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Abstract. We study Hausdorff and Minkowski dimension distortion for images of generic
affine subspaces of Euclidean space under Sobolev and quasiconformal maps. For a super-
critical Sobolev mapping f defined on a domain in Rn, we estimate from above the Hausdorff
dimension of the set of affine subspaces parallel to a fixed m-dimensional linear subspace,
whose image under f has positive Hα measure for some fixed α > m. As a consequence, we
obtain new dimension distortion and absolute continuity statements valid for almost every
affine subspace. Our results hold for mappings taking values in arbitrary metric spaces, yet
are new even for quasiconformal maps of the plane. Our theory extends to cover mappings
in Sobolev–Lorentz spaces as well as pseudomonotone mappings in the critical Sobolev class.
In particular, we obtain new absolute continuity statements for quasisymmetric maps from
Euclidean domains into metric spaces. We illustrate our results with numerous examples.
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1. Introduction

Every continuous Sobolev mapping is ACL, i.e., its components are absolutely continuous
when restricted on almost every line. In particular, almost every line parallel to any fixed
vector is mapped onto a locally rectifiable curve, and hence onto a curve of Hausdorff di-
mension one. Moreover, every supercritical Sobolev mapping satisfies Lusin’s condition N,
i.e., sets of Lebesgue measure zero are mapped to sets of measure zero. Condition N persists
for critical Sobolev mappings under extra topological or analytic assumptions.

It is natural to investigate regularity properties of Sobolev mappings on subspaces of in-
termediate dimension. For a fixed set this was done by Kaufman [32] and earlier by Astala
[2] and Gehring–Väisälä [19] for quasiconformal maps. In this paper, we study absolute con-
tinuity and dimension distortion properties for the restriction of Sobolev and quasiconformal
mappings to generic affine subspaces. Our main results are Theorems 1.3, 1.4 and 1.6.

The literature on generic dimension estimates is extensive. We highlight papers by Mattila,
Kaufman and Falconer. This line of inquiry initiates in a paper of Kaufman [31] on dimen-
sions of generic projections of Euclidean sets. Dimensions of generic projections have been
thoroughly investigated by Mattila [39], [42], [44], Kaufman and Mattila [33], Falconer [12],
Falconer and Howroyd [16], [17], and others. Mattila [40], [41] proved an important series
of results on dimensions of generic intersections of translates or rigid motions of Euclidean
sets. These results gave signficant impetus and visibility to the subject of generic dimension
estimates. More recently, Falconer [13], [15] investigated the dimensions of invariant sets for
generic elements in parameterized families of self-affine iterated function systems. See also
Solomyak [53] and Falconer–Miao [11] for further work on this subject. Ideas from these
papers were taken up by the first and third authors in [4] and [5] for the study of dimensions
of generic invariant sets associated to sub-Riemannian iterated function systems.

Our goal in this paper is to apply the techniques of geometric measure theory commonly
used for this type of theorem to understand the generic dimension distortion behavior of
Sobolev maps on affine subspaces. Our main results suggest many extensions and general-
izations. Section 6 contains open problems and questions motivated by this study.

We consider the foliation of Rn by m-dimensional affine subspaces

Va := V + a,

where V is an m-dimensional linear subspace of Rn, i.e., an element of the Grassmannian
G(n,m), and a ranges over the orthogonal complement V ⊥ of V . We will assume throughout
this paper that m and n are fixed integers satisfying

(1.1) 1 ≤ m ≤ n− 1.

The notion of genericity is measured by suitable Hausdorff measures on V ⊥. For instance,
the ACL property of a Sobolev map f : Ω→ Rm asserts that, for a given V ∈ G(n, 1),

(1.2)
f |Va∩Ω : (Va ∩ Ω,H1)→ (f(Va ∩ Ω),H1) is absolutely continuous

for Hn−1 almost every point a in V ⊥ ∈ G(n, n− 1).

Since f(Va ∩ Ω) has locally finite Hausdorff 1-measure at such points a, we also conclude

(1.3) dim f(Va ∩ Ω) ≤ 1 for Hn−1 almost every a ∈ V ⊥.

Throughout this paper, we denote by Hs the s-dimensional Hausdorff measure and by dim
the Hausdorff dimension.

In this paper, we shall prove a sweeping generalization of (1.2) and (1.3) for families of
affine subspaces of arbitrary dimension.
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We take advantage of recent developments in analysis in metric spaces to formulate our
results for Sobolev mappings taking values in arbitrary metric spaces. The notion of a metric
space-valued Sobolev mapping has been introduced by Ambrosio [1] and Reshetnyak [48]. It
was used in [57] and [29] to provide an analytic characterization of quasisymmetric maps in
metric spaces, and in [3] to investigate the mapping properties of quasiconformal maps with
Sobolev boundary values from the perspective of conformal densities.

Despite this general framework, we stress that many of our results are already new for
Sobolev and quasiconformal maps between Euclidean domains, even domains in the plane.

Definition 1.1. Let Ω be a domain in some Euclidean space and let B be a Banach space.
A map f : Ω → B is said to lie in W 1,p(Ω, B) if 〈b∗, f〉 ∈ W 1,p(Ω) for every b∗ in the dual
space B∗, and if the weak gradients of the functions 〈b∗, f〉, b∗ ∈ B∗, ||b∗|| ≤ 1, are uniformly
bounded in Lp(Ω).

Let Y be a separable metric space. A map f : Ω→ Y is said to lie in W 1,p(Ω, Y ) if ι ◦ f
lies in the Sobolev space W 1,p(Ω, `∞), where ι : Y → `∞ denotes an isometric embedding.

Fix n and m as in (1.1). Let Ω and Y be as in Definition 1.1, and let f be an element
of W 1,p(Ω, Y ). For the moment we restrict our attention to the case of supercritical map-
pings, i.e., the case p > n. The Sobolev embedding theorem in this case implies that f is
Hölder continuous. The following proposition gives an a priori estimate for the distortion of
dimension of an m-dimensional affine subspace under a supercritical Sobolev map. Kaufman
[32] proved a more general statement covering subsets of arbitrary Hausdorff dimension. See
Proposition 2.5. Although Kaufman’s paper is the first place where we have seen this ex-
plicit result in print, the underlying principle (increased Sobolev regularity implies improved
dimension distortion bounds), had apparently already been recognized for some time. In the
category of quasiconformal maps, it was used by both Astala [2] and Gehring–Väisälä [19].

Proposition 1.2 (Kaufman). Let f ∈ W 1,p(Ω, Y ) for p > n and let V ∈ G(n,m). Then
f(Va ∩ Ω) has zero Hpm/(p−n+m) measure for each a ∈ V ⊥. In particular,

(1.4) dim f(Va ∩ Ω) ≤ pm

p− n+m
.

Note that a naive application of the (1−n/p)-Hölder regularity of f would yield the weaker
estimate

dim f(Va ∩ Ω) ≤ pm

p− n
.

Proposition 1.2 provides an upper bound, strictly smaller than n, for the dimension of the
image of an arbitrary m-dimensional subspace under a supercritical W 1,p mapping f . How
frequently can the intermediate values

m < α <
pm

p− n+m

be exceeded? Our first main theorem provides a quantitative measurement of this frequency.
Fix n and m satisfying (1.1). For p ≥ 1 and m ≤ α ≤ pm

p−n+m
, set

(1.5) β(p, α) := (n−m)−
(

1− m

α

)
p.

The following theorem, which is the primary result of this paper, asserts an Hβ-almost
everywhere upper bound on the dimensions of images of affine subspaces parallel to a fixed
m-dimensional linear subspace of Rn under a supercritical Sobolev map.
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Theorem 1.3. Let Ω ⊂ Rn be a domain, f ∈ W 1,p(Ω, Y ), p > n, V ∈ G(n,m), and

(1.6) m < α ≤ pm

p− n+m
.

Then f(Va ∩ Ω) has zero Hα measure for Hβ-almost every a ∈ V ⊥, where β = β(p, α).

Note that β(p, α) = 0 if and only if α = pm
p−n+m

, which shows that Theorem 1.3 includes

Proposition 1.2 as a special case. Theorem 1.3 implies both the dimension estimate

(1.7) dim f(Va ∩ Ω) ≤ α

as well as the absolute continuity of

(1.8) f |Va∩Ω : (Va ∩ Ω,Hm)→ (f(Va ∩ Ω),Hα)

for Hβ-a.e. a ∈ V ⊥.
Theorem 1.3 is sharp. In the following theorem, we construct a W 1,p map which increases

from m to α the dimension of each element in a β(p, α)-dimensional set of parallel affine
m-dimensional subspaces of Rn. In order to describe precisely the class of sets to which the
theorem applies, we fix some useful notation. For a bounded set E ⊂ Rn and for r > 0, we
denote by N(E, r) the smallest number of balls of radius r needed to cover E.

Theorem 1.4. Let p ≥ 1, let α satisfy m < α ≤ pm
p−n+m

, and define β(p, α) by the formula

(1.5). Let E ⊂ Rn−m be any bounded Borel set for which

(1.9) lim sup
r→0

rβN(E, r) <∞,

where β = β(p, α). Then, for any integer N > α, there exists a map f ∈ W 1,p(Rn,RN) so
that f({a} × Rm) has Hausdorff dimension at least α, for Hβ-almost every a ∈ E.

Note that we only assume p ≥ 1 in the statement of Theorem 1.4. Choosing p > n and a
set E ⊂ Rn−m with positive and finite Hausdorff Hβ measure which satisfies the assumptions
of the theorem shows that Theorem 1.3 is sharp. Sets of this type exist in abundance. For
instance, we may take any compact subset E ⊂ Rn−m which is Ahlfors regular of dimension
β(p, α), e.g., self-similar Cantor sets.

The map in Theorem 1.4 is obtained by a random construction. We exhibit a large family
of W 1,p maps and show that almost every map in this family has the desired property.

Theorem 1.3 holds in particular for Euclidean quasiconformal maps. We obtain almost
sure dimension estimates for the size of the exceptional set of points a in V ⊥ for which
some component of the quasiconformal m-manifold f(Va ∩ Ω) has positive Hα measure. By
Gehring’s higher integrability theorem [18], quasiconformal maps in Rn lie in W 1,p for some
p > n. Since

β(p, α) < β(n, α) = m
(n
α
− 1
)

for all p > n, we obtain the following

Corollary 1.5. Let f : Ω → Ω′ be a quasiconformal map between domains in Rn, let

V ∈ G(n,m), and let m < α < n. Then Hα(f(Va ∩ Ω)) = 0 for Hm(nα−1)-a.e. a ∈ V ⊥.
In particular,

(1.10) dim f(Va ∩ Ω) ≤ α

for Hm(nα−1)-a.e. a ∈ V ⊥.
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Estimates for quasiconformal dimension distortion are often obtained via conformal mod-
ulus techniques. Our proof makes no explicit use of modulus, although it is motivated by
modulus arguments used in estimates of conformal dimension (Remark 3.4). Quasiconformal
and quasisymmetric dimension distortion is a classical subject ([19], [56], [2]), but we are
unaware of prior theorems yielding simultaneous dimension estimates for the images of a
large family of parallel subspaces. See Remark 5.8 for more details.

Remarkably, even Corollary 1.5 is sharp, provided we replace Hausdorff dimension by
upper Minkowski dimension in (1.10). To simplify the exposition here in the introduction,
we only state the following theorem in the case m = 1, i.e., for parameterized families of
lines and their images. A similar result holds for higher dimensional subspaces, but only for
a restricted choice of image dimensions α. See Remark 5.6.

Theorem 1.6. Let n ≥ 2. For each α ∈ (1, n) and each ε > 0, there exists a Borel set
E ⊂ Rn−1 of Hausdorff dimension at least(n

α
− 1
)
− ε

and a quasiconformal map f : Rn → Rn such that f({a}×R) has upper Minkowski dimension
at least α, for all a ∈ E.

We recall that the upper Minkowski dimension of E is the infimum of those values β > 0
for which (1.9) is satisfied.

Theorem 1.6 provides the first example of which we are aware of a quasiconformal map
which simultaneously increases the (Minkowski) dimension of a family of parallel subspaces of
optimal size. We do not know any example of a quasiconformal map which simultaneously
increases the Hausdorff dimension of such a large family of subspaces, although previous
examples of Bishop [6], David–Toro [9] and Kovalev–Onninen [37] should be noted. We
review the examples of Bishop, David–Toro and Kovalev–Onninen in Remark 5.8.

Our main theorem extends to other classes of Sobolev mappings. The key tool which
we employ is the regularity of supercritical Sobolev mappings arising from the Morrey–
Sobolev inequality. Our result sharpens Lusin’s condition N for such mappings. It is now
well understood ([35], [47], [50], [59]) that the correct borderline integrability condition for
continuity and condition N is membership in the Sobolev–Lorentz space W 1,n,1. In that
context, the role of the Morrey–Sobolev inequality is taken over by the Rado–Reichelderfer
condition (3.6). Our results extend to the Ambrosio–Reshetnyak–Sobolev–Lorentz class
W 1,n,1(Ω, Y ), where we show that the dimension of the exceptional set is bounded above
by β(n, α), which is still strictly less than n − m. The same dimension estimate holds
for continuous pseudomonotone mappings in the critical Sobolev class W 1,n. We discuss
Sobolev–Lorentz spaces and pseudomonotone mappings in section 3.2.

The situation for weaker integrability criteria is more intriguing. In Example 5.10 we
construct mappings in

W 1,m([0, 1]n, `2),

for any 2 ≤ m < n, with the property that every image f(Va ∩ [0, 1]n), a ∈ V ⊥, is infinite-
dimensional. In fact, every such image coincides with a fixed infinite-dimensional cube.
The construction makes use of space-filling Sobolev mappings with metric space targets,
as constucted by Haj lasz–Tyson [27] and Wildrick–Zürcher [59], [58]. The methods can be
adapted to construct a mapping in W 1,p for

(1.11) m < p < n



6 ZOLTÁN M. BALOGH, ROBERTO MONTI, AND JEREMY T. TYSON

with similar properties, but at present, a complete understanding of the generic dimension
distortion behavior of m-dimensional affine subspaces by W 1,p maps from Rn, for p satisfying
(1.11), remains a challenging open problem.

Outline of the paper. In Section 2 we review the Ambrosio/Reshetnyak framework for
metric space-valued Sobolev maps, emphasizing dimension distortion and absolute continuity
properties. Section 3 contains the proof of Theorem 1.3. In subsection 3.2, we discuss how the
method can be adapted to verify the analogous statements for Sobolev–Lorentz functions or
continuous pseudomonotone mappings in the critical Sobolev class. Throughout this section,
we use the technique of energy integrals to obtain generic lower bounds on dimension.

In section 4 we prove Theorem 1.4. The desired Sobolev map is obtained via a random
method, as a generic representative in a parameterized family of mappings. The idea goes
back to Kaufman [32].

Section 5 is devoted to examples. Here we prove Theorem 1.6. The quasiconformal map
in Theorem 1.6 is constructed in a piecewise fashion on a Whitney decomposition of the
complement of a codimension one subspace. The construction is a refined version of an
earlier one by Heinonen and Rohde [30], who constructed a quasiconformal map of the unit
ball in Rn sending Hn−1-a.e. radial segment onto a curve of infinite length.

In Section 5 we also discuss subcritical Sobolev mappings. The space-filling constructions
of Haj lasz–Tyson [27] yield an example of a W 1,m mapping f from Rn to the Hilbert space
`2 for which f(Va) is infinite-dimensional for every a ∈ V ⊥ ∈ G(n, n−m). In subsection 5.2
we generalize the constructions from [27] to build similar maps in W 1,p for m < p < n.

The final Section 6 is reserved for open problems and questions arising out of this study.

Convention. Throughout the paper we denote unspecified positive constants by C or c. We
write C = C(a, b, . . .) to mean that C depends on the data a, b, . . .. We employ the following
convention: we write C if we wish to emphasize that a certain constant is finite, and we
write c if we wish to emphasize that it is positive.

We denote by #S the cardinality of a finite set S. The Lebesgue measure in Rn will be
written Ln.

Acknowledgements. Research for this paper was completed while the second and third
authors were visitors in the Mathematics Institute of the University of Bern. The hospitality
of the institute is acknowledged. We would like to thank Kari Astala, István Prause and
Tadeusz Iwaniec for helpful comments related to Problem 6.2. We are also grateful to Pekka
Koskela for numerous discussions on the topic of this paper.

2. Sobolev mappings valued in metric spaces

Our results are naturally phrased in the modern language of metric space-valued Sobolev
mappings (see Definition 1.1). This notion was introduced by Ambrosio [1] in 1990 and later
studied by Reshetnyak [48]. For the reader’s convience, we repeat the definition.

Let B be a Banach space, let 1 ≤ p < ∞, and let Ω be a domain in Rn, n ≥ 2. The
Bochner–Lebesgue space Lp(Ω, B) consists of all weakly measurable, essentially separably
valued maps f : Ω→ B satisfying

∫
Ω
||f(x)||p dx <∞.

Definition 2.1. A map f : Ω→ B in the Bochner–Lebesgue space Lp(Ω, B) belongs to the
Ambrosio–Reshetnyak–Sobolev space W 1,p(Ω, B) if there exists g ∈ Lp(Ω) so that for every
b∗ ∈ B∗ with ||b∗|| ≤ 1, we have 〈b∗, f〉 ∈ W 1,p(Ω) and |∇〈b∗, f〉| ≤ g a.e.
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A function g as in the definition will be called an upper gradient for f . Thus W 1,p(Ω, B)
consists of those functions in Lp(Ω, B) which admit an Lp upper gradient.

We may equip W 1,p(Ω, B) with the norm

(2.1) ||f ||1,p := ||f ||Lp(Ω,B) + inf
g
||g||Lp(Ω).

Here the infimum is taken over all upper gradients g ∈ Lp(Ω) for f . Endowed with this
norm, W 1,p(Ω, B) is a Banach space. See, for example Theorem 3.13 in [29].

Furthermore, when 1 < p <∞ there exists an upper gradient gf ∈ Lp(Ω) so that

||f ||1,p = ||f ||Lp(Ω,B) + ||gf ||Lp(Ω).

Moreover, gf is unique up to modification on a set of measure zero. The existence of such a
minimal upper gradient gf follows by a standard convexity argument.

The space W 1,p(Ω, B) admits the following weak characterization.

Proposition 2.2. Let B be the dual of a separable Banach space. Then W 1,p(Ω, B) coincides
with the space of all functions f ∈ Lp(Ω, B) which have weak partial derivatives in Lp(Ω, B).

As usual, we say that f : Ω→ B has gi : Ω→ B as a weak i-th partial derivative if

(2.2)

∫
Ω

(∂iϕ)f dx = −
∫

Ω

ϕgi dx

for all C∞ functions ϕ which are compactly supported in Ω. Here i ∈ {1, . . . , n} and the
identity (2.2) is understood in the sense of the Bochner integral, as an equality between
elements of B. For a proof of Proposition 2.2, see for example [27].

Now suppose that (Y, d) is a separable metric space. Fix an isometric embedding ι of Y
into `∞. In this case, we say that f : Ω → Y is in the Ambrosio–Reshetnyak–Sobolev space
W 1,p(Ω, Y ) if ι ◦ f ∈ W 1,p(Ω, `∞). Since `∞ is the dual of the separable Banach space `1, the
membership of ι◦ f in W 1,p(Ω, `∞) can be understood in the weak sense via Proposition 2.2.
When 1 < p <∞ we write gf = gι◦f and call this the minimal upper gradient of f .

The existence of isometric embeddings of separable metric spaces in `∞ is well known. For
instance, we may use the Kuratowski embedding [28, Chapter 12].

The space W 1,p(Ω, Y ) is naturally equipped with a metric by the rule

d(f1, f2) = ||ι ◦ f1 − ι ◦ f2||1,p,
where || · ||1,p denotes the norm in (2.1). We emphasize that this metric depends on the
choice of the isometric embedding ι. While membership in the class W 1,p(Ω, Y ) turns out to
be independent of the choice of ι, the metric structure of the space is highly dependent on
that choice. This fact has been explored in detail by Haj lasz [23], [24], [21] who has shown,
for example, the surprising result that the question of density of Lipschitz mappings in the
Sobolev space can admit a different answer depending on the choice of ι.

For additional information on this notion of metric space-valued Sobolev space, we rec-
ommend the clear and readable survey [25] by Haj lasz.

Sobolev maps from Ω to Y are absolutely continuous along almost every line, and restrict
to Sobolev maps on almost every affine subspace of dimension at least two. We record this
fact in the following proposition. It is easily deduced from Proposition 2.2 by standard
arguments. See Theorem 2.1.4 and Remark 2.1.5 in [60].

Proposition 2.3. Let f ∈ W 1,p(Ω, Y ), p ≥ 1. Then f has an ACL representative f .
In particular, for any V ∈ G(n, 1), the set of a ∈ V ⊥ for which f |Va∩Ω is not absolutely
continuous as a map from (Va∩Ω,H1) to (f(Va∩Ω),H1) has zero Hn−1-measure. Moreover,
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for any V ∈ G(n,m), m ≥ 2, the set of a ∈ V ⊥ for which f |Va∩Ω 6∈ W 1,p(Va ∩Ω, Y ) has zero
Hn−m-measure.

By the Morrey–Sobolev embedding theorem, each supercritical mapping f ∈ W 1,p(Ω, Y ),
p > n, has a representative which is locally (1 − n/p)-Hölder continuous. In the remainder
of the paper we always work with this representative. In the following proposition, we
summarize several basic properties of supercritical Sobolev mappings.

Proposition 2.4. Let Y be a separable metric space, let Ω ⊂ Rn, and let f ∈ W 1,p(Ω, Y ),
p > n, be represented as above. Let gf denote the minimal upper gradient for f . Then

(i) for all cubes Q compactly contained in Ω, we have

(2.3) diam f(Q) ≤ C(n, p)(diamQ)1−n/p
(∫

Q

gpf dx

)1/p

,

(ii) the map f satisfies the following quantitative version of the Lusin condition N:

(2.4) Hn(f(E)) ≤ C(n, p)Ln(E)1−n/p||gf ||nLp(Ω)

for all measurable sets E ⊂ Ω.

The local Hölder continuity and the estimate in (2.3) are established by standard argu-
ments as in the Euclidean case, beginning from the Sobolev–Poincaré inequality for supercrit-
ical Sobolev functions. For details, we refer to Ziemer [60, Theorem 2.4.4] or Haj lasz–Koskela
[26]. We prove the quantitative Lusin property (2.4). While this argument is also standard,
it serves as a model for other proofs which occur in this paper.

We make repeated use of the fact that Hausdorff dimension can be computed using cover-
ings by dyadic cubes. By a dyadic cube of size 2−j, j ∈ Z, we mean a closed cube in Rn with
sides parallel to the coordinate axes, with side length 2−j and with vertices in the set 2−j ·Zn.
The s-dimensional dyadic Hausdorff measure Hs

dyadic is defined by the usual Carathéodory
procedure to be

Hs
dyadic(E) = lim

δ→0
Hs
dyadic,δ(E)

where Hs
dyadic,δ(E) is the infimum of the expressions

∑
j(diamQj)

s over all coverings {Qj}
of E by dyadic cubes of diameter no more than δ. The inequalities

(2.5) Hs
δ(E) ≤ Hs

dyadic,δ(E) ≤ (4
√
n)sHs

δ(E), E ⊂ Rn, 0 ≤ δ ≤ ∞,
show that the dyadic Hausdorff measures generate the same dimension value as do the
standard Hausdorff measures. See Mattila [43, §5.2] for details. We recall that the dyadic
cubes of a fixed size form an essentially disjoint decomposition of Rn (that is, they have
disjoint interiors).

To prove (2.4), let ε > 0, choose δ > 0 sufficiently small relative to ε, and consider an
arbitrary covering {Qi} of E by essentially disjoint dyadic cubes with side length ri < δ.
Then f(E) is covered by the sets {f(Qi)}, and

(2.6) diam f(Qi) ≤ C(n, p)r
1−n/p
i

(∫
Qi

gpf dx

)1/p

≤ C(n, p)||gf ||Lp(Ω)δ
1−n/p < ε

by (2.3), provided δ is chosen appropriately. Summing the n-th powers of (2.6) over i,
applying Hölder’s inequality together with the essential disjointedness of the family {Qi},
and taking the infimum over all such coverings {Qi} yields

(2.7) Hn
ε (f(E)) ≤ C(n, p)||gf ||nLp(Ω)Hn

dyadic,δ(E)1−n/p.
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Letting δ and ε tend to zero and recalling the equivalence of Hs and Hs
dyadic completes the

proof of (ii).
Kaufman [32] generalized Proposition 2.4(ii) to cover the full range of Hausdorff measures
Hs, 0 < s < n. Proposition 1.2 is a special case of the following theorem.

Proposition 2.5 (Kaufman). Let E ⊂ Ω be a set of σ-finiteHα measure for some 0 < α < n.
Let f ∈ W 1,p(Ω, Y ) for some p > n. Then f(E) has zero Hpα/(p−n+α) measure.

The proof of Proposition 2.5 proceeds along exactly the same lines as that of Proposition
2.4(ii) with one additional modification. Since α < n, we have that E is a null set for the
Lebesgue measure in Ω. Instead of (2.7) we obtain

Hpα/(p−n+α)
ε (f(E)) ≤ C(n, p, α)||gf ||

pα
p−n+α

Lp(U) H
α
dyadic,δ(E)

p−n
p−n+α

for each open set U containing E. Taking the infimum over all such open sets and using the
outer regularity of the Lebesgue measure yields the desired conclusion.

3. Exceptional sets for Sobolev mappings

3.1. Exceptional sets for supercritical Sobolev mappings. In this subsection, we prove
Theorem 1.3.

For δ > 0 we denote by Hα
δ the α-dimensional Hausdorff premeasure at scale δ. In partic-

ular, Hα
∞ denotes the α-dimensional Hausdorff content. See [43, Chapter 4] for definitions.

Using countable stability of Hausdorff measure and the invariance of Hausdorff measure
under rigid motions of Rn, it suffices to assume that Ω is bounded and V = {0}×Rm. Since
the null sets for Hα and Hα

∞ coincide [43, Lemma 4.6], the exceptional set of points from
the statement of Theorem 1.3 consists of those points a ∈ V ⊥ for which

Hα
∞(f(Va ∩ Ω)) > 0.

Let us denote this set by Excf (α).
Our first task is to show that Excf (α) is a Borel set. This will permit us to use Frostman’s

lemma in later proofs.

Lemma 3.1. For each α ∈ [m,n), Excf (α) is a Borel set.

For a linear subspace W ⊂ Rn, let PW : Rn → W denote the orthogonal projection
onto W .

Proof. As described above, we may assume that Ω is bounded. Exhaust Ω with an increasing
sequence of compact sets {Ki}. For δ > 0, let E(α, i, δ) be the set of points a ∈ V ⊥ with
the following property: whenever f(Va ∩Ki) is covered by a countable family of open sets,
{Ak}, then

∑
k(diamAk)

α > δ. Then

Excf (α) =
⋃
i

⋃
δ>0

E(α, i, δ).

We will prove that E(α, i, δ) is a closed set.
Let (aj) be a sequence of points in E(α, i, δ) with limj→∞ aj = a. Let {Ak} be a countable

family of open sets covering f(Va∩Ki). For each k, let Bk = f−1(Ak). Since f is continuous
and Va ∩Ki is compact, it follows from the Tube Lemma [45, Lemma 5.8] that there exists
a neighborhood U of a in V ⊥ so that P−1

V ⊥
(U) ∩Ki ⊂ ∪kBk. For sufficiently large j, aj ∈ U

and hence f(Vaj ∩Ki) ⊂
⋃
k Ak. Since

∑
k(diamAk)

α > δ we conclude that a ∈ E(α, i, δ).
This completes the proof. �
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Denote by BV ⊥(a, r) the ball in V ⊥ with center a and radius r > 0. We will deduce
Theorem 1.3 from the following proposition.

Proposition 3.2. Let α satisfy (1.6), let p > n, and define β = β(p, α) by the formula (1.5).
Let E ⊂ V ⊥ be a set of finite Hβ measure and assume that µ is a positive Borel measure
supported on E and satisfying the growth condition

(3.1) µ(BV ⊥(a, r)) ≤ rβ for all a ∈ V ⊥ and r > 0.

Finally, let f ∈ W 1,p(Ω, Y ). Then Hα(f(Va ∩ Ω)) = 0 for µ-a.e. a ∈ E.

Proof. We may assume without loss of generality that Ω = (0, 1)n and that E ⊂ PV ⊥(Ω).
Fix δ > 0. Since β < n−m, E can be included in an open set Uδ ⊂ Rn−m of Hn−m measure
at most δ. Since gf ∈ Lp(Ω),

(3.2) lim
δ→0

∫
Uδ×(0,1)m

gpf dx = 0.

Consider an essentially disjoint collection of dyadic cubes, {Ri}, contained in Uδ and
covering E, for which ∑

i

rβi < H
β
dyadic,δ(E) + δ.

Here ri denotes the side length of Ri; we assume without loss of generality that ri < δ for
all i. For each i, let {Qij}Nij=1 be a family of essentially disjoint dyadic cubes in Rn, each
of which has side length ri, with the property that

⋃
j Qij = Ri × (0, 1)m. For fixed i, the

number Ni of cubes Qij is on the order of r−mi .
By Proposition 2.4(i),

(3.3) diam f(Qij) ≤ Cr
1−n/p
i

(∫
Qij

gpf dx

)1/p

≤ C||gf ||Lp(Qij)δ
1−n/p =: ε.

Here gf denotes the minimal Lp upper gradient for f .
For each a ∈ E, we have

Hα
ε (f(Va ∩ Ω)) ≤

Ni∑
j=1

(diam f(Qij))
α

for each i so that a ∈ Ri. For fixed i and a ∈ E, let

χ(i, a) =

{
1, if a ∈ Ri,

0, else.

Then Hα
ε (f(Va ∩ Ω)) ≤

∑
i χ(i, a)

∑Ni
j=1(diam f(Qij))

α and so∫ ∗
V ⊥
Hα
ε (f(Va ∩ Ω)) dµ(a) ≤

∫ ∗
V ⊥

∑
i

χ(i, a)

Ni∑
j=1

(diam f(Qij))
α dµ(a)

=
∑
i

µ(Ri)
∑
j

(diam f(Qij))
α

≤ C(n, p)
∑
i

rβi r
α(1−n/p)
i

∑
j

(∫
Qij

gpf dx

)α/p

,
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where we used (2.3) and (3.1). (Here we employed the upper integral
∫ ∗

to avoid the difficult
issue of measurability of the integrand a 7→ Hα

ε (f(Va ∩ Ω)).)
Applying Hölder’s inequality to the inner sum, we obtain∫ ∗

V ⊥
Hα
ε (f(Va ∩ Ω)) dµ(a) ≤ C(n, p)

∑
i

r
β+α(1−n/p)
i (Ni)

1−α/p

(
Ni∑
j=1

∫
Qij

gpf dx

)α/p

≤ C(n, p)
∑
i

r
β+α(1−n/p)−m(1−α/p)
i

(∫
Ri×(0,1)m

gpf dx

)α/p
.

Applying Hölder’s inequality again yields∫ ∗
V ⊥
Hα
ε (f(Va∩Ω)) dµ(a) ≤ C(n, p)

(∑
i

∫
Ri×(0,1)m

gpf dx

)α
p
(∑

i

r
(β+α(1−n

p
)−m(1−α

p
)) p
p−α

i

)1−α
p

.

Since β = β(p, α), (
β + α(1− n

p
)−m(1− α

p
)
)( p

p− α

)
= β.

Thus ∫ ∗
V ⊥
Hα
ε (f(Va ∩ Ω)) dµ(a) ≤ C(n, p)

(∫
Uδ×(0,1)m

gpf dx

)α/p(∑
i

rβi

)1−α/p

≤ C(n, p)||gf ||αLp(Uδ×(0,1)m)

(
Hβ
dyadic,δ(E) + δ

)1−α/p
.

(3.4)

Letting δ → 0 and using the Monotone Convergence Theorem, the equivalence of Hs and
Hs
dyadic, and (3.2), we conclude that

∫ ∗
V ⊥
Hα(f(Va ∩Ω)) dµ(a) = 0. This completes the proof

of the proposition. �

Remark 3.3. The reader may have noticed that we only used the condition α < p in the
preceding proof, while the hypotheses include the stronger restriction

(3.5) α <
pm

p− n+m
.

The reason for (3.5) is implicit in the proof: recall that (3.5) holds if and only if β > 0.
In practice, the desired measure µ will be obtained by an application of Frostman’s lemma,
which requires the growth exponent β to be positive.

Remark 3.4. Some aspects of the preceding proof are modelled on a lemma of Bourdon [8]
(see also Pansu [46]) which provides lower estimates for the conformal dimension of a metric
space. This formal similarity is not surprising. Lower bounds on the conformal dimension
of a metric space indicate that a large family of (quasisymmetrically equivalent) spaces have
uniformly large dimension, while Theorem 1.3 indicates restrictions on the set of parameters
a for which the dimensions of the fiber images f(Va ∩ Ω) are all uniformly large.

Proof of Theorem 1.3. Let β = β(p, α). Suppose Excf (α) has positive Hβ measure. By
Lemma 3.1 and Theorem 8.13 in [43], there exists a compact set E ⊂ Excf (α) so that
0 < Hβ(E) < ∞. By Frostman’s lemma ([43, Theorem 8.9]), there exists a positive Borel
measure µ 6= 0 supported on E such that µ(BV ⊥(a, r)) ≤ rβ for all a ∈ E and r > 0.

Then µ is absolutely continuous with respect to Hβ E, so µ(E) <∞. By Proposition 3.2,
Hα(f(Va ∩ Ω)) = 0 for µ-a.e. a ∈ E. This contradicts the definition of Excf (α). �



12 ZOLTÁN M. BALOGH, ROBERTO MONTI, AND JEREMY T. TYSON

3.2. Exceptional sets for Sobolev–Lorentz and critical Sobolev mappings. Theo-
rem 1.3 generalizes in several directions. In this subsection, we indicate such generalizations
and describe what changes to the previous argument are necessary for their proofs.

We begin with the definition of the Ambrosio–Reshetnyak–Sobolev–Lorentz spaces W 1,n,q.
Sobolev–Lorentz spaces measure a finer scale of integrability criteria. In the metric space-
valued case, Ambrosio–Reshetnyak–Sobolev–Lorentz spaces have been considered by Wildrick
and Zürcher [59].

We first recall the Lorentz spaces. As before, let Ω be a domain in Rn. The non-increasing
rearrangement f ∗ : [0,∞)→ [0,∞] of a measurable function f : Ω→ R is

f ∗(t) = inf{α ≥ 0 : ωf (α) ≤ t},
where ωf (α) = |{x ∈ Ω : |f(x)| > α}| denotes the distribution function of f . For 1 ≤ p <∞
and 1 ≤ q <∞, the Lorentz space Lp,q(Ω) consists of those measurable functions f : Ω→ R
for which

||f ||p,q :=

(∫ ∞
0

(
t1/pf ∗(t)

)q dt
t

)1/q

is finite. Equipped with the norm || · ||p,q, Lp,q(Ω) is a Banach space. Note that Lp,p(Ω) =
Lp(Ω) isometrically as Banach spaces. For the following result of Calderón, see Ziemer [60,
Lemma 1.8.13].

Proposition 3.5. If p > 1 and 1 ≤ q < r < ∞, then ||f ||p,r ≤ C(p, q, r)||f ||p,q for all
measurable functions f . In particular, Lp,q(Ω) admits a bounded embedding into Lp,r(Ω).

The Sobolev–Lorentz space W 1,p,q(Ω) consists of those functions f ∈ Lp(Ω) whose distri-
butional first-order partial derivatives exist as functions in Lp,q(Ω).

Definition 3.6. Let B be a Banach space. A map f : Ω → B in Lp(Ω, B) belongs to
the Ambrosio–Reshetnyak–Sobolev–Lorentz space W 1,p,q(Ω, B) if 〈b∗, f〉 ∈ W 1,p,q(Ω) for every
b∗ ∈ B∗ with ||b∗|| ≤ 1 and f admits an upper gradient in Lp,q(Ω).

For a separable metric space (Y, d) equipped with a fixed isometric embedding ι into `∞,
we say that f : Ω→ Y is in the Ambrosio–Reshetnyak–Sobolev–Lorentz space W 1,p,q(Ω, Y ) if
ι ◦ f ∈ W 1,p,q(Ω, `∞).

Maps in W 1,n,1 retain many analytic and geometric properties enjoyed by supercritical
Sobolev maps. The following result is the analog of Proposition 2.4 for the space W 1,n,1. For
a proof of part (i), see Kauhanen–Koskela–Malý [35] for the case of real-valued functions and
Wildrick–Zürcher [59] for the general case. Part (ii) follows from part (i) as in Proposition 2.4.

Proposition 3.7. Let Y be a separable metric space, Ω ⊂ Rn, and f ∈ W 1,n,1(Ω, Y ). Then

(i) f satisfies the Rado–Reichelderfer condition: there exists Θf ∈ L1(Ω) so that

(3.6) (diam f(Q))n ≤
∫
Q

Θf dx

for all cubes Q compactly contained in Ω. In particular, f is continuous.
(ii) f satisfies the following quantitative version of the Lusin condition N: there exists a

constant C(n) depending only on the dimension n so that

(3.7) Hn(f(E)) ≤ C(n)

∫
E

Θf dx

for all measurable sets E ⊂ Ω.
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For maps in the Sobolev–Lorentz class W 1,n,1, we have the following result, which gener-
alizes and extends our main Theorem 1.3. The dimension estimate for the exceptional sets
which we obtain matches that in Corollary 1.5.

Theorem 3.8. Let f : Ω→ Y be a map in the class W 1,n,1(Ω, Y ), let V ∈ G(n,m) and let

m < α < n. Then Hα(f(Va ∩ Ω)) = 0 for Hm(nα−1)-a.e. a ∈ V ⊥.

To prove Theorem 3.8, we set β = m(n
α
− 1) and replace (3.4) with

(3.8)

∫ ∗
V ⊥
Hα
ε (f(Va ∩ Ω)) dµ(a) ≤ C

(
Hβ(E)

)1−α/n ||Θf ||α/nL1(Uδ×(0,1)m),

where Θf denotes the Rado–Reichelderfer control function from Proposition 3.7. To prove
(3.8), we replace (3.3) with (3.6) and use the arguments from the proof of Proposition 3.2.

Mappings in the critical Sobolev class W 1,n need not enjoy the good analytic properties
such as continuity and the validity of condition N. We require additional conditions. To this
end, we recall the notion of pseudomonotonicity.

Definition 3.9. A mapping f : Ω→ Y from a domain Ω ⊂ Rn to a metric space Y is called
K-pseudomonotone, K ≥ 1, if diam f(B(x, r)) ≤ K diam f(∂B(x, r)) for all x ∈ Ω and all
r < dist(x, ∂Ω). If f is K-pseudomonotone for some K, we say that f is pseudomonotone.

For example, all homeomorphisms between Euclidean domains are 1-pseudomonotone.
Also, all η-quasisymmetric embeddings of Euclidean domains into metric spaces are K-
pseudomonotone for some K depending only on η, see Lemma 5.5 in [57]. A theorem of Malý
and Martio [38] (see also [57] and [29]) asserts that continuous pseudomonotone mappings
in the class W 1,n verify Lusin’s condition N.

Theorem 3.10. Let f : Ω → Y be a continuous, pseudomonotone map in the class

W 1,n(Ω, Y ). Let V ∈ G(n,m) and let m < α < n. Then Hα(f(Va∩Ω)) = 0 for Hm(nα−1)-a.e.
a ∈ V ⊥.

Theorems 3.8 and 3.10 extend to the case of subspaces of intermediate dimension the
results of Malý and Martio [38] and Kauhanen–Koskela–Malý [35] on the validity of condition
N. In turn, Theorem 3.10 yields corresponding conclusions for quasisymmetric maps taking
values in metric spaces, thereby generalizing Corollary 1.5.

Corollary 3.11. The conclusion of Theorem 3.8 holds for an arbitrary quasisymmetric map
f from a domain Ω ⊂ Rn onto a metric space Y of locally finite Hausdorff Hn measure.

In the remainder of this section, we prove Theorem 3.10. While the overall structure
of the proof generally follows that of our main Theorem 1.4, we must make several subtle
modifications to the argument to deal with the lack of universal, scale-invariant estimates
such as the Morrey–Sobolev inequality, and the concomitant use of covering theorems, in
the present situation.

The key point of the argument is to prove the following analog of (3.4) for continuous
pseudomonotone maps f ∈ W 1,n:

(3.9)

∫ ∗
V ⊥
Hα
ε (f(Va ∩ Ω)) dµ(a) ≤ C

(
Hβ(E)

)1−α/n (||gf ||αLn(Uδ×(0,1)m) + |Uδ × (0, 1)m|α/n
)
.

The proof of (3.9) is more difficult than that of its predecessor (3.4).
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We denote by Q(x, r) a cube of side length r centered at a point x. Let us observe that if
the estimate

(3.10) (diam f(Q(x, r)))n ≤ C

∫
Q(x,r)

(1 + gnf ) dx

were valid for all cubes Q(x, r) (compactly contained in Ω), and for some fixed finite constant
C, then (3.9) would follow by the previous arguments. However, it turns out that this
estimate is not necessarily true for all locations and scales.

For a fixed C < ∞, let us say that a cube Q(x, r) ⊂ Ω is a C-good cube if the estimate
(3.10) holds.

Definition 3.12. A collection Q of cubes in Ω is called a frequent cover of a set E ⊂ Ω if
for each point x ∈ E and for each 0 < r0 < dist(x, ∂Ω), there exists a cube Q(x, r) ∈ Q with
r0/2 ≤ r ≤ r0.

In other words, Q contains cubes centered at every point x of E, whose side lengths differ
by at most a factor of two from the side length of any cube centered at x and contained in Ω.

Proposition 3.13. Let f be a continuous, K-pseudomonotone map in the class W 1,n(Ω, Y ).
There exists a finite constant C = C(n,K) so that the collection Q of C-good cubes Q(x, r)
in Ω is a frequent cover of Ω.

Proposition 3.13 follows from two known auxiliary results, stated in the following two
lemmas. Lemma 3.14 is a standard fact of real analysis. For a proof of the analogous result
with cubes replaced by balls, see pp. 22–23 of [38]. There are no complications involved
in replacing balls by cubes in this proof. Lemma 3.15 follows from the Sobolev embedding
theorem applied on the codimension one sets ∂Q(x, r). See, for instance, Proposition 4.9
in [57].

Lemma 3.14. Let h ∈ L1(Ω) be nonnegative. There exists a finite constant C so that the
following holds: for each x ∈ Ω and for any r0 > 0 so that Q(x, r0) is compactly contained
in Ω, the set of values r ∈ (r0/2, r0) for which

(3.11)

∫
∂Q(x,r)

h(y) dσ(y) ≤ C

r

∫
Q(x,r)

(1 + h(y)) dy

has positive Lebesgue 1-measure.

Lemma 3.15. Let Ω be a domain in Rn, let Y be separable metric, and let f ∈ W 1,n(Ω, Y )
be continuous. For each x ∈ Ω and a.e. r > 0 such that Q(x, r) is compactly contained in Ω,
we have

(3.12) diam f(∂Q(x, r)) ≤ Cr1/n

(∫
∂Q(x,r)

gf (y)n dσ(y)

)1/n

.

In (3.11) and (3.12) the integral over ∂Q(x, r) is taken with respect to the surface area
measure dσ. Note that although the integrands are merely Lebesgue functions, the value
of such integrals is well-defined for almost every r > 0 by Fubini’s theorem (after choosing
suitable representatives for the integrands).

Proof of Proposition 3.13. By the definition of pseudomonotonicity, the estimate

diam f(Q(x, r)) ≤ K diam f(∂Q(x, r))
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holds for all x ∈ Ω and r > 0 so that Q(x, r) is compactly contained in Ω. By Lemma 3.15,
the estimate

(diam f(∂Q(x, r)))n ≤ Cr

∫
∂Q(x,r)

gnf dσ

holds for all x ∈ Ω and a.e. r > 0 so that Q(x, r) is compactly contained in Ω. Finally, by
Lemma 3.14, the estimate ∫

∂Q(x,r)

gnf dσ ≤
C

r

∫
Q(x,r)

(1 + gnf ) dx

holds for a frequent cover {Q(x, r)} of Ω by cubes. The proof is complete. �

For the remainder of this section, we assume that a constant C has been fixed so that the
conclusion of Proposition 3.13 is satisfied. Henceforth, we say that a cube is a good cube if
it is a C-good cube for this value of C.

Proof of Theorem 3.10. First, we remark that since the conclusion involves only the Haus-
dorff measures of subsets of Ω, we may utilize the countable stability of Hausdorff measure
to restrict our attention to subdomains Ω′ which are compactly contained in Ω. For points
x in such a subdomain Ω′, the choice of r0 in Definition 3.12 can be made independently of
x. Indeed, we may choose r0 = dist(Ω′, ∂Ω).

We begin the proof of (3.9) in exactly the same fashion as before. Assuming for the sake
of contradiction that the exceptional set E has positive Hβ measure, we select a Frostman
measure µ supported on E for the exponent β. We claim that Hα(f(Va ∩ Ω)) = 0 for µ-a.e.
a ∈ E.

Fix δ > 0; without loss of generality we may assume that δ ≤ dist(Ω′, ∂Ω). Since

β = m
(n
α
− 1
)
< n−m,

E can be included in an open set Uδ ⊂ Rn−m of Hn−m measure at most δ. Since gf ∈ Ln(Ω),∫
Uδ×(0,1)m

gnf dx tends to zero as δ tends to zero. We consider an essentially disjoint collection

of dyadic cubes, {Ri}, contained in Uδ and covering E, for which∑
i

rβi < H
β
dyadic,δ(E) + δ,

where ri < δ denotes the side length of Ri.
At this stage of the proof, we remark that we can no longer guarantee that the cubes

Qij considered in the previous version of the proof are good cubes. Since the collection of
good cubes is a frequent cover, we know that any cube is contained in a good cube with
comparable side length. However, we must deal with the possible resulting overlap. We do
this using the Besicovitch Covering Theorem.

Consider the set Ri × [0, 1]m. For each point (a, x) in this set, choose a side length rax
satisfying

ri
2
≤ rax ≤ ri

so that the cube

Qax := Q((a, x), rax)

is a good cube. The collection {Qax} of such cubes, as a varies over ∪iRi and x varies over
[0, 1]m, is a Besicovitch cover of E × [0, 1]m. By the Besicovitch Covering Theorem (see
Theorem 1.1 in [10] or Theorem 2.7 in [43]), we can extract a countable collection of cubes,
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{Qj = Qajxj} ⊂ {Qax}, which continues to cover E× [0, 1]m and which has bounded overlap,
i.e., no point of Ω lies in more than M of the cubes Qj, where M depends only on n.

Let us observe that the number Ni of these cubes Qj for which aj ∈ Ri is still bounded
by a multiple of r−mi . Indeed, any such cube Qj is contained within 3Ri × [0, 1]m (where
3Ri denotes the cube in V ⊥ concentric with Ri, whose side length is equal to 3ri). The
conclusion then follows by volume considerations:

rn−mi = Ln(Ri × [0, 1]m) ≥ 1

3n−mM

∑
j

Ln(Qj) ≥
1

3n−mM

(ri
2

)n
Ni,

whence

(3.13) Ni ≤M · 2n · 3n−m · r−mi .

Since each of the cubes Qj is good, the estimate

(diam f(Qj))
n ≤ C(n,K)

∫
Qj

(1 + gnf ) dx ≤ C(n,K)(δn + ωgnf (δn)) =: ε

holds, where ωgnf (b) := supE:|E|≤b
∫
E
gnf dx denotes a modulus of continuity for the set function

E 7→
∫
E
gnf dx.

For each a ∈ E, we have

Hα
ε (f(Va ∩ Ω)) ≤

∑
j

Va∩Qj 6=∅

(diam f(Qj))
α.

Again we introduce, for fixed j and a point a ∈ E, the characteristic function

χ(j, a) =

{
1, if Va ∩Qj 6= ∅,
0, else.

Then Hα
ε (f(Va ∩ Ω)) ≤

∑
j χ(j, a)(diam f(Qj))

α and so∫ ∗
V ⊥
Hα
ε (f(Va ∩ Ω)) dµ(a) ≤

∫ ∗
V ⊥

∑
j

χ(j, a)(diam f(Qj))
α dµ(a)

=
∑
j

µ(PV ⊥(Qj))(diam f(Qj))
α

≤
∑
j

(diamQj)
β(diam f(Qj))

α

≤ C(n,K)
∑
i

∑
j

aj∈Ri

rβi

(∫
Qj

(1 + gnf ) dx

)α/n

Applying Hölder’s inequality and (3.13) we obtain

∫ ∗
V ⊥
Hα
ε (f(Va ∩ Ω)) dµ(a) ≤ C(n,K)

∑
i

r
β−m(1−α/n)
i

∑
j

aj∈Ri

∫
Qj

(1 + gnf ) dx


α/n

.
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Applying Hölder’s inequality again yields

∫ ∗
V ⊥
Hα
ε (f(Va ∩ Ω)) dµ(a) ≤ C(n,K)

∑
i,j

aj∈Ri

∫
Qj

(1 + gnf ) dx


α
n (∑

i

r
(β−m(1−α

n
)) n
n−α

i

)1−α
n

.

Observe that (β −m(1− α
n
))( n

n−α) = β. Since the collection {Qj} is a Besicovitch cover, we
obtain∫ ∗

V ⊥
Hα
ε (f(Va ∩ Ω)) dµ(a) ≤ C(n,K,M,α)

(∫
Uδ×(0,1)m

(1 + gnf ) dx

)α/n(∑
i

rβi

)1−α/n

.

From here, we derive (3.9) and complete the proof of the theorem exactly as before. We
omit the remaining details. �

3.3. Remarks on quasiconformal mappings. Quasiconformal self-maps of Rn, n ≥ 2,
lie in W 1,p for some p > n. This is Gehring’s higher integrability theorem [18]. Corollary 1.5
follows from this fact and Theorem 1.3. More precisely, if f is K-quasiconformal then

(3.14) dim Excf (α) ≤ (n−m)−
(

1− m

α

)
p(n,K)

where p(n,K) > n denotes the sharp exponent of higher integrability for the partial deriva-
tives of a K-quasiconformal mapping. We say that f is K-quasiconformal if Hf (x) ≤ K for
all x ∈ Ω, where

Hf (x) = lim sup
r→0

sup{|f(x)− f(y)| : |x− y| = r}
inf{|f(x)− f(z)| : |x− z| = r}

denotes the metric dilatation of a homeomorphism f : Ω→ Ω′ between domains in Rn.
A celebrated theorem of Astala [2] asserts that

(3.15) p(2, K) =
2K

K − 1
;

the corresponding value p(n,K) = nK
K−1

remains a conjecture when n ≥ 3.
Astala’s theorem yields sharp bounds on dimension distortion by planar quasiconformal

maps. If f is a K-quasiconformal map between planar domains Ω,Ω′ and E ⊂ Ω, then

(3.16)
1

K

(
1

dimE
− 1

2

)
≤ 1

dim f(E)
− 1

2
≤ K

(
1

dimE
− 1

2

)
.

We deduce from (3.14) and (3.15) that

(3.17) dim Excf (α) ≤ 2K − (K + 1)α

α(K − 1)

whenever f is a K-quasiconformal map between planar domains, V ∈ G(2, 1), and α ∈ [1, 2).
Note that the right hand side of (3.17) is equal to zero precisely when

α =
2K

K + 1
= 1 +

(
K − 1

K + 1

)
.

This agrees with the upper bound in (3.16) for the dimension of the image of any 1-
dimensional set under a planar K-quasiconformal map. In fact, the proof of (3.16) given in
[2] uses only the higher Sobolev integrability of f .

We discuss the case of quasiconformal mappings further in Problem 6.2.
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4. Sobolev maps which increase the dimension of many affine subspaces

In this section we prove Theorem 1.4. The proof which we give is modelled closely on that
of an analogous result of Kaufman [32, Theorem 3], which exhibits Sobolev mappings which
increase maximally the dimension of a fixed subset. Our situation is complicated by the fact
that we work with the orthogonal splitting of Rn into V = {0}×Rm and V ⊥ = Rn−m×{0}
and look for a mapping which simultaneously increases the dimension of many fibers.

Recall that our goal is to construct a W 1,p map of Rn which increases the dimensions of
all of the fibers Va over the points a in a certain set E ⊂ V ⊥ from m to α. To achieve this,
we will use a random construction. We will define a family of maps (fξ) parameterized by
sequences ξ of independent and identically distributed random variables. All of these maps
will lie in the Sobolev class W 1,p, and we will show that, almost surely with respect to ξ,
such maps have the desired property. We do not know whether a deterministic construction
can be given.

Recall also that in the statement of Theorem 1.4 we assume that the set E satisfies the
growth condition

(4.1) N(E, r) ≤ Cr−β

for all r < r0, for some constants C and r0 > 0. Here β = β(p, α) is the value given in (1.5).
In particular, Hβ(E) <∞ and so

(4.2) dimE ≤ β.

Recall that in the statement of Theorem 1.4 we merely assume that p ≥ 1. For (4.2) to
hold, we necessarily must have β ≥ 0. When p > n −m, this imposes the usual restriction
(1.6) on α. When p ≤ n − m, no upper bound on the value of α is required. We fix an
integer N > α; this value will be the dimension of the target space for our mapping. When
p > n, we may set N = n.

We are ready to begin the proof of the theorem.

Proof of Theorem 1.4. Let E be a bounded subset of Rn−m satisfying (4.1) for all 0 < r < r0,
for suitable constants C and r0. By applying a preliminary homothety, we may assume that
E ⊂ [0, 1]n−m. The maps fξ ∈ W 1,p(Rn,RN) which we will construct (see (4.5)) will satisfy

(4.3) Hα′(fξ(Va ∩ [0, 1]n)) =∞

for Hβ-almost every a ∈ E and almost surely in ξ, for each α′ < α. This clearly suffices to
obtain the desired conclusion dim fξ(Va) ≥ α for Hβ-a.e. a ∈ E and almost surely in ξ.

Before continuing with the proof, we pause to review terminology from symbolic dynamics.
Let W = {1, . . . , 2n}, let W j be the set of (ordered) j-tuples of elements of W , and let

W ∗ =
⋃
j≥0

W j

be the set of all finite sequences of elements of W (including the empty sequence). We call the
elements of W ∗ words comprised of the letters in W . If v = (v1, . . . , vj) and w = (w1, . . . , wk)
are words with j ≥ k, we say that w is a subword of v if vi = wi for all i = 1, . . . , k. The
length of a word w ∈ W j is equal to j.

We use the set W ∗ to index the cubes in the standard dyadic decomposition

D = {Qw}w∈W ∗
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of Q = [0, 1]n. We choose this indexing in such a way that the side length s(Qw) of Qw is
equal to 2−j if w has length j, and also that Qw ⊂ Qv if v is a subword of w. For each j,
the cubes {Qw}w∈W j form an essentially disjoint decomposition of Q.

We also introduce a second collection of cubes, obtained by dilating the elements of D.
For each w ∈ W∗, let Q′w = 100Qw. It is important to note that, for fixed j, the collection
{Q′w}w∈W j has bounded overlap: no points of Rn lies in more than C of the cubes in this
collection, where C is a constant depending only on the dimension n.

We project these cubes into the subspaces V and V ⊥. In order to maintain a consistent
notation we write

QV ⊥

w = PV ⊥(Qw) and QV
w = PV (Qw)

for such projections. We view these as cubes in Rn−m and Rm respectively. Similarly, we
define (QV ⊥

w )′ and (QV
w)′ to be the corresponding dilated cubes. Note that Qw, QV ⊥

w and QV
w

all have the same side length 2−|w|. Similarly, Q′w, (QV ⊥
w )′ and (QV

w)′ all have the same side
length 100 · 2−|w|. In particular, we denote by QV = PV (Q) the unit cube [0, 1]m and by

QV ⊥ = PV ⊥(Q) the unit cube [0, 1]n−m.
For each w ∈ W ∗, let ψw be a function in C∞0 (Rn) satisfying the following conditions:

(i) 0 ≤ ψw ≤ 1,
(ii) ψw ≡ 1 on Qw,

(iii) ψw ≡ 0 on the complement of 5
4
Qw,

(iv) |∇ψw| ≤ C
s(Qw)

= C2|w|.

Let ξ = (ξw) be a countable sequence of elements, indexed by the words w in W ∗, each
lying in the unit ball B ⊂ RN . We define the mappings fξ. For each j ≥ 0, we first define
mappings fξ,j : Rn → RN by the formula

fξ,j(a, x) =
∑
w∈W j

QV
⊥

w ∩E 6=∅

Hm((QV
w)′)1/αψw(a, x)ξw, x ∈ V, a ∈ V ⊥.

Note that

(4.4) Hm((QV
w)′) = C(m)2−jm

whenever w ∈ W j, for some fixed constant C(m).

Lemma 4.1. For all ξ as above and all j ≥ 0, the map fξ,j is in W 1,p(Rn,RN), with ||fξ,j||1,p
bounded above by a finite constant which is independent of ξ and j.

We now define fξ : Rn → RN by the formula

(4.5) fξ(a, x) =
∑
j≥0

(1 + j)−2fξ,j(a, x).

Corollary 4.2. For all ξ as above, fξ is in W 1,p(Rn,RN), with ||fξ||1,p bounded above by a
finite constant which is independent of ξ.

To simplify the notation, we henceforth write

W j(E) := {w ∈ W j : QV ⊥

w ∩ E 6= ∅}

and W ∗(E) =
⋃
j≥0W

j(E).
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Proof of Lemma 4.1. It is easy to see that the functions fξ,j are uniformly bounded, so it
suffices to check the integrability condition on the partial derivatives

∂ifξ,j(a, x) =
∑

w∈W j(E)

Hm((QV
w)′)1/α∂iψw(a, x)ξw,

where ∂i = ∂ai if i = 1, . . . , n−m and ∂i = ∂xi−n+m
if i = n−m+ 1, . . . , n. Since the cubes

{5
4
Qw} have bounded overlap, we obtain∫

Q

|∂ifξ,j|p ≤ C

∫
Q

∑
w∈W j(E)

Hm((QV
w)′)p/α|∇ψw(a, x)|p da dx

≤ C
∑

w∈W j(E)

Hm((QV
w)′) · 2−jm(p/α−1)2jp2−jn.

(4.6)

Here we wrote

(4.7) Hm((QV
w)′)p/α = C(m, p, α)2−jm(p/α−1)Hm((QV

w)′).

Note that the expression p
α
− 1 may be negative, however, the identity (4.7) still holds since

(QV
w)′ is a cube in Rm of side length exactly equal to 100 · 2−j.
To estimate the term

∑
w∈W j(E)Hm((QV

w)′), we rewrite it as

(4.8)
∑
t∈T j

Rt∩E 6=∅

 ∑
w∈W j

QV
⊥

w =Rt

Hm((QV
w)′)

 ,

where T = {1, . . . , 2n−m}, T ∗ =
⋃
j≥0 T

j, and {Rt}t∈T ∗ denotes the usual dyadic decompo-

sition in QV ⊥ . The term in parentheses in (4.8) is bounded by a constant independent of t,
so we obtain ∑

w∈W j(E)

Hm((QV
w)′) ≤ C#{t ∈ T j : Rt ∩ E 6= ∅} ≤ C2jβ

by (4.1). Returning to (4.6), we find∫
Q

|∂ifξ,j|p ≤ C2j(β+p−n+m−mp
α

) = C

for all i, independent of ξ and j. This completes the proof of the lemma. �

In the second part of the proof, we show that a generic choice of ξ yields a map fξ with the
desired property. To this end, we now view ξ = (ξw) as a sequence of independent random
variables, identically distributed according to the uniform probability distribution on B.

For α > 0, denote by

Iα(µ) :=

∫∫
|x− y|−α dµ(x) dµ(y)

the α-energy of a finite Borel measure µ in RN .

For each a ∈ E, consider the measure (fξ)#(Hm Va), i.e., the pushforward of the Haus-
dorff m-measure on the affine subspace Va via the map fξ. We claim that the expectation

(4.9) Eξ

(∫
E

Iα′((fξ)#(Hm Va)) dHβ(a)

)
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is finite for each α′ < α. If we can prove this claim, then almost surely with respect to ξ, we
have ∫

E

Iα′((fξ)#(Hm Va)) dHβ(a) <∞

and hence Iα′((fξ)#(Hm Va)) is finite for Hβ-a.e. a ∈ E. By considering a sequence α′n ↗ α
and using the countable stability of the Hausdorff measures and Frostman’s lemma [43,
Theorem 8.9(1)], we reach our desired conclusion (4.3).

It remains to verify the finiteness of the value in (4.9). By Tonelli’s theorem, (4.9) equals∫
[0,1]m

∫
[0,1]m

∫
E

Eξ(|fξ(a, x)− fξ(a, y)|−α′) dHβ(a) dHm(x) dHm(y).

To estimate the integrand, we write

fξ(a, x)− fξ(a, y) =
∑

w∈W ∗(E)

cw(a, x, y)ξw

where the coefficients are given by

(4.10) cw(a, x, y) := (1 + j)−2Hm((QV
w)′)1/α

(
ψw(a, x)− ψw(a, y)

)
, w ∈ W j.

For the sake of clarity we emphasize that the coefficient (1 + j)−2Hm((QV
w)′)1/α in (4.10) is

a constant depending only on m, α and j.
For a bounded sequence c = (ci), we consider the supremum

(4.11) ||c||∞ := sup
i
|ci|

and the second largest value

(4.12) ρ(c) :=

{
||c||∞, if the supremum in (4.11) is not attained,

supi 6=i0 |ci|, if supi |ci| is attained at i = i0.

For a ∈ V ⊥ and x, y ∈ V , we let c(a, x, y) = (cw(a, x, y)) be the sequence of coefficients
defined in (4.10). Clearly, c(a, x, y) ∈ `∞. We denote by ||c(a, x, y)||∞ the supremum and
by ρ(c(a, x, y)) the corresponding second largest value.

We require an elementary lemma from probability theory. As we were unable to locate
a precise reference in the literature, we opt to give a short proof at the end of this section.
See subsection 4.1. The proof uses an upper bound for the Fourier transform of the density
function for the random variables Xi. In order to obtain a sufficiently good bound on large
scales in the frequency domain, we must use at least two of the random variables. This
results in the appearance of the second largest value ρ(c) in (4.13).

Lemma 4.3. Let {Xi} be a countable sequence of independent random variables, identically
distributed according to the uniform distribution on the unit ball B in RN . Let c = (ci) ∈ `∞.
Finally, let 0 < α < N + 1. Then there exists a constant C which depends only on N and α
so that

(4.13) E

(∣∣∣∣∑
i

ciXi

∣∣∣∣−α
)
≤ Cρ(c)−α.
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Using this lemma, we finish the proof of Theorem 1.4. Applying Lemma 4.3 to the se-
quences ξ and c(a, x, y), and noting that Hm(QV ) and Hβ(E) are finite, we observe by
another application of Tonelli’s theorem that it suffices to prove the estimate∫

QV
ρ(c(a, x, y))−α

′
dHm(y) ≤ C <∞,

where C denotes a constant which is independent of a ∈ E and x ∈ QV .
Fix a ∈ E and x ∈ QV . For y ∈ QV , let j(y) be the largest integer j ≥ 0 with the

property that x and y lie in identical or adjacent dyadic cubes QV
w of level j. It follows from

the construction that there exists a word w0 in W j(y)+1 so that x ∈ QV
w0

and y ∈ (QV
w0

)′, but

y 6∈ 5
4
QV
w0

. Furthermore, we may choose the word w0 so that QV ⊥
w0
∩E 6= ∅, i.e., w0 ∈ W ∗(E).

Observe that

|cw0(a, x, y)| = (2 + j(y))−2Hm((QV
w0

)′)1/α.

Moreover, w0 is a subword of another word w1 ∈ W ∗(E) with |w1| = |w0|+ 1 and

(3 + j(y))−2Hm((QV
w1

)′)1/α = |cw1(a, x, y)| ≤ |cw0(a, x, y)|.

From the previous discussion, we deduce that

ρ(c(a, x, y)) ≥ |cw1(a, x, y)| = (3 + j(y))−2Hm((QV
w1

)′)1/α.

Let Fj denote the set of points y ∈ QV for which j(y) = j. Note that Fj ⊂ (QV
w0

)′. We have∫
QV

ρ(c(a, x, y))−α
′
dHm(y) =

∑
j≥0

∫
Fj

ρ(c(a, x, y))−α
′
dHm(y) ≤ C

∑
j≥0

(3 + j)2α′2−jm(1−α′/α)

by (4.4). Since α′ < α, the series converges. The proof of Theorem 1.4 is complete. �

4.1. A probabilistic lemma. Here we give a short proof of Lemma 4.3. Such a result is
implicitly used by Kaufman [32, p. 429]. As we have been unable to find a proof for this
result in the literature, we have chosen to provide the details here.

The Fourier transform of an integrable radial function g(x) = ϕ(|x|) on Rn is given by a
Hankel transform (see, e.g., [43, (12.8)]):

(4.14) ĝ(x) = c(n)|x|1−n/2
∫ ∞

0

ϕ(s)Jn/2−1(s|x|)sn/2 ds.

Here Jν(t) denotes the Bessel function of the first kind of order ν.
Let X be a random variable which is uniformly distributed on the unit ball B ⊂ RN . The

density function for X is f = fX = |B|−1χB. Using (4.14) we compute its Fourier transform:

(4.15) f̂(x) = c(N)|x|1−N/2
∫ 1

0

sN/2JN/2−1(s|x|) ds.

Using the differentiation relation d
ds

(sνJν(s)) = sνJν−1(s) we simplify (4.15) to

(4.16) f̂(x) = c(N)|x|−N/2JN/2(|x|).

We are now prepared to prove Lemma 4.3. By an elementary limiting argument, it suffices
to assume that the sequences (Xi) and c have finitely many terms. Without loss of generality,
assume that |c1| = ||c||∞ and |c2| = ρ(c). The density function fP

i ciXi
for the random

variable
∑

i ciXi is given by the iterated convolution of the dilated functions c−ni fXi(c
−1
i ·).
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Expressing the expectation in (4.13) as the L2 inner product of |x|−α and the density fP
i ciXi

and using Plancherel’s theorem, we obtain that

(4.17) E

(∣∣∣∣∑
i

ciXi

∣∣∣∣−α
)

= c(N,α)

∫
RN
|x|α−N

∏
i

f̂Xi(cix) dx.

Here we used the well known formula (| · |−α)b = c(N,α)| · |α−N for the Fourier transform of
the Riesz kernel; see e.g. [54, III.3.3] for a proof.

We fix R = ρ(c)−1 and decompose the integral in (4.17) into two terms: the integral over
the ball B = B(0, R) and the integral over its complement Bc. Since

||̂f ||∞ ≤ ||f ||1 = 1,

we conclude that the desired expectation is bounded above by a constant multiple of∫
B

|x|α−N |̂fX1(c1x)| dx+

∫
Bc
|x|α−N |̂fX1(c1x)| |̂fX2(c2x)| dx.

We insert the formula from (4.16), write the resulting integrals in polar coordinates, and use
the elementary estimates |Jν(t)| ≤ Ctν and |Jν(t)| ≤ Ct−1/2 to obtain

E

(∣∣∣∣∑
i

ciXi

∣∣∣∣−α
)
≤ C

(∫ R

0

rα−1 dr + (|c1| |c2|)−(N+1)/2

∫ ∞
R

rα−N−2 dr

)
.

Since R−1 = ρ(c) = |c2| ≤ |c1| = ||c||∞, we obtain the desired conclusion (4.13). This
completes the proof of the lemma.

5. Examples

5.1. Quasiconformal maps which increase the Minkowski dimension of many lines.
Theorem 1.3 applies in particular to quasiconformal maps. It is natural to ask how sharp
the theorem is in that category.

In this section, we prove Theorem 1.6. We construct a quasiconformal mapping for which
the exceptional set associated to upper Minkowski dimension distortion has close-to-optimal
dimension. We do not have a corresponding example asociated to Hausdorff dimension
distortion.

Let us recall the definition of the Minkowski dimension.

Definition 5.1. Let S be a bounded subset of Rn. The upper Minkowski dimension of S is

dimMS := lim sup
r→0

log N(S, r)

log 1/r
.

The lower Minkowski dimension of S, denoted dimMS, is defined similarly, with lim inf
replacing lim sup. In case the limit exists, the corresponding value is called the Minkowski
dimension

Theorem 1.6 corresponds to the case m = 1 in the following more general theorem. As we
will see in the proof, we may choose

δn,1 = 1− 1

n
and so the full range 1 < α < n is allowed. Note that Minkowski dimension is only defined for
bounded sets, which explains the reason why we only consider the compact set f({a}×[0, 1]m)
in the conclusion of the theorem.
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Theorem 5.2. Let n ≥ 2 and 1 ≤ m ≤ n − 1 be integers. Then there exists a positive
constant δn,m so that for each α satisfying

m < α <
m

1− δn,m
and for each ε > 0, there exists a compact set E ⊂ Rn−m of Hausdorff dimension at least

m
(n
α
− 1
)
− ε

and a quasiconformal map f : Rn → Rn so that dimMf({a} × [0, 1]m) ≥ α for all a ∈ E.

To simplify the exposition, we will only prove the case n = 2, m = 1 in what follows. In
Remarks 5.5 and 5.6 we comment on the changes required to cover the general situation.

Recall that
dimE ≤ dimME ≤ dimME

for all bounded sets E, with equality throughout if E is sufficiently nice (for instance, if E
is Ahlfors regular). While Hausdorff dimension is countably stable (the dimension of any
countable union is the supremum of the dimensions of the pieces), Minkowski dimension is
only finitely stable (the dimension of any finite union is the maximum of the dimensions of
the pieces).

We begin with a lemma of Heinonen and Rohde. The quasiconformal map gT in the
following lemma maps an interior segment of the unit square in the xy-plane onto a nonrec-
tifiable arc of von Koch snowflake type. The image of this segment under gT has an increased
(Minkowski or Hausdorff) dimension. Nearby segments are mapped onto smooth arcs, hence
we realize no increase in their Hausdorff dimension. However, such nearby segments are
stretched significantly by the mapping (due to local quasisymmetry), which increases their
contribution to the covering number N(gT ({a} × R), ε). To complete the proof of Theorem
5.2, we sum these contributions over all squares in a Whitney-style decomposition of the
x-axis.

In the following lemma, we use the notation A ' B to indicate that two quantities A and
B are comparable up to an absolute multiplicative constant.

For an arbitrary square T ⊂ R2 with sides parallel to the coordinate axes, we use the
following notation: ϕT : Q → T denotes the unique orientation-preserving homothety from
the unit square Q = [0, 1]2 onto T which maps vertical sides to vertical sides, sT denotes the
side length of T , and MT = ϕT ({1

2
} × [1

4
, 3

4
]) denotes a vertical segment in the middle of T

of length 1
2
sT . For a ∈ R, we denote by γa the set {a} × R.

Lemma 5.3 (Heinonen–Rohde). Fix a real number D, 1 < D < 2. Let T be any square in
the plane. Then there exists a homeomorphism gT : T → T with the following properties:

(i) gT is quasiconformal on the interior of T ,
(ii) gT |∂T is the identity,

(iii) if p, q ∈ T are within distance 1
8
sT from MT and |p−q| ≥ max{dist(p,MT ), dist(q,MT )},

then

(5.1) |gT (p)− gT (q)| ' |p− q|1/Ds1−1/D
T .

(iv) if a ∈ R satisfies d := dist(γa,MT ) ≤ 1
8
sT , then

(5.2) N(gT (γa ∩ T ), cd1/Ds
1−1/D
T ) ≥ sT

d
for some positive constant c.
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We remark that the quantities N(gT (γa ∩T ), cd1/Ds
1−1/D
T ) and sT/d from (5.2) are in fact

comparable, in view of the local quasisymmetry of gT . However, we only need the stated
lower bound in what follows.

Proof. Parts (i), (ii) and (iii) of this lemma coincide with Lemma 3.2 on page 401 in [30];
see also the discussion on page 402. Briefly, the map gT is constructed as follows. Choose a
quasiconformal map h of R2 which sends MT onto a D-dimensional snowflake curve of von
Koch type contained in the interior of T . Such a map can be chosen so that the estimate
in (5.1) holds for all p, q ∈ MT . For a construction of such a map h, see for instance [55, p.
151]. Next, by a standard technique from quasiconformal function theory, we may choose a
map gT : R2 → R2 which is equal to the identity on the complement of T , and which agrees
with h on a neighborhood of MT . This is the desired map.

To complete the proof, we need only verify part (iv). Let a be a point satisfying the stated
conditions, choose an integer N satisfying

sT
N
≥ d >

sT
N + 1

,

and choose N + 1 points p0, . . . , pN on γa ∩T so that |pi− pi−1| = sT/N for all i = 1, . . . , N .
If i 6= j, then |pi − pj| ≥ sT

N
≥ d and hence (by part (iii)),

|gT (pi)− gT (pj)| ≥
1

C
|pi − pj|1/Ds1−1/D

T ≥ 1

C

(sT
N

)1/D

s
1−1/D
T

for some constant C. Hence we require at least N+1 balls of radius c
(
sT
N

)1/D
s

1−1/D
T to cover

gT (γa ∩ T ), where c = 1
3C

. A fortiori, we require at least N + 1 balls of radius cd1/Ds
1−1/D
T

to cover gT (γa ∩ T ). We conclude the proof by observing that N + 1 > sT
d

. �

In the proof of Theorem 5.2, and also in the example in the following subsection, we will
use the following calculation of the Hausdorff dimension of certain Cantor-type sets in the
real line. See, for instance, Example 4.6 in [14].

Proposition 5.4. Let W1,W2, . . . be finite sets with Mj := #Wj ≥ 2 for each j, let W ∗ =⋃
j≥0(W1×· · ·×Wj), and let {Iw}w∈W ∗ be a family of closed intervals satisfying the following

conditions:

(i) Iw ⊂ Iv whenever v is a subword of w,
(ii) max{|Iw| : w ∈ W1 × · · · ×Wj} → 0 as j →∞, and
(iii) there exists a decreasing sequence (εj) of positive real numbers so that dist(Iv, Iw) ≥ εj

whenever v, w ∈ W1 × · · · ×Wj are distinct.

Let

E =
⋂
j≥1

⋃
w∈W1×···×Wj

Iw.

Then

(5.3) dimE ≥ lim inf
j→∞

∑j
i=1 logMi

− log(εj+1Mj+1)
.

Proof of Theorem 5.2. Let α ∈ (1, 2) and ε > 0 be fixed. Without loss of generality, we may
assume that ε < 2

α
− 1. Choose a rational number b > 1 satisfying

α

2− α
< b <

α

2− (1 + ε)α
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and define

D := α

(
b− 1

b− α

)
.

Observe that
1

b
>

(
2

α
− 1

)
− ε

and also that α < D < 2.
Let (nj)j≥1 be any increasing sequence of positive integers with the following properties:

(i) nj+1 − bnj is an integer for each j ≥ 1, and

(ii) the limit of
Pj
i=1 ni
nj+1

as j →∞ is equal to zero.

For instance, if b = P
Q

in lowest terms, we may choose nj = QP j22j .

We associate to the sequence (nj) a sub-Whitney decompositionW of the upper half plane,
or more precisely, of the domain Ω = (0, 1)× (−2, 2) relative to the x-axis. This means that
we begin with the standard Whitney decomposition of Ω relative to the x-axis, and subdivide
all squares in this decomposition with size between 2−nj and 2−nj+1 into subsquares of size
2−nj+1 . Note that the resulting squares T have the property that diamT is bounded above
by a constant multiple of the distance d from T to the x-axis, however, diamT may be
significantly smaller than d.

Define a map f : Ω→ Ω by setting f |T = gT for each T ∈ W . Since gT is the identity on
the boundary of T , this map is well-defined and continuous. Extend it to a map f of R2 to
itself by the identity. Then f is quasiconformal.

We now define a Cantor set on the x-axis by an iterative procedure. For each j ≥ 1 and
each square T ∈ W with sT = 2−nj and T ∩ {(x, y) : y = 2−nj} 6= ∅, the projection P of
the set T ∩ {(x, y) : y = 2−nj} onto the x-axis consists of 2nj+1−nj essentially disjoint closed
intervals, each of length 2−nj+1 . Note that the total length of all of these intervals is equal
to 2−nj , which is the side length of P . Select the subcollection of these intervals, centered
around the middle of P , of total length 2−bnj . Observe that this subcollection consists of
2nj+1−bnj intervals each of length 2−nj+1 . In the inductive step, we consider only squares in
some vertical column corresponding to one of these intervals and repeat the construction.

For each j, let
Wj = {1, . . . , 2nj−bnj−1}

and denote by Iw, w ∈ W1 × · · · ×Wj, the intervals at the jth level in the construction in
the previous paragraph. The Cantor set in question is

E =
⋂
j≥1

⋃
w∈W1×···×Wj

Iw.

Using Proposition 5.4 with Mj = 2nj−bnj−1 and εj ' 2−nj we find

dimE ≥ lim
j→∞

nj − (b− 1)
∑j−1

i=1 ni
bnj

=
1

b
> (

2

α
− 1)− ε.

Now suppose that a ∈ E and fix an integer j ≥ 1. Then a is contained in a unique interval
Iw with w ∈ W1 × · · · × Wj+1 which in turn is contained in a unique interval Iŵ with
ŵ ∈ W1 × · · · ×Wj. Let T be any square from W lying above the interval Iŵ. Then the
distance from γa to MT is bounded above by 1

2
2−bnj which is smaller than 1

8
sT = 1

8
2−nj

provided that j is chosen sufficiently large. Note that there are

2nj−nj−1 − 1
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such squares T . We define a sequence of scales (εj) depending on the point a; the desired
estimate for the upper Minkowski dimension of f(γa) will come from analyzing the covering
number on this sequence of scales by an application of Lemma 5.3.

Let

εj = c dist(γa,MT )1/Ds
1−1/D
T = c|a−mj|1/D2−nj(1−1/D),

where mj denotes the x-coordinate of the midline MT . By Lemma 5.3(iv), we have

N(gT (γa ∩ T ), εj) ≥
sT

dist(γa,MT )
=

2−nj

|a−mj|
.

Summing this over all of the relevant squares gives

N(f(γa ∩Q), εj) ≥ (2nj−nj−1 − 1)
2−nj

|a−mj|
≥ 2−nj−1

2|a−mj|
.

We conclude that

(5.4) dimMf(γa ∩Q) ≥ lim sup
j→∞

− log2 |a−mj| − nj−1 − 1

− 1
D

log2 |a−mj|+ (1− 1
D

)nj + C
.

Observing that |a−mj| ≤ 2−bnj−1 and that the expression inside the limit on the right hand
side of (5.4) is nondecreasing in the variable − log2 |a−mj|, we conclude that

dimMf(γa ∩Q) ≥ D · lim sup
j→∞

bnj − nj−1

(b+D − 1)nj +DC +D
=

bD

b+D − 1
= α

by the choice of D. This completes the proof. �

Remark 5.5. For general n (still assuming m = 1) the proof is similar. We require the
existence of D-dimensional von Koch snowflake curves in Rn for each 1 < D < n. More
precisely, we require a curve Γ ⊂ Rn such that Γ = g(R), where g : Rn → Rn is a quasi-
conformal map so that |g(x) − g(y)| ' |x − y|1/D for all x, y ∈ R with |x − y| ≤ 1. For a
construction of such curves in R3, see Bonk and Heinonen [7]. A similar construction has
been given by Ghamsari and Herron [20]. Using this construction, the proof of Theorem 5.2
for m = 1 and general n proceeds in a similar fashion.

Remark 5.6. The case m ≥ 2 in Theorem 5.2 is more challenging. We require the existence
of D-dimensional quasiconformal submanifolds of Rn of von Koch type. More precisely, we
require a topological m-manifold Σ ⊂ Rn so that Σ = g(Rm), where g : Rn → Rn is a
quasiconformal map so that

(5.5) |g(x)− g(y)| ' |x− y|m/D, ∀x, y ∈ Rm, |x− y| ≤ 1.

Such snowflaked quasiconformal submanifolds were constructed by David and Toro [9] for
a small range of values D ∈ [m,m + εn,m) for some εn,m > 0. Using such submanifolds,
one can establish an analog for Lemma 5.3 and thereby establish Theorem 5.2 for general
m satisfying (1.1). The value of δn,m in Theorem 5.2 depends on the size of the interval
[m,m + εn,m) of dimensions of such snowflaked quasiconformal submanifolds. We leave to
the interested reader the computation of a precise relationship between δn,m and εn,m.

Snowflaked quasiconformal submanifolds were previously used in [7] and [34] to study the
effect of smoothness on branching phenomena for quasiregular mappings.
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Remark 5.7. Bishop [6] previously constructed a quasiconformal map g of R3 so that g(W )
contains no rectifiable curves, where W ∈ G(3, 2) is a fixed plane. In particular, choosing
V ∈ G(3, 1) with V ⊂ W and expressing R3 as an orthogonal sum

(5.6) V ⊕ (V ⊥ ∩W )⊕W⊥

exhibits a one-dimensional family of parallel lines Va, a ∈ V ⊥ ∩ W , all of whose images
under g have no nontrivial rectifiable subcurves. The construction in [6], however, did not
guarantee any dimension increase for the sets g(Va).

Using the aforementioned result of David and Toro and expressing Rn as an orthogonal
sum of the form (5.6) for some V ∈ G(n, k), k < m, V ⊂ W , we can exhibit an (m − k)-
dimensional family of parallel lines Va, a ∈ V ⊥ ∩ W , all of whose images under g have
Hausdorff dimension at least a fixed value D > m.

Remark 5.8. Kovalev and Onninen [37, Corollary 1.6] have recently shown that, to every
countable family of parallel lines {Va} in the plane, there corresponds a reduced quasicon-
formal map f of R2 with the property that each curve f(Va) has no nontrivial rectifiable
subcurve. (See Definition 1.4 in [37] for the definition of reduced planar quasiconformal
map.) It is not clear how to extend their construction to higher dimensions. Reduced quasi-
conformality implies that the image curves f(Va) necessarily have Hausdorff dimension equal
to one [37, Theorem 1.7]. In Theorem 1.6, the curves f(Va) are nonrectifiable but locally
rectifiable and also have Hausdorff dimension equal to one. However, the size of the family
of lines allowed in Theorem 1.6 is substantially larger than that in [37].

5.2. Space-filling mappings in subcritical Sobolev classes. We continue with a dis-
cussion of the nonsupercritical case

p ≤ n.

We are interested in understanding the frequency of Hausdorff dimension distortion by a
map f in W 1,p(Ω, Y ). The first point to emphasize is that the problem is not precisely
defined in this setting. Indeed, Sobolev maps in the critical class W 1,n need not have con-
tinuous representatives. Varying the representative of f can affect the dimension distortion
properties.

It is a standard fact of Sobolev space theory ([60, Corollary 3.3.4]) that maps in W 1,p admit
p-quasicontinuous representatives, i.e., representatives which are continuously defined on the
complement of a set of zero Bessel capacity B1,p. This observation continues to hold true
for metric space-valued maps. We omit the definition of the Bessel capacity B1,p but recall
that the null sets for B1,p correspond roughly to the sets of Hausdorff dimension n−p. More
precisely, B1,p(E) = 0 whenever Hn−p(E) <∞, and B1,p(E) = 0 implies that Hn−p+ε(E) = 0
for any ε > 0. See, for instance [60, Theorem 2.6.16]. It is natural to restrict our attention to
such p-quasicontinuous representatives. For such a representative f we have no information
whatsoever about the behavior of f on the exceptional set of Hausdorff dimension n − p.
The following example, which illustrates this remark in the case p = n, is a special case of
[27, Theorem 1.3].

Example 5.9 (Haj lasz–Tyson). Let n ≥ 2. There exists a continuous map g ∈ W 1,n(Rn, `2)
which is constant on the complement of [0, 1]n and a set F ⊂ [0, 1]n of Hausdorff dimension
zero so that dim g(F ) =∞. In particular, dim g([0, 1]n) =∞.

Next, we use Example 5.9 to illustrate what type of dimension distortion behavior can
occur for maps in W 1,m. Note that here, in contrast with the rest of this paper, we require
m ≥ 2, since we appeal to Example 5.9. It is easy to see that Example 5.9 cannot extend to
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the case n = 1. Indeed, every W 1,1 map from R is absolutely continuous and the target has
dimension at most one.

Example 5.10. Let n ≥ 3 and 2 ≤ m ≤ n− 1 be integers. Then there exists a continuous
map f ∈ W 1,m(Rn, `2) which is constant on the complement of [0, 1]n with the property that
dim f({a} × [0, 1]m) =∞ for all a ∈ [0, 1]n−m.

Proof. Let g : [0, 1]m → `2 be a continuous map in the class W 1,m which is constant on the
boundary of [0, 1]m and for which dim g([0, 1]m) =∞. Define f : [0, 1]n → `2 by

f(a, x) = g(x), a ∈ Rn−m, x ∈ Rm.

Extend f to be constant on the complement of [0, 1]n. Then f ∈ W 1,m(Rn, `2) and f is
continuous. Moreover, for each a ∈ [0, 1]n−m, the set f({a} × [0, 1]m) = g([0, 1]m) is infinite-
dimensional. �

We next modify the preceding example to illustrate what can happen for maps in W 1,p,
m < p < n, with regard to almost sure dimension distortion of parallel subspaces. To
accomplish this, we will need to modify the details of the construction of Example 5.9.

Example 5.11. Fix integers 1 ≤ m < n and let m < p < n. Then there exists a map
f ∈ W 1,p(Rn, `2) which is constant on the complement of [0, 1]n and there exist compact sets
F ⊂ [0, 1]m and E ⊂ [0, 1]n−m so that

(1) the Hausdorff dimension of F is strictly less than m
p+1

,

(2) the Hausdorff dimension of E is in the interval
(
n− p− m

p+1
, n− p

]
,

(3) dimE × F = dimE + dimF = n− p, and
(4) dim f({a} × F ) =∞ for all a ∈ E.

The proof will show that when p is an integer, we may choose dimF = 0 and dimE = n−p.
We begin with some remarks.
The construction in Example 5.9 uses the fact that the n-capacity of a point in Rn is equal

to zero. This allows us to build a W 1,n map from a domain in Rn whose image is large with
very small n-energy. In fact, the map is constructed first on the zero dimensional Cantor set
F and then is extended to all of [0, 1]n while preserving the finiteness of the n-energy.

The corresponding construction in Example 5.11 will use the p-capacity. The details are
more technical, however, since we must work explicitly with the precise value of this capacity
and relate it to the cardinality of various prefractals associated to the Cantor set F .

Let us recall the definition of capacity.

Definition 5.12. Let E ⊂ F be compact sets in Rn. Let p ≥ 1. The p-capacity of the pair
(E,F ) is the value

Capp(E,F ) = inf

∫
Rn
|∇ϕ|p,

where the infimum is taken over all functions ϕ ∈ C∞c (Rn) so that ϕ|E = 1 and ϕ|Rn\F = 0.

We require knowledge of the behavior of the p-capacity of a ring domain. The following
lemma is standard. Denote by Qn(r) = {x ∈ Rn : |xi| ≤ r ∀i = 1, . . . , n} the cube of side
length 2r centered at the origin.

Lemma 5.13. Let 0 < r < R <∞ and 1 < p <∞. Then

Capp(Q
n(r), Qn(R)) =

c(n, p)
∣∣∣R p−n

p−1 − r
p−n
p−1

∣∣∣1−p , if p 6= n,

c(n)(logR/r)1−n, if p = n.
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In particular, if 1 < p < n and 2r < R, then

(5.7) C−1rn−p ≤ Capp(Q
n(r), Qn(R)) ≤ Crn−p

for some constant C = C(n, p).
Let ϕr,R;n,p ∈ C∞0 (Rn) be quasiextremal for the p-capacity of the ring domain (Qn(r), Qn(R)),

i.e.,

(5.8) ϕr,R;n,p|Qn(r) = 1,

(5.9) ϕr,R;n,p|Rn\Qn(R) = 0,

and

(5.10)

∫
Rn
|∇ϕr,R;n,p|p ≤ Crn−p

for some constant C = C(n, p).
We now begin the construction of the mapping described in Example 5.11. The target

will be the (compact) Hilbert cube

Y = {y = (yi) ∈ `2 : 0 ≤ |yi| ≤
1

i
}.

In fact, any compact infinite-dimensional subset of `2 would work for our purposes.
There exists an increasing sequence of positive integers N1 < N2 < N3 < · · · and an

increasing sequence of finite subsets Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · ⊂ Y with the following properties:

• Yj is 2−j-dense in Y , i.e., every point of Y lies within distance 2−j from a point of
Yj, and
• we can assign to each element y of Yj a parent in Yj−1 which lies at distance 2−j from
y, so that each point in Yj−1 has at most 2Nj children.

From the second condition, it follows that the cardinality of Yj is at most 2Ñj , where

Ñj = N1 +N2 + · · ·+Nj.

We may assume that each of the integers Nj is a multiple of m.
For each point y ∈ Yj, denote by γy the line segment in `2 joining y to its parent ŷ. The

length of γy is at most 2−j. We parameterize γy at constant speed by the interval [0, 2−j], in
such a way that γy(0) = y and γy(2

−j) = ŷ. As a map from [0, 2−j] to `2, γy is 1-Lipschitz.
We now return to the source space. Let k be the smallest integer greater than or equal to

p−m and write
Rn = Rn−m−k × Rk × Rm.

We will write points of Rn according to this splitting in the form (a1, a2, x) = (a, x), where
a ∈ Rn−m and x ∈ Rm.

First, we construct a Cantor set in Rk+m. Let Q = [0, 1]k+m be the unit cube in Rk+m.
We partition Q into

2(
k
m

+1)N1

essentially disjoint subcubes of side length 2−N1/m. We index these subcubes by a parameter
w1 ranging over

W1 = {1, . . . , 2kN1/m} × {1, . . . , 2N1}.
Next, fix γ < 1. Inside each of the above subcubes, consider two further subcubesQw ⊂ Q′w

so that

(1) Q′w has side length R1 = β1 = γ · 2−
N1

m ,
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(2) Qw has side length r1 = α1 = γ · 2−
m+k
m+k−p ·

N1

m , and
(3) the distance between any two distinct cubes in {Q′w}w∈W1 is comparable to 2−N1/m.

For instance, we may choose Qw and Q′w to be concentric with each other and with the
original cube with index w.

We now describe the inductive step. Assume that we are given a collection of disjoint
cubes {Qw} indexed by the elements w in W1 × · · · ×Wj, where

Wi = {1, . . . , 2kNi/m} × {1, . . . , 2Ni}.
We further assume that each of the cubes Qw has side length rj = α1 · · ·αj where

αi = γ · 2−
m+k
m+k−p ·

Ni
m .

Let Rj = α1 · · ·αj−1 · βj, where

βi = γ · 2−
Ni
m .

We partition each of the cubes Qw into

2(
k
m

+1)Nj+1

essentially disjoint subcubes of side length 2−Nj+1/m, which we index by a parameter wj+1

ranging over Wj+1.
Inside each of these subcubes, consider two further subcubes Qwwj+1

⊂ Q′wwj+1
so that

(1) Q′wwj+1
has side length Rj+1 = rjβj+1,

(2) Qwwj+1
has side length rj+1 = rjαj+1, and

(3) the distance between any two distinct cubes in {Q′w}w∈W1×···×Wj+1
is comparable to

2−Nj+1/mrj.

The Cantor set in question is

C =
⋂
j≥1

⋃
w∈W1×···×Wj

Qw.

For each j, map Wj to the set Vj := {1, . . . , 2Nj} by projecting to the second factor. This
induces a map from W1 × · · · ×Wj to V1 × · · · × Vj.

By the choice of the sets Yj, we can choose a surjective map from V1 × · · · × Vj to Yj for
all j so that the following diagram commutes:

W1 × · · · ×Wj+1 → V1 × · · · × Vj+1 → Yj+1

↓ ↓ ↓
W1 × · · · ×Wj → V1 × · · · × Vj → Yj

.

Here the left hand and central vertical maps are the natural projections, while the right hand
map is the one which assigns to each point y ∈ Yj+1 its parent ŷ ∈ Yj. We denote by yw the
point in Yj which corresponds to a given w ∈ W1 × · · · ×Wj.

We now define a map g : Rk+m → `2. If w ∈ W1 × · · · ×Wj and (a2, x) ∈ Q′w \Qw, then

g(a2, x) = γyw

(
2−jϕrj ,Rj ;m+k,p((a2, x)− cw)

)
,

where cw denotes the center of the square Qw. Observe that g|∂Q′w = γyw(2−j) = ŷw and
g|∂Qw = γyw(0) = yw by (5.8) and (5.9), respectively. Thus we may extend g to the sets
Qw\

⋃
wj+1

Q′wwj+1
for each w, and also to the set Rk+m\Q in a continuous fashion, by setting

g to an appropriate constant value in each of those sets. This defines g on the complement
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of C; we extend g by continuity to all of Rk+m. Observe that for each a2 ∈ PRk(C), the
closed set g({a2} × PRm(C)) contains each of the sets Yj, and hence contains all of Y .

We now define a map f : Rn → `2 by setting f(a, x) = f(a1, a2, x) = g(a2, x) for all
a1 ∈ [0, 1]n−m−k and extending by a suitable constant value for other values of a1.

We claim that f is in the Sobolev space W 1,p. Since f is bounded, it suffices to verify that it
has an upper gradient in Lp. For any w and for all (a1, a2, x) in the set [0, 1]n−m−k×(Q′w\Qw),

|∇f(a1, a2, x)| = |∇g(a2, x)| ≤ 2−j|∇ϕrj ,Rj ;m+k,p((a2, x)− cw)|.

At other points, ∇f vanishes. Thus we can estimate∫
Rn
|∇f |p =

∑
w

∫
[0,1]n−m−k×(Q′w\Qw)

|∇f |p

≤
∞∑
j=1

2−jp
∑

w∈W1×···×Wj

||∇ϕrj ,Rj ;m+k,p||pLp(Rk+m)

≤ C
∞∑
j=1

2−jprm+k−p
j #(W1 × · · · ×Wj)

by (5.10)

≤ C
∞∑
j=1

2−jprm+k−p
j 2(

k
m

+1)Ñj = C

∞∑
j=1

2−jp
j∏
i=1

(
αm+k−p
i 2(

k
m

+1)Ni

)
.

By the choice of αi, we easily see that

αm+k−p
i 2(

k
m

+1)Ni = γm+k−p ≤ 1,

so the above product is bounded above by one and the sum converges. This shows that f is
an element of the Sobolev space W 1,p.

Let F be the projection of C into the Rm factor, let E2 be the projection of C into the Rk

factor, and let E = [0, 1]n−m−k ×E2. Using again the estimate in [14, Example 4.6], we find

dimF = lim
j→∞

log 2Ñj

log(1/rj)
= m− pm

m+ k
<

m

p+ 1

and

dimE = n−m− k + lim
j→∞

log 2
k
m
Ñj

log(1/rj)
= n−m− pk

m+ k
.

Recalling that k is the smallest integer greater than or equal to p−m, we leave the details
of the remaining claims to the reader. Note that f({a}×F ) ⊃ Y whenever a ∈ E, since for
such a, the closed set f({a} × F ) contains each of the sets Yj.

6. Open problems and questions

Problem 6.1. Our main theorem estimates the size of the collection of parallel affine sub-
spaces whose image under a fixed supercritical Sobolev mapping f exhibits a prespecified
dimension jump. Do similar results hold for other parameterized families of subspaces?

As a sample of the type of problems which could be posed, we present the following
variation on our main theme.
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The Grassmanian manifold G(n,m) is a smooth manifold of dimension m(n −m). How
many subspaces V ∈ G(n,m) can have the property that their image under f exhibits a
prespecified dimension jump? To be more precise, fix p > n and α satisfying m < α < pm

p−n+m
.

We ask for an estimate from above for the dimension of the set of subspaces V ∈ G(n,m)
for which dim f(V ) ≥ α. In fact, we seek an estimate of the form

dim{V ∈ G(n,m) : dim f(V ) ≥ α} ≤ m(n−m)− δ,

where δ = δ(n,m, α, p) > 0.
The Grassmanian G(n, 1) coincides with the real projective space P n−1

R , which has dimen-
sion n− 1. Using local triviality of the tautological line bundle over G(n, 1), one can recast
the above problem into the framework of the product decomposition considered in our main
theorem. The eventual conclusion matches that from Theorem 1.3, in the case m = 1. We
omit the details, reserving discussion of this question for a later paper.

Problem 6.2. We anticipate that (3.17) is not sharp. Indeed, the dimension bounds in
(3.16) can be improved in the case when E is a line. Smirnov [52] has shown that

(6.1) dim f(E) ≤ 1 +

(
K − 1

K + 1

)2

whenever E ⊂ R2 is a line segment and f : R2 → R2 is a K-quasiconformal map. We expect
that (3.17) can be improved in the planar case to an estimate which recovers (6.1) at the
borderline, when the exceptional set has zero dimension. Such a result could be obtained,
for instance, by introducing the thermodynamic formalism as in [2] in the context of the
proof of our main theorem, to estimate the Hausdorff dimension of the exceptional set.

Problem 6.3. Does Theorem 1.6 hold with Minkowski dimension replaced by Hausdorff
dimension?

Problem 6.4. In subsection 5.2 we gave examples demonstrating the limitations of any
potential generic dimension distortion results for nonsupercritical Sobolev mappings. Give
any positive result concerning the frequency of dimension distortion by such mappings. In
view of the remarks at the beginning of subsection 5.2, one may wish to restrict attention
to the p-quasicontinuous representative of such a mapping.

Problem 6.5. What can be said for other source spaces? The notion of Sobolev space
defined on a metric measure space is by now well understood, see for instance [51], [22], [29],
[25]. Even in the potentially simplest non-Euclidean setting, when the source is the sub-
Riemannian Heisenberg group, it is unclear whether results analogous to those of this paper
hold. We make substantial use of several purely Euclidean features, such as the Besicovitch
covering theorem and the fact that the projection mappings PV : Rn → V are Lipschitz. In
the Heisenberg group, the Besicovitch covering theorem is false and retractions along the
fibers of a horizontal foliation are never Lipschitz. See [36] or [49] for details. At present,
it appears that these complications preclude the development of a theory similar to that
presented in this paper, in more general, non-Riemannian, contexts.
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