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Abstract. In this paper we rigorously deduce a quasistatic evolution model for shal-

low shells by means of Γ-convergence. The starting point of the analysis is the three-
dimensional model of Prandlt-Reuss elasto-plasticity. We study the asymptotic behaviour

of the solutions, as the thickness of the shell tends to zero. As in the case of plates, the

limiting model is genuinely three-dimensional, limiting displacements are of Kirchhoff-
Love type, and the stretching and bending components of the stress are coupled in the

flow rule and in the stress constraint. However, in contrast with the case of plates, the

equilibrium equations are not decoupled, because of the presence of curvature terms. An
equivalent formulation of the limiting problem in rate form is also discussed.

1. Introduction

In this paper we rigorously derive a quasistatic evolution model for perfectly plastic
shallow shells. Roughly speaking, a shallow shell is a shell in which the amount of deviation
from a plane, measured normally to the plane, is very small. More precisely, we will assume
the deviation to be of the same order of the thickness of the shell. Our analysis is thus
reminiscent of that developed in [11] for elasto-plastic thin plates, but the adaptation to the
nontrivial geometry of the shells gives rise to additional difficulties.

Understanding the relation between lower dimensional theories and their three-dimensional
counterparts for thin bodies (such as beams, plates, or shells) is a classical question in me-
chanics. In recent years this problem has been successfully studied by means of a rigorous
approach based on Γ-convergence, both in the stationary case (see, e.g., [3, 35, 36, 37, 38]
for nonlinearly elastic beams, [20, 21, 24] for nonlinearly elastic plates, [19, 25, 26, 41] for
nonlinearly elastic shells) and in the evolutionary setting (see, e.g., [1, 2] for nonlinear elasto-
dynamics, [6, 18] for crack evolution, [11, 27, 28, 30] for elasto-plasticity, [33] for delamination
problems).

In this paper we focus on the model of small-strain perfect plasticity. We consider a three-
dimensional shallow shell made of a homogenous and isotropic material and occupying the
reference configuration Σh := Ψh(Ω). Here Ω := ω×

(
− 1

2 ,
1
2

)
, where ω is a bounded domain

in R2, and 0 < h� 1. The map Ψh : Ω→ Σh is given by

Ψh(x) := (x′, hθ(x′)) + hx3νSh
(x′) for every x = (x′, x3) ∈ Ω,

where νSh
is the unit normal to the two-dimensional surface

Sh := {(x′, hθ(x′)) : x′ ∈ ω}
and θ : ω → R is a scalar function.

The classical formulation of the quasistatic evolution problem of perfect plasticity in
Σh can be described as follows. At a given time t the unknowns of the problem are the
displacement uh(t) : Σh → R3, the elastic strain eh(t) : Σh → M3×3

sym, and the plastic strain

ph(t) : Σh → M3×3
D . Here M3×3

D denotes the space of three-dimensional symmetric matrices

with zero trace. The assumption ph(t) ∈ M3×3
D corresponds to the requirement of volume

preserving plastic deformations, which is usual in the description of the plastic behaviour in
metals. Given a time-dependent displacement wh(t) prescribed on a subset ∂dΣh := Ψh(∂dΩ)
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of the lateral boundary of Σh (where ∂dΩ is a portion of the lateral boundary of Ω), and
assuming there are no external loads, we look for a triplet (uh(t), eh(t), ph(t)) satisfying the
following conditions for every t ∈ [0, T ]:

(d1) kinematic admissibility: symDuh(t) = eh(t) + ph(t) in Σh and uh(t) = wh(t) on
∂dΣh, where symDuh(t) := 1

2 (Duh(t) +Duh(t)T );

(d2) constitutive law: σh(t) := Ceh(t) in Σh, where σh(t) is the stress field at time t and
C is the elasticity tensor;

(d3) equilibrium equation: div σh(t) = 0 in Σh and σh(t)ν∂Ωh
= 0 on ∂Σh \ ∂dΣh, where

ν∂Σh
is the outer unit normal to ∂Σh;

(d4) stress constraint: (σh(t))D ∈ K in Σh, where (σh)D is the deviatoric part of σh and
K is a given convex and compact set in the space of deviatoric matrices M3×3

D ;

(d5) flow rule: ṗh(t) belongs to the normal cone to K at (σh)D(t) in Σh.

The existence of a solution to (d1)–(d5) was originally established in [39] and revisited
in [10] within the variational framework for rate-independent processes developed in [31]. In
this approach solutions are found in the space

BD(Σh)× L2(Σh;M3×3
sym)×Mb(Σh ∪ ∂dΣh,M3×3

D ),

where BD(Σh) denotes the set of functions with bounded deformation on Σh and Mb(Σh ∪
∂dΣh;M3×3

D ) is the set of bounded measures on Σh ∪ ∂dΣh. This functional setting can be
also justified in terms of a relaxation process [5, 34]. The variational formulation of (d1)–(d5)
is then written in terms of two conditions: a global stability condition and an energy balance
(see Definition 6.1).

The scope of this article is to characterise the limiting behaviour of a sequence of solutions
(uh(t), eh(t), ph(t)), as h tends to 0. In our main result (Theorem 6.3) we show the conver-
gence, up to scaling, to a limiting triplet (u(t), e(t), p(t)), that is characterised as a solution
of the following problem. For every t ∈ [0, T ] the displacement u(t) is of Kirchhoff-Love type,
that is, there exist ū(t) : ω → R2 and u3(t) : ω → R such that

u(t, x) = (ūα(t, x′)− x3∂αu3(t, x′), u3(t, x′)) for x = (x′, x3) ∈ Ω, α = 1, 2. (1.1)

The physical interpretation of this condition is that straight lines normal to the mid-surface,
remain straight and normal after the deformation, within the first order. Furthermore, the
following equations (in their strong formulation) are satisfied: for every t ∈ [0, T ]

(d1)∗ reduced kinematic admissibility: u(t) is a Kirchhoff-Love displacement and

symDu(t) +∇θ �∇u3(t) = e(t) + p(t) in Ω, u(t) = w(t) on ∂dΩ,

ei3(t) = pi3(t) = 0 in Ω, i = 1, 2, 3,

where w(t) is the limit of wh(t), up to scaling;

(d2)∗ reduced constitutive law: σ(t) := C∗e(t) in Ω, where C∗ is the reduced elasticity
tensor, which is defined through a suitable minimisation formula (see (3.19));

(d3)∗ equilibrium equations: denoting by σ̄(t) and σ̂(t) the zero-th and the first order
moments of σ(t), respectively (see Definition 3.3), we have

div σ̄(t) = 0 in ω, 1
12div div σ̂(t) + σ̄(t) : D2θ = 0 in ω,

with corresponding Neumann boundary conditions on ∂ω \ ∂dω, where ∂dω is the
projection of ∂dΩ on the plane {x3 = 0};

(d4)∗ reduced stress constraint: σ(t) ∈ K∗ in Ω, where K∗ := ∂H∗(0) is the subdifferen-
tial of the reduced dissipation H∗ (whose expression is given in (3.21) through a
minimisation formula) at 0;

(d5)∗ reduced flow rule: ṗ(t) belongs to the normal cone to K∗ at σ(t) in Ω.
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As in the three-dimensional case, a variational formulation of (d1)∗–(d5)∗ can be given
in terms of a reduced global stability condition and of a reduced energy balance in the space

BD(Ω)× L2(Ω;M3×3
sym)×Mb(Ω ∪ ∂dΩ,M3×3

sym),

(see Definition 6.2).
If θ ≡ 0, the model above coincides exactly with that derived in [11] for a thin plate.

When θ is different from 0, curvature effects are taken into account in the limit. In the
kinematic admissibility condition the linearised strain symDu(t) is augmented by the quan-
tity ∇θ � ∇u3(t), which is due to the contribution of the vertical displacement along the
tangential directions to the shallow shell. Also, the curvature tensor of the shallow shell,
which is approximately given by the Hessian of θ, contributes to the equilibrium equations.
In particular, in contrast with the plate model of [11], here the two equilibrium equations
do not decouple.

Since u(t) ∈ BD(Ω), the Kirchhoff-Love condition (1.1) implies that ū(t) ∈ BD(ω)
and u3(t) ∈ BH(ω), where BH(ω) is the space of functions with bounded Hessian on ω.
Moreover, we have that

(symDu(t))αβ = (symDū(t))αβ − x3∂
2
αβu3(t), α, β = 1, 2.

We note that the horizontal displacement ū(t) may exhibit jump discontinuities, while,
due to the continuous embedding of BH(ω) into C(ω), the vertical displacement u3 is
continuous, with a possibly discontinuous gradient. Since the dependence of u on x3 is
affine, the discontinuity set of u (that mechanically describes the so-called slip surfaces) is
the vertical surface whose projection on ω is the union of the jump sets of ū and of ∇u3.

Condition (d1)∗ does not imply, in general, that e(t) and p(t) have an affine dependence
on x3. However, they admit the following decomposition:

e(t) = ē(t) + x3ê(t) + e⊥(t), p(t) = p̄(t) + x3p̂(t)− e⊥(t),

where the zero order moments ē(t) ∈ L2(ω;M2×2
sym) and p̄(t) ∈Mb(ω ∪ ∂dω;M2×2

sym) satisfy

symDū(t) +∇θ �∇u3(t) = ē(t) + p̄(t) in ω,

the first order moments ê(t) ∈ L2(ω;M2×2
sym) and p̂(t) ∈Mb(ω ∪ ∂dω;M2×2

sym) satisfy

D2u3(t) = −(ê(t) + p̂(t)) in ω,

and e⊥(t) ∈ L2(Ω;M2×2
sym).

Explicit examples in the case of plates (see [12, Section 5]) show that in general e⊥(t) 6≡ 0.
Since this component has a nontrivial dependence on x3, the limiting model has a genuinely
three-dimensional nature and cannot be fully reduced to a two-dimensional setting.

We now describe our proof strategy and discuss the additional difficulties due to the
nontrivial geometry of the shell. The abstract theory of evolutionary Γ-convergence for rate-
independent processes [32] cannot be directly applied here. Indeed, this theory consists in
studying separately the Γ-convergence of the stored energy functionals and of the dissipation
potentials, and in coupling the two Γ-limits by means of a so-called joint recovery sequence.
This approach is not applicable to our case, since in perfect plasticity the stored elastic
energy and the plastic dissipation must be considered together to get the right compactness
properties. For this reason, to identify the correct limiting energy we first study the Γ-
convergence of the total energy functional, given by the sum of the stored energy with the
dissipation potential (see also [7, Chapter 3] for a similar setting in the context of a damage
problem). More precisely, we focus on the static case, that is, we consider a boundary
displacement independent of time and study the Γ-limit, as h→ 0, of the functional

Eh(v, η, q) :=

∫
Σh

Q(η(x)) dx+

∫
Σh∪∂dΣh

H
( dq
d|q|

)
d|q|
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defined for all triplets (v, η, q) such that symDv = η + q in Σh and satisfying the Dirichlet
boundary condition on ∂dΣh. Here Q(η) := 1

2Cη : η and H is the support function of the
set K.

As usual in dimension reduction problems, a scaling of the admissible triplets (v, η, q) is
introduced. In particular, the scaled displacement is defined in Ω as

u := R−1
h v ◦Ψh,

where

Rh :=

1 0 0
0 1 0
0 0 1

h

 .

We prove (Theorem 5.2) that the Γ-limit of Eh (rescaled to the domain Ω and in terms of
the scaled triplets) is the functional

I(u, e, p) :=

∫
Ω

Q∗(e(x)) dx+

∫
Ω∪∂dΩ

H∗
( dp
d|p|

)
d|p|

defined for all triplets (u, e, p) satisfying the reduced kinematic admissibility condition (qs1)∗.
Here Q∗(η) := 1

2C
∗η : η is the reduced elastic energy density and H∗ is the reduced dissipa-

tion.
The main difficulty in the proof of this result, compared with [11], is that the scaled

displacement u does not belong to BD(Ω), since we only know that

sym(RhDuRhF
−1
h ) ∈Mb(Ω;M3×3

sym), (1.2)

where Fh := DΨhRh. Furthermore, we cannot rely on the classical Korn-Poincaré inequality
for BD functions, as it was done in [11]. Indeed, the expansion of F−1

h for h small (see
Lemma 3.1) yields

sym(RhDuRhF
−1
h )αβ = (symDu− ∂3u�∇θ)αβ +O(h2)‖u‖BV ,

sym(RhDuRhF
−1
h )α3 = 1

h

(
(symDu− ∂3u�∇θ)α3 +O(h2)‖u‖BV

)
,

sym(RhDuRhF
−1
h )33 = 1

h2

(
∂3u3(1 +O(h2)) + h2∇u3 · ∇θ +O(h4)‖u‖BV

)
,

where O(hp) is a quantity uniformly bounded by hp in Ω and ‖ · ‖BV denotes the norm
in the space BV (Ω) of functions with bounded variation on Ω. We note that the remain-
ders are controlled by the BV -norm, which is not a priori bounded. Therefore, a bound
on sym(RhDuRhF

−1
h ) does not provide, in general, any bound on symDu. To overcome

this difficulty it is convenient to express the scaled displacement in intrinsic curvilinear
coordinates, that is, we consider the vectorfield

u(h) := (DΨh)TRhu.

The advantage is that the quantity (1.2), written in these coordinates, has a simpler form;
namely, it is related to

(Rh symDu(h)Rh)ij − Γkij(h)uk(h),

where Γkij(h) are the scaled Christoffel symbols of Σh (see Proposition 4.1). In this ex-
pression the first term is a rescaled symmetrised gradient, while the second term depends
only on the displacement u(h), and not on its derivatives. This allows us to prove, for the
vectorfield of curvilinear coordinates, an ad-hoc Korn-Poincaré inequality on shallow shells
(Theorem 4.4). In this proof the scaling of the coefficients Γkij(h) in terms of h is crucial,
and it is a consequence of the shallowness assumption (that is, of the fact that the amount
of deviation from a plane is of order h).

The Korn-Poincaré inequality on shallow shells is the key ingredient to deduce compact-
ness for sequences of scaled triplets with equibounded energy. We then prove their conver-
gence to limiting triplets (u, e, p) satisfying condition (qs1)∗. A delicate point here is to show
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that the limiting triplets (u, e, p) satisfy the Dirichlet boundary condition, that in the BD
framework has to be relaxed as

p = (w − u)� ν∂ΩH2 on ∂dΩ,

where ν∂Ω is the outer unit normal to ∂Ω. The idea is to extend the scaled triplets by
using the boundary datum wh, to an open set U such that U ∩ ∂Ω = ∂dΩ. To obtain the
necessary bounds it is again convenient to express the scaled triplets in their curvilinear
coordinates. Finally, the contruction of a recovery sequence is based on an approximation
result (Lemma 3.7), which ensures the density of smooth triplets in the class of kinemati-
cally admissible triplets for the reduced problem. This is a technical lemma, whose proof is
analogous to that of [11, Theorem 4.7].

Once Γ-convergence is established in the static case, the proof of the convergence of the
quasistatic evolutions is rather standard. We consider the three-dimensional problem and the
reduced problem in terms of their variational formulations. To deduce the global stability in
the reduced problem, we use as test functions in the three-dimensional problem the recovery
sequence provided by the Γ-convergence result. The energy balance follows from the Γ-liminf
inequality and a standard minimality argument.

Finally, we discuss (Section 6.1) how to write a strong fomulation of the reduced qua-
sistatic evolution problem in the BD framework, and in particular how to give a meaning
to the flow rule (d5)∗ in this context. To this aim we define an ad-hoc notion of stress-strain
duality, in the spirit of [23] and [11].

For an extension of these results to the case of nonzero applied loads we refer to [29].

The plan of the paper is as follows. Section 2 contains some preliminary results. In Sec-
tion 3 we describe the setting of the problem. In Section 4 we prove the Korn-Poincaré
inequality on shallow shells. Section 5 is devoted to the Γ-convergence of the static function-
als, while the convergence of the quasistatic evolutions is studied in Section 6.

2. Preliminaries

In this section we collect some mathematical preliminaries that will be used throughout
the paper.

In this work Latin indices, as i, j, k, are assumed to take their values in the set {1, 2, 3} and
Greek indices, as α, β, γ, in the set {1, 2}. We will adopt the Einstein summation convention:
for instance, the expression Aijxj stands for

3∑
j=1

Aijxj .

Matrices. The spaces of n × n matrices and of n × n symmetric matrices are denoted by
Mn×n and Mn×n

sym , respectively. They are endowed with the euclidean scalar product ξ :
ζ :=

∑
i,j ξijζij . The orthogonal complement of the subspace RIn×n spanned by the identity

matrix In×n is the subspace Mn×n
D of all symmetric matrices with zero trace. For every

ξ ∈Mn×n
sym we have the orthogonal decomposition

ξ = ξD +
1

n
(tr ξ)In×n,

where ξD ∈Mn×n
D is the deviatoric part of ξ. The symmetrised tensor product a� b of two

vectors a, b ∈ Rn is the symmetric matrix with entries (a⊗ b)ij = 1
2 (aibj + ajbi). We denote

the determinant of a matrix A by detA and the cofactor of A by cof A.

Measures. The Lebesgue measure on Rn is denoted by Ln and the (n − 1)-dimensional
Hausdorff measure by Hn−1. Given a Borel set B ⊂ Rn and a finite dimensional Hilbert
space X, Mb(B;X) denotes the space of bounded Borel measures on B with values in X,
endowed with the norm ‖µ‖Mb

:= |µ|(B), where |µ| ∈ Mb(B;R) is the variation of the
measure µ. For every µ ∈ Mb(B;X) we consider the Lebesgue decomposition µ = µa + µs,



6 G.B. MAGGIANI AND M.G. MORA

where µa is absolutely continuous with respect to the Lebesgue measure Ln and µs is singular
with respect to Ln. If µs = 0, we always identify µ with its density with respect to Ln. If the
relative topology of B is locally compact, by the Riesz Representation Theorem Mb(B;X)
can be identified with the dual of C0(B;X), which is the space of continuous functions
ϕ : B → X such that the set {ϕ ≥ ε} is compact for every ε > 0. The weak∗ topology
of Mb(B;X) is defined using this duality. The duality between measures and continuous
functions, as well as between other pairs of spaces, according to the context, is denoted
by 〈·, ·〉.

Convex functions of measures. Let U ⊂ Rn be an open set and let Γ an open subset (in
the relative topology) of ∂U . Let X be a finite dimensional Hilbert space. For every µ ∈
Mb(U ∪Γ;X) let dµ/d|µ| be the Radon-Nikodým derivative of µ with respect to its variation
|µ|. Let H0 : X → [0,+∞) be a convex and positively one-homogeneous function such that

r|ξ| ≤ H0(ξ) ≤ R|ξ| for every ξ ∈ X,
where r and R are two constants, with 0 < r ≤ R. According to the theory of convex
functions of measures (see [22]), we introduce the nonnegative Radon measure H0(µ) ∈
Mb(U ∪ Γ) defined by

H0(µ)(A) :=

∫
A

H0

( dµ
d|µ|

)
d|µ|

for every Borel set A ⊂ U ∪ Γ. We consider the functional H0 : Mb(U ∪ Γ;X) → [0,+∞)
defined by

H0(µ) := H0(µ)(U ∪ Γ) =

∫
U∪Γ

H0

( dµ
d|µ|

)
d|µ|

for every µ ∈Mb(U ∪Γ;X). One can prove that H0 is lower semicontinuous on Mb(U ∪Γ;X)
with respect to the weak* convergence (see, e.g., [4, Theorem 2.38]).

Functions with bounded deformation. Let U ⊂ Rn be an open set. The space BD(U) of
functions with bounded deformation is the space of all u ∈ L1(U ;Rn), whose symmetric
gradient (in the sense of distributions) symDu := 1

2 (Du + DuT ) belongs to the space
Mb(U ;Mn×n

sym ). It is easy to see that BD(U) is a Banach space with the norm

‖u‖BD := ‖u‖L1 + ‖ symDu‖Mb
.

We say that a sequence (uk) converges to u weakly∗ in BD(U) if uk ⇀ u weakly in L1(U ;Rn)
and symDuk ⇀ symDu weakly∗ in Mb(U ;Mn×n

sym ). Every bounded sequence in BD(U) has a
weakly∗ converging subsequence. If U is bounded and has a Lipschitz boundary, then BD(U)
can be continuously embedded in Ln/(n−1)(U ;Rn) and compactly embedded in Lp(U ;Rn)
for every p < n/(n−1). Moreover, every function u ∈ BD(U) has a trace, still denoted by u,
which belongs to L1(∂U ;Rn). If Γ is a nonempty open subset of ∂U , there exists a constant
C > 0, depending on U and Γ, such that

‖u‖BD ≤ C(‖u‖L1(Γ) + ‖ symDu‖Mb
) (2.1)

for every u ∈ BD(U). For the general properties of BD(U) we refer to [40].

Functions with bounded Hessian. Let U ⊂ Rn be an open set. The space BH(U) of functions
with bounded Hessian is the space of all functions u ∈W 1,1(U), whose Hessian D2u (in the
sense of distributions) belongs to Mb(U ;Mn×n

sym ). It is easy to see that BH(U) is a Banach
space endowed with the norm

‖u‖BH := ‖u‖W 1,1 + ‖D2u‖Mb
.

If U has the cone property, then BH(U) coincides with the space of functions in L1(U)
whose Hessian belongs to Mb(U ;Mn×n

sym ). If U is bounded and has a Lipschitz boundary,

BH(U) can be embedded into W 1,n/(n−1)(U). If U is bounded and has a C2 boundary, then
for every function u ∈ BH(U) one can define the traces of u and ∇u, still denoted by u and
∇u: they satisfy u ∈ W 1,1(∂U), ∇u ∈ L1(∂U ;Rn), and ∂u

∂τ = ∇u · τ ∈ L1(∂U) for every τ

tangent vector to ∂U . If in addition n = 2, then BH(U) embeds into C(U), which is the
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space of continuous functions on U . Finally, if U has a C2 boundary and Γ is a nonempty
open subset of ∂U , then there exists a constant C > 0, depending on U and Γ, such that

‖u‖BH ≤ C(‖u‖L1(Γ) + ‖∇u‖L1(Γ) + ‖D2u‖Mb
) (2.2)

for every u ∈ BH(U). For the general properties of BH(U) we refer to [14].

3. Setting of the problem

3.1. The three-dimensional problem. We start by describing the setting of the three-
dimensional problem.

The reference configuration. Let ω ⊂ R2 be a bounded domain with a C2 boundary. Let
∂dω and ∂nω be two disjoint open subsets of ∂ω such that

∂dω ∪ ∂nω = ∂ω and ∂dω ∩ ∂nω = {P1, P2},

where P1 and P2 are two points of ∂ω (here topological notions refer to the relative topology
of ∂ω). The set ∂dω is the Dirichlet boundary of ω and ∂nω is the Neumann boundary. We
also consider the set

Ω := ω × (− 1
2 ,

1
2 )

and its Dirichlet boundary

∂dΩ := ∂dω × (− 1
2 ,

1
2 ).

Let θ ∈ C3(ω). For every 0 < h� 1 we consider the two-dimensional surface

Sh :=
{

(x′, hθ(x′)) : x′ ∈ ω
}
.

A shallow shell of thickness h is a three-dimensional body whose reference configuration is
given by the set

Σh := Ψh(Ω),

where Ψh : Ω→ R3 is the function

Ψh(x) := (x′, hθ(x′)) + hx3νSh
(x′) for every x = (x′, x3) ∈ Ω (3.1)

and νSh
is the unit normal to Sh given by

νSh
(x′) =

1√
1 + h2|∇θ(x′)|2

(−h∇θ(x′), 1) for every x′ ∈ ω.

The Dirichlet boundary of Σh is given by the set

∂dΣh := Ψh (∂dΩ) .

For every 0 < h� 1 we introduce the diagonal matrix

Rh :=

1 0 0
0 1 0
0 0 1

h

 (3.2)

and we define

Fh(x) := DΨh(x)Rh (3.3)

for every x ∈ Ω. The elementary properties of the determinant give

detDΨh(x) = hdetFh(x) (3.4)

for every x ∈ Ω. The asymptotic behaviour of Fh, as h→ 0, is made explicit by the following
result.
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Lemma 3.1. As h→ 0, the following expansions hold:

(Fh)αβ = δαβ − h2x3∂
2
αβθ +O(h3), (Fh)α3 = −h∂αθ +O(h3),

(Fh)3β = h∂βθ +O(h3), (Fh)33 = 1− 1
2h

2|∇θ|2 +O(h3),

where O(h3) denotes a quantity that is uniformly bounded by h3 in Ω. Moreover, Fh is
invertible for h small enough and the following expansions hold:

(F−1
h )αβ = δαβ + h2(x3∂

2
αβθ − ∂αθ∂βθ) +O(h3), (F−1

h )α3 = h∂αθ +O(h3),

(F−1
h )3β = −h∂βθ +O(h3), (F−1

h )33 = 1− 1
2h

2|∇θ|2 +O(h3),

and

detFh = 1 +O(h2).

Proof. See, e.g., [8, Theorem 3.3-1]. �

The stored elastic energy. Let C be the three-dimensional elasticity tensor, considered as a
symmetric positive definite linear operator C : M3×3

sym →M3×3
sym, and let Q : M3×3

sym → [0,+∞)
be the quadratic form associated with C, defined by

Q(ξ) := 1
2Cξ : ξ for every ξ ∈M3×3

sym.

It turns out that there exists two positive constants αC and βC, with αC ≤ βC, such that

αC|ξ|2 ≤ Q(ξ) ≤ βC|ξ|2 for every ξ ∈M3×3
sym. (3.5)

These inequalities imply that

|Cξ| ≤ 2βC|ξ| for every ξ ∈M3×3
sym. (3.6)

The integral ∫
Σh

Q(η(x)) dx

describes the stored elastic energy of a configuration of the shallow shell Σh with elastic
strain η ∈ L2(Σh;M3×3

sym).

The plastic dissipation. Let K be a convex and compact set in M3×3
D , whose boundary ∂K

is interpreted as the yield surface. We assume that there exist two positive constants rK and
RK , with rK ≤ RK , such that

B(0, rK) ⊂ K ⊂ B(0, RK), (3.7)

where B(0, r) := {ξ ∈ M3×3
D : |ξ| ≤ r}. Let H : M3×3

D → R be the support function of K,
that is,

H(ξ) := sup
τ∈K

ξ : τ for every ξ ∈M3×3
D .

It is easy to see that H is convex, positively 1-homogeneous, and satisfies the triangle
inequality. Moreover, by (3.7) one deduces that

rK |ξ| ≤ H(ξ) ≤ RK |ξ| for every ξ ∈M3×3
D . (3.8)

From standard convex analysis we also have that the set K coincides with the subdifferential
∂H(0) of H at 0.

Let q ∈Mb(Σh∪∂dΣh;M3×3
D ) and let dq/d|q| be the Radon-Nikodým derivative of q with

respect to its variation |q|. The integral∫
Σh∪∂dΣh

H
( dq
d|q|

)
d|q|

describes the plastic dissipation potential on a configuration of the shallow shell Σh with
plastic strain q. The component of q on ∂dΣh accounts for plastic slips at the boundary,
which may develop when the prescribed boundary condition on ∂dΣh is not attained (see
condition (3.9) below).
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Kinematic admissibility and energy. Given a boundary datum z ∈ H1(Σh;R3), we define
the class A(Σh, z) of admissible displacements and strains, as the set of all triplets (v, η, q) ∈
BD(Σh)× L2(Σh;M3×3

sym)×Mb(Σh ∪ ∂dΣh;M3×3
D ) such that

symDv = η + q in Σh, q = (z − v)� ν∂Σh
H2 on ∂dΣh, (3.9)

where ν∂Σh
is the outer unit normal to ∂Σh. We define the total energy as

Eh(v, η, q) :=

∫
Σh

Q(η(x)) dx+

∫
Σh∪∂dΣh

H
( dq
d|q|

)
d|q|

for every admissible triplet (v, η, q) ∈ A(Σh, z).

3.2. The rescaled problem. In this section we introduce a suitable scaling of the admis-
sible triplets and of the total energy.

Let z ∈ H1(Σh;R3). To any triplet (v, η, q) ∈ A(Σh, z) we associate a triplet (u, e, p)
defined as follows:

u := R−1
h v ◦Ψh, e := η ◦Ψh, p :=

1

detDΨh
Ψ#
h (q), (3.10)

where Ψh and Rh are defined in (3.1) and (3.2), and Ψ#
h (q) is the pull-back measure of q,

defined as ∫
Ω∪∂dΩ

ϕ : dΨ#
h (q) =

∫
Σh∪∂dΣh

ϕ ◦Ψ−1
h : dq

for every ϕ ∈ C0(Ω ∪ ∂dΩ;M3×3
D ). It is clear that u ∈ L1(Ω;R3), e ∈ L2(Ω;M3×3

sym), and

p ∈Mb(Ω ∪ ∂dΩ;M3×3
D ). Moreover, we have that

sym(RhDuRhF
−1
h ) ∈Mb(Ω;M3×3

sym) (3.11)

and ∫
Ω

ϕ : d sym(RhDuRhF
−1
h ) =

∫
Σh

(detDΨ−1
h )ϕ ◦Ψ−1

h : d(symDv) (3.12)

for every ϕ ∈ C0(Ω;M3×3
sym). Indeed, if v is smooth, then by direct computations and by (3.3)

we obtain

(symDv) ◦Ψh = sym(RhDuRhF
−1
h ),

so that (3.11) and (3.12) follow by an approximation argument.
We also introduce the rescaled boundary datum w ∈ H1(Ω;R3), defined as

w := R−1
h z ◦Ψh

and we note that∫
∂dΣh

ϕ ◦Ψ−1
h : dq =

∫
∂dΣh

ϕ ◦Ψ−1
h : ((z − v)� ν∂Σh

) dH2

= h

∫
∂dΩ

ϕ : (Rh(w − u)� (cof Fh)Rhν∂Ω) dH2 (3.13)

for every ϕ ∈ C(Ω;M3×3
sym), where ν∂Ω is the outer unit normal to ∂Ω.

Since (v, η, q) ∈ A(Σh, z), we deduce by (3.9), (3.10), (3.12), and (3.13), that

sym(RhDuRhF
−1
h ) = e+ p in Ω,

p =
1

detFh
Rh(w − u)� (cof Fh)Rhν∂ΩH2 on ∂dΩ.

(3.14)

Motivated by the results above, we introduce the space

Vh(Ω) :=
{
u ∈ L1(Ω;R3) : sym(RhDuRhF

−1
h ) ∈Mb(Ω;M3×3

sym)
}
.

For every w ∈ H1(Ω;R3) we denote by Ah(Ω, w) the class of all triplets

(u, e, p) ∈ Vh(Ω)× L2(Ω;M3×3
sym)×Mb(Ω ∪ ∂dΩ;M3×3

D )
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satisfying (3.14). According to the scaling (3.10) and to (3.4), the total energy can be written
as

Eh(v, η, q) = h

∫
Ω

Q(e(x)) detFh(x) dx+ hHh(p),

where

Hh(p) :=

∫
Ω∪∂dΩ

H

(
dp

d|p|

)
detFh d|p|.

We thus define the scaled energy as

Ih(u, e, p) :=

∫
Ω

Q(e(x)) detFh(x) dx+Hh(p)

for every (u, e, p) ∈ Ah(Ω, w). This will be the starting point of the asymptotic analysis of
Sections 5 and 6.

3.3. The limiting problem. In this section we introduce the limiting functional, that
describes the asymptotic behaviour of the rescaled energy Ih, as h tends to 0.

The reduced stored elastic energy. Let M : M2×2
sym →M3×3

sym be the operator given by

Mξ :=

 ξ11 ξ12 λ1(ξ)
ξ12 ξ22 λ2(ξ)
λ1(ξ) λ2(ξ) λ3(ξ)

 for every ξ ∈M2×2
sym, (3.15)

where the triplet (λ1(ξ), λ2(ξ), λ3(ξ)) is the unique solution of the minimum problem

min
λi∈R

Q

ξ11 ξ12 λ1

ξ12 ξ22 λ2

λ1 λ2 λ3

 .

We observe that (λ1(ξ), λ2(ξ), λ3(ξ)) can be characterised as the unique solution of the linear
system

CMξ :

 0 0 ζ1
0 0 ζ2
ζ1 ζ2 ζ3

 = 0 (3.16)

for every ζi ∈ R. This implies that M is a linear map and

(CMξ)i3 = (CMξ)3i = 0. (3.17)

Let Q∗ : M2×2
sym → R be the quadratic form given by

Q∗(ξ) := Q(Mξ) for every ξ ∈M2×2
sym. (3.18)

It follows from (3.5) that

αC|ξ|2 ≤ Q∗(ξ) ≤ βC|ξ|2 for every ξ ∈M2×2
sym.

We define the reduced elasticity tensor as the linear operator C∗ : M2×2
sym →M3×3

sym given by

C∗ξ := CMξ for every ξ ∈M2×2
sym. (3.19)

Note that we can always identify C∗ξ with an element of M2×2
sym in view of (3.17). Moreover,

by (3.16) we have

C∗ξ : ζ = C∗ξ :

ζ11 ζ12 0
ζ12 ζ22 0
0 0 0

 for every ξ ∈M2×2
sym, ζ ∈M3×3

sym. (3.20)

This implies that

Q∗(ξ) =
1

2
C∗ξ :

ξ11 ξ12 0
ξ12 ξ22 0
0 0 0

 for every ξ ∈M2×2
sym.
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Finally, we introduce the functional Q∗ : L2(Ω;M2×2
sym)→ [0,+∞), defined as

Q∗(e) :=

∫
Ω

Q∗(e(x)) dx

for every e ∈ L2(Ω;M2×2
sym).

The reduced plastic dissipation. In the reduced problem the plastic dissipation potential is
given by the function H∗ : M2×2

sym → [0,+∞), defined as

H∗(ξ) := min
λi∈R

H

ξ11 ξ12 λ1

ξ12 ξ22 λ2

λ1 λ2 − (ξ11 + ξ22)

 (3.21)

for every ξ ∈ M2×2
sym. From the properties of H it follows that H∗ is convex, positively

1-homogeneous, and satisfies

rK |ξ| ≤ H∗(ξ) ≤
√

3RK |ξ| for every ξ ∈M2×2
sym.

The set K∗ := ∂H∗(0) represents the set of admissible stresses in the reduced problem and
can be characterised as follows:

ξ ∈ K∗ ⇔

ξ11 ξ12 0
ξ12 ξ22 0
0 0 0

− 1

3
(tr ξ)I3×3 ∈ K,

(see [11, Section 3.2]). For every p ∈Mb(Ω ∪ ∂dΩ;M2×2
sym) we define the functional

H∗(p) :=

∫
Ω∪∂dΩ

H∗
( dp
d|p|

)
d|p|.

Generalised Kirchhoff-Love triplets and limiting energy. We consider the set KL(Ω) of
Kirchhoff-Love displacements, defined as

KL(Ω) := {u ∈ BD(Ω) : (symDu)i3 = 0}.

We note that u ∈ KL(Ω) if and only if u3 ∈ BH(ω) and there exists ū ∈ BD(ω) such that

uα(x) = ūα(x′)− x3∂αu3(x′)

for a.e. x = (x′, x3) ∈ Ω. We call ū, u3 the Kirchhoff-Love components of u.
For every u ∈ KL(Ω) we define the measure

E∗u := symDu+∇θ �∇u3. (3.22)

Given a prescribed displacement w ∈ H1(Ω;R3)∩KL(Ω), the set AgKL(w) of generalised
Kirchhoff-Love triplets is defined as the class of all triplets

(u, e, p) ∈ KL(Ω)× L2(Ω;M3×3
sym)×Mb(Ω ∪ ∂dΩ;M3×3

sym)

such that
E∗u = e+ p in Ω, p = (w − u)� ν∂ΩH2 on ∂dΩ,

ei3 = 0 in Ω, pi3 = 0 in Ω ∪ ∂dΩ.
(3.23)

We observe that the class AgKL(w) is nonempty since it contains (w,E∗w, 0).
Because of the last two conditions in (3.23), if (u, e, p) ∈ AgKL(w), e can be always

identified with a function in L2(Ω;M2×2
sym) and p with a measure in Mb(Ω ∪ ∂dΩ;M2×2

sym). In
the following we will tacitly make these identifications.

Finally, the limiting energy will be given by the functional I : AgKL(w) → [0,+∞),
defined as

I(u, e, p) := Q∗(e) +H∗(p)
for every (u, e, p) ∈ AgKL(w).

We conclude this section by collecting some properties of the class AgKL(w). The following
closure property holds.
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Lemma 3.2. Let (wk) be a sequence in H1(Ω;R3)∩KL(Ω) and let (uk, ek, pk) be a sequence
of triplets such that (uk, ek, pk) ∈ AgKL(wk) for every k. Assume that uk ⇀ u weakly∗ in
BD(Ω), ek ⇀ e weakly in L2(Ω;M2×2

sym), pk ⇀ p weakly∗ in Mb(Ω∪∂dΩ;M2×2
sym), and wk ⇀ w

weakly in H1(Ω;R3), as k →∞. Then (u, e, p) ∈ AgKL(w).

Proof. The result easily follows by adapting the proof of [10, Lemma 2.1]. �

A characterisation of AgKL(w) can be given in terms of moments, whose definition is
recalled below.

Definition 3.3. Let f ∈ L2(Ω;M2×2
sym). We denote by f̄ , f̂ ∈ L2(ω;M2×2

sym) and by f⊥ ∈
L2(Ω;M2×2

sym) the following orthogonal components (in the sense of L2(Ω;M2×2
sym)) of f :

f̄(x′) :=

∫ 1
2

− 1
2

f(x′, x3) dx3, f̂(x′) := 12

∫ 1
2

− 1
2

x3f(x′, x3) dx3

for a.e. x′ ∈ ω, and

f⊥(x) := f(x)− f̄(x′)− x3f̂(x′)

for a.e. x ∈ Ω. We call f̄ the zeroth order moment of f and f̂ the first order moment of f .

Definition 3.4. Let q ∈Mb(Ω∪ ∂dΩ;M2×2
sym). We denote by q̄, q̂ ∈Mb(ω ∪ ∂dω;M2×2

sym) and

by q⊥ ∈Mb(Ω ∪ ∂dΩ;M2×2
sym) the following measures:∫

ω∪∂dω
ϕ : dq̄ :=

∫
Ω∪∂dΩ

ϕ : dq,

∫
ω∪∂dω

ϕ : dq̂ := 12

∫
Ω∪∂dΩ

x3ϕ : dq

for every ϕ ∈ C0(ω ∪ ∂dω;M2×2
sym), and

q⊥ := q − q̄ ⊗ L1 − q̂ ⊗ x3L1,

where ⊗ denotes the usual product of measures. We call q̄ the zeroth order moment of q and
q̂ the first order moment of q.

With these definitions at hand one can prove the following result.

Proposition 3.5. Let w ∈ H1(Ω;R3) ∩KL(Ω) and let (u, e, p) ∈ KL(Ω)× L2(Ω;M2×2
sym)×

Mb(Ω ∪ ∂dΩ;M2×2
sym). Then (u, e, p) ∈ AgKL(w) if and only if the following three conditions

are satisfied:

(i) symDū+∇θ �∇u3 = ē+ p̄ in ω and p̄ = (w̄ − ū)� ν∂ωH1 on ∂dω;

(ii) D2u3 = −(ê+ p̂) in ω, u3 = w3 on ∂dω, and p̂ = (∇u3 −∇w3)� ν∂ωH1 on ∂dω;

(iii) p⊥ = −e⊥ in Ω and p⊥ = 0 on ∂dΩ,

where ν∂ω is the outer unit normal to ∂ω.

Proof. The proof is analogous to that of [11, Proposition 4.3]. �

Finally, we prove an approximation result in terms of smooth triplets. First of all, we give
a definition.

Definition 3.6. The space L2
∞,c(Ω;M2×2

sym) is the set of all p ∈ L2(Ω;M2×2
sym) satisfying:

(i) ∂iα∂
j
βp ∈ L2(Ω;M2×2

sym) for every i, j ∈ N ∪ {0};
(ii) there exists a set U ⊂⊂ ω ∪ ∂nω such that p = 0 a.e. on ω \ U ×

(
− 1

2 ,
1
2

)
.

We note that functions in L2
∞,c(Ω;M2×2

sym) have a smooth dependence on the variable x′;

namely, if p ∈ L2
∞,c(Ω;M2×2

sym), then p(·, x3) ∈ C∞c (ω ∪ ∂nω;M2×2
sym) for a.e. x3 ∈

(
− 1

2 ,
1
2

)
.

Lemma 3.7. Let w ∈ H1(Ω;R3) ∩KL(Ω) and let (u, e, p) ∈ AgKL(w). Then there exists a
sequence of triplets

(uk, ek, pk) ∈
(
H1(Ω;R3)× L2(Ω;M2×2

sym)× L2
∞,c(Ω;M2×2

sym)
)
∩ AgKL(w)

such that uk ⇀ u weakly∗ in BD(Ω), ek → e strongly in L2(Ω;M2×2
sym), pk ⇀ p weakly∗ in

Mb(Ω ∪ ∂dΩ;M2×2
sym), and ‖pk‖Mb

→ ‖p‖Mb
, as k →∞.
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Proof. The proof is analogous to [11, Lemma 4.5] and [11, Theorem 4.7]. The only difference
is in the definition of the zeroth order moment of ek, that we detail below. Following the
same notation as in [11], we replace ēk on page 629 with

ēk :=

∞∑
j=1

(
(ϕj ē) ∗ ρδj + (∇ϕj � ū) ∗ ρδj − (ϕj∇θ �∇u3) ∗ ρδj

)
+∇θ �

∞∑
j=1

(
(ϕj∇u3 +∇ϕju3) ∗ ρδj

)
,

and ēδ,1 on page 632 with

ēδ,1 = (ū ◦ φδ) ◦ ∇ϕ1 + ϕ1 sym((ē ◦ φδ)Dφδ)− ϕ1 sym
(
((∇u3 �∇θ) ◦ φδ)Dφδ

)
+ (u3 ◦ φδ)∇θ �∇ϕ1 + ϕ1∇θ � (Dφδ)

T (∇u3 ◦ φδ).

Using this definition, equation (4.38) in [11] is replaced by

ēδ,1 → ū�∇ϕ1 + ϕ1ē+ u3∇ϕ1 �∇θ strongly in L2(ω;M2×2
sym).

With respect to the argument on page 633 of [11], we replace eδ with

eδ := e− (ϕ1 + ϕ2)(ē+ x3ê) + ēδ,1 + ēδ,2 + x3(êδ,1 + êδ,2)

+

2∑
α=1

(−ū�∇ϕα − u3∇θ �∇ϕα + x3u3D
2ϕα + 2x3∇ϕα �∇u3)

and formula (4.55) on page 634 with

ēk :=

m∑
i=1

(ϕiē) ◦ τi,k + ϕ0ē+

m∑
i=1

(∇ϕi � ū) ◦ τi,k +∇ϕ0 � ū−
m∑
i=1

(ϕi∇θ �∇u3) ◦ τi,k

+∇θ �
m∑
i=1

(
(u3∇ϕi) ◦ τi,k + (∇ϕiu3) ◦ τi,k)

)
+ u3∇θ �∇ϕ0.

By implementing these changes the same construction as in [11, Lemma 4.5] and [11, The-
orem 4.7] provides the desired approximating sequence. �

4. A Korn-Poincaré inequality on shallow shells

In this section we prove an ad hoc version of the Korn-Poincaré inequality for shal-
low shells. To this purpose it is useful to express displacements in intrinsic curvilinear co-
ordinates. More precisely, to any displacement u : Ω → R3 we associate the vectorfield
u(h) : Ω→ R3 defined by

u(h) := (DΨh)TRhu, (4.1)

whose components are the scaled curvilinear coordinates of u with respect to the contravari-
ant basis of Σh. In particular, from (3.3) and (4.1) it follows immediately that

Rhu(h) = FTh Rhu. (4.2)

In the following proposition we express the strain in terms of the curvilinear coordinates.

Proposition 4.1. Let 0 < h � 1. Let u ∈ Vh(Ω) and let u(h) be defined by (4.1). Then
u(h) ∈ BD(Ω) and the following equality holds:

FTh sym(RhDuRhF
−1
h )Fh = E(h, u(h)), (4.3)

where

E(h, u(h))ij := (Rh(symDu(h))Rh)ij − Γkij(h)uk(h) (4.4)
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and the quantities Γkij(h) are given by

Γσαi(h) = Γσiα(h) := (∂α(FTh )F−Th )iσ, Γ3
αi(h) = Γ3

iα(h) :=
1

h
(∂α(FTh )F−Th )i3,

Γα33(h) :=
1

h
(∂3(FTh )F−Th )3α, Γ3

33(h) :=
1

h2
(∂3(FTh )F−Th )33.

(4.5)

Proof. Assume u smooth. Differentiating (4.2) yields

(RhDu)ij = (F−Th RhDu(h))ij + ∂j(F
−T
h )ik(Rh)klu(h)l.

This implies that

sym(RhDuRhF
−1
h )ij = sym(F−Th RhDu(h)RhF

−1
h )ij

+
1

2

(
∂m(F−Th )ik(Rh)klu(h)l(Rh)mn(F−1

h )nj + ∂p(F
−T
h )jk(Rh)kru(h)r(Rh)pq(F

−1
h )qi

)
.

Using the equality
FTh ∂m(F−Th ) = −∂m(FTh )F−Th ,

direct computations lead to(
FTh sym(RhDuRhF

−1
h )Fh

)
ij

= sym(RhDu(h)Rh)ij

+
1

2

((
∂l(F

T
h )F−Th Rh

)
ik

(Rh)lj +
(
∂m(FTh )F−Th Rh

)
jk

(Rh)mi

)
uk(h).

To deduce (4.3) it remains to show that, if we set

2Γkij(h) :=
(
∂l(F

T
h )F−Th Rh

)
ik

(Rh)lj +
(
∂m(FTh )F−Th Rh

)
jk

(Rh)mi,

then Γkij(h) satisfies (4.5). By (3.2) and (3.3) we have that

∂α(Feβ) = ∂β(Feα), ∂α(Fe3) =
1

h
∂3(Feα).

Using these equalities and again (3.2), we obtain

2Γσαβ(h) =
(
∂β(FTh )F−Th

)
ασ

+
(
∂α(FTh )F−Th

)
βσ

= 2
(
∂β(FTh )F−Th

)
ασ

and

2Γσα3(h) =
1

h

(
∂3(FTh )F−Th

)
ασ

+
(
∂α(FTh )F−Th

)
3σ

= 2
(
∂α(FTh )F−Th

)
3σ
.

The other equalities in (4.5) can be proved similarly.
The general case follows by an approximation argument. �

Remark 4.2. Note that (4.4) coincides, up to a scaling, with the quantity considered in [9,
Theorem 1.3.1]. Moreover, the coefficients Γkij(h) are the suitably scaled Christoffel symbols
of Σh. In particular, for h = 1 (that is, when Rh is replaced by the identity matrix and
thus, Fh is equal to DΨh) they exactly coincide with the Christoffel symbols of Σh. Indeed,
following the notation of [9, Section 1.2], let gi := Fhei = ∂iΨh (where ei is the canonical

basis of R3), and let gj := F−Th ej , so that gi · gj = δij . Then

Γkij(h) = gk · ∂jgi,
which is the usual definition of the Christoffel symbols in differential geometry.

In the following lemma we study the dependence of Γkij(h) on the thickness parameter h.

Lemma 4.3. The following expansions hold:

Γσαβ(h) = h2∂2
αβθ ∂σθ − h2x3∂

3
αβσθ +O(h3), (4.6)

Γ3
αβ(h) = ∂2

αβθ +O(h2), (4.7)

Γσα3(h) = −h∂2
ασθ +O(h2), (4.8)

Γi33(h) = Γ3
α3(h) = 0, (4.9)

where O(hp) denotes a quantity uniformly bounded by hp, as h→ 0.
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Proof. Let ghi := Fhei and gh,i := F−Th ei. These definitions, (3.2), and (4.5) lead to

Γσαi(h) = gh,σ · ∂αghi , Γ3
αi(h) =

1

h
gh,3 · ∂αghi ,

Γα33(h) =
1

h
gh,α · ∂3g

h
3 , Γ3

33(h) =
1

h2
gh,3 · ∂3g

h
3 .

(4.10)

By direct computations we have that

ghα = eα + h∂αθ e3 + hx3∂ανSh
, gh3 = νSh

.

Since ghi · gh,j = δij , we immediately deduce that

gh,3 = νSh
,

while by applying Lemma 3.1 we obtain

gh,α = eα + h∂αθ e3 +O(h2).

Since

νSh
= e3 − h∂1θ e1 − h∂2θ e2 +O(h2),

∂ανSh
= −h∂2

1αθ e1 − h∂2
2αθ e2 +O(h2),

∂2
αβνSh

= −h∂3
1αβθ e1 − h∂3

2αβθ e2 +O(h2),

we deduce (4.6)–(4.8) from (4.10). Equalities (4.9) follow again from (4.10) by observing
that ∂3g

h
3 = 0 and

gh,3 · ∂αgh3 =
1

2
∂α(νSh

· νSh
) = 0.

This concludes the proof of the lemma. �

We are ready to prove the Korn-Poincaré inequality on shallow shells.

Theorem 4.4. There exist h0 > 0 and C > 0, depending on Ω and ∂dΩ, such that

‖u‖L1 + ‖Rh(symDu)Rh‖Mb
≤ C

(
‖E(h, u)‖Mb

+ ‖u‖L1(∂dΩ)

)
for every 0 < h ≤ h0 and every u ∈ BD(Ω), where E(h, u) is defined in (4.4).

Proof. Assume for contradiction that for every n ∈ N there exist hn → 0+ and (un) ⊂
BD(Ω) such that

‖un‖L1 + ‖Rhn(symDun)Rhn‖Mb
= 1 (4.11)

and
‖E(hn, u

n)‖Mb
+ ‖un‖L1(∂dΩ) → 0. (4.12)

By (4.11) the sequence (un) is uniformly bounded in BD(Ω); therefore, there exists u ∈
BD(Ω) such that un ⇀ u weakly∗ in BD(Ω) and strongly in L1(Ω;R3), up to subsequences.
On the other hand, it follows from (4.4) and (4.9) that

(Rhn(symDun)Rhn)αβ = (symDun)αβ = E(hn, un)αβ + Γiαβ(hn)uni ,

(Rhn(symDun)Rhn)α3 =
1

hn
(symDun)α3 = E(hn, un)α3 + Γσα3(hn)unσ,

(Rhn(symDun)Rhn)33 =
1

h2
n

(symDun)33 = E(hn, un)33.

Using (4.12), Lemma 4.3, and the strong convergence of (un) in L1(Ω;R3), we deduce that

(symDun)αβ → u3∂
2
αβθ = (symDu)αβ strongly in Mb(Ω),

(symDun)i3 → 0 = (symDu)i3 strongly in Mb(Ω),

and
Rhn(symDun)Rhn → symDu strongly in Mb(Ω;M3×3

sym). (4.13)

Thus, u ∈ KL(Ω) and
un → u strongly in BD(Ω). (4.14)

Together with (4.12), this implies that u = 0 on ∂dΩ.
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Let now ū ∈ BD(ω) and u3 ∈ BH(ω) be the Kirchhoff-Love components of u. Since

(symDū)αβ − x3∂
2
αβu3 = u3∂

2
αβθ, (4.15)

we obtain that ∂2
αβu3 = 0. Moreover, the boundary condition u = 0 on ∂dΩ implies that

ū−x3∇u3 = 0 on ∂dΩ, hence ∇u3 = 0 on ∂dω, and u3 = 0 on ∂dω. By (2.2) we deduce that
u3 = 0 in ω. Thus, symDū = 0 in ω by (4.15) and, in turn, symDu = 0 in Ω. Since u = 0
on ∂dΩ, it follows from (2.1) that u = 0 in Ω. Since ‖u‖BD = 1 by (4.11), (4.13), and (4.14),
we obtain a contradiction. �

5. Γ-convergence of the static functionals

In this section we study the asymptotic behaviour of minimisers of the rescaled energies
Ih, as h tends to 0. We begin with a compactness result for scaled displacements.

Lemma 5.1. Let (wh) ⊂ H1(Ω;R3) be such that ‖wh‖L2(∂dΩ) ≤ C for every 0 < h � 1.

Let (uh) be a sequence in Vh(Ω) such that

‖ sym(RhDu
hRhF

−1
h )‖Mb

+ ‖Rh(wh − uh)� (cof Fh)Rhν∂Ω‖L1(∂dΩ) ≤ C (5.1)

for every 0 < h� 1. Then there exists u ∈ KL(Ω) such that, up to subsequences,

uh → u strongly in L1(Ω;R3) (5.2)

and

sym(RhDu
hRhF

−1
h )αβ ⇀ (E∗u)αβ weakly∗ in Mb(Ω), (5.3)

as h→ 0, where E∗u is defined in (3.22).

Proof. For every h we consider the vectorfield uh(h) given by the curvilinear coordinates of
uh, defined according to (4.1). For simplicity of notation we write u(h) instead of uh(h).

By Lemma 3.1 the sequence (Fh) is uniformly bounded with respect to h. Thus, by (4.3)
and (5.1) we deduce that

‖E(h, u(h))‖Mb
≤ C

for every 0 < h� 1. Since |a� b| ≥ 1√
2
|a||b| for every a, b ∈ Rn, it follows from (5.1) that∫

∂dΩ

|Rh(wh − uh)||(cof Fh)Rhν∂Ω| dH2 ≤ C

for every 0 < h� 1. Moreover,

|(cof Fh)Rhν∂Ω| ≥
|Rhν∂Ω|
| cof F−1

h |
≥ C|Rhν∂Ω| ≥ C,

where we used that cof F−1
h → I3×3 uniformly by Lemma 3.1. Therefore, we conclude that

‖Rh(wh − uh)‖L1(∂dΩ) ≤ C.

In particular, we have that ‖wh− uh‖L1(∂dΩ) ≤ C, hence ‖uh‖L1(∂dΩ) ≤ C for every h small
enough. By Lemma 3.1 we can write

(DΨh)TRh = I3×3 +

0 0 ∂1θ
0 0 ∂2θ
0 0 0

+O(h), (5.4)

hence by (4.1) we obtain that ‖u(h)‖1,∂dΩ ≤ C for every h.
By applying Theorem 4.4 to the sequence (u(h)), we deduce that

‖u(h)‖L1 + ‖Rh(symDu(h))Rh‖Mb
≤ C.

Thus, there exists ũ ∈ KL(Ω) such that u(h) ⇀ ũ weakly∗ in BD(Ω) and strongly in
L1(Ω;R3), up to subsequences. We deduce that (5.2) holds with u ∈ KL(Ω) defined by

uα := ũα − ∂αθ ũ3, u3 := ũ3. (5.5)
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Indeed, by (4.1) and (5.4) we have that

uh = ((DΨh)TRh)−1u(h) = u(h) +

0 0 −∂1θ
0 0 −∂2θ
0 0 0

u(h) + uh∗ , (5.6)

where

‖uh∗‖L1 ≤ Ch‖u(h)‖L1 ≤ Ch,
with C independent of h. Passing to the limit in (5.6), we obtain (5.2).

Since Fh → I3×3 uniformly, as h tends to 0, equality (4.3) implies that E(h, u(h)) and
sym(RhDu

hRhF
−1
h ) have the same weak* limit in Mb(Ω;M3×3

sym). In particular, by (4.6) and
(4.7) we obtain

E(h, u(h))αβ ⇀ (symDũ)αβ − ũ3∂
2
αβθ weakly∗ in Mb(Ω),

and by (5.5) we have

(symDũ)αβ − ũ3∂
2
αβθ = (symDu)αβ + sym(D(u3∇θ))αβ − u3∂

2
αβθ

= (symDu)αβ + (∇θ �∇u3)αβ = (E∗u)αβ .

This proves (5.3) and concludes the proof. �

The following theorem is the main result of this section. The proof is in the spirit of
Γ-convergence.

Theorem 5.2. Let (wh) ⊂ H1(Ω;R3) be such that

‖wh‖L2(∂dΩ) ≤ C for every 0 < h� 1, (5.7)

sym(RhDw
hRhF

−1
h )→ ζ strongly in L2(Ω;M3×3

sym), (5.8)

where C > 0 is independent of h and ζ ∈ L2(Ω;M3×3
sym). For every 0 < h� 1 let (uh, eh, ph) ∈

Ah(Ω, wh) be a minimiser of Ih. Then there exist w ∈ KL(Ω) ∩ H1(Ω;R3) and a triplet
(u, e, p) ∈ AgKL(w) such that (E∗w)αβ = ζαβ and, up to subsequences,

wh → w strongly in H1(Ω;R3), (5.9)

uh → u strongly in L1(Ω;R3), (5.10)

sym(RhDu
hRhF

−1
h )αβ ⇀ (E∗u)αβ weakly∗ in Mb(Ω), (5.11)

eh →Me strongly in L2(Ω;M3×3
sym), (5.12)

phαβ ⇀ pαβ weakly∗ in Mb(Ω ∪ ∂dΩ). (5.13)

Moreover, (u, e, p) is a minimiser of I and

lim
h→0
Ih(uh, eh, ph) = I(u, e, p). (5.14)

Remark 5.3. By the definition (3.15) of the operator M convergence (5.12) implies that
ehαβ → eαβ strongly in L2(Ω).

Proof of Theorem 5.2. The proof is subdivided into four steps. First of all, as a consequence
of Lemma 3.1, we note that the following expansions hold:

sym(RhDvRhF
−1
h )αβ = (symDv − ∂3v �∇θ)αβ +O(h2)‖v‖H1 ,

sym(RhDvRhF
−1
h )α3 = 1

h

(
(symDv − ∂3v �∇θ)α3 +O(h2)‖v‖H1

)
,

sym(RhDvRhF
−1
h )33 = 1

h2

(
∂3v3(1 +O(h2)) + h2∇v3 · ∇θ +O(h4)‖v‖H1

) (5.15)

for every v ∈ H1(Ω;R3).

Step 1: Convergence of (wh). By (5.15) and the fact that ∂3θ = 0 we deduce that

‖ sym(RhDw
hRhF

−1
h )‖L2 ≥ ‖ symDwh − ∂3w

h �∇θ‖L2 −O(h2)‖wh‖H1 .
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This implies that for h small enough

‖wh‖L2(∂dΩ) + ‖ sym(RhDw
hRhF

−1
h )‖L2

≥ ‖wh‖L2(∂dΩ) + ‖ symDwh − ∂3w
h �∇θ‖L2 −O(h2)‖wh‖H1

≥ C‖wh‖H1 , (5.16)

where the last estimate follows from the generalised Korn inequality in H1 for shallow shells
(see, e.g., [8, Theorem 3.4-1]). By (5.7) and (5.8) we conclude that the sequence (wh) is
uniformly bounded in H1(Ω;R3) for h small enough. Thus, there exists w ∈ H1(Ω;R3) such
that

wh ⇀ w weakly in H1(Ω;R3), (5.17)

up to subsequences. Convergence (5.17) yields

symDwh − ∂3w
h �∇θ ⇀ symDw − ∂3w �∇θ weakly in L2(Ω;M3×3

sym).

On the other hand, owing to (5.8) and (5.15), we also have that (symDwh−∂3w
h�∇θ)αβ →

ζαβ and (symDwh − ∂3w
h �∇θ)i3 → 0 strongly in L2(Ω). Therefore, we deduce that

symDwh − ∂3w
h �∇θ → symDw − ∂3w �∇θ strongly in L2(Ω;M3×3

sym), (5.18)

with

(symDw − ∂3w �∇θ)αβ = ζαβ (5.19)

and (symDw − ∂3w �∇θ)i3 = 0. Since ∂3θ = 0, this last equality implies that

(symDw − ∂3w �∇θ)33 = ∂3w3 = 0,

and consequently

(symDw − ∂3w �∇θ)α3 = (symDw)α3 = 0.

In other words, (symDw)i3 = 0, that is, w ∈ KL(Ω). In particular, we have that ∂3wα =
−∂αw3, hence ∂3w �∇θ = −∇w3 �∇θ, so that (5.19) gives the equality (E∗w)αβ = ζαβ .

To conclude it remains to show that the convergence in (5.17) is strong. By applying
again [8, Theorem 3.4-1] we obtain

‖wh − wh
′
‖H1

≤ C(‖wh − wh
′
‖L2(∂dΩ) + ‖ symDwh − ∂3w

h �∇θ − symDwh
′
+ ∂3w

h′
�∇θ‖L2) (5.20)

for every 0 < h, h′ � 1. By (5.17) and the compactness of the trace operator we have that
wh → w strongly in L2(∂dΩ;R3). Thus, by (5.18) and (5.20) we conclude that (wh) is a
Cauchy sequence in H1(Ω;R3), hence (5.9) holds.

Step 2: Compactness. Since

(wh, sym(RhDw
hRhF

−1
h ), 0) ∈ Ah(Ω, wh),

the minimality of (uh, eh, ph) implies that

Ih(uh, eh, ph) ≤ Ih(wh, sym(RhDw
hRhF

−1
h ), 0) ≤ C (5.21)

for every 0 < h� 1, where the last inequality is a consequence of (3.5), (5.8), and Lemma 3.1.
Using again Lemma 3.1, (3.5), and (3.8), the bound (5.21) yields

‖eh‖L2 + ‖ph‖Mb
≤ C (5.22)

for every 0 < h � 1. Thus, there exist ẽ ∈ L2(Ω;M3×3
sym) and p̃ ∈ Mb(Ω ∪ ∂dΩ;M3×3

sym) such
that, up to subsequences,

eh ⇀ ẽ weakly in L2(Ω;M3×3
sym), (5.23)

ph ⇀ p̃ weakly∗ in Mb(Ω ∪ ∂dΩ;M3×3
D ). (5.24)

We introduce e ∈ L2(Ω;M3×3
sym) and p ∈Mb(Ω∪ ∂dΩ;M3×3

sym) defined by eαβ := ẽαβ , ei3 := 0,
and pαβ := p̃αβ , pi3 := 0, respectively.
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Since Q is convex and detFh → 1 uniformly, as h→ 0, by Lemma 3.1, we have

lim inf
h→0

∫
Ω

Q(eh) detFh dx ≥
∫

Ω

Q(ẽ) dx ≥ Q∗(e), (5.25)

where the last inequality follows from the definition of Q∗. Analogously, by the Reshetnyak
Theorem and the definition of H∗ we deduce

lim inf
h→0

Hh(ph) ≥
∫

Ω∪∂dΩ

H

(
dp̃

d|p̃|

)
d|p̃| ≥ H∗(p). (5.26)

By (3.14) and (5.22) we can apply Lemma 5.1. Thus, there exists u ∈ KL(Ω) such that,
up to subsequences,

uh → u strongly in L1(Ω;R3), (5.27)

sym(RhDu
hRhF

−1
h )αβ ⇀ (E∗u)αβ weakly∗ in Mb(Ω). (5.28)

We claim that (u, e, p) ∈ AgKL(w). Combining (5.23), (5.24), and (5.28), we deduce that
E∗u = e+ p in Ω.

To conclude it remains to show that p = (w − u) � ν∂ΩH2 on ∂dΩ. We argue as in [10,
Lemma 2.1]. Since γd is open in ∂ω, there exists an open set A ⊆ R2 such that γd = A∩∂ω.
We set U := (ω ∪A) ×

(
− 1

2 ,
1
2

)
. We extend θ to ω ∪ A in such a way that θ ∈ C3(ω ∪A).

Consequently, Ψh ∈ C2(U ;R3) and Fh ∈ C1(U ;M3×3) for every 0 < h � 1. Let uh(h)
and wh(h) be the vectorfields given by the curvilinear coordinates of uh and wh, defined
according to (4.1). For simplicity we write u(h) and w(h) instead of uh(h) and wh(h). By
(4.1), (5.4), and (5.9) we have that

w(h)→ w̃ := w + w3∇θ strongly in L2(Ω;R3). (5.29)

By Proposition 4.1, Lemma 4.3, and (5.8), the sequence (symDw(h)) is also strongly con-
verging in L2(Ω;M3×3

sym). Thus, by the Korn inequality the convergence in (5.29) is strong in

H1(Ω;R3). Moreover, we can extend w(h) and w̃ to U in such a way that

w(h) ⇀ w̃ weakly in H1(U ;R3). (5.30)

We now define the triplet (v(h), η(h), q(h)) ∈ BD(U)× L2(U ;M3×3
sym)×Mb(U ;M3×3

sym) as

v(h) :=

{
u(h) in Ω,

w(h) in U \ Ω,
η(h) :=

{
R−1
h FTh e

hFhR
−1
h in Ω,

R−1
h E(h,w(h))R−1

h in U \ Ω,

and

q(h) :=

{
R−1
h FTh p

hFhR
−1
h in Ω ∪ ∂dΩ,

0 in U \ (Ω ∪ ∂dΩ) ,

where E(h,w(h)) is defined as in (4.4). We have that

(symDv(h))ij = η(h)ij + q(h)ij + (R−1
h )ikΓmkl(h)vm(h)(R−1

h )lj in U. (5.31)

Indeed, this equality holds in Ω and in U \ Ω as a consequence of (3.14), (4.3), and (4.4),
while on ∂dΩ it follows from (3.14), (4.2), and the definition of the cofactor.

By (4.1), (5.4), (5.27), and (5.30) we deduce that

v(h)→ v strongly in L1(U ;R3), (5.32)

where

v :=

{
u+ u3∇θ in Ω,

w̃ in U \ Ω.

Since (η(h)) is uniformly bounded in L2(U ;M3×3
sym) by (5.23), Lemma 3.1, (4.4), and (5.30),

there exists η ∈ L2(U ;M3×3
sym) such that

η(h) ⇀ η weakly in L2(U ;M3×3
sym), (5.33)

up to subsequences. Finally, it follows from Lemma 3.1 and (5.24) that

q(h) ⇀ q weakly∗ in Mb(U ;M3×3
sym), (5.34)
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where

q :=

{
p in Ω ∪ ∂dΩ,
0 in U \ (Ω ∪ ∂dΩ) .

Passing to the limit in (5.31) by (5.32)–(5.34) and Lemma 4.3, we obtain

symDv = η + q + v3D
2θ in U.

In particular, since w̃ = w + w3∇θ, the previous equality on ∂dΩ reads as

p = (w − u+ (w3 − u3)∇θ)� ν∂ΩH2 on ∂dΩ.

Since pα3 = 0, ν∂Ω · e3 = 0 on ∂dΩ, and ∂3θ = 0, this implies that u3 = w3 on ∂dΩ and, in
turn, the desired equality.

Step 3: Existence of a recovery sequence. We show that for every (v, η, q) ∈ AgKL(w) there
exists a sequence of triplets (vh, ηh, qh) ∈ Ah(Ω, wh) such that

vh → v strongly in L1(Ω;R3), (5.35)

sym(RhDv
hRhF

−1
h )αβ ⇀ (E∗v)αβ weakly∗ in Mb(Ω), (5.36)

ηh →Mη strongly in L2(Ω;M3×3
sym), (5.37)

qhαβ ⇀ qαβ weakly∗ in Mb(Ω ∪ ∂dΩ), (5.38)

Hh(qh)→ H∗(q), (5.39)

and

lim
h→0
Ih(vh, ηh, qh) = I(v, η, q). (5.40)

Owing to Lemma 3.7, it is enough to construct an approximating sequence for a triplet

(v, η, q) ∈
(
H1(Ω;R3)× L2(Ω;M3×3

sym)× L2
∞,c(Ω;M3×3

sym)
)
∩ AgKL(w). (5.41)

In the general case one can argue by density as in [11, Theorem 5.4].
Let (v, η, q) be as in (5.41). Since q ∈ L2(Ω;M3×3

sym), we have that q = 0 on ∂dΩ and v = w

on ∂dΩ. Let φ1, φ2, φ3 ∈ L2(Ω) be such that

Mη =

η11 η12 φ1

η21 η22 φ2

φ1 φ2 φ3

 . (5.42)

As q ∈ L2(Ω;M3×3
sym), by the measurable selection Lemma (see, e.g., [16]) and by the definition

of H∗ there exist ψ1, ψ2 ∈ L2(Ω) such that

H∗(q) = H

q11 q12 ψ1

q21 q22 ψ2

ψ1 ψ2 − (q11 + q22)

 . (5.43)

We approximate the functions φi and ψα by means of elliptic regularisations; namely, for
every 0 < h� 1 we consider the solutions φhi ∈ H1

0 (Ω) and ψhα ∈ H1
0 (Ω) of the problems{

−h∆φhi + φhi = φi in Ω,

φhi = 0 on ∂Ω,

{
−h∆ψhα + ψhα = ψα in Ω,

ψhα = 0 on ∂Ω.

Similarly, for every 0 < h� 1 we define ξhi ∈ H1
0 (Ω) as the solutions of the problems{

−h∆ξhα + ξhα = −ζ3α in Ω,

ξhα = 0 on ∂Ω,

{
−h∆ξh3 + ξh3 = ∇(w3 − v3) · ∇θ − ζ33 in Ω,

ξh3 = 0 on ∂Ω,

where ζ3i are the components of the function ζ in (5.8). The standard theory of elliptic
equations implies that

φhi → φi strongly in L2(Ω), ψhα → ψα strongly in L2(Ω),

ξhα → −ζ3α strongly in L2(Ω),

ξh3 → ∇(w3 − v3) · ∇θ − ζ33 strongly in L2(Ω),

(5.44)
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as h→ 0, and

‖∇φhi ‖L2 + ‖∇ψhα‖L2 + ‖∇ξhi ‖L2 ≤ Ch− 1
2 (5.45)

for every 0 < h� 1. We also introduce the function kh ∈ L2(Ω;M3×3), defined component-
wise as

khαβ(x′, x3) := 2h

∫ x3

0

(
∂βφ

h
α(x′, s) + ∂βψ

h
α(x′, s) + ∂βξ

h
α(x′, s)

)
ds,

k3β(x′, x3) := h2

∫ x3

0

(
∂βφ

h
3 (x′, s) + ∂βξ

h
3 (x′, s)− ∂βq11(x′, s)− ∂βq22(x′, s)

)
ds,

khα3 := 2h(φhα + ψhα + ξhα), kh33 := h2(φh3 + ξh3 − q11 − q22).

We are now in a position to define the recovery sequence. We set

vhα := vα + whα − wα + 2h

∫ x3

0

(
φhα(x′, s) + ψhα(x′, s) + ξhα(x′, s)

)
ds,

vh3 := v3 + wh3 − w3 + h2

∫ x3

0

(
φh3 (x′, s) + ξh3 (x′, s)− q11(x′, s)− q22(x′, s)

)
ds.

It is straightforward to check that

Dvh = Dv +Dwh −Dw + kh.

This leads us to define

qh := q +

 0 0 ψh1
0 0 ψh2
ψh1 ψh2 −(q11 + q22)

 ,

ηh := sym(Rh(Dv +Dwh −Dw)RhF
−1
h ) + sym(Rhk

hRhF
−1
h )− qh.

Since φhi , ψ
h
α, ξ

h
i ∈ H1

0 (Ω), q ∈ L2
∞,c(Ω;M2×2

sym), and v = w on ∂dΩ, we have that vh = wh on

∂dΩ. Hence, (vh, ηh, qh) ∈ Ah(Ω, wh).
It follows from (5.9) and (5.44) that vh → v strongly in L2(Ω;R3). In particular, (5.35)

holds. By the definition of qh we immediately deduce (5.38). Owing to (5.44), we obtain that

qh → q +

 0 0 ψ1

0 0 ψ2

ψ1 ψ2 −(q11 + q22)

 strongly in L2(Ω;M3×3
sym). (5.46)

Convergence (5.46), together with (5.43) and Lemma 3.1, implies (5.39).
We now prove (5.37). Since v, w ∈ KL(Ω), expansions (5.15) imply that

sym(Rh(Dv −Dw)RhF
−1
h )αβ = (E∗v − E∗w)αβ +O(h2),

sym(Rh(Dv −Dw)RhF
−1
h )α3 = O(h),

sym(Rh(Dv −Dw)RhF
−1
h )33 = ∇θ · ∇(v3 − w3) +O(h2).

Thus, by (5.8) and the equality (E∗w)αβ = ζαβ we deduce that

sym(Rh(Dv +Dwh −Dw)RhF
−1
h )αβ → (E∗v)αβ strongly in L2(Ω),

sym(Rh(Dv +Dwh −Dw)RhF
−1
h )α3 → ζα3 strongly in L2(Ω),

(5.47)

and

sym(Rh(Dv +Dwh −Dw)RhF
−1
h )33 → ζ33 +∇θ · ∇(v3 − w3) strongly in L2(Ω). (5.48)

From (5.44) and (5.45) it follows that

(Rhk
hRh)iβ → 0 strongly in L2(Ω),

(Rhk
hRh)α3 → 2 (φα + ψα − ζ3α) strongly in L2(Ω),

(Rhk
hRh)33 → φ3 +∇(w3 − v3) · ∇θ − ζ33 − q11 − q22 strongly in L2(Ω).
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This, together with the uniform convergence of F−1
h to I3×3, implies that

sym(Rhk
hRhF

−1
h )αβ → 0 strongly in L2(Ω),

sym(Rhk
hRhF

−1
h )α3 → φα + ψα − ζ3α strongly in L2(Ω),

sym(Rhk
hRhF

−1
h )33 → φ3 +∇(w3 − v3) · ∇θ − ζ33 − q11 − q22 strongly in L2(Ω).

Combining the convergences above with (5.42), (5.46), (5.47), and (5.48), yields (5.37).
Finally, (5.36) follows from (5.37) and (5.38), while (5.40) is a consequence of (3.18),

(5.37), and (5.39).

Step 4: Minimality of (u, e, p) and strong convergence of the elastic strains. Let (v, η, q) ∈
AgKL(w). By Step 3 there exists a sequence (vh, ηh, qh) in Ah(Ω, wh) such that (5.35)–(5.40)
hold. Therefore,

I(v, η, q) = lim
h→0
Ih(vh, ηh, qh) ≥ lim sup

h→0
Ih(uh, eh, ph), (5.49)

where the last inequality follows from the minimality of (uh, eh, ph). On the other hand, by
(5.25) and (5.26)

lim inf
h→0

Ih(uh, eh, ph) ≥ I(u, e, p). (5.50)

Combining (5.49) and (5.50), we conclude that (u, e, p) is a minimiser of I. Moreover, by
choosing (v, η, q) = (u, e, p) in (5.49) we deduce (5.14).

It remains to prove (5.12). From (5.25), (5.26), and (5.14) it follows that

lim
h→0

∫
Ω

Q(eh) detFh dx = Q∗(e).

Since detFh → 1 uniformly, as h→ 0, this implies that

lim
h→0

∫
Ω

Q(eh) dx = Q∗(e). (5.51)

On the other hand, by (3.18) we have

Q(eh −Me) = Q(eh) +Q∗(e)− CMe : eh.

Therefore, owing to (5.23), (5.51), and (3.17), we get

lim
h→0

∫
Ω

Q(eh −Me) dx = 0.

By the coercivity (3.5) of Q this implies (5.12). �

6. Convergence of quasistatic evolutions

In this section we discuss the convergence of the quasistatic evolution problems associated
with the functionals Ih.

We fix a time interval [0, T ] with T > 0 and we give the following definitions.

Definition 6.1. Let 0 < h � 1 and let wh ∈ Lip([0, T ];H1(Ω;R3)). An h-quasistatic
evolution for the boundary datum wh is a function t 7→ (uh(t), eh(t), ph(t)) from [0, T ] into
Vh(Ω)× L2(Ω;M3×3

sym)×Mb(Ω ∪ ∂dΩ;M3×3
D ) that satisfies the following conditions:

(qs1) global stability: for every t ∈ [0, T ] we have that (uh(t), eh(t), ph(t)) ∈ Ah(Ω, wh(t))
and ∫

Ω

Q(eh(t)) detFh dx ≤
∫

Ω

Q(η) detFh dx+Hh(q − ph(t)) (6.1)

for every (v, η, q) ∈ Ah(Ω, wh(t));
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(qs2) energy balance: ph ∈ BV ([0, T ];Mb(Ω ∪ ∂dΩ;M3×3
sym)) and for every t ∈ [0, T ]∫

Ω

Q(eh(t)) detFh dx+Dh(ph; 0, t)

=

∫
Ω

Q(eh(0)) detFh dx+

∫ t

0

∫
Ω

Ceh(s) : sym(RhDẇ
h(s)RhF

−1
h ) detFh dx ds. (6.2)

In (6.2) the notation Dh(ph; 0, t) stands for the dissipation of ph in the interval [0, t],
defined as

Dh(p; a, b) := sup
{ N∑
j=1

Hh(p(sj)− p(sj−1)) : a = s0 ≤ s1 ≤ · · · ≤ sN = b, N ∈ N
}

for every p ∈ BV ([0, T ];Mb(Ω ∪ ∂dΩ;M3×3
sym)) and every 0 ≤ a ≤ b ≤ T .

Definition 6.2. Let w ∈ Lip([0, T ];H1(Ω;R3) ∩ KL(Ω)). A reduced quasistatic evolution
for the boundary datum w is a function t 7→ (u(t), e(t), p(t)) from [0, T ] into BD(Ω) ×
L2(Ω;M2×2

sym)×Mb(Ω ∪ ∂dΩ;M2×2
sym) that satisfies the following conditions:

(qs1)∗ reduced global stability: for every t ∈ [0, T ] we have that (u(t), e(t), p(t)) ∈ AgKL(w(t))
and

Q∗(e(t)) ≤ Q∗(η) +H∗(q − p(t)) (6.3)

for every (v, η, q) ∈ AgKL(w(t));

(qs2)∗ reduced energy balance: p ∈ BV ([0, T ];Mb(Ω ∪ ∂dΩ;M2×2
sym)) and for every t ∈ [0, T ]

Q∗(e(t)) +D∗(p; 0, t) = Q∗(e(0)) +

∫ t

0

∫
Ω

C∗e(s) : E∗ẇ(s) dx ds. (6.4)

In (6.4) the notation D∗(p; 0, t) stands for the reduced dissipation of p in the interval [0, t],
defined as

D∗(p; a, b) := sup
{ N∑
j=1

H∗(p(sj)− p(sj−1)) : a = s0 ≤ s1 ≤ · · · ≤ sN = b, N ∈ N
}

for every p ∈ BV ([0, T ];Mb(Ω ∪ ∂dΩ;M2×2
sym)) and every 0 ≤ a ≤ b ≤ T .

We now prove the convergence of a sequence of h-quasistatic evolutions to a reduced
quasistatic evolution, as h→ 0. This will be proved under the following assumptions on the
boundary and initial data.

Boundary displacements. We consider a sequence of boundary displacements

(wh) ⊂ Lip([0, T ];H1(Ω;R3)) (6.5)

such that for every 0 < h� 1

‖wh‖Lip([0,T ];L2(∂dΩ;R3)) + ‖ sym(RhDw
hRhF

−1
h )‖Lip([0,T ];L2) ≤ C (6.6)

with a constant C > 0, independent of h. Furthermore, we assume that there exists ζ ∈
Lip([0, T ];L2(Ω;M3×3

sym)) such that

sym(RhDw
h(t)RhF

−1
h )→ ζ(t) strongly in L2(Ω;M3×3

sym) (6.7)

for every t ∈ [0, T ] and

sym(RhDẇ
h(t)RhF

−1
h )→ ζ̇(t) strongly in L2(Ω;M3×3

sym) (6.8)

for a.e. t ∈ [0, T ].
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Initial data. Let (uh0 , e
h
0 , p

h
0 ) ∈ Ah(Ω, wh(0)) be such that∫

Ω

Q(eh0 ) detFh dx ≤
∫

Ω

Q(η) detFh dx+Hh(q − ph0 ) (6.9)

for every (v, η, q) ∈ Ah(Ω, wh(0)). Moreover, we assume that

eh0 → ẽ0 strongly in L2(Ω;M3×3
sym) (6.10)

for some ẽ0 ∈ L2(Ω;M3×3
sym) and that for every 0 < h� 1

‖ph0‖Mb
≤ C (6.11)

for some constant C > 0, independent of h.
We are now in a position to state the main result of this paper.

Theorem 6.3. Assume (6.5)– (6.11). For every 0 < h � 1 let t 7→ (uh(t), eh(t), ph(t))
be an h-quasistatic evolution for the boundary datum wh such that (uh(0), eh(0), ph(0)) =
(uh0 , e

h
0 , p

h
0 ). Then there exist w ∈ Lip([0, T ];H1(Ω;R3) ∩KL(Ω)) and a reduced quasistatic

evolution

(u, e, p) ∈ Lip
(
[0, T ] ;BD(Ω)× L2(Ω;M2×2

sym)×Mb(Ω ∪ ∂dΩ;M2×2
sym)

)
for the boundary datum w such that, up to subsequences, for every t ∈ [0, T ]

wh(t)→ w(t) strongly in H1(Ω;R3), (6.12)

uh(t)→ u(t) strongly in L1(Ω;R3), (6.13)

sym(RhDu
h(t)RhF

−1
h )αβ ⇀ (E∗u(t))αβ weakly∗ in Mb(Ω), (6.14)

eh(t)→Me(t) strongly in L2(Ω;M3×3
sym), (6.15)

phαβ(t) ⇀ pαβ(t) weakly∗ in Mb(Ω ∪ ∂dΩ), (6.16)

as h→ 0.

Remark 6.4. Given a boundary datum wh and a triplet (uh0 , e
h
0 , p

h
0 ) ∈ Ah(Ω, wh(0)) satisfy-

ing (6.9), the existence of an h-quasistatic evolution t→ (uh(t), eh(t), ph(t)) with boundary
datum wh and initial condition (uh(0), eh(0), ph(0)) = (uh0 , e

h
0 , p

h
0 ) follows from [10, Theo-

rem 4.5]. In [10] this result is proven for ∂Ω of class C2, but, as observed in [17], Lipschitz
regularity of the boundary is enough in the absence of external forces. Furthermore, since
the problem is rate-independent, one can always assume the data to be Lipschitz continuous
in time (and not only absolutely continuous), up to a time scaling, so that solutions are
Lipschitz continuous in time (see [10, Theorem 5.2]).

Remark 6.5. The assumptions (6.10) and (6.11) on the initial data are crucial to deduce
the right compactness estimates for the sequence of h-quasistatic evolutions (see Step 2 in
the proof of Theorem 6.3). Moreover, the strong convergence in (6.10) is needed to pass to
the limit in the energy balance and deduce an energy inequality for the reduced problem
(see Step 6 in the proof of Theorem 6.3).

For the proof of Theorem 6.3 we will need some preliminary results. The first one is a
characterisation of the global stability condition (qs1)∗ of the reduced problem.

Lemma 6.6. Let w ∈ H1(Ω;R3) ∩ KL(Ω) and let (u, e, p) ∈ AgKL(w). The following
conditions are equivalent:

(a) Q∗(e) ≤ Q∗(η) +H∗(q − p) for every (v, η, q) ∈ AgKL(w);

(b) −H∗(q) ≤
∫

Ω

C∗e : η dx for every (v, η, q) ∈ AgKL(0).

Proof. Assume (a) and let (v, η, q) ∈ AgKL(0). For every ε > 0 we have that (u + εv, e +
εη, p+ εq) ∈ AgKL(w). Therefore,

Q∗(e) ≤ Q∗(e+ εη) +H∗(εq).
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Using the positive homogeneity of H∗, dividing by ε and sending ε to 0, we deduce (b).
Conversely, (b) implies (a) by convexity of Q∗ and H∗. �

Arguing in the same way as in the previous lemma, one can prove the following charac-
terisation of the global stability condition (qs1) of the h-quasistatic evolution problem.

Lemma 6.7. Let 0 < h� 1, let w ∈ H1(Ω;R3), and let (u, e, p) ∈ Ah(Ω, w). The following
conditions are equivalent:

(a)

∫
Ω

Q(e) detFh dx ≤
∫

Ω

Q(η) detFh dx+Hh(q − p) for every (v, η, q) ∈ Ah(Ω, w);

(b) −Hh(q) ≤
∫

Ω

Ce : η detFh dx for every (v, η, q) ∈ Ah(Ω, 0).

The next lemma concerns a variant of the Gronwall inequality.

Lemma 6.8. Let φ, ψ : [0, T ] → [0,+∞) be such that φ ∈ L∞(0, T ) and ψ ∈ L1(0, T ).
Assume that

φ(t)2 ≤
∫ t

0

φ(s)ψ(s) ds

for every t ∈ [0, T ]. Then

φ(t) ≤ 1

2

∫ t

0

ψ(s) ds

for every t ∈ [0, T ].

Proof. We define

F (t) :=

∫ t

0

φ(s)ψ(s) ds

for every t ∈ [0, T ]. Thus, F ∈ AC([0, T ]) and by assumption φ(t)2 ≤ F (t) for every t ∈ [0, T ].
Therefore,

F ′(t) = φ(t)ψ(t) ≤ F (t)1/2ψ(t)

for a.e. t ∈ [0, T ]. This leads to

F (t)1/2 ≤ 1

2

∫ t

0

ψ(s) ds

for every t ∈ [0, T ], which implies the thesis by using the assumption again. �

We have now all the ingredients to prove Theorem 6.3.

Proof of Theorem 6.3. The proof is split into six steps.

Step 1: Convergence of wh. Hypothesis (6.6) and estimate (5.16) ensure that

‖wh‖Lip([0,T ];H1) ≤ C
for every 0 < h � 1. By the Ascoli-Arzelà Theorem there exist w ∈ Lip([0, T ];H1(Ω;R3))
and a subsequence (wh), not relabeled, such that

wh(t) ⇀ w(t) weakly in H1(Ω;R3)

for every t ∈ [0, T ]. Arguing as in Step 1 of the proof of Theorem 5.2, we infer that w(t) ∈
KL(Ω) and the above convergence is strong, namely (6.12) holds. Moreover,

sym(RhDw
h(t)RhF

−1
h )αβ → (E∗w(t))αβ strongly in L2(Ω)

for every t ∈ [0, T ]. In particular, by (6.7) we have that ζαβ(t) = (E∗w(t))αβ .

Step 2: Compactness estimates. We claim that there exists C > 0, independent of h, such
that

‖eh(t2)− eh(t1)‖L2 ≤ C|t2 − t1| ‖ sym(RhDẇ
hRhF

−1
h )‖L∞([0,T ];L2) (6.17)

‖ph(t2)− ph(t1)‖Mb
≤ C|t2 − t1| ‖ sym(RhDẇ

hRhF
−1
h )‖L∞([0,T ];L2) (6.18)

for every t1, t2 ∈ [0, T ] and every 0 < h� 1.
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From (6.2), (3.5), (3.8), Lemma 3.1, and the Hölder inequality it follows that

(αC +O(h2))‖eh(t)‖2L2 + (rK +O(h2))‖ph(t)− ph0‖Mb

≤ (βC +O(h2))

∫ t

0

‖eh(s)‖L2‖ sym(RhDẇ
h(s)RhF

−1
h )‖L2 ds+ (βC +O(h2))‖eh0‖2L2 .

Owing to (6.6), (6.10), (6.11), and the Cauchy inequality, we deduce that

sup
t∈[0,T ]

‖eh(t)‖L2 + sup
t∈[0,T ]

‖ph(t)‖Mb
≤ C (6.19)

for every h sufficiently small.
We now use condition (qs1) at time t1. Let

v = uh(t2)− uh(t1)− wh(t2) + wh(t1),

η = eh(t2)− eh(t1)− sym(RhDw
h(t2)RhF

−1
h ) + sym(RhDw

h(t1)RhF
−1
h ),

q = ph(t2)− ph(t1).

Since (v, η, q) ∈ Ah(Ω, 0), by Lemma 6.7 we have that

−
∫

Ω

Ceh(t1) :
(
eh(t2)− eh(t1)

)
detFh dx

+

∫
Ω

Ceh(t1) :
(
sym(RhDw

h(t2)RhF
−1
h )− sym(RhDw

h(t1)RhF
−1
h )

)
detFh dx

≤ Hh(ph(t2)− ph(t1)) ≤ Dh(ph; t1, t2),

where the last inequality is an immediate consequence of the definition of Dh. Using the
previous inequality in the energy balance (6.2) written at times t1 and t2, we get∫

Ω

Q(eh(t2)) detFh dx−
∫

Ω

Q(eh(t1)) detFh dx−
∫

Ω

Ceh(t1) :
(
eh(t2)− eh(t1)

)
detFh dx

≤
∫ t2

t1

∫
Ω

C
(
eh(s)− eh(t1)

)
: sym(RhDẇ

h(s)RhF
−1
h ) detFh dx ds.

We observe that the left-hand side of the previous inequality is exactly∫
Ω

Q(eh(t2)− eh(t1)) detFh dx.

Thus, from (3.5), (3.6), Lemma 3.1, and the Hölder inequality it follows that

(αC +O(h2))‖eh(t2)− eh(t1)‖2L2

≤ (2βC +O(h2))

∫ t2

t1

‖eh(s)− eh(t1)‖L2‖ sym(RhDẇ
h(s)RhF

−1
h )‖L2 ds.

By Lemma 6.8 we deduce that

‖eh(t2)− eh(t1)‖L2 ≤ C
∫ t2

t1

‖ sym(RhDẇ
h(s)RhF

−1
h )‖L2 ds,

hence (6.17).
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Using again the energy balance (6.2) at times t1 and t2, together with (3.8) and Lemma 3.1,
we obtain

(rK +O(h2))‖ph(t2)− ph(t1)‖Mb

≤
∫

Ω

Q(eh(t1)) detFh dx−
∫

Ω

Q(eh(t2)) detFh dx

+

∫ t2

t1

∫
Ω

Ceh(s) : sym(RhDẇ
h(s)RhF

−1
h ) detFh dx ds

≤ C sup
t∈[0,T ]

‖eh(t)‖L2

(∫ t2

t1

‖ sym(RhDẇ
h(s)RhF

−1
h )‖L2 ds+ ‖eh(t2)− eh(t1)‖L2

)
≤ C|t2 − t1| ‖ sym(RhDẇ

hRhF
−1
h )‖L∞([0,T ];L2),

where the last inequality follows from (6.19) and (6.17), and C > 0 is a constant independent
of h. This proves (6.18) and concludes Step 2.

Step 3: Reduced kinematic admissibility. By (6.10), (6.11), (6.17), and (6.18) we can ap-
ply the Ascoli-Arzelà Theorem to the sequences (eh) and (ph) and deduce the existence
of ẽ ∈ Lip([0, T ];L2(Ω;M3×3

sym)) and p̃ ∈ Lip([0, T ];Mb(Ω ∪ ∂dΩ;M3×3
D )) such that, up to

subsequences,

eh(t) ⇀ ẽ(t) weakly in L2(Ω;M3×3
sym), (6.20)

ph(t) ⇀ p̃(t) weakly∗ in Mb(Ω ∪ ∂dΩ;M3×3
D ) (6.21)

for every t ∈ [0, T ]. We introduce e ∈ Lip([0, T ];L2(Ω;M3×3
sym)) and p ∈ Lip([0, T ];Mb(Ω ∪

∂dΩ;M3×3
sym)) defined by eαβ(t) := ẽαβ(t), ei3(t) := 0 for every t ∈ [0, T ], and pαβ(t) := p̃αβ(t),

pi3(t) := 0 for every t ∈ [0, T ], respectively.
Since (uh(t), eh(t), ph(t)) ∈ Ah(Ω;wh(t)), and owing to (6.6) and (6.19), we can apply

Lemma 5.1 and infer that for every t ∈ [0, T ] there exists u(t) ∈ KL(Ω) and a subsequence
uhj (t), possibly depending on t, such that

uhj (t)→ u(t) strongly in L1(Ω;R3), (6.22)

sym(RhDu
hj (t)RhF

−1
h ))αβ ⇀ (E∗u(t))αβ weakly∗ in Mb(Ω). (6.23)

Furthermore, arguing as in Step 2 of the proof of Theorem 5.2, and using (6.20) and (6.21),
we infer that (u(t), e(t), p(t)) ∈ AgKL(w(t)). We now prove that u(t) is uniquely determined.

Assume that there exist t ∈ [0, T ] and two subsequences (uhj (t)) and (uh
′
j (t)) with limits

u1(t) and u2(t), respectively. Set z(t) := u1(t) − u2(t). Since both (u1(t), e(t), p(t)) and
(u2(t), e(t), p(t)) belong to AgKL(w(t)), we have that z(t) ∈ KL(Ω) and

E∗z(t) = 0 in Ω, z(t) = 0 on ∂dΩ.

We deduce that

symDz̄(t) +∇z3(t)�∇θ = x3D
2z3(t) in Ω. (6.24)

Thus, D2z3(t) = 0 in Ω and the boundary condition z̄(t) − x3∇z3(t) = 0 on ∂dΩ gives
∇z3(t) = 0 on ∂dω and z3(t) = 0 on ∂dω. By (2.2) we deduce that z3(t) = 0 in ω. Hence,
symDz̄(t) = 0 in ω by (6.24) and, in turn, symDz(t) = 0 in Ω. Since z(t) = 0 on ∂dΩ, it
follows from (2.1) that z(t) = 0 in Ω. This proves that u(t) is uniquely determined, hence
convergences (6.22) and (6.23) hold for the whole sequence. Thus, (6.13) and (6.14) are
proved.

It remains to check that u ∈ Lip([0, T ];BD(Ω)). Since e, p, and w are Lipschitz continuous,
by kinematic admissibility we infer that

(u,E∗u) ∈ Lip([0, T ];L1(∂dΩ;R3)×Mb(Ω;M2×2
sym)). (6.25)

Now let us consider the first order moments of u and E∗u. One can prove that

‖Ê∗u(t)‖Mb(ω) ≤ C‖E∗u(t)‖Mb(Ω), ‖û(t)‖L1(ω) ≤ C‖u(t)‖L1(Ω),
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with C > 0. These estimates, together with the relations ûα(t) = −∂αu3(t) and Ê∗u(t) =
−D2u3(t), imply that

(u3,∇u3, D
2u3) ∈ Lip([0, T ];L1(∂dω)× L1(∂dω;R2)×Mb(ω;M2×2

sym))

and, in turn, owing to (2.2), that u3 ∈ Lip([0, T ];BH(ω)). It follows now from (6.25) and
the definition (3.22) of E∗u that symDu ∈ Lip([0, T ];Mb(Ω;M3×3

sym)). Therefore it is a con-
sequence of (2.1) that

u ∈ Lip([0, T ];BD(Ω)).

The previous arguments, together with (6.10) and (6.11), also prove that, up to sub-
sequences, uh0 → u0 strongly in L1(Ω;R3), (sym(RhDu

h
0RhF

−1
h )αβ ⇀ (E∗u0)αβ weakly∗

in Mb(Ω), (eh0 )αβ → (e0)αβ strongly in L2(Ω), (ph0 )αβ ⇀ (p0)αβ weakly∗ in Mb(Ω), for
some (u0, e0, p0) ∈ AKL(w(0)). Since (uh(0), eh(0), ph(0)) = (uh0 , e

h
0 , p

h
0 ), we have that

(u(0), e(0), p(0)) = (u0, e0, p0).

Step 4: Reduced global stability. We prove (6.3). Let t ∈ [0, T ]. By Lemma 6.6 condition (6.3)
at time t is equivalent to

−H∗(q) ≤
∫

Ω

C∗e(t) : η dx for every (v, η, q) ∈ AgKL(0). (6.26)

Let (v, η, q) ∈ AgKL(0). By Step 3 in the proof of Theorem 5.2 there exists a sequence
(vh, ηh, qh) ∈ Ah(Ω, 0) such that

ηh →Mη strongly in L2(Ω;M3×3
sym), (6.27)

Hh(qh)→ H∗(q). (6.28)

By Lemma 6.7 and (6.1) at time t we have that

−Hh(qh) ≤
∫

Ω

Ceh(t) : ηh detFh dx

for every 0 < h � 1. By (6.20), (6.27), and (6.28) we can pass to the limit in the previous
estimate, as h tends to 0, and deduce that

−H∗(q) ≤
∫

Ω

Cẽ(t) : Mη dx for every (v, η, q) ∈ AgKL(0).

Since Cẽ(t) : Mη = CMe(t) : Mη = C∗e(t) : η by (3.20), this inequality reduces to (6.26).

Step 5: Identification of the limiting elastic strain. We now prove that ẽ(t) = Me(t) for every
t ∈ [0, T ].

Let t ∈ [0, T ]. For every ψ ∈ H1(Ω;R3) with ψ = 0 on ∂dΩ we consider the triplets
(±ψ,± sym(RhDψRhF

−1
h ), 0) as test functions in condition (b) of Lemma 6.6 at time t.

This leads to ∫
Ω

Ceh(t) : sym(RhDψRhF
−1
h ) detFh dx = 0

for every 0 < h� 1.
Let now (a, b) ⊂ (− 1

2 ,
1
2 ), let U ⊂ ω be an open set, and let λi ∈ R. Let (ϕn) ⊂ C1([− 1

2 ,
1
2 ])

and (λni ) ⊂ C1
c (ω) be sequences such that (ϕn)′ → χ(a,b) strongly in L4(− 1

2 ,
1
2 ) and λni →

λiχU strongly in L4(ω), as n→∞. For 0 < h� 1 and n ∈ N we define

ψh,n(x) :=
(
2hϕn(x3)λnα(x′), h2ϕn(x3)λn3 (x′)

)
.

Since ψh,n ∈ H1(Ω;R3) and ψh,n = 0 on ∂dΩ, we have∫
Ω

Ceh(t) : sym(RhDψ
h,nRhF

−1
h ) detFh dx = 0. (6.29)

Using that F−1
h = I3×3 +O(h) by Lemma 3.1, we obtain that

sym(RhDψ
h,nRhF

−1
h )αβ = O(h), sym(RhDψ

h,nRhF
−1
h )i3 = (ϕn)′λni +O(h).
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These expansions, together with (6.20) and the uniform convergence of detFh to 1, allow us
to pass to the limit in (6.29), first as h→ 0, and then, as n→∞. This yields

∫
U×(a,b)

Cẽ(t) :

 0 0 λ1

0 0 λ2

λ1 λ2 λ3

 dx = 0.

Since the sets (a, b) and U are arbitrary, we conclude from (3.16) that ẽ(t) = Me(t) a.e.
in Ω. In particular, we have that ẽ0 = Me0, where ẽ0 is the limit in (6.10).

Step 6: Reduced energy balance. The lower semicontinuity of Q∗ and D∗, together with (6.20)
and (6.21), imply that

Q∗(e(t)) ≤ lim inf
h→0

∫
Ω

Q(eh(t)) detFh dx,

D∗(p; 0, t) ≤ lim inf
h→0

Dh(ph; 0, t)

(6.30)

for every t ∈ [0, T ]. Passing to the limit in the energy balance (6.2) yields

Q∗(e(t)) +D∗(p; 0, t)

≤ lim sup
h→0

{∫
Ω

Q(eh(0)) detFh dx+

∫ t

0

∫
Ω

Ceh(s) : sym(RhDẇ
h(s)RhF

−1
h ) detFh dx ds

}
=

∫
Ω

Q(ẽ0) dx+

∫ t

0

∫
Ω

Cẽ(s) : ζ̇(s) dx ds,

where the second equality is a consequence of (6.8), (6.6), (6.10), (6.19), (6.20), and the
Dominated Convergence Theorem. By Step 5 and the equality ζαβ(t) = (E∗w(t))αβ , we
conclude that

Q∗(e(t)) +D∗(p; 0, t) ≤ Q∗(e0) +

∫ t

0

∫
Ω

C∗e(s) : E∗ẇ(s) dx ds.

As it is standard in the variational theory for rate-independent processes, the converse
energy inequality follows from the minimality condition (qs1)∗ (see, e.g., [31, Theorem 4.4]
or [10, Theorem 4.7]). We have thus proved that t 7→ (u(t), e(t), p(t)) is a reduced quasistatic
evolution.

To conclude the proof it remains to show the strong convergence of eh(t) to Me(t) for
every t ∈ [0, T ]. Since we have showed that the right-hand side of (6.2) converges to the
right-hand side of (6.4), we have that

lim
h→0

{∫
Ω

Q(eh(t)) detFh dx+Dh(ph; 0, t)
}

= Q∗(e(t)) +D∗(p; 0, t)

for every t ∈ [0, T ]. Thus, by (6.30) and Lemma 3.1 we deduce that

Q∗(e(t)) = lim
h→0

∫
Ω

Q(eh(t)) detFh dx = lim
h→0

∫
Ω

Q(eh(t)) dx

Since

Q∗(e(t)) =

∫
Ω

Q(Me(t)) dx,

convergence (6.15) follows from (6.20), Step 5, and the coercivity (3.5) of Q. The proof of
Theorem 6.3 is concluded. �

6.1. Characterisation of reduced quasistatic evolutions in rate form. We conclude
this section with a characterisation of reduced quasistatic evolutions.
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Stress-strain duality. In the framework of the reduced problem we introduce a notion of
duality between stresses and plastic strains. Here we follow [11, Section 7].

We define the set Σ(Ω) of admissible stresses as

Σ(Ω) := {σ ∈ L∞(Ω;M2×2
sym) : div σ̄ ∈ L2(ω;R2), div div σ̂ ∈ L2(ω)}.

For every σ ∈ Σ(Ω) we can define the trace [σ̄ν∂ω] ∈ L∞(∂ω;R2) of its zeroth order moment
normal component as

〈[σ̄ν∂ω], ψ〉 :=

∫
ω

σ̄ : symDψ dx′ +

∫
ω

div σ̄ · ψ dx′ (6.31)

for every ψ ∈W 1,1(ω;R2). Note that, since σ̄ ∈ L∞(ω;M2×2
sym) and W 1,1(ω;R2) embeds into

L2(ω;R2), all terms on the right-hand side of (6.31) are well defined.
Let T (W 2,1(ω)) be the space of traces of functions in W 2,1(ω) and let (T (W 2,1(ω)))′ be

its dual space. For every σ ∈ Σ(Ω) we can define the traces b0(σ̂) ∈ (T (W 2,1(ω)))′ and
b1(σ̂) ∈ L∞(∂ω) of its first order moment as

−〈b0(σ̂), ψ〉+
〈
b1(σ̂),

∂ψ

∂ν∂ω

〉
:=

∫
ω

σ̂ : D2ψ dx′ −
∫
ω

ψ div div σ̂ dx′ (6.32)

for every ψ ∈ W 2,1(ω). Note that the right-hand side of (6.32) is well defined since σ̂ ∈
L∞(ω;M2×2

sym). If σ̂ ∈ C2(ω,M2×2
sym), one can prove that

b0(σ̂) = div σ̂ · ν∂ω +
∂

∂τ∂ω
(σ̂τ∂ω · ν∂ω) ,

b1(σ̂) = σ̂ν∂ω · ν∂ω,

where τ∂ω is a unit tangent vector to ∂ω (see [13, Théorème 2.3]).
Let (h,m0,m1) ∈ L∞(∂ω;R2)×T (W 2,1(ω)))′×L∞(∂ω). Since [σ̄ν∂ω] ∈ L∞(∂ω;R2) and

b1(σ̂) ∈ L∞(∂ω), the expressions [σ̄ν∂ω] = h on ∂nω and b1(σ̂) = m1 on ∂nω have a clear
meaning. As for b0(σ̂), we say that b0(σ̂) = m0 on ∂nω if 〈b0(σ̂) − m0, ψ〉 = 0 for every
ψ ∈W 2,1(ω) with ψ = 0 on ∂dω.

We define the space of admissible plastic strains Π∂dΩ(Ω) as the set of all measures p ∈
Mb(Ω∪ ∂dΩ;M2×2

sym) for which there exists (u, e, w) ∈ BD(Ω)×L2(Ω;M2×2
sym)× (H1(Ω;R3)∩

KL(Ω)) such that (u, e, p) ∈ AgKL(w).
For every σ ∈ Σ(Ω) and ξ ∈ BD(ω) we define the distribution [σ̄ : symDξ] on ω as

〈[σ̄ : symDξ], ϕ〉 := −
∫
ω

ϕdiv σ̄ · ξ dx′ −
∫
ω

σ̄ : (∇ϕ� ξ) dx′

for every ϕ ∈ C∞c (ω). It follows from [23, Theorem 3.2] that [σ̄ : symDξ] ∈ Mb(ω) and its
variation satisfies

|[σ̄ : symDξ]| ≤ ‖σ̄‖L∞ | symDξ| in ω.

Given σ ∈ Σ(Ω) and p ∈ Π∂dΩ(Ω), we define the measure [σ̄ : p̄] ∈Mb(ω ∪ ∂dω) as

[σ̄ : p̄] :=

{
[σ̄ : symDū] + σ̄ : (∇θ �∇u3)− σ̄ : ē in ω,

[σ̄ν∂ω] · (w̄ − ū)H1 on ∂dω,

where (u, e, w) ∈ BD(Ω) × L2(Ω;M2×2
sym) × (H1(Ω;R3) ∩ KL(Ω)) are such that (u, e, p) ∈

AgKL(w). Note that since ∇u3 ∈ BV (ω;R2) and BV (ω;R2) embeds into L2(ω;R2), the
term σ̄ : (∇θ�∇u3) is in L1(Ω). Moreover, one can easily check that the definition of [σ̄ : p̄]
is independent of the choice of (u, e, w).

For every σ ∈ Σ(Ω) and v ∈ BH(ω) we define the distribution [σ̂ : D2v] on ω as

〈[σ̂ : D2v], ψ〉 :=

∫
ω

ψv div div σ̂ dx′ − 2

∫
ω

σ̂ : (∇v �∇ψ) dx′ −
∫
ω

vσ̂ : D2ψ dx′

for every ψ ∈ C∞c (ω). From [15, Proposition 2.1] it follows that [σ̂ : D2v] ∈ Mb(ω) and its
variation satisfies

|[σ̂ : D2v]| ≤ ‖σ̂‖L∞ |D2v| in ω.
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Given σ ∈ Σ(Ω) and p ∈ Π∂dΩ(Ω), we define the measure [σ̂ : p̂] ∈Mb(ω ∪ ∂dω) as

[σ̂ : p̂] :=

−[σ̂ : D2u3]− σ̂ : ê in ω,

b1(σ̂)
∂(u3 − w3)

∂ν∂ω
H1 on ∂dω,

where (u, e, w) ∈ BD(Ω) × L2(Ω;M2×2
sym) × (H1(Ω;R3) ∩ KL(Ω)) are such that (u, e, p) ∈

AgKL(w). This definition is independent of the choice of (u, e, w).
We are now in a position to define the duality between Σ(Ω) and Π∂dΩ(Ω). For every

σ ∈ Σ(Ω) and p ∈ Π∂dΩ(Ω) we define the measure [σ : p]∗ ∈Mb(Ω ∪ ∂dΩ) as

[σ : p]∗ := [σ̄ : p̄]⊗ L1 +
1

12
[σ̂ : p̂]⊗ L1 − σ⊥ : e⊥.

We also introduce the duality pairings

〈σ̄, p̄〉 := [σ̄ : p̄](ω ∪ ∂dω), 〈σ̂, p̂〉 := [σ̂ : p̂](ω ∪ ∂dω)

and

〈σ, p〉∗ := [σ : p]∗(Ω ∪ ∂dΩ) = 〈σ̄, p̄〉+
1

12
〈σ̂, p̂〉 −

∫
Ω

σ⊥ : e⊥ dx.

The next two results concern some useful properties of the stress-strain duality. We first
show that the duality satisfies an integration by parts formula.

Proposition 6.9. Let σ ∈ Σ(Ω), w ∈ H1(Ω;R3) ∩KL(Ω), and (u, e, p) ∈ AgKL(w). Then

∫
Ω∪∂dΩ

ϕd[σ : p]∗ +

∫
Ω

ϕσ : (e− E∗w) dx

= −
∫
ω

σ̄ : (∇ϕ� (ū− w̄)) dx′ −
∫
ω

div σ̄ · ϕ(ū− w̄) dx′ +

∫
∂nω

[σ̄ν∂ω] · ϕ(ū− w̄) dH1

+
1

12

∫
ω

σ̂ : (u3 − w3)D2ϕdx′ +
1

6

∫
ω

σ̂ : (∇ϕ� (∇u3 −∇w3)) dx′

−
∫
ω

ϕ(u3 − w3)

(
1

12
div div σ̂ + σ̄ : D2θ + div σ̄ · ∇θ

)
dx′

−
∫
ω

(u3 − w3)σ̄ : (∇ϕ�∇θ) dx′ +
∫
∂nω

ϕ(u3 − w3)[σ̄ν∂ω] · ∇θ dH1

+
1

12
〈b0(σ̂), ϕ(u3 − w3)〉 − 1

12

∫
∂nω

b1(σ̂)
∂(ϕ(u3 − w3))

∂ν∂ω
dH1

for every ϕ ∈ C2(ω).

Proof. The proof follows from [12, Proposition 4] by observing that

∫
Ω∪∂dΩ

ϕd[σ : p]∗ =

∫
Ω∪∂dΩ

ϕd[σ : (p−∇θ �∇u3)]r +

∫
ω

ϕσ̄ : (∇θ �∇w3) dx′

+

∫
ω

ϕσ̄ : (∇θ �∇(u3 − w3)) dx′,
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where [σ : p]r is the notion of duality introduced in [11, 12]. Moreover, by (6.31) we have∫
ω

ϕσ̄ : (∇θ �∇(u3 − w3)) dx′

=

∫
ω

σ̄ : symD(ϕ(u3 − w3)∇θ) dx′ −
∫
ω

(u3 − w3)σ̄ : (∇ϕ�∇θ) dx′

−
∫
ω

ϕ(u3 − w3)σ̄ : D2θ dx′

= −
∫
ω

ϕ(u3 − w3)div σ̄ · ∇θ dx′ +
∫
∂nω

ϕ(u3 − w3)[σ̄ν∂ω] · ∇θ dH1

−
∫
ω

(u3 − w3)σ̄ : (∇ϕ�∇θ) dx′ −
∫
ω

ϕ(u3 − w3)σ̄ : D2θ dx′,

where we used that ϕ(u3 − w3)∇θ ∈ BH(ω;R2), hence ϕ(u3 − w3)∇θ ∈ W 1,1(ω;R2) and
u3 = w3 on ∂dω by Proposition 3.5. �

The next lemma is a characterisation of the dissipation potential H∗ in terms of the
duality.

Lemma 6.10. Let p ∈ Π∂dΩ(Ω). Then the following equalities hold:

H∗(p) = sup{〈σ, p〉∗ : σ ∈ Σ(Ω) ∩ K∗(Ω)} = sup{〈σ, p〉∗ : σ ∈ Θ(Ω)},
where

K∗(Ω) :=
{
σ ∈ L2(Ω;M2×2

sym) : σ(x) ∈ K∗ for a.e. x ∈ Ω
}

and Θ(Ω) is the set of all σ ∈ Σ(Ω) ∩ K∗(Ω) such that [σ̄ν∂ω] = 0 on ∂nω and b0(σ̂) =
b1(σ̂) = 0 on ∂nω.

Proof. Let Γ :=
(
∂nω×

(
− 1

2 ,
1
2

))
∪
(
ω×

(
± 1

2

))
. From [40, Chapter II, Section 4] it follows

that

H∗(p) = sup

{∫
Ω∪∂dΩ

σ : dp : σ ∈ C∞(R3;M2×2
sym) ∩ K∗(Ω), suppσ ∩ Γ = Ø

}
≤ sup{〈σ, p〉∗ : σ ∈ Θ(Ω)} ≤ sup{〈σ, p〉∗ : σ ∈ Σ(Ω) ∩ K∗(Ω)}.

The converse inequality can be proved as in [11, Proposition 7.8] by an approximation
argument, where the density result is provided in our framework by Lemma 3.7. �

Now we are ready to state and prove the main result of this section.

Theorem 6.11. Let w ∈ Lip([0, T ];H1(Ω;R3)∩KL(Ω)). Let t 7→ (u(t), e(t), p(t)) be a map
from [0, T ] into KL(Ω)× L2(Ω;M2×2

sym)×Mb(Ω ∪ ∂dΩ;M2×2
sym). Let σ(t) := C∗e(t). Then the

following conditions are equivalent:

(a) t 7→ (u(t), e(t), p(t)) is a reduced quasistatic evolution for the boundary datum w;

(b) t 7→ (u(t), e(t), p(t)) is Lipschitz continuous and

(b1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ AgKL(w(t)), σ(t) ∈ Θ(Ω),
div σ̄(t) = 0 in ω and 1

12div div σ̂(t) + σ̄(t) : D2θ = 0 in ω;

(b2) for a.e. t ∈ [0, T ] there holds

H∗(ṗ(t)) = 〈σ(t), ṗ(t)〉∗.

Remark 6.12. In the strong formulation given by condition (b) in the above theorem,
the stability condition (qs1)∗ is replaced by the equilibrium equations div σ̄(t) = 0 and
1
12div div σ̂(t)+ σ̄(t) : D2θ = 0, supplemented by Neumann boundary conditions on the com-
plement of ∂dω, while the energy balance is replaced by the equality H∗(ṗ(t)) = 〈σ(t), ṗ(t)〉∗.
By Lemma 6.10 this last condition is, in turn, equivalent to the maximum dissipation prin-
ciple 〈τ − σ(t), ṗ(t)〉∗ ≤ 0 for every τ ∈ Θ(Ω). This can be interpreted as an integral version
of the pointwise flow rule (d5)∗ in the introduction.
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Remark 6.13. In contrast with the plate model deduced in [11], the two equilibrium equa-
tions in (b) are coupled. This implies, in particular, that for a shallow shell subject to
“horizontal” initial and boundary data it is in general not possible to write the reduced
quasistatic evolution problem purely in terms of the “horizontal” components ū, ē, and p̄,
as it was instead proven for plates in [11, Proposition 7.6].

Proof of Theorem 6.11. Arguing as in [10, Theorem 5.2] one can prove that every reduced
quasistatic evolution is Lipschitz continuous.

We first prove the equivalence between (qs1)∗ and (b1). Let t ∈ [0, T ]. By Lemma 6.6 it
is enough to show that (b1) is equivalent to the following condition:

−H∗(q) ≤
∫

Ω

σ(t) : η dx for every (v, η, q) ∈ AgKL(0). (6.33)

Assume (6.33). Let B ⊂ Ω be a Borel set and let χB be its characteristic function. Let
ξ ∈M2×2

sym and let η := χBξ. By choosing (0,−η, η) ∈ AgKL(0) as test function in (6.33), we
have that ∫

B

σ(t) : ξ dx ≤ L3(B)H∗(ξ).

Since B is arbitrary, we conclude that σ(t, x) : ξ ≤ H∗(ξ) a.e. in Ω, hence σ(t) ∈ ∂H∗(0) =
K∗ a.e. in Ω.

Let now v ∈ H1(Ω;R3) ∩ KL(Ω) be such that v = 0 on ∂dΩ. Since (±v,±E∗v, 0) ∈
AgKL(0), equation (6.33) implies ∫

Ω

σ(t) : E∗v dx = 0 (6.34)

for every v ∈ H1(Ω;R3) ∩ KL(Ω) with v = 0 on ∂dΩ. By choosing v = ψαeα with ψ ∈
H1(ω;R2) and ψ = 0 on ∂dω in (6.34), we deduce that∫

ω

σ̄(t) : symDψ dx′ = 0

for every ψ ∈ H1(ω;R2), ψ = 0 on ∂dω. Since this holds, in particular, for every ψ ∈
C∞c (ω;R2), we have

div σ̄(t) = 0 in ω. (6.35)

Moreover, by [11, Lemma 7.10-(i)] we obtain

[σ̄(t)ν∂ω] = 0 on ∂nω. (6.36)

We now choose v in (6.34) of the form v = ϕe3, with ϕ ∈ H2(ω), ϕ = 0 and ∇ϕ = 0 on
∂dω. This leads to ∫

ω

σ̄(t) : (∇θ �∇ϕ) dx′ − 1

12

∫
ω

σ̂(t) : D2ϕdx′ = 0.

By (6.35), (6.36), and (6.31) we obtain∫
ω

σ̄(t) : (∇θ�∇ϕ) dx′ =

∫
ω

σ̄(t) : symD(ϕ∇θ) dx′−
∫
ω

ϕσ̄(t) : D2θ dx′ = −
∫
ω

ϕσ̄(t) : D2θ dx′.

Thus, we deduce that ∫
ω

ϕσ̄(t) : D2θ dx′ +
1

12

∫
ω

σ̂(t) : D2ϕdx′ = 0

for every ϕ ∈ H2(ω), ϕ = 0 and ∇ϕ = 0 on ∂dω. Since this holds, in particular, for every
ϕ ∈ C∞c (ω), we have

σ̄(t) : D2θ +
1

12
div div σ̂(t) = 0 in ω.

Moreover, by [11, Lemma 7.10-(ii)] we obtain that b0(σ̂) = b1(σ̂) = 0 on ∂nω. In particular,
σ(t) ∈ Θ(Ω) and (b1) holds.
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Assume now (b1) and let (v, η, q) ∈ AgKL(0). Applying Proposition 6.9 to (v, η, q) with
ϕ = 1 yields

〈σ(t), q〉∗ = −
∫

Ω

σ(t) : η dx.

Since σ ∈ Θ(Ω), we deduce (6.33) by Lemma 6.10.
We now show, that if (b1) holds, then (qs2)∗ and (b2) are equivalent. Assume (b1). Since

p is Lipschitz continuous, [10, Theorem 7.1] guarantees that

D∗(p; 0, t) =

∫ t

0

H∗(ṗ(s)) ds (6.37)

for every t ∈ [0, T ]. Moreover, using Lemma 3.2 one can prove that (u̇(t), ė(t), ṗ(t)) ∈
AgKL(ẇ(t)) for a.e. t ∈ [0, T ]. Applying Proposition 6.9 to (u̇(t), ė(t), ṗ(t)) with ϕ = 1
yields

〈σ(t), ṗ(t)〉∗ =

∫
Ω

σ(t) : (E∗ẇ(t)− ė(t)) dx. (6.38)

Differentiation of (qs2)∗ with respect to time, together with (6.37) and (6.38), yields (b2),
and conversely, integration of (b2) with respect to time yields (qs2)∗. �
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[33] A. Mielke, T. Roub́ıček, M. Thomas: From damage to delamination in nonlinearly elastic materials at

small strains. J. Elasticity 109 (2012), 235–273.
[34] M.G. Mora: Relaxation of the Hencky model in perfect plasticity. J. Math. Pures Appl. 106 (2016),

725–743.

[35] M.G. Mora, S. Müller: Derivation of the nonlinear bending-torsion theory for inextensible rods by
Γ-convergence. Calc. Var. Partial Differential Equations 18 (2003), 287–305.

[36] M.G. Mora, S. Müller: A nonlinear model for inextensible rods as low energy Γ-limit of three-dimensional

nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 271–293.
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