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Abstract

We prove existence and regularity for the solutions to a Cahn–Hilliard system de-
scribing the phenomenon of phase separation for a material contained in a bounded
and regular domain. Since the first equation of the system is perturbed by the
presence of an additional maximal monotone operator, we show our results using
suitable regularization of the nonlinearities of the problem and performing some
a priori estimates which allow us to pass to the limit thanks to compactness and
monotonicity arguments. Next, under further assumptions, we deduce a continuous
dependence estimate whence the uniqueness property is also achieved. Then, we
consider the related sliding mode control (SMC) problem and show that the chosen
SMC law forces a suitable linear combination of the temperature and the phase to
reach a given (space-dependent) value within finite time.
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1 Introduction

The Cahn–Hilliard equation, originally introduced in [6] and first studied mathematically
in the seminal paper [22], yields a description of the evolution phenomenon of the solid–
solid phase separation. In general, an evolution process goes on diffusively. However, the
phenomenon of the solid–solid phase separation does not seem to follow this structure:
e.g., when a binary alloy is cooled down sufficiently, each phase concentrates and the
material quickly becomes inhomogeneous, forming a fine-grained structure in which each
of the two components appears more or less alternatively (see, e.g., [32]). The Cahn–
Hilliard equation is a celebrated model which describes this process (usually known as
spinodal decomposition) by the simple framework of partial differential equations. The
mathematical literature concerning this problem is rather vast. Let us quote [7,11,15,24,
26,33,36,37,42] and also refer to [10] in which a forced mass constraint on the boundary
is considered.
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In the present contribution, we consider the following Cahn–Hilliard system perturbed
by the presence of an additional maximal monotone nonlinearity:

∂t(ϑ+ `ϕ)−∆ϑ+ ζ = f a.e. in Q := Ω× (0, T ), (1.1)

∂tϕ−∆µ = 0 a.e. in Q, (1.2)

µ = −ν∆ϕ+ ξ + π(ϕ)− γϑ a.e. in Q, (1.3)

ζ(t) ∈ A(aϑ(t) + bϕ(t)− η∗) for a.e. t ∈ (0, T ), (1.4)

ξ ∈ β(ϕ) a.e. in Q, (1.5)

where Ω ⊆ R3 is an open, bounded, connected subset of class C1, T is some final time,
ϑ, ϕ and µ denote the temperature, the order parameter and the chemical potential,
respectively. We point out that here ϑ does not represent the absolute temperature, but
it is related to it by

ϑ = Θ−Θc, (1.6)

where Θc denotes a critical temperature. Moreover, η∗ is a function in H2(Ω) with null
outward normal derivative on the boundary of Ω, f is a source term and a, b, `, γ are
constants. In particular, let ` and γ be positive. The above system is complemented by
homogeneous Neumann boundary conditions for both ϑ and ϕ, that is,

∂nϑ = ∂nϕ = ∂nµ = 0 on Σ := Γ× (0, T ), (1.7)

where Γ is the boundary of Ω and ∂n is the outward normal derivative, and by the initial
conditions

ϑ(0) = ϑ0, ϕ(0) = ϕ0 in Ω. (1.8)

The term ξ + π(ϕ), appearing in (1.3), represents the derivative of the potential W asso-
ciated with the phase configuration. In the literature (see, e.g., [14, 23]), W is frequently
assumed to be a double-well potential. More generally, W can be defined as the sum
W = β̂+ π̂, where β̂ : R→ [0,+∞] is a proper, l.s.c. and convex function and π̂ : R→ R
is a function in C1(R) such that π := π̂′ is Lipschitz continuous. Due to the properties of

β̂, the subdifferential ∂β̂ =: β is well defined and is a maximal monotone graph. In our
problem a maximal monotone operator A : H := L2(Ω)→ 2H also appears. We assume
that 0 ∈ A(0) and ‖v‖H ≤ C(1 + ‖x‖H) for all x ∈ H, v ∈ Ax, for some constant C > 0.
For a comprehensive presentation of the theory of maximal monotone operators, we refer,
e.g., to [1, 3, 38].

Let us spend some words about the thermodynamic derivation of the system (1.1)–
(1.5). We move from the following expression for the local free energy:

Ψ(Θ, ϕ) = c0Θ(1− ln Θ)− γ0(Θ−Θc)ϕ+ Θ

(
− µϕ+W(ϕ) +

ν

2
|∇ϕ|2

)
, (1.9)

where Θ denotes the absolute temperature, as in (1.6). The quantity

e = ϑ+ `ϕ (1.10)

appearing (under time derivative) in (1.1) represents a rescaled internal energy of the
system, since a standard thermodynamic relation postulates that

U = Ψ + ΘS, (1.11)
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where U is the internal energy and S := −∂Ψ
∂Θ

denotes the entropy. Then, by an easy
computation, we find out that

U = c0Θ(1− ln Θ)− γ0(Θ−Θc)ϕ+ Θ

(
− µϕ+W(ϕ) +

ν

2
|∇ϕ|2

)
−Θ

(
c0(1− ln Θ)− c0 − γ0ϕ− µϕ+W(ϕ) +

ν

2
|∇ϕ|2

)
= c0Θ + γ0Θcϕ, (1.12)

so that, by adding the constant −c0Θc and dividing by c0, from (1.6) we exactly have that

e = ϑ+ `ϕ, with ` =
γ0Θc

c0

. (1.13)

On the other hand, by considering the total free energy

F(Θ, ϕ) =

∫
Ω

Ψ(Θ, ϕ) (1.14)

and taking the variational derivative δF
δϕ

, we actually recover the phase equation (1.3).
Indeed, by a standard computation, we infer that

−γ0(Θ−Θc)ϕ+ Θ
(
− µ+W ′(ϕ)− ν∆ϕ

)
− ν∇Θ · ∇ϕ = 0. (1.15)

Dividing by Θ, observing that (cf. (1.6))

−γ0

(
1− Θc

Θ

)
∼=
γ0

Θc

ϑ, (1.16)

thanks to a first order linearization, and neglecting the higher order term − ν
Θ
∇Θ · ∇ϕ,

we finally obtain (1.3) with γ ∼= γ0
Θc

.

As usual for Cahn–Hilliard system, in the Problem (P ) stated by (1.1)–(1.8) the
integral mean value of ϕ(t) remains constant during the whole evolution. Indeed, fixing
an arbitrary t ∈ (0, T ) and integrating (1.2) over Ω, we infer that

d

dt

∫
Ω

ϕ(t) = 0, (1.17)

whence it immediately follows that

m(ϕ(t)) :=
1

|Ω|

∫
Ω

ϕ(t) =
1

|Ω|

∫
Ω

ϕ0 for every t ∈ (0, T ). (1.18)

We also observe that system (P ) is a fourth-order problem constructed as the conserved
version of the following phase-field system:

∂t(ϑ+ `ϕ)− k∆ϑ+ ζ = f a.e. in Q, (1.19)

∂tϕ− ν∆ϕ+ ξ + π(ϕ) = γϑ a.e. in Q, (1.20)

ζ(t) ∈ A(ϑ(t) + αϕ(t)− η∗) for a.e. t ∈ (0, T ), (1.21)

ξ ∈ β(ϕ) a.e. in Q, (1.22)
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∂nϑ = 0, ∂nϕ = 0 on Σ, (1.23)

ϑ(0) = ϑ0, ϕ(0) = ϕ0 in Ω, (1.24)

where k and α are positive coefficients. Phase-field systems have been widely studied in the
literature. We refer, without any sake of completeness, e.g., to [4,5,19,23,25,31,32,34,40]
and references therein for the well-posedness and long-time behavior results. In particular,
the above system (1.19)–(1.24) has been thoroughly discussed in [21], where existence
and regularity of the solutions is proved and, under further assumptions, uniqueness and
continuous dependence on the initial data are deduced.

In the paper, we first show the existence of solutions for Problem (P ) (see (1.1)–(1.8)).
In order to carry out this purpose, we consider the approximating problem (Pε), obtained
from (P ) by approximating A and β by their Yosida regularizations. In performing our
uniform estimates we often refer to [12], where the authors propose the study of a nonlinear
diffusion problem as an asymptotic limit of a particular Cahn–Hilliard system. Then, we
pass to the limit as ε↘ 0 and show that some limit of a subsequence of solutions for (Pε)
yields a solution of (P ). Next, we let a` = b which is, in some sense, a physical restriction
since the argument of the variable in the operator A is thus proportional to the internal
energy of the system. We also write Problem (P ) for two different sets of data fi, η

∗
i ,

ϑ0i and ϕ0i , i = 1, 2. By suitably performing contracting estimates for the difference
of the corresponding solutions, we deduce the continuous dependence result whence the
uniqueness property is also achieved.

The second part of the paper is devoted to the sliding mode control (SMC) problem.
Hence, the main idea behind this scheme is first to identify a manifold of lower dimension
(called the sliding manifold) where the control goal is fulfilled and such that the original
system restricted to this sliding manifold has a desired behavior, and then to act on the
system through the control in order to constrain the evolution on it, that is, to design
a SMC-law that forces the trajectories of the system to reach the sliding surface and
maintains them on it (see, e.g., [30, 35]). The main advantage of sliding mode control is
that it allows the separation of the motion of the overall system in independent partial
components of lower dimensions, and consequently it reduces the complexity of the control
problem. In particular, we prove the existence of sliding modes for the solutions of our
system (P ) for a suitable choice of the operator A and the coefficients a and b. We take
a = 1, b = ` and A = ρ Sign, where ρ is a positive coefficient and Sign : H −→ 2H is a
maximal monotone operator defined as Sign(v) = v

‖v‖ , if v 6= 0 and Sign(0) = B1(0), if

v = 0 (here, B1(0) denotes the closed unit ball of H). Thus we prescribe a state-feedback
control law acting on the rescaled internal energy (ϑ + `ϕ) of the system in order that
the dynamics of the system modified in this way forces the value (ϑ(t) + `ϕ(t)) to reach
a manifold of the phase space in a finite time and then lie there with a sliding mode
(cf. [2, 18]).

Concerning the study of optimal control problems for phase-field systems, we quote
[13, 14, 20, 29]. Recent investigations have been also addressed to the optimal control
problem for Cahn-Hilliard systems: let us mention [8,9,15–17,27]. We also refer to [43,44]
which deals with the convective Cahn–Hilliard equation, and to [28, 41], where some
discretized versions of the general Cahn–Hilliard systems are studied.

In the present contribution, assuming a = 1, b = ` and A = ρ Sign in (1.1)–(1.8), we
prove the existence of sliding modes for Problem (P ) by identifying ρ∗ > 0 such that the
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following property is fulfilled: for every ρ > ρ∗, there exists a solution (ϑ, ϕ, µ) to Problem
(P ) and a time T ∗ such that, for every t ∈ [T ∗, T ]

ϑ(t) + `ϕ(t) = η∗ a.e. in Ω. (1.25)

It is curious and interesting that we are able to handle a feedback law and prove the
mentioned property just for the internal energy of the system, which is a special linear
combination of the variables ϑ and ϕ. However, for a discussion of the SMC laws, linear
and nonlinear, that can be considered for phase field systems, we refer to the Introduction
of [2].

The paper is organized as follows. In Section 1, we list our assumptions, state the
problem in a precise form and present our results. The next sections are devoted to the
corresponding proofs: Section 3–6 deal with existence and regularity, while uniqueness
and continuous dependence are proved in Section 7. In Section 8, we show the existence
of sliding modes.

2 Main results

In this section, we state the main results.

2.1 Preliminary assumptions

We assume Ω ⊆ R3 to be open, bounded, connected, of class C1 and we write |Ω| for its
Lebesgue measure. Moreover, Γ and ∂n still stand for the boundary of Ω and the outward
normal derivative, respectively. Given a finite final time T > 0, for every t ∈ (0, T ] we set

Qt = (0, t)× Ω, Q = QT , (2.1)

Σt = (0, t)× Γ, Σ = ΣT . (2.2)

In the following, we set for brevity:

H = L2(Ω), V = H1(Ω), V0 = H1
0 (Ω), W = {u ∈ H2(Ω) : ∂nu = 0 on ∂Ω}, (2.3)

with usual norms ‖ · ‖H , ‖ · ‖V and inner products (·, ·)H , (·, ·)V , respectively. The symbol
V ∗ denotes the dual space of V while the pair 〈·, ·〉V ∗,V represents the duality pairing
between V ∗ and V . Moreover, we identify H with its dual space.

2.2 Operators

In this subsection we describe the operators appearing in the problem under study.

The operator m. We consider the operator m : V ∗ → R defined by

m(z∗) :=
1

|Ω|
〈z∗, 1〉V ∗,V for all z∗ ∈ V ∗. (2.4)
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We observe that, if z∗ ∈ H, then

m(z∗) =
1

|Ω|

∫
Ω

z∗dx. (2.5)

The double-well potential W. We introduce the double-well potentialW as the sum

W = β̂ + π̂, (2.6)

where
β̂ : R −→ [0,+∞] is proper, l.s.c. and convex with β̂(0) = 0, (2.7)

π̂ : R→ R, π̂ ∈ C1(R) with π := π̂′ Lipschitz continuous. (2.8)

Since β̂ is proper, l.s.c. and convex, the subdifferential β := ∂β̂ is well defined. We denote
by D(β) and D(β̂) the effective domains of β and β̂, respectively, and also assume that
int(D(β)) 6= ∅. Thanks to these assumptions, β is a maximal monotone graph. Moreover,

as β̂ takes its minimum in 0, we have that 0 ∈ β(0).

The operator B. We introduce the operator B induced by β on L2(Q) in the following
way:

B : L2(Q) −→ L2(Q) (2.9)

ξ ∈ B(ϕ)⇐⇒ ξ(x, t) ∈ β(ϕ(x, t)) for a.e. (x, t) ∈ Q. (2.10)

We notice that
β = ∂β̂, B = ∂Φ, (2.11)

where
Φ : L2(Q) −→ (−∞,+∞] (2.12)

Φ(u) =

{ ∫
Q
β̂(u) if u ∈ L2(Q) and β̂(u) ∈ L1(Q),

+∞ elsewhere, with u ∈ L2(Q).
(2.13)

The operator A. We consider the maximal monotone operator

A : H −→ H. (2.14)

We assume that
0 ∈ A(0) (2.15)

and that there exists a constant CA > 0 such that

‖v‖H ≤ CA(1 + ‖η‖H) for every η ∈ H, v ∈ Aη. (2.16)

The operator A. We introduce the operator A induced by A on L2(0, T ;H) in the
following way

A : L2(0, T ;H) −→ L2(0, T ;H) (2.17)

ζ ∈ A(η)⇐⇒ ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ). (2.18)

We notice that also A is a maximal monotone operator.
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The operator Sign. An example of maximal monotone operator A which satisfies
(2.14)–(2.16) is the operator

Sign : H −→ 2H (2.19)

Sign(v) =

{ v
‖v‖ if v 6= 0,

B1(0) if v = 0,
(2.20)

where B1(0) is the closed unit ball of H. Sign is the subdifferential of the map ‖·‖ : H → R
and is a maximal monotone operator on H which satisfies (2.15)–(2.16).

The operator N . We also consider the operator

N : D(N ) ⊆ V ∗ → V, (2.21)

defined on its domain
D(N ) := {w ∈ V ∗ : m(w∗) = 0}. (2.22)

For every w∗ ∈ D(N ), we define w = Nw∗ if w ∈ V , m(w) = 0 and w is a solution of the
following variational equation∫

Ω

∇w · ∇zdx = 〈w∗, z〉V ∗,V for all z ∈ V. (2.23)

If w∗ ∈ D(N ) ∩H, then w is the unique solution to the elliptic problem
−∆w = w∗ a.e. in Ω,

∂νw = 0 a.e. in Γ,

m(w) = 0.

(2.24)

We observe that, due to elliptic regularity, w ∈ W . Moreover, for every v∗, w∗ ∈ D(N ),
v = N v∗ and w = Nw∗ we have that

〈w∗,N v∗〉V ∗,V = 〈w∗, v〉V ∗,V =

∫
Ω

∇w · ∇vdx

= 〈v∗, w〉V ∗,V = 〈v∗,Nw∗〉V ∗,V .

Consequently, by defining

‖w∗‖2
V ∗ :=

∥∥∇N (w∗ −m(w∗)
)∥∥2

H3 +
∣∣m(w∗)

∣∣2 for all w∗ ∈ V ∗, (2.25)

it turns out that ‖ · ‖V ∗ is a norm in V ∗.

2.3 Setting of the problem and results

Now, we describe the state system. We assume

`, ν, γ ∈ (0,+∞), a, b ∈ R, (2.26)

f ∈ L2(0, T,H), (2.27)
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η∗ ∈ W, ϑ0 ∈ H, ϕ0 ∈ V, β̂(ϕ0) ∈ L1(Ω), m(ϕ0) =: m0 ∈ int(D(β)). (2.28)

We look for a triplet (ϑ, ϕ, µ) satisfying at least the regularity requirements

ϑ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ), (2.29)

ϕ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (2.30)

µ ∈ L2(0, T ;V ), (2.31)

and solving the Problem (P ), that is,

∂t(ϑ+ `ϕ)−∆ϑ+ ζ = f a.e. in Q, (2.32)

∂tϕ−∆µ = 0 a.e. in Q, (2.33)

µ = −ν∆ϕ+ ξ + π(ϕ)− γϑ a.e. in Q, (2.34)

ζ(t) ∈ A(aϑ(t) + bϕ(t)− η∗) for a.e. t ∈ (0, T ), (2.35)

ξ ∈ β(ϕ) a.e. in Q, (2.36)

∂nϑ = ∂nϕ = ∂nµ = 0 on Σ, (2.37)

ϑ(0) = ϑ0, ϕ(0) = ϕ0 in Ω. (2.38)

Theorem 2.1 (Existence) Assume (2.7)–(2.8), (2.14)–(2.16) and (2.26)–(2.28). Then
Problem (P ) (see (2.32)–(2.38)) has at least one solution (ϑ, ϕ, µ) satisfying (2.29)–(2.31).

Theorem 2.2 (Regularity) Assume (2.7)–(2.8), (2.14)–(2.16), (2.26)–(2.27),

η∗ ∈ W, ϑ0 ∈ V, ϕ0 ∈ W, β0(ϕ0) ∈ H, m0 ∈ int(D(β)) (2.39)

and that there exists ε0 ∈ (0, 1] such that

‖ − ν∆ϕ0 + βε(ϕ0) + π(ϕ0)− γϑ0‖V ≤ c for every ε ∈ (0, ε0], (2.40)

for some positive constant c, where βε is the Yosida regularization of β (see (3.9)). Then
Problem (P ) (see (2.32)–(2.38)) has at least one solution (ϑ, ϕ, µ) satisfying

ϑ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (2.41)

ϕ ∈ W 1,∞(0, T ;V ∗) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.42)

µ ∈ L∞(0, T ;V ) ∩ L2(0, T ;W ). (2.43)

Remark. We fix t ∈ (0, T ) and integrate (2.33) over Ω. We infer that∫
Ω

∂tϕ(t)−
∫

Ω

∆µ(t) = 0. (2.44)

Integrating by parts the second term of the left-hand side of (2.44), we obtain that

d

dt

∫
Ω

ϕ(t) = 0. (2.45)

Consequently we conclude that

m(ϕ(t)) =
1

|Ω|

∫
Ω

ϕ(t) =
1

|Ω|

∫
Ω

ϕ0 = m(ϕ0) =: m0 for every t ∈ (0, T ). (2.46)
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Change of variables. In the following it we will be useful to consider the equiva-
lent modified form of the initial Problem (P ) (see (2.32)–(2.38)). We make a change of
variables and set

η = aϑ+ bϕ− η∗, η0 = aϑ0 + bϕ0 − η∗. (2.47)

Due to (2.47), from (2.32)–(2.38) we obtain the modified problem (P̃ ):

∂t(η + (a`− b)ϕ)−∆η + b∆ϕ−∆η∗ + aζ = af a.e. in Q, (2.48)

∂tϕ−∆µ = 0 a.e. in Q, (2.49)

µ = −ν∆ϕ+ ξ + π(ϕ)− γ

a
(η − bϕ+ η∗) a.e. in Q, (2.50)

ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ), (2.51)

ξ ∈ β(ϕ) a.e. in Q, (2.52)

∂nη = ∂nϕ = ∂nµ = 0 on Σ, (2.53)

η(0) = η0, ϕ(0) = ϕ0 in Ω. (2.54)

Theorem 2.3 (Uniqueness and continuous dependence) Assume (2.7)–(2.8),
(2.14)–(2.16) and (2.26)–(2.28). If a, b > 0 and a` = b, then the solution (η, ϕ, µ) of

problem (P̃ ) (see (2.48)–(2.54)) is unique. Moreover, we assume that fi, η
∗
i , η0i, ϕ0i,

i = 1, 2, are given as in (2.27)–(2.28) and (ηi, ϕi, µi), i = 1, 2, are the corresponding
solutions. If

m(ϕ01) = m(ϕ02), (2.55)

then the estimate

‖η1 − η2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;V ∗)∩L2(0,T ;V )

≤ c
(
‖ϕ01 − ϕ02‖V ∗ + ‖η01 − η02‖H + ‖f1 − f2‖L2(0,T ;H) + ‖η∗1 − η∗2‖W

)
(2.56)

holds true for some constant c that depends only on Ω, T and the structure (2.7)–(2.8),
(2.14)–(2.16) and (2.26)–(2.28) of the system.

Theorem 2.4 (Sliding mode control) Assume (2.7)–(2.8), (2.14)–(2.16), (2.26), a =
1, b = ` and

f ∈ L∞(0, T,H), (2.57)

η∗ ∈ W, ϑ0 ∈ V, ϕ0 ∈ W, β0(ϕ0) ∈ H, m0 ∈ int(D(β)). (2.58)

We consider A = ρ Sign, where ρ is a positive coefficient, Sign is defined as in (2.19) and
σ is an element of the range of Sign, i.e.,

σ(t) ∈ Sign(ϑ(t) + `ϕ(t)− η∗) for a.e. t ∈ (0, T ), (2.59)

Then, for some ρ∗ > 0 and for every ρ > ρ∗, there exists a solution (ϑ, ϕ, µ) to Problem
(P ) (see (2.32)–(2.38)) and a time T ∗ such that, for every t ∈ [T ∗, T ]

ϑ(t) + `ϕ(t) = η∗ a.e. in Ω. (2.60)



10 On a class of conserved phase field systems

3 Existence - The approximating problem (Pε)

The following three sections are devoted to the proof of the existence Theorem 2.1.

Let us stress that, from now on, the symbol c stands for different positive constants
which depend only on |Ω|, on the final time T , the shape of the nonlinearities and on the
constants and the norms of the functions involved in the assumptions of our statements.

Yosida regularization of A. We consider the Yosida regularization of A. For ε > 0
we define

Aε : H −→ H, Aε =
I − (I + εA)−1

ε
, (3.1)

where I denotes the identity operator. Note that Aε is Lipschitz continuous and maximal
monotone, with Lipschitz constant 1/ε, and satisfies the following properties. Denoting
by Jε = (I + εA)−1 the resolvent operator, for all δ > 0 we have that

Aεη ∈ A(Jεη), (3.2)

(Aε)δ = Aε+δ, (3.3)

‖Aεη‖H ≤ ‖A0η‖H , (3.4)

lim
ε→0
‖Aεη‖H = ‖A0η‖H , (3.5)

where A0η is the element of the range of Aη having minimum norm.

Remark. We point out a key property of Aε, which is a consequence of (2.16):

‖v‖H ≤ CA(1 + ‖η‖H) for all η ∈ H, v ∈ Aεη. (3.6)

Indeed notice that 0 ∈ A(0) and 0 ∈ I(0): consequently, for every ε > 0, 0 ∈ (I + εA)(0).
This fact implies that Jε(0) = 0. We also recall that A is a maximal monotone operator,
hence Jε is a contraction. Then, from (2.16) and (3.2), it follows that

‖Aεη‖H ≤ CA(‖Jεη‖H + 1)
≤ CA(‖Jεη − Jε0‖H + ‖Jε0‖H + 1)
≤ CA(‖η‖H + 1).

Yosida regularization of Sign. Let us introduce the operator Signε : H → H as the
Yosida regularization at level ε > 0 of the operator Sign. We observe that Signε(v) is the
gradient at v of the C1 functional ‖ · ‖H,ε defined as

‖v‖H,ε := min
w∈H
{ 1

2ε
‖w − v‖2

H + ‖w‖H} =

∫ ‖v‖H
0

min {s/ε, 1} ds for every v ∈ H. (3.7)

We also recall that

Signε(v) =
v

max {ε, ‖v‖H}
for every v ∈ H. (3.8)
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Moreau-Yosida regularization of β and β̂. We introduce the Yosida regularization
of β. For every ε > 0 we define

βε : R −→ R, βε =
I − (I + εβ)−1

ε
. (3.9)

We remark that βε is Lipschitz continuous with Lipschitz constant 1/ε and satisfies the
following properties. Denoting by Rε = (I + εβ)−1 the resolvent operator, for all δ > 0
and for every ϕ ∈ D(β) we have that

βε(ϕ) ∈ β(Rεϕ), (3.10)

(βε)δ = βε+δ, (3.11)

|βε(ϕ)| ≤ |β0(ϕ)|, (3.12)

lim
ε→0

βε(ϕ) = β0(ϕ), (3.13)

where β0(ϕ) is the element of the range of β having minimum modulus. For ε > 0, we

also introduce β̂ε : R→ [0,+∞] as the standard Moreau-Yosida regularization of β̂

β̂ε := min
y∈R

{
β̂(x) +

1

2ε
|x− y|

}
(3.14)

and we recall that, for every ϕ ∈ D(β̂),

β̂ε(ϕ) ≤ β̂(ϕ). (3.15)

Moreover, βε is the Frechet derivative of β̂ε. Then, for every ϕ1, ϕ2 ∈ D(β̂), we have that

β̂ε(ϕ2) = β̂ε(ϕ1) +

∫ ϕ2

ϕ1

βε(s) ds. (3.16)

Regularization of the initial data. We denote by ϑ0ε and ϕ0ε the regularization of
the initial data ϑ0 and ϕ0, respectively, obtained solving the following elliptic problems:{

ϑ0ε − ε∆ϑ0ε = ϑ0 in Ω,
∂nϑ0ε = 0 on Γ.

(3.17)

{
ϕ0ε − ε∆ϕ0ε = ϕ0 in Ω,
∂nϕ0ε = 0 on Γ.

(3.18)

Since ϑ0 ∈ H and ϕ0 ∈ V , by elliptic regularity we infer that ϑ0ε ∈ W and ϕ0ε ∈
W ∩H3(Ω). Moreover, integrating over Ω the first equation of (3.18), we obtain that

m0 =
1

|Ω|

∫
Ω

ϕ0 =
1

|Ω|

∫
Ω

ϕ0ε =: m0ε. (3.19)

From (2.28) and (2.46) it immediately follows that m0ε ∈ int(D(β)). Since β is maximal
monotone, testing the first equation of (3.18) by βε(ϕ0ε) and integrating over Ω, we have
that ∫

Ω

(ϕ0ε − ϕ0)βε(ϕ0ε) = −ε
∫

Ω

|∇ϕ0ε|2β′ε(ϕ0ε) ≤ 0. (3.20)
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Recalling that βε is the subdifferential of β̂ε, from (3.20) we infer that∫
Ω

β̂ε(ϕ0ε)−
∫

Ω

β̂ε(ϕ0) ≤
∫

Ω

(ϕ0ε − ϕ0)βε(ϕ0ε) ≤ 0. (3.21)

Consequently, due to (2.28), (3.15), (3.21) and the definition of β̂ε, we conclude that

0 ≤
∫

Ω

β̂ε(ϕ0ε) ≤
∫

Ω

β̂ε(ϕ0) ≤
∫

Ω

β̂(ϕ0) < +∞, (3.22)

whence there exists a positive constant c, independent of ε, such that ‖β̂(ϕ0ε)‖L1(Ω) ≤ c.
Now, we test (3.17) by ϑ0ε and integrate over Ω. We obtain that∫

Ω

|ϑ0ε|2 + ε

∫
Ω

|∇ϑ0ε|2 =

∫
Ω

ϑ0ϑ0ε ≤
1

2

∫
Ω

|ϑ0|2 +
1

2

∫
Ω

|ϑ0ε|2. (3.23)

Since ϑ0 ∈ H, from (3.23) it immediately follows that εϑ0ε −→ 0 in V as ε↘ 0. Besides,
there exists a positive constant c, independent of ε, such that ‖ϑ0ε‖H ≤ c. Then, testing
the first equation of the system (3.17) by an arbitrary function v ∈ V and passing to the
limit as ε↘ 0, we obtain that

lim
ε↘0

(∫
Ω

ϑ0εv + ε

∫
Ω

∇ϑ0ε · ∇v −
∫

Ω

ϑ0v

)
= 0 for all v ∈ V , (3.24)

whence ϑ0ε ⇀ ϑ0 in H. Moreover, from (3.23) and (3.24) we infer that∫
Ω

|ϑ0|2 ≤ lim inf
ε↘0

∫
Ω

|ϑ0ε|2 ≤ lim sup
ε↘0

∫
Ω

|ϑ0ε|2 ≤
∫

Ω

|ϑ0|2. (3.25)

Thanks to (3.25), ‖ϑ0ε‖H −→ ‖ϑ0‖H and this ensures, due to the weak convergence
already proved, that ϑ0ε −→ ϑ0 in H.

With a similar technique, testing (3.18) by ϕ0ε and integrating over Ω, we obtain that
ϕ0ε −→ ϕ0 in H. Now, we test (3.18) by −∆ϕ0ε and integrate over Ω. We obtain that∫

Ω

|∇ϕ0ε|2 + ε

∫
Ω

|∆ϕ0ε|2 =

∫
Ω

∇ϕ0 · ∇ϕ0ε ≤
1

2

∫
Ω

|∇ϕ0|2 +
1

2

∫
Ω

|∇ϕ0ε|2. (3.26)

Since ϕ0 ∈ V , from (3.26) it immediately follows that εϕ0ε −→ 0 in W as ε ↘ 0.
Furthermore, there exists a positive constant c, independent of ε, such that ‖∇ϕ0ε‖H ≤ c.
Recalling that ‖ϕ0ε‖H ≤ c, we conclude that ‖ϕ0ε‖V ≤ c. Then, testing the the first
equation of the system (3.18) by −∆w, where w is an arbitrary function in W , and
passing to the limit as ε↘ 0, we obtain

lim
ε↘0

(∫
Ω

∇ϕ0ε · ∇w + ε

∫
Ω

∆ϕ0ε ·∆w −
∫

Ω

∇ϕ0 · ∇w

)
= 0 for all w ∈ W, (3.27)

whence ϕ0ε ⇀ ϕ0 in V . Moreover, from (3.26)–(3.27) we infer that∫
Ω

|∇ϕ0|2 ≤ lim inf
ε↘0

∫
Ω

|∇ϕ0ε|2 ≤ lim sup
ε↘0

∫
Ω

|∇ϕ0ε|2 ≤
∫

Ω

|∇ϕ0|2. (3.28)
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Thanks to (3.28), ‖∇ϕ0ε‖H −→ ‖∇ϕ0‖H and this ensures, due to the weak convergence
already proved, that ϕ0ε −→ ϕ0 in V . Now, let us summarize the main properties of ϑ0ε

and ϕ0ε. For every ε ∈ (0, 1) we have that

ϑ0ε ∈ W, ϕ0ε ∈ W ∩H3(Ω), m0ε ∈ int(D(β)), ‖β̂(ϕ0ε)‖L1(Ω) ≤ c, (3.29)

lim
ε↘0
‖ϑ0 − ϑ0ε‖H = 0, lim

ε↘0
‖ϕ0 − ϕ0ε‖V = 0, (3.30)

−ν∆ϕ0ε + βε(ϕ0ε) + π(ϕ0ε)− γϑ0ε ∈ V. (3.31)

Regularization of f . We denote by fε the regularization of f , constructed in such a
way that

fε ∈ C1([0, T ];H) for all ε > 0, lim
ε↘0
‖fε − f‖L2(0,T ;H) = 0. (3.32)

For example, we can consider fε as the solution the following system:{
−εf ′′ε (t) + fε(t) = f(t), t ∈ (0, T ),
fε(0) = fε(T ) = 0.

(3.33)

Approximating problem (Pε). We look for a triplet (ϑε, ϕε, µε) satisfying at least the
regularity requirements

ϑε ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (3.34)

ϕε ∈ W 1,∞(0, T ;V ∗) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (3.35)

µε ∈ L∞(0, T ;V ) ∩ L2(0, T ;W ), (3.36)

and solving the approximating problem (Pε):

∂t(ϑε + `ϕε)−∆ϑε + ζε = fε a.e. in Q, (3.37)

∂tϕε −∆µε = 0 a.e. in Q, (3.38)

µε = −ν∆ϕε + ξε + π(ϕε)− γϑε a.e. in Q, (3.39)

ζε(t) ∈ Aε(aϑε(t) + bϕε(t)− η∗) for a.e. t ∈ (0, T ), (3.40)

ξε ∈ βε(ϕε) a.e. in Q, (3.41)

∂nϑε = ∂nϕε = ∂nµε = 0 on Σ, (3.42)

ϑε(0) = ϑ0ε, ϕε(0) = ϕ0ε in Ω, (3.43)

where βε and Aε are the Yosida regularizations of β and A defined in (3.1) and (3.9). We
notice that the homogeneous Neumann boundary conditions are already contained in the
conditions (3.34)–(3.36) due to the definition of W (see (2.3)).

We observe that, for almost every t ∈ (0, T ), we can re-write the approximating
problem (Pε) in the following way:

〈∂t(ϑε + `ϕε)(t), z〉V ∗,V +

∫
Ω

∇ϑε(t) · ∇z + 〈ζε(t), z〉V ∗,V = 〈fε(t), z〉V ∗,V for all z ∈ V ,

(3.44)
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〈∂tϕε(t), z〉V ∗,V +

∫
Ω

∇µε(t) · ∇z = 0 for all z ∈ V , (3.45)

µε(t) = −ν∆ϕε(t) + ξε(t) + π(ϕε(t))− γϑε(t) in H, (3.46)

ζε(t) ∈ Aε(aϑε(t) + bϕε(t)− η∗), (3.47)

ξ ∈ βε(ϕε) a.e. in Q, (3.48)

∂nϕε = 0 a.e. on Σ, (3.49)

ϑε(0) = ϑ0ε, ϕε(0) = ϕ0ε in Ω. (3.50)

Since m0ε = m0, recalling the definition of N (see (2.21)–(2.24)), we have that ∂tϕε(t) ∈
D(N ). Hence, (3.45) can be written as

N∂tϕε(t) = m(µε(t))− µε(t) in V , (3.51)

and this and (3.45) entail

m(µε(t))−N∂tϕε(t) = −ν∆ϕε(t) + ξε(t) + π(ϕε(t))− γϑε(t) in H. (3.52)

4 Existence - Global a priori estimates

In this section, we will deduce some a priori estimates inferred from (3.44)–(3.52).

In the remainder of the paper we often owe to the Hölder inequality and to the el-
ementary Young inequalities in performing our a priori estimates. For every x, y > 0,
α ∈ (0, 1) and δ > 0 there hold

xy ≤ αx
1
α + (1− α)y

1
1−α , (4.1)

xy ≤ δx2 +
1

4δ
y2. (4.2)

Moreover, we also use the inequality deduced from the compactness of the embedding
V ⊂ H ⊂ V ∗ (see [39, Lemma 8, p. 84]): for all δ > 0 there exists a constant K > 0 such
that

‖z‖H ≤ δ‖z‖V +K‖z‖V ∗ for all z ∈ H. (4.3)

In the following, the symbol c stands for different positive constants which depend only
on |Ω|, on the final time T , on the shape of the nonlinearities and on the constants and
the norms of the functions involved in the assumptions of our statements.

First a priori estimate. According to (3.19), m(∂tϕε) = 0. Consequently, ∂tϕε ∈
D(N ) and we can test (3.45) by N∂tϕε. Integrating over (0, t), t ∈ (0, T ], we obtain that∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+

∫
Qt

∇µε · ∇N∂tϕε =

∫ t

0

‖∂tϕε‖2
V ∗ +

∫
Qt

µε∂tϕε = 0. (4.4)

Recalling that

ν

∫
Qt

ϕε∂tϕε =
ν

2

∫
Ω

|ϕε(t)|2 −
ν

2

∫
Ω

|ϕ0ε|2, (4.5)
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we combine (3.44) tested by γ
`
ϑε, (4.4) and (4.5). Then we subtract (3.46) tested by ∂tϕε

and integrate over (0, t). We have that

γ

2`

∫
Ω

|ϑε(t)|2 +
γ

`

∫
Qt

|∇ϑε|2 +

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+

ν

2
‖ϕε(t)‖2

V +

∫
Ω

β̂ε(ϕε(t))

=
γ

2`
‖ϑ0ε‖2

H+
ν

2
‖ϕ0ε‖2

V +

∫
Ω

β̂ε(ϕ0ε)+
γ

`

∫
Qt

fεϑε−
γ

`

∫
Qt

ζεϑε+

∫
Qt

(νϕε−π(ϕε))∂tϕε. (4.6)

As π is a Lipschitz continuous function with Lipschitz constant Cπ = ‖π′‖∞, we obtain
that

|π(ϕε(s))| ≤ |π(ϕε(s))− π(0)|+ |π(0)| ≤ Cπ|ϕε(s)|+ |π(0)|. (4.7)

Consequently, thanks to (4.7), we infer that

‖νϕε(s)− π(ϕε(s))‖2
V =

∫
Ω

|νϕε(s)− π(ϕε(s))|2 +

∫
Ω

|ν∇ϕε(s)− π′(ϕε(s))∇ϕε(s)|2

≤ 2

∫
Ω

(
ν2|ϕε(s)|2 + |π(ϕε(s))|2

)
+ 2

∫
Ω

(
ν2|∇ϕε(s)|2 + ‖π′‖2

∞|∇ϕε(s)|2
)

≤ 2ν2

∫
Ω

|ϕε(s)|2 + 4C2
π

∫
Ω

|ϕε(s)|2 + 4|Ω||π(0)|2 + 2ν2

∫
Ω

|∇ϕε(s)|2 + 2C2
π

∫
Ω

|∇ϕε(s)|2

= (2ν2+4C2
π)

∫
Ω

|ϕε(s)|2+(2ν2+2C2
π)

∫
Ω

|∇ϕε(s)|2+4|π(0)|2|Ω| ≤ c(‖ϕε(s)‖2
V +1). (4.8)

Due to (4.8), we obtain that the last term on the right-hand side of (4.6) is estimated as
follows∫

Qt

(νϕε − π(ϕε))∂tϕε ≤
1

2

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+

1

2

∫ t

0

‖νϕε(s)− π(ϕε(s))‖2
V ds

≤ 1

2

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+ c

∫ t

0

(‖ϕε(s)‖2
V + 1) ds. (4.9)

Due to the liear growth of Aε stated by (3.6), we have that

−γ
`

∫
Qt

ζεϑε ≤
γ

`

∫
Qt

|ζε(s)||ϑε(s)| ds ≤
γ

`

∫ t

0

‖ζε(s)‖2
H ds+

γ

`

∫ t

0

‖ϑε(s)‖2
H ds

≤ γ

`

∫ t

0

C2
A(1 + ‖aϑε(s) + bϕε(s)− η∗‖H)2 ds+

γ

`

∫ t

0

‖ϑε(s)‖2
H ds

≤ γ

`

∫ t

0

4C2
A(1 + |a|2‖ϑε(s)‖2

H + |b|2‖ϕε(s)‖2
H + ‖η∗‖2

H) ds+
γ

`

∫ t

0

‖ϑε(s)‖2
H ds

≤ γ

`
4C2

AT +
γ

`
4C2

A|a|2
∫ t

0

‖ϑε(s)‖2
H ds+

γ

`
4C2

A|b|2
∫ t

0

‖ϕε(s)‖2
H ds

+
γ

`
4C2

AT‖η∗‖2
H +

γ

`

∫ t

0

‖ϑε(s)‖2
H ds

≤ c

(∫ t

0

‖ϑε(s)‖2
H ds+

∫ t

0

‖ϕε(s)‖2
H ds+ 1

)
. (4.10)
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Moreover, by applying (4.2) to the fourth term on the right-hand side of (4.6), we have
that

γ

`

∫
Qt

fεϑε ≤
γ

`

∫
Qt

|fε|2 +
γ

4`

∫
Qt

|ϑε|2 =
γ

`

∫
Qt

|fε|2 +
γ

4`

∫ t

0

‖ϑε(s)‖2
H ds. (4.11)

We rearrange the right-hand side of (4.6) using (4.9)–(4.11) and obtain that

γ

2`

∫
Ω

|ϑε(t)|2 +
γ

`

∫
Qt

|∇ϑε|2 +
1

2

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+

ν

2
‖ϕε(t)‖2

V +

∫
Ω

β̂ε(ϕε(t))

≤ γ

2`
‖ϑ0ε‖2

H +
ν

2
‖ϕ0ε‖2

V +

∫
Ω

β̂ε(ϕ0ε) +
γ

`

∫ t

0

‖fε(s)‖2
H ds

+c

(∫ t

0

‖ϕε(s)‖2
V ds+

∫ t

0

‖ϑε(s)‖2
H ds+ 1

)
+
γ

4`

∫ t

0

‖ϑε(s)‖2
H ds. (4.12)

Due to (3.29)–(3.30), the first three terms of the right-hand side of (4.12) are bounded
and similarly the fourth term, thanks to (3.32). Then, applying the Gronwall lemma, we
conclude that there exists a positive constant c, independent of ε, such that

γ

2`

∫
Ω

|ϑε(t)|2 +

∫
Qt

|∇ϑε|2 +
1

2

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+

ν

2
‖ϕε(t)‖2

V +

∫
Ω

β̂ε(ϕε(t)) ≤ c, (4.13)

whence it immediately follows that

‖ϑε‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c, (4.14)

‖ϕε‖H1(0,T ;V ∗)∩L∞(0,T ;V ) ≤ c, (4.15)

‖β̂ε(ϕε)‖L∞(0,T ;L1(Ω)) ≤ c. (4.16)

Due to (4.14)–(4.16), by (3.6) we have that

‖ζε‖L∞(0,T ;H) ≤ c, (4.17)

and, consequently, by comparison in (3.44) we infer that

‖∂tϑε‖L2(0,T ;V ∗) ≤ c. (4.18)

Second a priori estimate. Recalling that m0ε = m0 due to (3.45), we have that
ϕε(s)−m0 ∈ D(N ) for every s ∈ (0, T ). We test (3.52) at time s by (ϕε(s)−m0) ∈ D(N )
and we infer that

(ξε(s), ϕε(s)−m0)H = −(N∂tϕε(s), ϕε(s)−m0)H + (m(µε(s)), ϕε(s)−m0)H

+ν(∆ϕε(s), ϕε(s)−m0)H − (π(ϕε(s)), ϕε(s)−m0)H + γ(ϑε(s), ϕε(s)−m0)H . (4.19)

We recall that there exists a positive constant c such that ‖z‖V ∗ ≤ c‖z‖H for all z ∈ H.
Consequently the first term of the right-hand side of (4.19) is estimated as follows:

−(N∂tϕε(s), ϕε(s)−m0)H = −(∂tϕε(s), ϕε(s)−m0)V ∗

≤ ‖∂tϕε(s)‖V ∗(‖ϕε(s)‖V ∗ + |m0||Ω|)
= c‖∂tϕε(s)‖V ∗(‖ϕε(s)‖H + 1). (4.20)
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Recalling (3.19), we have that

(m(µε(s)), ϕε(s)−m0)H = m(µε(s))

(∫
Ω

ϕε(s)− |Ω|m0

)
= 0. (4.21)

Due to the Neumann homogeneous boundary conditions for ϕε, we have that∫
Ω

∆ϕε(s) = 0. (4.22)

Thanks to (4.22), we infer that

ν(∆ϕε(s), ϕε(s)−m0)H = −ν‖∇ϕε(s)‖2
H −m0

∫
Ω

∆ϕε(s) = −ν‖∇ϕε(s)‖2
H ≤ 0. (4.23)

As π is a Lipschitz continuous function with Lipschitz constant Cπ, we obtain that

−(π(ϕε(s)), ϕε(s)−m0)H ≤
∫

Ω

|π(ϕε(s))||ϕε(s)−m0|

≤
∫

Ω

(
|π(ϕε(s))− π(0)|+ |π(0)|

)(
|ϕε(s)|+ |m0|

)
≤

∫
Ω

(
Cπ|ϕε(s)|+ |π(0)|

)(
|ϕε(s)|+ |m0|

)
≤ Cπ‖ϕε(s)‖2

H +

(
Cπ|m0|+ |π(0)|

)
‖ϕε(s)‖2

H + c

≤ c(‖ϕε(s)‖2
H + 1). (4.24)

Moreover, we have that

γ(ϑε(s), ϕε(s)−m0)H ≤ γ

∫
Ω

|ϑε(s)||ϕε(s)|+ γ|m0|
∫

Ω

|ϑε(s)|

≤ γ‖ϑε(s)‖2
H + γ‖ϕε(s)‖2

H + γ|m0|‖ϑε(s)‖2
H + γ|m0||Ω|

≤ c(‖ϑε(s)‖2
H + ‖ϕε(s)‖2

H + 1). (4.25)

Consequently, rearranging the right-hand side of (4.19) using (4.20)–(4.21) and (4.23)–
(4.25), we obtain that

(ξε(s), ϕε(s)−m0)H ≤ c

(
‖∂tϕε(s)‖V ∗ + ‖ϕε(s)‖2

H + ‖ϑε(s)‖2
H + 1

)
. (4.26)

Due to a useful inequality stated in [24, Section 5], it turns out that

|ξε(s)| ≤ c[ξε(s)(ϕε(s)−m0) + 1]. (4.27)

We integrate (4.27) over Ω and, due to (4.26), we infer that

‖ξε(s)‖L1(Ω) ≤ c

[
(ξε(s), ϕε(s)−m0)H + 1

]
≤ c

(
‖∂tϕε(s)‖V ∗ + ‖ϕε(s)‖2

H + ‖ϑε(s)‖2
H + 1

)
. (4.28)

Due to (4.14)–(4.15), from (4.28) we conclude that there exists a positive constant c,
independent of ε, such that

‖ξε‖L2(0,T ;L1(Ω)) ≤ c. (4.29)
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Third a priori estimate. As π is a Lipschitz continuous function with Lipschitz con-
stant Cπ, for every s ∈ (0, T ) we have that

|π(ϕε(s))|2 ≤
(
|π(ϕε(s))− π(0)|+ |π(0)|

)2

≤
(
Cπ|ϕε(s)|+ |π(0)|

)2

≤ c
(
|ϕε(s)|2 + 1

)
. (4.30)

Now, integrating (3.52) over Ω, squaring the resultant and using (4.14)–(4.18) and (4.30),
we obtain that

|m(µε(s))|2 ≤
3

|Ω|2

(
‖ξε(s)‖2

L1(Ω) + |Ω|‖π(ϕε(s))‖2
H + γ‖ϑε(s)‖2

H

)

≤ c

(
‖ξε(s)‖2

L1(Ω) + ‖ϕε(s)‖2
H + ‖ϑε(s)‖2

H + 1

)
. (4.31)

Consequently, integrating (4.31) over (0, T ) and recalling the previous a priori estimates
(4.14)–(4.15) and (4.29), we conclude that there exists a positive constant c, independent
of ε, such that

‖m(µε)‖L2(0,T ) ≤ c. (4.32)

Fourth a priori estimate. We recall that the Poincaré inequality states that there
exists a positive constant cp such that

‖z‖2
V ≤ cp‖∇z‖2

H for all z ∈ V with m(z) = 0. (4.33)

We integrate over (0, T ) the square of the norms in V of each term of (3.51). Then,
applying (4.32) and (4.33), we obtain that∫ T

0

‖µε(s)‖2
V ds ≤ 2

∫ T

0

‖m(µε(s))‖2
V ds+ 2

∫ T

0

‖N∂tϕε(s)‖2
V ds

≤ 2

∫ T

0

|m(µε(s))|2 ds+ 2cp

∫ T

0

‖∇N∂tϕε(s)‖2
H ds

≤ c+ 2cp

∫ T

0

‖∂tϕε(s)‖2
V ∗ ds. (4.34)

Due to (4.15), we conclude that there exists a positive constant c, independent of ε, such
that

‖µε‖L2(0,T ;V ) ≤ c. (4.35)

Fifth a priori estimate. We test (3.46) at time s ∈ (0, T ) by ξε(s) ∈ V and integrate
the resultant over Ω. We obtain that

‖ξε(s)‖2
H =

(
µε(s) + ν∆ϕε(s)− π(ϕε(s)) + γϑε(s), ξε(s)

)
H
. (4.36)
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Due to the monotonicity of βε, we have that

(ν∆ϕε(s), ξε(s))H = ν

∫
Ω

∆ϕε(s)ξε(s)

= −ν
∫

Ω

∇ϕε(s) · ∇ξε(s)

= −ν
∫

Ω

|∇ϕε(s)|2β′ε(ϕε(s)) ≤ 0. (4.37)

Using (4.37) and the Young inequality, we can estimate (4.36) as follows

‖ξε(s)‖2
H ≤

(
µε(s)− π(ϕε(s)) + γϑε(s), ξε(s)

)
H

≤ ‖µε(s)− π(ϕε(s)) + γϑε(s)‖H‖ξε(s)‖H

≤ 1

2
‖ξε(s)‖2

H + 2
(
‖µε(s)‖2

H + ‖π(ϕε(s))‖2
H + γ2‖ϑε(s)‖2

H

)
. (4.38)

Due to (4.30), from (4.38) we infer that

‖ξε(s)‖2
H ≤ c

(
‖µε(s)‖2

H + ‖ϕε(s)‖2
H + ‖ϑε(s)‖2

H + 1
)
. (4.39)

Then, integrating (4.39) over (0, T ) with respect to s and using (4.14)–(4.15) and (4.35),
we have that

‖ξε‖L2(0,T ;H) ≤ c, (4.40)

for some positive constant c, independent of ε.

Sixth a priori estimate. We integrate over (0, T ) the square of the norms in H of
each term of (3.46). Then, using (4.30), (4.35) and (4.40), we obtain that

ν2

∫ T

0

‖∆ϕε(s)‖2
H ds

≤ 4

∫ T

0

‖µε(s)‖2
H ds+ 4

∫ T

0

‖ξε(s)‖2
H ds+ 4

∫ T

0

‖π(ϕε(s))‖2
H ds+ 4γ2

∫ T

0

‖ϑε(s)‖2
H ds

≤ c

(∫ T

0

‖ϕε(s)‖2
H ds+

∫ T

0

‖ϑε(s)‖2
H ds+ 1

)
. (4.41)

Thanks to (4.14)–(4.15), we conclude that there exists a positive constant c, independent
of ε, such that

‖ϕε‖L2(0,T ;W ) ≤ c. (4.42)

Summary of the a priori estimates. Let us summarize the a priori estimates. From
(4.14)–(4.18), (4.35), (4.40) and (4.42) we conclude that there exists a constant c > 0,
independent of ε, such that

‖ϑε‖H1(0,T ;V ∗)∩L∞(0,T ;H)∩L2(0,T ;V ) ≤ c, (4.43)

‖ϕε‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c, (4.44)

‖ζε‖L∞(0,T ;H) ≤ c, (4.45)

‖ξε‖L2(0,T ;H) ≤ c, (4.46)

‖µε‖L2(0,T ;V ) ≤ c. (4.47)
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5 Existence - Passage to the limit as ε↘ 0

Based on available results (cf., e.g., [10]), it turns out that there exists a solution (ϑε, ϕε, µε)
of (Pε) satisfying the regularity requirements (3.34)–(3.36) and solving (3.37)-(3.43). In
this section we pass to the limit as ε ↘ 0 and prove that the limit of subsequences of
solutions (ϑε, ϕε, µε) for (Pε) (see (3.37)–(3.43)) yields a solution (ϑ, ϕ, µ) of (P ) (see
(2.32)–(2.38)).

Thanks to the uniform estimates (4.43)–(4.47), there exists a subsequence {εk}k∈N with
εk ↘ 0 as k → +∞ and some limit functions ϑ ∈ H1(0, T ;V ∗)∩L∞(0, T ;H)∩L2(0, T ;V ),
ϕ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;W ), µ ∈ L2(0, T ;V ), ξ ∈ L2(0, T ;H) and
ζ ∈ L∞(0, T ;H) such that

ϑεk ⇀
∗ ϑ in H1(0, T ;V ∗) ∩ L∞(0, T ;H), (5.1)

ϑεk ⇀ ϑ in L2(0, T ;V ), (5.2)

ϕεk ⇀
∗ ϕ in H1(0, T ;V ∗) ∩ L∞(0, T ;V ), (5.3)

ϕεk ⇀ ϕ in L2(0, T ;W ), (5.4)

µεk ⇀ µ in L2(0, T ;V ), (5.5)

ξεk ⇀ ξ in L2(0, T ;H), (5.6)

ζεk ⇀
∗ ζ in L∞(0, T ;H), (5.7)

as k → +∞. From (5.1)–(5.4) and the well-known Ascoli–Arzelá theorem (see, e.g., [39,
Sect. 8, Cor. 4]), we infer that

ϑεk −→ ϑ in C0([0, T ];V ∗) ∩ L2(0, T ;H), (5.8)

ϕεk −→ ϕ in C0([0, T ];H) ∩ L2(0, T ;V ), (5.9)

as k → +∞. As π is a Lipschitz continuous function, for a.e. s ∈ [0, T ] we have that

|π(ϕεk(s))− π(ϕ(s))| ≤ Cπ|ϕεk(s)− ϕ(s)|.

Thanks to (5.9), we conclude that

π(ϕεk(s)) −→ π(ϕ(s)) in L2(0, T ;H), (5.10)

as k → +∞.

Passage to the limit on ξε. In this paragraph we check that ξ ∈ β(ϕ) a.e. in Q. To
this aim, we recall that

ϕεk → ϕ in L2(0, T ;H) ≡ L2(Q), (5.11)

ξεk ⇀ ξ in L2(0, T ;H), (5.12)

as k → +∞. Now, we introduce the operator Bε induced by βε on L2(Q) in the following
way

Bε : L2(Q) −→ L2(Q)

ξε ∈ Bε(ϕε)⇐⇒ ξε(x, t) ∈ βε(ϕε(x, t)) for a.e. (x, t) ∈ Q. (5.13)
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Due to (5.11)–(5.12), as k → +∞, we have that{
Bεk(ϕεk) ⇀ ξ in L2(Q),
ϕεk → ϕ in L2(Q),

(5.14)

lim sup
k→+∞

∫
Q

ξεkϕεk =

∫
Q

ξϕ. (5.15)

Thanks to (5.14)–(5.15) and to the general result [1, Proposition 2.2, p. 38], we conclude
that

ξ ∈ B(ϕ) in L2(Q), (5.16)

with analogous definition for B (see (2.9)–(2.10)). This is equivalent to saying that

ξ ∈ β(ϕ) a.e. in Q. (5.17)

Passage to the limit on ζε. In this paragraph we check that ζ(t) ∈ A(aϑ(t)+bϕ(t)−η∗)
for a.e. t ∈ [0, T ]. Let us recall that

ϑεk → ϑ in L2(0, T ;H), (5.18)

ϕεk → ϕ in L2(0, T ;H), (5.19)

ζεk ⇀ ζ in L2(0, T ;H), (5.20)

as k → +∞. Setting

ηεk := aϑεk + bϕεk − η∗, η := aϑ+ bϕ− η∗,

thanks to (5.18)–(5.19), we have that

ηεk −→ η in L2(0, T ;H), (5.21)

as k → +∞. Now, we introduce the operator Aε induced by Aε on L2(0, T ;H) in the
following way

Aε : L2(0, T ;H) −→ L2(0, T ;H)

ζε ∈ Aε(ηε)⇐⇒ ζε(t) ∈ Aε(ηε(t)) for a.e. t ∈ [0, T ]. (5.22)

Due to (5.18)–(5.20), we have that{
Aεk(ηεk) ⇀ ζ in L2(0, T ;H),
ηεk → η in L2(0, T ;H),

(5.23)

lim sup
k→+∞

∫
Q

ζεkηεk =

∫
Q

ζη. (5.24)

Thanks to (5.23)–(5.24) and the convergence result [1, Proposition 2.2, p. 38], we conclude
that

ζ ∈ A(η) in L2(0, T ;H), (5.25)

with obvious definition for A (see (2.17)–(2.18)). This is equivalent to saying that

ζ(t) ∈ A(aϑ(t) + bϕ(t)− η∗) for a.e. t ∈ [0, T ]. (5.26)
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Conclusion of the proof Using (5.1)–(5.10), (5.17) and (5.26), we can pass to the
limit as ε↘ 0 in (3.37)–(3.43) obtaining (2.32)–(2.38) for the limiting functions ϑ, ϕ and
µ.

6 Regularity

This section is devoted to the proof of Theorem 2.2. In order to obtain additional regular-
ity for the solutions, we need further a priori estimates obtained from the approximating
problem (Pε) (see (3.37)–(3.43)) in which we take ϑ0ε = ϑ0 and ϕ0ε = ϕ0.

Seventh a priori estimate. We test (3.37) by ∂tϑε and integrate over Qt, t ∈ (0, T ].
We have that∫

Qt

|∂tϑε|2 + `

∫
Qt

∂tϕε∂tϑε +
1

2

∫
Ω

|∇ϑε(t)|+
∫
Qt

ζε∂tϑε =

∫
Qt

fε∂tϑε +
1

2

∫
Ω

|∇ϑ0|. (6.1)

We now proceed with a formal estimate since we have to differentiate (3.38) and (3.39)
with respect to time. For a rigorous approach, one can argue, e.g., as in [11, Subsection
4.4]. By time differentiation of (3.38) and (3.39) we have

∂ttϕε −∆∂tµε = 0, (6.2)

∂tµε = −ν∆∂tϕε + β′ε(ϕε)∂tϕε + π′(ϕε)∂tϕε − γ∂tϑε. (6.3)

According to (3.19), m(∂tϕε) = 0. Consequently, ∂tϕε ∈ D(N ) and we can test (6.2) by
`
γ
N (∂tϕε). Integrating the resultant over Qt, we obtain that

− `
γ

∫
Qt

∂tµε∂tϕε =
`

2γ
‖∂tϕε(t)‖2

V ∗ −
`

2γ
‖∂tϕε(0)‖2

V ∗ . (6.4)

We test (6.3) by `
γ
∂tϕε and integrate over Qt. We have that

`

γ

∫
Qt

∂tµε∂tϕε

=
ν`

γ

∫
Qt

|∇∂tϕε|2 +
`

γ

∫
Qt

β′ε(ϕε)|∂tϕε|2 +
`

γ

∫
Qt

π′(ϕε)|∂tϕε|2 − `
∫
Qt

∂tϕε∂tϑε. (6.5)

By combining (6.1), (6.4) and (6.5), we infer that∫
Qt

|∂tϑε|2 +
1

2

∫
Ω

|∇ϑε(t)|+
ν`

γ

∫
Qt

|∇∂tϕε|2 +
`

2γ
‖∂tϕε(t)‖2

V ∗ =
1

2

∫
Ω

|∇ϑ0|

+

∫
Qt

fε∂tϑε+
`

2γ
‖∂tϕε(0)‖2

V ∗−
∫
Qt

ζε∂tϑε−
`

γ

∫
Qt

β′ε(ϕε)|∂tϕε|2−
`

γ

∫
Qt

π′(ϕε)|∂tϕε|2. (6.6)

By applying inequality (4.2) to the second term on the right-hand side of (6.6), we infer
that ∫

Qt

fε∂tϑε ≤ ‖fε‖2
L2(0,T ;H) +

1

4

∫
Qt

|∂tϑε|2. (6.7)
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Moreover, as βε is a maximal monotone operator, we have that β′ε > 0 and consequently

− `
γ

∫
Qt

β′ε(ϕε)|∂tϕε|2 ≤ 0. (6.8)

Due to (4.17), we have that

−
∫
Qt

ζε∂tϑε ≤
∫
Qt

|ζε|2 +
1

4

∫
Qt

|∂tϑε|2 ≤ c+
1

4

∫
Qt

|∂tϑε|2. (6.9)

As π is a Lipschitz continuous function with Lipschitz constant Cπ, we have that

− `
γ

∫
Qt

π′(ϕε)|∂tϕε|2 ≤
`

γ

∫
Qt

|π′(ϕε)||∂tϕε|2 ≤
Cπ`

γ

∫
Qt

|∂tϕε|2. (6.10)

Adding ν`
γ

∫
Qt
|∂tϕε|2 to both side of (6.6) and rearranging the right-hand side of (6.6)

using (6.7)–(6.10), we obtain that

1

2

∫
Qt

|∂tϑε|2 +
1

2

∫
Ω

|∇ϑε(t)|+
ν`

γ

∫ t

0

‖∂tϕε(s)‖2
V ds+

`

2γ
‖∂tϕε(t)‖2

V ∗

≤ 1

2
‖ϑ0‖2

V +
`

2γ
‖∂tϕε(0)‖2

V ∗ + ‖fε‖2
L2(0,T ;H) +

(
Cπ`

γ
+
ν`

γ

)∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+ c. (6.11)

Thanks to the compactness of the embedding V ⊂ H ⊂ V ∗, the inequality stated by [39,
Lemma 8, p. 84] ensures that, choosing

δ =

(
ν`

4γ

(
Cπ`

γ
+
ν`

γ

)−1) 1
2

,

we can estimate the fourth term on the right-hand side of (6.11) as follows(
Cπ`

γ
+
ν`

γ

)∫ t

0

‖∂tϕε(s)‖2
H ds ≤ ν`

2γ

∫ t

0

‖∂tϕε(s)‖2
V ds+ c

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds. (6.12)

Due to (6.12), from (6.11) we have that

1

2

∫
Qt

|∂tϑε|2 +
1

2

∫
Ω

|∇ϑε(t)|+
ν`

2γ

∫ t

0

‖∂tϕε(s)‖2
V ds+

`

2γ
‖∂tϕε(t)‖2

V ∗

≤ 1

2
‖ϑ0‖2

V +
`

2γ
‖∂tϕε(0)‖2

V ∗ + ‖fε‖2
L2(0,T ;H) + c

∫ t

0

`

2γ
‖∂tϕε(s)‖2

V ∗ ds

≤ 1

2
‖ϑ0‖2

V +
`

2γ
‖∂tϕε(0)‖2

V ∗ + ‖fε‖2
L2(0,T ;H) + c‖ϕε‖2

H1(0,T ;V ∗) + c. (6.13)

Since (−ν∆ϕ0 + βε(ϕ0) + π(ϕ0) − γϑ0) is bounded in V uniformly with respect to ε
according to (2.40), we deduce, by comparison in (3.38)–(3.39), that the second term on
the right-hand side of (6.13) is estimated by a positive constant. Hence, due to (2.39),
(3.30)–(3.36) and (4.44), the right-hand side of (6.13) is bounded and we conclude that
there exists a positive constant c, independent of ε, such that

‖ϑε‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖ϕε‖W 1,∞(0,T ;V ∗)∩H1(0,T ;V ) ≤ c. (6.14)
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Eighth a priori estimate. From (3.37), we have that

∆ϑε = ∂t(ϑε + `ϕε) + ζε − fε =: hε. (6.15)

We observe that (6.14) ensures that hε is bounded in L2(0, T ;H) uniformly with respect
to ε. Then we infer that there exists a constant c > 0, independent of ε, such that

‖ϑε‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (6.16)

Ninth a priori estimate. Due to (6.14)–(6.16), from (4.28) we deduce that

‖ξε‖L∞(0,T ;L1(Ω)) ≤ c. (6.17)

Now, using (4.31), we infer that ‖m(µε)‖L∞(0,T ) ≤ c. By comparison in (3.35) and (3.51),
it follows that

‖µε‖L∞(0,T ;V ) ≤ c. (6.18)

Moreover, from (4.39), we obtain that ‖ξε‖L∞(0,T ;H) ≤ c. Then, by comparison in (3.39),
we conclude that

‖∆ϕε‖L∞(0,T ;H)∩L2(0,T ;W ) ≤ c. (6.19)

Conclusion of the proof. As (6.14), (6.16) and (6.17)–(6.19) follow uniformly with
respect to ε, the same estimates hold true for the limiting functions ϑ, ϕ and µ. Hence,
(2.41)–(2.43) are fulfilled and

‖ϑ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c, (6.20)

‖ϕ‖W 1,∞(0,T ;V ∗)∩H1(0,T ;V )∩L∞(0,T ;W ) ≤ c, (6.21)

‖µ‖L∞(0,T ;V ) ≤ c. (6.22)

7 Uniqueness and continuous dependence

This section is devoted to the proof of Theorem 2.3.

Assume a` = b. If fi, η
∗
i , η0i , ϕ0i , i = 1, 2, are given as in (2.27)–(2.28) and (ηi, ϕi),

i = 1, 2, are the corresponding solutions of problem (P̃ ) (see (2.48)–(2.54)), then we can

write problem (P̃ ) for both (ηi, ϕi), i = 1, 2 and take the difference between the respective
equations. Setting η := η1 − η2, ϕ := ϕ1 − ϕ2, µ := µ1 − µ2, f := f1 − f2, η∗ := η∗1 − η∗2,
η0 := η01 − η02 , ϕ0 := ϕ01 − ϕ02 , we obtain that

∂tη −∆η + b∆ϕ−∆η∗ + a(ζ1 − ζ2) = af, (7.1)

∂tϕ−∆µ = 0, (7.2)

µ = −ν∆ϕ+ ξ1 − ξ2 + π(ϕ1)− π(ϕ2)− γ

a
(η − bϕ+ η∗). (7.3)
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We observe that, due to (2.55), m(ϕ0) = 0. Consequently, thanks to (2.46), m(ϕ) = 0
and ϕ ∈ D(N ) a.e. in (0, T ) (see (2.22)). Now, we test (7.1) by η. Integrating over Qt,
t ∈ (0, T ], we have that

1

2

∫
Ω

|η(t)|2 +

∫
Qt

|∇η|2 − b
∫
Qt

∇ϕ · ∇η + a

∫
Qt

(ζ1 − ζ2)(η1 − η2)

=
1

2

∫
Ω

|η0|2 +

∫
Qt

(af + ∆η∗)η. (7.4)

We test (7.2) by b2

ν
Nϕ. Integrating over (0, t), we obtain that

b2

ν

∫ t

0

〈∂tϕ(s),Nϕ(s)〉V ∗,V ds+
b2

ν

∫
Qt

∇µ · ∇Nϕ = 0,

b2

2ν
‖ϕ(t)‖2

V ∗ +
b2

ν

∫
Qt

µϕ =
b2

2ν
‖ϕ0‖2

V ∗ . (7.5)

Testing (7.3) by − b2

ν
ϕ and integrating over Qt, we have that

−b
2

ν

∫
Qt

µϕ = −b2

∫
Qt

|∇ϕ|2 − b2

ν

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2)

−b
2

ν

∫
Qt

[π(ϕ1)− π(ϕ2)](ϕ1 − ϕ2) +
γb2

aν

∫
Qt

(η − bϕ+ η∗)ϕ. (7.6)

Then, we combine (7.4)–(7.6) and infer that

1

2
‖η(t)‖2

H +

∫
Qt

(|∇η|2 − b∇ϕ · ∇η + b2|∇ϕ|2) +
b2

2ν
‖ϕ(t)‖2

V ∗

+a

∫
Qt

(ζ1 − ζ2)(η1 − η2) +
b2

ν

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2)

= −b
2

ν

∫
Qt

[π(ϕ1)− π(ϕ2)](ϕ1 − ϕ2) +
γb2

aν

∫
Qt

(η − bϕ+ η∗)ϕ

+
b2

2ν
‖ϕ0‖2

V ∗ +
1

2
‖η0‖2

H +

∫
Qt

(af + ∆η∗)η. (7.7)

Since A and β are maximal monotone, we have that

a

∫
Qt

(ζ1 − ζ2)(η1 − η2) ≥ 0, (7.8)

b2

ν

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2) ≥ 0. (7.9)

Moreover, thanks to the Lipschitz continuity of π, we infer that

−b
2

ν

∫
Qt

[π(ϕ1)− π(ϕ2)](ϕ1 − ϕ2) ≤ b2

ν

∫
Qt

|π(ϕ1)− π(ϕ2)||ϕ1 − ϕ2|

≤ Cπb
2

ν

∫
Qt

|ϕ|2. (7.10)



26 On a class of conserved phase field systems

We also notice that the integral involving the gradients is estimated from below in this
way: ∫

Qt

(|∇η|2 − b∇ϕ · ∇η + b2|∇ϕ|2) ≥ 1

2

∫
Qt

(|∇η|2 + b2|∇ϕ|2). (7.11)

Recalling that

−γb
3

aν

∫
Qt

|ϕ|2 ≤ 0, (7.12)

applying inequality (4.2) to the second and fifth term on the right-hand side of (7.7),
using (7.8)–(7.11) and adding to both sides b2

∫ t
0
‖ϕ(s)‖2

H ds, we infer that

1

2
‖η(t)‖2

H +

∫
Qt

|∇η|2 + b2

∫ t

0

‖ϕ(s)‖2
V ds+

b2

2ν
‖ϕ(t)‖2

V ∗

≤ (K+ b2)

∫ t

0

‖ϕ(s)‖2
H ds+

1

2

∫
Qt

|η|2 +
b2

2ν
‖ϕ0‖2

V ∗+
1

2
‖η0‖2

H +2a2‖f‖2
L2(0,T ;H) +3T‖η∗‖2

W ,

(7.13)
where

K =

[
Cπb

2

ν
+ 2
(γb2

aν

)2
]
.

We observe that, for every δ > 0,

‖ϕ(t)‖2
H = 〈ϕ(t), ϕ(t)〉V ∗,V ≤ ‖ϕ(t)‖V ∗‖ϕ(t)‖V ≤

δ

2
‖ϕ(t)‖2

V +
1

2δ
‖ϕ(t)‖2

V ∗ . (7.14)

Choosing δ = b2

K+b2
in (7.14), we can estimate the first term of the right-hand side of

(7.13) as follows:

(K + b2)

∫ t

0

‖ϕ(s)‖2
H ds ≤ b2

2

∫ t

0

‖ϕ(s)‖2
V ds+

(K + b2)2ν

b4

∫ t

0

b2

2ν
‖ϕ(s)‖2

V ∗ ds. (7.15)

Then, due to (7.15), from (7.13) we obtain that

1

2
‖η(t)‖2

H +

∫
Qt

|∇η|2 +
b2

2

∫ t

0

‖ϕ(s)‖2
V ds+

b2

2ν
‖ϕ(t)‖2

V ∗

≤ c

∫ t

0

(
1

2
‖η(s)‖2

H +
b2

2ν
‖ϕ(s)‖2

V ∗

)
ds+

b2

2ν
‖ϕ0‖2

V ∗+
1

2
‖η0‖2

H +2a2‖f‖2
L2(0,T ;H) +3T‖η∗‖2

W .

(7.16)
Due to (2.27)–(2.31), the last four terms on the right-hand side of (7.16) are bounded
uniformly with respect to ε . Then, by applying the Gronwall lemma, we conclude that

‖η(t)‖H + ‖∇η‖L2(0,T ;H) + ‖ϕ‖L2(0,T ;V ) + ‖ϕ(t)‖V ∗

≤ c

(
‖ϕ0‖V ∗ + ‖η0‖H + ‖f‖L2(0,T ;H) + ‖η∗‖W

)
(7.17)

for some positive constant c which depends only on Ω, T and the structure (2.7)–(2.8),
(2.14)–(2.16) and (2.26)–(2.28) of the system. Now, we recall that (7.17) is equivalent to

‖η1 − η2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;V ∗)∩L2(0,T ;V )
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≤ c
(
‖ϕ01 − ϕ02‖V ∗ + ‖η01 − η02‖H + ‖f1 − f2‖L2(0,T ;H) + ‖η∗1 − η∗2‖W

)
. (7.18)

If f1 = f2, η∗1 = η∗2, η01 = η02 and ϕ01 = ϕ02 , from (7.18) we conclude that η1 = η2

and ϕ1 = ϕ2, i.e., the solution of problem (P̃ ) (see (2.48)–(2.54)) is unique. From this
fact, we immediately infer the uniqueness of the solution for our initial Problem (P ) (see
(2.32)–(2.38)).

8 Sliding mode control

This section is devoted to the proof of Theorem 2.4. The argument we use in the proof
relies in the following Lemma (see [2, Lemma 4.1, p. 20]).

Lemma 8.1 Let a0, b0, ψ0, ρ ∈ R be such that

a0, b0, ψ0 ≥ 0 and ρ > a2
0 + 2b0 + 2

ψ0

T
(8.1)

and let ψ : [0, T ] → [0,+∞) be an absolutely continuous function satisfying ψ(0) = ψ0

and

ψ′ + ρ ≤ a0ρ
1/2 + b0 a.e. in the set P := {t ∈ (0, T ) : ψ(t) > 0}. (8.2)

Then, the following conditions hold true:

1. If ψ0 = 0, then ψ vanishes identically.

2. If ψ0 > 0, then there exists T ∗ ∈ (0, T ) satisfying T ∗ ≤ 2ψ0/(ρ− a2
0− 2b0) such that

ψ is strictly decreasing in (0, T ∗) and ψ vanishes in [T ∗, T ].

We assume a = 1, b = ` and A = ρ Sign and consider the approximating problem (P̃ε)
obtained from (Pε) (see (3.37)–(3.43)) with the usual change of variables

ηε = ϑε + `ϕε − η∗, η0ε = ϑ0ε + `ϕ0ε − η∗. (8.3)

We have that

∂tηε −∆ηε + `∆ϕε −∆η∗ + ρσε = fε a.e. in Q, (8.4)

∂tϕε −∆µε = 0 a.e. in Q, (8.5)

µε = −ν∆ϕε + ξε + π(ϕε)− γ(ηε − `ϕε + η∗) a.e. in Q, (8.6)

σε(t) ∈ Signε(ηε(t)) for a.e. t ∈ (0, T ), (8.7)

ξε ∈ βε(ϕε) a.e. in Q, (8.8)

∂nηε = ∂nϕε = ∂nµε = 0 on Σ, (8.9)

ηε(0) = η0ε, ϕε(0) = ϕ0ε in Ω. (8.10)
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Further a priori uniform estimates. We test (8.4) by ∂tηε and integrate over Qt.
Recalling that ∫

Qt

ρσε∂tηε = ρ‖ηε(t)‖H,ε − ρ‖η0‖H,ε, (8.11)

we have that ∫
Qt

|∂tηε|2 +
1

2

∫
Ω

|∇ηε(t)|2 + ρ‖ηε(t)‖H,ε =
1

2

∫
Ω

|∇η0|2

+ρ‖η0‖H,ε +

∫
Qt

∆η∗∂tηε +

∫
Qt

fε∂tηε −
∫
Qt

`∆ϕε∂tηε. (8.12)

We observe that ‖η0‖H,ε ≤ ‖η0‖H (cf. (3.7)). Then, thanks to (2.28) and (2.40), the first
two terms on the right-hand side of (8.12) are estimated as follows:

1

2

∫
Ω

|∇η0|2 + ρ‖η0‖H,ε ≤ c(1 + ρ). (8.13)

Due to (2.28) and (3.32), applying (4.2) to the third and fourth term on the right-hand
side of (8.12), we have that∫

Qt

∆η∗∂tηε ≤
1

4

∫
Qt

|∂tηε|2 +

∫
Qt

|∆η∗|2 =
1

4

∫
Qt

|∂tηε|2 + c, (8.14)

∫
Qt

fε∂tηε ≤
1

4

∫
Qt

|∂tηε|2 +

∫
Qt

|fε|2 ≤
1

4

∫
Qt

|∂tηε|2 + c. (8.15)

Moreover, integrating by parts the last term of (8.12), we formally have that

−
∫
Qt

`∆ϕε∂tηε = `

∫
Qt

∇ϕε · ∇(∂tηε)

= `

∫
Ω

∇ϕε(t) · ∇ηε(t)− `
∫

Ω

∇ϕ0 · ∇η0 − `
∫
Qt

∇(∂tϕε) · ∇ηε. (8.16)

Using (4.2) and the Hölder inequality, the first term on the right-hand side of (8.16) is
estimated as follows:∣∣∣∣∣`

∫
Ω

∇ϕε(t) · ∇ηε(t)

∣∣∣∣∣ ≤ 1

4

∫
Ω

|∇ηε(t)|2 + `2

∫
Ω

|∇ϕε(t)|2

=
1

4

∫
Ω

|∇ηε(t)|2 + `2

∫
Ω

∣∣∣∣∇(ϕ0 +

∫ t

0

∂tϕε(s) ds

)∣∣∣∣2
≤ 1

4

∫
Ω

|∇ηε(t)|2 + 2`2

∫
Ω

|∇ϕ0|2 + 2`2

∫
Ω

∣∣∣∣ ∫ t

0

∇(∂tϕε(s)) ds

∣∣∣∣2
≤ 1

4

∫
Ω

|∇ηε(t)|2 + 2`2

∫
Ω

|∇ϕ0|2 + 2T`2

∫
Qt

|∇(∂tϕε)|2. (8.17)
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Due to (2.28), the second term on the right-hand side of (8.16) and similarly the second
term on the right-hand side of (8.17) are estimated by a positive constant c independent
of ρ and ε. Indeed

−`
∫

Ω

∇ϕ0 · ∇η0 ≤ `2

∫
Ω

|∇ϕ0|2 +
1

4

∫
Ω

|∇η0|2 ≤ c. (8.18)

Applying inequality (4.2) to the last term on the right-hand side of (8.16) we obtain that

−`
∫
Qt

∇(∂tϕε) · ∇ηε ≤
1

4

∫
Qt

|∇ηε|2 + `2

∫
Qt

|∇(∂tϕε)|2. (8.19)

Then, thanks to (8.13)–(8.19), from (8.12) we infer that

1

2

∫
Qt

|∂tηε|2 +
1

4

∫
Ω

|∇ηε(t)|2 + ρ‖ηε(t)‖H,ε

≤ c(1 + ρ) + `2(1 + 2T )

∫
Qt

|∇(∂tϕε)|2 +
1

4

∫
Qt

|∇ηε|2. (8.20)

Now, we formally differentiate (8.5) and (8.6) with respect to time and obtain that

∂ttϕε −∆∂tµε = 0, (8.21)

∂tµε = −ν∆∂tϕε + β′ε(ϕε)∂tϕε + π′(ϕε)∂tϕε − γ(∂tηε − `∂tϕε). (8.22)

According to (3.19), m(∂tϕε) = 0. Consequently, ∂tϕε ∈ D(N ) and we can test (8.21) by
N (∂tϕε) and (8.22) by ∂tϕε, respectively. Integrating over Qt, we have that

−
∫
Qt

∂tµε∂tϕε =
1

2
‖∂tϕε(t)‖2

V ∗ −
1

2
‖∂tϕε(0)‖2

V ∗ , (8.23)

∫
Qt

∂tµε∂tϕε = ν

∫
Qt

|∇∂tϕε|2 +

∫
Qt

β′ε(ϕε)|∂tϕε|2

+

∫
Qt

π′(ϕε)|∂tϕε|2 − γ
∫
Qt

∂tϕε∂tηε + `γ

∫
Qt

|∂tϕε|2. (8.24)

Combining (8.23) and (8.24) we obtain that

1

2
‖∂tϕε(t)‖2

V ∗ + ν

∫
Qt

|∇∂tϕε|2 + `γ

∫
Qt

|∂tϕε|2 =
1

2
‖∂tϕε(0)‖2

V ∗

−
∫
Qt

β′ε(ϕε)|∂tϕε|2 −
∫
Qt

π′(ϕε)|∂tϕε|2 + γ

∫
Qt

∂tηε∂tϕε. (8.25)

Thanks to (2.28) and (2.40), the first term on the right-hand side of (8.25) is bounded by
a positive constant c independent of ρ and ε (cf. the analogous bound discussed below
(6.13)). Since βε is maximal monotone, the second term on the right-hand side of (8.25)
is non-positive. As π is a Lipschitz continuous function with Lipschitz constant Cπ, we
have that

−
∫
Qt

π′(ϕε)|∂tϕε|2 ≤ Cπ

∫
Qt

|∂tϕε|2. (8.26)
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Finally, using (4.2), the last term on the right-hand side of (8.25) is estimated as follows:

γ

∫
Qt

∂tηε∂tϕε ≤
1

4

(
ν

`2(1 + 2T ) + 1

)∫
Qt

|∂tηε|2 + γ2 `
2(1 + 2T ) + 1

ν

∫
Qt

|∂tϕε|2, (8.27)

where the reason of such involved constants will be clear in a moment. Due to (8.26)–
(8.27) and the previous observations, from (8.25) we infer that

1

2
‖∂tϕε(t)‖2

V ∗ + ν

∫
Qt

|∇∂tϕε|2 + `γ

∫
Qt

|∂tϕε|2

≤ c+
1

4

(
ν

`2(1 + 2T ) + 1

)∫
Qt

|∂tηε|2 +

(
γ2 `

2(1 + 2T ) + 1

ν
+ Cπ

)∫
Qt

|∂tϕε|2. (8.28)

Multiplying (8.28) by (`2(1 + 2T ) + 1)/ν and adding it to (8.20), we infer that

1

4

∫
Qt

|∂tηε|2 +
1

4

∫
Ω

|∇ηε(t)|2 + ρ‖ηε(t)‖H,ε +

∫
Qt

|∇∂tϕε|2 + C1

∫
Qt

|∂tϕε|2

+C2‖∂tϕε(t)‖2
V ∗ ≤ c(1 + ρ) +

1

4

∫
Qt

|∇ηε|2 + C3

∫
Qt

|∂tϕε|2, (8.29)

where

C1 =
`3γ(1 + 2T ) + `γ

ν
, C2 =

`2(1 + 2T ) + 1

2ν
,

C3 = γ2

(
`2(1 + 2T ) + 1

ν

)2

+ Cπ
`2(1 + 2T ) + 1

ν
+ `2(1 + 2T ).

Denoting by C4 the minimum between 1 and C1, and applying the inequality (4.3) with
δ =
√
C4/
√

2C3 to the last term on the right-hand side of (8.29), we obtain that

C3

∫
Qt

|∂tϕε|2 ≤
C4

2

∫ t

0

‖∂tϕε(s)‖2
V ds+ 2K2C3

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds. (8.30)

Thanks to (8.30), from (8.29) we infer that

1

4

∫
Qt

|∂tηε|2 +
1

4

∫
Ω

|∇ηε(t)|2 + ρ‖ηε(t)‖H,ε +
C4

2

∫ t

0

‖∂tϕε(s)‖2
V + C2‖∂tϕε(t)‖2

V ∗

≤ c(1 + ρ) +
1

4

∫
Qt

|∇ηε|2 + 2K2C3

∫ t

0

‖∂tϕε(s)‖2
V ∗ . (8.31)

From (8.31), by applying the Gronwall lemma, we conclude that

‖∂tηε‖L2(0,T ;H) + ‖ηε‖L∞(0,T ;V ) + ‖∂tϕε‖L∞(0,T ;V ∗) + ‖∂tϕε‖L2(0,T ;V ) ≤ c(1 + ρ1/2), (8.32)

whence
‖ηε‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c(1 + ρ1/2), (8.33)

‖ϕε‖W 1,∞(0,T ;V ∗)∩H1(0,T ;V ) ≤ c(1 + ρ1/2). (8.34)

Due to (8.33)–(8.34) and the change of variables stated by (8.3), we have that

‖ϑε‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c(1 + ρ1/2). (8.35)
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Proceeding as in the second a priori estimate (cf. (4.19)–(4.27)) and recalling (8.34)–
(8.35), from (4.28) we infer that

‖ξε‖L∞(0,T ;L1(Ω)) ≤ c(1 + ρ1/2). (8.36)

Now, with the analogous technique applied in the third a priori estimate, thanks to
(8.34)–(8.36), from (4.31) we obtain that

‖m(µε)‖L∞(0,T ) ≤ c(1 + ρ1/2). (8.37)

Then, due to (8.37) and the Poincaré inequality, by comparison in (8.5) we deduce that

‖µε‖L∞(0,T ;V ) ≤ c(1 + ρ1/2). (8.38)

Finally, with the same computations as explained in the fifth a priori estimate (cf. (4.36)–
(4.38)), thanks to (8.34)–(8.35) and (8.38), from (4.39) we infer that

‖ξε‖L∞(0,T ;H) ≤ c(1 + ρ1/2), (8.39)

whence, by comparison of every term in (8.6), we conclude that

‖∆ϕε‖L∞(0,T ;H) ≤ c(1 + ρ1/2). (8.40)

Existence of sliding mode. Due to (2.28), (3.32) and (8.40), we can rewrite (8.4) in
the form

∂tηε −∆ηε + ρσε = gε := fε − `∆ϕε + ∆η∗, (8.41)

with
‖gε‖L∞(0,T ;H) ≤ c(1 + ρ1/2), (8.42)

where c depends only on the structure and the data involved in the statement. In order
to prove the existence of sliding mode, we fix the constant c appearing in (8.42) and set

ρ∗ := c2 + 2c+
2

T
‖ϑ0 + `ϕ0 − η∗‖H (8.43)

and assume ρ > ρ∗. We also set

ψε(t) := ‖ηε(t)‖H for t ∈ [0, T ]. (8.44)

By assuming h ∈ (0, T ) and t ∈ (0, T − h), we multiply (8.41) by σε = Signε(ηε) and
integrate over (t, t+ h)× Ω. We have that∫ t+h

t

(∂tηε(s), σε(s))H ds+

∫ t+h

t

∫
Ω

∇ηε · ∇σε + ρ

∫ t+h

t

‖σε(s)‖2
H ds

=

∫ t+h

t

(gε(s), σε(s))H ds. (8.45)

Recalling that Signε(v) is the gradient at v of the C1 functional ‖ · ‖H,ε, from (3.7)–(3.8)
we deduce that

(∂tηε(s), σε(s))H =
d

dt

∫ ψε(t)

0

min {s/ε, 1} ds for a.a. t ∈ (0, T ).
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Then, for the first term on the right-hand side of (8.45) we have that∫ t+h

t

(∂tηε(s), σε(s))H ds =

∫ ψε(t+h)

ψε(t)

min {s/ε, 1} ds.

We also notice that (3.8) implies that

∇ηε(t) · ∇σε(t) =
|∇ηε(t)|2

max {ε, ‖ηε(t)‖H}
≥ 0 a.e. in Ω, for a.e. t ∈ (0, T ),

whence the second integral on the left-hand side of (8.45) is nonnegative. Moreover, as
‖σε(s)‖H ≤ 1 for every s (see (2.20)) and (8.42) holds, we infer from (8.45) that∫ ψε(t+h)

ψε(t)

min {s/ε, 1} ds+ ρ

∫ t+h

t

‖σε(s)‖2
H ds ≤ hc(ρ1/2 + 1). (8.46)

At this point, we let ε ↘ 0. Due to (5.8)–(5.9), (8.3) and the uniqueness of the solution
of the limit Problem (2.48)–(2.54) (cf. Theorem 2.3) we have that

ηε → η in C0(0, T ;H). (8.47)

Besides, using standard weak, weakstar and compactness results, from (8.46) we infer
that

σε ⇀
∗ σ in L∞(0, T ;H). (8.48)

Then, taking the limit as ε↘ 0 in (8.46) and denoting by

ψ(t) := ‖η(t)‖H for t ∈ [0, T ], (8.49)

we obtain that

ψ(t+ h)− ψ(t) + ρ

∫ t+h

t

‖σ(s)‖2
H ds

≤ lim
ε↘0

∫ ψε(t+h)

ψε(t)

min {s/ε, 1} ds+ ρ lim inf
ε↘0

∫ t+h

t

‖σε(s)‖2
H ds ≤ hc(ρ1/2 + 1) (8.50)

for every h ∈ (0, T ) and t ∈ (0, T − h). Finally, we multiply (8.50) by 1/h and let h tend
to zero. We conclude that

ψ′(t) + ρ‖σ(t)‖2
H ≤ c(ρ1/2 + 1) for a.a. t ∈ (0, T ). (8.51)

As ‖σ(t)‖H = 1 if ‖η(t)‖H > 0 (see (2.20)), we can apply Lemma 8.1 with a0 = b0 = c and
we observe that our condition ρ > ρ∗ completely fits the assumptions by (8.43). Thus, we
find T ∗ ∈ [0, T ) such that η(t) = 0 for every t ∈ [T ∗, T ], i.e., (2.60).
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