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Abstract. We prove a compactness principle for the anisotropic formulation of the Plateau
problem in any codimension, in the same spirit of the previous works of the authors [DGM14,
DPDRG15, DLDRG16]. In particular, we perform a new strategy for the proof of the rectifia-
bility of the minimal set, based on the new anisotropic counterpart of the Allard rectifiability
theorem proved by the authors in [DPDRG16]. As a consequence we provide a new proof of
Reifenberg existence theorem.

1. Introduction and Main Result

This paper concludes a series of works by the authors on the Plateau problem: we here
provide a general and flexible existence result for sets that minimize an anisotropic energy,
which can be applied to several notions of boundary conditions. In the spirit of the previous
works [DGM14],[DPDRG15] and [DLDRG16], we use the direct methods of the calculus of
variations to find a generalised minimisers (namely a Radon measure) via standard compactness
arguments, and then we aim at proving that it is actually a fairly regular surface. To do
this, we employed several techniques to first establish the rectifiability of the limit measure:
in the case of the area integrand this property was initially deduced from a powerful result
due to Preiss [Pre87, De 08], as well as, in codimension one, from the theory of sets of finite
perimeter. These two techniques are no longer available in the case of anisotropic problems
in higher codimension (in particular due to the lack of a monotonicity formula for anisotropic
problems). A new rectifiability criterion was found in [DPDRG16, Theorem 1.2], for varifolds
having positive lower density and a bounded anisotropic first variation, extending the celebrated
result by Allard [All72] (see also [De 16]).

The proof of the existence theorem can be applied to the minimization of the energy in
several classes of sets (also treated in the works [HP15, HP16]), corresponding to several notions
of boundary conditions: in particular we discuss the existence theorem for minimizers with a
homological notion of boundary, originally considered by Reifenberg in the isotropic case [Rei60],
see Section 3. Our techniques can as well be extended to prove existence for the anisotropic
Plateau problem under co-homological boundary conditions, first considered in [HP16] where
however more general assumptions on the integrand are assumed, see Remark 1.7 and 3.5 below.
Recently a related existence theorem has been proved also in [FK17], following the strategy of
[Alm68, Alm76].

In order to precisely state our main result, we introduce some notations and definitions. We
will always work in Rn and 1 ≤ d ≤ n will always be an integer number, we recall that a set K
is said to be d-rectifiable if it can be covered, up to an Hd negligible set, by countably many C1

manifolds where Hd is the d-dimensional Hausdorff measure. We also denote by G = G(n, d)
the Grassmannian of unoriented d-dimensional hyperplanes in Rn and, for every U ⊂ Rn, we
define G(U) := U×G. Given a d-rectifiable set K, we denote by TK(x) the approximate tangent
space of K at x, which exists for Hd-almost every point x ∈ K [Sim83, Chapter 3]. We also let
Lip(Rn) be the space of Lipschitz maps in Rn.
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The anisotropic Lagrangians considered in the rest of the note will be C1 maps

F : Rn ×G 3 (x, T ) 7→ F (x, T ) ∈ R+,

verifying the lower and upper bounds

0 < λ ≤ F (x, T ) ≤ Λ <∞. (1.1)

Given a d-rectifiable set K and an open subset U ⊂ Rn, we define:

F(K,U) :=

∫
K∩U

F (x, TK(x)) dHd(x) and F(K) := F(K,Rn). (1.2)

It will be also convenient to look at the frozen Lagrangian: for y ∈ Rn, we let

Fy(K,U) :=

∫
K∩U

F (y, TK(x)) dHd(x).

We note that given a d-dimensional varifold V (i.e. a positive Radon measure on the Grassman-
nian G(U)) we can define its anisotropic energy as

F(V,U) :=

∫
F (x, T ) dV (x, T ),

which is coherent with (1.2), since to any rectifiable set K we will naturally associate the varifold
Hd K ⊗ δTK(x). In this setting we define the anisotropic first variation of a varifold V as the

order one distribution whose action on g ∈ C1
c (U,Rn) is given by

δFV (g) :=
d

dt
F
(
ϕ#
t V
)∣∣∣
t=0

=

∫
Ω×G(n,d)

[
〈dxF (x, T ), g(x)〉+BF (x, T ) : Dg(x)

]
dV (x, T ),

where ϕt(x) = x + tg(x), ϕ#
t V is the image varifold of V through ϕt see [Sim83, Chapter

8], BF (x, T ) ∈ Rn ⊗ Rn is an explicitly computable n × n matrix and 〈A,B〉 := tr A∗B for
A,B ∈ Rn ⊗ Rn, see for instance [DPDRG16] for the relevant computations. A varifold V is
said to be F -stationary in an open set U if δFV = 0 as a distribution in U .

Throughout all the paper, H ⊂ Rn will denote a closed subset of Rn. Assume to have a
class P(H) of relatively closed d-rectifiable subsets K of Rn \ H: one can then formulate the
anisotropic Plateau problem by asking whether the infimum

m0 := inf
{
F(K) : K ∈ P(H)

}
(1.3)

is achieved by some set (which should be a suitable limit of a minimizing sequence), if it belongs
to the chosen class P(H) and which additional regularity properties it satisfies. We will say that
a sequence (Kj) ⊂ P(H) is a minimizing sequence if F(Kj) ↓ m0.

We next outline a set of flexible and rather weak requirements for P(H): the key property for
K ′ to be a competitor of K is that K ′ is close in energy to sets obtained from K via deformation
maps as in Definition 1.1. This allows a larger flexibility on the choice of the admissible sets,
since a priori K ′ might not belong to the competition class.

Definition 1.1 (Lipschitz deformations). Given a ball B(x, r), we let D(x, r) be the set of
functions ϕ : Rn → Rn such that ϕ(z) = z in Rn \ B(x, r) and which are smoothly isotopic to
the identity inside B(x, r), namely those for which there exists an isotopy λ ∈ C∞([0, 1]×Rn;Rn)
such that

λ(0, ·) = Id, λ(1, ·) = ϕ, λ(t, y) = y ∀ (t, y) ∈ [0, 1]× (Rn \B(x, r)) and

λ(t, ·) is a diffeomorphism of Rn ∀t ∈ [0, 1].
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We finally set D(x, r) := D(x, r)
w∗−W 1,∞

, the sequential closure of D(x, r) with respect to the
uniform convergence with equibounded differentials.

Observe that in the definition of D(x, r) it is equivalent to require any Ck regularity on
the isotopy λ, for k ≥ 1, as Ck isotopies “supported” in B(x, r) can be approximated in Ck by
smooth ones also supported in the same set.

Definition 1.2 (Deformed competitors and good class). Let H ⊂ Rn be closed, K ⊂ Rn \ H
be a relatively closed countably Hd-rectifiable and B(x, r) ⊂ Rn \H. A deformed competitor for
K in B(x, r) is any set of the form

ϕ (K) where ϕ ∈ D(x, r).

Given a family P(H) of relatively closed d-rectifiable subsets K ⊂ Rn\H, we say that P(H)
is a good class if for every K ∈ P(H), for every x ∈ K and for a.e. r ∈ (0, dist(x,H))

inf
{
F(J) : J ∈ P(H) , J \B(x, r) = K \B(x, r)

}
≤ F(L) (1.4)

whenever L is any deformed competitor for K in B(x, r).

We will assume the following ellipticity condition on the energy F, introduced in [Alm68],
which is a geometric version of quasiconvexity, cf. [Mor66]:

Definition 1.3 (Elliptic integrand, [Alm68, 1.2]). The anisotropic Lagrangian F is said to be
elliptic if there exists Γ ≥ 0 such that, whenever x ∈ Rn and D is a d-disk centered in x and
with radius r, then the inequality

Fx(K,B(x, r))− Fx(D,B(x, r)) ≥ Γ(Hd(K ∩B(x, r))−Hd(D)) (1.5)

holds for every d-rectifiable set K such that K ∩B(x, r) is closed, K ∩ ∂B(x, r) = ∂D×{0} and
K cannot be deformed into ∂D × {0} via a map ϕ ∈ D(x, r).

Remark 1.4. Given a d-rectifiable set K and a deformation ϕ ∈ D(x, r), using property (1.1),
we deduce the quasiminimality property

F(ϕ(K)) ≤ ΛHd(ϕ(K)) ≤ Λ(Lip (ϕ))dHd(K) ≤ Λ

λ
(Lip (ϕ))dF(K). (1.6)

Moreover, whenever U ⊂⊂ Rn, the following holds

sup
x,y∈U S,T∈G

|F (x, T )− F (y, S)| ≤ ωU (|x− y|+ ‖T − S‖), (1.7)

for some modulus of continuity ωU for F in G(U).

In [DPDRG16] the authors obtained an extension of Allard’s rectifiability Theorem for
stationary varifolds to anisotropic integrands. In order to obtain the validity of this theorem in
the anisotropic setting, a necessary and sufficient condition on the Lagrangian has been identified
in [DPDRG16].

Definition 1.5. For a given integrand F ∈ C1(Ω × G(n, d)), x ∈ Ω and a Borel probability
measure µ ∈ P(G(n, d)), let us define

Ax(µ) :=

∫
G(n,d)

BF (x, T )dµ(T ) ∈ Rn ⊗ Rn.

We say that F verifies the atomic condition (AC) at x if the following two conditions are satisfied:

(i) dim kerAx(µ) ≤ n− d for all µ ∈ P(G(n, d)),
(ii) if dim kerAx(µ) = n− d, then µ = δT0 for some T0 ∈ G(n, d).

An immediate consequence of the main result in [DPDRG16] is the following theorem:
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Theorem 1.6. Let F ∈ C1(G(Rn),R+) be a positive integrand satisfying the (AC) condition,
and let us suppose that V is a d-dimensional varifold such that:

• V has bounded anisotropic first variation: δFV is a Radon measure.
• V has lower density bound: there exists θ0 > 0 such that

‖V ‖(Br(x))

rd
=
V (Br(x)×G(n, d))

rd
≥ θ0 for all x ∈ K and r < dist(x,H).

Then V is d-rectifiable.

Remark 1.7. As pointed out in [DPDRG16] the AC condition is essentially necessary in order
to obtain the validity of the above theorem. In [DPDRG16], it is shown that if d = n− 1 (or if
d = 1) this condition is equivalent to the the strict convexity of F and thus to (1.5).

In the general case 2 ≤ d ≤ n− 2, no implication between AC and (1.5) is currently known.
Since our strategy of the proof heavily relies on Theorem 1.6, in our result we are forced to
assume both (1.5) and the AC condition on F .

The following theorem is our main result and establishes the behaviour of minimizing se-
quences.

Theorem 1.8. Let F ∈ C1(G(Rn)) be an integrand satisfying (1.1), (1.5) and the AC condition.
Let H ⊂ Rn be closed and P(H) be a good class. Assume the infimum in Plateau problem

(1.3) is finite and let (Kj) ⊂ P(H) be a minimizing sequence. Then, up to subsequences, the mea-

sures µj := F (·, TKj (·))Hd Kj converge weakly? in Rn\H to the measure µ = F (·, TK(·))Hd K,
where K = sptµ\H is a d-rectifiable set. Furthermore, the integral varifold naturally associated
to µ is F -stationary in Rn \H. In particular, lim infj F(Kj) ≥ F(K) and if K ∈ P(H), then K
is a minimum for (1.3).

Remark 1.9. We observe that in case the set K provided by the Theorem 1.8 belongs to P(H),
it has minimal F energy with respect to deformations in the classes D(x, r) of Definition 1.1,
with x ∈ K and H ∩Br(x) = ∅.

While the union of these classes is strictly contained in the class of all Lipschitz deformations,
however such union is rich enough to generate the comparison sets in [Alm76] which are needed
to prove the almost everywhere regularity of K, under the assumption of strict ellipticity in
Definition 1.3, see [Alm76, III.1 and III.3].

We remark that, as in the previous works of the authors [DGM14, DPDRG15, DLDRG16],
Theorem 1.8 can be applied to the two definitions of boundary conditions considered in [HP13]
and in [Dav14, Dav13]. In this paper we extend this approach to the case of homological and
cohomological boundary conditions in the spirit of the original paper by Reifenberg, see Section
3.

Acknowledgements. G.D.P. is supported by the MIUR SIR-grant Geometric Variational
Problems (RBSI14RVEZ). A.D.R. is supported by SNF 159403 Regularity questions in geo-
metric measure theory. F.G. is supported by the ERC Starting Grant FLIRT - Fluid Flows and
Irregular Transport.

2. Proof of Theorem 1.8

The proof of Theorem 1.8 has several points in common with the proofs in [DPDRG15] to
which we will often refer, we assume the reader to be familiar with it.

Proof of Theorem 1.8. Since the infimum in Plateau problem (1.3) is finite, there exists a mini-
mizing sequence (Kj) ⊂ P(H) and a Radon measure µ on Rn \H such that

µj
∗
⇀ µ , as Radon measures on Rn \H , (2.1)
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where µj = F (·, TKj (·))Hd Kj . We set K = sptµ \H and consider also the canonical density

one rectifiable varifolds V j associated to Kj :

V j := Hd Kj ⊗ δTxKj .

Since Kj is a minimizing sequence in (1.3) and F ≥ λ, we can assume to have the bound1

‖V j‖(Rn) ≤ 2m0
λ and therefore we can assume that V j converges to V in the sense of varifolds.

Step 1: V is F -stationary in Rn \ H. Assume indeed the existence of g ∈ C1
c (Rn \ H,Rn)

such that δFV (g) < 0. By standard partition of unity argument for the compact set supp(g)
in the open set Rn \H, we get the existence of a ball Bx,r ⊂⊂ Rn \H and a vector field (not
relabeled) g ∈ C1

c (Bx,r,Rn) such that δFV (g) = −2c < 0. For an arbitrarily small time s > 0,
we have (Id + sg) ∈ D(x, r). Moreover, there exists an open set Bx,r ⊂ A ⊂ Rn, satisfying

‖(Id + sg)#V ‖(∂A) = 0. We consequently have

F((Id + sg)#V,A) ≤ −cs+ F(V,A).

By lower semicontinuity and by the hypothesis on ∂A, for j large enough it holds true:

F((Id + sg)#V j , A)− 1

j
≤ −cs+ F(V j , A) +

1

j
.

Note that F((Id + sg)#V j , A) = F((Id + sg)(Kj), A) as well as F(V j , A) = F(Kj , A): adding to
both members F(Kj ,Rn \A) and noting that (Id + sg)(Kj) \A = Kj \A, we obtain

F((Id + sg)(Kj),Rn) ≤ 2

j
− cs+ F(Kj ,Rn).

Since (Id + sg) ∈ D(x, r) and Bx,r ⊂⊂ Rn \ H, this is a contradiction with the minimizing
property of the sequence (Kj) in P(H).

Step 2: V satisfies density lower bound. We claim that there exists θ0 = θ0(, n, d, λ,Λ) > 0 such
that

‖V ‖(B(x, r)) ≥ θ0 ωdr
d , x ∈ spt ‖V ‖ and r < dx := dist(x,H). (2.2)

This can be achieved by the same techniques of [DPDRG15, Theorem 1.3, Step 1]. Indeed
by (1.1) the integrand F is comparable to the area and this is the only property needed in the
proof in [DPDRG15], see also [De 16].

Step 3: V is rectifiable. Combining the lower bound (2.2) with the F -stationarity in Rn \H
and applying Theorem 1.6 we conclude that V is a d-rectifiable varifold and in turn, that
µ = F(V, ·) = θHd K̃ for some countably Hd-rectifiable set K̃ and some positive Borel function

θ. Since K is the support of µ, then Hd(K̃ \K) = 0. On the other hand, by differentiation of

Hausdorff measures, (2.2) yields Hd(K \ K̃) = 0. Hence K is d-rectifiable and

µ = θHd K. (2.3)

We now proceed to compute the exact value of the density θ: to this end we need the
following elementary Lemma whose proof can be obtained as in [DLDRG16, Lemma 3.2].

Lemma 2.1. Let K be the d-rectifiable set obtained in the previous section. For every x where
K has an approximate tangent plane TK(x), let Ox be the special orthogonal transformation
of Rn mapping {xd+1 = · · · = xn = 0} onto TK(x) and set Q̄x,r = Ox(Qx,r) and R̄x,r,εr =

1Here ‖V ‖ is the projection of the measure V on the first factor, i.e. ‖V ‖(A) = V (A×G) for every Borel set
A ⊂ Rd
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Ox(Rx,rεr). At almost every x ∈ K the following holds: for every ε > 0 there exist r0 = r0(x) ≤
1√
n+1

dist(x,H) such that, for r ≤ r0/2,

(θ0ωd − ε)rd ≤ µ(B(x, r)) ≤ (θ(x)ωd + ε)rd, (θ(x)− ε)rd < µ(Q̄x,r) < (θ(x) + ε)rd, (2.4)

sup
y∈Bx,r0 , S∈G

|F (y, S)− F (x, S)| ≤ ε, (2.5)

where θ0 = θ0(n, d) is the universal lower bound obtained in (2.2). Moreover, for almost every
such r, there exists j0(r) ∈ N such that for every j ≥ j0:

(θ(x)ωd − ε)rd ≤ F(Kj , B(x, r)) ≤ (θ(x)ωd + ε)rd, (2.6)

(θ(x)− ε)rd ≤ F(Kj , Q̄x,r) ≤ (θ(x) + ε)rd, F(Kj , Q̄x,r \ R̄x,r,εr) < εrd. (2.7)

We are now ready to complete the proof of Theorem 1.8, namely to show lim infj F(Kj) ≥
F(K) and moreover µ = F (x, TK(x))Hd K.

Step 4: θ(x) ≥ F (x, TK) for almost every x ∈ K. Let x ∈ K satisfy the properties of Lemma 2.1.
Assume w.l.o.g. x = 0 and let TK be the tangent plane of K at 0. Let us fix ε < r0/2 and
choose a radius r such that both r and (1−

√
ε)r satisfy properties (2.4)-(2.7): in order to apply

the ellipticity assumption in Definition 1.3 of F , we need to compare our set with TK ∩ ∂Br.
We reach this comparison with the help of a map P ∈ D(0, r) that squeezes a large portion of
Br onto TK . Before doing this, we need to preliminary deform our competing sequence into
another one, of approximately the same energy, whose associated measures are concentrated
near TK . In turn this, with the help of the density lower bound (2.2), can be achieved by
applying a polyhedral deformation in B2r outside the slab R0,2r,εr: for this construction we refer
the reader to [DPDRG15, Theorem 1.3, Step 4]. Once we have ensured that, up to a deformation
φ ∈ D(0, 2r),

Hd(φ(Kj) ∩B2r \R0,2r,εr) = 0 (2.8)

(see equation (3.12) there) we can proceed to the squeezing deformation. With abuse of notation
we will rename this new sequence (φ(Kj)) with (Kj). Consider now a map S satisfying

• S = Id in B1−
√
ε ∪ (Rn \B1+

√
ε),

• S(∂B ∩ Uε(TK)) = ∂B ∩ TK ,
• S stretches ∂B \ Uε(TK) onto ∂B \ TK

where Uε(TK) = {x : dist (x, TK) < ε}. It is not hard to construct an extension S ∈ D(0, 1)
fulfilling the previous requirements and such that S|B1+

√
ε\B and S|B\B1−

√
ε

are interpolations

between the values of S on the three spheres S|∂B1+
√
ε
, S|∂B and S|B\B1−

√
ε
. Furthermore ,

we can also ensure that ‖S − Id‖∞ + Lip (S − Id) ≤ C
√
ε and then obtain the desired map by

rescaling P (·) = rS( ·r ).
We set K ′j := P (Kj) and since Kj ∩ B(1−

√
ε)r = K ′j ∩ B(1−

√
ε)r, using Remark 1.4 and

property (2.6), we estimate:

F (Kj , Br) ≥ F
(
K ′j , B(1−

√
ε)r

)
≥ F

(
K ′j , Br

)
− F

(
K ′j , Br \B(1−

√
ε)r

)
≥ F(K ′j , Br)−

Λ

λ
Lip (P )dF

(
Kj , Br \B(1−

√
ε)r

)
= F(K ′j , Br)−

Λ

λ
Lip (P )d

(
F(Kj , Br)− F

(
Kj , B(1−

√
ε)r

))
≥ F(K ′j , Br)−

Λ

λ
Lip (P )d(θ(0)ωd + ε)rd +

Λ

λ
Lip (P )d(θ(0)ωd − ε)(1−

√
ε)drd

≥ F(K ′j , Br)− C
√
εrd.

(2.9)
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We furthermore observe that K ′j ∩ Br cannot be deformed via any map Q ∈ D(0, r) onto

∂Br∩TK . Otherwise, being P(H) a deformation class, there would exist a competitor Jj ∈ P(H),

εrd-close in energy to K ′′j := Q(P (Kj)), with K ′′j ∩ Br = ∅. Since K ′′j ∩ (Rn \ B(1+
√
ε)r) =

Kj ∩ (Rn \B(1+
√
ε)r), using (2.6) and equation (1.6), we would get:

F(Kj)− F(Jj) ≥ F
(
Kj , B(1+

√
ε)r

)
− F

(
K ′′j , B(1+

√
ε)r

)
− εrd

≥ F(Kj , Br) + F
(
Kj , B(1+

√
ε)r \Br

)
− F

(
K ′j , B(1+

√
ε)r \Br

)
− εrd

≥ (θ0ωd − ε)rd + (θ(0)ωd + ε)((1 +
√
ε)d − 1)

(
1− Λ

λ
Lip (P )d

)
rd − εrd

≥ (θ0ωd − C
√
ε)rd > 0,

which contradicts the minimizing property of the sequence {Kj} if ε is small enough.
In order to apply the ellipticity condition in Definition 1.3, we want to costruct another

closed set K̃j such that

(i) K̃j ∩ ∂Br = ∂Br ∩ TK ,

(ii) K̃j ⊂ Br cannot be deformed via any map Q ∈ D(0, r) onto ∂Br ∩ TK ,

(iii) F0(K̃j , Br) = F0(K ′j , Br).

We can achieve this set in the following way

K̃j := (∂Br ∩ TK) ∪ (K ′j ∩Br ∩R0,r,εr \ {|x||| > r − |x⊥|}),
where x|| and x⊥ denote respectively the projections of x on TK and its orthogonal. Indeed
condition (i) is by construction, condition (ii) is a straightforward consequence of the fact that
K ′j ∩ Br cannot be deformed via any map Q ∈ D(0, r) onto ∂Br ∩ TK . Condition (iii) follows

by (2.8) and the properties of the map S, for ε small enough.
Therefore, the ellipticity of F , (2.5), (2.6), (1.6) and (2.2) imply that

F0(TK , Br) ≤ F0(K̃j , Br) = F0(K ′j , Br) ≤ F(K ′j , Br) + Cεrd. (2.10)

We can now sum up as follows

θ(0)ωdr
d

(2.6)

≥ F(Kj , Br)− εrd
(2.9)

≥ F(K ′j , Br)− C
√
εrd

(2.10)

≥ F0(TK , Br)− C
√
εrd = F (0, TK)ωdr

d − C
√
εrd

which easily implies the desired inequality θ(0) ≥ F (0, TK).

Step 5: θ(x) ≤ F (x, TK(x)) for almost every x ∈ K: Again we assume that x = 0 is a point
satisfying the conclusion of Lemma 2.1 and we argue as in [DPDRG15, Theorem 1.3, Step 5].

Arguing by contradiction, we assume that θ(0) = F (0, TK(0)) + σ for some σ > 0 and let
ε < min{σ2 ,

λσ
4Λ}. As a consequence of (2.7), there exist r and j0 = j0(r) such that

F(Kj , Qr) >
(
F (0, T ) +

σ

2

)
rd , F(Kj , Qr \Rr,εr) <

λσ

4Λ
rd, ∀j ≥ j0 . (2.11)

Consider the map P ∈ D(0, r) defined in [DPDRG15, Equation 3.14] which collapses Rr(1−
√
ε),εr

onto the tangent plane TK and satisfies ‖P − Id‖∞ + Lip (P − Id) ≤ C
√
ε. Exploiting the fact

that P(H) is a deformation class and by almost minimality of Kj , we find that

F(Kj , Qr)− oj(1) ≤ F(P (Kj), P (R(1−
√
ε)r,εr))︸ ︷︷ ︸

I1

+ F(P (Kj), P (Rr,εr \R(1−
√
ε)r,εr))︸ ︷︷ ︸

I2

+ F(P (Kj), P (Qr \Rr,εr))︸ ︷︷ ︸
I3

.
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By the properties of P and (2.5), we get I1 ≤ (F (0, TK) + ε)rd, while, by (2.11) and equation
(1.6)

I3 ≤
Λ

λ
(LipP )d F(Kj , Qr \Rr,εr) < (1 + C

√
ε)d

σ

4
rd .

Since F(P (Kj), P (Rr,εr \ R(1−
√
ε)r,εr)) ≤ Λ

λ (1 + C
√
ε)dF(Kj , Rr,εr \ R(1−

√
ε)r,εr) and Rr,εr \

R(1−
√
ε)r,εr ⊂ Q(1−

√
ε)r \Qr, by (2.7) we can also bound

I2 = F(P (Kj), P (Rr,εr \R(1−
√
ε)r,εr)) ≤

Λ

λ
(1 + C

√
ε)dF(Kj , Qr \Q(1−

√
ε)r)

≤ C(1 + C
√
ε)d
(

(F (0, TK) + σ + ε)− (F (0, TK) + σ − ε)(1−
√
ε)d
)
rd ≤ C

√
εrd.

Hence, as j →∞, by (2.4)(
F (0, TK) +

σ

2

)
rd ≤ (F (0, TK) + ε)rd + C

√
εrd + (1 + C

√
ε)d

σ

4
rd :

dividing by rd and letting ε ↓ 0 provides the desired contradiction.
�

3. Solution to Reifenberg’s formulation of Plateau problem

The original formulation of Plateau problem given by Reifenberg in [Rei60] involves an
algebraic notion of boundary described in terms of Čech homology groups. The particular choice
of an homology theory defined on compact spaces and with coefficient groups that are abelian
and compact has three motivations: with these assumptions this homology is well behaved under
Hausdorff convergence of compact sets, it satisfies the classical axioms of Eilenberg and Steenrod,
enabling the use of the Mayer-Vietoris exact sequence [ES52, Chapter X] and, crucially, ensures
that Ȟ`(K) = 0 if H`(K) = 0 (a fact that is false for other homology theory, see [BM62]). In
this section we follow Reifenberg’s approach and show that we can obtain a minimizing set in
the chosen homology class.

Let G be a compact Abelian group and let K be a closed set in Rn. For every m ≥ 0
we denote with Ȟm(K;G) (often omitting the explicit mention of the group G) the mth-Čech
homology group of K with coefficients in G, [ES52, Chapter IX].

Recall that, if H ⊂ K is a compact set, the inclusion map iH,K : H → K induces a graded
homomorphism between the homology groups (of every grade m, again often omitted)

i∗H,K : Ȟm(H,G)→ Ȟm(K,G).

(For any given continuous maps of compact spaces f : X → Y , the induced homomorphisms f∗
between homology groups are functorial). Note, in the next definition, the role of the dimension
d, inherent of our variational problem.

Definition 3.1 (Boundary in the sense of Reifenberg). Let G, H,K be as above and let L ⊂
Ȟd−1(H,G) be a subgroup. We say that K has boundary L if

Ker(i∗H,K) ⊃ L. (3.1)

Definition 3.2 (Reifenberg class). Given G a compact Abelian group and H a compact set, we
let R(H) be the class of closed d-rectifiable subsets K of Rn \H uniformly contained in a ball
B c H and such that K ∪H has boundary L in the sense of Definition 3.1.

Remark 3.3. We remark that R(H) is a good class in the sense of Definition 1.2. Indeed
for every K ∈ R(H), every x ∈ K, r ∈ (0, dist(x,H)) and ϕ ∈ D(x, r) (which is in particular
continuous),

ϕ(K ∪H) = ϕ(K) ∪H,



EXISTENCE RESULTS FOR MINIMIZERS OF PARAMETRIC ELLIPTIC FUNCTIONALS 9

and moreover by functoriality Ker(ϕ ◦ iH,K∪H)∗ ⊃ Ker(i∗H,K∪H) ⊃ L, which implies that
ϕ(K) ∈ R(H). We can therefore apply Theorem 1.8 to the class R(H): we immediately obtain
the existence of a relatively closed subset K of Rn \H satisfying

F(K) = inf
S∈R(H)

{F(S)}.

We address now the question whether K belongs to the Reifenberg class R(H). Recall the
definition of Hausdorff distance between two compact sets C1, C2 of a metric space X:

dH(C1, C2) := inf{r > 0 : C1 ⊂ Ur(C2) and C2 ⊂ Ur(C1)}.

Theorem 3.4. For every minimizing sequence (Kj) ⊂ R(H) the associated limit set given by
Theorem 1.8 satisfies K ∈ R(H).

The proof of the above Theorem will be obtained by constructing another minimizing se-
quence, (K1

j ) ⊂ R(H), yielding the same set K but with the further property that

dH(K1
j ∪H,K ∪H)→ 0. (3.2)

The new sequence is obtained by the original one by first deforming the part of the sequence
Kj outside a given ε neighbourhood Uε(K) onto a (d − 1) skeleton, and then by considering
the intersection of the deformed sequence with Uε(K). By a simple applications of the Mayer-
Vietoris sequence and since the deformed sequence has vanishing Hd−1 measure in ∂Uε(K), we
can show that the new sequence still satisfies the homological boundary conditions (here we
crucially use that we are working with the Čech homology, see the discussion at the beginning
of the Section).

Proof. Step 1: Construction of the new sequence. From Theorem 1.8 we know that µj :=

F (·, T(·)Kj)Hd Kj converge weakly? in Rn \ H to the measure µ = F (·, T(·)K)Hd K. Then,
for every ε > 0, there exists j(ε) big enough so that for every j ≥ j(ε) we get

µj(Rn \ Uε(K ∪H)) <
λεd

k1(4n)d
, (3.3)

where we denoted with Uε(K ∪H) the ε-tubular neighborhood of K ∪H, with Λ the constant
in equation (1.1) and k1 is the constant of the deformation [DPDRG15, Theorem 2.4].

We cover U5ε(K ∪H)\U2ε(K ∪H) with a complex ∆ of closed cubes with side length equal
to ε

4n contained in U6ε(K ∪H) \ Uε(K ∪H). We can apply an adaptation of the Deformation
Theorem [DPDRG15, Theorem 2.4] relative to the set Kj and obtain a Lipschitz deformation
ϕj := ϕ ε

4n
,Kj

. Observe that ϕ(Kj) ∩ (U4ε(K ∪ H) \ U3ε(K ∪ H)) ⊂ ∆d (the d-skeleton of the

complex): we claim that

ϕj(Kj) ∩ (U4ε(K ∪H) \ U3ε(K ∪H)) ⊂ ∆d−1. (3.4)

Otherwise by [DPDRG15, Theorem 2.4] point (5), ϕj(Kj) ∩ (U4ε(K ∪H) \U3ε(K ∪H)) should
contain an entire d-face of edge length ε

4n , leading together with (3.3) to a contradiction:

εd

(4n)d
≤ Hd(ϕ(Kj) ∩ (U4ε(K ∪H) \ U3ε(K ∪H))) ≤ k1Hd(Kj \ Uε(K ∪H))

≤ k1

λ
F(Kj \ Uε(K ∪H)) ≤ k1

λ
µj(Rn \ Uε(K ∪H)) <

εd

(4n)d
.

Set K̃j := ϕj(Kj): by (3.4) and the coarea formula [Fed69, 3.2.22(3)], there exists α ∈ (3, 4)
such that

Hd−1(K̃j ∩ ∂Uαε(K ∪H)) = 0. (3.5)

We let
K1
j := K̃j ∩ Uαε(K ∪H) and K2

j := K̃j \ Uαε(K ∪H). (3.6)
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Step 2: proof of the property (3.2). Recall that by construction,

∀ε > 0 K1
j ∪H ⊂ U4ε(K ∪H). (3.7)

If on the other hand there were x ∈ K ∪ H \ Uε(K1
j(h) ∪ H) for some subsequence j(h), then

necessarily d(x,H) ≥ ε as well as d(x,K1
j(h)) ≥ ε: the weak convergence µj(h)

∗
⇀ µ would then

fail the uniform density lower bounds (2.2) on B(x, ε/2). This implies (3.2).

Step 3: boundary constraint of the new sequence. To conclude the proof of Theorem 3.4, we
need to check that (K1

j ) ⊂ R(H). By (3.6) we get

K̃j = K1
j ∪K2

j , and K1
j ∩K2

j = K̃j ∩ ∂Uαε(K)

and (3.5),(3.6) yield

Hd−1((K1
j ∪H) ∩K2

j ) = Hd−1(K1
j ∩K2

j ) = 0.

Therefore by [HW41, Theorem VIII 3’]:

Ȟd−1((K1
j ∪H) ∩K2

j ) = (0). (3.8)

We furthermore observe that the sets K̃j are obtained as deformations via Lipschitz maps
strongly approximable via isotopies, and therefore belong to R(H). Since the map ϕj coincides
with the identity on H, we have

i
H,K̃j∪H

= ϕj ◦ iH,Kj∪H ;

moreover, trivially i
H,K̃j∪H

= i
K1

j∪H,K̃j∪H
◦ iH,K1

j∪H
. Hence by functoriality

Ker(i∗K1
j∪H,K̃j∪H

◦ i∗H,K1
j∪H

) = Ker(i∗H,K̃j∪H
) = Ker((ϕj)∗ ◦ i∗H,Kj∪H) ⊃ L.

We claim that i∗K1
j∪H,K̃j∪H

is injective: this implies that

Ker(i∗H,K1
j∪H

) ⊃ L, (3.9)

namely (K1
j ) ⊂ R(H).

Step 4: the map i∗K1
j∪H,K̃j∪H

is injective. We can write the Mayer-Vietoris sequence (which for

the Čech homology holds true for compact spaces and with coefficients in a compact group, due
to the necessity of having the excision axiom, [ES52, Theorem 7.6 p.248]) and use (3.8):

(0)
(3.8)
= Ȟd−1((K1

j ∪H) ∩K2
j )

f−→ Ȟd−1(K1
j ∪H)⊕ Ȟd−1(K2

j )
g−→ Ȟd−1(K̃j ∪H) −→ ...

where f = (i∗ (K1
j∪H)∩K2

j ,K
1
j∪H

, i∗ (K1
j∪H)∩K2

j ,K
2
j
) and g(σ, τ) = σ − τ . The exactness of the

sequence implies that g is injective: in particular the map g is injective when restricted to the
subgroup Ȟd−1(K1

j ∪H)⊕ (0), where it coincides with i∗K1
j∪H,K̃j∪H

. This concludes the proof

of Step 4.

Step 5: boundary constraint for the limit set. Setting

Yn :=
⋃
j≥n

K1
j ∪H,

by (3.2) we get
dH(Yn,K ∪H)→ 0. (3.10)

Therefore K ∪ H is the inverse limit of the sequence Yn. Since the sets (K1
j ∪ H) are in

the Reifenberg class R(H), namely the inclusion (3.9) holds, by composing the two injections
i∗K1

n∪H,Yn and i∗H,K1
n∪H we obtain that

L ⊂ Ker(i∗H,Yn).
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Since the Čech homology with coefficients in compact groups is continuous [ES52, Definition
2.3], the latter inclusion is stable under Hausdorff convergence, see [ES52, Theorem 3.1] (see
also [Rei60, Lemma 21A]): therefore, by (3.10), we conclude

L ⊂ Ker(i∗H,K∪H),

and eventually K ∈ R(H). �

Remark 3.5. Using the contravariance of cohomology theory, the same results can be obtained
when considering a cohomological definition of boundary, again in the Čech theory, as introduced
in [HP16]. In particular a new proof the the theorem there can be obtained with our assumption
on the Lagrangian.

Note that in the cohomological definition of boundary all the Eilenberg-Steenrod axioms
are satisfied even with a non-compact group G. This allows us to consider as coefficients set the
natural group Z.

Remark 3.6. We observe that any minimizer K as in Theorem 3.4 is also an (F, 0,∞) minimal
set in the sense of [Alm76, Definition III.1]. Indeed the boundary condition introduced in
Definition 3.1 is preserved under Lipschitz maps (not necessarily in D(x, r)). In particular, by
[Alm76, Theorem III.3(7)], if F is smooth and strictly elliptic (Γ in Definition 1.3 is strictly
positive), then K is smooth away from the boundary, outside of a relative closed set of Hd-
measure zero (the theorem gives actually C1,α almost everywhere regularity for all α < 1/2 if
F ∈ C3 and elliptic).
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