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Abstract. The paper deals with the existence of multiple solutions for a boundary value problem
driven by the magnetic fractional Laplacian (−∆)sA, that is

(−∆)sAu = λ f(|u|)u in Ω, u = 0 in Rn \ Ω,

where λ is a real parameter, f is a continuous function and Ω is a bounded subset of Rn. We
prove that the problem admits at least two nontrivial weak solutions under two different sets of
conditions on the nonlinear term f which are dual in a suitable sense.

1. Introduction

In the last years there has been an increasing interest in the study of equations driven by non-
local operators. This is motivated by the fact that non–local operators appear naturally in many
important problems in pure and applied mathematics. The prototype of non–local operator is the
fractional Laplacian (−∆)s defined, up to normalization factors, for any u ∈ C∞0 (Rn) and s ∈ (0, 1)
as

(−∆)su(x) = lim
ε→0+

∫
Rn\B(x,ε)

u(x)− u(y)

|x− y|n+2s
dy, x ∈ Rn,(1.1)

where B(x, ε) denotes the ball of center x and radius ε. We refer to [7, 16] and the references
therein for further details on the fractional Laplacian.

In the present paper, we will focus on the so–called magnetic fractional Laplacian. This non–local
operator has been recently introduced in [6, 8] and can be considered as a fractional counterpart
of the magnetic Laplacian (∇ − iA)2, with A : Rn → Rn being a L∞loc–vector field, see [9]. We
refer the interested reader to [6] for further details about the physical relevance of the magnetic
fractional Laplacian. In [6], it has been proved that (−∆)sA has the following representation when
acting on smooth complex-valued functions u ∈ C∞0 (Rn,C)

(−∆)sAu(x) = 2 lim
ε→0+

∫
Rn\B(x,ε)

u(x)− ei(x−y)·A(x+y2 )u(y)

|x− y|n+2s
dy, x ∈ Rn,

therefore, the operator is consistent with (1.1) if A = 0. As for the classical fractional Laplacian,
one can define the fractional counterpart of the magnetic Sobolev spaces, see Section 2 below for
the definition. In [18, 19, 22], it has been studied the stability of these fractional Sobolev norms
when either s ↗ 1 or s ↘ 0, proving a magnetic counterpart of the Bourgain–Brezis–Mironescu
formula (when s ↗ 1, see [3]) and the Maz’ya–Shaposhnikova formula (when s ↘ 0, see [11, 12]).
Finally, we refer to [2, 13, 23] for multiplicity results for different equations on Rn and driven by
the magnetic fractional Laplacian.

Inspired by the above-mentioned works, in this paper we study the existence of multiple weak
solutions of the following boundary value problem

(1.2)

{
(−∆)sAu = λ f(|u|)u, in Ω,

u = 0, in Rn \ Ω,
1
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where λ ∈ R and Ω ⊂ Rn is an open and bounded set with Lipschitz boundary ∂Ω.
Concerning the nonlinearity f , we will consider two different situations which can be considered
dual in a sense that we will specify later on. As a first scenario, we will deal with f : [0,∞)→ R
being a continuous function satisfying the following conditions:

(f1) f(t) = o(1) as t→ 0;
(f2) f(t) = o(1) as t→∞;
(f3) sup

t∈[0,∞)
F (t) > 0,

where

(1.3) F (t) :=

∫ t

0
f(τ) τ dτ, for any real t > 0.

There are plenty of examples of continuous functions satisfying (f1)–(f3), e.g. f(t) = tχ[0,1](t) +

e1−tχ(1,∞)(t). We observe that the nonlinear term f can be controlled from above, thanks to
(f1)–(f3). In particular, for a suitable c1 > 0

(1.4) |f(t)t| ≤ c1t for every t ≥ 0 sufficiently large.

Our first result can be stated now as follows.

Theorem 1.1. Let s ∈ (0, 1), n > 2s and let Ω ⊂ Rn be an open and bounded set with Lipschitz
boundary ∂Ω. Let f : [0,∞) → R be a continuous function satisfying conditions (f1), (f2) and
(f3). Then, there exists λ∗ > 0 such that for every λ > λ∗ problem (1.2) has at least two nontrivial
weak solutions.

The proof of Theorem 1.1 is mainly variational and based on the application of an abstract
critical point result due to Brézis and Nirenberg in [5]. Theorem 1.1 can be considered as the
fractional magnetic counterpart of [15, Theorem 1] and [10, Theorem 2.1].

The second set of conditions we consider on f is the following:

(f4) There exist a1, a2 > 0 and q ∈ (2, 2∗s) such that |f(t)| ≤ a1 + a2t
q−2 for any t ≥ 0;

(f5) There exist µ > 2 and t0 > 0 such that 0 < µF (t) ≤ f(t)t2 for any t > t0,

where 2∗s := 2n/(n−2s) is the fractional critical Sobolev exponent. A typical example of f verifying
(f4) and (f5) is given by f(t) = qtq−2, with q ∈ (2, 2∗s). In [10], it is proved that conditions (f4)
and (f5) imply that there exists c2 > 0 such that

(1.5) |f(t)t| ≥ c2t for every t ≥ 0 sufficiently large,

which can be considered as a counterpart of (1.4).
Our second result is the following theorem.

Theorem 1.2. Let s ∈ (0, 1), n > 2s and let Ω ⊂ Rn be an open and bounded set with Lipschitz
boundary ∂Ω. Let f : [0,∞) → R be a continuous function satisfying conditions (f4) and (f5).
Then for every ρ > 0 and any λ ∈ (0,Λ(ρ)), with

Λ(ρ) :=
2q

a1c2
2q + 2a2c

q
qρ

q−2
2

, where c2 and cq are given in (2.12),

problem (1.2) has at least two nontrivial weak solutions, one of which has norm strictly less than
ρ.

The approach in Theorem 1.2 is still variational but based on the application of another abstract
result due to Ricceri in [20]. Theorem 1.2 is the fractional magnetic version of [20, Theorem 4]
which has been subsequently refined and extended in [1, 14,17].
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The paper is organized as follows. In Section 2, we introduce the necessary functional and
variational setup to study the boundary value problem (1.2). In Section 3, we prove Theorem 1.1.
Finally, in Section 4, we prove Theorem 1.2.

2. Functional and Variational Setup

Throughout the paper, we indicate with |A| the n-dimensional Lebesgue measure of a measurable
set A ⊂ Rn. Moreover, for every z ∈ C we will denote by <z its real part, and by z its complex
conjugate. Let Ω ⊂ Rn be an open set. We denote by L2(Ω,C) the space of measurable functions
u : Ω→ C such that

‖u‖L2(Ω) =

(∫
Ω
|u(x)|2 dx

)1/2

<∞,

where | · | is the Euclidean norm in C. For every A ∈ L∞loc(Rn), we consider the semi–norm

[u]H1
A(Ω) :=

(∫
Ω
|∇u(x)− iA(x)u(x)|2 dx

)1/2

,

and following [9], we define H1
A(Ω) as the space of functions u ∈ L2(Ω,C) such that [u]H1

A(Ω) <∞,

endowed with the norm

‖u‖H1
A(Ω) :=

(
‖u‖2L2(Ω) + [u]2H1

A(Ω)

)1/2
.

We also indicate with H1
0,A(Ω) the closure of C∞0 (Ω,C) in H1

A(Ω).

For any s ∈ (0, 1), the magnetic Gagliardo semi-norm is set as

[u]Hs
A(Ω) :=

(∫∫
Ω×Ω

|u(x)− ei(x−y)·A(x+y2 )u(y)|2

|x− y|n+2s
dxdy

)1/2

.

We denote by Hs
A(Ω) the space of functions u ∈ L2(Ω,C) such that [u]Hs

A(Ω) <∞, normed with

(2.1) ‖u‖Hs
A(Ω) :=

(
‖u‖2L2(Ω) + [u]2Hs

A(Ω)

)1/2
.

For A = 0, this definition is consistent with the usual fractional space Hs(Ω). We stress out that
C∞0 (Rn,C) ⊆ Hs

A(Rn), see [6, Proposition 2.2].
In order to define weak solutions of problem (1.2), we introduce the functional space

X0,A := {u ∈ Hs
A(Rn) : u = 0 a.e. in Rn \ Ω} ,

which generalizes to the magnetic framework the space introduced in [21]. As in [6], we define the
following real scalar product on X0,A

(2.2) 〈u, v〉X0,A
:= <

∫∫
R2n

(
u(x)− ei(x−y)·A(x+y2 )u(y)

)(
v(x)− ei(x−y)·A(x+y2 )v(y)

)
|x− y|n+2s

dxdy,

which induces the following norm

(2.3) ‖u‖X0,A
:=

(∫∫
R2n

|u(x)− ei(x−y)·A(x+y2 )u(y)|2

|x− y|n+2s
dxdy

)1/2

.

We now state and prove some properties of space X0,A which will be useful in the sequel.

Lemma 2.1. There exists a constant C > 1, depending only on n, s and Ω, such that

(2.4) ‖u‖2X0,A
≤ ‖u‖2Hs

A(Rn) ≤ C‖u‖
2
X0,A

,

for any u ∈ X0,A. Thus, (2.3) is a norm on X0,A equivalent to (2.1).
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Proof. Let u ∈ X0,A. In order to show (2.4), it is enough to see that there exists a constant

C̃ = C̃(n, s,Ω) > 0 such that

(2.5) ‖u‖2L2(Ω) ≤ C̃
∫∫

R2n

|u(x)− ei(x−y)·A(x+y2 )u(y)|2

|x− y|n+2s
dxdy.

By [6, Lemma 3.1] we have the pointwise diamagnetic inequality

|u(x)− ei(x−y)·A(x+y
2

)u(y)| ≥ ||u(x)| − |u(y)||, for a.e. x, y ∈ Rn,

from which we immediately have∫∫
R2n

|u(x)− ei(x−y)·A(x+y2 )u(y)|2

|x− y|n+2s
dxdy ≥

∫∫
R2n

||u(x)| − |u(y)||2

|x− y|n+2s
dxdy

≥
∫
CΩ

(∫
Ω

||u(x)| − |u(y)||2

|x− y|n+2s
dy

)
dx =

∫
CΩ

(∫
Ω

|u(y)|2

|x− y|n+2sdy

)
dx,

where the last equality follows from the fact that u = 0 a.e. in CΩ := Rn \Ω. Since Ω is bounded,
there exists R > 0 such that Ω ⊆ BR and |BR \ Ω| > 0. For this, it follows that∫

CΩ

(∫
Ω

|u(y)|2

|x− y|n+2sdy

)
dx ≥

∫
BR\Ω

(∫
Ω

|u(y)|2

|2R|n+2sdy

)
dx =

|BR \ Ω|
(2R)n+2s

‖u‖2L2(Ω) ,

which yields (2.5). Now, we observe that

‖u‖2Hs
A(Rn) = ‖u‖2L2(Rn) + [u]2Hs

A(Rn) ≤ (C̃ + 1)‖u‖2X0,A
,

therefore setting C := C̃ + 1, we get the first part of lemma.
By (2.5) it follows that if ‖u‖X0,A

= 0 then u = 0 a.e. in Rn, which implies that ‖ · ‖X0,A
is a norm.

This is enough to conclude the proof. �

Making use of Lemma 2.1 and proceeding exactly as in [21, Lemma 7], we immediately get that(
X0,A, 〈·, ·〉X0,A

)
is a real separable Hilbert space.

Lemma 2.2. Let Ω ⊂ Rn be open and bounded. Then

(2.6) X0,A ↪→ Hs(Ω,C).

Furthermore, if the boundary of Ω is Lipschitz the injection

(2.7) X0,A ↪→ Lp(Ω,C)

is compact for any p ∈ [1, 2∗s).

Proof. Let u ∈ X0,A. We have

(2.8)

‖u‖2Hs(Ω) =

∫
Ω
|u(x)|2dx+

∫∫
Ω×Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy

≤
∫

Ω
|u(x)|2dx+

∫∫
Ω×Ω

|ei(x−y)·A(x+y2 )u(x)− u(y)|2

|x− y|n+2s
dxdy

+

∫∫
Ω×Ω

|u(x)|2|ei(x−y)·A(x+y2 ) − 1|2

|x− y|n+2s
dxdy

≤ ‖u‖2Hs
A(Ω) +D
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where we denote

(2.9)

D : =

∫∫
Ω×Ω

|u(x)|2|ei(x−y)·A(x+y2 ) − 1|2

|x− y|n+2s
dxdy

=

∫
Ω
|u(x)|2

(∫
Ω∩{y∈Rn: |x−y|>1}

|ei(x−y)·A(x+y2 ) − 1|2

|x− y|n+2s
dy

)
dx

+

∫
Ω
|u(x)|2

(∫
Ω∩{y∈Rn: |x−y|≤1}

|ei(x−y)·A(x+y2 ) − 1|2

|x− y|n+2s
dy

)
dx := D1 +D2.

Since |eit − 1| ≤ 2, we get

(2.10) D1 ≤ 4

∫
Ω
|u(x)|2

(∫
Ω∩{y∈Rn: |x−y|>1}

1

|x− y|n+2s
dy

)
dx ≤ C‖u‖2L2(Ω).

Considering that Ω is bounded, there exists a compact set K ⊂ Rn such that K ⊃ Ω. Thus, it
follows that

D2 ≤
∫
K
|u(x)|2

(∫
K∩{y∈Rn: |x−y|≤1}

|ei(x−y)·A(x+y2 ) − 1|2

|x− y|n+2s
dy

)
dx.

Since A is locally bounded and K ⊂ Rn is compact, we have

|ei(x−y)·A(x+y2 ) − 1|2 ≤ C|x− y|2, for |x− y| ≤ 1, x, y ∈ K,

from which

(2.11) D2 ≤
∫
K
|u(x)|2

(∫
K∩{y∈Rn: |x−y|≤1}

1

|x− y|n+2s−2
dy

)
dx ≤ C‖u‖2L2(Ω).

Combining (2.8)–(2.11), we have

‖u‖2Hs(Ω) ≤ C‖u‖
2
Hs
A(Ω) ≤ C‖u‖

2
Hs
A(Rn) ≤ C̃‖u‖

2
X0,A

where last inequality is given by (2.4). This concludes the proof of (2.6).
By (2.6) and the hypothesis on the boundary of Ω, (2.7) directly follows from [7, Corollary 7.2]. �

By (2.7), for every p ∈ [1, 2∗s) the number

(2.12) cp = sup
u∈X0,A\{0}

‖u‖Lp(Ω)

‖u‖X0,A

,

is well–defined and strictly positive. We conclude this section providing a variational formulation
of the problem (1.2). We will say that a function u ∈ X0,A is a weak solution of (1.2) if

(2.13)
<
∫∫

R2n

(
u(x)− ei(x−y)·A(x+y

2
)u(y)

)(
v(x)− ei(x−y)·A(x+y

2
)v(y)

)
|x− y|n+2s

dxdy

= λ<
∫

Ω
f(|u(x)|)u(x)v(x) dx, for every v ∈ X0,A.

Clearly, the weak solutions of (1.2) are the critical points of the Euler–Lagrange functional asso-
ciated with (1.2), that is

(2.14) Jλ(u) := Φ(u)− λΨ(u), u ∈ X0,A
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where

(2.15) Φ(u) :=
1

2

∫∫
R2n

|u(x)− ei(x−y)·A(x+y2 )u(y)|2

|x− y|n+2s
dxdy, Ψ(u) :=

∫
Ω
F (|u(x)|)dx

and F is defined as in (1.3). It is easy to see that Jλ is well–defined and of class C1(X0,A,R).

3. Proof of Theorem 1.1

Throughout this section, we assume that f : R→ R is a continuous function satisfying conditions
(f1), (f2) and (f3), without further mentioning.
The proof of Theorem 1.1 is based on the application of the following abstract theorem in critical
point theory. For the sake of completeness, let us recall that a functional J : E → R of class C1(E),
on a Banach space E and dual space E∗, is said to satisfy the Palais-Smale condition (PS) if any
Palais–Smale sequence associated with J has a strongly convergent subsequence in E. A sequence
{uj}j∈N in E is called a Palais–Smale sequence if {J(uj)}j∈N is bounded and ‖J ′(uj)‖E∗ → 0 as
j →∞.

Theorem 3.1 (Theorem 4 of [5]). Let (E, ‖ · ‖) be a Banach space which admits a decomposition

E = E1 ⊕ E2,

with dim(E2) <∞. Let J : E → R be a C1 functional such that:

(a) J(0) = 0;
(b) J satisfies the Palais-Smale condition (PS);
(c) J is bounded from below;
(d) inf

u∈E
J(u) < 0.

Let us also suppose that there exists a positive constant R > 0 such that

(3.1)

{
J(u) ≥ 0, u ∈ E1, ‖u‖ ≤ R;
J(u) ≤ 0, u ∈ E2, ‖u‖ ≤ R.

Then J admits at least two nonzero critical points.

Before proving Theorem 1.1, we introduce three technical lemmas necessary to verify that the
functional Jλ satisfies the assumptions required to apply Theorem 3.1.

Lemma 3.2. For every λ ∈ R, the functional Jλ is bounded from below, coercive and satisfies the
(PS) condition.

Proof. If λ = 0 the results follows by [4, Proposition 3.32]. Let λ 6= 0. By (f2), for any ε > 0 there
exists rε = r(ε) > 0 such that

|f(t)t| ≤ εt, for any t > rε.

Let δε := max
t≤rε
|f(t)t| > 0. We get

(3.2) |f(t)t| ≤ εt+ δε, for any t ≥ 0,

from which

(3.3) |F (t)| ≤ ε

2
t2 + δεt, for any t ≥ 0.

Then, by (3.3), for every ε > 0 and for any u ∈ X0,A we have that

Jλ(u) ≥ 1

2
‖u‖2X0,A

− |λ|
∣∣∣∣∫

Ω
F (|u(x)|)dx

∣∣∣∣ ≥ 1

2
‖u‖2X0,A

− |λ|
(ε

2
‖u‖2L2(Ω) + δε‖u‖L1(Ω)

)
≥ 1

2
(1− ε|λ|c2)‖u‖2X0,A

− δε|λ|c1‖u‖X0,A
,
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where last inequality is a consequence of injection (2.7), with c1 and c2 as in (2.12). By fixing
ε < 1/|λ|c2, it follows that Jλ is bounded from below and coercive.

Now, it remains to check the validity of the Palais–Smale condition. For this, let {uj}j∈N be a
sequence in X0,A such that

(3.4) {Jλ(uj)}j∈N is bounded and J ′λ(uj)→ 0 as j →∞.

By the coercivity of Jλ and (3.4), the sequence {uj}j∈N is bounded in X0,A. Thus, by the reflexivity
of the space X0,A and Lemma 2.2, there exists u ∈ X0,A such that, up to a subsequence, still
relabeled {uj}j∈N, we have

(3.5) uj ⇀ u in X0,A and uj → u in Lp(Ω,C) for any p ∈ [1, 2∗s),

as j →∞.
By (3.2) with ε = 1 and Hölder inequality, we get∫

Ω
|f(|uj(x)|)uj(x)(uj(x)− u(x))|dx ≤

∫
Ω
|uj(x)||uj(x)− u(x)|dx+ δ1

∫
Ω
|uj(x)− u(x)|dx

≤ ‖uj‖L2(Ω)‖uj − u‖L2(Ω) + δ1‖uj − u‖L1(Ω),

and by (3.5) ∫
Ω
|f(|uj(x)|)uj(x)(uj(x)− u(x))|dx→ 0 as j →∞.(3.6)

By differentiating Jλ we immediately have

J ′λ(uj)(uj − u) = 〈uj , uj − u〉X0,A
− λ

∫
Ω
f(|uj(x)|)uj(x)(uj(x)− u(x))dx

from which, by (3.4), (3.6) and since |J ′λ(uj)(uj − u)| ≤ ‖J ′λ(uj)‖(X0,A)∗‖uj − u‖X0,A
, it follows

that

〈uj , uj − u〉X0,A
= ‖uj‖2X0,A

− 〈uj , u〉X0,A
→ 0 as j →∞.

Thus, using (3.5) we get ‖uj‖X0,A
→ ‖u‖X0,A

as j →∞, and so by [4, Proposition 3.32] we conclude
uj → u in X0,A as j →∞. �

Lemma 3.3. There exists λ∗ > 0 such that inf
u∈X0,A

Jλ(u) < 0 for any λ > λ∗.

Proof. Let λ > 0. Since Ω is bounded, we can pick a point x0 ∈ Ω and τ > 0 such thatB(x0, τ) ⊂ Ω.
By condition (f3), we can find a t̄ > 0 such that F (t̄) > 0. Therefore, we can also fix σ0 ∈ (0, 1)
such that

(3.7) F (t̄)σn0 − (1− σn0 ) max
t≤t̄
|F (t)| > 0.

Let ũ : Rn → R be such that:

(u1) ũ ∈ C∞0 (Rn,R), with supp(ũ) ⊂ B(x0, τ);
(u2) |ũ(x)| ≤ |t̄|, if x ∈ B(x0, τ) \B(x0, σ0τ);

(u3) ũ(x) :=

{
0, x ∈ Rn \B(x0, τ)
t̄, x ∈ B(x0, σ0τ).

By [6, Proposition 2.2] we have ũ ∈ Hs
A(Rn), and since ũ = 0 in Rn \Ω we conclude that ũ ∈ X0,A.

We claim that

(3.8) Ψ(ũ) ≥
[
F (t̄)σn0 − (1− σn0 ) max

t≤t̄
|F (t)|

]
ωnτ

n > 0,
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where ωn denotes the Lebesgue measure of the unit ball in Rn. Indeed, by (u2) we have that

(3.9)

∫
B(x0,τ)\B(x0,σ0τ)

F (|ũ(x)|)dx ≥ −
∫
B(x0,τ)\B(x0,σ0τ)

|F (|ũ(x)|)|dx

≥ −max
t≤t̄
|F (t)|

∫
B(x0,τ)\B(x0,σ0τ)

dx

= −max
t≤t̄
|F (t)|(1− σn0 )ωnτ

n.

On the other hand, since F (0) = 0, by (u3) we have that

(3.10)

∫
Rn\B(x0,τ)

F (|ũ(x)|)dx = 0.

Therefore, combining (3.7), (3.9), (3.10) and (u3), we get∫
Ω
F (|ũ(x)|)dx =

∫
B(x0,σ0τ)

F (|ũ(x)|)dx+

∫
B(x0,τ)\B(x0,σ0τ)

F (|ũ(x)|)dx

=

∫
B(x0,σ0τ)

F (t̄)dx+

∫
B(x0,τ)\B(x0,σ0τ)

F (|ũ(x)|)dx

≥
[
F (t̄)σn0 − (1− σn0 ) max

t≤t̄
|F (t)|

]
ωnτ

n > 0,

which yields the claim (3.8).
Thus, denoting with λ∗ := Φ(ũ)/Ψ(ũ), by (2.14) and (3.8) we have

inf
u∈X0,A

Jλ(u) ≤ Jλ(ũ) = Φ(ũ)− λΨ(ũ) < 0,

for any λ > λ∗. This concludes the proof. �

Lemma 3.4. For every λ ∈ R, there exists R > 0 such that Jλ(u) ≥ 0, for any u ∈ X0,A with
‖u‖X0,A

≤ R.

Proof. Fix ν ∈ (2, 2∗s). By (f1), for any σ > 0 there exists rσ = r(σ) > 0 such that

|f(t)t| ≤ σt, for any t < rσ.(3.11)

Let δ1 > 0 be as in (3.3) with ε = 1 and define κσ =

(
1

2rν−2
σ

+
δ1

rν−1
σ

)
> 0. If t ≥ rσ, a simple

calculation gives
|F (t)| ≤ κσtν , for any t ≥ rσ

and using (3.11) we conclude

(3.12) |F (t)| ≤ σ

2
t2 + κσt

ν , for any t ≥ 0.

By (2.12) and (3.12), we get

(3.13)

Jλ(u) ≥ 1

2
‖u‖2X0,A

− |λ|
∣∣∣∣∫

Ω
F (|u(x)|)dx

∣∣∣∣
≥ 1

2
‖u‖2X0,A

− |λ|σ
2
‖u‖2L2(Ω) − |λ|kσ‖u‖

ν
Lν(Ω)

≥ 1

2
‖u‖2X0,A

− |λ|σc
2
2

2
‖u‖2X0,A

− |λ|kσcνν‖u‖νX0,A

=
1

2
(1− |λ|σc2

2)‖u‖2X0,A
− |λ|kσcνν‖u‖νX0,A

.
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Let us fix σ ∈ (0, 1/|λ|c2
2). Since ν ∈ (2, 2∗s), by (3.13) we can find R > 0 sufficiently small such

that

Jλ(u) ≥ 0, for ‖u‖X0,A
≤ R.

This concludes the proof. �

Proof of Theorem 1.1. We want to apply Theorem 3.1 to the functional Jλ : X0,A → R. First of
all, let us consider the following decomposition of the Hilbert space X0,A,

X0,A = X0,A ⊕ {0},

where the direct sum has to be intended with respect to the scalar product set in (2.2). By Lemmas
3.2 and 3.3, the functional Jλ satisfies conditions (b), (c) and (d) of Theorem 3.1, for any λ > λ∗

with λ∗ given in Lemma 3.3. Furthermore, it is immediate to see that Jλ(0) = 0. Hence, by
Lemma 3.4 we have (3.1), which concludes the proof. �

Remark 3.5. We point out that in Theorem 1.1 the lower threshold λ∗ for parameter λ is not
optimal, since λ∗ := Φ(ũ)/Ψ(ũ) . However, we show that problem (1.2) admits only the trivial
solution when λ ∈ (0, 1/c2

2 max
t≥0
|f(t)|), where c2 is given in (2.12) and max

t≥0
|f(t)| < ∞, by (f1),

(f2) and the continuity of f .
Let us consider a nontrivial weak solution u0 of problem (1.2). If λ ∈ (0, 1/c2

2 max
t≥0
|f(t)|), by

(2.12) and (2.13) we have

‖u0‖2X0,A
= λ

∫
Ω
f(|u0(x)|)|u0(x)|2dx

≤ λmax
t≥0
|f(t)| ‖u0‖2L2(Ω)

≤ λmax
t≥0
|f(t)|c2

2 ‖u0‖2X0,A
< ‖u0‖2X0,A

,

which yields a contradiction.

4. Proof of Theorem 1.2

Throughout this section, we assume that f : R→ R is a continuous function satisfying conditions
(f4) and (f5), without further mentioning.
The proof of Theorem 1.2 is mainly based on the application of the following result.

Theorem 4.1 (Theorem 6 of [20]). Let (E, ‖ · ‖) be a reflexive real Banach space. Let Φ, Ψ :
E → R be two continuously Gâteaux differentiable functionals such that Φ is sequentially weakly
lower semicontinuous and coercive. Further, assume that Ψ is sequentially weakly continuous. In
addition, assume that, for each γ > 0, the functional Iγ : E → R,

Iγ(z) := γΦ(z)−Ψ(z), z ∈ E,

satisfies (PS).
Then, for every ρ > infE Φ and every

γ > inf
u∈Φ−1(−∞,ρ)

supv∈Φ−1(−∞,ρ) Ψ(v)−Ψ(u)

ρ− Φ(u)
,

the following alternative holds:
either the functional Iγ has a strict global minimum in Φ−1(−∞, ρ), or Iγ has at least two critical
points one of which lies in Φ−1(−∞, ρ).
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Here, we consider the functional Iλ : X0,A → R, given by

Iλ(u) :=
1

λ
Φ(u)−Ψ(u), u ∈ X0,A

with Φ and Ψ defined as in (2.15). To apply Theorem 4.1, we first prove that Iλ satisfies the
Palais–Smale condition.

Lemma 4.2. For every λ > 0, the functional Iλ satisfies the (PS) condition.

Proof. Let {uj}j∈N be a sequence in X0,A verifying (3.4).
We first show that {uj}j∈N is bounded in X0,A. By (f4) we have

(4.1) |F (t)| ≤ a1

2
t2 +

a2

q
tq, for any t ≥ 0,

and so, using again (f4), we have that for any j ∈ N

(4.2)

∣∣∣∣∣
∫

Ω∩{x∈Rn: |uj(x)|≤t0}

[
F (|uj(x)|)− 1

µ
f(|uj(x)|)|uj(x)|2

]
dx

∣∣∣∣
≤
[
a1(µ+ 2)

2µ
t20 +

a2(µ+ q)

qµ
tq0

]
|Ω| =: C,

with t0 and µ defined in (f5). Thus, by (f5) and (4.2) we have for any j ∈ N

(4.3)

Iλ(uj)−
1

µ
I ′λ(uj)(uj) ≥

(
1

2λ
− 1

µλ

)
‖uj‖2X0,A

−
∫

Ω∩{x∈Rn: |uj(x)|≤t0}

[
F (|uj(x)|)− 1

µ
f(|uj(x)|)|uj(x)|2

]
dx

≥
(

1

2λ
− 1

µλ

)
‖uj‖2X0,A

− C.

Since {uj}j∈N satisfies (3.4) with Iλ, we know there exist a C̃ > 0 such that for any j ∈ N

(4.4) |Iλ(uj)| ≤ C̃,
∣∣∣∣I ′λ(uj)

(
uj

‖uj‖X0,A

)∣∣∣∣ ≤ C̃.
Combining (4.3) and (4.4) we prove the boundedness of {uj}j∈N, since µ > 2 in (f5). Using (f4)
we conclude as in Lemma 3.2. �

We now study functional Ψ, introduced in (2.15).

Lemma 4.3. The functional Ψ is sequentially weakly continuous on X0,A.

Proof. Let {uj}j∈N be a sequence inX0,A such that uj ⇀ u inX0,A. By Lemma 2.2 and [4, Theorem
4.9], up to a subsequence, still relabeled {uj}j∈N, we have

(4.5)
uj → u in Lp(Ω,C) and uj → u a.e. in Ω as j →∞,
|uj(x)| ≤ hp(x) for a.e. x ∈ Ω and for any j ∈ N,

for any p ∈ [1, 2∗s), with hp ∈ Lp(Ω). Hence, by (4.1) and (4.5) we get

|F (|uj(x)|)| ≤ a1

2
|uj(x)|2 +

a2

q
|uj(x)|q ≤

(
a1

2
(h2(x))2 +

a2

q
(hq(x))q

)
∈ L1(Ω)(4.6)

for a.e. x ∈ Ω and for every j ∈ N. By the continuity of F and (4.5), we also have

F (|uj(x)|)→ F (|u(x)|) a.e. in Ω as j →∞.(4.7)
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Using (4.6) and (4.7) and the Lebesgue dominated convergence theorem we conclude∫
Ω
F (|uj(x)|)dx→

∫
Ω
F (|u(x)|)dx as j →∞.

It follows that the map

u→ Ψ(u)

is continuous from X0,A endowed with the weak topology to R. �

Proof of Theorem 1.2. By Lemma 4.2, Iλ satisfies the Palais-Smale condition. By (2.15) we im-
mediately see that Φ is coercive and sequentially weakly lower semicontinuous, while by Lemma
4.3 the functional Ψ is sequentially weakly continuous. Let q ∈ (2, 2∗s) be as in (f4). For every
ρ > 0 let

0 < λ <
2q

a1c2
2q + 2a2c

q
qρ

q−2
2

,

where c2, cq are as in (2.12). We claim that

(4.8)
1

λ
> Θ(ρ) := inf

u∈Φ−1(−∞,ρ)

supv∈Φ−1(−∞,ρ) Ψ(v)−Ψ(u)

ρ− Φ(u)
.

Since Φ(0) = 0 and Ψ(0) = 0, then

Θ(ρ) ≤
supv∈Φ−1(−∞,ρ) Ψ(v)

ρ
=

sup{v∈X0,A: ‖v‖X0,A
<ρ1/2}Ψ(v)

ρ
.(4.9)

On the other hand, it holds true that

sup{v∈X0,A: ‖v‖X0,A
<ρ1/2}Ψ(v)

ρ
≤ a1c

2
2

2
+
a2c

q
q

q
ρ
q−2
2 ,(4.10)

indeed, by (4.1) we have

Ψ(v) ≤ a1

2
‖v‖2L2(Ω) +

a2

q
‖v‖qLq(Ω)

and so (4.10) follows by Lemma 2.2. By (4.9) and (4.10) we infer

Θ(ρ) ≤ a1c
2
2

2
+
a2c

q
q

q
ρ
q−2
2

which yields the claim (4.8). Now we prove that Iλ cannot have a strict global minimum in
Φ−1((−∞, ρ)). By (f5) and arguing as in [14, Remark 3.2], we have F (tv) ≥ tµF (v) for all t ≥ 1
and v ≥ t0. Hence, it follows that

Iλ(tu0) =
1

λ
Φ(tu0)−Ψ(tu0) ≤ t

λ
Φ(u0)− tµ

∫
{x∈Ω: |u0(x)|≥t0}

F (|u0(x)|)dx+ cF |Ω|,

for every u0 ∈ X0,A, where cF = max
t≤t0
|F (t)|. Choosing u0 such that

|{x ∈ Ω : |u0(x)| ≥ t0}| > 0,

recalling that µ > 2 and F (t) > 0 for t ≥ t0, we get

lim
t→∞
Iλ(tu0) = −∞.

Applying Theorem 4.1 we conclude the proof. �
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