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Abstract. This article is the third one in a series of papers by the authors on vanishing-viscosity solutions

to rate-independent damage systems. While in the first two papers [KRZ13, KRZ15] the assumptions on the

spatial domain Ω were kept as general as possible (i.e. nonsmooth domain with mixed boundary conditions),

we assume here that ∂Ω is smooth and that the type of boundary conditions does not change. This smoother

setting allows us to derive enhanced regularity spatial properties both for the displacement and damage fields.

Thus, we are in a position to work with a stronger solution notion at the level of the viscous approximating

system. The vanishing-viscosity analysis then leads us to obtain the existence of a stronger solution concept for

the rate-independent limit system. Furthermore, in comparison to [KRZ13, KRZ15], in our vanishing-viscosity

analysis we do not switch to an artificial arc-length parameterization of the trajectories but we stay with

the true physical time. The resulting concept of Balanced Viscosity solution to the rate-independent damage

system thus encodes a more explicit characterization of the system behavior at time discontinuities of the

solution.

1. Introduction

We consider in a three-dimensional spatial domain Ω the rate-independent system for damage evolution

− div
(
g(z)Cε(u+uD)

)
= ` in Ω× (0, T ), (1.1a)

∂R1(zt) +Aqz + f ′(z) + 1
2g
′(z)Cε(u+ uD) : ε(u+ uD) 3 0 in Ω× (0, T ), (1.1b)

with q > 3, Aq the q-Laplacian type operator

Aqz = −div((1 + |∇z|2)(q/2)−1∇z) ,

and the 1-homogeneous dissipation potential

R1(v) =

∫
Ω

R1(v) dx with R1(v) =

{
|v| if v ≤ 0,

∞ otherwise.

Here, u : [0, T ] × Ω → R3 denotes the displacement field and z : [0, T ] × Ω → R characterizes the time and

space-dependent damage state in the body Ω ⊂ R3. The natural state spaces for u and z are U = H1
0 (Ω;R3)

and Z = W 1,q(Ω). The energy potential is of the form

E(t, u, z) =

∫
Ω

g(z)
1

2
C(x)ε(u+ uD(t)) : ε(u+ uD(t)) + f(z) +

1

q
(1 + |∇z|2)

q
2 dx− 〈`(t), u〉,

where ε(w) = 1
2 (∇w + ∇wT ) (w ∈ U) is the strain tensor and uD denotes the Dirichlet datum. Since the

underlying energy E(t, ·, ·) in general is nonconvex and since R1 is of linear growth, solutions to (1.1) might be

discontinuous in time. In order to select reasonable jump discontinuities we adopt here the vanishing-viscosity

approach to the weak solvability of rate-independent systems, pioneered in [EM06] and developed both for

abstract rate-independent systems, cf. e.g. [MRS12a, Mie11, MRS16], and for applied problems in fracture

and plasticity, see for instance [KMZ08, DDS11, BFM12, CL17]. In the context of damage, in addition to

the previously mentioned [KRZ13, KRZ15] we quote the recent [CL16, Neg16]. Let us stress that, in all of

these papers the vanishing-viscosity analysis is performed by suitably adapting the original reparameterization

technique of [EM06]. In [KN17], a time-incremental alternate minimization scheme for a damage model of
1
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Ambrosio-Tortoreli type (without viscous regularization) was investigated. It turned out that in the time-

continuous limit this procedure results in a class of solutions that is closely related (but not identical) to those

obtained by vanishing viscosity limits. Also here, the reparameterization technique of [EM06] was applied.

Hence, we approximate the rate-independent flow rule for the damage parameter by its viscous regularization,

and thus address the rate-dependent system

− div(g(z)Cε(u+uD) = ` in Ω× (0, T ), (1.2a)

∂R1(zt) + εzt +Aqz + f ′(z) + 1
2g
′(z)Cε(u+ uD) : ε(u+ uD) 3 0 in Ω× (0, T ), (1.2b)

where the underlying regularized dissipation potential is given by

Rε : L2(Ω)→ [0,+∞] given by Rε(v) := R1(v) +
ε

2
‖v‖2L2(Ω) , (1.3)

and ε > 0 is the viscosity parameter. The goal is to perform the limit passage as ε ↓ 0 from (1.2) to (1.1),

without switching to an artificial arc-length reparameterization of the trajectories, but staying with the true

physical time. The basics for this approach to the construction of the resulting concept of Balanced Viscosity

(BV) solutions to the limit rate-independent system were set in [MRS12a, MRS16] for abstract rate-independent

systems in finite-dimensional and infinite-dimensional Banach spaces, respectively. A notable feature of this

vanishing-viscosity technique is that it allows for a direct limit passage from the time discrete version of (1.2)

to (1.1), as the viscosity parameter ε and the time discretization step τ simultaneously tend to zero with
ε
τ → ∞. This provides a constructive approach to Balanced Viscosity solutions of system (1.1) which could

also be further advanced from a numerical viewpoint.

While the techniques applied here have been developed in an abstract context in [MRS16], let us emphasize

that the existence and convergence results therein, (in particular [MRS16, Thms. 3.11 and 3.12]), are not

directly applicable to the present damage system. The main point is that, in contrast to [MRS16] in our

setting the dissipation potential R1 may take the value +∞ to enforce the unidirectionality of the damaging

process. This causes additional technical difficulties for the derivation of uniform a priori bounds. Moreover,

the definition of BV solution has to be carefully tailored to accomodate this irreversibility constraint. Further

analytical difficulties occur due to the presence of the quadratic term on the right-hand side of the differential

inclusion (1.1b), which at a first glance belongs to L1(Ω), only. This necessitates a careful study of the spatial

regularity properties of the displacement and the damage fields, which was already initiated in [KRZ13, KRZ15].

The main results of this paper are the following:

Regularity: Thanks to the assumed smoothness of ∂Ω (made precise in Section 2.1) and the assumption

q > 3 on the q-Laplacian regularization in (1.1b), which ensures enough spatial regularity for the

coefficient g(z) of the elasticity operator in (1.1a), solutions u = u(t, z) of (1.1a) belong to H2(Ω) ∩
W 1,p(Ω) for every p ≥ 1 if the external data `, uD are smooth enough. We derive explicit bounds for

the corresponding norms of u in terms of z by adapting arguments from [BM13] to our situation. These

results improve the integrability properties of the quadratic term in (1.1b) and in (1.2b) and allow us

to test (a regularized version of) (1.2b) by ∂tAqz, which ultimately guarantees that DzE(t, u(t, z), z) ∈
L2(Ω), again with uniform bounds, see Section 3.1. Let us mention that, in the case of the standard

Laplacian regularization (i.e. q = 2), this regularity estimate was first proposed in [BFL00] for doubly

nonlinear differential inclusions in phase change modeling.

Based on the improved integrability property of DzE(t, u(t, z), z) we may consider subdifferentials

and convex conjugate functions of the dissipation potentials with respect to the L2(Ω) duality, instead

of the Z − Z∗ duality. Furthermore, based on these results we derive a (generalized) λ-convexity

property of the energy functional, (cf. Corollary 2.13), and a chain rule identity (cf. Lemma 2.16). The

latter is essential for the existence proof of BV solutions for the damage system.

This chain rule identity was not available in the earlier [KRZ15], which still addressed the case of a

q-Laplacian regularization in the damage flow rule, whereas in [KRZ13] some technical difficulties were

smeared out by taking as regularizing operator a (less physical) fractional Laplacian. Hence, in [KRZ15]
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we had to deal with a weaker notion of vanishing-viscosity solution compared to the present paper.

In particular, in [KRZ15] it could be shown that the vanishing-viscosity limits satisfied an energy-

dissipation inequality but, due to the lack of an appropriate chain rule this could not be improved to

an energy-dissipation identity.

Existence and approximation of BV solutions: The concept of BV solution to the rate-independent

system (1.1) consists of a (local) stability condition and of an energy-dissipation balance that en-

codes the (possible) onset of viscous behavior in the jump regime. More precisely, let u(t, z) ∈ U

be the unique solution of (1.1a) and I(t, z) := E(t, u(t, z), z) the reduced energy. We call a curve

z ∈ L∞(0, T ;Z) ∩ BV([0, T ];L2(Ω)) with DzI(·, z(·)) ∈ L∞(0, T ;L2(Ω)) a Balanced Viscosity solution

to (1.1) if z satifies the local stability (Sloc) and the energy-dissipation balance (ED)

−DzI(t, z(t)) ∈ ∂R1(0) for all t ∈ [0, T ]\Jz, (Sloc)

Varf(z; [0, t]) + I(t, z(t)) = I(0, z(0)) +

∫ t

0

∂tI(r, z(r)) dr for all t ∈ [0, T ], (ED)

where Jz denotes the countable jump set of z. The quantity Varf(·; [0, t]) is a total variation functional

that encompasses both the dissipation, with respect to the 1-homogeneous potential R1, in continuous

parts of the solution, as well as the dissipation at jump discontinuities. At jump discontinuities it

reflects the viscous regularization term from (1.2b). While referring to Section 5.1 for its precise

definition (and to [MRS16] for more comments on it), we may mention here its structure at a jump

from z− to z+ for t ∈ Jz. Indeed, the jump contribution ∆f(t; z−, z+) to Varf(z; [0, t]) is given by

∆f(t; z−, z+) := inf
ϑ∈T%t (z−,z+)

∫ 1

0

ft(ϑ(r), ϑ′(r)) dr , (1.4)

ft(ϑ, ϑ
′) = R1(ϑ′) + ‖ϑ′‖L2(Ω) inf

ξ∈∂R1(0)
‖ −DzI(t, ϑ)− ξ‖L2(Ω) , (1.5)

where T
%
t (z−, z+) denotes the set of admissible transition curves connecting z− with z+ and satisfying

certain properties.

The appearance of the term from (1.4) in the vanishing-viscosity limit of (1.2) can be motivated by

a comparison with the energy-dissipation balance that is valid for solutions of the viscous system (1.2).

In fact, we will show in Theorem 4.1 that solutions to (1.2) exist and that they satisfy for all t ∈ [0, T ]

the relation∫ t

0

Rε(żε) + R∗ε (−DzI(r, zε(r))) dr + I(t, zε(t)) = I(0, z(0)) +

∫ t

0

∂tI(r, zε(r)) dr (1.6)

with R∗ε (η) = 1
2ε infξ∈∂R1(0) ‖η − ξ‖2L2(Ω) provided that η ∈ L2(Ω). It turns out that

ft(t, z, v) = inf
ε>0

(Rε(v) + R∗ε (−DzI(t, z))) .

The challenge here is to perform a sharp limit analysis for ε→ 0 in order to show that the dissipation

integral in (1.6) tends to Varf(z; [0, t]) as ε→ 0.

The main result of this paper, Theorem 5.7, states the existence of Balanced Viscosity solutions

to the damage system (1.1) under suitable assumptions on the data z0, uD and `. They are obtained

from a vanishing-viscosity analysis of the time discretized version of the viscous system (1.2) as the

time step size τ , the viscosity parameter ε and the ratio τ/ε tend to zero. The convergence of discrete

solutions of corresponding numerical schemes to BV solutions is an immediate consequence. Let us

stress that, with the techniques from [MRS16] we could prove the existence of BV solutions also by

taking the vanishing-viscosity analysis of the time-continuous system in (1.2), as standardly done in

works on the vanishing-viscosity approach to rate-independent systems. Here we have opted for this

simultaneous limit passage to highlight the constructive character of this approach.
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The paper is organized as follows: In Section 2 we collect and prove the basic regularity and differentiability

properties of the reduced energy I and prove the chain rule identity. Some of the arguments are taken from

the earlier paper [KRZ15] but are adapted to the enhanced smoothness assumptions on the boundary ∂Ω.

In Section 3 we study a time-discrete version of the viscous damage system (1.2), derive the necessary a

priori estimates and provide an energy-dissipation inequality for suitable interpolants of the time incremental

solutions. The main part of Section 3 is devoted to proving that Aqzk ∈ L2(Ω) for time incremental solutions

zk. In Section 4 we shortly address the existence of viscous solutions to the system (1.2). The main focus of

the paper lies on the analysis of the vanishing-viscosity limit as both the viscosity parameter and the time step

size tend to zero simultaneously (Sections 5 & 6). The notion of BV solutions is introduced and explained at

length in Section 5, where also the main existence theorem is formulated and where further properties of BV

solutions are discussed. The corresponding proofs are collected in Section 6. A short Appendix collects some

elliptic regularity results that are key for our analysis.

We conclude by fixing some notation that will be used throughout the paper.

Notation 1.1. Throughout the paper, for a given Banach space X, we will by ‖ · ‖X denote its norm; in the

case of product spaces X × . . .×X, we will often write ‖ · ‖X in place of ‖ · ‖X×...×X . We will denote by 〈·, ·〉X
the duality pairing between X∗ and X, using the symbol (·, ·)X for the scalar product in X, if X is a Hilbert

space.

We will denote most of the positive constants occurring in the calculations, and depending on known

quantities, by the symbols c, c′, C, C ′, . . ., whose meaning may vary even within the same line. Furthermore,

the symbols Ii, i = 0, 1, . . . , will be used as abbreviations for several integral terms appearing in the various

estimates: we warn the reader that we will not be self-consistent with the numbering, so that, for instance, I1
will appear several times with different meanings.

2. Preliminaries and properties of the reduced energy

We start by collecting our standing assumptions on the reference domain Ω and on the energy functional E

in Section 2.1. Combining these requirements, in Sec. 2.2 we will obtain two regularity results for the Euler-

Lagrange equation associated with the minimization of the elastic energy. In Sec. 2.3, such results will have a

pivotal role in deriving a series of properties of the reduced energy I, at the core of our subsequent analysis.

2.1. Setup. Throughout the paper, we shall suppose that

Assumption 2.1 (Regularity of the domain). Ω ⊂ R3 is a bounded C1,1-domain with Dirichlet boundary

ΓD = ∂Ω.

From now on, we shall denote the state spaces for the variables u and z by

U := H1
0 (Ω;R3), Z := W 1,q(Ω) with q > 3.

We will denote by

W−1,p(Ω) the dual space of W 1,p′

0 (Ω) with
1

p
+

1

p′
= 1.

For later use, we recall here two crucial properties of the elliptic operator Aq holding for all z1, z2, w ∈ Z:

〈Aqz1 −Aqz2, z1 − z2〉Z ≥ cq
∫

Ω

(1 + |∇z1|2 + |∇z2|2)
q−2
2 |∇(z1 − z2)|2 dx, (2.1)

| 〈Aqz1 −Aqz2, w〉Z | ≤ c
′
q

∫
Ω

(1 + |∇z1|2 + |∇z2|2)(q−2)/2|∇(z1 − z2)||∇w| dx. (2.2)

These inequalities rely on the corresponding estimates for the function Gq : R3 → R defined by Gq(A) :=
1
q (1+|A|2)q/2 and its gradient. In particular the following monotonicity estimate is valid

(∇Gq(A)−∇Gq(B)) · (A−B) ≥ cq(1+|A|2+|B|2)(q−2)/2|A−B|2 for all A, B ∈ R3 (2.3)
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with cq > 0 the same constant as in (2.1), which is in fact a consequence of the estimates provided in [Giu03,

Lemma 8.3].

The energy functional E : [0, T ]× U× Z→ R consists of two contributions. The first one, I1, only depends

on the damage variable. The second one, E2 = E2(t, u, z), is given by the sum of an elastic energy of the type∫
Ω
g(z)W (ε(x, u+ uD(t))) dx with uD a Dirichlet datum, and of the external loading term.

Assumption 2.2 (The energy functional). We consider

I1 : Z→ R defined by I1(z) := Iq(z) +

∫
Ω

f(z) dx with Iq(z) :=
1

q

∫
Ω

(1 + |∇z|2)
q
2 dx, q > 3,

and f fulfilling

f ∈ C2(R) and ∃K1, K2 > 0 ∀x ∈ R : f(x) ≥ K1|x| −K2. (2.4)

As for E2, linearly elastic materials are considered with an elastic energy density

W (x, η) =
1

2
C(x)η : η for η ∈ R3×3

sym and almost every x ∈ Ω.

Hereafter, we shall suppose for the elasticity tensor that

C ∈ C0
lip(Ω; Lin(R3×3

sym ,R3×3
sym )) with C(x)ξ1 : ξ2 = C(x)ξ2 : ξ1 for all x ∈ Ω, ξi ∈ R3×3

sym , (2.5a)

∃ γ0 > 0 for all ξ ∈ R3×3
sym and almost all x ∈ Ω : C(x)ξ : ξ ≥ γ0|ξ|2. (2.5b)

Let g : R→ R be a further constitutive function such that

g ∈ C2(R) with g′, g′′ ∈ L∞(R), and ∃ γ1, γ2 > 0 ∀ z ∈ R : γ1 ≤ g(z) ≤ γ2. (2.6)

Then, we take the elastic energy

E2 : [0, T ]× U× Z→ R defined by E2(t, u, z) :=

∫
Ω

g(z)W (x, ε(u+ uD(t))) dx− 〈`(t), u〉U

where ε(u) = 1
2 (∇u+∇uT ) is the symmetrized strain tensor and ` ∈ C0([0, T ],U∗) an external loading. Further

requirements on ` and uD will be specified in Assumption 2.8 ahead. For u ∈ U and z ∈ Z the stored energy

is then defined by

E(t, u, z) := I1(z) + E2(t, u, z). (2.7)

Minimizing the functional E with respect to the displacements we obtain the reduced energy

I : [0, T ]× Z→ R given by I(t, z) := I1(z) + I2(t, z) with I2(t, z) := inf{E2(t, v, z) : v ∈ U}. (2.8)

2.2. Preliminary regularity results. We focus on the regularity properties of the operator Lg(z) : H1
0 (Ω;R3)→

W−1,2(Ω;R3) associated with the following bilinear form describing linear elasticity, i.e.,

〈Lg(z)u, v〉 :=

∫
Ω

g(z)Cε(u) : ε(v) dx for all u, v ∈ H1
0 (Ω;R3), (2.9)

where C is from (2.5), g from (2.6), and z is a fixed element in Z = W 1,q(Ω), with q > 3. Our first result

extends [KRZ15, Lemma 2.3] to a wider range of exponents, cf. Remark 2.4 below.

Lemma 2.3. Under Assumption 2.1, let C and g comply with (2.5) and (2.6), respectively. Then, there holds

(a) For every p > 1 and z ∈ W 1,q(Ω) the operator Lg(z) : W 1,p
0 (Ω) → W−1,p(Ω) is a topological isomor-

phism.

(b) Uniform estimate: For every p∗ > 2 there exists a constant cq,p∗ > 0 such that for all z ∈W 1,q(Ω) and

p ∈ [p′∗, p∗] it holds

‖L−1
g(z)‖W−1,p(Ω;R3)→W 1,p

0 (Ω;R3) ≤ cq,p∗(1 + ‖∇z‖Lq(Ω))
k̂∗

p∗|p−2|
p(p∗−2) , (2.10)

where k̂∗ ∈ N is the smallest integer with k̂∗ >
3q

2(q−3) .
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Proof. The first statement is a consequence of [Val78, Theorem 3], see also [MR03, Theorem 7.1]. The uniform

estimate follows along the same lines as in the proof of [KRZ15, Lemma 2.3], relying on a recursion argument

developed in [BM13]. �

Remark 2.4. Lemma 2.3 enhances [KRZ15, Lemma 2.3] thanks to the stronger regularity condition on the

reference domain Ω, which in [KRZ15] was only required to fulfill these properties:

(i) The spaces W 1,p
ΓD

(Ω;Rd) = {u ∈W 1,p(Ω;Rd) : u|ΓD = 0}, p ∈ (1,∞) (and ΓD with positive Hausdorff

measure, but possibly different from ∂Ω, was allowed in [KRZ15]), form an interpolation scale.

(ii) There exists p∗ > 3 such that for all p ∈ [2, p∗] the operator L : W 1,p
ΓD

(Ω;Rd) → W−1,p
ΓD

(Ω;Rd) is an

isomorphism.

It was for such p∗ > 3, in fact, that the isomorphism property (a) and the uniform estimate (2.10) were obtained

in [KRZ15, Lemma 2.3]. Let us highlight that, instead, in Lemma 2.3 property (a) is guaranteed for all p > 1,

and (2.10) is shown for every p∗ > 2.

The most relevant consequence of Assumption 2.1 for our analysis, though, is given by this second, enhanced,

elliptic regularity result, which is to be compared with [BM13, Lemma A.1], holding for homogeneous Neumann

boundary conditions.

Lemma 2.5. Under Assumption 2.1, let C and g comply with (2.5) and (2.6), respectively. Then, for all

z ∈W 1,q(Ω) the operator Lg(z) : U→ U∗ fulfills

L−1
g(z)(h) ∈ H2(Ω;R3) for all h ∈ L2(Ω;R3)

and there exists c0 > 0 such that for all z ∈W 1,q(Ω) and all h ∈ L2(Ω;R3)

‖u‖H2(Ω) ≤ c0(1 + ‖∇z‖Lq(Ω))
α(‖h‖L2(Ω) + ‖u‖H1(Ω)), (2.11)

where u = L−1
g(z)(h) and α ≥ 2 is the smallest integer bigger than or equal to q/(q − 3).

Proof. The proof of [BM13, Lemma A.1] can be directly transferred to our situation having in mind that for

every p ∈ (1,∞) the operator

LC = Lg(1) : W 1,p
0 (Ω) ∩W 2,p(Ω)→ Lp(Ω), u 7→ −divCε(u)

is a continuous isomorphism, cf. Theorem A.3. �

Remark 2.6. Observe that supp∈[p′∗,p∗]
p∗|p−2|
p(p∗−2) ≤ 1, hence we can estimate from above the right-hand side

of (2.10) by (1 + ‖∇z‖Lq(Ω))
k̂∗ . That is why, in what follows, whenever applying estimates (2.10) and (2.11),

possibly with two different elements z1, z2 ∈ Z, we will simply use the quantity

P (z1, z2) := (1 + ‖∇z1‖Lq(Ω) + ‖∇z2‖Lq(Ω))
k∗ , (2.12)

where k∗ := max{k̂∗, α}+ 1 with k̂∗ from Lemma 2.3 and α from (2.11). With this, (2.11) can be rewritten in

terms of the quantity P as

‖u‖H2(Ω) ≤ c0P (z, 0)(‖h‖L2(Ω) + ‖u‖H1(Ω)).

In the sequel we will frequently use the following regularity result from [Sav98, Theorem 2 & Remark 3.5]

for solutions of the q-Laplace equation:

Proposition 2.7. For every q > 2 there exists a constant Cq > 0 such that for all f ∈ Lq′(Ω) it holds: If

z ∈ W 1,q(Ω) satisfies 〈Aqz, z̃〉 = 〈f, z̃〉 for all z̃ ∈ W 1,q(Ω), then for all σ ∈ (0, 1
q ) the function z belongs to

W 1+σ,q(Ω) and

‖z‖W 1+σ,q(Ω) ≤ Cq(‖f‖Lq′ (Ω) + ‖z‖Lq(Ω)). (2.13)

Note that on the right-hand side of (2.13) the Lq-norm of z appears since Aq is not bijective on W 1,q(Ω).
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2.3. Properties of the reduced energy. Relying on Lemmas 2.3 and 2.5, we will show that the reduced

energy functional I enjoys a series of differentiability properties, which in fact improve those obtained in

[KRZ15, Sec. 2.3], under the additional

Assumption 2.8 (The external loadings). From now on, we will suppose that ` and uD comply with the

following requirements

` ∈ L∞(0, T ;L2(Ω;R3)) ∩ C1,1([0, T ];W−1,3(Ω;R3)),

uD ∈ L∞(0, T ;H2(Ω;R3)) ∩ C1([0, T ];W 1,3(Ω;R3)).
(2.14)

The starting point is the following result, which improves [KRZ15, Lemmas 2.6, 2.7].

Lemma 2.9 (Existence of minimizers for E(t, ·, z) & their continuous dependence on the data).

Under Assumptions 2.1, 2.2, and 2.8, for every (t, z) ∈ [0, T ]×Z there exists a unique minimizer umin(t, z) ∈ U

for the stored energy E(t, ·, z) (2.7). In fact, umin(t, z) ∈ H2(Ω;R3). Moreover, there exist positive constants

c1 and c2 such that for all (t, z), (t1, z1), (t2, z2) ∈ [0, T ]× Z and for all p∗ > 2

‖umin(t, z)‖H2(Ω) ≤ c1P (z, 0)
(
‖`(t)‖L2(Ω) + ‖uD(t)‖H2(Ω)

)
; (2.15)

‖umin(t1, z1)−umin(t2, z2)‖W 1,p(Ω)

≤ c2P (z1, z2)2
(
|t1−t2|+ ‖z1−z2‖L6p/(6−p)(Ω)

) (
‖`‖C1([0,T ];W−1,p(Ω)) + ‖uD(t)‖C1([0,T ];W 1,p(Ω))

) (2.16)

for all p ∈ [p′∗,min{p∗, 3}], with P (·, ·) defined by (2.12). In particular, there holds

‖umin(t1, z1)−umin(t2, z2)‖W 1,3(Ω)

≤ c2P (z1, z2)2
(
|t1−t2|+ ‖z1−z2‖L6(Ω)

) (
‖`‖C1([0,T ];W−1,3(Ω)) + ‖uD(t)‖C1([0,T ];W 1,3(Ω)).

)
,

(2.17)

Finally, the reduced energy I from (2.8) is bounded from below and in particular satisfies the following coercivity

estimate:

∃ c3, c4 > 0 ∀ (t, z) ∈ [0, T ]× Z : I(t, z) ≥ c3
(
‖∇z‖qLq(Ω) + ‖z‖L1(Ω) + ‖umin(t, z)‖2H1(Ω;R3)

)
− c4. (2.18)

Proof. We refer to [KRZ13, Lemma 2.1] for the proof of the existence and uniqueness of umin(t, z), as well as

for estimate (2.18). Clearly, umin(t, z) satisfies Lg(z)umin(t, z) = −Lg(z)uD(t)−`(t). Observe that Lg(z)uD(t) ∈
L2(Ω). Indeed, by the assumptions on g, C and since uD(t) ∈ H2(Ω), we have g(z)div(Cε(uD(t)) ∈ L2(Ω).

On the other hand, Cε(uD(t))∇xg(z) = g′(z)Cε(uD(t))∇z ∈ L2(Ω), which follows by Hölder’s inequality

taking into account that H1(Ω) ⊂ L6(Ω) and that q > 3. Moreover, it holds ‖Lg(z)uD(t)‖L2(Ω) ≤ c(1 +

‖∇z‖Lq(Ω))‖uD(t)‖H2(Ω). Hence, it follows from (2.11), cf. also Remark 2.6, and (2.10) with p = 2 that

‖umin(t, z)‖H2(Ω) ≤ c0(1 + ‖∇z‖Lq(Ω))
α(‖`(t)‖L2(Ω) + ‖div(g(z)Cε(uD(t))‖L2(Ω) + ‖umin(t, z)‖H1(Ω))

≤ c(1 + ‖∇z‖Lq(Ω))
α
(
‖`(t)‖L2(Ω) + (1 + ‖∇z‖Lq(Ω))‖uD(t)‖H2(Ω)

)
≤ c1P (z, 0)

(
‖`(t)‖L2(Ω) + ‖uD(t)‖H2(Ω)

)
.

All in all, we conclude (2.15).

Finally, in order to show (2.16) we mimic the argument from the proofs of [KRZ13, Lemma 2.2] & [KRZ15,

Lemma 2.7]. Namely, for i = 1, 2, let ui := umin(ti, zi) ∈ H2(Ω;R3). From the corresponding Euler-Lagrange

equations we obtain that u1 − u2 satisfies for all v ∈ U∫
Ω

g(z1)Cε(u1 − u2) : ε(v) dx =

∫
Ω

(
g(z2)− g(z1)

)
Cε(u2) : ε(v) dx

−
∫

Ω

(
g(z1)Cε(uD(t1))− g(z2)Cε(uD(t2))

)
: ε(v) dx+

∫
Ω

(`(t1)−`(t2)) v dx.

(2.19)

Taking into account that, for i, j ∈ {1, 2} g(zi)ε(uj) ∈ L6(Ω;R3×3) in view of (2.6) and of the fact that

uj ∈ H2(Ω;R3), giving ε(uj) ∈ L6(Ω;R3×3), and exploiting condition (2.14) on ` and uD, via a density
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argument we see that (2.19) extends to test functions v ∈ W
1,6/5
0 (Ω;R3) . Hence, u1 − u2 fulfills for all

v ∈W 1,6/5
0 (Ω;R3) the relation∫

Ω

g(z1)Cε(u1 − u2) : ε(v) dx = 〈˜̀1,2, v〉W 1,6/5
0 (Ω;R3)

,

where ˜̀
1,2 ∈W−1,6(Ω;R3) subsumes the terms on the right-hand side of (2.19). We now fix an arbitrary p∗ > 2

and apply estimate (2.10) with p ∈ [p′∗,min{p∗, 3}] (indeed, the restriction p ≤ 3 is in view of conditions (2.14)

on ` and uD). We thus obtain ‖u1 − u2‖W 1,p(Ω;R3) ≤ cq,p∗P (z1, 0)‖˜̀1,2‖W−1,p(Ω;R3). Hence,

‖u1 − u2‖W 1,p(Ω;R3) ≤ cp∗,qP (z1, 0)
(
‖`(t1)− `(t2)‖W−1,p(Ω;R3) + ‖(g(z1)− g(z2))Cε(u2)‖Lp(Ω;R3)

+ ‖g(z1)Cε(uD(t1))− g(z2)Cε(uD(t2))‖Lp(Ω;R3)

)
. (2.20)

Now, the Lipschitz continuity of g (with Lipschitz constant Cg) and Hölder’s inequality imply that

‖(g(z1)− g(z2))Cε(u2)‖Lp(Ω;R3) ≤ Cg‖z1 − z2‖L6p/(6−p)(Ω)‖ε(u2)‖L6(Ω;R3)

≤ CP (z2, 0)
(
‖`(t)‖L2(Ω) + ‖uD(t)‖H2(Ω)

)
‖z1 − z2‖L6p/(6−p)(Ω)

(2.21)

where the second estimate follows from (2.15) and from the fact that ‖ε(u2)‖L6(Ω;R3) ≤ C‖u2‖H2(Ω;R3) by

Sobolev embeddings. Moreover,

‖g(z1)Cε(uD(t1))− g(z2)Cε(uD(t2))‖Lp(Ω)

≤ ‖g(z1)(Cε(uD(t1))− Cε(uD(t2)))‖Lp(Ω) + ‖(g(z1)− g(z2))Cε(uD(t2))‖Lp(Ω)

≤ γ2|t1 − t2|‖uD(t)‖C1([0,T ];W 1,p(Ω)) + C‖uD‖L∞(0,T ;H2(Ω))‖z1 − z2‖L6p/(6−p)(Ω),

where the last estimate follows from the fact that ‖g(z1)‖L∞(Ω) ≤ γ2 by (2.6), as well as the the fact that, for

p ≤ 6, ‖ε(uD(t2))‖Lp(Ω) ≤ C‖uD‖L∞(0,T ;H2(Ω)). All in all, we conclude (2.16), whence (2.17) observing that,

for p = 3 one has 6p
6−p = 6. �

Concerning the differentiability in time, we have the following analogue of [KRZ15, Lemma 2.9], [KRZ13,

Lemma 2.3],

Lemma 2.10. Under Assumptions 2.1, 2.2, and 2.8, for every z ∈ Z the map t 7→ I(t, z) is in C1([0, T ];R)

with

∂tI(t, z) =

∫
Ω

g(z)Cε(umin(t, z) + uD(t)) : ε(u̇D(t)) dx− 〈 ˙̀(t), umin(t, z)〉H1
0 (Ω;R3). (2.22)

Moreover, there exists a constant c5 > 0 such that for all t ∈ [0, T ], z ∈ Z we have

|∂tI(t, z)| ≤ c5
(
‖uD‖2C1([0,T ];H1(Ω;R3)) + ‖`‖2C1([0,T ];W−1,2(Ω;R3))

)
. (2.23)

Finally, there exists a constant c6 > 0 depending on ‖`‖C1,1([0,T ];W−1,3(Ω;R3)) and ‖uD‖C1,1([0,T ];W 1,3(Ω)) such

that for all ti ∈ [0, T ] and zi ∈ Z we have

|∂tI(t1, z1)− ∂tI(t2, z2)| ≤ c6P (z1, z2)2
(
|t1 − t2|+ ‖z1 − z2‖L2(Ω)

)
. (2.24)

Let us stress that the quantity on the right-hand side of estimate (2.23), whose proof is developed in [KRZ13,

Lemma 2.3], is independent of z ∈ Z.
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Proof. We will only develop the proof of (2.24), referring to the proof of [KRZ13, Lemma 2.3] for (2.22) and

(2.23). We have

∂tI(t1, z1)− ∂tI(t2, z2)

=

∫
Ω

(g(z1)−g(z2))C(ε(umin(t1, z1) + uD(t1))) : ε(u̇D(t1)) dx

+

∫
Ω

g(z2)C(ε(umin(t1, z1) + uD(t1))−ε(umin(t2, z2) + uD(t2))) : ε(u̇D(t1)) dx

+

∫
Ω

g(z2)C(ε(umin(t2, z2) + uD(t2))) : (ε(u̇D(t1))−ε(u̇D(t2))) dx

− 〈 ˙̀(t1)− ˙̀(t2), umin(t1, z1)〉+ 〈 ˙̀(t2), umin(t2, z2)−umin(t1, z1)〉 .= I1 + I2 + I3 + I4 + I5.

To estimate I1, and I3 we rely on the fact that g, g′ ∈ L∞(R), and on (2.15). To estimate I2 we additionally

use the boundedness of g and Hölder’s inequality as follows

I2 ≤ c‖ε(umin(t1, z1) + uD(t1))−ε(umin(t2, z2) + uD(t2))‖L3/2(Ω)‖ε(u̇D(t1))‖L3(Ω)

≤ cP (z1, z2)2
(
|t1−t2|+ ‖z1−z2‖L2(Ω)

) (
‖`‖C1([0,T ];W−1,3/2(Ω)) + ‖uD(t)‖C1([0,T ];W 1,3/2(Ω)),

)
where the second estimate ensues from (2.16) with p = 3/2 (which yields 6p/(6− p) = 2), and from (2.14). By

(2.14) and (2.16) we also estimate I4 and I5. �

We now discuss the differentiability of I with respect to z; we shall denote by DzI(t, ·) : Z → Z∗ the

Gâteaux-differential of the functional I(t, ·). For the proof of the following result, we refer to [KRZ15, Lemma

2.10], [KRZ13, Lemma 2.4].

Lemma 2.11. Under Assumptions 2.1, 2.2, and 2.8, for all t ∈ [0, T ] the functional I(t, ·) : Z → R is

Gâteaux-differentiable at all z ∈ Z, and for all η ∈ Z we have

〈DzI(t, z), η〉Z = 〈Aqz, η〉Z +

∫
Ω

f ′(z)η dx+

∫
Ω

g′(z)W̃ (t,∇umin(t, z))η dx, (2.25)

where we use the abbreviation W̃ (t,∇v) = W (x, ε(v+∇uD(t))) = 1
2Cε(v+ uD(t)):ε(v+ uD(t)). In particular,

the following estimate holds with a constant c7 that depends on the data `, uD, but is independent of t and z:

∀ (t, z) ∈ [0, T ]× Z : ‖DzI(t, z)‖Z∗ ≤ c7
(
‖z‖q−1

Z + ‖f ′(z)‖L∞(Ω) + 1
)
. (2.26)

Hereafter, we will use the short-hand notation

Ĩ(t, z) := I2(t, z) +

∫
Ω

f(z) dx for all (t, z) ∈ [0, T ]× Z (2.27)

with I2 from (2.8) as the part of the reduced energy collecting all lower order terms. Accordingly, DzI from

(2.25) decomposes as

DzI(t, z) = Aqz + Dz Ĩ(t, z) for all (t, z) ∈ [0, T ]× Z. (2.28)

In view of (2.25), and taking into account the H2(Ω;R3)-regularity of umin from Lemma 2.5, the term Dz Ĩ(t, z)

can be identified with an element of L2(Ω). In Lemma 2.12 below we will even show that the map (t, z) 7→
Dz Ĩ(t, z) is Lipschitz continuous w.r.t. a suitable Lebesgue norm. Therefore, with the symbol Dz Ĩ we shall

denote both the derivative of Ĩ as an operator, and the corresponding density in L2(Ω). Accordingly, we shall

write

for a given v ∈ L2(Ω)

∫
Ω

Dz Ĩ(t, z)v dx in place of 〈Dz Ĩ(t, z), v〉L2(Ω). (2.29)

For h ∈ C0(R) and z1, z2 ∈ Z let

Ch(z1, z2) = max{ |h(s)| : |s| ≤ ‖z1‖L∞(Ω) + ‖z2‖L∞(Ω) }. (2.30)

This notation will be used along the proof of the following lemma.
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Lemma 2.12. Under Assumptions 2.1, 2.2, and 2.8, there exists a constant c8 > 0 that depends on the norms

‖`‖C1,1([0,T ];W−1,3(Ω;R3)) and ‖uD‖C1([0,T ];W 1,3(Ω;R3)) such that for all ti ∈ [0, T ] and all zi ∈ Z it holds∣∣∣Ĩ(t1, z1)− Ĩ(t2, z2)
∣∣∣ ≤ c8(1 + Cf ′(z1, z2) + P (z1, z2)3)

(
|t1 − t2|+ ‖z1 − z2‖L3(Ω)

)
, (2.31)

with Cf ′(z1, z2) as in (2.30), corresponding to h = f ′. Further,

‖Dz Ĩ(t1, z1)−Dz Ĩ(t2, z2)‖L2(Ω)

≤ c8
(
1 + Cf ′(z1, z2) + P (z1, z2)3

)(
|t1 − t2|+ ‖z1 − z2‖L6(Ω)

)
,

(2.32)

‖Dz Ĩ(t1, z1)−Dz Ĩ(t2, z2)‖L4/3(Ω)

≤ c8
(
1 + Cf ′(z1, z2) + P (z1, z2)3

)(
|t1 − t2|+ ‖z1 − z2‖L4(Ω)

)
,

(2.33)

and

‖Dz Ĩ(t, z)‖L2(Ω) ≤ c8(1 + ‖f ′(z)‖L∞(Ω) + P (z, 0)2) for all (t, z) ∈ [0, T ]× Z. (2.34)

Proof. Although the proof follows the same lines as that of [KRZ15, Lemma 2.12], let us briefly see how the

improved estimates (2.15) and (2.17) lead to (2.31), (2.34), and (2.33), while we will omit the calculations for

(2.34). As for (2.31), we observe that∣∣∣Ĩ(t1, z1)− Ĩ(t2, z2)
∣∣∣ ≤ ∫

Ω

|f(z1)− f(z2)| dx+

∫
Ω

|g(z1)− g(z2)||W̃ (t1,∇u1)| dx

+

∫
Ω

|g(z2)||W̃ (t1,∇u1)− W̃ (t2,∇u2)| dx+ | 〈`(t1)− `(t2), u1〉U |

+ | 〈`(t2), u1 − u2〉U |
.
= I1 + I2 + I3 + I4 + I5,

where ui := umin(ti, zi) ∈ H2(Ω;R3) and, as above, W̃ (ti,∇ui) = 1
2Cε(ui + uD(ti)):ε(ui + uD(ti)) for i = 1, 2.

We observe that (cf. notation (2.30))

I1 ≤ Cf ′(z1, z2)‖z1 − z2‖L1(Ω),

I2 ≤ C‖z1 − z2‖L2(Ω)‖ε(u1 + uD(t1))‖L3(Ω)‖ε(u1 + uD(t1))‖L6(Ω)

≤ C ′P (z1, 0)2‖z1 − z2‖L2(Ω),

I3 ≤ C‖ε(u1 + uD(t1)) + ε(u2 + uD(t2))‖L2(Ω)‖ε(u1 + uD(t1))− ε(u2 + uD(t2))‖L2(Ω)

≤ CP (z1, z2)P (z1, z2)2(|t1 − t2|+ ‖z1 − z2‖L3(Ω)),

I4 ≤ C|t1 − t2|‖u1‖H1(Ω) ≤ C ′|t1 − t2|,

I5 ≤ C‖u1 − u2‖H1(Ω) ≤ CP (z1, z2)2(|t1 − t2|+ ‖z1 − z2‖L3(Ω)) ,

where, in the estimate for I2 we have exploited (2.15), while in the estimates for I3 and I5 we have also resorted

to (2.16) with p = 2. All in all, we conclude (2.31). The estimate for I4 follows from (2.14).

As for (2.32), we have that

‖Dz Ĩ(t1, z1)−Dz Ĩ(t2, z2)‖L2(Ω) ≤ ‖f ′(z1)− f ′(z2)‖L2(Ω) + ‖(g′(z1)−g′(z2))W̃ (t1,∇u1)‖L2(Ω)

+ ‖g′(z2)(W̃ (t1,∇u1)−W̃ (t2,∇u2))‖L2(Ω)
.
= I6 + I7 + I8 .

We observe that I6 ≤ Cf ′(z1, z2)‖z1 − z2‖L2(Ω), while

I7 ≤ C‖z1 − z2‖L3(Ω)‖ε(u1 + uD(t1))‖L6(Ω) ≤ C ′‖z1 − z2‖L3(Ω)P (z1, 0),

I8 ≤ C‖ε(u1 + uD(t1)) + ε(u2 + uD(t2))‖L6(Ω)‖ε(u1 + uD(t1))− ε(u2 + uD(t2))‖L3(Ω)

≤ C ′P (z1, z2)3(|t1 − t2|+ ‖z1 − z2‖L6(Ω)) .

thanks to estimates (2.15) and (2.17) and the fact that g′, g′′ ∈ L∞(R). The proof of (2.33) follows the very

same lines: we estimate ‖f ′(z1) − f ′(z2)‖L4/3(Ω) by means of Cf ′(z1, z2)‖z1 − z2‖L4/3(Ω), while we have with
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Hölder’s inequality

‖(g′(z1)−g′(z2))W̃ (t1,∇u1)‖L4/3(Ω) ≤ C‖z1 − z2‖L4(Ω)‖ε(u1 + uD(t1))‖2L4(Ω) ≤ C
′‖z1 − z2‖L4(Ω),

where the last estimate follows from (2.10) with p = 4. Finally,

‖g′(z2)(W̃ (t1,∇u1)−W̃ (t2,∇u2))‖L4/3(Ω)

≤ C‖ε(u1 + uD(t1)) + ε(u2 + uD(t2))‖L4(Ω)‖ε(u1 + uD(t1))− ε(u2 + uD(t2))‖L2(Ω)

≤ C ′P (z1, z2)3(|t1 − t2|+ ‖z1 − z2‖L3(Ω)).

This concludes the proof. �

From all of the above results, and in particular from Lemma 2.12, we now draw a series of consequences on

which our subsequent analysis will rely. First of all, we observe the Fréchet differentiability of the functional

z ∈ Z 7→ I(t, z). This is due to the continuity of the mapping z ∈ Z 7→ DzI(t, z) ∈ Z∗, in turn due to the

continuity of z 7→ Aqz and of z 7→ Dz Ĩ(t, z). If restricted to bounded sets in Z, the latter mapping is even

continuous with values in L2(Ω) w.r.t. to L6(Ω)-convergence for z, cf. (2.32) (and the restriction of the power

functional ∂tI is continuous w.r.t. L2(Ω)-convergence for z). Taking into account that Z b L6(Ω), we may then

claim the continuity of Dz Ĩ and ∂tI w.r.t. weak convergence in Z.

Corollary 2.13 (Fréchet differentiability of I). Under Assumptions 2.1, 2.2, and 2.8, the functional I is

Fréchet differentiable on [0, T ]× Z and

tn → t and zn → z strongly in Z implies DzI(tn, zn)→ DzI(t, z) strongly in Z∗. (2.35)

Furthermore,
tn → t and zn ⇀ z in Z implies

lim inf
n→∞

I(tn, zn) ≥ I(t, z), Ĩ(tn, zn)→ Ĩ(t, z), ∂tI(tn, zn)→ ∂tI(t, z),

Dz Ĩ(tn, zn)→ Dz Ĩ(t, z) strongly in L2(Ω).

(2.36)

We now observe a sort of (generalized) λ-convexity property for I(t, ·), (2.38) below, involving the H1(Ω)

and the L1(Ω)-norm, valid on bounded sets in Z (indeed, note that the constant modulating the L1(Ω)-norm

in (2.38) depends on the radius of a Z-ball).

Corollary 2.14 (λ-convexity of I). Under Assumptions 2.1, 2.2, and 2.8, there exists a constant α > 0 and

for every M > 0 there exists ΛM > 0 such that for every t ∈ [0, T ], z1, z2 ∈ Z with ‖z1‖Z + ‖z2‖Z ≤ M and

for every θ ∈ [0, 1] the functional L with

L(t, z) := I(t, z) +
1

2
‖z‖2L2(Ω) (2.37)

complies with
L(t, (1−θ)z1 + θz2) ≤(1−θ)L(t, z1) + θL(t, z2)

− θ(1−θ)(α‖z1−z2‖2H1(Ω) − ΛM‖z1−z2‖2L1(Ω)).
(2.38)

Proof. From (2.3) it follows that the mapping A ∈ R3 7→ Gq(A) − cq
2 |A|

2 is convex, which entails that A 7→
Gq(A) is cq-convex, i.e. there holds Gq((1−θ)A1 + θA2) ≤ (1−θ)Gq(A1) + θGq(A2) − cq

2 θ(1−θ)|A1−A2|2 for

every A1, A2 ∈ R3 and θ ∈ [0, 1]. As a consequence, we have that

Iq((1−θ)z1 + θz2) ≤ (1−θ)Iq(z1) + θIq(z2)− cq
2
θ(1−θ)

∫
Ω

|∇(z1−z2)|2 dx . (2.39)

As for Ĩ, with trivial calculations we have that

Ĩ(t, (1−θ)z1 + θz2)− (1−θ)Ĩ(t, z1)− θĨ(t, z2)

= (1−θ)
(
Ĩ(t, (1−θ)z1 + θz2)− Ĩ(t, z1)

)
+ θ

(
Ĩ(t, (1−θ)z1 + θz2)− Ĩ(t, z2)

)
.
= I1 + I2.
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There holds

I1 = (1−θ)
∫ 1

0

∫
Ω

Dz Ĩ(t, (1−s)z1 + s((1−θ)z1 + θz2))θ(z2−z1) dxds

= (1− θ)θ
∫ 1

0

∫
Ω

(
Dz Ĩ(t, (1−s)z1 + s((1−θ)z1 + θz2))−Dz Ĩ(t, z1)

)
(z2−z1) dxds

− (1− θ)θ
∫

Ω

Dz Ĩ(t, z1)(z1−z2) dx
.
= I1,1 + I1,2 .

We now estimate I1,1 by using Hölder’s inequality and inequality (2.33), taking into account that (1−s)z1 +

s((1−θ)z1 + θz2)− z1 = sθ(z2−z1). Therefore,

|I1,1| ≤ c8θ(1−θ)
∫ 1

0

(1 + Cf ′(z1, ζ1,2) + P (z1, ζ1,2)3)‖sθ(z2−z1)‖L4(Ω)‖z2−z1‖L4(Ω) ds

≤ C̃1(M)(1− θ)θ‖z2−z1‖2L4(Ω),

where we have used the place-holder ζ1,2 := (1−s)z1 + s((1−θ)z1 + θz2), and where C̃1(M) > 0 depends on the

constant M that bounds ‖z1‖Z and ‖z1‖Z. With analogous calculations one has that

I2 ≤ C̃1(M)(1− θ)θ‖z2−z1‖2L4(Ω) + (1− θ)θ
∫

Ω

Dz Ĩ(t, z2)(z1−z2) dx︸ ︷︷ ︸
I2,2

.

Therefore, estimating I1,2 +I2,2 ≤ C̃2(M)(1−θ)θ‖z2−z1‖2L4(Ω) with the same arguments as above, we conclude

that

Ĩ(t, (1−θ)z1 + θz2) ≤ (1−θ)Ĩ(t, z1) + θĨ(t, z2) +
C̃(M)

2
(1− θ)θ‖z2−z1‖2L4(Ω) (2.40)

for some C̃(M) > 0. We now combine (2.39) with (2.40). Adding to this the trivial identity

1

2
‖(1−θ)z1 + θz2‖2L2(Ω) =

(1−θ)
2
‖z1‖2L2(Ω) +

θ

2
‖z2‖2L2(Ω) −

(1−θ)θ
2
‖z1−z2‖2L2(Ω),

and using Ehrling’s Lemma, cf. e.g. [RR04, Thm. 7.30], to estimate ‖η‖2L4(Ω) ≤ δ‖η‖2H1(Ω) + C(δ)‖η‖2L1(Ω) for

arbitrary δ > 0, finally results in (2.38). �

A slight generalization of property (2.38) was proposed in [MRS16, Sec. 3.4, (3.63)] as a sufficient condition

for a sort of “uniform differentiability” condition for I(t, ·), cf. (2.41) ahead, which was in turn introduced in

[MRS16, Sec. 2.1, (E.3)]. As we will see, (2.41) is at the core of key chain rule properties for viscous solutions

to (1.2) and for Balanced Viscosity solutions to (1.1), cf. Lemma 2.16 and Theorem 5.8 ahead. As a trivial

consequence of (2.41), we have a monotonicity property for the Fréchet subdifferential DzI, which will allow

us to prove the (crucial, for our analysis) uniqueness of solutions for the time-incremental problems giving rise

to discrete solutions.

Corollary 2.15. Under Assumptions 2.1, 2.2, and 2.8, for every M > 0 there exist constants c9, c10(M) > 0

such that for all t ∈ [0, T ], zi ∈ Z, i = 1, 2, with ‖z1‖Z + ‖z2‖Z ≤M , we have

L(t, z2)− L(t, z1) ≥ 〈DzL(t, z1), z2−z1〉Z +α‖z1 − z2‖2H1(Ω) − ΛM‖z1 − z2‖2L1(Ω) . (2.41)

As a consequence, there holds

‖z1−z2‖2L2(Ω) + 〈DzI(t, z1)−DzI(t, z2), z1−z2〉Z ≥ c9‖z1−z2‖2H1(Ω) − c10(M)‖z1−z2‖2L2(Ω) . (2.42)

Note that, in accordance with (2.38) and (2.41), only the constant c10 depends on M .

Proof. Estimate (2.41) can be deduced from (2.38) by the very same calculations as in the proof of [MRS16,

Lemma 3.26], while (2.42) can be obtained by adding (2.41) with the estimate obtained exchanging z1 with z2,

and observing that −‖z1 − z2‖2L1(Ω) ≥ −C‖z1 − z2‖2L2(Ω). �
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A key ingredient for the proof of energy identities in the context of solutions to the viscous damage system

(1.2) (cf. Section 4), and of BV solutions to the rate-independent (1.1) (cf. Section 5), is the validity of the

chain rule identity (but, indeed, a chain rule inequality would suffice)

d

dt
I(t, z(t))− ∂tI(t, z(t)) = 〈DzI(t, z(t)), z

′(t)〉L2(Ω) for a.a. t ∈ (0, T ), (2.43)

along solution curves z : [0, T ] → Z with DzI(t, z(t)) ∈ L2(Ω). Since I ∈ C1([0, T ] × Z), the validity of (2.43)

with the duality pairing 〈·, ·〉Z is guaranteed along any curve z ∈ AC([0, T ];Z). The following result extends

(2.43) to curves z with weaker regularity and summability properties.

Lemma 2.16 (Chain rule for I in L2(Ω)). Under Assumptions 2.1, 2.2, and 2.8, for every curve

z ∈ L∞(0, T ;Z) ∩H1(0, T ;L2(Ω)), with Aqz ∈ L2(0, T ;L2(Ω)), (2.44)

the map t 7→ I(t, z(t)) is absolutely continuous on [0, T ], and (2.43) holds.

Remark 2.17. Due to estimate (2.34) for Dz Ĩ, it follows from (2.44) that the function t 7→ DzI(t, z(t)) belongs

to L2(0, T ;L2(Ω)). Therefore, DzI(t, z(t)) = Aq(z(t)) + Dz Ĩ(t, z(t)) belongs to L2(0, T ;L2(Ω)) as well and the

integral on the r.h.s. of (2.43) is well defined for almost all t ∈ (0, T ).

In fact, for later use in Sec. 5, let us point out that, in alternative to (2.44), in Lemma 2.16 we might as

well suppose

z ∈ L∞(0, T ;Z) ∩W 1,1(0, T ;L2(Ω)), with Aqz ∈ L∞(0, T ;L2(Ω)). (2.45)

Proof. First of all, we show the absolute continuity of t 7→ I(t, z(t)). We will in fact show that t 7→ L(t, z(t))

is absolutely continuous, with L from (2.37). With this aim, for every 0 ≤ s ≤ t ≤ T we estimate

L(t, z(t))− L(s, z(s)) = L(t, z(t))− L(s, z(t)) + L(s, z(t))− L(s, z(s))
.
= I1 + I2 .

Since ∂tL = ∂tI, we have

|I1| ≤
∫ t

s

∂tI(r, z(t)) dr
(1)

≤ C(t− s) (2.46)

with (1) due to (2.23). As for I2, from the uniform differentiability property (2.41) we deduce that

I2 ≥
∫

Ω

DzL(t, z(s))(z(t)−z(s)) dx+ α‖z(t)− z(s)‖2H1(Ω) − ΛM‖z(t)− z(s)‖2L1(Ω) (2.47)

(cf. notation (2.29)), where we have used that, by (2.44) and estimate (2.34) for Dz Ĩ that the function s 7→
DzI(s, z(s)) belongs to L2(0, T ;L2(Ω)), and so does s 7→ DzL(t, z(s)), with t ∈ [0, T ] fixed, due to (2.32). All

in all we arrive at

|L(s, z(s))− L(t, z(t))| ≤ 2ΛM‖z(t)− z(s)‖2L1(Ω) + 2c|t− s|

+
(
‖DzL(t, z(t))‖L2(Ω) + ‖DzL(s, z(s))‖L2(Ω)

)
‖z(t)− z(s)‖L2(Ω).

(2.48)

Up to a suitable reparameterization, cf. [AGS08, Lemma 1.1.4], we can suppose that z ∈ W 1,∞(0, T̃ ;L2(Ω))

with Lipschitz constant 1. With [AGS08, Lemma 1.2.6] we finally conclude from (2.48) the absolute continuity

of t 7→ L(t, z(t)), which gives the same property for t 7→ I(t, z(t)). For the proof of identity (2.43), we refer to

[MRS13, Prop. 2.4]. �

3. A priori estimates for the time-discrete solutions

We construct time-discrete solutions to the Cauchy problem for the viscous damage system (1.2) by solving

the following time incremental minimization problems: for fixed ε > 0, we consider a uniform partition {0 =

tτ0 < . . . < tτN = T} of the time interval [0, T ] with fineness τ = tτk+1− tτk = T/N . The elements (zτk )0≤k≤N are

determined through zτ0 := z0 ∈ Z and

zτk+1 ∈ Argmin
{
I(tτk+1, z) + τRε

(
z − zτk
τ

)
: z ∈ Z

}
, k ∈ {0, . . . , N − 1}. (3.1)
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Our first result, Prop. 3.1 below, states the existence of minimizers for problem (3.1), which is an immediate

outcome of classical variational arguments, as well as the uniqueness of solutions to the associated Euler-

Lagrange equation (3.2) below. This will be a key ingredient in the proof of the main result of this section,

Proposition 3.2 ahead. Indeed, in order to obtain some of the a priori estimates stated therein, we shall have

to perform calculations on an approximate version of (3.2). Then, the above mentioned uniqueness property

will ensure that those a priori estimates also hold for the solutions to (3.2), i.e. for the minimizers from (3.1).

Proposition 3.1. Under Assumptions 2.1, 2.2, and 2.8, for every ε, τ > 0 and for every k ∈ {1, . . . , N − 1}
the minimum problem (3.1) admits a solution zτk+1 satisfying the Euler-Lagrange equation

ω + ε
z − zτk
τ

+ DzI(t
τ
k+1, z) = 0 in Z∗, with ω ∈ ∂Z,Z∗R1

(
z − zτk
τ

)
, (3.2)

where ∂Z,Z∗R1 : Z ⇒ Z∗ is the convex analysis subdifferential of R1. Moreover, for every ε > 0 and for every

M > 0, there exists τ(ε,M) > 0 such that for all 0 < τ ≤ τ(ε,M) the Euler-Lagrange equation (3.2) admits at

most one solution in the closed ball BM (0) of Z.

Suppose in addition that f and g comply with the following condition

f(0) ≤ f(z), g(0) ≤ g(z) for all z ≤ 0, (3.3)

and that the initial datum z0 fulfills z0(x) ∈ [0, 1] for all x ∈ Ω. Then, the minimizer zτk+1 from (3.1) also

fulfills zτk+1(x) ∈ [0, 1] for all x ∈ Ω and all k ∈ {0, . . . , N − 1}.

Proof. The existence of minimizers can be checked via the direct method in the calculus of variations. Observe

that every minimizer fulfills (3.2), where we have used that the convex analysis subdifferential ∂Z,Z∗Rε : Z⇒ Z∗

is given by ∂Z,Z∗Rε(η) = ∂Z,Z∗R1(η) + εη for every η ∈ Z (here and in what follows, for notational simplicity

we write η in place of J(η), with J : Z→ Z∗ the Riesz isomorphism).

In order to check that the Euler-Lagrange equation (3.2) has a unique solution, let M > 0 and z1, z2 ∈ Z be

solutions to (3.2) such that ‖z1‖Z + ‖z2‖Z ≤M . Subtracting the equation for z2 from that for z1 and testing

the obtained relation by z1 − z2, we obtain

0 = 〈ω1 − ω2, z1 − z2〉Z +
ε

τ
‖z1−z2‖2L2(Ω) + 〈DzI(t

τ
k+1, z1)−DzI(t

τ
k+1, z2), z1−z2〉Z

≥
( ε
τ
− c10(M)− 1

)
‖z1−z2‖2L2(Ω) + c9‖z1−z2‖2H1(Ω)

where ωi ∈ ∂R1

(
zi−zτk
τ

)
for i = 1, 2, and the second inequality follows from the monotonicity estimate (2.42).

Hence, for τ ≤ τ(ε,M) := ε
(c10(M)+1) , we conclude that ‖z1−z2‖2L2(Ω) ≤ 0, whence z1 = z2.

For the proof of the property zτk ∈ [0, 1] in Ω under (3.3), we refer to [KRZ13, Prop. 4.5]. �

The following piecewise constant and piecewise linear interpolation functions will be used:

zτ (t) = zτk+1 for t ∈ (tτk, t
τ
k+1], zτ (t) = zτk for t ∈ [tτk, t

τ
k+1), ẑτ (t) = zτk +

t− tτk
τ

(zτk+1 − zτk ) for t ∈ [tτk, t
τ
k+1].

Furthermore, we shall use the notation

τ(r) = τ for r ∈ (tτk, t
τ
k+1),

tτ (r) = tτk+1 for r ∈ (tτk, t
τ
k+1],

tτ (r) = tτk for r ∈ [tτk, t
τ
k+1),

uτ (r) = umin(tτ (r), zτ (r)) for r ∈ (tτk, t
τ
k+1],

uτ (r) = umin(tτ (r), zτ (r)) for r ∈ [tτk, t
τ
k+1),

ûτ (r) = uτ (r) +
r−tτ (r)

τ (uτ (r)− uτ (r)) for r ∈ [tτk, t
τ
k+1].

Clearly,

tτ (t), tτ (t)→ t as τ → 0 for all t ∈ (0, T ), and tτ (0) = 0, tτ (T ) = T. (3.4)
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We will also denote by `τ and uD,τ the (left-continuous) piecewise constant interpolants of the values (`τk :=

`(tτk))Nk=0, (uτD,k := uD(tτk))Nk=0 and, for a given N -uple {vkτ }Nk=0, use the short-hand notation

4τk(v) := vτk+1 − vτk .

In view of (3.2) and of formula (2.28) for DzI, the above interpolants fulfill for almost all t ∈ (0, T )

ωτ (t) + εẑ′τ (t) +Aqzτ (t) + Dz Ĩ(tτ (t), zτ (t)) = 0 in Z∗, with ωτ (t) ∈ ∂Z,Z∗R1 (ẑ′τ (t)) . (3.5)

The following result collects all the a priori estimates on the functions (zτ , ẑτ , uτ , ûτ )τ , uniform w.r.t. the

parameters ε, τ > 0, that are at the core of the existence of solutions of the viscous system, cf. Theorem 4.1

ahead, and of its vanishing-viscosity analysis developed in Section 5. In fact, let us mention that the estimates

for (uτ , ûτ )τ have to be understood as side results, while the really relevant bounds for the limit passage are

those for (zτ , ẑτ ). We also prove that the Euler-Lagrange equation (3.5) holds in L2(Ω), with ∂Z,Z∗R1 replaced

by the subdifferential operator ∂L2(Ω)R1 : L2(Ω) ⇒ L2(Ω). From now on, we will denote the latter operator

by ∂R1.

Proposition 3.2. Under Assumptions 2.1, 2.2, and 2.8, suppose that the initial datum z0 ∈ Z fulfills in

addition

Aqz0 ∈ L2(Ω). (3.6)

Then, for every ε > 0 there exists τ̄ε > 0, only depending on ε and on the problem data (cf. (3.14) ahead), such

that for every τ ∈ (0, τ̄ε) there holds

Aqzτ ∈ L∞(0, T ;L2(Ω)) and ωτ ∈ L∞(0, T ;L2(Ω)), (3.7)

with ωτ a selection in ∂Z,Z∗R1(ẑ′τ ) which fulfills (3.5). Therefore, the functions (tτ , zτ , ẑτ ) satisfy

∂R1(ẑ′τ (t)) + εẑ′τ (t) + DzI(tτ (t), zτ (t)) 3 0 in L2(Ω) for a.a. t ∈ (0, T ). (3.8)

Furthermore, there exist constants C, C(ε), C(σ) > 0, with C(ε) ↑ +∞ as ε ↓ 0, such that for all ε > 0 and

τ ∈ (0, τ̄ε) the following estimates hold:

sup
t∈[0,T ]

∣∣I(tτ (t), zτ (t))
∣∣ ≤ C, (3.9a)

‖zτ‖L∞(0,T ;W 1,q(Ω)) + ‖ẑτ‖L∞(0,T ;W 1,q(Ω)) ≤ C, (3.9b)

‖zτ‖L∞(0,T ;W 1+σ,q(Ω)) ≤ C(σ) for all 0 < σ < 1
q , (3.9c)

‖ẑ′τ‖L2(0,T ;H1(Ω)) + ‖ẑ′τ‖L∞(0,T ;L2(Ω)) ≤ C(ε), (3.9d)

‖ẑτ‖W 1,1(0,T ;H1(Ω)) ≤ C, (3.9e)

‖Aq(zτ )‖L∞(0,T ;L2(Ω)) ≤ C, (3.9f)

‖ωτ‖L∞(0,T ;L2(Ω)) ≤ C(ε), (3.9g)

‖uτ‖L∞(0,T ;H2(Ω)) ≤ C, (3.9h)

‖û′τ‖L2(0,T ;W 1,3(Ω)) ≤ C(ε), (3.9i)

‖ûτ‖W 1,1(0,T ;W 1,3(Ω)) ≤ C. (3.9j)

Therefore,

‖DzI(tτ , zτ )‖L∞(0,T ;L2(Ω)) ≤ C. (3.9k)

Based on Proposition 3.2 we derive a discrete energy inequality, cf. (3.11) below, involving the Fenchel-

Moreau conjugate of the functional Rε w.r.t. the scalar product in L2(Ω), namely the functional

R∗ε : L2(Ω)→ [0,+∞) defined by R∗ε (ξ) :=
1

2ε
min

η∈∂R1(0)
‖ξ − η‖2L2(Ω) . (3.10)

Observe that we are in a position to work with this Legendre transform of Rε, and not with the one w.r.t. the

(Z,Z∗)-duality, relying on the fact that DzI(tτ (t), zτ (t)) ∈ L2(Ω) for almost all t ∈ (0, T ), thanks to (3.7).
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Let us mention in advance that (3.11) will be the starting point of the vanishing-viscosity analysis developed

in Sec. 6. We postpone the proof of Corollary 3.3 to the end of this section.

Corollary 3.3. Under Assumptions 2.1, 2.2, and 2.8, suppose that the initial datum z0 fulfills (3.6).

Then, there exists C > 0 such that for every ε > 0 and τ ∈ (0, τ̄ε) the functions zτ , ẑτ comply with the

discrete energy-dissipation inequality for every 0 ≤ s ≤ t ≤ T∫ tτ (t)

tτ (s)

(
Rε(ẑ

′
τ (r)) + R∗ε (−DzI(tτ (r), zτ (r)))

)
dr + I(t, ẑτ (t))

≤ I(s, ẑτ (s)) +

∫ tτ (t)

tτ (s)

∂tI(r, ẑτ (r)) dr

+ C sup
t∈[0,T ]

‖zτ (t)− ẑτ (t)‖L2(Ω)

∫ tτ (t)

tτ (s)

(|tτ (r)− r|+ ‖zτ (r)− ẑτ (r)‖L6(Ω)) dr.

(3.11)

Therefore, there exists a constant C > 0 such that for every ε > 0 and τ ∈ (0, τ̄ε)

sup
t∈[0,T ]

|I(t, ẑτ (t))| ≤ C, (3.12a)∫ T

0

(
Rε(ẑ

′
τ (r)) + R∗ε (−DzI(tτ (r), zτ (r)))

)
dr ≤ C . (3.12b)

Let us now comment on the proof of Prop. 3.2: Estimates (3.9) (and the related enhanced spatial regularity

(3.7), which leads to (3.8) as a subdifferential inclusion in L2(Ω)) will be proved by performing on equation

(3.5) the following a priori estimates:

Energy estimate: based on the energy-dissipation inequality

I(tτ (t), zτ (t)) +

∫ tτ (t)

0

Rε(ẑ
′
τ (s)) ds ≤ I(0, z0) +

∫ tτ (t)

0

∂tI(s, zτ (s)) ds (3.13)

for every t ∈ [0, T ], it leads to the uniform bounds (3.9a)–(3.9b). Observe that the proof of (3.13)

works for every τ > 0.

We then choose

τ̄ε := τ(ε,M) according to Proposition 3.1, with M ≥ sup
τ>0
‖zτ‖L∞(0,T ;W 1,q(Ω)) . (3.14)

First regularity estimate: In view of estimate (2.15), from the estimate for zτ in L∞(0, T ;W 1,q(Ω))

we deduce (3.9h).

Enhanced energy estimate: it consists in (formally) differentiating (3.5) w.r.t. time, and testing it by

ẑ′τ . In view of the coercivity property (2.1) of the elliptic operator Aq, this gives estimates (3.9d) &

(3.9e) for ẑ′τ .

Second regularity estimate: Estimates (3.9i) & (3.9j) for û′τ derive from (3.9d) & (3.9e), respectively,

via the continuous dependence estimate (2.17).

Third regularity estimate: it consists in testing (3.5) by (the formally written term) ∂tAqzτ . This

gives rise to estimate (3.9f), which induces the spatial regularity (3.9c) by applying Proposition 2.7,

and it induces (3.9g) by a comparison argument in (3.5).

The energy & the enhanced energy estimates can be rendered rigorously on the discrete equation (3.5), cf.

Lemma 3.4 below. In its proof, we shall revisit the calculations developed in [KRZ15, Sec. 5], relying on

the novel estimates provided by Lemmas 2.10 and 2.12. Instead, the third regularity estimate obtained in

Lemma 3.5 ahead cannot be performed directly on (3.5). In fact, it would involve testing the subdifferential

inclusion (3.5), set in Z∗, by the difference 1
τ (Aqzτ (t)−Aqzτ (t)) which then should belong to Z. This cannot

be rigorous, since Aqzτ (t) is in principle an element of Z∗, only. Therefore, in the proof of Lemma 3.5 we
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shall perform all the calculations on an approximate version of (3.5), featuring a regularized version of the

dissipation potential R1.

Lemma 3.4. Under Assumptions 2.1, 2.2, and 2.8, and the condition that the initial datum z0 ∈ Z fulfills

(3.6), estimates (3.9a)–(3.9b), (3.9d)–(3.9e), and (3.9h)–(3.9j) hold true for every τ > 0.

Proof. The discrete energy-dissipation inequality (3.13) can be derived by choosing the competitor z = zτk in

the minimum problem (3.1), which leads to

I(tτk+1, z
τ
k+1) + τkRε

(
zτk+1 − zτk

τk

)
≤ I(tτk+1, z

τ
k ) = I(tτk, z

τ
k ) +

∫ tτk+1

tτk

∂tI(s, z
τ
k ) ds.

Then, (3.13) follows upon summing over the index k. In view of estimate (2.23) on the power functional ∂tI,

and Assumption 2.8, the right-hand side of (3.13) is uniformly bounded. Since the second term on its l.h.s.

is non-negative, we immediately conclude estimate (3.9a). Then, the coercivity property (2.18), combined

with Poincaré’s inequality, gives (3.9b) for zτ . The bound for ẑτ then trivially follows. From the bound for∫ T
0
Rε(ẑ

′
τ (t)) dt we also infer that ε1/2‖ẑ′τ‖L2(0,T ;L2(Ω)) ≤ C.

Thanks to (2.15), we have that

‖uτ‖L∞(0,T ;H2(Ω)) ≤ c1 sup
t∈(0,T )

P (0, zτ (t))
(
‖`τ‖L∞(0,T ;L2(Ω)) + ‖uD,τ‖L∞(0,T ;H2(Ω))

)
≤ C ′,

where we have used estimate (3.9b), as well as Assumption 2.8. Then, (3.9h) follows.

In order to derive estimates (3.9d) and (3.9e), we follow the proof of [KRZ15, Lemma 5.3] and observe that,

by the 1-homogeneity of R1, (3.5) rewrites as{
〈hτ (ρ), ẑ′τ (ρ)〉Z = R1(ẑ′τ (ρ)) for all ρ ∈ (tτk, t

τ
k+1)

〈hτ (r), ẑ′τ (ρ)〉Z ≤ R1(ẑ′τ (ρ)) for all r ∈ [0, T ] \ {tτ0 , . . . , tτN},

where we have used the place-holder hτ (ρ) := −(εẑ′τ (ρ) +Aqzτ (ρ) + Dz Ĩ(tτ (ρ), zτ (ρ))). Subtracting the second

relation from the first one gives τ−1 〈hτ (ρ)− hτ (r), ẑ′τ (ρ)〉Z ≥ 0 for ρ ∈ (tτk, t
τ
k+1) and r ∈ (tτk−1, t

τ
k). Hence,

we get

ετ−1

∫
Ω

(ẑ′τ (ρ)−ẑ′τ (r))ẑ′τ (ρ) dx︸ ︷︷ ︸
= I1

+ τ−1 〈Aqzτ (ρ)−Aqzτ (r), ẑ′τ (ρ)〉
Z︸ ︷︷ ︸

= I2

≤ −τ−1

∫
Ω

(Dz Ĩ(tτ (ρ), zτ (ρ))−Dz Ĩ(tτ (r), zτ (r)))ẑ′τ (ρ) dx︸ ︷︷ ︸
= I3

. (3.15)

Observe that I1 ≥ 1
2

∫
Ω

(|ẑ′τ (ρ)|2−|ẑ′τ (r)|2) dx, whereas it follows from estimate (2.1) that

I2 ≥ cq
∫

Ω

(
1+|∇zτ (ρ)|2+|∇zτ (r)|2

)(q−2)/2 |∇ẑ′τ (ρ)|2 dx ≥ Cq
∫

Ω

(
1+|∇ẑτ (ρ)|2

)(q−2)/2 |∇ẑ′τ (ρ)|2 dx (3.16)

for some positive constant Cq, where we have used that |∇ẑτ (ρ)|2 ≤ 2(|∇zτ (ρ)|2+|∇zτ (r)|2). As for I3, by the

Hölder inequality

|I3| ≤ Cτ−1‖Dz Ĩ(tτ (ρ), zτ (ρ))−Dz Ĩ(tτ (r), zτ (r))‖L2(Ω)‖ẑ′τ (ρ)‖L2(Ω) .

Relying on (2.32), we then find

|I3| ≤ C(1 + ‖ẑ′τ (ρ)‖L6(Ω))‖ẑ′τ (ρ)‖L2(Ω) , (3.17)



18 DOROTHEE KNEES, RICCARDA ROSSI, AND CHIARA ZANINI

where we have also used that supt∈[0,T ] Cf ′′(zτ (ρ), zτ (r)) + P (zτ (ρ), zτ (r))) ≤ C thanks to the previously

proved estimate (3.9b). Hence, multiplying (3.15) by τ , we infer

ε

2
‖ẑ′τ (ρ)‖2L2(Ω) + Cqτ

∫
Ω

(
1+|∇ẑτ (ρ)|2

)(q−2)/2 |∇ẑ′τ (ρ)|2 dx

≤ ε

2
‖ẑ′τ (r)‖2L2(Ω) + τC(1 + ‖ẑ′τ (ρ)‖L6(Ω))‖ẑ′τ (ρ)‖L2(Ω) ,

(3.18)

which leads, upon summation, to the following estimate on the time interval (t0, t), with t0 ∈ (0, tτ1) and

t ∈ (tτk, t
τ
k+1):

ε

2
‖ẑ′τ (t)‖2L2(Ω) + Cq

∫ tτ (t)

tτ1

∫
Ω

(
1 + |∇ẑτ (ρ)|2

)(q−2)/2|∇ẑ′τ (ρ)|2 dx dρ

≤ ε

2
‖ẑ′τ (t0)‖2L2(Ω) +

Cq
4

∫ tτ (t)

tτ1

(1 + ‖ẑ′τ (ρ)‖2H1(Ω)) dρ+ C

∫ tτ (t)

tτ1

‖ẑ′τ (ρ)‖2L2(Ω) dρ,

(3.19)

where we have used Young’s inequality, and the continuous embedding H1(Ω) ⊂ L6(Ω), to handle the last

term on the r.h.s. of (3.18). For the first time step with t0 ∈ (0, tτ1), following the very same calculations as in

the proof of [KRZ15, Lemma 5.3], we obtain

ε‖ẑ′τ (t0)‖2L2(Ω) + Cqτ

∫
Ω

(1 + |∇ẑτ (t0)|2)(q−2)/2|∇ẑ′τ (t0)|2 dx

≤ ε

2
‖ẑ′τ (t0)‖2L2(Ω) + ε−1‖DzI(0, z0)‖2L2(Ω) +

Cqτ

4
(1 + ‖ẑ′τ (t0)‖2H1(Ω)) + Cτ‖ẑ′τ (t0)‖2L2(Ω) .

(3.20)

Summing (3.19) with (3.20), and adding the term
Cqτ

2

∫ tτ (t)

0
‖ẑ′τ (ρ)‖2L2(Ω) dρ to both sides, we thus end up

with the following estimate

ε

2
‖ẑ′τ (t)‖2L2(Ω) + Cq

∫ tτ (t)

0

‖ẑ′τ (ρ)‖2H1(Ω) dρ

≤ C + ε−1‖DzI(0, z0)‖2L2(Ω) +
Cq
4

∫ tτ (t)

0

‖ẑ′τ (ρ)‖2H1(Ω) dρ+ C

∫ tτ (t)

0

‖ẑ′τ (ρ)‖2L2(Ω) dρ . (3.21)

Applying the discrete Gronwall Lemma we get estimate (3.9d).

In order to prove (3.9e), which is uniform w.r.t. ε, we follow the proof of [KRZ15, Lemma 5.5]. Since ẑ′τ is not

defined in the points tτk, we write (3.15) for ρ = mk and σ = mk−1, with mk := 1
2 (tτk−1 + tτk), k ∈ {2, . . . , N},

and set ẑ′τ (m0) := 0. For all k ∈ {1, . . . , N} we have (cf. [KRZ15, Formula (5.26)])

ε

τ

∫
Ω

(ẑ′τ (mk)−ẑ′τ (mk−1)) ẑ′τ (mk) dx+ τ−1〈Aqzτ (mk)−Aqzτ (mk), ẑ′τ (mk)〉Z + ‖ẑ′τ (mk)‖2L2(Ω)

≤ −1

τ

∫
Ω

(
Dz Ĩ(t

τ
k, zτ (mk))−Dz Ĩ(t

τ
k−1, zτ (mk))

)
ẑ′τ (mk) dx+ ‖ẑ′τ (mk)‖2L2(Ω)

+
δ1,k
τ

∣∣∣∣∫
Ω

DzI(0, z0)ẑ′τ (m1) dx

∣∣∣∣ , (3.22)

with the Kronecker symbol δi,j . Arguing as in the proof of [KRZ15, Lemma 5.5], by estimate (2.1) and the fact

that |∇ẑτ (mk)|2 ≤ 2|∇zτ (mk)|2 + 2|∇zτ (mk−1)|2, it follows that the left-hand side of (3.22) can be bounded

from below by

L.H.S. ≥ ε

2τ
‖ẑ′τ (mk)‖L2(Ω)

(
‖ẑ′τ (mk)‖L2(Ω) − ‖ẑ′τ (mk−1)‖L2(Ω)

)
+ M2

k, (3.23)

with the abbreviation

M2
k := Cq

∫
Ω

(1 + |∇ẑτ (mk)|2)
q−2
2 |∇ẑ′τ (mk)|2 dx+ ‖ẑ′τ (mk)‖2L2(Ω)
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and Cq from (3.16). As for the first term of the right-hand side of (3.22), instead of (3.17) we shall use∣∣∣∣1τ
∫

Ω

(
Dz Ĩ(t

τ
k, zτ (mk))−Dz Ĩ(t

τ
k−1, zτ (mk−1))

)
ẑ′τ (mk) dx

∣∣∣∣ ≤ C(1 + ‖ẑ′τ (mk)‖L4(Ω))‖ẑ′τ (mk)‖L4(Ω), (3.24)

which derives from estimate (2.33) for ‖Dz Ĩ(t
τ
k, zτ (mk))−Dz Ĩ(t

τ
k−1, zτ (mk−1))‖L4/3(Ω). We then continue (3.24)

by using the trivial estimate C(1 + ‖ẑ′τ (mk)‖L4(Ω))‖ẑ′τ (mk)‖L4(Ω) ≤ C‖ẑ′τ (mk)‖2L4(Ω) + C, and then applying

the Gagliardo-Nirenberg estimate ‖ζ‖2L4(Ω) ≤ c‖ζ‖2(1−θ)
L1(Ω) ‖ζ‖

2θ
H1(Ω), with θ = 9/10, and Young’s inequality, so

that ∣∣∣∣1τ
∫

Ω

(
Dz Ĩ(t

τ
k, zτ (mk))−Dz Ĩ(t

τ
k−1, zτ (mk−1))

)
ẑ′τ (mk) dx

∣∣∣∣
≤ 1

2
min{Cq, 1}‖ẑ′τ (mk)‖2H1(Ω) + C‖ẑ′τ (mk)‖L1(Ω)R1(ẑ′τ (mk)) + C ,

where we have also used that ‖ẑ′τ (mk)‖2L1(Ω) ≤ ‖ẑ
′
τ (mk)‖L1(Ω)R1(ẑ′τ (mk)). Therefore, the right-hand side of

(3.22) can be bounded as follows

R.H.S. ≤ 1

2
M2
k + C

(
1 + ‖ẑ′τ (mk)‖L2(Ω)R1(ẑ′τ (mk)) + δ1,kτ

−1|〈DzI(0, z0), ẑ′τ (m1)〉Z|
)
. (3.25)

From (3.23) and (3.25), after some algebra it results that (cf. [KRZ15, (5.28)])

2‖ẑ′τ (mk)‖L2(Ω)

(
‖ẑ′τ (mk)‖L2(Ω) − ‖ẑ′τ (mk−1)‖L2(Ω)

)
+
τ

ε
‖z′τ (mk)‖2L2(Ω) +

τ

ε
M2
k

≤ 4Cτ

ε
+

4Cτ

ε
‖ẑ′τ (mk)‖L1(Ω)R1(ẑ′τ (mk)) + 4C

δ1,k
ετ

∣∣∣∣∫
Ω

DzI(0, z0)ẑ′τ (m1) dx

∣∣∣∣ .
At this point, we apply a suitable discrete version of the Gronwall Lemma (cf. [KRZ15, Lemma B.1]), and

conclude following the very same lines of the proof of [KRZ15, Lemma 5.5]. Thus, we obtain (3.9e).

Finally, we use (2.17) and deduce that for almost all t ∈ (0, T ) there holds

‖û′τ (t)‖W 1,3(Ω) =
1

τ
‖uτk+1 − uτk‖W 1,3(Ω)

≤ c2
τ
P (zkτ , z

k+1
τ )2

(
τ + ‖zτk+1−zτk‖L6(Ω)

) (
‖`‖C1([0,T ];W−1,3(Ω)) + ‖uD(t)‖C1([0,T ];W 1,3(Ω))

)
≤ C(1 + ‖ẑ′τ (t)‖L6(Ω)),

where the second inequality follows from (3.9b) and Assumption 2.8. Hence, estimates (3.9d) & (3.9e) imply

(3.9i) & (3.9j), respectively. �

We postpone to Section 3.1 the proof of the forthcoming Lemma 3.5.

Lemma 3.5. Under Assumptions 2.1, 2.2, and 2.8, and, in addition, (3.6) on the initial datum z0, for every

τ ∈ (0, τ̄ε) the enhanced regularity (3.7) and estimates (3.9f)–(3.9g) hold true, whence (3.9k). Furthermore,

the subdifferential inclusion (3.8) is satisfied.

The proof of Proposition 3.2 now follows from combining Lemmas 3.4 & 3.5.

Let us finally give the proof of Corollary 3.3: the very same calculations as in the proof of [KRZ15,

Lemma 6.1] (cf. also the proof of Thm. 4.1 ahead), show that the interpolants zτ , ẑτ fulfill at every 0 ≤ s ≤ t ≤ T∫ tτ (t)

tτ (s)

(
Rε(ẑ

′
τ )(r) + R∗ε (−DzI(tτ (r), zτ (r)))

)
dr + I(t, ẑτ (t))

= I(s, ẑτ (s)) +

∫ tτ (t)

tτ (s)

∂tI(r, ẑτ (r)) dr

−
∫ tτ (t)

tτ (s)

∫
Ω

(Aqzτ (r)−Aq ẑτ (r)) ẑ′τ (r) dr︸ ︷︷ ︸
F1

−
∫ tτ (t)

tτ (s)

∫
Ω

(
Dz Ĩ(tτ (r), zτ (r))−Dz Ĩ(r, ẑτ (r))

)
ẑ′τ (r) dr︸ ︷︷ ︸

F2

.
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Observe that the terms F1 and F2 feature integrals, instead of duality pairings between Z∗ and Z, thanks to

(2.34) and (3.7). By monotonicity we have F1 ≤ 0, whereas, the very same argument leading to (3.17) yields

|F2| ≤ C
∫ tτ (t)

tτ (s)
(|(tτ (r)− r|+ ‖zτ (r)− ẑτ (r)‖L6(Ω))‖zτ (r)− ẑτ (r)‖L2(Ω) dr

≤ C supt∈[0,T ] ‖zτ (t)− ẑτ (t)‖L2(Ω)

∫ tτ (t)

tτ (s)
(|(tτ (r)− r|+ ‖zτ (r)− ẑτ (r)‖L6(Ω)) dr,

whence (3.11).

It follows from (3.11) and (2.23) that∫ tτ (t)

0

(
Rε(ẑ

′
τ (r)) + R∗ε (−DzI(tτ (r), zτ (r)))

)
dr + I(t, ẑτ (t))

≤ I(0, z0) + C + C
(
‖zτ‖L∞(0,T ;L2(Ω)) + ‖ẑτ‖L∞(0,T ;L2(Ω))

)(
1 +

∫ tτ (t)

0

‖zτ (r)− ẑτ (r)‖L6(Ω) dr

)
≤ C ,

where the very last estimate ensues from (3.9b) and (3.9e). Recalling that I is bounded from below (cf. (2.18)),

we thus infer that supt∈[0,T ] |I(t, ẑτ (t))| ≤ C, i.e. (3.12a), as well as (3.12b).

3.1. Proof of Lemma 3.5. Observe that, once estimate (3.9f) is proved, (3.9k) then follows by observing that

Dz Ĩ(tτ , zτ ) is bounded in L∞(0, T ;L2(Ω)) in view of estimate (2.34) for Dz Ĩ, combined with the previously

obtained (3.9b).

Hence, let us now turn to the proof of (3.9f), which is a consequence of the Third regularity estimate. In

order to render it on the time-discrete level, we need to work on an approximate version of the discrete equation

(3.5), where the dissipation metric R1 inducing R1 is replaced, for technical reasons that will be apparent in the

proof of Lemma 3.6 below, by a twice-differentiable function. Observe that the standard Yosida approximation

of R1, namely the function

R1,ν : R→ R defined by R1,ν(r) := min
y∈R

(
|y − r|2

2ν
+ R1(y)

)
=

{
1
2ν r

2 if r > −νκ
−κr − νκ2

2 if r ≤ −νκ
(3.26)

with ν > 0 fixed, does not enjoy this regularity, as it is only differentiable on R, cf. [Bré73].

We will thus resort to a regularization of R1 devised in [GR07] and defined in this way. Let % ∈ C∞(R)

satisfy supp(%) ⊂ [−1.1] and ‖%‖L1(R) = 1. We then define

R1,ν(r) :=

∫ r

0

∫ ν2

−ν2

R′1,ν(σ − s)%ν(s) dsdσ (3.27)

where %ν(s) = ν−2η(s/ν2). In [GR07] it has been proved that

R1,ν ∈ C∞(R) is convex and satisfies − ν|r| ≤ R1,ν(r) ≤ R1(r) + ν|r| for all r ∈ R. (3.28a)

Of course, for r > 0 the latter estimate is trivially satisfied, since in that case, R1(r) =∞. Inequality (3.28a)

in fact derives from the estimate

|R′1,ν(r)− R′1,ν(r)| ≤ ν for all r ∈ R. (3.28b)

Since R′1,ν is Lipschitz, from (3.28b) we in fact deduce that R1,ν grows at most quadratically on R. The

function R1,ν induces an integral functional

R1,ν : L2(Ω)→ R defined by R1,ν(η) :=

∫
Ω

R1,ν(η(x)) dx for all η ∈ L2(Ω). (3.28c)

Observe that R1,ν is Gâteaux-differentiable on L2(Ω), with derivative DR1,ν(η) defined by DR1,ν(η)(x) :=

R
′
1,ν(η(x)) for almost all x ∈ Ω (in fact, R

′
1,ν(η) ∈ L2(Ω) by the linear growth of R

′
1,ν). Indeed, as soon

as η ∈ Z, DR1,ν(η) coincides with the Gâteaux derivative DZ,Z∗R1,ν(η). For our purposes, the following
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closedness property relating DR1,ν : L2(Ω) → L2(Ω) to the convex subdifferential ∂R1 : L2(Ω) ⇒ L2(Ω) will

have a prominent role: for any (t0, t1) ⊂ (0, T ) and all sequences (ην)ν , η, ξ ∈ L2(t0, t1;L2(Ω)) there holds
ην ⇀ η as ν ↓ 0 in L2(t0, t1;L2(Ω)),

DR1,ν(ην) ⇀ ξ as ν ↓ 0 in L2(t0, t1;L2(Ω)),

lim supν↓0
∫ t1
t0

∫
Ω

DR1,ν(ην)ην dxdt ≤
∫ t1
t0

∫
Ω
ξη dx dt

⇒ ξ(t) ∈ ∂R1(η(t)) for almost all t ∈ (t0, t1).

(3.28d)

We refer to [GR07, Prop. 3.1] for the proof of (3.28d).

For a fixed time step τ > 0, given a partition {0 = tτ0 < . . . < tτN = T} of [0, T ], we now incrementally solve

the minimum problems featuring the regularized functionals R1,ν . Namely, starting from zτ,ν0 := z0, we set

zτ,νk+1 ∈ Argmin
{
I(tτk+1, z) + τR1,ν

(
z − zτk
τ

)
+
ε

τ

∥∥∥∥z − zτkτ

∥∥∥∥2

L2(Ω)

: z ∈ Z
}
, k ∈ {1, . . . , N − 1}. (3.29)

The analogue of Prop. 3.1 holds. In particular, the (left- and right-continuous) piecewise constant and linear

interpolants zτ,ν , zτ,ν and ẑτ,ν of the elements (zτ,νk )Nk=0 satisfy the following approximate version of (3.8)

DR1,ν(ẑ′τ,ν(t)) + εẑ′τ,ν(t) +Aqzτ,ν(t) + Dz Ĩ(tτ (t), zτ,ν(t)) = 0 in L2(Ω) for a.a. t ∈ (0, T ), (3.30)

where we have in fact used that DZ,Z∗R1,ν(ẑ′τ,ν) = DR1,ν(ẑ′τ,ν). In particular, observe that, by comparison in

(3.30), there holds

Aqzτ,ν(t) ∈ L2(Ω) for almost all t ∈ (0, T ). (3.31)

For the functions (zτ,ν , ẑτ,ν , uτ,ν , ûτ,ν)τ,ν (with uτ,ν , ûτ,ν the interpolants of the elements umin(tkτ , z
τ,ν
k )), we

are now able to derive rigorously estimates (3.9), in fact uniformly w.r.t. both parameters τ and ν.

Lemma 3.6. Under Assumptions 2.1, 2.2, and 2.8, and under condition (3.6) on the initial datum z0, esti-

mates (3.9) hold for the functions (zτ,ν , ẑτ,ν , uτ,ν , ûτ,ν)τ,ν (in particular, (3.9g) for ωτ,ν := DR1,ν(ẑ′τ,ν)), with

constants C, C(ε), C(σ) > 0 uniform w.r.t. τ and ν.

Proof. Estimates (3.9a)–(3.9b) (and, consequently, (3.9h) for uτ,ν) can be derived by the very same arguments

as in the proof of Lemma 3.4. Let us point out that we may suppose that supτ,ν ‖zτ,ν‖L∞(0,T ;W 1,q(Ω) ≤ M ,

with M the same constant as in (3.14).

Instead, the calculations for (3.9d)–(3.9e) have to be slightly modified, as the ones developed in the proof of

Lemma 3.4 rely on the 1-homogeneity of R1, whereas R1,ν no longer has this property. Therefore, we argue in

this way: keeping the short-hand notation ĥτ,ν(t) := −(εẑ′τ,ν(t) + Aqzτ,ν(t) + Dz Ĩ(tτ (t), zτ,ν(t))), and writing

ωτ,ν(t) in place of DR1,ν(ẑ′τ,ν(t)), (3.30) rephrases as ωτ,ν(t) = ĥτ,ν(t). We subtract (3.30) at time r ∈ (tτk−1, t
τ
k)

from (3.30) at time t ∈ (tτk, t
τ
k+1) and test the resulting relation by ẑ′τ,ν(t). Therefore we obtain

R
∗
1,ν(ωτ,ν(t))− R

∗
1,ν(ωτ,ν(r)) ≤

∫
Ω

(ωτ,ν(t)−ωτ,ν(r)) ẑ′τ,ν(t) dx =

∫
Ω

(
ĥτ,ν(t)−ĥτ,ν(r)

)
ẑ′τ,ν(t) dx, (3.32)

where R
∗
1,ν denotes the Fenchel-Moreau convex conjugate of R1,ν , and we have used that

ẑ′τ,ν(t) ∈ ∂R∗1,ν(ωτ,ν(t)) for all t ∈ (tτk, t
τ
k+1) and for all k = 0, . . . , N − 1. (3.33)

From (3.32) we then obtain the analogue of (3.15), namely

1

τ
R
∗
1,ν(ωτ,ν(t)) +

ε

τ

∫
Ω

(ẑ′τ,ν(t)−ẑ′τ,ν(r))ẑ′τ,ν(t) dx+
1

τ

∫
Ω

(Aqzτ,ν(t)−Aqzτ,ν(r))ẑ′τ,ν(t) dx

≤ 1

τ
R
∗
1,ν(ωτ,ν(r))− 1

τ

∫
Ω

(Dz Ĩ(tτ (t), zτ,ν(t))−Dz Ĩ(tτ (r), zτ,ν(r)))ẑ′τ,ν(t) dx. (3.34)
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Observe that (3.34) contains the same terms as in (3.15), but with the additional contribution coming from

R
∗
1,ν . Following the lines of the proof of Lemma 3.4 (see also [KRZ15, Lemma 5.3]) we “integrate” over the

time interval (t0, t) with t0 ∈ (0, tτ1) and t ∈ (tτk, t
τ
k+1) and get

R
∗
1,ν(ωτ,ν(t)) +

ε

2
‖ẑ′τ,ν(t)‖2L2(Ω) + Cq

∫ tτ (t)

tτ1

∫
Ω

(
1 + |∇ẑτ,ν(ρ)|2

)(q−2)/2|∇ẑ′τ,ν(ρ)|2 dx dρ

≤ R
∗
1,ν(ωτ,ν(t0)) +

ε

2
‖ẑ′τ,ν(t0)‖2L2(Ω) + C

∫ tτ (t)

tτ1

(1 + ‖ẑ′τ,ν(ρ)‖L6(Ω))‖ẑ′τ,ν(ρ)‖L2(Ω) dρ,

(3.35)

with Cq from (3.16). We observe that R
∗
1,ν(ωτ,ν(t)) ≥ 0, and therefore on the left-hand side we get the

exact analogue of the left-hand side of (3.19). For the right-hand side, we have to deal with the “extra”-term

R
∗
1,ν(ωτ,ν(t0)). For this, we observe that

R
∗
1,ν(ωτ,ν(t0)) =R

∗
1,ν(ωτ,ν(t0))− R

∗
1,ν(0) ≤

∫
Ω

(
zτ,ν1 − z0

τ

)
ωτ,ν(t0) dx

=

∫
Ω

(zτ,ν1 − z0)

τ

(
−εz

τ,ν
1 − z0

τ
−DzI(t

τ
1 , z

τ,ν
1 )

)
dx

= −ε‖ẑ′τ,ν(t0)‖2L2(Ω) −
∫

Ω

DzI(t
τ
1 , z

τ,ν
1 )ẑ′τ,ν(t0) dx

(3.36)

and therefore, the right-hand side of (3.35) can be bounded as follows

R.H.S. ≤ −
∫

Ω

DzI(t
τ
1 , z

τ,ν
1 )ẑ′τ,ν(t0) dx− ε

2
‖ẑ′τ,ν(t0)‖2L2(Ω) + C

∫ tτ (t)

tτ1

(1 + ‖ẑ′τ,ν(ρ)‖L6(Ω))‖ẑ′τ,ν(ρ)‖L2(Ω) dρ.

(3.37)

Writing DzI(t
τ
1 , z

τ,ν
1 ) = Aq(z

τ,ν
1 )−Aq(z0) + Dz Ĩ(t

τ
1 , z

τ,ν
1 )−Dz Ĩ(0, z0) + DzI(0, z0) and performing calculations

analogous to those developed in the proof of Lemma 3.4, we obtain

−
∫

Ω

DzI(t
τ
1 , z

τ,ν
1 )ẑ′τ,ν(t0) dx ≤ −Cqτ

∫
Ω

(1+|∇ẑτ,ν(t0)|2)(q−2)/2|∇ẑ′τ,ν(t0)|2 dx+
ε

2
‖ẑ′τ,ν(t0)‖2L2(Ω)

+ ε−1‖DzI(0, z0)‖2L2(Ω) + cτ(1 + ‖ẑ′τ,ν(t0)‖2L6(Ω))‖ẑ
′
τ,ν(t0)‖2L2(Ω) .

Combining this with (3.37), summing the resulting inequality with (3.35), and adding Cq
∫ tτ (t)

0
‖ẑ′τ,ν(ρ)‖2L2(Ω) dρ

to both terms of the resulting estimate, we obtain

ε

2
‖ẑ′τ,ν(t)‖2L2(Ω) + Cq

∫ tτ (t)

0

‖ẑ′τ,ν(ρ)‖2L2(Ω) dρ+ Cq

∫ tτ (t)

0

∫
Ω

(
1 + |∇ẑτ,ν(ρ)|2

)(q−2)/2|∇ẑ′τ,ν(ρ)|2 dx dρ

≤ ε−1‖DzI(0, z0)‖2L2(Ω) + Cq

∫ tτ (t)

0

‖ẑ′τ,ν(ρ)‖2L2(Ω) dρ+ C

∫ tτ (t)

0

(1 + ‖ẑ′τ,ν(ρ)‖L6(Ω))‖ẑ′τ,ν(ρ)‖L2(Ω) dρ

≤ C + ε−1‖DzI(0, z0)‖2L2(Ω) + C

∫ tτ (t)

0

‖ẑ′τ,.ν(ρ)‖2L2(Ω) dρ+
Cq
4

∫ tτ (t)

0

‖ẑ′τ,ν(ρ)‖2H1(Ω) dρ,

(3.38)

where in the last inequality we have used Young’s inequality, and the continuous embedding H1(Ω) ⊂ L6(Ω),

for the last term in the r.h.s. of (3.37) exactly as in the proof of Lemma 3.4. Absorbing
∫ tτ (t)

0
‖ẑ′τ (ρ)‖2H1(Ω) dρ,

into the left-hand side, we conclude estimate (3.9d) for ẑ′τ,ν , uniformly with respect to τ and ν.

Combining the arguments in the proof of Lemma 3.4 with the above arguments related to R
∗
1,ν we also

obtain estimate (3.9e) for ẑ′τ,ν uniformly with respect to ε, τ and ν, and therefore also the bounds (3.9i)–(3.9j)

for û′τ,ν .

We are now in a position to carry out the time-discrete analogue of the Third regularity estimate. We

multiply (3.30), written at time ρ ∈ (tτk, t
τ
k+1), by the difference (Aqzτ,ν(ρ)−Aqzτ,ν(r)), with r ∈ (tτk−1, t

τ
k),
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and integrate in space. Observe that this is now a legal test, in view of (3.31). We thus obtain∫
Ω

DR1,ν(ẑ′τ,ν(ρ))(Aqzτ,ν(ρ)−Aqzτ,ν(r)) dx︸ ︷︷ ︸
I1

+ ε

∫
Ω

ẑ′τ,ν(ρ)(Aqzτ,ν(ρ)−Aqzτ,ν(r)) dx︸ ︷︷ ︸
I2

+

∫
Ω

Aqzτ,ν(ρ)(Aqzτ,ν(ρ)−Aqzτ,ν(r)) dx︸ ︷︷ ︸
I3

= −
∫

Ω

DĨ(tτ (ρ), zτ,ν(ρ))(Aqzτ,ν(ρ)−Aqzτ,ν(r)) dx︸ ︷︷ ︸
I4

.

(3.39)

Now, we have that

I1 =

∫
Ω

∇
(
R
′
1,ν(ẑ′τ,ν(ρ))

)
·
(

(1 + |∇zτ,ν(ρ)|2)q/2−1∇zτ,ν(ρ)−(1 + |∇zτ,ν(r)|2)q/2−1∇zτ,ν(r)
)

dx

=

∫
Ω

R
′′
1,ν(ẑ′τ,ν(ρ))∇ẑ′τ,ν(ρ) ·

(
(1 + |∇zτ,ν(ρ)|2)q/2−1∇zτ,ν(ρ)−(1 + |∇zτ,ν(r)|2)q/2−1∇zτ,ν(r)

)
dx

(1)

≥ 0,

where for the first equality we have used that DR1,ν(ẑ′τ,ν(ρ)) = R
′
1,ν(ẑ′τ,ν(ρ)) is an element in W 1,q(Ω): indeed,

ẑ′τ,ν(ρ) ∈ W 1,q(Ω) ⊂ C0(Ω), so that there exists a constant M > 0 with |ẑ′τ,ν(ρ)| ≤ M a.e. in Ω; on the other

hand R
′
1,ν ∈ C∞(R), hence its restriction to the ball BM (0) is Lipschitz, and the composition of a Lipschitz

function with an element in W 1,q(Ω) belongs to W 1,q(Ω). Estimate (1) follows from the fact that R
′′
1,ν ≥ 0 on

R, and from the convexity inequality

(A−B) ·
(

(1 + |A|2)q/2−1A−(1 + |B)|2)q/2−1B
)
≥ 0 for all A, B ∈ R3,

applied with A = ∇zτ,ν(ρ) and B = ∇zτ,ν(r). Analogously, we have

I2 =

∫
Ω

∇ẑ′τ,ν(ρ) ·
(

(1 + |∇zτ,ν(ρ)|2)q/2−1∇zτ,ν(ρ)−(1 + |∇zτ,ν(r)|2)q/2−1∇zτ,ν(r)
)

dx ≥ 0.

We have

I3 ≥
1

2
‖Aqzτ,ν(ρ)‖2L2(Ω) −

1

2
‖Aqzτ,ν(r)‖2L2(Ω) .

Finally,

I4 =

∫
Ω

DĨ(tτ (ρ), zτ,ν(ρ))Aqzτ,ν(ρ) dx−
∫

Ω

DĨ(tτ (r), zτ,ν(r))Aqzτ,ν(r) dx

−
∫

Ω

(
DĨ(tτ (ρ), zτ,ν(ρ))−DĨ(tτ (r), zτ,ν(r))

)
Aqzτ,ν(r) dx .

Summing with respect to the index k, we thus obtain for any t ∈ (tτ1 , T ) and for σ ∈ (0, tτ1) (remember that

zτ,ν(r) = zτ,ν(ρ) and tτ (r) = tτ (ρ) for r ∈ (tτk−1, t
τ
k] and ρ ∈ [tτk, t

τ
k+1))

1

2
‖Aqzτ,ν(t)‖2L2(Ω) ≤

1

2
‖Aqzτ,ν(σ)‖2L2(Ω) +

∫
Ω

DĨ(tτ (σ), zτ,ν(σ))Aqzτ,ν(σ) dx−
∫

Ω

DĨ(tτ (t), zτ,ν(t))Aqzτ,ν(t) dx

+

∫ tτ (t)

tτ1

∫
Ω

1

τ

(
DĨ(tτ (ρ), zτ,ν(ρ))−DĨ(tτ (ρ), zτ,ν(ρ))

)
Aqzτ,ν(ρ) dxdρ

.
= I5 + I6 + I7 + I8.
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We estimate via Hölder’s and Young’s inequalities

|I6| ≤ ‖DĨ(tτ (σ), zτ,ν(σ))‖2L2(Ω) +
1

4
‖Aqzτ,ν(σ)‖2L2(Ω)

(2)

≤ C +
1

4
‖Aqzτ,ν(σ)‖2L2(Ω),

|I7| ≤ ‖DĨ(tτ (t), zτ,ν(t))‖2L2(Ω) +
1

4
‖Aqzτ,ν(t)‖2L2(Ω)

(1)

≤ C +
1

4
‖Aqzτ,ν(t)‖2L2(Ω),

|I8| ≤
∫ tτ (t)

0

1

τ
‖DĨ(tτ (ρ), zτ,ν(ρ))−DĨ(tτ (ρ), zτ,ν(ρ))‖L2(Ω)‖Aqzτ,ν(ρ)‖L2(Ω) dρ

(3)

≤ C

∫ tτ (t)

0

1

τ
‖zτ,ν(ρ)−zτ,ν(ρ)‖L6(Ω)‖Aqzτ,ν(ρ)‖L2(Ω) dρ.

where (1) and (2) follow from (2.34) and from the bound ‖f ′(zτ,ν(t)‖L∞(Ω) + P (zτ,ν(t), 0) ≤ C, for a constant

uniform w.r.t. t ∈ [0, T ], thanks to estimate (3.9b) for (zτ,ν)τ,ν ; instead, (3) is due to (2.32), again taking into

account that supρ∈[0,T ](Cf ′′(zτ,ν(ρ), zτ,ν(ρ)) +P (zτ,ν(ρ), zτ,ν(ρ))3) ≤ C due to the bound (3.9b). All in all, we

conclude

1

4
‖Aqzτ,ν(t)‖2L2(Ω) ≤

3

4
‖Aqzτ,ν(σ)‖2L2(Ω) + C

(
1 +

∫ tτ (t)

0

‖ẑ′τ,ν(ρ)‖L6(Ω)‖Aqzτ,ν(ρ)‖L2(Ω) dρ

)
,

and, with a version of Gronwall’s Lemma (cf. e.g. [Bré73, Lemme A.5]), we conclude that

‖Aqzτ,ν(t)‖L2(Ω) ≤ C

(
1 + ‖Aqzτ,ν(σ)‖L2(Ω) +

∫ tτ (t)

0

‖ẑ′τ,ν(ρ)‖L6(Ω) dρ

)
. (3.40)

It now remains to estimate ‖Aqzτ,ν(σ)‖L2(Ω) = ‖Aqzτ,ν1 ‖L2(Ω). For this, we use the Euler-Lagrange equation

DR1,ν

(
zτ,ν1 − z0

τ

)
+ ε

zτ,ν1 − z0

τ
+Aqz

τ,ν
1 + Dz Ĩ(t

τ,ν
1 , zτ,ν1 ) = 0

and test it by Aqz
τ,ν
1 −Aqz0. We repeat the same calculations as above and arrive at

1

2
‖Aqzτ,ν1 ‖2L2(Ω) ≤

1

2
‖Aqz0‖2L2(Ω) +

∫
Ω

DĨ(0, z0)Aqz0 dx−
∫

Ω

DĨ(tτ,ν1 , zτ,ν1 )Aqz
τ,ν
1 dx

+

∫
Ω

(
DĨ(tτ,ν1 , zτ,ν1 )−DĨ(0, z0)

)
Aqz0 dx,

whence

‖Aqzτ,ν1 ‖2L2(Ω) ≤ C
(

1 + ‖Aqz0‖2L2(Ω) + ‖zτ,ν1 − z0‖2L6(Ω)

)
≤ C,

the last inequality due to (3.6) and bound (3.9b). Combining the above estimate with (3.40), we conclude

estimate (3.9f) in view of the previously proved bound (3.9e) for ẑ′τ,ν .

Finally, estimate (3.9g) for ωτ,ν = DR1,ν(ẑ′τ,ν) follows from a comparison argument in (3.30), in view of

estimate (3.9d), and the previously used bound for DĨ(tτ (·), zτ,ν(·)) in L∞(0, T ;L2(Ω)) due to (2.34) and

(3.9b). �

We are now in a position to conclude the proof of Lemma 3.5: For fixed positive τ and ε, let (zτ,ν , ẑτ,ν)ν
a family of solutions to (3.30). It follows from estimates (3.9) proved in Lemma 3.6 and from Proposition 2.7,

that the sequence (zτ,ν)ν is also uniformly bounded in L∞(0, T ;W 1+σ,q(Ω)) for all 0 < σ < 1
q , whence estimate

(3.9c). Hence, also the sequence (ẑτ,ν)ν is bounded in that space. Therefore, applying the Aubin-Lions type

compactness results from [Sim87] to (ẑτ,ν)ν , we infer that there exists a function ẑ such that, along a (not

relabeled) subsequence, as ν ↓ 0 the following convergences hold

ẑτ,ν ⇀
∗ ẑ in L∞(0, T ;W 1+σ,q(Ω)) ∩H1(0, T ;H1(Ω)) ∩W 1,∞(0, T ;L2(Ω)) for all 0 < σ <

1

q
,

ẑτ,ν → ẑ in C0([0, T ];Z),

(3.41a)
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where the last convergence follows from the compact embedding W 1+σ,q(Ω) b Z for all σ ∈ (0, 1
q ). From the

estimate for (ẑ′τ,ν)ν in L1(0, T ;H1(Ω)) we gather that

‖zτ,ν‖BV([0,T ];H1(Ω)) ≤ C

for a constant independent of ν (and τ). Therefore, thanks to an infinite-dimensional version of Helly’s Theorem,

see e.g. [MT04, Thm. 6.1], we conclude that there exists z ∈ BV([0, T ];H1(Ω)) such that, up to the further

extraction of a subsequence, zτ,ν(t) ⇀ z(t) in H1(Ω), as ν ↓ 0 for every t ∈ [0, T ]. Since (zτ,ν)ν is bounded in

L∞(0, T ;W 1+σ,q(Ω)), we ultimately conclude that zτ,ν(t) ⇀ z(t) in W 1+σ,q(Ω) for every t ∈ [0, T ]. Thus, we

infer

zτ,ν(t)→ z(t) in Z for every t ∈ [0, T ]. (3.41b)

Then, a fortiori one has that

zτ,ν ⇀
∗ z in L∞(0, T ;Z), zτ,ν → z in Lp(0, T ;Z) for every 1 ≤ p <∞. (3.41c)

Finally, there exists ω ∈ L∞(0, T ;L2(Ω)) such that, up to a further extraction,

ωτ,ν ⇀
∗ ω in L∞(0, T ;L2(Ω)). (3.41d)

It follows from (3.41b), combined with the bound (3.9e), that

Aqzτ,ν(t) ⇀ Aqz(t) in L2(Ω) for every t ∈ [0, T ].

Also in view of (3.41c) it is not difficult to deduce that

Aqzτ,ν ⇀
∗ Aqz in L∞(0, T ;L2(Ω)).

Furthermore, combining estimate (2.32) with (3.9b) and convergence (3.41b) we find that for every t ∈ [0, T ]

‖DĨ(tτ (t), zτ,ν(t))−DĨ(tτ (t), z(t))‖L2(Ω) ≤ C
(
C ′f (zτ,ν(t), z(t)) + P (zτ,ν(t), z(t))3

)
‖zτ,ν(t)− z(t)‖L6(Ω)

≤ C‖zτ,ν(t)− z(t)‖L6(Ω) → 0

as ν ↓ 0. Since (DĨ(tτ , zτ,ν))ν is bounded in L∞(0, T ;L2(Ω)) by (2.34) and (3.9b), we also have

DĨ(tτ , zτ,ν) ⇀∗ DĨ(tτ , z) in L∞(0, T ;L2(Ω)),

DĨ(tτ , zτ,ν)→ DĨ(tτ , z) in Lp(0, T ;L2(Ω)) for every 1 ≤ p <∞.

Therefore, also on account of convergences (3.41a) and (3.41d) we can pass to the limit as ν ↓ 0 in (3.30) and

conclude that the triple (z, ẑ, ω) satisfies

ω(t) + εẑ′(t) +Aqz(t) + DĨ(tτ (t), z(t)) = 0 in L2(Ω) for a.a. t ∈ (tτk, t
τ
k+1)

and for every k ∈ {0, . . . , N − 1}. We can also prove that

lim sup
ν↓0

∫ tτk+1

tτk

∫
Ω

ωτ,ν ẑ
′
τ,ν dx dt ≤

∫ tτk+1

tτk

∫
Ω

ωẑ′ dxdt .

This follows from multiplying (3.30) by ẑ′τ,ν and taking the limit in each of the terms, on account of the

convergences so far proved.

Therefore, thanks to (3.28d), we infer that ω(t) ∈ ∂R1(ẑ′(t)) for almost all t ∈ (tτk, t
τ
k+1). All in all, the pair

(z, ẑ) fulfills the differential inclusion

∂R1(ẑ′(t)) + εẑ′(t) +Aqz(t) + DĨ(tτ (t), z(t)) 3 0 in L2(Ω) for a.a. t ∈ (tτk, t
τ
k+1) ∀ k ∈ {0, . . . , N − 1} . (3.42)

A fortiori, since ∂R1(ẑ′(t)) ⊂ ∂Z,Z∗R1(ẑ′(t)), we conclude that (z, ẑ) fulfill

∂Z,Z∗R1(ẑ′(t)) + εẑ′(t) +Aqz(t) + DĨ(tτ (t), z(t)) 3 0 in Z∗ for a.a. t ∈ (tτk, t
τ
k+1) ∀ k ∈ {0, . . . , N − 1} .

Since the latter has a unique solution in the closed ball BM (0) of Z for τ < τ̄ε (cf. Prop. 3.1), and since z and

zτ take value in that ball, we get that

z(t) = zτ (t), ẑ′(t) = ẑ′τ (t) for a.a. t ∈ (tτk, t
τ
k+1) ∀ k ∈ {0, . . . , N − 1} ,
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and, therefore, a.e. in (0, T ). In particular, we find that Aqzτ ∈ L∞(0, T ;L2(Ω)). Furthermore, since estimates

(3.9f) and (3.9g) are uniform both w.r.t. ν > 0 and w.r.t. τ > 0, they are inherited in the limit as ν ↓ 0.

Therefore,

‖Aqzτ‖L∞(0,T ;L2(Ω)) + ‖ω‖L∞(0,T ;L2(Ω)) ≤ C
for a constant independent of τ < τ̄ε. We set ωτ := ω and ultimately conclude (3.7) as well as (3.9f) and (3.9g).

Finally, from (3.42) we gather the validity of (3.8). This concludes the proof of Lemma 3.5.

4. Existence of viscous solutions

In this section, we briefly comment on the existence of solutions to the viscous system (1.2). By passing to

the limit with ε > 0 fixed in the time discrete scheme (3.5), we are able to prove the existence of a solution to

(1.2), formulated as a subdifferential inclusion in L2(Ω), namely

ω(t) + εz′(t) +Aq(z(t)) + Dz Ĩ(t, z(t)) 3 0 in L2(Ω) for a.a. t ∈ (0, T ), (4.1)

with ω(·) a selection in the subdifferential ∂R1(z′(·)) ⊂ L2(Ω). Furthermore, along the footsteps of [MRS13]

we obtain an energy-dissipation balance featuring the conjugate R∗ε of Rε, cf. (3.10).

Theorem 4.1. Let ε > 0 be fixed. Under Assumptions 2.1, 2.2, and 2.8, and under condition (3.6) on the

initial datum z0, there exist

z ∈ L∞(0, T ;W 1+σ,q(Ω)) ∩H1(0, T ;H1(Ω)) ∩W 1,∞(0, T ;L2(Ω)) for every σ ∈ (0, 1
q ), with

Aqz ∈ L∞(0, T ;L2(Ω))
(4.2)

and ω ∈ L∞(0, T ;L2(Ω)) fulfilling the subdifferential inclusion (4.1) and the Cauchy condition z(0) = z0.

Furthermore, z complies with the energy-dissipation balance∫ t

s

Rε(z
′(r)) dr +

∫ t

s

R∗ε (−Aq(z(r))−Dz Ĩ(r, z(r))) dr + I(t, z(t)) = I(s, z(s)) +

∫ t

s

∂tI(r, z(r)) dr (4.3)

for every 0 ≤ s ≤ t ≤ T .

Proof. Let (τj)j be a null sequence of time steps, and let (zτj )j , (ẑτj )j be the approximate solutions to the

viscous subdifferential inclusion (1.2) constructed in Section 3. For them, estimates (3.9) hold with a constant

uniform w.r.t. j ∈ N (recall that ε > 0 is fixed).

Adapting the arguments from the proof of [KRZ15, Prop. 6.2], combining (3.9) with Aubin-Lions type

compactness results (cf., e.g., [Sim87, Thm. 5, Cor. 4]) and arguing in the same way as in the proof of Lemma

3.5, cf. also Lemma 6.2 ahead, we may show that there exist a (not relabeled) subsequence and a curve z as in

(4.2) such that the following convergences hold

zτj , ẑτj → z in L∞(0, T ;Z),

ẑτj ⇀
∗ z in H1(0, T ;H1(Ω)) ∩W 1,∞(0, T ;L2(Ω)),

I(tτj (t), zτj (t)), I(t, ẑτj (t))→ I(t, z(t)) for all t ∈ [0, T ],

DzI(tτj (t), zτj (t)) ⇀
∗ DzI(t, z(t)) in L∞(0, T ;L2(Ω)),

DzI(tτj (t), zτj (t))→ DzI(t, z(t)) in L∞(0, T ;Z∗).

With the limit passage arguments from [KRZ15, Thm. 3.5] we deduce that z complies with the variational

inequality

Rε(w)− Rε(z
′(t)) ≥ 〈−Aqz(t), w〉Z +

∫
Ω

(1 + |∇z(t)|2)
q−2
2 ∇z(t) · ∇z′(t) dx

−
∫

Ω

Dz Ĩ(t, z(t))(w − z′(t)) dx for all w ∈ Z for a.a. t ∈ (0, T ) ,

(4.4)

which in fact defined the concept of weak solution to the viscous system considered in [KRZ15].
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We now enhance (4.4) by relying on the information that Aqz ∈ L∞(0, T ;L2(Ω)). Due to this,
∫

Ω
(1 +

|∇z(t)|2)
q−2
2 ∇z(t) · ∇z′(t) dx =

∫
Ω
Aq(z(t))z

′(t) dx, so that (4.4) reads for almost all t ∈ (0, T )

Rε(w)− Rε(z
′(t)) ≥−

∫
Ω

Aqz(t)(w − z′(t)) dx−
∫

Ω

Dz Ĩ(t, z(t))(w − z′(t)) dx for all w ∈ Z .

This extends to all w ∈ L2(Ω) by a density argument, and therefore we conclude that

−Aqz(t)−Dz Ĩ(t, z(t)) ∈ ∂Rε(z′(t)) in L2(Ω) (4.5)

for almost all t ∈ (0, T ), namely the validity of (4.1).

The energy-dissipation balance (4.3) ensues from integrating on the generic interval (s, t) ⊂ (0, T ) the

following chain of identities

Rε(z
′(r)) + R∗ε (−Aqz(r)−Dz Ĩ(r, z(r)))

(1)
=

∫
Ω

(
−Aqz(r)−Dz Ĩ(r, z(r))

)
z′(t) dx

(2)
= − d

dt
I(r, z(r)) + ∂tI(r, z(r)) for a.a. r ∈ (0, T ),

where (1) is a reformulation of (4.5), while (2) follows from the chain rule (2.43). �

5. Balanced Viscosity solutions to the rate-independent damage system

The main result of this section, Theorem 5.7 ahead, states the convergence of the sequences

(zτ,ε)τ,ε, (ẑτ,ε)τ,ε (5.1)

of discrete solutions constructed in Section 3 to a Balanced Viscosity solution of the rate-independent damage

system (1.1), as ε and τ simultaneously tend to zero (that is why, we stress the dependence on the parameter

ε in the notation (5.1)). The proof of Thm. 5.7 will be carried out in Section 6.

In Section 5.1 we provide a precise definition of this solution concept, after revisiting, and suitably modifying,

all the preliminary definitions and notions given in [MRS16, Sec. 3.1]. Indeed, the latter paper addressed

the case of a nonsmooth energy functional driving the (abstract) gradient system under consideration, and

developed the vanishing-viscosity analysis under the sole basic energy estimates for viscous solutions. In the

present context, on the one hand we will work with simpler definitions, tailored to the smoothness properties

of I, and to the enhanced estimates holding for our own damage system. On the other hand, our definitions

shall reflect the fact that the dissipation potential R1 takes the value +∞, whereas the analysis in [MRS16] is

confined to the case of a continuous potential R1.

In Sec. 5.2 we gain further insight into to the properties of Balanced Viscosity solutions and again revisit

and adapt a series of results given in [MRS16, Secs. 3.2, 3.3, 3.4].

5.1. The notion of Balanced Viscosity solution. In order to define the notion of Balanced Viscosity

solution for the damage system (1.1), we start by introducing the vanishing-viscosity contact potential p induced

by the viscous dissipation potentials Rε from (1.3). Such functional will enter into the Finsler cost describing

the energy dissipated at jumps. We define p : L2(Ω)× L2(Ω)→ [0,+∞] via

p(v, ξ) := inf
ε>0

(Rε(v) + R∗ε (ξ))

= R1(v) + ‖v‖L2(Ω) inf
z∈∂R1(0)

‖ξ − z‖L2(Ω) .

From this, one defines the dissipation functional f : [0, T ]× Z× L2(Ω)→ [0,+∞] via

ft(z, v) := p(v,−DzI(t, z)) = R1(v) + ‖v‖L2(Ω) min
ζ∈∂R1(0)

‖ −DzI(t, z)− ζ‖L2(Ω) ,

where v plays the role of z′. Observe that for all z ∈ Z, v ∈ L2(Ω) we have

ft(z, v) ≥ 〈−DzI(t, z), v〉L2(Ω)
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provided that DzI(t, z) ∈ L2(Ω). We are now in a position to define the Finsler cost associated with f,

obtained by minimizing suitable integral quantities along admissible curves. Let us mention in advance that

our definition of the class of admissible curves reflects the enhanced estimates available in the present setting

for the discrete viscous solutions, cf. Remark 5.2 below for more details.

Definition 5.1. Let t ∈ [0, T ] and z0, z1 ∈ Z be fixed.

(1) We call a curve ϑ : [r0, r1]→ Z, for some r0 < r1, an admissible transition curve between z0 and z1, at

the time t ∈ [0, T ], if

(a) ϑ ∈ L∞(r0, r1;Z) ∩AC([r0, r1];L2(Ω));

(b) DzI(t, ϑ(·)) ∈ L∞(r0, r1;L2(Ω)).

We denote by Tt(z0, z1) the set of admissible curves connecting z0 and z1.

(2) The (possibly asymmetric) Finsler cost induced by ft at the time t is given by

∆f(t; z0, z1) := inf
ϑ∈Tt(z0,z1)

∫ r1

r0

ft(ϑ(r), ϑ′(r)) dr (5.2)

with the usual convention of setting ∆f(t;u0, u1) = +∞ if the set Tt(z0, z1) of admissible curves

connecting z0 and z1 is empty.

Along the footsteps of Remark 2.17, we observe that, since ϑ ∈ L∞(r0, r1;Z), requiring DzI(t, ϑ(·)) ∈
L∞(r0, r1;L2(Ω)) is equivalent to asking for Aq(ϑ(·)) ∈ L∞(r0, r1;L2(Ω)).

We trivially have

∆f(t; z0, z1) ≥ R1(z1−z0) for every t ∈ [0, T ] and z0, z1 ∈ Z. (5.3)

Up to a reparameterization, due to the positive homogeneity of the Finsler metric ft(z, ·), we can suppose that

the admissible transition curves are defined on [0, 1]. For later use we also introduce, for a fixed % > 0, the set

of admissible transition curves lying in a suitable ball of radius %, i.e.

T
%
t (z0, z1) := {ϑ ∈ Tt(z0, z1) : ‖ϑ‖L∞(0,1;Z) + ‖ϑ′‖L1(0,1;L2(Ω)) + ‖DzI(t, ϑ(·))‖L∞(0,1;L2(Ω)) ≤ %} (5.4a)

and, accordingly,

∆%
f (t; z0, z1) := inf

ϑ∈T%t (z0,z1)

∫ r1

r0

ft(ϑ(r), ϑ′(r)) dr . (5.4b)

Since for every % > 0 there holds T
%
t (z0, z1) ⊂ Tt(z0, z1), one has ∆f(t; z0, z1) ≤ ∆%

f (t; z0, z1). Indeed,

∆f(t; z0, z1) = inf
%>0

∆%
f (t; z0, z1) for every t ∈ [0, T ] and z0, z1 ∈ Z. (5.5)

For later use, we also record the following monotonicity property

∆%̄
f (t; z0, z1) = inf

0<%<%̄
∆%

f (t; z0, z1) = sup
%>%̄

∆%
f (t; z0, z1) for every t ∈ [0, T ], z0, z1 ∈ Z and %̄ > 0, (5.6)

since T
%
t (z0, z1) ⊂ T

%̄
t (z0, z1) for every 0 < % < %̄. Observe that, for every fixed % > 0, the inf in definition

(5.4b) is attained, cf. Proposition 6.1 ahead, whereas it need not be attained in the definition of ∆f. In fact,

the dissipation functional f does not control the norms of the spaces where we look for admissible transition

curves.

Remark 5.2. The most striking difference between the present definition of admissible curve and the one

given in [MRS16, Def. 3.4] resides in the fact that, in contrast with conditions (a) & (b) from Definition 5.1,

in [MRS16] it was only required

ϑ|Gt[ϑ] ∈ AC(Gt[ϑ];L2(Ω)) with the open set

Gt[ϑ] := {r ∈ [r0, r1] : min
ζ∈∂R1(0)

‖ −DzI(t, z)− ζ‖L2(Ω) > 0} . (5.7)
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The stronger condition ϑ ∈ AC([r0.r1];L2(Ω)) reflects the fact that the discrete viscous solutions (zτ )τ enjoy a

(uniform, w.r.t. both parameters ε and τ) estimate in BV([0, T ];L2(Ω)) (even in BV([0, T ];H1(Ω)), cf. (3.9e)).

Instead, in the general framework considered in [MRS16] only the basic energy estimate∫ T

0

p(ẑ′τ (t),−DzI(tτ (t), zτ (t))) dt ≤
∫ T

0

(
Rε(ẑ

′
τ (t))+R∗ε (−DzI(tτ (t), zτ (t)))

)
dt ≤ C

was available. In accordance with that, only (5.7) was required on admissible curves.

Condition (b) in Def. 5.1 reflects the enhanced estimate (3.9k). It is also peculiar of the present framework,

and in particular it is motivated by the fact that we impose unidirectionality of damage evolution, thus allowing

R1 to take the value +∞. In order to explain this, let us observe that, in the setting considered in [MRS16],

it was not necessary to specify the summability properties of DzI(t, ϑ(·)) within the definition of admissible

curve. Indeed, outside the set Gt[ϑ] one had DzI(t, ϑ(·)) ∈ ∂R1(0), a bounded subset of L2(Ω) since the

dissipation potential R1 was everywhere continuous. Instead, on the set Gt[ϑ] an estimate for the quantity

minζ∈∂R1(0) ‖ − DzI(t, z) − ζ‖L2(Ω) would morally provide a bound for −DzI(t, z), as well, by comparison

arguments, again thanks to the boundedness ∂R1(0). Instead, in the present setting, since the set ∂R1(0) is

unbounded, it is necessary to encompass a suitable summability condition on DzI(t, ϑ(·)) in the definition of

admissible curve.

We are now ready to introduce the jump variation induced by f, accounting for the energy dissipated at the

jumps of a given curve z ∈ BV([0, T ];L1(Ω)), with (countable) jump set

Jz := {t ∈ [0, T ] : z(t−) 6= z(t) or z(t+) 6= z(t)}

and z(t±) the right/left limits of z at t ∈ [0, T ]. Based on the jump variation associated with f in (5.10) ahead,

we introduce a novel notion of total variation for the curve z, alternative to the total variation induced by the

dissipation potential R1. We recall that, for a given curve z ∈ BV([0, T ];L1(Ω)) and [a, b] ⊂ [0, T ], the latter

is given by

VarR1(z; [a, b]) := sup{
M∑
m=1

R1(z(tm)−z(tm−1)) : a = t0 < t1 < . . . < tM−1 < tM = b}. (5.8)

In particular, the contribution at the jumps induced by R1 is

JumpR1
(z; [a, b]) := R1(z(a+)−z(a)) + R1(z(b−)−z(b)) +

∑
t∈Jz∩(a,b)

R1(z(t+)−z(t)) + R1(z(t−)−z(t)).

For later convenience, we also introduce the scalar function

V (t) :=


0 if t ≤ 0,

JumpR1
(z; [0, t]) if t ∈ (0, T ),

JumpR1
(z; [0, T ]) if t ≥ T

with distributional derivative µ =
d

dt
V . (5.9)

Recall that µ is a finite Borel measure supported on [0, T ], and it can be decomposed as µ = µd + µJ, with µJ

the jump part, concentrated on the (countable) jump set Jz, and µd the diffuse part, given by the sum of the

absolutely continuous and of the Cantor parts, so that µd({t}) = 0 for every t ∈ R.

We are now in a position to give the notion of total variation induced by f. Let us mention in advance that

it is obtained by replacing the JumpR1
-contribution to the total variation VarR1

, with the f-jump variation, cf.

(5.11) below.

Definition 5.3 (Jump and total variation induced by f). Let z in BV([0, T ];L1(Ω)), with z(t) ∈ Z for all

t ∈ [0, T ], be a given curve with jump set Jz. Let [a, b] ⊂ [0, T ]:
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(1) The jump variation of z on [a, b] induced by f is

Jumpf(z; [a, b]) := ∆f(a; z(a), z(a+)) + ∆f(b; z(b−), z(b))

+
∑

t∈Jz∩(a,b)

(
∆f(t; z(t−), z(t)) + ∆f(t; z(t), z(t+))

)
. (5.10)

(2) The total variation of z on [a, b] induced by f is

Varf(z; [a, b]) := VarR1
(z; [a, b])− JumpR1

(z; [a, b]) + Jumpf(z; [a, b]) (5.11)

= µd([a, b]) + Jumpf(z; [a, b]) . (5.12)

For a given % > 0, we use the symbols Jump%f (z; [a, b]) and Var%f for the total variation induced by the cost ∆%
f .

As already pointed out in [MRS12b, Rmk. 3.5], Varf is not a standard total variational functional: it is neither

induced by any distance on L1(Ω), nor is it lower semicontinuous w.r.t. pointwise convergence in L1(Ω). Yet,

it enjoys the additivity property.

We are finally in a position to give our definition of Balanced Viscosity solution to the rate-independent

damage system. Again, we will consider a slightly stronger version than that given in [MRS16, Def. 3.10],

where z ∈ BV([0, T ];L1(Ω)) was only required. Instead, here we will consider curves z in BV([0, T ];L2(Ω))

and, for technical reasons that will be apparent in the proof of the BV-chain rule from Proposition 5.8 ahead,

we will also restrict to curves z such that DzI(·, z(·)) ∈ L∞(0, T ;L2(Ω)). Furthermore, unlike what was done

in [MRS16], we will claim an energy balance involving a total variation Var%f (z; [0, t]) with a threshold % > 0

such that

% ≥ ‖z‖L∞(0,T ;Z)∩BV([0,T ];L2(Ω)) + ‖DzI(·, z(·))‖L∞(0,T ;L2(Ω)) . (5.13)

Definition 5.4. A curve z in L∞(0, T ;Z) ∩ BV([0, T ];L2(Ω)), with

z(t) ∈ Z and DzI(t, z(t)) ∈ L2(Ω) for all t ∈ [0, T ] (5.14)

and DzI(·, z(·)) ∈ L∞(0, T ;L2(Ω)), is a Balanced Viscosity solution of the rate-independent damage system

(1.1) if the local stability (Sloc) and the (Ef)-energy balance hold:

−DzI(t, z(t)) ∈ ∂R1(0) for all t ∈ [0, T ] \ Jz, (Sloc)

Var%f (z; [0, t]) + I(t, z(t)) = I(0, z(0)) +

∫ t

0

∂tI(s, z(s)) ds for all t ∈ (0, T ]. (Ef)

with % > 0 fulfilling (5.13).

Remark 5.5. The requirement z ∈ L∞(0, T ;Z) in Def. 5.4 is redundant and has been added only for the sake

of clarity. Indeed, since I(0, z(0)) ≤ C as z(0) ∈ Z (cf. (2.15)), and taking into account that t 7→ ∂tI(t, z(t)) is

in L∞(0, T ) thanks to (2.23), from (Ef) we deduce that |I(t, z(t))| ≤ C (recall that I is bounded from below

thanks to (2.18)). In turn, this gives z ∈ L∞(0, T ;Z).

On the other hand, combining the information z ∈ L∞(0, T ;Z) with estimate (2.34) for Dz Ĩ, we con-

clude that Dz Ĩ(·, z(·)) ∈ L∞(0, T ;L2(Ω)). Therefore, what we are really requiring in Def. 5.4 is that Aqz ∈
L∞(0, T ;L2(Ω)), which enhances the regularity of z to the space L∞(0, T ;W 1+σ,q(Ω)) for every 0 < σ < 1

q by

Proposition 2.7.

Prior to stating the main result of the paper, Theorem 5.7 below, we need to give the following definition,

where z− and z+ are place-holders for the left and right limits of a curve z at a jump point.

Definition 5.6. Let % > 0, t ∈ [0, T ], and z−, z+ ∈ Z be such that

−DzI(t, z−) ∈ ∂R1(0) and −DzI(t, z+) ∈ ∂R1(0) . (5.15)

We say that an admissible transition curve ϑ ∈ T
%
t (z−, z+) is an optimal transition between z− and z+ if

I(t, z−)− I(t, z+) = ∆%
f (t; z−, z+) =

∫ 1

0

ft(ϑ(r), ϑ′(r)) dr = ft(ϑ(r), ϑ′(r)) for a.a. r ∈ (0, 1). (5.16)
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We will denote by O
%
t (z−, z+) the collection of such transitions.

A few comments are in order. First of all, with (5.15) we are imposing that the points z− and z+ to be

connected fulfill the local stability condition. It is not difficult to check that this is verified whenever z− and

z+ are the left and right limits at a jump point of a Balanced Viscosity solution. Secondly, let us gain further

insight into (5.16): with the second equality, we are asking that ϑ (which we may always suppose to be defined

on [0, 1]) is a minimizer in the definition of ∆%
f (t; z−, z+); with the third one, that ϑ has constant ‘‘ft-velocity”,

which can be obtained by a rescaling argument. The first equality relates to the jump conditions verified along

any Balanced Viscosity solution, cf. (5.26) ahead.

We are now in a position to give Thm. 5.7 , stating the convergence of the discrete solutions of the viscous

damage system to a Balanced Viscosity solution of the rate-independent damage system, as the parameters ε

and τ tend to zero simultaneously, with ε
τ ↑ ∞. In fact, we will retrieve a Balanced Viscosity solution z with

enhanced properties:

(i) we have that z ∈ BV([0, T ];H1(Ω)), which reflects the enhanced discrete BV-estimate (3.9e);

(ii) at all jump points t of z, the left and right limits z(t−) and z(t+) can be connected by an optimal jump

transition in the sense of Definition 5.6, so that the set O
%̄
t (z(t−), z(t+)) is non-empty. Additionally,

such transition has finite H1(Ω)-length. Furthermore, the total H1(Ω)-length of the connecting paths

is finite.

Observe that property (ii) is not encoded in Definition 5.4, which gives Varf(z; [0, T ]) <∞, since Varf(z; [0, T ])

only controls the “f-length” of the optimal jump paths.

This enhanced concept of Balanced Viscosity solution was already introduced in the general setting of

[MRS16], cf. Section 3.4 therein. Along the footsteps of [MRS16], we will refer to these solutions as H1(Ω)-

parameterizable Balanced Viscosity solutions.

Theorem 5.7. Under Assumptions 2.1, 2.2, and 2.8, let z0 ∈ Z, fulfilling (3.6), be approximated by discrete

initial data (z0
τ,ε)τ,ε such that

z0
τ,ε → z0 in Z, I(0, z0

τ,ε)→ I(0, z0), DzI(0, z
0
τ,ε) ⇀ DzI(0, z0) in L2(Ω), (5.17)

and let (zτ,ε)τ,ε, (ẑτ,ε)τ,ε be the discrete solutions to the viscous damage system (1.2) starting from the data

(z0
τ,ε)τ,ε.

Then, there exists %̄ > 0, only depending on the problem data (cf. (6.2) below) and fulfilling (5.13), such that

for all sequences (τk, εk)k satisfying

lim
k→∞

εk = 0 and lim
k→∞

τk
εk

= 0, (5.18)

there exist a (not relabeled) subsequence, and a Balanced Viscosity solution z to the rate-independent damage

system (1.1), fulfilling z(0) = z0, the energy balance (Ef) with

Var%̄f (z; [0, t]) = sup
%≥%̄

Var%f (z; [0, t]) = inf
%≥%̄

Var%f (z; [0, t]) for every t ∈ [0, T ] (5.19)

and such that the following convergences hold as k →∞, at every t ∈ [0, T ]:

zτk,εk(t), ẑτk,εk(t)→ z(t) in Z, (5.20a)

I(t, zτk,εk(t)), I(t, ẑτk,εk(t))→ I(t, z(t)), (5.20b)∫ tτ (t)

0

(
Rε(ẑ

′
τ (r)) + R∗ε (−DzI(tτ (r), zτ (r)))

)
dr → Var%̄f (z; [0, t]) . (5.20c)
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Furthermore, z is a H1(Ω)-parameterizable Balanced Viscosity solution, namely z ∈ BV([0, T ];H1(Ω)), and

(1) ∀ t ∈ Jz ∃ϑt ∈ O
%̄
t (z(t−), z(t+)) s.t. ϑt ∈ AC([0, 1];H1(Ω)); (5.21a)

(2)
∑
t∈Jz

∫ 1

0

‖ϑ′t(r)‖H1(Ω) dr <∞. (5.21b)

Observe that (5.19) is an additional property, cf. (5.6). The constant %̄ will be specified along the proof of

Theorem 5.7, postponed to Section 6. Instead, in the forthcoming Sec. 5.2 we gain further insight into the

notion of Balanced Viscosity solution for our damage system, in particular focusing on the description of the

behavior of the system at jumps.

5.2. Properties of Balanced Viscosity solutions. One of the cornerstones of the proof of Thm. 5.7 is a

characterization of Balanced Viscosity solutions in terms of the local stability condition (Sloc), combined with

the upper energy estimate in (Ef). The proof of this characterization relies on chain-rule inequality for E,

evaluated along a locally stable curve with the regularity and summability properties specified in Definition

5.4. This inequality involves the non-standard total variation functional Varf.

Proposition 5.8 (BV-chain rule inequality). Under Assumptions 2.1, 2.2, and 2.8, let z ∈ L∞(0, T ;Z) ∩
BV([0, T ];L2(Ω)), with DzI(·, z(·)) ∈ L∞(0, T ;L2(Ω)), also fulfill (5.14). Let % fulfill (5.13). Suppose that z

satisfies the local stability condition (Sloc), with Var%f (z; [0, T ]) < ∞. Then, the map t 7→ I(t, u(t)) belongs to

BV([0, T ]) and satisfies the chain rule inequality∣∣∣∣I(t1, u(t1))−I(t0, u(t0))−
∫ t1

t0

∂tI(t, z(t)) dt

∣∣∣∣ ≤ Var%f (z; [t0, t1]) for all 0 ≤ t0 ≤ t1 ≤ T . (5.22)

We postpone its proof to Section 6. We now characterize Balanced Viscosity solutions in terms of the local

stability (Sloc), joint with the upper energy estimate in (Ef), which it is sufficient to give on the whole time

interval [0, T ]. Namely we have

Corollary 5.9. Under Assumptions 2.1, 2.2, and 2.8, a curve z ∈ BV([0, T ];L2(Ω)) is a Balanced Viscosity

solution of the rate-independent damage system (1.1) (in the sense of Definition 5.4) if and only if it satisfies

(Sloc) and

Var%f (z; [0, T ]) + I(T, z(T )) ≤ I(0, z(0)) +

∫ T

0

∂tI(s, z(s)) ds (5.23)

for some % fulfilling (5.13).

For the proof, we refer the reader to the argument for [MRS16, Cor. 3.14]. Corollary 5.9 will play a

crucial role in the proof of Theorem 5.7, for it will allow us to focus on the proof of (Sloc) and of the energy

inequality (5.23), only, in place of the balance (Ef). In turn, (5.23) will be achieved by means of careful lower

semicontinuity arguments. The second outcome of the characterization provided by Cor. 5.9 is the following

Proposition 5.10, which was proved in the abstract setting in [MRS16, Thm. 3.15]. It shows that a locally

stable curve is a Balanced Viscosity solution of the rate-independent system if and only if it fulfills

(i) an energy-dissipation inequality only featuring the R1-total variation functional from (5.8), cf. (5.25)

below, and

(ii) at each jump point, the jump conditions (5.26) featuring the Finsler cost ∆f induced by f.

Concerning (i), let us also mention that it is possible to show (cf. [MRS16, Thm. 3.16]) that any Balanced

Viscosity solution also satisfies the subdifferential inclusion

∂R1(z′(t)) + DzI(t, z(t)) 3 0 in L2(Ω) (5.24)

at every t ∈ (0, T ) that is not a jump point, hence for almost all t ∈ (0, T ). The system behavior at jump points

is instead described by the jump conditions (5.26) below. This further characterization of the Balanced Viscosity
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concept in terms of (i) and (ii) highlights how it differs in comparison to the standard Global Energetic notion.

The latter can be characterized in terms of the global stability condition, the energy-dissipation inequality

(5.25), and the analogues of the jump conditions (5.26), with the cost ∆f(t; ·, ·) replaced by R1. Conditions

(5.26) highlight that the viscous approximation from which Balanced Viscosity solutions originate enters into

play in the description of the energetic behavior of the system at jumps.

Proposition 5.10. A curve z ∈ BV([0, T ];L2(Ω)) is a Balanced Viscosity solution of the rate-independent

damage system (1.1) if and only if it satisfies (Sloc), the (R1)-energy dissipation inequality

VarR1(z; [s, t]) + I(t, z(t)) ≤ I(s, z(s)) +

∫ t

s

∂tI(s, z(s)) ds for all 0 ≤ s ≤ t ≤ T, (5.25)

and the jump conditions

I(t, z(t))− I(t, z(t−)) = −∆%
f (t; z(t−), z(t)),

I(t, z(t+))− I(t, z(t)) = −∆%
f (t; z(t), z(t+)),

I(t, z(t+))− I(t, z(t−)) = −∆%
f (t; z(t−), z(t+))

= −
(

∆%
f (t; z(t−), z(t)) + ∆%

f (t; z(t), z(t+))
) (5.26)

at every t ∈ Jz.

The proof follows the very same lines as the argument for [MRS16, Thm. 3.15].

We conclude this section by shedding further light into the the fine properties of optimal jump transitions.

Following [MRS16, Sec. 3.4], we say that an optimal transition ϑ ∈ O
%
t (z−, z+) is of

• sliding type if −DzI(t, ϑ(r)) ∈ R1(0) for every r ∈ [0, 1];

• viscous type if −DzI(t, ϑ(r)) /∈ R1(0) for every r ∈ [0, 1].

The forthcoming result on sliding and viscous optimal transitions follows from the very same argument as in

the proof of [MRS16, Prop. 3.19].

Proposition 5.11. Let % > 0, t ∈ [0, T ], and z−, z+ ∈ Z fulfilling (5.15) be given. Let ϑ ∈ O
%
t (z−, z+). Then,

(1) ϑ is of sliding type if and only if it satisfies

∂R1(ϑ′(r)) + DzI(t, ϑ(r)) 3 0 in L2(Ω) for a.a. r ∈ (0, 1);

(2) ϑ is of viscous type if and only if there exists a map ε : (0, 1)→ (0,+∞) such that ϑ and ε satisfy

∂R1(ϑ′(r)) + ε(r)ϑ′(r) + DzI(t, ϑ(r)) 3 0 in L2(Ω) for a.a. r ∈ (0, 1);

(3) Every optimal transition ϑ can be decomposed in a canonical way into an (at most) countable collection

of optimal sliding and viscous transitions.

6. Proofs

We start by giving Proposition 6.1, which is the counterpart to [MRS16, Thm. 3.7]. A comparison between

the latter result and Proposition 6.1 below reflects the major differences between the present context and

that of [MRS16]: The transition curves by means of which the Finsler cost ∆f from (5.2) is defined have

better properties than their analogues in [MRS16], cf. also Remark 5.2. This is also apparent from item (3) of

the ensuing statement, yielding the existence of a transition path ϑ in the space W 1,∞(0, 1;H1(Ω)), even, in

accordance with the uniform bound (3.9e) for the discrete solutions.

Proposition 6.1. Let t ∈ [0, T ] and z0, z1 ∈ Z be fixed. Then:

(1) For every % > 0 such that maxi=0,1(‖zi‖Z +‖DzI(t, zi)‖L2(Ω)) ≤ % and ∆%
f (t; z0, z1) < +∞, there exists

an optimal transition path ϑ ∈ T
%
t (z0, z1) attaining the inf in the definition of ∆%

f (t; z0, z1), cf. (5.4);



34 DOROTHEE KNEES, RICCARDA ROSSI, AND CHIARA ZANINI

(2) Let (zn0 )n, (zn1 )n ⊂ Z fulfill

zn0 → z0, zn1 → z1 in Z.

Then,

lim inf
n→∞

∆%
f (t; zn0 , z

n
1 ) ≥ ∆%

f (t; z0, z1) (6.1)

for every % ≥ supi=1,2,n∈N(‖zi‖Z + ‖DzI(t, zi)‖L2(Ω)).

(3) Let the sequences (αk)k, (βk)k ⊂ [0, T ], (ẑk)k ⊂ L∞(αk, βk;Z)∩AC([αk, βk];H1(Ω)), (zk)k ⊂ L∞(αk, βk;Z),

fulfill

lim
k→∞

αk = t = lim
k→∞

βk, zk(αk)→ z0 in Z, zk(βk)→ z1 in Z,

lim
k→∞

sup
r∈[αk,βk]

‖zk(r)− ẑk(r)‖H1(Ω) = 0,

∃ %̄ > 0 ∀ k ∈ N :

‖ẑk‖L∞(αk,βk;Z)∩W 1,1(αk,βk;H1(Ω)) + ‖zk‖L∞(αk,βk;Z) + ‖DzI(tτk , zk)‖L∞(αk,βk;L2(Ω)) ≤ %̄ .

(6.2)

Then, there exists a (not relabeled) increasing subsequence of (k), increasing and surjective time rescal-

ings tk ⊂ AC([0, 1]; [αk, βk]) and an admissible transition ϑ ∈ T
%̄
t (z0, z1) such that

lim
k→∞

sup
s∈[0,1]

‖zk ◦ tk(s)−ϑ(s)‖H1(Ω) = lim
k→∞

sup
s∈[0,1]

‖ẑk ◦ tk(s)−ϑ(s)‖H1(Ω) = 0, (6.3a)

in addition, ϑ is in W 1,∞(0, 1;H1(Ω)), and (6.3b)

∆%̄
f (t; z0, z1) ≤

∫ 1

0

ft[ϑ(s), ϑ′(s)] ds ≤ lim inf
k→∞

∫ βk

αk

(
Rεk(ẑ′k(r))+R∗εk(−DzI(tτk(r), zk(r)))

)
dr . (6.3c)

Proof. We start by addressing the proof of (2): Along the footsteps of the proof of [MRS16, Thm. 3.7], we

consider a sequence of admissible transitions ϑn ∈ T
%
t (zn0 , z

n
1 ) such that∫ 1

0

ft(ϑn(r), ϑ′n(r)) dr ≤ ∆%
f (t; zn0 , z

n
1 ) + ηn with ηn ≥ 0 and lim

n→∞
ηn = η ≥ 0 .

We perform the change of variable

sn(r) := cn

(
r+

∫ r

0

‖ϑ′n(σ)‖L2(Ω) dσ

)
, rn := s−1

n : [0,S]→ [0, 1], θn := ϑn ◦ rn : [0,S]→ Z, (6.4)

with cn a normalization constant such that S = sn(1) is independent of n ∈ N. In view of the estimate

‖ϑ′n‖L1(0,1;L2(Ω)) ≤ % encoded in the definition of ∆%
f , we have that cn ≥ c̄ > 0 for all n ∈ N. The curves

(rn, θn)n fulfill the normalization condition

r′n(s) + ‖θ′n(s)‖L2(Ω) =
1

cn
≤ 1

c̄
for a.a. s ∈ (0,S) (6.5a)

and, moreover,

‖θn‖L∞(0,S;Z) + ‖θ′n‖L1(0,S;L2(Ω)) + ‖DzI(t, θn(·))‖L∞(0,S;L2(Ω)) ≤ %. (6.5b)

It follows from the first bound in (6.5b) and from (2.34) that ‖Dz Ĩ(t, θn(·))‖L∞(0,S;L2(Ω)) ≤ C. Therefore we

deduce that ‖Aq(θn)‖L∞(0,S;L2(Ω)) ≤ C, which yields, in view of the aforementioned regularity results from

Proposition 2.7, a bound for (θn)n in L∞(0,S;W 1+σ,q(Ω))) for all 0 < σ < 1
q . In view of (6.5a), there

exists r ∈ W 1,∞(0,S) such that, up to a not relabeled subsequence, rn → r uniformly in [0,S] and weakly∗

in W 1,∞(0,S). Furthermore, by Aubin-Lions type compactness results (cf., e.g. [Sim87, Thm. 5, Cor. 4]),

there exists a curve θ ∈ L∞(0,S;W 1+σ,q(Ω)) ∩ C0([0,S];Z) ∩ W 1,∞(0,S;L2(Ω)) for all 0 < σ < 1
q , with

DzI(t, θ(·)) ∈ L∞(0,S;L2(Ω)), such that

θn ⇀
∗ θ in L∞(0,S;W 1+σ,q(Ω)) ∩W 1,∞(0,S;L2(Ω)) for all 0 < σ <

1

q
,

θn → θ in C0([0,S];Z) ,

DzI(t, θn) ⇀∗ DzI(t, θ) in L∞(0,S;L2(Ω))

(6.6)
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(the latter convergence property following from the fact that DzI(t, θn) = Aq(θn)+Dz Ĩ(t, θn) converges strongly

to DzI(t, θ) in L∞(0,S;Z∗) in view of the second of (6.6), combined with (2.36)). Therefore,

‖θ‖L∞(0,S;Z) + ‖θ′‖L1(0,S;L2(Ω)) + ‖DzI(t, θ(·))‖L∞(0,S;L2(Ω)) ≤ %.

We thus conclude that θ ∈ T
%
t (z0, z1); up to a reparameterization, we may suppose θ to be defined on [0, 1].

Arguing in the very same way as in the proof of [KRZ13, Thm. 5.1], [KRZ15, Thm. 7.4], we see that

η + lim inf
n→∞

∆%
f (t; zn0 , z

n
1 ) ≥ lim inf

n→∞

∫ 1

0

ft(ϑn(r), ϑ′n(r)) dr = lim inf
n→∞

∫ S

0

ft(θn(s), θ′n(s)) ds

≥
∫ S

0

ft(θ(s), θ
′(s)) ds ≥ ∆%

f (t; z0, z1) .

Observe that the last inequality follows from the fact that θ is an admissible curve between z0 and z1. Since

η ≥ 0 is arbitrary, this concludes the proof of (2); a slight modification of this argument yields (1), as well.

In order to prove (3), we can confine the discussion to the case z0 6= z1, so that

lim
k→∞

∫ βk

αk

(
Rεk(ẑ′k(r))+R∗εk(−DzI(tτk(r), zk(r)))

)
dr =: L ≥ R1(z1−z0) > 0 .

In analogy with (6.4), but taking now into account that (ẑk)k is bounded in W 1,1(αk, βk;H1(Ω)) by (6.2), we

define

sk(r) := ck

(
r+

∫ r

0

‖ẑ′k(σ)‖H1(Ω) dσ

)
for all r ∈ [0, βk − αk]

where the normalization constant ck is now chosen in such a way as to have sk(βk − αk) = 1. Thus, we set

tk := s−1
k : [0, 1]→ [αk, βk], zk := zk ◦ tk, ẑk := ẑk ◦ tk : [0, 1]→ Z,

and observe that the following estimates hold

‖tk‖W 1,∞(0,1) + ‖ẑk‖W 1,∞(0,1;H1(Ω)) ≤ C, (6.7a)

‖zk‖L∞(0,1;Z) + ‖ẑk‖L∞(0,1;Z) + ‖ẑ′k‖L1(0,1;H1(Ω)) + ‖DzI(tτk ◦ tk, zk)‖L∞(0,1;L2(Ω)) ≤ %̄ , (6.7b)

where (6.7a) is due to the analogue of the normalization condition (6.5a), while (6.7b) derives from (6.2). From

the bound for ‖DzI(tτk ◦ tk, zk)‖L∞(0,1;L2(Ω)), taking into account that ‖Dz Ĩ(tτk ◦ tk, zk)‖L∞(0,1;L2(Ω)) ≤ C in

view of (2.34) and the estimate ‖zk‖L∞(0,1;Z) ≤ C, we also deduce

‖Aq(zk)‖L∞(0,1;L2(Ω)) ≤ C . (6.7c)

Combining estimates (6.7) with, again, the compactness results [Sim87, Thm. 5, Cor. 4], and taking into

account that (zk) and (̂zk)k converge to the same limit in view of the second of (6.2), with the very same

arguments as in the proof of (2) we conclude that there exists ϑ such that

ẑk ⇀
∗ ϑ in L∞(0, 1;Z) ∩W 1,∞(0, 1;H1(Ω)), (6.8a)

zk ⇀
∗ ϑ in L∞(0, 1;W 1+σ,q(Ω)) for all 0 < σ <

1

q
, (6.8b)

zk → ϑ in L∞(0, 1;Z), (6.8c)

ẑk → ϑ in C0([0, 1], H1(Ω)) , (6.8d)

whence (6.3a) and (6.3b). Furthermore, observe that Aq(zk) ⇀∗ Aq(ϑ) in L∞(0, 1;L2(Ω)) and that, as k →∞,

‖Dz Ĩ(tτk ◦ tk, zk)−Dz Ĩ(t, ϑ)‖L∞(0,1;L2(Ω))

(1)

≤ C sup
s∈[0,1]

(
|tτk(tk(s))− t|+ ‖zk(s)− ϑ(s)‖L6(Ω)

) (2)→ 0 (6.8e)

with (1) due to (2.32), and convergence (2) due to (6.8c), joint with the fact that sups∈[0,1] |tk(s)) − t| → 0

as tk takes values in the interval [αk, βk] which shrinks to {t}. All in all, DzI(tτk ◦ tk, zk) ⇀∗ DzI(t, ϑ) in

L∞(0, 1;L2(Ω)). It follows from estimates (6.7b) and convergences (6.8) that ϑ ∈ T
%̄
t (z0, z1). It remains to
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conclude (6.3c). For this limit passage, we rely on convergences (6.8) and refer the reader to the proof of

[MRS16, Prop. 7.1], cf. also [KRZ13, Thm. 5.1], [KRZ15, Thm. 7.4].

This finishes the proof of Proposition 6.1. �

We continue this section by carrying out the proof of Proposition 5.8, by suitably adapting the argument

for the chain-rule result [MRS16, Thm. 3.13]. From now on, we will suppose that t0 = 0 and t1 = T for the

sake of simplicity. Let % > 0 fulfill (5.13).

First of all, for any z ∈ BV([0, T ];L2(Ω)) fulfilling the conditions of the statement we construct a parame-

terized curve (t, z) : [0,S]→ [0, T ]× Z with the following properties:

z(t) ∈ {z(s) : t(s) = t}

and

- t is non-decreasing, surjective, Lipschitz,

- z ∈ L∞(0,S;Z) ∩AC([0,S];L2(Ω)) and DzI(·, z(·)) ∈ L∞(0,S;L2(Ω)).

The integrability and regularity requirements on z coincide with those on admissible transition curves, cf.

Definition 5.1. Hence, we will call (t, z) admissible parameterized curve. We borrow the construction of (t, z),

starting from the BV-curve z, from the proof of [MRS16, Prop. 4.7]: first, we introduce the parameterization

s(t) := t+ VarL2(Ω)(z; [0, t]), S := s(T ).

We define

t := s−1 : [0,S] \ I → [0, T ], z := z ◦ t,

where the set I is given by I = ∪nIn, with In = (s(tn−), s(tn+)) and the points (tn)n constitute the countable

jump set of z, which in fact coincides with the jump set of s. We extend t and z to I by setting

t(s) := tn, z(s) := ϑn(rn(s)) if s ∈ In,

with rn : In → [0, 1] the unique affine and strictly increasing function from In to [0, 1] and ϑn ∈ T
%
tn(z(tn−), z(tn+))

an admissible transition curve satisfying ϑn(rn(s(tn))) = z(tn) and the optimality condition∫ 1

0

ftn(ϑn(r), ϑ′n(r)) dr = ∆%
f (tn; z(tn−), z(tn)) + ∆%

f (tn; z(tn), z(tn+)) .

The existence of such an optimal transition follows from Proposition 6.1(1). Indeed, let t∗ ∈ Jz. Observe

that in (t∗, z(t∗±)) the assumptions of the proposition are satisfied, which can be seen as follows. First of

all, ∆%
f (tn; z(tn−), z(tn)) < ∞ and ∆%

f (tn; z(tn), z(tn+)) < ∞ since Var%f (z; [0, T ]) < +∞. Moreover, choose

a sequence sk → t∗− for k → ∞ such that the assumptions of Prop. 6.1(1) are satisfied along this sequence

and such that z(sk) ⇀ z(t∗−) in Z. Consequently, by Corollary 2.13, Dz Ĩ(sk, z(sk)) → Dz Ĩ(t∗, z(t∗−)) and

‖Aq(z(sk))‖L2(Ω) ≤ C, which translates into a uniform bound of the sequence (z(sk))k in W 1+σ,q(Ω) for

0 < σ < 1
q , cf. Proposition 2.7. Thus, we finally conclude that DzI(t∗, z(t∗−)) ∈ L2(Ω) and that ‖z(t∗−)‖Z +

‖DzI(t∗, z(t∗−))‖L2(Ω) ≤ %. A similar argument applies to t∗+.

By construction, z ∈ W 1,∞(0,S;L2(Ω)). Indeed, let s1 < s2 ∈ [0,S] and σi := t(si). Hence, si = σi +

VarL2(Ω)(z; [0, σi]). This implies that

‖z(s1)− z(s2)‖L2(Ω) ≤ |σ2 + VarL2(Ω)(z; [0, σ2])− (σ1 + VarL2(Ω)(z; [0, σ1]))| = |s2 − s1| .

Hence, altogether (t, z) is an admissible parameterized curve.

By repeating the very same calculations as in the proof of [MRS16, Prop. 4.7], we may show that

Var%f (z; [0, T ]) =

∫ S

0

ft(s)(z(s), z
′(s)) ds . (6.9)
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Secondly, we observe that the chain rule from Lemma 2.16 (cf. also Remark 2.17) extends to the admissible

parameterized curve (t, z), yielding

d

ds
I(t(s), z(s))− ∂tI(t(s), z(s))t′(s) =

∫
Ω

DzI(t(s), z(s))z
′(s) dx for a.a. s ∈ (0,S) .

Therefore, with a simple calculation (cf. also the proof of [MRS16, Thm. 4.4]) we infer that∣∣∣∣ d

ds
I(t(s), z(s))− ∂tI(t(s), z(s))t′(s)

∣∣∣∣ ≤ ft(s)(z(s), z
′(s)) for a.a. s ∈ (0,S) . (6.10)

Combining (6.9) & (6.10) we obtain the desired chain-rule inequality (5.22).

We are now in a position to give the proof of Theorem 5.7. We will split the proof in several steps and

give some intermediate results. Let us mention in advance that, in their statements, we will always tacitly

suppose that Assumptions 2.1, 2.2, and 2.8, as well as condition (5.17), from Theorem 5.7 hold. More precisely,

- we start by fixing the compactness properties of the sequences (zτk,εk)k, (ẑτk,εk)k in Lemma 6.2 below.

- Throughout Steps 1–3 we show that any limit curve z of (zτk,εk)k, (ẑτk,εk)k complies with the local

stability (Sloc) and with the energy-dissipation inequality (5.23), obtained by passing to the limit in its

discrete counterpart (3.11). By virtue of Corollary 5.9 we thus conclude that z is a Balanced Viscosity

solution to the rate-independent system (1.1).

- Steps 4 & 5 are devoted to finalizing the proof of convergences (5.20), and to showing that z is a

H1(Ω)-parameterizable solution, cf. (5.21).

Step 0: Compactness. We prove the following

Lemma 6.2. Let (τk, εk)k be null sequences. There holds

∃C > 0 ∀ k ∈ N : sup
t∈[0,T ]

‖zτk,εk(t)−ẑτk,εk(t)‖H1(Ω) ≤ C
(
τk
εk

)1/2

. (6.11)

Suppose in addition (5.18). Then, there exists a curve z ∈ L∞(0, T ;Z) ∩ BV([0, T ];H1(Ω)) such that, up to a

(not relabeled) subsequence, the following convergences hold:

zτk,εk , ẑτk,εk ⇀
∗ z in L∞(0, T ;Z), (6.12a)

zτk,εk(t), ẑτk,εk(t)→ z(t) in Z for all t ∈ [0, T ], (6.12b)

DzI(tτk(t), zτk,εk(t)) ⇀ DzI(t, z(t)) in L2(Ω) for all t ∈ [0, T ]. (6.12c)

Proof. The first estimate follows from observing that for every t ∈ (0, T )

‖zτk,εk(t)−ẑτk,εk(t)‖H1(Ω) ≤
∫ tτ (t)

tτ (t)

‖ẑ′τk,εk(r)‖H1(Ω) dr ≤ τ1/2
k ‖ẑ

′
τk,εk
‖L2(tτ (t),tτ (t);H1(Ω)),

and then (6.11) is a consequence of the a priori estimate (3.9d).

Convergences (6.12a) follow from estimate (3.9b): observe that the sequences (zτk,εk)k, (ẑτk,εk)k converge

to the same limit, weakly star in L∞(0, T ;Z), in view of the fact that

‖zτk,εk−ẑτk,εk‖L∞(0,T ;H1(Ω)) → 0 (6.13)

as k →∞ by (6.11) combined with condition (5.18) on the sequences (τk, εk)k.

It follows from estimate (3.9e) that the sequences (zτk,εk)k, (ẑτk,εk)k are bounded in BV([0, T ];H1(Ω)).

Due to the previously mentioned [MT04, Thm. 6.1], up to a subsequence they pointwise converge on [0, T ],

w.r.t. the weak H1(Ω)-topology, to (the same, by (6.13)) function z̃. Now, by the additional estimate (3.9f),

(zτk,εk)k is bounded in L∞(0, T ;W 1+σ,q(Ω)) for every 0 < σ < 1
q , cf. Proposition 2.7, and so is (ẑτk,εk)k.

Therefore, by compactness the above pointwise convergence to z̃ improves to a strong convergence in Z. But

then, zτk,εk , ẑτk,εk → z̃ in Lp(0, T ;Z) for every 1 ≤ p <∞, which allows us to conclude that z̃ = z. All in all,

we have obtained convergence (6.12b).
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Finally, we address (6.12c): Observe that Aq(zτk,εk(t)) → Aq(z(t)) in Z∗ as a consequence of the strong

convergence (6.12b). A fortiori, by the L∞(0, T ;L2(Ω))-bound on (Aq(zτk,εk))k, we find that Aq(zτk,εk(t)) ⇀

Aq(z(t)) in L2(Ω). We combine this with (2.36), giving that Dz Ĩ(tτk(t), zτk,εk(t)) ⇀ Dz Ĩ(t, z(t)) in L2(Ω), and

arrive at (6.12c). �

Step 1: ad the local stability (Sloc). On the one hand, the very same argument leading to the proof of

estimate (3.12a) in Corollary 3.3 also shows that

sup
k

∫ T

0

R∗εk(−DzI(tτk(r), zτk,εk(r))) dr ≤ C . (6.14)

On the other hand, R∗ε Mosco-converges, w.r.t. the L2(Ω)-topology, to the indicator functional

I∂R(0) : L2(Ω)→ [0,+∞] defined by I∂R(0)(v) :=

{
0 if v ∈ ∂R1(0),

+∞ else.

Hence we have in view of (6.12c) that

lim inf
k→∞

R∗εk(−DzI(tτk(t), zτk,εk(t))) ≥ I∂R(0)(−DzI(t, z(t))) for every t ∈ [0, T ]. (6.15)

Therefore, from (6.14) and (6.15) via the Fatou Lemma we infer that∫ T

0

I∂R(0)(−DzI(t, z(t))) dt < +∞ whence I∂R(0)(−DzI(t, z(t))) = 0 for a.a. t ∈ (0, T ).

From this we conclude with an approximation argument −DzI(t, z(t)) ∈ ∂R1(0) for every t ∈ [0, T ] \ Jz, and

that −DzI(t, z(t±)) ∈ ∂R1(0) for every t ∈ Jz, i.e. (Sloc).

Step 2: the key lower semicontinuity inequality. We aim to prove the following

Lemma 6.3. For every 0 ≤ s ≤ t ≤ T there holds

lim inf
k→∞

∫ tτk (t)

tτk
(s)

Rεk(ẑ′τk,εk(r)) dr + R∗εk(−DzI(tτk(r), zτk,εk(r))) dr ≥ Var%̄f (z; [s, t]) (6.16)

with %̄ given by

%̄ := sup
k

(∫ T

0

(
Rεk(ẑ′k(r))+R∗εk(−DzI(tτk(r), zk(r)))

)
dr + ‖ẑk‖L∞(0,T ;Z)∩W 1,1(0,T ;H1(Ω))

+ ‖zk‖L∞(0,T ;Z) + ‖DzI(tτk , zk))‖L∞(0,T ;L2(Ω))

)
Proof. Along the footsteps of the [MRS16, proof of Thm. 7.3], we introduce the non-negative Borel measures

on [0, T ]

νk :=
(
Rεk(ẑ′τk,εk) + R∗εk(−DzI(tτk , zτk,εk))

)
L 1,

with L 1 the Lebesgue measure. It follows from estimate (3.12b) that the sequence (νk)k is bounded in the

space of Radon measures, hence there exists a positive measure ν such that νk ⇀
∗ ν as k → ∞. Like in the

proof of [MRS16, Thm. 7.3], we observe that for every interval [a, b] ⊂ [0, T ]

ν([a, b]) ≥ lim sup
k→∞

νk([a, b]) ≥ lim sup
k→∞

∫ b

a

(
Rεk(ẑ′τk,εk(r)) + R∗εk(−DzI(tτk(r), zτk,εk(r)))

)
dr

≥ lim inf
k→∞

∫ b

a

Rεk(ẑ′τk,εk(r)) dr

≥ lim inf
k→∞

VarR1(zτk,εk ; [a, b])
(1)

≥ VarR1(z; [a, b])
(2)

≥ µd([a, b]),
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where (1) follows from the pointwise convergence (6.12b) and the lower semicontinuity of the variation functional

VarR1
, and (2) from the definition (5.9) of the measure µ. We thus conclude that

ν ≥ µd. (6.17)

We now check

ν({t}) ≥ ∆%̄
f (t; z(t−), z(t)) + ∆%̄

f (t; z(t), z(t+)) ≥ µJ({t}) for every t ∈ Jz. (6.18)

With this aim, for fixed t ∈ Jz let us fix two sequences αk ↑ t and βk ↓ t such that{
zτk,εk(αk)→ z(t−),

zτk,εk(βk)→ z(t+)
in Z as k →∞.

Thus we have

lim sup
k→∞

νk([αk, βk]) ≥ lim inf
k→∞

∫ βk

αk

(
Rεk(ẑ′τk,εk(r)) + R∗εk(−DzI(tτk(r), zτk,εk(r)))

)
dr

(1)

≥ ∆%̄
f (t; z(t−), z(t+)) ,

where (1) ensues from Proposition 6.1, applying (6.3) with the choices zk := zτk,εk , ẑk := ẑτk,εk . With analogous

arguments check we check that

lim inf
k→∞

νk([αk, t]) ≥ ∆%̄
f (t; z(t−), z(t)), lim inf

k→∞
νk([t, βk]) ≥ ∆%̄

f (t; z(t), z(t+)) . (6.19)

All in all, we have

ν({t})
(1)

≥ lim sup
k→∞

νk([αk, βk]) ≥ lim inf
k→∞

νk([αk, t]) + lim inf
k→∞

νk([t, βk]) ≥ ∆%̄
f (t; z(t−), z(t)) + ∆%̄

f (t; z(t), z(t+))

(2)

≥ µJ({t}),

where (1) is a property of the weak∗-convergence of measures and (2) ensues from (5.3). Hence inequality

(6.18) is proved.

Combining (6.17), (6.18), and (6.19) and repeating the very same calculations as in the proof of [MRS16,

Thm. 7.3], we ultimately conclude (6.16). �

Step 3: ad the energy-dissipation inequality (5.23). We now pass to the limit in the discrete energy-

dissipation inequality (3.11), written for s = 0 and t = T . For the first term on the left-hand side, we resort to

the lower semicontinuity inequality (6.16) from Step 2. It follows from the pointwise convergence (6.12b) and

the lower semicontinuity (2.36) of I that

lim inf
k→∞

I(T, ẑτk,εk(T )) ≥ I(T, z(T )),

whereas by hypothesis we have that I(0, ẑτk,εk(0))→ I(0, z0). Furthermore, it follows from (2.23), (2.24), and

the Lebesgue Theorem that

lim
k→∞

∫ T

0

∂tI(t, ẑτk,εk(t)) dt =

∫ T

0

∂tI(t, z(t)) dt .

Finally, observe that the very last term on the right-hand side of (3.11) converges to zero by virtue of estimates

(3.9) and convergence (6.13).

Thus, (5.23) is proven with Var%̄f (z; [0, T ]) and, by virtue of Corollary 5.9, we deduce that z is a Balanced

Viscosity solution to the rate-independent damage system (1.1).

Finally, (5.19) follows from the following chain of inequalities (which in fact holds for every t ∈ [0, T ])

sup
%≥%̄

Var%f (z; [0, T ])
(1)
= Var%̄f (z; [0, T ])

(2)
= I(0, z(0))− I(T, z(T )) +

∫ T

0

∂tI(s, z(s)) ds
(3)

≤ inf
%≥%̄

Var%f (z; [0, T ]),

with (1) due to (5.6), (2) to (Ef) involving the total variation functional Var%̄f (z; [0, T ]), and (3) from the

chain-rule inequality (5.22) (observe that % therein is arbitrary, provided it fulfills (5.13)).
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Step 4: ad convergences (5.20). The convergences of the energies (I(t, zτk,εk(t)))k follows from the pointwise

convergence (6.12a) of (zτk,εk(t))k. In order to prove the convergence of (I(t, ẑτk,εk(t)))k and of the dissipation

integrals in (5.20c), we repeat the very same arguments as in the proof of [MRS16, Thm. 3.11].

Step 5: ad (5.21). We may repeat the proof of [MRS16, Thm. 3.22], to which we refer the reader, relying on

Proposition 6.1(3).

This concludes the proof of Theorem 5.7.

Appendix A. Some references on elliptic regularity

For d ≥ 2 let Ω ⊂ Rd be a bounded C1,1-domain with Dirichlet boundary ∂Ω. Let further C satisfy (2.5).

Reference [Val78, Theorem 3], see also [MR03, Theorem 7.1], yields

Theorem A.1. For every p ∈ (1,∞) the operator LC : W 1,p
0 (Ω)→W−1,p(Ω) is a continuous isomorphism.

Moreover, Theorem 10.5 from [ADN64] (there it is assumed that the domain has a C2-boundary, but the

coefficients need to be continuous, only, instead of Lipschitz continuous) provides the following a priori estimate:

Theorem A.2. For every p ∈ (1,∞) there exist constants cp, c̃p > 0 such that for every u ∈W 2,p(Ω)∩W 1,p
0 (Ω)

it holds

‖u‖W 2,p(Ω) ≤ cp
(
‖LCu‖Lp(Ω) + c̃p‖u‖Lp(Ω)

)
. (A.1)

Thanks to Theorem A.1, for every p ∈ (1,∞) the operator

LC : W 2,p(Ω) ∩W 1,p
0 (Ω)→ Lp(Ω), u 7→ −div(Cε(u)) (A.2)

is injective, which implies that estimate (A.1) is valid with c̃p = 0 and that LC has a closed range. By [Kat84,

Chapter 3.5.5], one finally concludes that the operator LC from (A.2) is surjective for every p ∈ (1,∞). This

finally results in

Theorem A.3. For every p ∈ (1,∞) the operator in (A.2) is a continuous isomorphism.
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