
Rigidity effects for antiferromagnetic thin films:

a prototypical example

Andrea Braides
Department of Mathematics, University of Rome Tor Vergata

via della Ricerca Scientifica 1, 00133 Rome, Italy

Abstract

We consider two-dimensional discrete thin films obtained from N layers of a triangular
lattice, governed by an antiferromagnetic energy. By a dimension-reduction analysis
we show that, in contrast with the “total frustration” of the triangular lattice, the
overall behaviour of the thin film is described by a limit interfacial energy on functions
taking 2N distinct parameters. In a sense, then the total frustration is recovered as N
tends to infinity.

1 Introduction

We consider lattice energies defined on “spin functions” (i.e., functions u = {ui} taking
the only values −1 or 1), of the form

−
∑
i,j

cijuiuj , (1)

where i, j are nodes of a (connected) portion of a lattice L in Rd and cij are interactions
coefficients. In the case that cij ≥ 0 the system is called ferromagnetic and its ground
states are the two constant states ±1. The overall behavior of the system when a large
number of nodes are taken into account can then be described by a scaling procedure,
by considering a scaling parameter ε > 0, a fixed parameter set Ω, and the scaled
energies (obtained from the previous ones by scaling and adding constants)∑

i,j

εd−1 cij(ui − uj)2 (2)

defined for i, j belonging to L ∩ 1
ε Ω. A discrete-to-continuum process allows to define

an approximating continuum energy of interfacial type on Ω∫
Ω∩∂{u=1}

ϕ(x, νu)dHd−1(x),
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where u : Ω→ {−1, 1} is a macroscopic parameter (the magnetization) defined as the
limit of piecewise-constant functions uε defined from spin functions {uε

i} as

uε(x) = uε
bx/εc x ∈ Ω

(up to some corrections close to ∂Ω). The surface tension ϕ depends on the orientation
νu of the interface between the two zones where u = 1 or u = −1. In many cases it
is also homogeneous, and is characterized by the Wulff shape; i.e., the characteristic
shape of minimizers with given measure.

Figure 1: a ‘disordered’ minimizer in a portion of the triangular lattice (black and white
dots represent −1 and +1 values, respectively)

If the system is antiferromagnetic; i.e., cij ≤ 0, or a mixture of ferromagnetic and
antiferromagnetic interactions, in general ground states are frustrated. This means
that the energies in (1) cannot be minimized for each single interaction (as pictured in
Fig. 1), which, in the case of antiferromagnetic coefficients would imply that ui = −uj .
The simplest case of frustration is when L is a triangular lattice and we take cij dif-
ferent from zero only for nearest-neighbours, for which, for example cij = −1. In this
case, ground states present no regularity and can arbitrarily mix the values ui = 1 and
ui = −1. For antiferromagnetic-ferromagnetic mixtures this is “generically” not the
case in the square lattice if we have a small percentage of antiferromagnetic interactions
[4]. In [6] examples are shown also of mixtures of nearest-neighbour ferromagnetic and
antiferromagnetic interactions in the square lattice with a similar “total frustration”.
This behaviour is not present in every system with antiferromagnetic interactions. In-
deed, long-range antiferromagnetic interactions, also in the square lattice, may present
a finite collection of striped or checkerboard-type ground states (see e.g. [8, 9]). Using
the analysis of ground states, sometimes those systems can be described in a discrete-to-
continuum fashion by a surface energy defined on partitions of the underlying reference
set Ω indexed by the different textures and modulated phases [6]. For a review on the
subject we refer to [2].

In this paper we consider an example of thin films for spin energies. A discrete
thin film is obtained by limiting the interactions to a Nε-neighbourhood of a d − 1-
dimensional set ω (as in [3, 5]). We then scale the energies accordingly, as∑

i,j

εd−2 cij(ui − uj)2
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(see [5]). In the simplest case of a “coordinate thin film”, when ω is contained in
Rd−1 × {0} then the sum above may be considered as performed for i, j belonging to
L ∩

(
1
εω × [0, N ]

)
. The limit behaviour of these energies can be then described by a

dimensionally-reduced energy of the form∫
∂{u=1}

ϕ(x, νu)dHd−2(x),

where the limit magnetization is interpreted as a function u : ω → {−1, 1} and the form
of ϕ takes into account also optimization of the interactions in the “vertical” direction;
i.e., in the d-coordinate (for an analog thin-film theory for bulk surface energies see
[7]).

In our case, we consider d = 2 and L = T the regular triangular lattice; i.e., the
Bravais lattice generated by (1, 0) and (1/2,

√
3/2). The nearest neighbours in T are

points at distance 1; i.e., differing by ±(1, 0), ±(1/2,
√

3/2), or ±(−1/2,
√

3/2). For
each N ∈ N, N > 0, we then consider the related discrete thin film composed of N
layers with underlying set an interval I; namely,

ΩN,ε = I × [0, (N − 1)ε
√

3/2].

If we consider nearest neighbour uniform anti-ferromagnetic interactions, the thin-film
energy then simply reads

EN
ε (u) = −

∑
i,j

(ui − uj)2, (3)

where the sum i, j runs on nearest-neighbours in
(

1
εI
)
× [0, (N − 1)

√
3/2].

The simplest case is N = 1, when the underlying set Ω0,ε reduces to I × {0},
which can be directly identified with I. The energy E1

ε can then be seen as a “bulk”
spin energy with underlying lattice Z, and can be reduced to a ferromagnetic energy
by adding the constant 4 in each interaction in order to make the sum positive; i.e.,
considering

E1
ε (u) = −

∑
i

((ui − ui−1)2 − 4), (4)

and by the change of variables vi = (−1)iui (see also [1]). Then the thin-film limit is
defined on piecewise-constant functions v on I with values in {−1, 1} and is given by

F 1(v) = 4 #(S(v)),

where S(v) is the discontinuity set of v. Note that the constant v = 1 corresponds to
taking ui = (−1)i, while the constant v = −1 corresponds to ui = (−1)i+1, so that the
two ground states in terms of v correspond to two variants of oscillating u (modulated
phases).

As compared to the “total frustration” of the triangular lattice the case N = 1
already hints that a dimensional-reduction process applied to this example of antifer-
romagnetic interactions may give a continuum limit taking into account only a finite
number of parameters. However, this case seems oversimplified since no trace of the
triangular geometry of the original lattice remains. In the rest of the paper we analyze
the case N > 1 to show how an N -dependent finite-parameter description holds.
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2 Analysis of the thin-film limit

We first consider more in detail the case N = 2, which is pictured in Fig. 2. In the

Figure 2: two-layer thin film with reference axes

notation above, the underlying thin film is

Ω2,ε = I × [0, ε
√

3/2].

In order to simplify the notation we also introduce a non-orthogonal coordinate
system as in figure, so that the points in the thin film are parameterized by

Z2 := {(n,m) : n ∈ Z,m ∈ {0, 1}}.

We can write the energy as a sum of terms of the form

−
(

(u(n+1,0) − u(n,0))2 + (u(n,1) − u(n,0))2 + (u(n+1,1) − u(n,1))2 + (u(n+1,1) − u(n,0))2
)
.

We may consider the case when the underlying interval is simply R. In this case,
we may sum on Z after adding a constant and regrouping the interactions as follows
to avoid +∞−∞ indeterminate forms:

E2
ε (u) = −

∑
n∈Z

(
(u(n+1,0) − u(n,0))2

+
1
2

(u(n+1,1) − u(n,0))2 +
1
2

(u(n+1,1) − u(n+1,0))2 − 6
)

(5)

−
∑
n∈Z

(
(u(n+1,1) − u(n,1))2 +

1
2

(u(n+1,1) − u(n,0))2 +
1
2

(u(n,1) − u(n,0))2 − 6
)
.

In this way the energy is split in its contributions in each triangle. The first sum takes
into account triangles with a side in the lower layer m = 1 and the second sum takes
into account triangles with a side in the upper layer m = 0. The factor 1/2 takes into
account that non-horizontal sides belong to two neighbouring triangles. Note that not
having alternate states on the horizontal (boundary) sides is more “costly” than on
the others.

Note that the term

−
(

(u(n+1,0) − u(n,0))2 +
1
2

(u(n+1,1) − u(n,0))2 +
1
2

(u(n+1,1) − u(n+1,0))2 − 6
)
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Figure 3: a picture of ground states, with black/white circles indicating −1/1 values

is always non-negative, and it is zero only if

u(n+1,0) 6= u(n,0).

In the same way, each term in the second sum is minimized only when u(n+1,1) 6= u(n,1).
This observation implies that ground states, with zero energy are all u that satisfy

u(n,0) = (−1)n for all n or u(n,0) = (−1)n+1 for all n,

u(n,1) = (−1)n for all n or u(n,1) = (−1)n+1 for all n;

i.e., with alternating values of u on the two horizontal layers. Hence, we have four
ground states determined by their values at n = 0

(u(0,0), u(0,1)) ∈ {−1, 1}2 =: X2.

For x ∈ X2 we define
vx : Z2 → {−1, 1}

as the ground state with (vx(0, 0), vx(0, 1)) = x.
Note that the two ground states determined by ±(1, 1) (or by ±(−1, 1), correspond-

ingly), differ by a horizontal translation by (1, 0), while those determined by (−1, 1)
and (1,−1) are obtained by a reflection around a vertical line from (1, 1) and (−1,−1)
(see Fig. 3).

Note that if u is a function with finite energy then there are a finite number of
indices n such that u does not minimize the terms in the sum in (5). This implies
that a sequence of functions with equibounded energy is precompact for the following
notion of convergence.

The discrete-to-continuum convergence of a family of functions uε : Z2 → {−1, 1}
to a function v : R → X2 with a finite number of points of discontinuity S(v) =
{t1, . . . , tK} is defined by the requirement that, denoted by xj (j = 0, . . . ,K) the
constant value of v on (tj , tj+1) (where t0 = −∞ and tK+1 = +∞), for every δ > 0 if
ε is small enough then uε

n is equal to the ground state vxj respectively for

− 1
εδ

< n <
1
ε

(t1 − δ) if j = 0

1
ε

(tj + δ) < n <
1
ε

(tj+1 − δ) if j ∈ {1, . . . ,K − 1}

1
ε

(tK + δ) < n <
1
εδ

if j = K.
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This convergence may be equally stated as the convergence of the auxiliary functions
ũε : R→ V ∪ {(0, 0)} defined by

ũε(t) =

{
x if uε

j = vx on
{⌊ t

ε

⌋
,
⌊ t
ε

⌋
+ 1
}
× {0, 1}

(0, 0) otherwise

in L1
loc(R). In the definition of the function ũε we scale the domain by ε and identify

the value on two consecutive triangles (i.e., on the vertices of a unit square in the
parameterization on Z2) with the common parameter x ∈ X2 when the corresponding
uε coincides with vx on those triangles. This parameter x ∈ X2 is well defined except
for a finite number of b t

εc, so we may arbitrarily extend the definition by (0, 0) on the
complement.

We may describe the limit behaviour of the energies E2
ε as defined in (5) by ex-

hibiting a Γ-limit with respect to the convergence above, of the form

F 2(v) =
∑

t∈S(v)

ϕ(v(t−), v(t+)), (6)

where t± ∈ X2 are the left-had and right-hand limit values of v at t. The energy
function ϕ(x, x′) is obtained by computing the optimal transition between two states
vx and vx′

.

Figure 4: an optimal transition between (1, 1) and (−1,−1)

The picture in Fig. 4 describes an optimal transition when x = (1, 1) and x′ =
(−1,−1), or the converse. We may consider v(t) = x for t > 0 and v(t) = x′ for t < 0
and uε → v. In this case there must be some index n with a non-optimal interaction
uε(n, 0) = uε(n+ 1, 0) and some index n′ with uε(n′, 1) = uε(n′ + 1, 1). In the picture
such a uε is shown, optimizing all other interactions. The thick lines correspond to
frustrated interactions. Computing the energy of such uε, which amounts just to
the contributions of the two triangles highlighted in the picture, we obtain the value
ϕ((1, 1), (−1,−1)) = 4. The same argument and a vertical symmetry argument shows
that ϕ((1,−1), (−1, 1)) has the same value.

Figure 5: an optimal transitions between (1, 1) and (−1, 1)

Similarly, in order to describes the optimal transition when x = (1, 1) and x′ =
(−1, 1) or the converse, we may remark that optimal uε must have uε(n, 0) = uε(n+1, 0)
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for some index n. In Fig. 5 we picture an optimal such uε, for which all interactions
are optimal except one with uε(n, 0) = uε(n + 1, 0). The corresponding computation
gives ϕ((1, 1), (−1, 1)) = 2.

Figure 6: optimal transitions between (1, 1) and (1,−1)

Finally, in the case x = (1, 1) and x′ = (1,−1), or the converse, we again note
that optimal uε must have uε(n, 1) = uε(n+ 1, 1) for some index n, but there are two
equivalent optimal arrangements, whether uε(n, 0) = uε(n, 1) or uε(n, 0) 6= uε(n1).
These two cases are pictured in Fig. 6 and both give ϕ((1, 1), (−1, 1)) = 6. Note that

Figure 7: split optimal transitions between (1, 1) and (1,−1)

another optimal arrangement is obtained e.g. by combining the transitions between
(1, 1) and (−1, 1) and between (−1, 1) and (1,−1). This corresponds to the lower case
in Fig. 6 splitting the three non-optimal triangles into a pair with a common side and
an isolated one (see Fig. 7). Analogously, the two joined triangles can be similarly
split.

The Γ-limit result is finally obtained by superposing these constructions to obtain
a recovery sequence for an arbitrary v.

Using a notation analogous to the one introduced above, we can now generalize this
computation to a larger number of layers. For N > 2 we will not compute the energy
function ϕ as above, but focus on its definition and in particular on its domain.

Figure 8: three-layer thin film with reference axes
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We first consider the case N = 3, whose underlying thin film is pictured in Fig. 8
together with the reference axes. The corresponding reference set is

Z3 := {(n,m) : n ∈ Z,m ∈ {0, 1, 2}}.

We can again consider the antiferromagnetic energy as a sum of the contribution of
each triangle. The difference with the case N = 1 is that, while the energy of a triangle
with a horizontal side on the top or bottom layer is as before, triangles with horizontal
sides in the interior give an energy with a weight 1/2 for all sides. For example, we
have the contribution

− 1
2

(
(u(n+1,1) − u(n,1))2 + (u(n,1) − u(n,0))2 + (u(n+1,1) − u(n,0))2 − 4

)
for triangles in the lower row of triangles and a side in the middle layer of points.

For every x = (x0, x1, x2) ∈ {±1}3 we denote the ground state given by

ux(n,m) = xm(−1)n for all n ∈ Z and m ∈ {0, 1, 2}.

Figure 9: a non-periodic minimizer

Differently than the case N = 2, we note that a function u with zero energy is
not necessarily one of those eight ground states, but may otherwise coincide with two
of those for n ≥ M and for n < −M , respectively, for some M ∈ N. Such a case
is pictured in Fig. 9. Note that all functions with zero energy must have alternating
values for m = 0 and m = 2. This implies that if, for example, u(n, 2) = u(n, 1) for
some n then the value of u is determined for (n′, 1) and (n′, 2) for all n′ ≤ n as an
alternating state. Similarly, if u(n−1, 0) = u(n, 1). A symmetric argument also applies
for minimizers which are determined for n′ ≥ n. This observation eventually implies
that the one in Fig. 9 is the only non-periodic minimizer, up to translations.

As a consequence, we may define a convergence uε → v analog to the case N = 2,
where now v : R → X3 := { −1, 1}3. We may describe the Γ-limit as a thin-film
limit F 3 with the same form as (6), with ϕ(x, x′) the optimal-transition energy. The
observations above show that ϕ > 0 except for

ϕ((1,−1,−1), (1, 1,−1)) = ϕ((−1, 1, 1), (−1− 1, 1)) = 0.

Note that ϕ((1,−1,−1), (1, 1,−1)) 6= ϕ((1, 1,−1), (1,−1,−1)) so that ϕ is not sym-
metric, and that the energy F 3 is coercive even though its integrand is not strictly
positive.

The two cases above carry the relevant information to treat the general case, which
shows that the description of the thin-film limit needs a parameter space of increasing,
but finite, cardinality; namely 2N where N is the number of layers. We briefly sketch
the argument, which generalizes what has been noticed above.
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We consider a minimizer u.
1) we first note that the upper layer must be alternating; i.e., u(n+1, N) 6= u(n,N)

for all n
2) we either have u(n,N) 6= u(n−1, N −1) for all n or u(n1, N) = u(n1−1, N −1)

for some n1. In this case by minimality we have u(n1, N − 1) 6= u(n1 − 1, N − 1).
By Step 1 above we have u(n1 + 1, N) = u(n1, N − 1), so that we may proceed by
induction and conclude that u(n,N) = u(n− 1, N − 1) for all n ≥ n1. Hence, either u
is alternating on the N − 1-th layer, or it is alternating for n < n1 and n > n1.

3) proceeding in the same way we deduce that u is alternating in the (N − 2)-
th layer up to at most three indices (one less than n1, one larger than n1, and n1

itself). We note that, as in Step 2, for n > n1 there may exist a unique n2 such that
u(n,N − 1) = u(n− 1, N − 2) for n ≥ n2 and u(n,N − 1) 6= u(n− 1, N − 2) for n < n2,
but not the converse.

4) Proceeding by finite induction on the label of the layer, we deduce that n 7→
u(n, k) is alternating for each k ∈ {1, . . . , N} up to a bounded number of n, with
the bound independent of n. Moreover, in each interval of n where n 7→ u(n, k) is
alternating there may exist a unique n such that u(n, k) = u(n − 1, k − 1) for n ≥ n
and u(n, k) 6= u(n− 1, k − 1) for n < n, but not the converse. Moreover, n 7→ u(n,N)
and n 7→ u(n, 0) are alternating.

Note that this characteriation also holds locally if we suppose that u has zero energy
in an interval of n.

From this characterization, we deduce that if uε is a sequence with bounded energy,
then it must coincide with an alternating state on each layer up to a finite number of
indices. At this point we may proceed as above. The description in the general case is
summarized in the conclusions below.

3 Conclusions

We consider an infinite thin film parameterized on the set

TN,ε =
(
R× [0, (N − 1)ε

√
3/2]

)
∩ εT,

where T is a regular triangular lattice with one lattice vector (1, 0), and the correspond-
ing nearest-neighbour antiferromagnetic energy EN

ε . In order to avoid indeterminate
forms such energy is written as the sum of the contribution of each triangle of side-
length ε contained in TN,ε, renormalized so that separately minimizing in each triangle
gives zero energy. Note that the normalization is different if the triangle has one
horizontal side on the upper or lower layer.

We have shown that there are 2N distinct ground states of EN
1 , which are two-

periodic in the direction (1, 0). On each of the layers such ground states are alternating,
so that each of these ground states ux can be parameterized by a point x in the set

ZN := {±1}N .

We may define a compact convergence of discrete functions uε : TN,ε → {−1, 1} to
a function v : R → ZN with a finite number of discontinuities, which highlights that,
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up to a finite number of locations, a function uε with bounded energy EN
ε coincides

with a scaled version of the periodic minimizers.
With respect to this convergence the Γ-limit has the form

FN (v) =
∑

t∈S(v)

ϕN (v(t−), v(t+)),

where S(v) is the set of discontinuity points of v. The function ϕN : ZN×ZN → [0,+∞)
is an optimal-transition energy defined by

ϕN (x, x′) = min
{
EN

1 (u) : u = ux on TN,1 ∩ (−∞,−M ],

u = ux′
on TN,1 ∩ [M,+∞),M ∈ N

}
(note that it suffices to take M = N since we have a bound by a test function for which
only at most one column of N triangles is not optimal). The energy FN is coercive;
i.e., its finiteness implies a finite number of discontinuity points of v. Note that the
description above also holds for thin films with R substituted by a finite interval [a, b],
up to adding a boundary term. This extra term is not of interest since we focus on the
number of limit parameters and not on the details of the energy.

The analysis above shows that the surface effects of the thin-film environment (i.e.,
the fact that ground states need to be alternating on the upper and lower layers due to
the asymmetry of boundary sites) propagates inside the thin-film to limit the number of
parameters needed to describe the limit. This rigidity effect “weakens” as the number
of layers tends to infinity, as is testified by the (exponentially) diverging number of
parameters. In a sense then, the “total frustration” of the triangular lattice can be
seen as a limit behaviour as N → +∞.
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