the following properties

|xiε| = 2, |xiε−xjε| ≥ 2− 2ε ∀i, j = 1, . . . , 13, i 6= j.

By extracting some nonrelabeled subsequences we pass to the limit xiε → xi0 where

|xi0| = 2, |xi0−x
j
0| ≥ 2 ∀i, j = 1, . . . , 13, i 6= j.

This yields that k0 ≥ 13, which is clearly false.

Assume now by contradiction that the ground-state atom xj has three neighbors
xi, xk, x`. Then, one of the bond angles θijk, θij`, and θkj` is at most 2π/3.
(Indeed, if both θijk and θij` are larger than 2π/3, then θkj` is maximized when
all atoms xj , xi, xk, x` are coplanar and θijk + θij` + θkj` = 2π.) By removing
xj from the configuration (that is, by considering another configuration where the
atom originally in xj is displaced in such a way that it has no neighbors), the angle
energy is reduced by at least by v3(θijk) + v3(θij`) + v3(θkj`) > 12 and at most 12
bonds are broken. This entails an overall energy drop, contradicting minimality.
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As all bonds range between 1 − ε and 1 + ε, bond angles are necessarily larger
than the smallest angle of a triangle with two sides of length 1 + ε and one side of
length 1− ε. One hence defines θmin = 2 arcsin((1−ε)/(2(1+ε))) < π/3. Note that
θmin → π/3 as ε→ 0. �

As the energy E is invariant by translation and rotation, we shall tacitly assume
that all statements in the following are meant up to isometries.

3. Ground states

Condition (6) prescribes the local one-dimensional structure of ground states.
Let us hence starting by checking that ground states actually exist.

Proposition 3.1 (Ground states exist). E admits a minimizer.

Proof. Let Xk be an infimizing sequence of configurations with #Xk = n. Any
connected component of the bond graph of Xk contains at most n atoms and is
hence contained in ball of radius (1+ε)n by (6). (Note that we will prove in Theorem
3.2 below that ground states are connected.) As the connected components of
Xk are at most n, by possibly translating them one can find another sequence of
configurations X̃k with the same energy E(X̃k) = E(Xk) which is contained in a

ball of radius (1 + ε)n2. The configurations X̃k are hence contained in a compact

set of R3n and one can extract some nonrelabeled subsequence X̃k → X. The
lower semicontinuity of v2 and v3 entail that inf E = limk→∞E(X̃k) ≥ E(X). This
proves that X minimizes E. �

The focus of this section is on the characterization of the global geometry of
ground states. To this aim, we introduce a further assumption on the three-body
interaction density, namely,

v3 is strictly convex and decreasing in (θmin, π]. (7)

Note that condition (7) follows if v3 is C2 in a neighborhood of π and v′′3 (π) > 0.

Assumptions (2)-(7) will be considered throughout the rest of the paper, without
further mentioning. The main result of this section is the following.

Theorem 3.2 (Ground states). We have the following

• (line) If 1 < nv3(π−2π/n) the configuration

Ln := {(k, 0, 0) : k = 1, . . . , n}

is the unique ground state.
• (ring) If 1 > nv3(π−2π/n) the configuration

Rn := r{(cos(2πk/n), sin(2πk/n), 0) : k = 1, . . . , n}

with r = 1/(2 sin(π/n)) is the unique ground state.

In case 1 = nv3(π−2π/n) the ground states are Ln and Rn.

Proof. Let X be a ground state with connected bond graph and assume that all
atoms in X have exactly two neighbors. The bond graph of X is necessarily a



CHAIN-LIKE GROUND STATES IN THREE DIMENSIONS 7

Figure 4. Configurations L7 (left) and R18 (right).

closed polygon (possibly not planar). In case the bond graph is homeomorphic to
a circle, by indicating with θi the bond angle in xi we have that

E(X)
(a)

≥ −n+

n∑
i=1

v3(θi)
(b)

≥ −n+ n v3

(
1

n

n∑
i=1

θi

)
(c)

≥ −n+ n v3(π−2π/n)
(d)
= E(Rn).

We have here used that X has exactly n bonds, each contributing at least −1 to the
energy (a), all bond angles are in (θmin, π] and v3 is convex on the same interval (b),
the sum of all bond angles being necessarily at most π(n−2), the mean of the bond
angles is at most π− 2π/n ∈ (θmin, π) and v3 is decreasing in the same interval (c),
and that the value on the left of the last equality is exactly the energy of E(Rn)
(d). Note that the chain of inequalities is strict whenever a bond in X has length
different from 1 (a), not all bond angles are equal (b), or X is not planar (c). In
particular, Rn is the unique ground state within the class of configurations whose
bond graph is homeomorphic to a circle.

Let now the bond graph of X be a connected, closed polygon, not homeomorphic
to a circle (knotted). Then, the Fáry-Milnor Theorem [30, 35] ensures that the total
curvature

∑n
i=1(π−θi) of the bond graph is at least 4π (recall that θi ≤ π). This

in particular entails that

1

n

n∑
i=1

θi ≤ π −
4π

n
.

By arguing as above we deduce that

E(X) ≥ −n+ n v3(π−4π/n) > −n+ n v3(π−2π/n) = E(Rn).

The energy E(Rn) is hence strictly bounding from below that of any configuration
whose bond graph is a closed polygon.

We now turn to the case of ground states whose bond graph is connected but is
not a closed polygon. In this case the bond graph of X is necessarily homeomorphic
to that of Ln. We hence have

E(X) ≥ −n+ 1 = E(Ln),

the inequality being strict whenever a bond in X has length different from 1 or a
bond angle is different from π. The set Ln is hence the unique ground state among
configurations whose bond graph is not a closed polygon.

Depending on the given n, by directly comparing the values E(Rn) and E(Ln)
we obtain the assertion for each ground state X with connected bond graph.

It is now easy to prove that all ground states have a connected bond graph.
Indeed, by arguing as above on all connected components of (the bond graph of)
X one finds a collection of subconfigurations, either isomorphic to Rm or to Lm.
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If the bond graph of X were not connected, it would contain Rm and Rm′ , or Rm

and Lm′ , or Lm and Lm′ and one could strictly decrease the energy by replacing
them with Rm+m′ , Rm+m′ , or Lm+m′ , respectively. �

Theorem 3.2 states that the only ground state for large n is Rn, namely a planar,
circular configuration with interatomic distance 1. This would correspond to a large
carbon ring.

A straight carbyne chain Ln is not globally minimizing for large n. It is however a
strict local minimizer of the energy. Indeed, let L̃n be a small perturbation of Ln, so
that the topology of the bond graph is preserved. Then E(L̃n) ≥ −n+ 1 = E(Ln),

the inequality being strict whenever a bond in L̃n has length different from 1 or a
bond angle is different from π (that is, whenever L̃n 6= Ln). The failure of global
minimality for large n and the persistence of local minimality for all n correspond,
although to a schematic extent, to the current understanding of carbyne. On the
one hand, to produce very long carbyne chains is a very delicate task [33]. On
the other hand, carbyne is predicted to be thermally stable at comparably high
temperatures (locally minimizing) [26].

4. Stratified ground states

We now turn to a modelization of stratified ground states. As mentioned in the
Introduction, configurations like multi-walled nanotubes, nanoscrolls, and carbon
onions can be visualized as stratifications of locally-two-dimensional, sp2-bonded
structures [6, 24, 25]. Their axial sections appear then as stratifications of one-
dimensional configurations, see Figure 5. We hence extend the reach of our model

Figure 1 
S. Tomita et al., PRB

(a) (b)

Figure 5. A section of a carbon onion. The diameter of the struc-
ture is of the order of 5 nm and the outer layer contains roughly
120 atoms. Courtesy of S. Tomita, M. Fujii, and S. Hayashi [43].

by allowing configurations admitting multiple layers of atoms.

Layers of stratified carbon configurations usually contain a different number of
atoms, which occupy distinct positions in space, and stratification occurs as effect
of the realization of the weaker so-called π-bonds between different layers. Aiming
at mathematical tractability, we perform here a radical simplification and assume
that all layers occupy the same position in space. We associate to each layer a
configurational energy of the form of Section 2, namely by modeling the section
of the sp2-bonded structure as an effective sp1 chain. Stratification is taken into
account by augmenting the energy by a term favoring interlayer interactions, that
is having more atoms at the same site, see (8).
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Let us remark that a more realistic modeling of stratified carbon nanostructures
would require to deal with the actual sp2 nature of layers, which indeed influences
the fine geomeries of sections, as well as allowing atoms to occupy distinct positions
in different layers. Such extensions cannot be direcly accommodated within the
simplified frame of our analysis, which nevertheless replicates some of the basic
features of the stratification phenomenon.

4.1. Stratified energy. We assume the number n of atoms of configurations to
be fixed throughout this section and indicate stratified configurations by the pair
(X,S) where X = (x1, . . . , xm) ∈ R3m identify atomic positions, with m varying
between 1 and n, and S = (s1, . . . , sm) ∈ Nm with s1 + · · · + sm = n, si 6= 0,
indicate layer occupancy. In particular, si is the number of atoms stratified at
site xi, see Figure 6. We use the notation dye = min{z ∈ Z : y ≤ z} and
byc = max{z ∈ Z : z ≤ y} for y ∈ R.

Figure 6. A stratified configuration (X,S). The bond graph of
X is depicted in bold and the occupancy of the sites is represented
by columns of atoms in the vertical direction.

The stratified configurational energy Es : R3m × Nm → R ∪ {∞} is defined as

Es(X,S) =
1

2

∑
i 6=j

v2(|xi−xj |)si∧sj +
1

2

∑
(i,j,k)∈T

v3(θijk)si∧sj∧sk − `n+ `m. (8)

In this formula, the occurrence of the minimum values si∧sj and si∧sj∧sk entails
that the terms are counted once for each layer where all corresponding atoms are
present. The small parameter ` ∈ (0, 1) indicates the energy contribution due to
interlayer interactions. In the case of carbon, this corresponds to the energy of the
π-bond and is much smaller than that of sp-covalent bonds. This motivates the
position ` < 1 above.

For illustration, note that Es(X,S) = E(X) whenever m = n, that is whenever
the stratified configuration actually consists of a single layer, namely S = (1, . . . , 1).
In case S = (2, . . . , 2), that is if (X,S) consists in the stratification of two copies of
X, so n = 2m, one deduces that

Es(X,S) = 2E(X)− `m

and the stratified energy is the sum of the configurational energy of each layer and
the interlayer-interaction contribution −` for each site.
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If ` = 0 Theorem 3.2 ensures that the stratified ground states (X,S) of the
stratified energy Es have indeed one single layer so that X is a ground state of the
energy E. On the other hand, for each ` > 0 stratified ground states with large n
necessarily have more layers. Let for instance n = 2m. Then

Es(Rn, (1, . . . , 1)) = −2m+ 2mv3(π−π/m)

> −2m+ 2mv3(π−2π/m)− `m
= Es(Rm, (2, . . . , 2))

where the inequality holds for n = 2m large enough, as v3(θ)→ 0 for θ → π.

Let us remark that stratified ground states actually exist. Indeed, for all given
S = {s1, . . . , sm} ∈ Nm with s1 + · · ·+ sm = n one can argue as in Proposition 3.1
and prove that there exists a configuration XS minimizing Es(·, S). The existence of
a stratified ground state follows then from the finite minimization minS E(XS , S).

4.2. Cronuts. From here on, given a stratified configuration (X,S) we shall as-
sume with no loss of generality that the labeling of X = {x1, . . . , xm} is such that
the first neighbors of xi belong to the set {x(i−1)modm, x(i+1)modm}. (There may
be less than two neighbors, e.g. when the graph is disconnected or homeomorphic
to a line.) Here, for all z ∈ Z and m ∈ N we let zmodm = p ∈ {1, . . . ,m} iff z − p
is a multiple of m. Our attention will be focused on a specific subclass of stratified
configurations, see Figure 7.

Definition 4.1 (Cronut). We say that the stratified configuration (X,S) is a cronut
if, by letting p = nmodm, S = (s1, . . . , sm) is given by

Sm = (bn/mc, . . . , bn/mc) + (1, . . . , 1︸ ︷︷ ︸
p times

, 0, . . . , 0). (9)

Figure 7. A cronut.

A cronut consists of w = bn/mc copies of X, plus possibly p extra atoms in
a last, incomplete layer whose bond graph is homeomorphic to that of Lp (and
empty if p = 0). As already mentioned, such configurations are reminiscent of
the geometry of section of stratified carbon nanostructures, see Figure 1. Within
this analogy, multi-walled carbon nanotubes and carbon onions are described by
cronuts with p = 0. On the other hand, p 6= 0 would correspond to the case of
the nanoscroll. More precisely, let us point out that the section of a nanoscroll
can be visualized as a single chain of n atoms winding up r complete times. For
the purpose of mathematical simplicity, we model this situation as r copies of ring-
like configurations with m atoms each, plus a last incomplete layer of p = n− rm
atoms. By referring to Figure 8, let us however note this simplification preserves
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both the number of bonds (within the same layer) and π-bonds (across layers).
Indeed, the two configurations in Figure 8 cannot be distinguished without taking

Figure 8. The modelization of the section of a nanoscroll (left)
as a cronut (right). Corresponding atoms on different layers are
indeed modeled as if occupying the same position in space, see
Figure 7.

into account the actually distinct positioning of π-bonded atoms, a higher-order
effect which is neglected by our simplified approach. To conclude, note that the
stratified configuration in Figure 6 is not a cronut.

Before moving on, let us present the expressions of the stratified energies of a
cronut in case X = Lm or X = Rm. We have the following:

Es(Lm, Sm) =

{
−(1+`)n+ bn/mc+ `m if p = 0,
−(1+`)n+ bn/mc+ `m+ 1 if p 6= 0

(10)

and

Es(Rm, Sm) =

{
−(1+`)n+ `m+ nv3(π−2π/m) if p = 0,
−(1+`)n+ `m+ (n−2) v3(π−2π/m) + 1 if p 6= 0.

(11)

Moving from the latter relation one easily gets that, given n, the optimal m for
Es(Rm, Sm) scales like n1/3 so that

Es(Rm, Sm) ∼ −(1+`)n+ cn1/3 as n→∞. (12)

Here and in the following, we use the short-hand notation an ∼ cbn in order to
indicate that the two sequences an and bn are of the same order as n→∞, namely
that an = O(bn) and bn = O(an) as n → ∞. Analogously, we write an . cbn if
an ≤ O(bn) as n→∞.

4.3. Optimal cronuts. We firstly focus on the minimization of the stratified en-
ergy Es restricted to the subclass of cronuts. Moving from this, we will consider
all stratified configurations with connected bond graph in Theorem 4.3 below. We
prove the following.

Proposition 4.2 (Optimal cronuts). Let n be large and (X,S) be an optimal cronut
with n atoms. Then, the bond graph of X is homeomorphic to a circle and X = Rm

iff p ≤ 2.
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Proof. Let m = #X. If the bond graph X is homeomorphic to Lm, then necessarily
X = Lm for the latter has E2(Lm) = −(m−1) and E3(Lm) = 0, both being
optimal. In this case, we deduce from (10) that the stratified energy scales like
Es(Lm, S) ∼ −(1+`)n+ cn1/2 as n→∞. This is however suboptimal with respect
to (12). In particular, we have that the bond graph X is not homeomorphic to Lm

for large n.

If p = 0 or p = 1 the stratified energy simply reads

Es(X,S) = bn/mcE(X)− `n+ `m,

so that the optimal cronut (X,S) is such that X minimizes E among the configu-
rations X ′ with #X ′ = m. As we already proved that X = Lm is not optimal for
large n, Theorem 3.2 entails that X = Rm. The same holds for p = 2 where the
latter expression for Es is just augmented by v2(|x2−x1|) and X = Rm minimizes
both terms v2(|x2−x1|) and Es(X,S)− v2(|x2−x1|).

The case p ≥ 3 is more involved, for the bending of the last, incomplete layer of
(X,S) actually affects the geometry of the configuration X, see Figure 9.

Figure 9. In case p ≥ 3, the optimal cronut (X,S) does not
correspond to (Rm, S) from Figure 7. Bond angles corresponding
to those atoms in the last incomplete layer having two neighbors
are closer to π.

Let us check first that the bond graph of X is homeomorphic to a circle. Assume
this is not the case, namely that the bond graph of X is knotted (thus m ≥ 4).
By arguing as in the proof of Theorem 3.2 we would have that

∑m
i=1(π−θi) ≥ 4π

where θi is the bond angle at xi. The mean of all bond angles

θ =
1

n− 2

(⌊ n
m

⌋ m∑
i=1

θi +

p−1∑
i=2

θi

)
(13)

would then fulfill

θ ≤ π − 4πbn/mc
n− 2

= π − 4πbn/mc
mbn/mc+ p− 2

< π − 4πbn/mc
m(bn/mc+1)

≤ π − 2π

m
:= θ̃

where we have used that n = mbn/mc+ p and p < m. Note that θ̃ is the (internal)
bond angle in Rm. In particular, by the convexity of v3, cf. (7), we would then have
Es(X,S) > Es(Rm, S) contradicting minimality.

We have hence proved that the bond graph of X is homeomorphic to a circle.
Still, if p ≥ 3 we have that X 6= Rm. In fact, if X = Rm one could strictly lower
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the energy by letting all bond angles equal the mean θ from (13) without changing
bond lenghts. This is doable (for n ≥ 4) by making the configuration not planar.
As X 6= Rm, an optimal cronut does not correspond to stratified copies of the
nonstratified ground state. In order to check this, let us decompose the stratified
energy as

Es(X,S) = −`n+ `m+
⌊ n
m

⌋
E(X) +

p−1∑
i=2

v3(θi) +

p∑
i=2

v2(|xi−xi−1|).

We consider now variations of the atomic positions, by keeping n and m fixed.
As Rm minimizes E, the cronut (Rm, S) minimizes Es iff the subconfiguration
{x1, . . . , xp} ⊂ Rm minimizes the last two terms above. This is however not the
case, for the sum of these two terms is minimized by Lp. This proves that (Rm, S)
is not a stratified ground state. �

The round and stratified structure of the optimal cronut (X,S) for large n is
reminiscent of the cronut pastry invented by the chef Dominique Ansel. This re-
semblance indeed motivated us in choosing this name.

Note that the optimal cronut is the stratification of nonstratified ground states
just for p ≤ 2. For p > 2 the geometry of the optimal cronut is different, although
it approaches that of the nonstratified ground state as n→∞. In contrast with the
nonstratified case, the optimal cronut may be nonunique (Subsection 4.4) nor have
a connected bond graph (Subsection 4.7). It is remarkable that such deviations
from the nonstratified-ground-state geometry may occur due to the presence of a
single extra atom in the last incomplete layer, regardless of the number of the atoms
in the whole configuration.

4.4. Nonuniqueness of optimal cronuts. One can find cases of nonuniqueness
of optimal cronuts. An example in this direction is given by n = q3 with q prime
and large, v3(θ) = κ(π−θ)2/2 for |π−θ| ≤ π/5 with

κ =
2`

4π2

q2 − q
q3

(
1

q2
− 1

q4

)−1
=

`

2π2

q2

q + 1

by taking ` very small. Indeed, as κ scales with `, it is a standard matter to argue as
in Subsection 4.3 and check that the bond graph of X, where (X,S) is an optimal
cronut, is homeomorphic to that of Rm for some m.

Note that p = nmodm = 0 iff m = q or m = q2 (or m = 1 or m = n, which are
clearly not optimal). In this cases we can use (11) in order to compute that

Es(Rq, (q
2, . . . , q2)) = Es(Rq2 , (q, . . . , q))

The value of the constant κ is specifically designed to realize this last equality.

We aim now at proving that (Rq, (q
2, . . . , q2)) and (Rq2 , (q, . . . , q)) are (the only)

two optimal cronuts with q3 atoms. To this end, let (X,S) be a cronut with
m = #X and assume m /∈ {1, q, q2, q3}. Then, m does not divide q3 and we have
p > 1. Hence, the cronut (X,S) has at least one bond less than (Rq, (q

2, . . . , q2)).
In particular, the two-body part of the stratified energy of (X,S) exceeds the cor-
responding term of (Rq, (q

2, . . . , q2)) at least by 1. By choosing ` small one can
then induce that Es(X,S) > Es(Rq, (q

2, . . . , q2)) so that (X,S) cannot be optimal.
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The latter counterexample to uniqueness required a very specific setting. Albeit
we are not in the position of offering a comprehensive discussion on uniqueness and
nonuniqueness of optimal cronuts, we believe uniqueness to be generic with respect
to data.

4.5. Stratified ground states are optimal cronuts. The main result of this
section is a characterization of stratified ground states.

Theorem 4.3 (Stratified ground states). For n large all stratified ground states
with connected bond graph are optimal cronuts.

Proof. Let (X,S) be a stratified ground state with m = #X with a connected bond
graph. Our aim is to prove that it is a cronut, therefore optimal. We subdivide the
argument into steps.

Step 1: The bond graph of X is not homeomorphic to that of Lm. We argue by
contradiction. Assume the bond graph of X to be homeomorphic to that of Lm.
Then necessarily X = Lm as the angle part of the stratified energy of Lm vanishes,
therefore being optimal. In addition, one readily checks that the stratified energy is
lowered by displacing atoms from the incomplete layers in order to complete lower
layers, hence reducing to a cronut. From minimality we necessarily deduce that
Es(X,S) = Es(Lm, Sm) where Sm is given by (9).

We shall now check that m grows with n. Assume on the contrary that m stays
bounded for large n. Then

Es(X,S) = Es(Lm, Sm)
(10)

≥ −(1+`)n+ bn/mc+ `m

∼ −(1+`)n+ cn as n→∞

which is not optimal, see (12). This proves that m→∞ as n→∞. By (10)-(11),
this implies that

Es(Lm, Sm) > Es(Rm, Sm) as n→∞,
and we conclude that (X,S) is not optimal, a contradiction.

Step 2: Upper bound on m. Recall (11)-(12) in order to get that

Es(X,S)− Es(Rm, Sm) &
(
− (1+`)n+ `m

)
−
(
− (1+`)n+ cn1/3

)
∼ `m+ cn1/3 as n→∞

where we have simply disregarded the angle part of Es(X,S). Minimality now
ensures that the above right-hand side is nonpositive, namely

m . cn1/3 as n→∞. (14)

Step 3: Decomposition of (X,S). Indicate with q and r the number of layers and
complete layers of (X,S), respectively, that is q = max si and r = min si. Call tj
the number of atoms at layer j with j = 1, . . . , q. We start by rewriting

Es(X,S) = Es(X, (r, . . . , r)) + Es(X,S − (r, . . . , r))− `tr+1. (15)

The latter comes from decomposing (X,S) into two parts, of which the first one
(X, (r, . . . , r)) contains just complete layers, and is hence a cronut, and the second
one (X,S− (r, . . . , r)) has no complete layer. Notice that the configuration (X,S−
(r, . . . , r)) will have some zero occupancies; the stratified energy E(X,S−(r, . . . , r))
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does not count these as part of the number of sites of (X,S − (r, . . . , r)). Let n′ =
n− rm be the number of atoms which are not in (X, (r, . . . , r)) and p = n′modm.

Step 4: Lower bound on the stratified energy. Recall from Step 1 that the bond
graph of X is not homeomorphic to that of Lm. In particular, one has that

Es(X, (r, . . . , r)) ≥ Es(Rm, (r, . . . , r)) (16)

and equality holds iff X = Rm.

Assume now that
n′ > m. (17)

Then, we can rearrange the atoms in (X,S − (r, . . . , r)) in order to complete as
many layers as possible. This is achieved by changing S − (r, . . . , r) into

S′ = (bn′/mc, . . . , bn′/mc) + (1, . . . , 1︸ ︷︷ ︸
p times

, 0, . . . , 0)

as we have that

Es(X,S − (r, . . . , r)) ≥ Es(Lm, S − (r, . . . , r)) ≥ Es(Lm, S
′) (18)

The first inequality above follows as no layer of (X,S − (r, . . . , r)) is complete so
that it is better to pass to Lm as the angle part of the energy is there optimized.
The second inequality is due to the fact that by changing from (X,S − (r, . . . , r))
to (Lm, S

′) one possibly activates extra bonds.

By using (16) and (18), under condition (17) the decomposition (15) delivers the
strict lower bound

Es(X,S) ≥ Es(Rm, (r, . . . , r)) + Es(Lm, S
′)− `tr+1. (19)

Step 5: m grows with n. We have already proved that m grows with n in Step 1
under the assumption that the bond graphs of X and Lm are homeomorphic (which
was then falsified). Here, we provide an argument in the general case of (17).

Moving from (19), we use relations (10)-(11) in order to quantify that

Es(X,S) >− (1+`)rm+ rmv3(π−2π/m) + `m

− (1+`)n′ +
n′

m
− 1 + `m− `tr+1

>− (1+`)n+ rmv3(π−2π/m) +
n′

m
+ `m− 1

where we have used that tr+1 < m. Assume now by contradiction that m is
bounded independently of n. As n′ = n − rm, either rm or n′ is larger than n/2
(up to a subsequence). In case rm ≥ n/2 one has that rmv3(π−2π/m) ∼ cn since
v3(π−2π/m) is bounded away from 0. If n′ ≥ n/2 one has that n′/m ∼ cn. In
both cases we have that

Es(X,S) ∼ −(1+`)n+ cn as n→∞
which is not optimal, see (12). We hence conclude that m→∞ as n→∞.

Step 6: Stratified ground states are cronuts. By letting n be large enough, under
assumption (17) Step 5 ensures that m can be made so large that

Es(Lm, S
′) > Es(Rm, S

′)−
(⌊

n′

m

⌋
+ 1

)
mv3(π−2π/m) +

⌊
n′

m

⌋
≥ Es(Rm, S

′),
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which follows as soon as m is large enough to have 2mv3(π−2π/m) ≤ 1, see the
proof of Theorem 3.2. As we have that

(r, . . . , r) + S′ = Sm,

the lower bound (19) yields

Es(X,S) > Es(Rm, (r, . . . , r)) + Es(Rm, S
′)− `tr+1

= Es(Rm, Sm) + `m− `tr+1 > Es(Rm, Sm)

contradicting minimality. We hence conclude that (17) cannot hold, namely that
n′ ≤ m. This implies that the configuration (X,S − (r, . . . , r)) consists, at most,
of a single incomplete layer (and indeed n′ < m). In order to conclude that the
stratified ground state (X,S) is actually a cronut it hence suffices to check that the
bond graph of (X,S − (r, . . . , r)) is connected. Indeed, assume that this is not the
case and argue as follows:

Es(X,S) = Es(X, (r, . . . , r)) + Es(X,S − (r, . . . , r))− `tr+1

(a)
> E(Rm, (r, . . . , r)) + Es(Lm, S − (r, . . . , r))− `tr+1

(b)

≥ E(Rm, (r, . . . , r)) + Es(Lm, S
′) + 1− `tr+1

(c)
> Es(Rm), (r, . . . , r)) + Es(Rm, S

′)− 2mv3(π−2π/m) + 1− `tr+1

(d)
> Es(Rm), (r, . . . , r)) + Es(Rm, S

′)− `tr+1 = Es(Rm, S
′).

Inequality (a) follows from Es(X,S−(r, . . . , r)) > Es(Lm, S−(r, . . . , r)). Then, (b)
expresses the fact that, by passing from S− (r, . . . , r) to S′ at least one extra bond
is activated, (c) uses the fact that Es(Lm, S

′) ≥ Es(Rm, S
′)−mv3(π−2π/m) + 1,

and (d) holds for 2mv3(π−2π/m) < 1, namely for m large. Eventually, this proves
that (X,S) is not a ground state, contradicting minimality. �

Before moving one let us comment that, depending on the specific choice of v3
and `, for small n one could well have that Es has a unique minimizer (Lm, S).
This is for instance the case if n is suitably small, v3(θ) = k(θ−π)2 in a suitable
neighborhood of π, and k and ` are large enough. By focusing on the case of
large n, such locally flat configurations are ruled out, see Proposition 4.2. Let us
nonetheless remark that the minimizer (Lm, S) would still be an optimal cronut, in
line with the statement of Theorem 4.3.

4.6. Stratified-energy scaling and aspect ratio. As checked in Proposition
4.2, for n large the optimal cronut (X,S) has a bond graph homeomorphic to a
circle, still being X 6= Rm if p > 2 . On the other hand, X and Rm can be expected
to come closer as n grows. In particular, we prove in the following they have the
same stratified-energy asymptotics.

Proposition 4.4 (Stratified-energy scaling and aspect ratio). Stratified ground
states (X,S) with n atoms and a connected bond graph fulfill

#X ∼ n1/3 and Es(X,S) ∼ −(1+`)n+ cn1/3 as n→∞.
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Proof. Let m = #X. The upper bound m . cn1/3 as n → ∞ holds, see (14),
so that we just need to check the lower bound. For p > 2 (the case p ≤ 2 being
analogous) we have that

Es(X,S) ≥ −(1+`)n+ (n−2)v3(θ) + `m > −(1+`)n+ (n−2)v3(θ) (20)

where the first inequality follows by taking the mean of the bond angles and the
second by neglecting the positive term `m. Owing to (12), minimality implies that

(n−2)v3(θ) . cn1/3 as n→∞.

As v3 is twice-differentiable in π we compute that

cn−1/3 & π − θ = π − 1

n−2

(⌊ n
m

⌋ m∑
i=1

θi +

p−1∑
i=2

θi

)

≥ π − 1

n−2

(⌊ n
m

⌋
π(m−2) + π(p−2)

)
=

2πbn/mc
n− 2

as n→∞, (21)

where we also used
∑m

i=1 θi ≤ π(m−2) and θi ≤ π. The lower bound m & cn1/3 as
n→∞ ensues.

We now derive the scaling of the stratified energy from that of m. Indeed, the
upper bound Es(X,S) . −(1+`)n+ cn1/3 as n→∞ has already been proved, see
(12). On the other hand, relation (20) gives

Es(X,S) + (1+`)n ≥ (n−2)v3(θ) ∼ c(n−2)(π−θ)2

(21)∼ c(n−2)

(
2πbn/mc
n− 2

)2

∼ cn1/3 as n→∞

where the last equivalence follows from m ∼ cn1/3 as n→∞. �

The aspect ratio of the stratified ground state is hence dependent on the number
of atoms. For larger values of n the stratified ground state has radius cn1/3 and
saturates cn2/3 layers.

4.7. Connectedness. Differently from the nonstratified situation of Theorem 3.2,
the connectedness assumption cannot be removed from the statement of Theo-
rem 4.3. On the one hand, we believe ground states to have a connected bond
graph for most choices of v3, `, and n. In fact, one can prove the following.

Proposition 4.5. Let (X1, S1) and (X2, S2) be optimal cronuts. If p1, p2 6= 0
and #X1 and #X2 are large enough the union of the two optimal cronuts is not a
ground state.

Proof. Denote by ni = #(Xi, Si), mi = #Xi, ri = bni/mic for i = 1, 2, and
assume with no loss of generality that m1 ≥ m2. The idea of the proof is rather
straightforward: by detaching the last, incomplete layer of (X2, S2) and attaching
it to the atoms on the last layer of (X1, S1) one activates an extra bond and the
energy drops, contradicting minimality.

This is readily checked if p1 = p2 = 1, for, in this case, one has that

Es(X1, S1) + Es(X2, S2)

= Es

(
X1, S1 + (0, 1, 0, . . . , 0)

)
+ Es

(
X2, S2 − (1, 0, . . . , 0)

)
+ 1.
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The analysis of the case p1 > 1 or p2 > 1 is more involved. The displacement
of the atoms of the last layers makes the cronuts not optimal, for the optimal
geometry of the basis configuration depends on the number of atoms on the last
layer, when this contains more than three atoms. We distinguish two cases, namely
p1 + p2 < m1 and p1 + p2 ≥ m1.

Assume p1 + p2 < m1 and displace all the p2 atoms on the last layer of (X2, S2)
to the last layer of (X1, S1) by activating an extra bond. We have that

Es(X1, S1) + Es(X2, S2)

≥ Es

(
Rm1 , (r1, . . . , r1)

)
+ E(Lp1) + Es

(
Rm2 , (r2, . . . , r2)

)
+ E(Lp2) + `(p1+p2)

= Es

(
Rm1 , (r1, . . . , r1)

)
+ E(Lp1+p2) + Es

(
Rm2 , (r2, . . . , r2)

)
+ 1 + `(p1+p2)

> Es

(
Rm1 , (r1, . . . , r1) + (1, . . . . . . , 1︸ ︷︷ ︸

p1+p2 times

, 0, . . . , 0)
)

+ Es

(
Rm2 , (r2, . . . , r2)

)
,

where the last inequality follows from (p1+p2−2) v3(π−2π/m1) < 1, which holds
for m1 large. This shows that the union of the two cronuts is not a ground state.

In case m1 ≤ p1 + p2 one displaces m1 − p1 ≤ p2 atoms of the last layer of
(X2, S2) to that of (X1, S1), thus completing it. One finds

Es(X1, S1) + Es(X2, S2)

≥ Es

(
Rm1

, (r1, . . . , r1)
)

+ E(Lp1
) + Es

(
Rm2

, (r2, . . . , r2)
)

+ E(Lp2
) + `(p1+p2)

≥ Es

(
Rm1

, (r1, . . . , r1)
)

+ E(Lp1
) + Es

(
Rm2

, (r2, . . . , r2)
)

+ E(Lm1−p1
) + E(Lp2−(m1−p1))− 1 + `(p1+p2)

= Es

(
Rm1

, (r1, . . . , r1)
)

+ E(Lm1
) + Es

(
Rm2

, (r2, . . . , r2)
)

+ E(Lp2−(m1−p1)) + `m1 + `(p1+p2−m1)

= Es

(
Rm1

, (r1, . . . , r1)
)

+ E(Rm1
) + 1−m1 v3(π−2π/m1)

+ Es

(
Rm2

, (r2, . . . , r2)
)

+ E(Lp2−(m1−p1)) + `m1 + `(p1+p2−m1)

= Es

(
Rm1

, (r1+1, . . . , r1+1)
)

+ 1−m1 v3(π−2π/m1)

+ Es

(
Rm2

, (r2, . . . , r2)+(1, . . . . . . , 1︸ ︷︷ ︸
p1+p2−m1 times

, 0, . . . , 0)
)
− (p1+p2−m1−2) v3(π−2π/m2)

> Es

(
Rm1

, (r1+1, . . . , r1+1)
)

+ Es

(
Rm2

, (r2, . . . , r2) + (1, . . . . . . , 1︸ ︷︷ ︸
p1+p2−m1 times

, 0, . . . , 0)
)
.

The last inequality holds for m1 and m2 large enough. Again this entails that the
union of the two cronuts is not a ground state. �

Note that the proof of Proposition 4.5 relies on the fact that p1 6= 0 and p2 6= 0.
In particular, the argument does not apply to the union of two cronuts with p1 =
p2 = 0. This, as we shall see now, provides a counterexample to connectedness of
the bond graph. Let n = 59 and choose

v3(θ) =
`

4π2
(π−θ)2 for |π−θ| ≤ π

5

so that

v3(π−2π/m) =
`

m2
for m ≥ 10.
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As n = 59 is prime, for all 1 < m′ < 59 the stratified energy of a cronut can be
estimated from below as

Es(Xm′ , Sm′) ≥ −(1+`)n+ `m′ + 1 (22)

by simply disregarding the angle part of the energy. On the other hand, as n =
n1 + n2 = 20 + 39 = 2m1 + 3m3 for m1 = 10 and m2 = 13, one could consider
instead the configuration with disconnected bond graph

(Rm1 , (2, . . . , 2)) ∪ (Rm2 , (3, . . . , 3))

and compute

Es

(
(Rm1 , (2, . . . , 2)) ∪ (Rm2 , (3, . . . , 3)

)
= Es(Rm1

, (2, . . . , 2)) + Es(Rm2
, (3, . . . , 3)))

= −(1+`)n+ `

(
m1 +

n1
m2

1

)
+ `

(
m2 +

n2
m2

2

)
< −(1+`)n+ `(23+1).

In particular, for ` < 1/22 one has that 24` < 2`+ 1 ≤ `m′ + 1 for all 1 < m′ < 59
and the configuration with disconnected bond graph has lower stratified energy
with respect to the one with connected bond graph.

The key point of the latter counterexample is the fact that n = 59 is prime, which
implies that all cronuts with n atoms and connected bond graph necessarily have
p > 0 (excluding the nonoptimal cases m = 1, m = n). This originated the last
term on the right-hand side of (22), which eventually allowed for the construction
of a competitor with disconnected bond graph.
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