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ABSTRACT. In this paper we rigorously deduce a quasistatic evolution model for shal-
low shells by means of I'-convergence. The starting point of the analysis is the three-
dimensional model of Prandlt-Reuss elasto-plasticity. We study the asymptotic behaviour
of the solutions, as the thickness of the shell tends to zero. As in the case of plates, the
limiting model is genuinely three-dimensional, limiting displacements are of Kirchhoff-
Love type, and the stretching and bending components of the stress are coupled in the
flow rule and in the stress constraint. However, in contrast with the case of plates, the
equilibrium equations are not decoupled, because of the presence of curvature terms. An
equivalent formulation of the limiting problem in rate form is also discussed.

1. INTRODUCTION

In this paper we rigorously derive a quasistatic evolution model for perfectly plastic
shallow shells. Roughly speaking, a shallow shell is a shell in which the amount of deviation
from a plane, measured normally to the plane, is very small. More precisely, we will assume
the deviation to be of the same order of the thickness of the shell. Our analysis is thus
reminiscent of that developed in [11] for elasto-plastic thin plates, but the adaptation to the
nontrivial geometry of the shells gives rise to additional difficulties.

Understanding the relation between lower dimensional theories and their three-dimensional
counterparts for thin bodies (such as beams, plates, or shells) is a classical question in me-
chanics. In recent years this problem has been successfully studied by means of a rigorous
approach based on I'-convergence, both in the stationary case (see, e.g., [3, 35, 36, 37, 38|
for nonlinearly elastic beams, [20, 21, 24| for nonlinearly elastic plates, [19, 25, 26, 41] for
nonlinearly elastic shells) and in the evolutionary setting (see, e.g., [1, 2] for nonlinear elasto-
dynamics, [6, 18] for crack evolution, [11, 27, 28, 30] for elasto-plasticity, [33] for delamination
problems).

In this paper we focus on the model of small-strain perfect plasticity. We consider a three-
dimensional shallow shell made of a homogenous and isotropic material and occupying the
reference configuration Xy, := W, (Q). Here Q2 := w x (—1,1), where w is a bounded domain
in R2, and 0 < h < 1. The map ¥j, : Q — X, is given by

U (z) = (2, h0(2")) + hasvg, (z')  for every x = (2, 23) € Q,
where vg, is the unit normal to the two-dimensional surface
Sy = {(2',hf(x")) : 2’ € w}

and 6 : w — R is a scalar function.

The classical formulation of the quasistatic evolution problem of perfect plasticity in
3, can be described as follows. At a given time ¢ the unknowns of the problem are the
displacement uy,(t) : 5 — R3, the elastic strain ep(t) : B — M2 and the plastic strain
pr(t) : Xy — M%X?’. Here M‘;’jxg’ denotes the space of three-dimensional symmetric matrices
with zero trace. The assumption pp(t) € M?,’JX?’ corresponds to the requirement of volume
preserving plastic deformations, which is usual in the description of the plastic behaviour in
metals. Given a time-dependent displacement wy, (¢) prescribed on a subset 9g%y, := Uy, (942)
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of the lateral boundary of 3; (where 942 is a portion of the lateral boundary of ), and
assuming there are no external loads, we look for a triplet (uy(t), en(t), pr(t)) satisfying the
following conditions for every ¢ € [0,T:

(d1) kinematic admissibility: sym Dup(t) = ep(t) + pp(t) in Xp, and up(t) = wp(t) on
943, where sym Duy,(t) := 3 (Duy(t) + Duy(t)7);

(d2) constitutive law: op(t) := Cep(t) in 3p, where o4 (t) is the stress field at time ¢ and
C is the elasticity tensor;

(d3) equilibrium equation: divop(t) = 0 in Xp and oy, (t)vaq, = 0 on 0% \ 94X, where
Vps,, is the outer unit normal to 9%y

(d4) stress constraint: (op(t))p € K in Xy, where (o) p is the deviatoric part of oy, and
K is a given convex and compact set in the space of deviatoric matrices M%XS;

(d5) flow rule: pp(t) belongs to the normal cone to K at (o5,)p(t) in .

The existence of a solution to (d1)—(d5) was originally established in [39] and revisited
in [10] within the variational framework for rate-independent processes developed in [31]. In
this approach solutions are found in the space

BD(Zp) x L(Sp; M2X3) x My(55, U 0g%n, M),

sym

where BD(X,) denotes the set of functions with bounded deformation on X5 and M (X, U
OgXn; M‘;’)XB) is the set of bounded measures on X;, U 94%;. This functional setting can be
also justified in terms of a relaxation process [5, 34]. The variational formulation of (d1)—(d5)
is then written in terms of two conditions: a global stability condition and an energy balance
(see Definition 6.1).

The scope of this article is to characterise the limiting behaviour of a sequence of solutions
(un(t),en(t),pn(t)), as h tends to 0. In our main result (Theorem 6.3) we show the conver-
gence, up to scaling, to a limiting triplet (u(t),e(t),p(t)), that is characterised as a solution
of the following problem. For every t € [0, T] the displacement u(t) is of Kirchhoff-Love type,
that is, there exist u(t) : w — R? and u3(t) : w — R such that

u(t,z) = (a(t, 2') — v30qus(t,2'),uz(t,2')) for z = (2',23) € Q, a=1,2. (1.1)

The physical interpretation of this condition is that straight lines normal to the mid-surface,
remain straight and normal after the deformation, within the first order. Furthermore, the
following equations (in their strong formulation) are satisfied: for every ¢ € [0, T]

(d1)* reduced kinematic admissibility: u(t) is a Kirchhoff-Love displacement and
sym Du(t) + VO © Vug(t) = e(t) + p(t) in Q, u(t) = w(t) on 949,
6i3(t) = pz‘g(t) =0 in Q, ¢ = ].7 2, 3,
where w(t) is the limit of wy,(¢), up to scaling;
(d2)* reduced constitutive law: o(t) := C*e(t) in 2, where C* is the reduced elasticity
tensor, which is defined through a suitable minimisation formula (see (3.19));
(d3)* equilibrium equations: denoting by &(t) and &(¢) the zero-th and the first order
moments of o(¢), respectively (see Definition 3.3), we have
diva(t) =0 in w, Ldivdive(t) +6(t) : D*0 =0 in w,
with corresponding Neumann boundary conditions on dw \ d4w, where dqw is the
projection of 949 on the plane {z3 = 0};

(d4)* reduced stress constraint: o(t) € K* in §, where K* := 0H*(0) is the subdifferen-
tial of the reduced dissipation H* (whose expression is given in (3.21) through a
minimisation formula) at 0;

(d5)* reduced flow rule: p(t) belongs to the normal cone to K* at o(t) in Q.
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As in the three-dimensional case, a variational formulation of (d1)*—(d5)* can be given
in terms of a reduced global stability condition and of a reduced energy balance in the space

BD() x L2(;M3X3) x My(Q U 940, M323),

sym sym

(see Definition 6.2).

If & = 0, the model above coincides exactly with that derived in [11] for a thin plate.
When 0 is different from 0, curvature effects are taken into account in the limit. In the
kinematic admissibility condition the linearised strain sym Du(t) is augmented by the quan-
tity VO ® Vug(t), which is due to the contribution of the vertical displacement along the
tangential directions to the shallow shell. Also, the curvature tensor of the shallow shell,
which is approximately given by the Hessian of 6, contributes to the equilibrium equations.
In particular, in contrast with the plate model of [11], here the two equilibrium equations
do not decouple.

Since u(t) € BD(R), the Kirchhoff-Love condition (1.1) implies that @(t) € BD(w)
and uz(t) € BH(w), where BH(w) is the space of functions with bounded Hessian on w.
Moreover, we have that

(sym Du(t))ap = (sym Du(t))as — xgaiﬁug(t), a,f=1,2.

We note that the horizontal displacement @(t) may exhibit jump discontinuities, while,
due to the continuous embedding of BH(w) into C(w), the vertical displacement ug is
continuous, with a possibly discontinuous gradient. Since the dependence of u on xz3 is
affine, the discontinuity set of u (that mechanically describes the so-called slip surfaces) is
the vertical surface whose projection on w is the union of the jump sets of @ and of Vug.

Condition (d1)* does not imply, in general, that e(¢) and p(t) have an affine dependence
on x3. However, they admit the following decomposition:

e(t) = e(t) +wsé(t) +eL(t),  p(t) =p(t) +wsp(t) —eL(t),
where the zero order moments é(t) € L?(w;M2X2) and p(t) € My(w U dqw; M222) satisfy

sym sym
sym Du(t) + VO © Vug(t) = e(t) + p(t) inw,

the first order moments é(t) € L?(w; M2X2) and p(t) € My (w U Ggw; M2%2) satisfy

sym sym
D?us(t) = —(e(t) +p(t)) inw,
and e (t) € L*(Q; MZ2).
Explicit examples in the case of plates (see [12, Section 5]) show that in general e (¢) Z 0.
Since this component has a nontrivial dependence on 3, the limiting model has a genuinely
three-dimensional nature and cannot be fully reduced to a two-dimensional setting.

We now describe our proof strategy and discuss the additional difficulties due to the
nontrivial geometry of the shell. The abstract theory of evolutionary I'-convergence for rate-
independent processes [32] cannot be directly applied here. Indeed, this theory consists in
studying separately the I'-convergence of the stored energy functionals and of the dissipation
potentials, and in coupling the two I'-limits by means of a so-called joint recovery sequence.
This approach is not applicable to our case, since in perfect plasticity the stored elastic
energy and the plastic dissipation must be considered together to get the right compactness
properties. For this reason, to identify the correct limiting energy we first study the I'-
convergence of the total energy functional, given by the sum of the stored energy with the
dissipation potential (see also [7, Chapter 3] for a similar setting in the context of a damage
problem). More precisely, we focus on the static case, that is, we consider a boundary
displacement independent of time and study the I'-limit, as h — 0, of the functional

dgq

En(v,m,q) = . Q(n(:c))dac+/2 e H(m> d|q|
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defined for all triplets (v,n, q) such that sym Dv = 5+ ¢ in X}, and satisfying the Dirichlet
boundary condition on 9,;%,. Here Q(n) := %(Cn :  and H is the support function of the
set K.

As usual in dimension reduction problems, a scaling of the admissible triplets (v, 7, q) is
introduced. In particular, the scaled displacement is defined in 2 as

u::R}jlvo\I/h,
where
1 0 0
Rp,:=10 1 0
00 +

We prove (Theorem 5.2) that the I'-limit of &, (rescaled to the domain © and in terms of
the scaled triplets) is the functional

Z(u, e, p) ::/QQ*(e(x))dx—i—/Q o ( dp)d|p|

dlp|

defined for all triplets (u, e, p) satisfying the reduced kinematic admissibility condition (gs1)*.
Here Q*(n) := %(C*n : 1 is the reduced elastic energy density and H* is the reduced dissipa-
tion.

The main difficulty in the proof of this result, compared with [11], is that the scaled
displacement v does not belong to BD(f2), since we only know that

[Sls219)

sym(Ry, DuR, F, ') € My(Q;M2X3), (1.2)

sym

where F}, := DV Ry,. Furthermore, we cannot rely on the classical Korn-Poincaré inequality
for BD functions, as it was done in [11]. Indeed, the expansion of F, ! for h small (see
Lemma 3.1) yields

sym(RhDuRhFh_l)ag = (sym Du — 83u ® V0) 5 + O(h?)||ul| gy,
sym(RhDuRhF}jl)ag = % ((sym Du — 05u ® V)43 + O(h2)||u||BV) ,
sym(Rp, DuRpFy V)53 = 5 (95us(1 4+ O(h?)) + h*Vus - VO + O(hY)||ul pv) ,

where O(hP) is a quantity uniformly bounded by A” in Q and || - ||y denotes the norm
in the space BV () of functions with bounded variation on 2. We note that the remain-
ders are controlled by the BV-norm, which is not a priori bounded. Therefore, a bound
on sym(RyDuRyF, 1) does not provide, in general, any bound on sym Du. To overcome
this difficulty it is convenient to express the scaled displacement in intrinsic curvilinear
coordinates, that is, we consider the vectorfield

u(h) = (D\I/h)TRhu.

The advantage is that the quantity (1.2), written in these coordinates, has a simpler form;
namely, it is related to

(Rp, sym Du(h)Rp)i; — T (h)u(h),

where I'};(h) are the scaled Christoffel symbols of ¥, (see Proposition 4.1). In this ex-
pression the first term is a rescaled symmetrised gradient, while the second term depends
only on the displacement u(h), and not on its derivatives. This allows us to prove, for the
vectorfield of curvilinear coordinates, an ad-hoc Korn-Poincaré inequality on shallow shells
(Theorem 4.4). In this proof the scaling of the coefficients Ffj(h) in terms of h is crucial,
and it is a consequence of the shallowness assumption (that is, of the fact that the amount
of deviation from a plane is of order h).

The Korn-Poincaré inequality on shallow shells is the key ingredient to deduce compact-
ness for sequences of scaled triplets with equibounded energy. We then prove their conver-
gence to limiting triplets (u, e, p) satisfying condition (gs1)*. A delicate point here is to show
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that the limiting triplets (u, e, p) satisfy the Dirichlet boundary condition, that in the BD
framework has to be relaxed as

p=(w—u)®vpaH? on 49,

where vgq is the outer unit normal to 02. The idea is to extend the scaled triplets by
using the boundary datum wy, to an open set U such that U N 92 = 9482. To obtain the
necessary bounds it is again convenient to express the scaled triplets in their curvilinear
coordinates. Finally, the contruction of a recovery sequence is based on an approximation
result (Lemma 3.7), which ensures the density of smooth triplets in the class of kinemati-
cally admissible triplets for the reduced problem. This is a technical lemma, whose proof is
analogous to that of [11, Theorem 4.7].

Once I'-convergence is established in the static case, the proof of the convergence of the
quasistatic evolutions is rather standard. We consider the three-dimensional problem and the
reduced problem in terms of their variational formulations. To deduce the global stability in
the reduced problem, we use as test functions in the three-dimensional problem the recovery
sequence provided by the I'-convergence result. The energy balance follows from the I'-liminf
inequality and a standard minimality argument.

Finally, we discuss (Section 6.1) how to write a strong fomulation of the reduced qua-
sistatic evolution problem in the BD framework, and in particular how to give a meaning
to the flow rule (d5)* in this context. To this aim we define an ad-hoc notion of stress-strain
duality, in the spirit of [23] and [11].

For an extension of these results to the case of nonzero applied loads we refer to [29].

The plan of the paper is as follows. Section 2 contains some preliminary results. In Sec-
tion 3 we describe the setting of the problem. In Section 4 we prove the Korn-Poincaré
inequality on shallow shells. Section 5 is devoted to the I'-convergence of the static function-
als, while the convergence of the quasistatic evolutions is studied in Section 6.

2. PRELIMINARIES

In this section we collect some mathematical preliminaries that will be used throughout
the paper.

In this work Latin indices, as i, j, k, are assumed to take their values in the set {1, 2,3} and
Greek indices, as a, 3,7, in the set {1,2}. We will adopt the Finstein summation convention:
for instance, the expression A;;z; stands for

3
E AijCEj.
j=1

Maitrices. The spaces of n X n matrices and of n X n symmetric matrices are denoted by
M"™>*™ and M’;yxn?, respectively. They are endowed with the euclidean scalar product & :
¢:= 27 j &ijGij- The orthogonal complement of the subspace R, %, spanned by the identity
matrix I, x, is the subspace My*" of all symmetric matrices with zero trace. For every

§ € M, we have the orthogonal decomposition

€= Ep+ - (tr&) T,
n

where £p € M'Y*" is the deviatoric part of £. The symmetrised tensor product a ® b of two
vectors a,b € R™ is the symmetric matrix with entries (a ® b);; = %(aibj +a;b;). We denote
the determinant of a matrix A by det A and the cofactor of A by cof A.

Measures. The Lebesgue measure on R™ is denoted by £™ and the (n — 1)-dimensional
Hausdorff measure by H"~!. Given a Borel set B C R" and a finite dimensional Hilbert
space X, M,(B; X) denotes the space of bounded Borel measures on B with values in X,
endowed with the norm ||p||ar, = |u|(B), where |u| € My(B;R) is the variation of the
measure p. For every p € My(B; X) we consider the Lebesgue decomposition p = pu® + p®,



6 G.B. MAGGIANI AND M.G. MORA

where p® is absolutely continuous with respect to the Lebesgue measure L™ and p° is singular
with respect to L™. If u* = 0, we always identify p with its density with respect to £™. If the
relative topology of B is locally compact, by the Riesz Representation Theorem M;(B; X)
can be identified with the dual of Cy(B;X), which is the space of continuous functions
¢ : B — X such that the set {¢ > e} is compact for every ¢ > 0. The weak* topology
of My(B; X) is defined using this duality. The duality between measures and continuous
functions, as well as between other pairs of spaces, according to the context, is denoted

by <'7 >
Convez functions of measures. Let U C R™ be an open set and let T" an open subset (in
the relative topology) of OU. Let X be a finite dimensional Hilbert space. For every u €

My(UUT; X) let dp/d|p| be the Radon-Nikodym derivative of p with respect to its variation
|| Let Hy : X — [0,4+00) be a convex and positively one-homogeneous function such that

r|¢] < Ho(€) < R|§| for every € € X,

where r and R are two constants, with 0 < r < R. According to the theory of convex
functions of measures (see [22]), we introduce the nonnegative Radon measure Ho(p) €

My(U UT) defined by
o(n)(4) = [ #o (gl

for every Borel set A C U UT. We consider the functional Hg : M,(U UT; X) — [0, 4+00)
defined by

Holw) == Ho(@ o) = [ Ho(dl dlu

for every u € My,(UUT; X). One can prove that Hg is lower semicontinuous on M, (U UT; X)
with respect to the weak* convergence (see, e.g., [4, Theorem 2.38]).

Functions with bounded deformation. Let U C R™ be an open set. The space BD(U) of
functions with bounded deformation is the space of all u € L'(U;R"), whose symmetric
gradient (in the sense of distributions) sym Du := 1(Du + Du”) belongs to the space
My(U; MZX™). Tt is easy to see that BD(U) is a Banach space with the norm

sym
lullBp = llullLr + [ sym Dul| s,

We say that a sequence (uy) converges to u weakly* in BD(U) if uy — u weakly in L' (U; R")
and sym Duy, — sym Du weakly™ in M, (U; M) Every bounded sequence in BD(U) has a
weakly™* converging subsequence. If U is bounded and has a Lipschitz boundary, then BD(U)
can be continuously embedded in L™/ ("~ (U/; R") and compactly embedded in LP(U;R")
for every p < n/(n—1). Moreover, every function u € BD(U) has a trace, still denoted by u,
which belongs to L' (0U;R™). If " is a nonempty open subset of OU, there exists a constant
C > 0, depending on U and T, such that

lullsp < C(llullzrry + || sym Dullag,) (2.1)
for every w € BD(U). For the general properties of BD(U) we refer to [40].

Functions with bounded Hessian. Let U C R™ be an open set. The space BH (U) of functions
with bounded Hessian is the space of all functions u € W11(U), whose Hessian D?u (in the
sense of distributions) belongs to M, (U; My %) It is easy to see that BH(U) is a Banach
space endowed with the norm

lullzr = lullwis + [1D*ullag,

If U has the cone property, then BH(U) coincides with the space of functions in L'(U)
whose Hessian belongs to My(U; Mg ). If U is bounded and has a Lipschitz boundary,
BH(U) can be embedded into W'/("=1(U). If U is bounded and has a C? boundary, then
for every function « € BH(U) one can define the traces of u and Vu, still denoted by v and
Vu: they satisfy u € WHH(9U), Vu € LY(OU;R™), and 24 = Vu -7 € L*(9U) for every 7

tangent vector to OU. If in addition n = 2, then BH(U) embeds into C'(U), which is the
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space of continuous functions on U. Finally, if U has a C? boundary and T is a nonempty
open subset of QU, then there exists a constant C' > 0, depending on U and I', such that

lullr < C(lull ey + IVull ey + 1D%ullar,) (2.2)
for every uw € BH(U). For the general properties of BH(U) we refer to [14].

3. SETTING OF THE PROBLEM

3.1. The three-dimensional problem. We start by describing the setting of the three-
dimensional problem.

The reference configuration. Let w C R? be a bounded domain with a C? boundary. Let
Oqw and J,w be two disjoint open subsets of dw such that

dawUdhw=0w  and  JawNOpw = {P1, P2},

where Py and P are two points of Ow (here topological notions refer to the relative topology
of Ow). The set dyqw is the Dirichlet boundary of w and 9,w is the Neumann boundary. We
also consider the set

Q:=wx(-3,5)

N[—=

)

=

and its Dirichlet boundary
8dQ = 8dw X ( L l).

T 202

Let 0 € C3(). For every 0 < h < 1 we consider the two-dimensional surface
Sp = {(2',hO(2")) : 2’ € w}.

A shallow shell of thickness h is a three-dimensional body whose reference configuration is
given by the set
Eh = \I/h(Q),

where U}, : Q@ — R3 is the function

Uy (z) = (2, hf(a")) + hxsvs, (z')  for every x = (2/,23) € Q (3.1)
and vg, is the unit normal to S}, given by
1
/
vs, (') =
5= Aeva e

The Dirichlet boundary of ¥, is given by the set

(=hVO(x'),1) for every 2’ € w.

8d2h = \I/h (8,19) .

For every 0 < h < 1 we introduce the diagonal matrix

1 0 0
R,:=10 1 0 (3.2)
0 0 %
and we define

for every x € Q. The elementary properties of the determinant give
det DUy (x) = hdet Fp(x) (3.4)

for every = € Q. The asymptotic behaviour of F},, as h — 0, is made explicit by the following
result.
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Lemma 3.1. As h — 0, the following expansions hold:
(Fh)ap = 0ap — h2x38§59 + O(h?), (Fn)az = —hd.0 + O(h?),
(Fh)gg = haﬁe + O(h3>7 (Fh)33 =1- %h2|V9|2 + O(h?’),

where O(h®) denotes a quantity that is uniformly bounded by h® in Q. Moreover, Fj, is
invertible for h small enough and the following expansions hold:

(Fy Yap = 0ap + h* (230250 — 020050) + O(h?), (Fy Yas = hoab + O(R?),
(Fy Yag = —hdsh + O(h%), (F; Y33 =1 — LR2|VO)2 + O(h3),
and
det Fj, = 1 + O(h2).
Proof. See, e.g., [8, Theorem 3.3-1]. O

The stored elastic energy. Let C be the three-dimensional elasticity tensor, considered as a

symmetric positive definite linear operator C : M3 — M2x3  and let @ : M2x% — [0, +00)

be the quadratic form associated with C, defined by
Q(§) == 3CE: ¢ forevery £ € Mg;ﬁ

It turns out that there exists two positive constants ac and B¢, with ac < B¢, such that

aclé]* < Q(€) < Belg®  for every € € M. (3.5)
These inequalities imply that
|C¢| < 2Bcl¢|  for every € € M3X3. (3.6)
The integral
Q(n(x)) dx
3h

describes the stored elastic energy of a configuration of the shallow shell 3, with elastic
strain n € L*(3,; M253).

The plastic dissipation. Let K be a convex and compact set in Mg’DX3, whose boundary 0K
is interpreted as the yield surface. We assume that there exist two positive constants rx and
Ry, with rg < Ry, such that

B(0,rx) € K C B(0, Rg), (3.7)

where B(0,7) := {£ € M5 1 [¢] <r}. Let H : M3;® — R be the support function of K,
that is,

H(¢):=sup&:7 for every £ € M.
TeK

It is easy to see that H is convex, positively 1-homogeneous, and satisfies the triangle
inequality. Moreover, by (3.7) one deduces that

rilé] < H(€) < Rgl¢]  for every & € MP®. (3.8)

From standard convex analysis we also have that the set K coincides with the subdifferential
OH(0) of H at 0.

Let ¢ € My(X,U0q35; M5?) and let dg/d|g| be the Radon-Nikodym derivative of ¢ with
respect to its variation |g|. The integral

dq
H{——)d|q
/ZhuadEh (d|q|) ‘ |

describes the plastic dissipation potential on a configuration of the shallow shell ¥, with
plastic strain gq. The component of ¢ on 043 accounts for plastic slips at the boundary,
which may develop when the prescribed boundary condition on 94% is not attained (see
condition (3.9) below).
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Kinematic admissibility and energy. Given a boundary datum z € H'(3,;R3), we define
the class A(X}, z) of admissible displacements and strains, as the set of all triplets (v, 7, q) €
BD(5) x L2(Sp; M2X3) x My(Sh U 04%8; M3?) such that

symDv=n+gq in X, q=(z—v)Oves,H* on 045y, (3.9)
where vpy, is the outer unit normal to 0%;. We define the total energy as

d
Evma) = | Qunta))do + /Z CHL

for every admissible triplet (v,7,q) € A(Zp, 2).

3.2. The rescaled problem. In this section we introduce a suitable scaling of the admis-
sible triplets and of the total energy.

Let 2 € H'(Z,;R?). To any triplet (v,7,q) € A(Xh,2) we associate a triplet (u,e,p)
defined as follows:

_ 1
U= .Rhl’l)O\:[Jh7 e::no\llh, p = W\I}h#(q), (310)

where ¥;, and Ry, are defined in (3.1) and (3.2), and \I/f(q) is the pull-back measure of ¢,

defined as
/ cp:d\If#(Q)=/ po W, :dg
QUL SpUdaZ

for every ¢ € Co(Q U 9a%MH?). 1t is clear that u € L'(Q;R3), e € L*(Q;M323), and
p € My(Q U 040; M%53). Moreover, we have that

sym(RyDuRpFy ') € My(Q; M33) (3.11)
and
/ ¢ : dsym(R, DuR,F; ') = / (det DU, ') p o ¥, !+ d(sym Dv) (3.12)
Q 3p

for every ¢ € Co(€;M2x3). Indeed, if v is smooth, then by direct computations and by (3.3)
we obtain
(sym Dv) o 0}, = sym(Ry DuRy F; ),

so that (3.11) and (3.12) follow by an approximation argument.
We also introduce the rescaled boundary datum w € H!(Q;R?), defined as

w = R;lz oWy

and we note that

/ @o\Pglqu = / @o{!}jl:((z—v)G)uagh)d’Hz
OdE;L adzh

= h/ ¢ : (Rp(w —u) @ (cof Fi,)Rpvaq) dH? (3.13)
9492

for every ¢ € C(Q;M323), where vpq is the outer unit normal to 9.

Since (v, 7,q) € A(Z4, z), we deduce by (3.9), (3.10), (3.12), and (3.13), that
sym(R,DuR,F, ') =e+p inQ,

Rp(w — u) ® (cof Fj,)RpvaaH?  on 0gfd. (3.14)

P= 4t F,

Motivated by the results above, we introduce the space

Vi(Q) == {u e L' (4 R?) : sym(R,DuR,F, ') € My(Q;M273)} .

sym
For every w € H*(2;R3) we denote by A, (2, w) the class of all triplets
(u,e,p) € Vi () x LA MEX3) x My (Q U 949 ME3)

sym
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satisfying (3.14). According to the scaling (3.10) and to (3.4), the total energy can be written
as

(v,1,q) /Q )) det Fy(x) dz + h Hp(p),
where

dp
Hi(p) = / H ( ) det Fy, d|p|.
QUL d| ‘

We thus define the scaled energy as

(u,e,p) /Q )) det Fp(x) dz + Hp(p)

for every (u,e,p) € Ap(Q,w). This will be the starting point of the asymptotic analysis of
Sections 5 and 6.

3.3. The limiting problem. In this section we introduce the limiting functional, that
describes the asymptotic behaviour of the rescaled energy 7y, as h tends to 0.

The reduced stored elastic energy. Let M : M2X2 — M3*3 be the operator given by

sym sym
§11 &2 M)
ME = | &9 € Xo(€) for every £ € Mi;n%, (3.15)

A(€)  A2(8)  As(§)
where the triplet (A (£), A2(£), A3(€)) is the unique solution of the minimum problem

&1 12 M
iﬂi%Q 12 &2 A2
i€ Moo A3

We observe that (A1(£), A2(€), A3(§)) can be characterised as the unique solution of the linear
system
0 0 G
CME: |0 0 (] =0 (3.16)
G G ¢

for every (; € R. This implies that M is a linear map and
(CM¢) i3 = (CME)3; = 0. (3.17)
Let Q* : M?;n% — R be the quadratic form given by
Q(6) = QUME) for every € € M22. (3.18)
Tt follows from (3.5) that
aclél* < Q(€) < Belé]* for every € € M2
We define the reduced elasticity tensor as the linear operator C* : M%yﬁ% MSym given by
C*¢:=CM¢  for every £ € M2y (3.19)

Note that we can always identify C*¢ with an element of Mi;j in view of (3.17). Moreover,

by (3.16) we have

CG1 G2 0
C¢:¢(=C"¢: [Ga (2 O forevery £ € M2s2, ¢ e M2x3. (3.20)
0 0 O
This implies that
&1 &2 O

1
Q*(¢) = 5(C*f | & &2 O for every £ € ngxn%
0 0 O
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Finally, we introduce the functional Q* : L2(£; M22) — [0, +0c0), defined as

sym

Q" (e) = / Q" (e(x)) da

for every e € L2(£2; M2X2).

sym

The reduced plastic dissipation. In the reduced problem the plastic dissipation potential is
given by the function H* : M2X2 — [0, +00), defined as

sym

& &2 A
H* (f) = min H 512 522 )\2 (321)
A A = (&1 +&22)

for every £ € ME;,% From the properties of H it follows that H* is convex, positively
1-homogeneous, and satisfies

riclé] < H*(§) < VBRkl¢|  for every ¢ € M2y

sym*

The set K* := 0H*(0) represents the set of admissible stresses in the reduced problem and
can be characterised as follows:

11 12 0O 1
(e K" & 12 &2 0| — s (tré)lsxs € K,
o o o 3

(see [11, Section 3.2]). For every p € My(Q U 94Q;M2X2) we define the functional

sym

dp
H* = / H*(— ) d|p|.
®) QUGN (d|P\) Pl

Generalised Kirchhoff-Love triplets and limiting energy. We consider the set KL(2) of
Kirchhoff-Love displacements, defined as

KL(Q) :={ue BD(Q): (symDu);3 =0}.
We note that u € KL(Q) if and only if u3 € BH(w) and there exists 4 € BD(w) such that
Uo (2) = U (2") — 2304us (")

for a.e. x = (2, x3) € Q. We call @, uz the Kirchhoff-Love components of .
For every u € K L(2) we define the measure

E*u :=sym Du+ VO ® Vus. (3.22)

Given a prescribed displacement w € H*(Q;R*) N K L(), the set Agkr,(w) of generalised

Kirchhoff-Love triplets is defined as the class of all triplets
(u,e,p) € KL(Q) x L2(Q;M3X3) x M,(QU 940; M3X3)

sym sym

such that
E*u=e+p inQ, p=(w—u) ®vsgaH? on 949,

€i3 = 0 in Q, DPi3 = 0 in QU adQ

We observe that the class Agkr,(w) is nonempty since it contains (w, E*w, 0).

Because of the last two conditions in (3.23), if (u,e,p) € Agkr(w), e can be always
identified with a function in L?(€;M252) and p with a measure in M;(Q U 04Q; M22). In
the following we will tacitly make these identifications.

Finally, the limiting energy will be given by the functional Z : Agkr(w) — [0,400),
defined as

(3.23)

Z(u,e,p) := Q" (e) + H"(p)
for every (u,e,p) € Agkr(w).
We conclude this section by collecting some properties of the class Agkr, (w). The following
closure property holds.
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Lemma 3.2. Let (w¥) be a sequence in H*(Q; R3)NKL(Q) and let (u®, ek, p*) be a sequence
of triplets such that (u*,e*, p*) € Agkr (w”) for every k. Assume that u* — u weakly* in
BD(Q), e" — e weakly in L*(Q; M2<2), p* — p weakly* in My(QUIzQM2x2), and w® — w

sym sym
weakly in H'(Q;R3), as k — co. Then (u,e,p) € Agkr(w).
Proof. The result easily follows by adapting the proof of [10, Lemma 2.1]. |

A characterisation of Agkr,(w) can be given in terms of moments, whose definition is
recalled below.

Definition 3.3. Let f € L?(;M2%2). We denote by f, fe L2(w;M§;ﬁ) and by f| €

sym

L?(Q; M2%) the following orthogonal components (in the sense of L?(€;MZ2x2)) of f:

sym

F@) = [ f@as)des,  f(2f) =12 / Y eaf (el as) das

1 1
2 2

for a.e. ' € w, and B R
fi(@) = f(z) = f(2) — a3 f(2)

for a.e. x € Q. We call f the zeroth order moment of f and fthe first order moment of f.
Definition 3.4. Let ¢ € M (22U 9492; M2X2). We denote by ¢, ¢ € My(wU 5‘dw;M§;ﬂ%) and

sym

by q1 € My(Q2U 949Q; M2X2) the following measures:

sym

/ gp:d(j::/ v : dg, / cp:dcj::12/ x3p @ dq
wUdgw QUGN wUdgw QUGN

for every ¢ € Co(w U dgw; M222), and

sym
qL=q-qoL —§@ull,
where ® denotes the usual product of measures. We call g the zeroth order moment of ¢ and
q the first order moment of q.

With these definitions at hand one can prove the following result.

Proposition 3.5. Let w € H*(;R3) N KL(Q) and let (u,e,p) € KL(Q) x L2(Q;M272) x

sym

My(QU 940, M2X2). Then (u,e,p) € Agkr.(w) if and only if the following three conditions

sym
are satisfied:

(i) symDu+ VOO Vuz =¢eé+p inw and p = (0 — ) ® va,H' on Oqw;
(i) D%u3 = —(é+p) in w, uz = w3 on dyw, and p = (Vuz — Vws) © va,H' on Oqw;
(iii) pL = —el n Q and pi =0 on 949,

where vy, 1s the outer unit normal to dw.
Proof. The proof is analogous to that of [11, Proposition 4.3]. O

Finally, we prove an approximation result in terms of smooth triplets. First of all, we give
a definition.

Definition 3.6. The space L2 .(Q;M252) is the set of all p € L*(Q; MZ25?) satisfying:

sym sym

(i) 0L0%p € LA M22) for every i,j € NU{0};

sym

(i) there exists a set U CC w U &,w such that p =0 a.e. onw\ U x (—1,1).

We note that functions in Lgoyc(Q; Mg;n%) have a smooth dependence on the variable z’;

namely, if p € L2, .(Q;M2x2), then p(-,z3) € C2°(w U d,w; M2?%) for a.e. x5 € (-3, %)

sym sym

Lemma 3.7. Let w € H'(;R3) N KL(Q) and let (u,e,p) € Agkr,(w). Then there exists a
sequence of triplets

(uF,e? pF) e (H' (4 R?) x L2(Q;M2)%) x L2 (Q;M2)2)) N Agkr (w)

sym sym
such that u¥ — w weakly* in BD(Q), e — e strongly in LQ(Q;Min,%), p* — p weakly* in
My(QU 0gQ;M222), and ||p*||ar, — |Ipllas,, as k — oo.

sym
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Proof. The proof is analogous to [11, Lemma 4.5] and [11, Theorem 4.7]. The only difference
is in the definition of the zeroth order moment of e*, that we detail below. Following the
same notation as in [11], we replace & on page 629 with

& =" ((;8) * ps, + (Vip; ©0) % ps; — (9,V0 © Vug) * ps,)

j=1
+ V00> ((¢;Vus + Vejus) * ps, ),
=1

and e>! on page 632 with

et = (wo ¢5) 0 Vi1 + 1 sym((€ 0 ¢5) Dps) — 1 sym (((Vuz @ V) o ¢5)Deps)
+ (u3 0 ¢5)VO © Vo1 + 01V0 © (Dops) " (Vugz o ¢5).
Using this definition, equation (4.38) in [11] is replaced by
et 5 GO Ve + p1é+usVe, © VO strongly in L2 (w; M2X2).

sym

With respect to the argument on page 633 of [11], we replace e with

65 = e — (‘Pl + 4,02)(é—|—$3é) + é5,1 + 56,2 + Z‘g(é‘il + é§,2)
2
+ Z(—ﬂ O Vo —usVO O Vo, + z3usD>*p, 4+ 223V, © Vus)

a=1
and formula (4.55) on page 634 with

m m m

et = Z(%‘é) o Tk + o€+ Z(V% Ou)oTir+ Vg ©u— Z(%VQ © Vuz) o Tk
=1

i=1 i=1

+ Voo Z ((u;;Vgoi) otk + (Vpusz) o Tzk)) +u3VO © V.
i=1

By implementing these changes the same construction as in [11, Lemma 4.5] and [11, The-
orem 4.7] provides the desired approximating sequence. O

4. A KORN-POINCARE INEQUALITY ON SHALLOW SHELLS

In this section we prove an ad hoc version of the Korn-Poincaré inequality for shal-
low shells. To this purpose it is useful to express displacements in intrinsic curvilinear co-
ordinates. More precisely, to any displacement u : 8 — R3 we associate the vectorfield
u(h) :  — R3 defined by

u(h) := (DUL)T Ryu, (4.1)
whose components are the scaled curvilinear coordinates of u with respect to the contravari-
ant basis of 3. In particular, from (3.3) and (4.1) it follows immediately that

Rpu(h) = FF' Ryu. (4.2)
In the following proposition we express the strain in terms of the curvilinear coordinates.

Proposition 4.1. Let 0 < h < 1. Let u € V,(Q) and let u(h) be defined by (4.1). Then
u(h) € BD(R) and the following equality holds:

Fyl sym(Rp DuRpFy, ") Fy, = E(h, u(h)), (4.3)
where

E(h,u(h))i; := (Rp(sym Du(h))Rp)ij — T% (h)ug(h) (4.4)

¥
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and the quantities Ffj (h) are given by
LZi(h) =T5(h) = (0a(F} ) Fy ios  Tag(h) =Ti(h) == - (0a(F ) Fy Mis,
o 1 _ 1 _
I53(h) = E(a?)(F}?)Fh Nzar  Tis(h) = ﬁ(a?)(F}?)Fh ")aa-
Proof. Assume u smooth. Differentiating (4.2) yields
(RnDu)ij = (Fy, " RuDu(h))ij + 05(Fy T )in (Ri)gaw(h)r.
This implies that
sym(R, DuRy F; ')i; = sym(F, " Ry Du(h)RpF; ')
1

+3 (8m(Fh_T)ik(Rh)klu(h)l(Rh)mn(Fh_l)nj + ap(Fh_T)jk(Rh)kru(h)r(Rh)pq(Fh_l)qO~

Using the equality
Fi?am(Fi?T) = _am(F}?)F};T>
direct computations lead to

(FY sym(RhDuRhFh_l)Fh)ij = sym(Ry, Du(h)Ryp,)i;

45 (OUED BT R Badis + O (FDVE B (Rt Y ().
To deduce (4.3) it remains to show that, if we set
203 (h) = (Oi(F ) Ey T Ri) (Rt + (8 (F ) Ey " Ra) ;3 (Bi)mis
then T () satisfies (4.5). By (3.2) and (3.3) we have that
O0n(Feg) = 0g(Fey), Oo(Feg) = %83(Fea).

Using these equalities and again (3.2), we obtain

20 5(h) = (9s(F ) F, "), 4 (0a(FD)FT) 5, = 2(0s(F)F,T)

oo
and

204 = 1 (O(EDVET) ., + (0ulFDIFL ), = 200 FDE, )

3 30”

The other equalities in (4.5) can be proved similarly.
The general case follows by an approximation argument. O

Remark 4.2. Note that (4.4) coincides, up to a scaling, with the quantity considered in |9,
Theorem 1.3.1]. Moreover, the coefficients Ffj(h) are the suitably scaled Christoffel symbols
of Xp. In particular, for h = 1 (that is, when Rj is replaced by the identity matrix and
thus, Fy, is equal to DWy,) they exactly coincide with the Christoffel symbols of 3. Indeed,
following the notation of [9, Section 1.2], let ¢; := Fre; = 0;¥};, (where e; is the canonical
basis of R?), and let ¢/ := h_Tej, so that g; - ¢/ = 6;;. Then
U5i(h) = g" - 59:,

which is the usual definition of the Christoffel symbols in differential geometry.

In the following lemma we study the dependence of Ffj (h) on the thickness parameter h.

Lemma 4.3. The following expansions hold:

5(h) = h29230 0,0 — W>x305 3,0 + O(h?), (4.6)
I3 5(h) = 8250 + O(h?), (4.7)
I'9.(h) = —hd2 0 + O(h?), (4.8)
Fés(h) = Fz?)(h) =0, (4-9)

where O(hP) denotes a quantity uniformly bounded by h?, as h — 0.
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Proof. Let gl := Fje; and g™ := Fh_Tei. These definitions, (3.2), and (4.5) lead to

o o 1
roi(h) = gh’ '8a91h7 Fii(h) = Egh’g : 6a91ha

(e} 1 « 1
['g3(h) = Egh’ ‘639§a F§3(h) = ﬁgh’g : 539§-

By direct computations we have that

(4.10)

gZ = eq + h0,0 e3 + hx3Oyvs, , gg =vg,.

Since gl - gh = 0y, we immediately deduce that

h,3
g

while by applying Lemma 3.1 we obtain
g = eq 4+ hdabes + O(h?).

=Vs,,

Since
vs, = ez —hd10e; — hdab es + O(h?),
Davs, = —hoi 0ey — hodz 0es + O(h?),
925vs, = —hd}, g0 er — hd3, 50 €2 + O(h?),
we deduce (4.6)—(4.8) from (4.10). Equalities (4.9) follow again from (4.10) by observing
that d3g% = 0 and
9" - Dagl = %aa(l/sh +vs,) =0.
This concludes the proof of the lemma. O
We are ready to prove the Korn-Poincaré inequality on shallow shells.
Theorem 4.4. There exist hg > 0 and C > 0, depending on Q0 and 0482, such that
Jullzs + [ Rn(sym Du)Rallag, < € (1B, W), + [ullzs0,0)

for every 0 < h < hg and every u € BD(Q), where E(h,u) is defined in (4.4).
Proof. Assume for contradiction that for every n € N there exist h, — 07 and (u") C

BD() such that
[u™l[2r + || Bp,, (sym Du") Ry, ||ag, = 1 (4.11)
and
1B (R, w")|az, + lu" (|21 2,02) = 0. (4.12)
By (4.11) the sequence (u™) is uniformly bounded in BD(f); therefore, there exists u €
BD(Q) such that u™ — u weakly* in BD(2) and strongly in L (£2;R?), up to subsequences.
On the other hand, it follows from (4.4) and (4.9) that

(R, (symDu”)Rhn)a[g = (symDu”)a,g = E(hnvun)a,ﬁ’ + Fg (hp)uit,
B

1
(Rp, (sym Du™)Rp,. a3 = h—(sym Du™)a3 = E(hp,tn)as + T (hn)ul,

1
(Rhn (sym Dun)Rhn)gg = h—Q(sym Dun)gg = E(hn,un)gg.

Using (4.12), Lemma 4.3, and the strong convergence of (u™) in L!(Q;R?), we deduce that
(sym Du™)ap — u3d230 = (sym Du)ag  strongly in My(2),
(sym Du™);3 — 0 = (sym Du);3 strongly in M(Q),
and
Ry, (sym Du™)Ry, — sym Du  strongly in My (€; M2X3). (4.13)

sym
Thus, v € KL() and
u™ — u strongly in BD(Q). (4.14)
Together with (4.12), this implies that u = 0 on 9,9.
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Let now 4 € BD(w) and uz € BH(w) be the Kirchhoff-Love components of u. Since
(sym D@)op — x36iﬂu3 = u;g@iﬂﬁ, (4.15)

we obtain that 82 gusz = 0. Moreover, the boundary condition v = 0 on 0482 implies that
a—x3Vuz = 0 on 9482, hence Vug = 0 on dyw, and ug = 0 on dyw. By (2.2) we deduce that
uz = 0 in w. Thus, sym D@ = 0 in w by (4.15) and, in turn, sym Du = 0 in 2. Since u = 0
on 94%2, it follows from (2.1) that v = 0 in Q. Since ||u||gp = 1 by (4.11), (4.13), and (4.14),
we obtain a contradiction. 0

5. I'-CONVERGENCE OF THE STATIC FUNCTIONALS

In this section we study the asymptotic behaviour of minimisers of the rescaled energies
7y, as h tends to 0. We begin with a compactness result for scaled displacements.

Lemma 5.1. Let (w") C H'(Q;R3) be such that ||[w"||125,0) < C for every 0 < h < 1.
Let (u”) be a sequence in V3, () such that

| sym(Rp, Du Ry Fy ') |, + || Ri(w” — u™) © (cof Fy) Ruvaallria,0) < C (5.1)
for every 0 < h < 1. Then there exists u € KL(Q) such that, up to subsequences,
u = u  strongly in L*(Q;R3) (5.2)
and
sym(Ry, Du" R, Fy ) op — (E*u)ag  weakly”™ in My(9Q), (5.3)

as h — 0, where E*u is defined in (3.22).

Proof. For every h we consider the vectorfield u”(h) given by the curvilinear coordinates of
u", defined according to (4.1). For simplicity of notation we write u(h) instead of u”(h).

By Lemma 3.1 the sequence (F},) is uniformly bounded with respect to h. Thus, by (4.3)
and (5.1) we deduce that

IE(h, u(h))|lar, < C
for every 0 < h < 1. Since |a ® b| > %|a||b\ for every a,b € R™, it follows from (5.1) that

/ R (" — uP)||(cof F) Rnvon| dH2 < C
0402

for every 0 < h < 1. Moreover,

|Rrvaa]

|(cof Fy)Rpvaq| > cof B 1| >

C|RhV§Q| > C

where we used that cof F~ ! I3y3 uniformly by Lemma 3.1. Therefore, we conclude that
| Ri(w" —u")|| L1 (9,0) < C.

In particular, we have that [|w" — u"||11(5,0) < C, hence |[u"||11(5,0) < C for every h small
enough. By Lemma 3.1 we can write

0 0 &6
(DUL)TR, =I3x354+ [0 0 020 | +0O(h), (5.4)
00 0

hence by (4.1) we obtain that ||u(h)||1,9,0 < C for every h.
By applying Theorem 4.4 to the sequence (u(h)), we deduce that

[u(P)l|zr + [ Bh(sym Du(h)) Rplar, < C.

Thus, there exists @ € KL(Q) such that u(h) — @ weakly* in BD(f2) and strongly in
LY (;R3), up to subsequences. We deduce that (5.2) holds with u € K L(f2) defined by

Un = ﬂa — 8a9 ’113, us ‘= ’113. (55)
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Indeed, by (4.1) and (5.4) we have that

0 0 —0,0
u = (DWL)TRM " tu(h) =u(h)+ [0 0 =820 | u(h) +ul, (5.6)
00 0

where
lutllzr < Chlu(h)| < Ch,
with C' independent of h. Passing to the limit in (5.6), we obtain (5.2).

Since F}, — I3x3 uniformly, as h tends to 0, equality (4.3) implies that E(h,u(h)) and
sym (R Du” Ry, F; ') have the same weak* limit in M;(€; M2x3). In particular, by (4.6) and
(4.7) we obtain

E(h,u(h))ap — (sym D)op — 30250  weakly® in My(€2),
and by (5.5) we have
(sym D@)op — 12362[39 = (sym Du)ag + sym(D(usV0))ap — u;;@fwﬂ
= (symDu)ag + (VOO Vuz)ag = (E*u)as.

This proves (5.3) and concludes the proof. O

The following theorem is the main result of this section. The proof is in the spirit of
I'-convergence.

Theorem 5.2. Let (w") € H'(;R3) be such that

HwhHL2(adQ) <C forevery0<h<1, (5.7)
sym(Ry Dw" Ry Fy; ') — ¢ strongly in L2(;M32%3), (5.8)

sym

where C' > 0 is independent of h and { € L?(Q; M‘:’;ﬁ) For every 0 < h < 1 let (u”, e, p") €

An(Q,w") be a minimiser of Ij,. Then there exist w € KL(Q) N HY(;R3) and a triplet
(u,e,p) € Agkr(w) such that (E*w)ap = Cap and, up to subsequences,

wh — w  strongly in H'(Q;R?), (5.9)
ul =  strongly in L*(;R3), (5.10)
sym(RyDu" R Fy M) ap — (E*u)ag  weakly* in My(Q), (5.11)
e" — Me strongly in L*(€;M373), (5.12)
Phs = Pap  weakly™ in My(QU 949). (5.13)
Moreover, (u,e,p) is a minimiser of T and

lim Zp, (u”, e", p") = Z(u, e, p). (5.14)

h—0

Remark 5.3. By the definition (3.15) of the operator M convergence (5.12) implies that
egﬁ — eqp strongly in L2(€2).

Proof of Theorem 5.2. The proof is subdivided into four steps. First of all, as a consequence
of Lemma 3.1, we note that the following expansions hold:
Sym(RhD’URhFh_l)ag = (sym Dv — (931) © V@)(w + O(h2)||1}||Hl7
sym(Rp, DvRLF} Mg = £ ((sym Dv — 030 © V6) a3 + O(h?)||v] g1 ) (5.15)
sym(R, DRy Fy "33 = 7% (O3v3(1 4+ O(h?)) + h2Vus - VO + O(h*)||v] 1)

for every v € H'(; R?).
Step 1: Convergence of (w"). By (5.15) and the fact that 930 = 0 we deduce that

| sym (R, Dw" Ry, Fy 1) || g2 > || sym Dw" — 93w" © V0|2 — O(h?)||w" || 1.
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This implies that for h small enough
[ L2 (040 + || sym(Rn Dw" Ry Fy )| 2
> w2 0.0) + | sym Dw” — d5w" © V|2 — O(h?)||w"[| g1
> Cllw(|m, (5.16)

where the last estimate follows from the generalised Korn inequality in H' for shallow shells
(see, e.g., [8, Theorem 3.4-1]). By (5.7) and (5.8) we conclude that the sequence (w") is
uniformly bounded in H*(Q;R3) for h small enough. Thus, there exists w € H*({; R3) such
that

wh = w weakly in H'(Q;R?), (5.17)

up to subsequences. Convergence (5.17) yields

sym Dw" — 93u" © VO — sym Dw — dsw © VO  weakly in L2(Q; M2X3).

sym
On the other hand, owing to (5.8) and (5.15), we also have that (sym Dw" —9;w" ©V0),5 —
Cap and (sym Dw" — O3w" ® V6);3 — 0 strongly in L?(£2). Therefore, we deduce that

sym Dw" — d3uw" © VO — sym Dw — d3w © VO strongly in L*(£; ngxn?;), (5.18)
with
(sym Dw — 93w © V0)ap = Cup (5.19)
and (sym Dw — dsw ® V#);3 = 0. Since 930 = 0, this last equality implies that
(sym Dw— 03w ® V9)33 = d3wsz =0,
and consequently
(sym Dw — 93w ® V)43 = (sym Dw)qs = 0.
In other words, (sym Dw);3 = 0, that is, w € KL(Q). In particular, we have that Osw, =
—0qws, hence Osw © VO = —Vws © V0, so that (5.19) gives the equality (E*w)ag = Cup-
To conclude it remains to show that the convergence in (5.17) is strong. By applying
again [8, Theorem 3.4-1] we obtain

" — " [l
< C(|Jw" — w" I 12(800) + || sym Dw" — 930" © V6O — sym Duw" + 05w ©VO||2)  (5.20)

for every 0 < h,h/ < 1. By (5.17) and the compactness of the trace operator we have that
wh — w strongly in L?(9;0;R3). Thus, by (5.18) and (5.20) we conclude that (w") is a
Cauchy sequence in H'({;R?), hence (5.9) holds.

Step 2: Compactness. Since
(w", sym(Ry, Dw" R, F; 1), 0) € Ap(Q,w"),
the minimality of (u”,e",p") implies that
Tn(u" e p") < Tp,(w", sym(Ry, Dw" R, F, 1), 0) < C (5.21)

for every 0 < h < 1, where the last inequality is a consequence of (3.5), (5.8), and Lemma 3.1.
Using again Lemma 3.1, (3.5), and (3.8), the bound (5.21) yields

e[z + [Ip"Ias, < C (5.22)

for every 0 < h < 1. Thus, there exist & € L*(Q;M2x3) and p € M (2 U 94 M2%) such
that, up to subsequences,

e" =& weakly in L*(Q;M353), (5.23)
ph = p  weakly* in My(Q U 9,Q; ME3). (5.24)
We introduce e € L?(Q; M2x3) and p € My(Q2U 94 M2%) defined by eqp = €ap, €3 := 0,

and pag := Pag, Pi3 := 0, respectively.
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Since @ is convex and det Fj, — 1 uniformly, as h — 0, by Lemma 3.1, we have
liminf [ Q(e")det F dx > / Q&) dx > Q*(e), (5.25)
h=0 Jo Q
where the last inequality follows from the definition of Q*. Analogously, by the Reshetnyak
Theorem and the definition of H* we deduce
ds
lnint 4" > [ ( P ) dlf) > H* (). (5.26)
h—0 QUBLN d|p|

By (3.14) and (5.22) we can apply Lemma 5.1. Thus, there exists u € K L(f2) such that,
up to subsequences,

u’ — u  strongly in L'(Q;R?), (5.27)
sym(RpDu R Fy, M ap — (E*u)ag  weakly* in My(€). (5.28)

We claim that (u,e,p) € Agkr,(w). Combining (5.23), (5.24), and (5.28), we deduce that
E*u=e+pin Q.

To conclude it remains to show that p = (w — u) ® vpoH? on 9;Q. We argue as in [10,
Lemma 2.1]. Since 4 is open in dw, there exists an open set A C R? such that 74 = AN dw.
We set U := (wUA) x (—3,1). We extend 6 to w U A in such a way that § € C3(w U A).
Consequently, ¥;, € C?(U;R3) and F,, € CY(U;M>**3) for every 0 < h < 1. Let u(h)
and w"(h) be the vectorfields given by the curvilinear coordinates of u" and w", defined
according to (4.1). For simplicity we write u(h) and w(h) instead of u"(h) and w"(h). By
(4.1), (5.4), and (5.9) we have that

w(h) — @ :=w+ w3Vl strongly in L*(Q;R?). (5.29)

By Proposition 4.1, Lemma 4.3, and (5.8), the sequence (sym Dw(h)) is also strongly con-
verging in L2(£; M2X3). Thus, by the Korn inequality the convergence in (5.29) is strong in

HY(Q;R3). Moreovsé?;tnwe can extend w(h) and @ to U in such a way that
w(h) — o weakly in H'(U;R?). (5.30)
We now define the triplet (v(h),n(h), q(h)) € BD(U) x L*(U; M2x3) x My(U; M23) as
o(h) i= {u(h) in Q, o(h) = {RthhTehFthl in Q,
w(h) inU\Q, Ry'E(h,w(h)R,' inU\Q,
and
o) i {RththhFthl in QU 9,0,
0 in U\ (2U049),

where E(h,w(h)) is defined as in (4.4). We have that

(sym Du(h))i; = n(h)i; + q(h)i; + (B, )xlii (h)vm (R) (R, ')y in UL (5.31)

Indeed, this equality holds in Q and in U \ Q as a consequence of (3.14), (4.3), and (4.4),
while on 949 it follows from (3.14), (4.2), and the definition of the cofactor.
By (4.1), (5.4), (5.27), and (5.30) we deduce that

v(h) — v strongly in L*(U;R?), (5.32)
where
U+ U3v9 in Q,
V=
W in U\ Q.
Since (n(h)) is uniformly bounded in L*(U;M2%) by (5.23), Lemma 3.1, (4.4), and (5.30),
there exists n € L?(U; M2%3) such that

sym

n(h) —=n weakly in L?(U;M32%3), (5.33)

sym
up to subsequences. Finally, it follows from Lemma 3.1 and (5.24) that
q(h) = q weakly* in M, (U;M3X3), (5.34)

sym
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where

_Jp inQU8Q,

Tl0 iU\ (QUIQ).
Passing to the limit in (5.31) by (5.32)—(5.34) and Lemma 4.3, we obtain

sym Dv = n+ g+ v3D?@ in U.
In particular, since w = w + w3 V@, the previous equality on 042 reads as
p=(w—u+ (w3 —u3)VO) ®vagH? on Jgfd.

Since po3 = 0, van - e3 = 0 on 9412, and 0360 = 0, this implies that us = w3 on 9,8 and, in
turn, the desired equality.
Step 3: Existence of a recovery sequence. We show that for every (v,n,q) € Agkr(w) there
exists a sequence of triplets (v, 7", ¢") € A(Q, w") such that

vh — v strongly in LY(Q;R3), (5.35)
sym(Rp Dvh Ry Fy ) ap — (E*v)ag  weakly* in My(9), (5.36)
n" — Mn  strongly in L(€;M3x3), (5.37)
qgﬁ — gop  weakly™ in M;(Q2 U 0492), (5.38)
Hi(d") = H*(a), (5.39)
and

lim Ty (v", 1", ¢") = Z(v, . 0). (5.40)

Owing to Lemma 3.7, it is enough to construct an approximating sequence for a triplet
(v,m,0) € (HH (G R?) x LA MZ)0) x L3, (4 MER)) N Agkr (w). (5.41)

In the general case one can argue by density as in [11, Theorem 5.4].
Let (v,7,¢) be as in (5.41). Since ¢ € L*(Q; M2x3 ), we have that ¢ = 0 on 949 and v = w
on 0;0. Let ¢1, o2, ¢3 € L?(Q) be such that

mi e ¢
Mn={na1 m2 ¢2]. (5.42)
o1 P2 3
As g € L?(Q;M2x3), by the measurable selection Lemma (see, e.g., [16]) and by the definition
of H* there exist ¥y, %2 € L*(Q) such that
Q1 qi2 (a1
H*(q)=H | g1 4q22 (> . (5.43)

1 Y —(qu1 + q22)

We approximate the functions ¢; and v, by means of elliptic regularisations; namely, for
every 0 < h < 1 we consider the solutions ¢! € Hi(Q) and ¢ € H}(Q) of the problems

—hAd)? + gbf =¢; in Q, —hAYE F ot =), in Q,
(bzh =0 on 0, ¢Z =0 on 0f).
Similarly, for every 0 < h < 1 we define ¢! € H}(Q) as the solutions of the problems
—hAEh + & = —(3a In Q, —hAEh + & =V (ws —v3) - VO — (33 inQ,
&h =0 on 012, =0 on 01},

where (3; are the components of the function ¢ in (5.8). The standard theory of elliptic
equations implies that
! — ¢; strongly in L%(Q), Pl — ), strongly in L%(9),
& — —(34 strongly in L2(Q), (5.44)
4 — V(ws —v3) - VO — (33 strongly in L(2),
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as h — 0, and
IVeH Iz + IVOhllze + IVE 2 < Ch™2 (5.45)
for every 0 < h < 1. We also introduce the function k" € L?(2; M3*3), defined component-

wise as

kgﬁ(x’,xg)) = 2h/0 (35(;52@’, ) + gl (2, s) + 9pel (o, s)) ds,
ksp(a, x3) = h2/ (aggbg(ac’7 ) + 0ph(2,8) — Dpqua (', 8) — Opqaa(a’, s)) ds,
0

kls := 2h(ph + ol + €1), ki o= h2(¢h + &8 — qu1 — go2).

We are now in a position to define the recovery sequence. We set
xrs3
Ol = Vo + W} — wo + 2k / (Bh(a',5) + (@’ s) + o', s)) ds,
0

T3
vl = v3+w§—w3+h2/ (ph(2',8) +&5(a',8) — qui(a’, 8) — qoa(a’, 5)) ds.
0

It is straightforward to check that
Dv" = Dv + Dw" — Dw + k™.
This leads us to define
0 0 h
qh =q+ | 0 0 3 )
Yoy —(qun + go2)
n" = sym(Rp,(Dv + Dw" — Dw)Ry F; ') 4+ sym(Rpk" R, Fy 1) — ¢
Since ¢l &b e HE(Q), q € L2, (Q;M252), and v = w on 9,492, we have that vh = wh on
049 Hence, (v, 0", ¢") € An(Q,w").

It follows from (5.9) and (5.44) that v" — v strongly in L?(Q;R3). In particular, (5.35)
holds. By the definition of ¢" we immediately deduce (5.38). Owing to (5.44), we obtain that

0 0 1
" —=q+[0 0 o strongly in L?(€; Migni) (5.46)
Y1 2 —(qu1 + g22)

Convergence (5.46), together with (5.43) and Lemma 3.1, implies (5.39).
We now prove (5.37). Since v,w € KL(), expansions (5.15) imply that

sym(Ry,(Dv — Dw)Ry,Fy Mag = (E*v — E*w)ap + O(h?),
sym(Rp,(Dv — Dw)Ry Fy ) ag = O(h),
sym(Rp,(Dv — Dw) Ry, Fy, M)a3 = VO - V(vz — w3) + O(h?).
Thus, by (5.8) and the equality (E*w)a.3 = (ap we deduce that
sym(Ry,(Dv + Dw" — Dw)RyFy Vap — (E*v)ap  strongly in L2(Q), (5.47)
sym(Ry,(Dv + Dw" — Dw)RyFy ) as — (as  strongly in L2(Q),
and
sym(Ry(Dv + Dw" — Dw)RpFy V)33 — (33 + VO - V(vs — w3)  strongly in L*(Q). (5.48)
From (5.44) and (5.45) it follows that
(Rhk"Ry)ig — 0 strongly in L2(9),
(Rok"Rp)as — 2 (¢a + tha — (3a)  strongly in L*(Q),
(Rhk"Rp)3s — ¢3 + V(wz —v3) - VO — (33 — q11 — g2z strongly in L%(Q).
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This, together with the uniform convergence of Fj~ L to I5ys, implies that

sym(Rpk" Ry Fy, ') ag — 0 strongly in L2(Q),
sym(Rpk" Ry Fy ') a3 — ¢a + Yo — (3o strongly in L2(Q),
sym(Rpk" Ry Fy )33 — ¢3 + V(ws —v3) - VO — (33 — qu1 — go2 strongly in L2(Q).
Combining the convergences above with (5.42), (5.46), (5.47), and (5.48), yields (5.37).

Finally, (5.36) follows from (5.37) and (5.38), while (5.40) is a consequence of (3.18),
(5.37), and (5.39).

Step 4: Minimality of (u,e,p) and strong convergence of the elastic strains. Let (v,n,q) €
Agkr(w). By Step 3 there exists a sequence (v, 7", ¢") in A (€, w") such that (5.35)—(5.40)
hold. Therefore,

Z(v,n,q) = lim Z,(v", 7", ¢") > limsup Zy, (u", e", p"), (5.49)
h—0 h—0

where the last inequality follows from the minimality of (u”,e”, p). On the other hand, by
(5.25) and (5.26)

lim inf Zp, (u”, €™, p") > Z(u, e, p). (5.50)
h—0

Combining (5.49) and (5.50), we conclude that (u,e,p) is a minimiser of Z. Moreover, by
choosing (v,n,q) = (u,e,p) in (5.49) we deduce (5.14).
It remains to prove (5.12). From (5.25), (5.26), and (5.14) it follows that

lim / Q(e") det ), dz = Q*(e).

h—0 0

Since det Fj, — 1 uniformly, as h — 0, this implies that

lim / Q") dx = Q*(e). (5.51)

h—0 Jq
On the other hand, by (3.18) we have
Q(e" — Me) = Q(e") + Q*(e) — CMe : €.
Therefore, owing to (5.23), (5.51), and (3.17), we get

lim / Q(e" — Me) dz = 0.
h—0 Jq
By the coercivity (3.5) of @ this implies (5.12). O

6. CONVERGENCE OF QUASISTATIC EVOLUTIONS

In this section we discuss the convergence of the quasistatic evolution problems associated
with the functionals Zj,.
We fix a time interval [0,7] with 7' > 0 and we give the following definitions.

Definition 6.1. Let 0 < h < 1 and let w" € Lip([0,7]; H'(;R?)). An h-quasistatic
evolution for the boundary datum w” is a function ¢ + (u”(t),e"(t),p"(t)) from [0, 7] into
Vi (Q) x L2(Q;M2X3) x My(Q U 940; M353) that satisfies the following conditions:

sym

(qsl) global stability: for every t € [0, T] we have that (u”(t),e(t),p"(t)) € An(Q,w"(t))
and

/Q dechdw</Q Ydet Fy, dx + Hp(q — p"(t)) (6.1)

for every (v,m,q) € An(Q,w"(t));
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(qs2) energy balance: p™ € BV ([0, T]; My(Q2 U 0;8; M223)) and for every t € [0,T]

sym

Q(eh(t)) det Fy, dx + Dh(ph; 0,t)
Q

:/Q(eh(O))dechd:ﬂ+/t/ Ce(s) : sym(Ry, D" (s) Ry, Fy ') det Fy, dwds.  (6.2)
Q 0 Jo

In (6.2) the notation Dy (p";0,t) stands for the dissipation of p" in the interval [0,1],
defined as

N
Du(pia,b) i=sup { 3 Halp(s;) — pls;1)) : a=s9 <1< sy =b, NeN}
j=1

for every p € BV([0,T]; Mp(Q U 940; M322)) and every 0 < a <b < T.

sym

Definition 6.2. Let w € Lip([0,7]; H*(;R3) N KL(Q)). A reduced quasistatic evolution
for the boundary datum w is a function t — (u(t),e(t),p(t)) from [0,T] into BD(9) x
L2(;M2X2) x M, (22U 942; M22) that satisfies the following conditions:

sym sym

(gs1)* reduced global stability: for every t € [0, T] we have that (u(t), e(t), p(t)) € Agkr(w(t))
and

Q*(e(t) < Q(n) + H* (¢ — p(t)) (6.3)
for every (v,m,q) € Agkr(w(t));
(qs2)* reduced energy balance: p € BV ([0, T); Mp(2U 949 M2%2)) and for every t € [0, T

sym

Q*(e(t)) + D*(p; 0,t) = Q*(e(0)) Jr/o /QC*G(S) : E*i(s) dx ds. (6.4)

In (6.4) the notation D*(p; 0, t) stands for the reduced dissipation of p in the interval [0, ¢],
defined as

N
D*(p; a,b) == sup{Z’H*(p(sj) —p(sj_1)): a=sg<s1 < <sy=b, N¢ N}
j=1

for every p € BV([0,T]; My(Q U 940; M2X2)) and every 0 < a <b < T.

sym

We now prove the convergence of a sequence of h-quasistatic evolutions to a reduced
quasistatic evolution, as h — 0. This will be proved under the following assumptions on the
boundary and initial data.

Boundary displacements. We consider a sequence of boundary displacements
(w") C Lip([0, T}; H' (% R?)) (6.5)
such that for every 0 < h < 1
[w"|Lip(to, ;22 (@,0:8)) + || sym (R Dw" R Fy ) |[uip(o.7):22) < C (6.6)
with a constant C' > 0, independent of h. Furthermore, we assume that there exists ¢ €
Lip([0, T]; L*(9; M23)) such that
sym(Ry Dw" (t)RpF; ') — ¢(t)  strongly in L*(Q; M3 x3) (6.7)

for every t € [0,T] and
sym(Ry, D" (t) Ry Fy ') — {(t) strongly in L*(Q; M33) (6.8)

sym

for a.e. t € [0,T).
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Initial data. Let (ul, el pl) € Ap(,w"(0)) be such that

/ Q(eh) det F, dx < / Q(n) det Fy, dx + Hp (g — plt) (6.9)
Q Q
for every (v,1,q) € A (2, w"(0)). Moreover, we assume that

eh — &y strongly in LQ(Q,M‘?;‘Z) (6.10)

for some &y € L*(Q; M2,<3) and that for every 0 < h < 1
gl a1, < C (6.11)

for some constant C' > 0, independent of h.
We are now in a position to state the main result of this paper.

Theorem 6.3. Assume (6.5)-(6.11). For every 0 < h < 1 let t — (u(t),e"(t), p"(t))
be an h-quasistatic evolution for the boundary datum w" such that (u”(0),e"(0),p"(0)) =
(ul,eh plk). Then there exist w € Lip([0,T]; H*(;R3) N K L(2)) and a reduced quasistatic
evolution

(u,e,p) € Lip ([0,T]; BD() x L*(;M22) x My(QU 8gQ; M252))

sym sym

for the boundary datum w such that, up to subsequences, for everyt € [0,T]

wh(t) — w(t) strongly in H'(;R3), (6.12)

ul(t) — u(t) strongly in L*(;R3), (6.13)

sym(Rp Du(t) Ry Fy ap — (E*u(t))as  weakly* in My(S), (6.14)
e (t) — Me(t) strongly in L*(Q; M323), (6.15)

pgﬁ(t) — pag(t) weakly™ in My(QU 04Q2), (6.16)

as h — 0.

Remark 6.4. Given a boundary datum w" and a triplet (u?, ek, ph) € A (9, w"(0)) satisfy-
ing (6.9), the existence of an h-quasistatic evolution ¢t — (u”(t),e"(t), p"(t)) with boundary
datum w" and initial condition (u"(0),e"(0),p"(0)) = (ul,el,pk) follows from [10, Theo-
rem 4.5]. In [10] this result is proven for 99 of class C?, but, as observed in [17], Lipschitz
regularity of the boundary is enough in the absence of external forces. Furthermore, since
the problem is rate-independent, one can always assume the data to be Lipschitz continuous
in time (and not only absolutely continuous), up to a time scaling, so that solutions are
Lipschitz continuous in time (see [10, Theorem 5.2]).

Remark 6.5. The assumptions (6.10) and (6.11) on the initial data are crucial to deduce
the right compactness estimates for the sequence of h-quasistatic evolutions (see Step 2 in
the proof of Theorem 6.3). Moreover, the strong convergence in (6.10) is needed to pass to
the limit in the energy balance and deduce an energy inequality for the reduced problem
(see Step 6 in the proof of Theorem 6.3).

For the proof of Theorem 6.3 we will need some preliminary results. The first one is a
characterisation of the global stability condition (qsl1)* of the reduced problem.

Lemma 6.6. Let w € H'(;R3) N KL(Q) and let (u,e,p) € Agkr(w). The following
conditions are equivalent:

(a) Q*(e) < Q*(n) +H* (g —p) for every (v,1m,q) € Agxr(w);
(b) —H"(¢q) < /Q(C*e :ndz for every (v,n,q) € Agkr(0).

Proof. Assume (a) and let (v,7,q) € Agkr(0). For every e > 0 we have that (u + ev,e +
en,p+¢eq) € Agkr(w). Therefore,

Q*(e) < Q*(e +en) + H*(eq).
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Using the positive homogeneity of H*, dividing by ¢ and sending ¢ to 0, we deduce (b).
Conversely, (b) implies (a) by convexity of Q* and H*. O

Arguing in the same way as in the previous lemma, one can prove the following charac-
terisation of the global stability condition (gsl) of the h-quasistatic evolution problem.

Lemma 6.7. Let 0 < h < 1, let w € H(Q;R3), and let (u,e,p) € An(Q,w). The following

conditions are equivalent:

(a) / Q(e) det Fy dx < / Q(n) det Fp, dx 4+ Hp(q — p) for every (v,m,q) € Ap(Q,w);
Q Q

(b) —Hr(q) < / Ce : ndet Fy, dx for every (v,m,q) € An(Q,0).
Q

The next lemma concerns a variant of the Gronwall inequality.

Lemma 6.8. Let ¢, : [0,T] — [0,+00) be such that ¢ € L°°(0,T) and ¢p € L*(0,T).
Assume that

o7 < [ oty ds
for every t € [0,T). Then t
o)< 5 [ vs)ds
for every t € [0,T).
Proof. We define .
F() = [ o)t ds

for every t € [0, T]. Thus, F' € AC(]0,7T]) and by assumption ¢(¢)? < F(t) for every t € [0,T].
Therefore,

F'(t) = o) (t) < F(5)4(1)
for a.e. t € [0, T]. This leads to

1 t
PO)Y2 < 7/ W(s) ds
2 Jo
for every t € [0, 7], which implies the thesis by using the assumption again. O

We have now all the ingredients to prove Theorem 6.3.

Proof of Theorem 6.3. The proof is split into six steps.
Step 1: Convergence of w". Hypothesis (6.6) and estimate (5.16) ensure that
1" l[Lip(o.ryiry < €

for every 0 < h < 1. By the Ascoli-Arzeld Theorem there exist w € Lip([0, T]; H(2;R3))
and a subsequence (w"), not relabeled, such that

wh(t) = w(t) weakly in H'(Q;R?)
for every ¢t € [0,T]. Arguing as in Step 1 of the proof of Theorem 5.2, we infer that w(t) €
KL(Q) and the above convergence is strong, namely (6.12) holds. Moreover,
sym(Ry, Dw" (t) Ry Fy M) ap — (B*w(t))aps  strongly in L?(Q)
for every t € [0,T]. In particular, by (6.7) we have that (np(t) = (E*w(t))as-

Step 2: Compactness estimates. We claim that there exists C' > 0, independent of h, such
that
||€h(t2) — eh(t1)||L2 S C|t2 — t1| || Sym(RththF}:l)HLoo([O’T];Lz) (617)
Ip(t2) =" ()l < Clta = ta] | sym(Ra D" BBy o oryasy (6.19)

— )

for every t1,t2 € [0,T] and every 0 < h < 1.
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From (6.2), (3.5), (3.8), Lemma 3.1, and the Holder inequality it follows that

(ac +OR)e" )72 + (ri + OR*) " (1) = 5 lIas,

t
< (Bc+ O(hQ))/ e () z2 || sym(Rp D" () Ry, ) 22 ds + (B + O(h?)) [leg |7
0
Owing to (6.6), (6.10), (6.11), and the Cauchy inequality, we deduce that

sup |le" (t)[|z2 + sup [[p"(t)llar, < C (6.19)
t€(0,T] t€[0,7]

for every h sufficiently small.
We now use condition (gsl) at time t1. Let
v=u"(ty) — ul(ty) — w(tz) + w(t1),
n=el(tay) —e"(t1) — sym(Ry Dw" (t2) Ry Fy ') + sym(Ry Dw" (t1) Ry Fy 7Y,
q=p"(t2) —p"(t2).

Since (v,1,q) € Ax(£2,0), by Lemma 6.7 we have that
7/ Cel(ty) : (eh(tg) - eh(tl)) det F, dzx
Q
+ / Ce"(t1) : (sym(RyDw" (t2) Ry Fy, ') — sym(Ry, Dw™ (t1) Ry Fy ') det Fy, dz
Q

< Hu(@"(t2) = p"(t1)) < DRt t2),

where the last inequality is an immediate consequence of the definition of Dj. Using the
previous inequality in the energy balance (6.2) written at times ¢; and to, we get

/ Q(e"(t2)) det F), dx — / Q(e"(t1)) det Fy, dx — / Cel(ty) : (eh(tg) — eh(tl)) det F}, dx
Q Q Q
2
< / / C (eh(s) —e"(t1)) : sym(Rp D" (s)Ry Fy; ) det F), da ds.
ty Q
We observe that the left-hand side of the previous inequality is exactly
/ Q(e" (1) — e (t1)) det F da.
Q
Thus, from (3.5), (3.6), Lemma 3.1, and the Holder inequality it follows that
(ac +O(h?))||e" (t2) — " (t1)l|72
ta
< (2Bc + O(hz))/ le"(s) — e"(t1)l| 2| sym(R D" (s) R Fy, V)| 2 ds.
t1

By Lemma 6.8 we deduce that
to
Heh(tg) - eh(tl)HLz <C I sym(RhDu')h(s)RhF,:l)HLz ds,

t1

hence (6.17).



QUASISTATIC EVOLUTION OF PERFECTLY PLASTIC SHALLOW SHELLS 27

Using again the energy balance (6.2) at times ¢1 and ¢, together with (3.8) and Lemma 3.1,
we obtain

(rie + O()|[p" (t2) — p"(t1) I ar,
h h
< /QQ(B (tl))dechdxf/QQ(e (t2)) det Fy, dx

to
—l—/ / Ce"(s) : sym(Ry Dw" (s) Ry Fy ') det Fy, da ds
t JQ

ta
< C sup MOl [ Isvm(BaD0 SRAF 2 ds + et (1) - ¢ 01)]12)
t€[0,T] ty
S C|t2 - t1| || Sym(RththF}:l)HLoc([O’T];Lz),

where the last inequality follows from (6.19) and (6.17), and C' > 0 is a constant independent
of h. This proves (6.18) and concludes Step 2.

Step 3: Reduced kinematic admissibility. By (6.10), (6.11), (6.17), and (6.18) we can ap-
ply the Ascoli-Arzeld Theorem to the sequences (¢) and (p") and deduce the existence
of & € Lip([0,T]; L2(;M23)) and p € Lip([0, T]; My(Q U 940 M35?)) such that, up to

subsequences, o
e (t) — é(t) weakly in L?(Q; M3x3), (6.20)
ph(t) = p(t) weakly* in M;(QU 9,0 M%) (6.21)
for every ¢ € [0,T]. We introduce e € Lip([0, T]; L*(€;M2,?)) and p € Lip([0, T]; My(Q U
DaS; M3 )) defined by eqp(t) := €ap(t), ess(t) := 0 for every t € [0, 7], and pas(t) := Pas(t),

pis(t) := 0 for every t € [0, T, respectively.

Since (u”(t),e(t),p"(t)) € An(;w"(t)), and owing to (6.6) and (6.19), we can apply
Lemma 5.1 and infer that for every t € [0, 7] there exists u(t) € KL(2) and a subsequence
u” (t), possibly depending on ¢, such that

ul (t) — u(t) strongly in L'(Q;R3), (6.22)

sym(Rp Du" (1) R F7 " ))ap — (B*u(t))ag  weakly* in My(€). (6.23)

Furthermore, arguing as in Step 2 of the proof of Theorem 5.2, and using (6.20) and (6.21),

we infer that (u(t), e(t), p(t)) € Agkr(w(t)). We now prove that u(t) is uniquely determined.

Assume that there exist ¢ € [0, 7] and two subsequences (u"(t)) and (u" (t)) with limits

up(t) and wg(t), respectively. Set z(t) := wy(t) — ua(t). Since both (uq(t),e(t),p(t)) and
(u2(t), e(t), p(t)) belong to Agkr,(w(t)), we have that z(t) € KL(Q2) and

E*2(t)=0 1in Q, 2(t) =0 on 9uf.

We deduce that
sym Dz(t) + Vz3(t) © VO = 23D?23(t) in Q. (6.24)

Thus, D?23(t) = 0 in Q and the boundary condition z(t) — x3V23(t) = 0 on 948 gives
Vz3(t) = 0 on Oqw and z3(t) = 0 on dyw. By (2.2) we deduce that z5(¢t) = 0 in w. Hence,
sym Dz(t) = 0 in w by (6.24) and, in turn, sym Dz(¢) = 0 in Q. Since z(¢) = 0 on 9412, it
follows from (2.1) that z(¢) = 0 in Q. This proves that u(t) is uniquely determined, hence
convergences (6.22) and (6.23) hold for the whole sequence. Thus, (6.13) and (6.14) are
proved.

It remains to check that u € Lip([0, T]; BD(2)). Since e, p, and w are Lipschitz continuous,
by kinematic admissibility we infer that

(u, E*u) € Lip([0, T); L' (044 R?) x My (Q; M2X2)). (6.25)

sym

Now let us consider the first order moments of v and E*u. One can prove that

IE*u®llat,w) < CIE w180z w) < Cllu®) oy e,
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with C' > 0. These estimates, together with the relations @ (t) = —d4us(t) and E*u(t) =
—D?u3(t), imply that

(uz, Vus, D*us) € Lip([0, T); L' (Oqw) x L*(94w; R?) x My (w; M2X2))

sym
and, in turn, owing to (2.2), that ug € Lip([0,T]; BH(w)). It follows now from (6.25) and
the definition (3.22) of E*u that sym Du € Lip([0, T]; My (€% M22)). Therefore it is a con-
sequence of (2.1) that

u € Lip([0,T]; BD(R)).

The previous arguments, together with (6.10) and (6.11), also prove that, up to sub-
/

sequences, ufl — wug strongly in L(£;R3), (sym(RhDuthF}:l)aﬁ — (E*ug)ap weakly*
in My(Q), (€})ap — (e0)ap strongly in L2(Q), (ph)as — (Po)as weakly* in M (S2), for
some (up,eg,po) € Agr(w(0)). Since (u"(0),e"(0),p"(0)) = (ul,el,pl), we have that
(u(0),e(0),p(0)) = (uo, €0, po)-

Step 4: Reduced global stability. We prove (6.3). Let ¢ € [0,T]. By Lemma 6.6 condition (6.3)
at time t is equivalent to

q) < /Q(C*e(t) :ndx  for every (v,n,q) € Agkr(0). (6.26)
Let (v,m,q) € Agkr(0). By Step 3 in the proof of Theorem 5.2 there exists a sequence
(", 0" q") € An(,0) such that
n" — Mn  strongly in L(€; M3x3), (6.27)
Hu(q") = H*(q). (6.28)
By Lemma 6.7 and (6.1) at time ¢t we have that

—Hn(q / Ce"(t) : nl det F, dx

for every 0 < h < 1. By (6.20), (6.27), and (6.28) we can pass to the limit in the previous
estimate, as h tends to 0, and deduce that

—H*(q) < / Cé(t) : Mndx  for every (v,7,q) € Agkr(0).
Q

Since Cé(t) : Mip = CMe(t) : Mn = C*e(t) : n by (3.20), this inequality reduces to (6.26).
Step 5: Identification of the limiting elastic strain. We now prove that é(t) = Me(t) for every
te[0,T].

Let t € [0,7]. For every ¢ € H'(;R3) with ¢ = 0 on 949 we consider the triplets
(41, £ sym(R, DY R, F; 1), 0) as test functions in condition (b) of Lemma 6.6 at time ¢.
This leads to

/ (Ce ssym(Rp DY RLF, Ydet Fj,dz =0

for every 0 < h < 1.

Let now (a,b) C (—1,3),let U C w be an open set, and let A; € R. Let (™) 5
and (A7) C C}(w) be sequences such that (¢™)" — X(4,p) strongly in L*(—3,1) and A" —
\ixu strongly in L*(w), as n — oo. For 0 < h < 1 and n € N we define

P (@) == (2h " (ms)Ai (7)), B2 @™ (w3) A5 (2)).
Since ™" € H'(Q;R3) and ™" = 0 on 940, we have

/ Ce"(t) : sym(Ry, DY" " R, F} ") det Fy, dx = 0. (6.29)

Using that Fh_1 = I3x3 + O(h) by Lemma 3.1, we obtain that
sym(Ry, D" Ry, Fy M) ap = O(h), sym(Ry, D" Ry, Fy Y)iz = (") A + O(h).
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These expansions, together with (6.20) and the uniform convergence of det Fj, to 1, allow us
to pass to the limit in (6.29), first as h — 0, and then, as n — oco. This yields

0 0 X

/ Cet): [0 0 | dz=0.
U x (a,b) Mo A A3

Since the sets (a,b) and U are arbitrary, we conclude from (3.16) that é(t) = Me(t) a.e
in Q. In particular, we have that éy = Meg, where € is the limit in (6.10).

Step 6: Reduced energy balance. The lower semicontinuity of Q* and D*, together with (6.20)
and (6.21), imply that

Q*(e(t)) < hgl 161f/ Q(e"(t)) det F}, dz,
- (6.30)
D*(p;0,t) < liminf Dy, (p";0,1)
h—0
for every t € [0, T]. Passing to the limit in the energy balance (6.2) yields
Q" (e(t)) + D" (p; 0, 1)
< limsup / Q(e"(0)) det Fy, der/ /(Ce : sym( Rth (s )RhFh_l)dech dxds}
h—0

/Qeod:c+//<ce - {(s) du ds,

where the second equality is a consequence of (6.8), (6.6), (6.10), (6.19), (6.20), and the
Dominated Convergence Theorem. By Step 5 and the equality (,5(t) = (E*w(t))as, we
conclude that

Q*(e(t)) + D*(p; 0,t) < Q*(eq) + //c* : E*i(s) dz ds.

As it is standard in the variational theory for rate-independent processes, the converse
energy inequality follows from the minimality condition (qs1)* (see, e.g., [31, Theorem 4.4]
or [10, Theorem 4.7]). We have thus proved that ¢t — (u(t), e(t), p(t)) is a reduced quasistatic
evolution.

To conclude the proof it remains to show the strong convergence of e”(t) to Me(t) for
every t € [0,T]. Since we have showed that the right-hand side of (6.2) converges to the
right-hand side of (6.4), we have that

lim { | QU () det By iz + D (o0, B} = Q" (e(t) + D" (1:0,1)

for every ¢ € [0, T]. Thus, by (6.30) and Lemma 3.1 we deduce that

Q( —hm/Q dechd:E—hm/Q t)) dx

h—0
= / Q(Me(t)) dx
Q

convergence (6.15) follows from (6.20), Step 5, and the coercivity (3.5) of Q. The proof of
Theorem 6.3 is concluded. ]

Since

6.1. Characterisation of reduced quasistatic evolutions in rate form. We conclude
this section with a characterisation of reduced quasistatic evolutions.
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Stress-strain duality. In the framework of the reduced problem we introduce a notion of
duality between stresses and plastic strains. Here we follow [11, Section 7].
We define the set X(§2) of admissible stresses as

¥(Q) :={o € L®(Q;M2X2) : dive € L*(w;R?), divdivé € L*(w)}.

sym

For every o € $(Q2) we can define the trace [6v,,] € L (0w; R?) of its zeroth order moment
normal component as

([ovow], ¥) = / o :sym Dy d’ + / diva - ¢ da’ (6.31)
for every ¢ € W'!(w; R?). Note that, since o € L™ (w;M2y2) and W' ! (w;R?) embeds into

L?(w;R?), all terms on the right-hand side of (6.31) are well defined.

Let T(W?%!(w)) be the space of traces of functions in W?!(w) and let (T(W?%!(w)))’ be
its dual space. For every o € () we can define the traces by(6) € (T(W?%(w))) and
b1(6) € L>®(0w) of its first order moment as

0
—(bo(6),v) + (b1(5), 8T¢> = / 6 : D*pdr’ — / W div div 6 da’ (6.32)
Ow w w
for every ¢ € W?1(w). Note that the right-hand side of (6.32) is well defined since & €
L (w; M2X2). If 6 € C?(w,M2X2), one can prove that

sym sym

bo(6) = divé - v, + (070w * Vow) »

0
OTow
b1(6) = 6vow - Vow,
where Ty, is a unit tangent vector to dw (see [13, Théoreme 2.3]).

Let (h,mg,m1) € L®(0w; R?) x T(W?1(w))) x L*°(dw). Since [5va,,] € L°°(0w; R?) and
b1(6) € L*°(0w), the expressions [gvy,] = h on dpw and b1(6) = my on Jd,w have a clear
meaning. As for by(6), we say that by(6) = mo on Opw if (bg(5) — mo, 1) = 0 for every
¥ € W2 (w) with ¢ = 0 on dgw.

We define the space of admissible plastic strains I15,0(€2) as the set of all measures p €
My (QU 04Q; M2<2) for which there exists (u, e, w) € BD(Q) x L*(;M2%) x (H* (9 R?*) N
KL(Q)) such that (u,e,p) € Agkr,(w).

For every o € £(Q2) and £ € BD(w) we define the distribution [& : sym DE] on w as

([7 : sym DEJ, ) :z—/gpdiv&-fdm’—/ 7:(Ve®&)da

for every ¢ € C°(w). It follows from [23, Theorem 3.2] that [¢ : sym D¢] € Mp(w) and its
variation satisfies

[+ sym DE]| < |5~ sym De| in w.
Given o € £(2) and p € IIy,a(£2), we define the measure [7 : p] € Mp(w U dgw) as

o5 = [0:symDa]+6: (VOO Vuz)—d:€é inw,
T levew] - (w —a)H on dgw,

where (u,e,w) € BD(Q) x L*(;MZ2y2) x (H'(Q;R?) N KL(Q)) are such that (u,e,p) €
Agkr,(w). Note that since Vuz € BV (w;R?) and BV (w; R?) embeds into L%(w;R?), the
term & : (VO ® Vug) is in L(£2). Moreover, one can easily check that the definition of [ : p]
is independent of the choice of (u,e,w).

For every o € $(2) and v € BH(w) we define the distribution [6 : D?v] on w as

(|6 : D*v], %) ;:/wvdivdiv&d:c’—Q/&;(vu@vw)dx’—/v&;p%pdx’

w w w
for every ¢ € C°(w). From [15, Proposition 2.1] it follows that [6 : D*v] € My(w) and its
variation satisfies
[ : D*v]| < ||6]|z~|D?*v| in w.
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Given o € £(2) and p € IIy,q(f2), we define the measure [6 : p] € My(w U dqw) as

—[6:D*u3] —6:¢  inw,
[6:p] = b1(5)a(ug — w3) H' on Oy,
8Vaw

where (u,e,w) € BD(Q) x L*(;M22) x (H'(Q;R?) N KL(Q)) are such that (u,e,p) €
Agkr,(w). This definition is independent of the choice of (u, e, w).

We are now in a position to define the duality between %(£2) and IIy,o(€2). For every
o € () and p € I,a(Q) we define the measure [0 : p|* € M,(Q2U 94Q) as

1
[o:p]" :i=[o:p®L +1 [6:pl@L —0) te].

2

We also introduce the duality pairings
(7,p) := [0 : P](w U dgw), (6,p) :=[6: P](w U dgw)
and

<va>* = [0 : p}*(QuadQ) = <67p> + E<&aﬁ> - /QUJ_ tey dz.

The next two results concern some useful properties of the stress-strain duality. We first
show that the duality satisfies an integration by parts formula.

Proposition 6.9. Let o € (), w € H' (4 R3) N KL(Q), and (u,e,p) € Agkr(w). Then

/ god[o:p]*—l—/goo:(e—E*w)dx
QUALQ

/6 (Vo ® (a —w)) da’ —/leO’ (i — w) da’ —|—/ [Gvaw] - (i — @) dH!
w Opw

1
/ 6 (uz —w3)D*pdx’ + 6/ 6: (Vo ® (Vuz — Vws)) da’

1
o(uz — ws) <12div dive + & : D?0 +diva - V@) da’

(ug —ws3)a : (Ve @ V) dx' + / o(uz — w3)[Gvaw] - VO dH!
Onpw

\Ha\s\ B\H

(bo(), (u3—w3)>——/ bl(&)wd’ﬂl

Onw al/@w

—_
[\

for every ¢ € C?*().

Proof. The proof follows from [12, Proposition 4] by observing that

/ Lpd[azp]*:/ gpd[a:(p—VG@Vug)]r—i—/w&:(VG@ng)dx'
QUILQ QUALQ w

+ / 05 : (VO V(uz — ws)) dz’
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where [0 : p], is the notion of duality introduced in [11, 12]. Moreover, by (6.31) we have
/ 0o : (VOO V(uz — ws)) dz’

= / o : sym D(p(uz — w3)Ve) dz' — /(Ug —ws3)o : (Vo ® V) da'

w

—/ o(us — ws3)a : D0 dx’

o(uz —ws)dive - VO dx' —|—/ o(us — ws)[Gvay] - VO dH!

Opw

(ug —ws3)a : (Ve ® V) dr' — / o(us —ws3)a : D?0da’,

w

where we used that p(us — w3)V6 € BH(w;R?), hence ¢(uz — w3)VO € Whl(w;R?) and
uz = w3 on Jgw by Proposition 3.5. O

The next lemma is a characterisation of the dissipation potential H* in terms of the
duality.

Lemma 6.10. Let p € IIy,0(). Then the following equalities hold:
H*(p) =sup{{o,p)" : o€ X(Q)NK"(Q)} =sup{(o,p)" : 0 €OQ)},

where
K*(Q) = {0 € L>(M2}2) : o(z) € K* for a.e. x € Q}

sym

and O(Q) is the set of all o € £(Q) N K*(Q) such that [ova,] = 0 on Opw and by(6) =
b1(6) =0 on Oyw.

Proof. Let T':= (9w x (= 3,3)) U (wx (£3)). From [40, Chapter II, Section 4] it follows
that

H*(p) = sup{/ o:dp: o€ CP(RY M) N K (), suppaﬁFz@}
QUL

IN

sup{(o,p)* : 0 € O(Q)} < sup{(o,p)*: 0 € () NK*(Q)}.

The converse inequality can be proved as in [11, Proposition 7.8] by an approximation
argument, where the density result is provided in our framework by Lemma 3.7. |

Now we are ready to state and prove the main result of this section.

Theorem 6.11. Let w € Lip([0, T]; HY(Q; R3) N K L()). Let t — (u(t),e(t),p(t)) be a map
from [0, T] into KL(Q) x L*(Q;M2x2) x My(QU 9a M2%%). Let o(t) := C*e(t). Then the
following conditions are equivalent:

(a) t— (u(t),e(t),p(t)) is a reduced quasistatic evolution for the boundary datum w;
(b) t+— (u(t),e(t),p(t)) is Lipschitz continuous and
(bl) for every t € [0,T] we have (u(t),e(t),p(t)) € Agxi(w(t)), o(t) € 0(Q),
divo(t) =0 in w and $5divdive(t) +a(t) : D*0 =0 in w;
(b2) for a.e. t € [0,T] there holds
H(B(t) = (o (t), p(1))"

Remark 6.12. In the strong formulation given by condition (b) in the above theorem,
the stability condition (gsl)* is replaced by the equilibrium equations diva(t) = 0 and
s5divdivé(t)+a(t) : D?0 = 0, supplemented by Neumann boundary conditions on the com-
plement of 94w, while the energy balance is replaced by the equality H*(p(t)) = (o (), p(t))*.
By Lemma 6.10 this last condition is, in turn, equivalent to the maximum dissipation prin-
ciple (1 —o(t),p(t))* <0 for every 7 € ©(2). This can be interpreted as an integral version
of the pointwise flow rule (d5)* in the introduction.
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Remark 6.13. In contrast with the plate model deduced in [11], the two equilibrium equa-
tions in (b) are coupled. This implies, in particular, that for a shallow shell subject to
“horizontal” initial and boundary data it is in general not possible to write the reduced
quasistatic evolution problem purely in terms of the “horizontal” components @, €, and p,
as it was instead proven for plates in [11, Proposition 7.6].

Proof of Theorem 6.11. Arguing as in [10, Theorem 5.2] one can prove that every reduced
quasistatic evolution is Lipschitz continuous.

We first prove the equivalence between (qsl)* and (bl). Let ¢ € [0,T]. By Lemma 6.6 it
is enough to show that (bl) is equivalent to the following condition:

—H*(g) < /Qa(t) :ndx  for every (v,m,q) € Agkr(0). (6.33)

Assume (6.33). Let B C Q be a Borel set and let xp be its characteristic function. Let
€ € M2x% and let 7 := x €. By choosing (0, —7,1) € Agkr(0) as test function in (6.33), we

have that
/Ba(t) c&dx < L3(B)H*(€).

Since B is arbitrary, we conclude that o(t,x) : £ < H*(§) a.e. in £, hence o(t) € IH*(0) =
K* a.e. in Q.

Let now v € HY(Q;R3) N KL(Q) be such that v = 0 on 9,0. Since (+v, £E*v,0) €
Agk1,(0), equation (6.33) implies

/ o(t): E*vdx =0 (6.34)
Q

for every v € HY(Q;R3) N KL(Q) with v = 0 on 9;9. By choosing v = ,e, with 1 €
H'(w;R?) and ¥ = 0 on dgqw in (6.34), we deduce that

/6(75) :sym D dz’ =0

for every ¢ € H'(w;R?), ¥» = 0 on Jqw. Since this holds, in particular, for every v €
C2°(w; R?), we have

diva(t) =0 in w. (6.35)
Moreover, by [11, Lemma 7.10-(i)] we obtain
[6(t)vow] =0 on dpw. (6.36)

We now choose v in (6.34) of the form v = pes, with ¢ € H?(w), ¢ = 0 and V¢ = 0 on
Oqw. This leads to

/ a(t): (Voo Ve)da' — 1—12 6(t) : D*pdx’ = 0.

By (6.35), (6.36), and (6.31) we obtain

/6(25) 1 (VOOVe)dx' = / a(t) : sym D(oV0) dx'—/ @a(t) : D*0dx’ = —/ @a(t) : D*0da’.

w

Thus, we deduce that
1
/ wa(t): D*0dx’ + E/ 6(t): D*pda’ =0

for every ¢ € H?(w), ¢ = 0 and V¢ = 0 on Juw. Since this holds, in particular, for every
¢ € C°(w), we have
1
a(t) : D*0 + div dive(t) =0 inw.

Moreover, by [11, Lemma 7.10-(ii)] we obtain that bg(6) = b1(6) = 0 on d,w. In particular,
o(t) € ©(Q) and (bl) holds.
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Assume now (bl) and let (v,7,q) € Agkr.(0). Applying Proposition 6.9 to (v,7,q) with
p =1 yields

WW&VZ—Adﬂmm.

Since o € O(Q), we deduce (6.33) by Lemma 6.10.
We now show, that if (b1) holds, then (qs2)* and (b2) are equivalent. Assume (b1). Since
p is Lipschitz continuous, [10, Theorem 7.1] guarantees that

%ﬂﬂ=AHW@MS (6.37)

for every t € [0,7T]. Moreover, using Lemma 3.2 one can prove that (u(t), ( ), p(t)
Agkr(w(t)) for ae. t € [0,T]. Applying Proposition 6.9 to (u(t),é(t),p(t)) with ¢ =
yields

(o(t), p(t)* = / o(t) : (E*i(t) — é(t)) de. (6.38)

Q
Differentiation of (gqs2)* with respect to time, together with (6.37) and (6.38), yields (b2),
and conversely, integration of (b2) with respect to time yields (gs2)*. |
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