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Introduction

This thesis is devoted to the rigorous derivation of lower dimensional models for thin
bodies, in the framework of linearised elasto-plasticity. A thin structure, such as a plate
or a shell, is a three-dimensional body whose thickness is very small with respect to the
other dimensions. Understanding the laws governing their motion is very important, since
thin structures comprise a growing proportion of engineering constructions, like aircrafts,
boats, bridges, and oil rigs. To describe the mechanical behaviour of a thin structure, it
is usual to replace three-dimensional theories with lower dimensional theories, since they
are simpler to treat analitically and numerically.

A crucial question is how to mathematically justify lower dimensional models, start-
ing from the three-dimensional ones. In the classical approach these models are usually
deduced via formal asymptotic expansions, which are based on some kinematical and ge-
ometrical restrictions on the class of deformations. For this reason the validity and the
generality of these models is not always clear. It is therefore important to tackle this ques-
tion by a rigorous approach. To this aim, a useful mathematical tool is I'-convergence, a
powerful theory introduced by Ennio De Giorgi in the 70’s (see [15]). Roughly speaking,
I’-convergence is a variational convergence which ensures the convergence of minima and
minimisers of a sequence of functionals, to the minima and minimisers of the reduced mod-
els, respectively. This approach has been successfully applied to the stationary case: for in-
stance, in the framework of nonlinear elasticity to plates [25,26,31], beams [3,43,44,48,49],
and shells [24,32,33]. More recently, an increasing interest has been given to evolutionary
problems, where the scope is to understand the change in time of the state of the material.
The approach based on I'-convergence has been adapted also to the evolutionary setting:
in nonlinear elastodynamics [1,2], crack evolution [6,23], plasticity [13,34,35,45], and de-
lamination problems [42]. For the abstract theory of evolutionary I'-convergence we refer
to [41].

In this thesis we consider thin structures that exhibit an elasto-plastic behaviour.
These are bodies, whose response is elastic as long as the applied loads do not exceed the
yield stress of the material (that is, the deformation undergone by the body is reversible).
When the yield stress is reached, the material undergoes a plastic deformation, that is,
a permanent deformation in response to the applied forces. To be more specific, we will
focus on the theory of linearised perfect plasticity. Perfect plasticity means that the yield
stress remains constant during the evolution, and hardening and softening effects are
neglected. We suppose that the plastic response of the body is governed by the associative
Prandtl-Reuss flow rule, which is typically used to describe the plastic behaviour of metals.
Furthermore, we assume the material to be homogeneous and isotropic.

The dynamic evolution problem in linearised perfect plasticity can be described as

follows. Let U C R? be the reference configuration of a body, let u(t) be the displacement
vectorfield at time ¢, and let sym Du(t) be the symmetric gradient of w(¢). The linearised
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strain sym Du(t) is decomposed as the sum of two symmetric matrices: the elastic strain
e(t) and the plastic strain p(¢). In the modelling of plastic behaviour of metals, plastic
deformation is usually assumed to be volume preserving: for this reason, we assume p(t, x)
to be a deviatoric matrix for every x € U and every time t. We further suppose that
the evolution is driven by a time-dependent boundary displacement w(t) prescribed on a
portion dyU of the boundary of U, by a time-dependent body force f(t¢), and by a time-
dependent surface force g(t) applied on U \ 9;U. The dynamic evolution problem consists
in finding a triplet (u, e, p) such that the following conditions hold for every ¢ > 0:

(cl) kinematic admissibility: sym Du(t) = e(t) + p(t) in U and u(t) = w(t) on 94U;

(c2) constitutive law: o(t) := Ce(t) in U, where o(t) is the stress field at time ¢ and C is
the elasticity tensor;

(c3) equation of motion: i(t) —divo(t) = f(t) in U and o(t)vgq = g(t) on U \ 04U,
where vy is the outer unit normal to 0U;

(c4) stress constraint: op(t) € K in U, where op is the deviatoric part of o and K is a

given convex and compact set in the space of deviatoric matrices M%X?’;

() flow rule: p(t,x) belongs to the normal cone to K at op(t,z) for every x € U.

We are interested both in dynamic evolutions, and in quasistatic evolutions, where
inertial effects are neglected. More precisely, in quasistatic evolutions the rate of change
in time of the applied loads is so slow that one can assume the system to be at equilibrium
at each time during the evolution. Thus, in the quasistatic framework, the equation of
motion (c3) is replaced with

(¢3) equilibrium equation: —divo(t) = f(t) in U and o(t)vgy = g(t) on U \ 94U,

for every t > 0. We remark that system (c1), (¢2), (¢3)’, (c4), and (c5) gives rise to a rate-
independent process, while the dynamic evolution model (c1)—(c5) is not rate-independent,
because of the inertial term. For the general theory of rate-independent systems we refer
to [40]. Under suitable assumptions on the data, existence and uniqueness of solutions to
system (c1)—(c5) in U has been proved in [5], while the existence of a solution for (cl),
(c2), (c3)’, (c4), and (cb) in U, was originally established in the seminal paper [50], and
more recently revisited in [12] by means of a variational approach.

This thesis consists of two parts. In the first one, we rigorously derive a dynamic
evolution model for a plastic thin plate. In the second part, we consider a plastic shallow
shell in the quasistatic framework. In both cases, we deduce models that belong to the
framework of Kirchhoff-Love theory. This theory was introduced in 1888 (see [29]), and it
is based on the kinematic assumption that straight lines normal to the mid-surface remain
straight and normal after the deformation, within the first order. We underline that in
our results these kinematic properties are not assumed a priori, but they are obtained at
the limit by means of a rigorous convergence argument.

The first result of this thesis, which is discussed in Chapter 2, is the rigorous derivation
of a dynamic evolution model for a thin plate in perfect plasticity. The corresponding result
in the quasistatic case was established in [13].
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Let w C R? be a domain with a C? boundary and let A > 0. We consider a plate,
whose reference configuration is given by the set

[y
N>

Qp i =wx (=4, 5).
Here w represents the mid-surface of the plate, while the parameter i denotes its thickness.
We suppose that the body load f;(s) at every time s is purely vertical and the surface
load is zero at every time. We denote by wh( ) the time-dependent boundary displacement
prescribed on a portion I'yp, := Jqw X ( 5 2) of the lateral boundary of the plate.
Let (un,en,prn) be a solution of the dynamic evolution problem (c1)—(c5) in € with
this choice of data. The solutions (up, e, pp) provided by the existence results belong to
the space

)

BD(Qh) X L2(Qh,M3X3) X Mb(Qh U Fd7h;M3DX3),

sym

where BD(€,) is the space of functions with bounded deformation on €y, and M (€2 U
Ty M3?) is the space of M3,*3-valued bounded Radon measures on €, UTy ;. From a me-
chanical point of view this formulation is consistent with the well known fact that displace-
ments in perfect plasticity can develop jump discontinuities along so-called slip-surfaces,
on which plastic strain concentrates. Furthermore, the Dirichlet boundary condition on
Iy p, is relaxed and takes the form

pr(s) = (wn(s) — un(s)) © vaa, H*  on Typ,

where H? denotes the two-dimensional Hausdorff measure and @ is the symmetrised tensor
product. The mechanical interpretation of this condition is the following: if the prescribed
boundary displacement is not attained at time s, a plastic slip develops at the boundary
with a strength proportional to wy(s) — up(s).

Because of the weak regularity of p,, (pp, and pj, are only measures in the space variable),
the meaning of condition (c5) has to be clarified. In [5] this issue is overcome by expressing
(ch) as a variational inequality involving only the stress variable o and the velocity 1.
In [7] the authors replace condition (c5) by its equivalent form

(c5)" mazimum dissipation principle: H(pp(s)) = (on)p(s) : pr(s) in Qp UL,

where H (€) := sup, ¢ & : 1 is the support function of K. The advantage of condition (c5),
compared to (c5), is that the equality in (¢5)" has a meaning in a measure sense. This
relies on a notion of duality beween stresses and plastic strains that was introduced in [30]
and further developed in [12] and [22]. However, the definition of the duality requires some
regularity of 9€);, and of the relative boundary of I'y 5, in 0€2;,. Since in our framework 0€),
has only Lipschitz regularity, we prefer not to dwell on duality and we formulate (c5) as
an energy inequality:

(ch)" energy inequality: for every 0 < t; <ty
to

Onlen(ta)) + glin(t2)12 + [ Halin(s))ds < Qulen(tn)) + gllin ()]

t1

/t /Q on(s) : sym Divn(s) + iin(s) - wn(s)) dz ds
+/m , Jr(s)es - (n(s) = wn(s)) deds,
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where
Qnlen(s)) == Cep(s,x) : ep(s,x) dx
2 Q

is the stored elastic energy at time s, while Hj(pp(s)) is the plastic dissipation potential
at time s, defined according to the theory of convex functions of measure (see Section 1.2).
When the stress-strain duality is defined and (c1)—(c4) are satisfied, one can prove that
conditions (¢5)" and (¢5)” are in fact equivalent. For the reader’s convenience the proof
of the existence for system (cl)—(c4), and (c5)” is sketched in Section 2.3. In view of
the subsequent analysis, a particular attention is paid to the dependence of the involved
quantities on the thickness parameter h.

Existence of a dynamic evolution (up,ep,pr) in €y, is therefore established for every
h > 0. Our main goal is to study the asymptotic behaviour of (uy, ep, pr), as h tends to 0,
and characterise its limit as a solution of a suitable limiting problem. This is the subject
of Section 2.4.

To discuss the limiting behaviour of (up,ep,pp) it is convenient to rescale €, to a

domain 2 independent of h and to rescale time by setting ¢ := hs. According to this
change of variables, we define the rescaled displacement u” on [0, 4-00) x Q as
ul(t, x) = (un(%, (2, has)) - ea, hup(s, (@', has)) - e3) (1)

for x = (2/,23), @« = 1,2. The spatial scaling of uy, is consistent with that of dimension
reduction problems in linearised elasticity. In particular, the ratio of order h between
the vertical and the tangential displacements can be rigorously justified starting from
nonlinear elasticity, under the small strain assumption (see [26]). Note, however, that in
linearised elasticity the problem is invariant under further scalings of u”, while this is not
the case in plasticity, because of the different homogeneity of the elastic energy and the
dissipation potential. The scaling (1) is the correct one to see both elastic and plastic
contributions in the limit as h — 0 (see also [13]).

The time scaling of uy, is also consistent with the results in the context of elasticity
(see, e.g., [1]): oscillations in €, occur at a slow time scale, so that a time scaling is needed
to observe oscillations in the limit as A — 0.

The scaling for e and pp is chosen in such a way that the sequence of the rescaled
triplets (u(t), e (t), p"(t)) still satisfies the additive decomposition sym Du”(t) = e/(t) +
pl'(t) in Q for every t. Finally, we perform the same scaling as in (1) on the boundary
datum wy,, while for the body load we set

it x) = 4 fu, (2, hag)).

In Theorem 2.4.1 we prove that, under suitable assumptions on the initial data and on
the rescaled boundary condition and body load, the rescaled triplets (u”(t),e"(t),p"(t))
converge, up to subsequences, to a limiting triplet (u(t),e(t),p(t)) for every time ¢ > 0.

We now describe the conditions satisfied by the limiting triplet. For every ¢ > 0 we
have

(d1)* reduced kinematic admissibility: u(t) is a Kirchhoff-Love displacement, that is,
u(t, ) = (ta(t,2") — 2305us(t, o), usz(t,2")) for z = (2/,23), a=1,2,

where u(t) € BD(w) and us(t) € BH(w), the space of functions with bounded
Hessian. The strains e(t) and p(t) satisfy

sym Du(t) = e(t) + p(t) in €, p(t) = (w(t) — u(t)) ©vaaH?  on 948,
eig(t) =0 in Q, pig(t) =0 in QU 9y, 1=1,2,3.
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We note that the averaged tangential displacement @(f) may have jump discontinuities,
while, because of the embedding of BH (w) into C(w), the normal displacement us3(t) is
continuous, but its gradient may have jump discontinuities. In particular, the discontinuity
sets of u(t), that is, the limiting slip surfaces, are vertical surfaces. Condition (d1)* does
not imply, in general, that e(t) and p(t) are affine with respect to x3. However, they admit
the following decomposition:

e(t) = e(t) +x3é(t) +eL(t), p(t) = p(t) ® L' +p(t) ® 23L' — ey (1), (2)

where the components &(t), é(t) € L*(w; M2x2), ey (t) € L*(Q; M3%), p(t), p(t) € My(w U
Daw; M2)<%) satisfy

sym Du(t) = e(t) + p(t) in w, p(t) = (0(t) — u(t)) © va,H'  on daw,
and

—D%uz(t) = é(t) +p(t) inw, p(t) = (Vuz(t) — Vws(t)) © vo,H'  on duw.

Moreover, the vertical displacement ug(t) attains the boundary condition us(t) = ws(t)
on Jqw. Here, w(t) and ws(t) are the Kirchhoff-Love components of the limiting displace-
ment w(t).

Since the component e (¢) has a non trivial dependence on the variable x3, the limiting
problem has a genuinely three-dimensional nature and in general cannot be reduced to a
purely two-dimensional setting. This feature was already observed in the quasistatic case
(see [13]) and is in contrast with the purely elastic case (see [46]).

In addition, the limiting triplet (u(t),e(t),p(t)) satisfies the following conditions for
every t > 0:

(d2)* reduced constitutive law: o(t) := C*e(t) in 2, where C* is the reduced elasticity
tensor, which is defined through a suitable minimisation formula (see (2.2.9));

(d3)* equations of motion: setting
B 1/2
f(t,:E/) = f(tvx) dzxs,

—-1/2

we have
diva(t) =0 inw, iig(t) — Hdivdiva(t) = f(t) inw,

with corresponding Neumann boundary conditions on dw\ 94w, where 7 (t) := C*e(t)
and 6(t) := C*é(t);

(d4)* reduced stress constraint: o(t) € K* in , where K* := 0H*(0) is the subdifferential
of the reduced dissipation potential H* (whose expression is given in (2.2.11) through
a minimisation formula) at 0;

(d5)* reduced mazimum dissipation principle:
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In (d3)* we denoted the limiting vertical body load by f. The left-hand side in (d5)* is
defined using the theory of convex functions of measures, while the right-hand side involves
an ad-hoc notion of “reduced” stress-strain duality, introduced in [13, Section 7] for the
study of the quasistatic case. We refer to Section 2.2 for the definition of the duality.

We note that the stretching component & (¢) and the bending component 6(t) of the
stress decouple in the equations of motion (d3)*, while the whole stress o(t) is involved
in the stress constraint (d4)* and in the maximum dissipation principle (d5)*. Thus, the
component o (t) will in general play a role in satisfying these two conditions, leading
to a non trivial dependence of the solutions on the thickness variable x3. As mentioned
earlier, this behaviour is not peculiar of the dynamic case, but was already observed in
the quasistatic case. Indeed, an explicit example in [14] shows that the yielding threshold
may be reached at different times along the vertical fibers of the plate, thus giving rise
to a solution with o, # 0. The emergence of this multiyield behaviour was also observed
in [28], where a formal asymptotic expansion of small strain oscillations in an elastoplastic
plate with hardening was considered.

The proof of Theorem 2.4.1 is based on two main steps: first we deduce suitable
compactness estimates for the three-dimensional evolutions, and then we pass to the limit
in the equations via I'-convergence arguments. Compactness estimates are obtained from
the energy inequality (d5)” and from some a posteriori regularity estimates for the three-
dimensional problem (see (2.3.8) and (2.3.9)). Clearly the dependence of these inequalities
on h is crucial in order to obtain meaningful bounds. While the behaviour of the energy
inequality under scaling is relatively straightforward, dealing with the a posteriori estimate
is more delicate. At this stage it is essential to have a purely vertical body load. Once
these bounds are established, compactness is granted via Ascoli-Arzela Theorem.

To pass to the limit in the equations, we cannot rely directly on I'-convergence tech-
niques, because of the inertial term. However, the key ideas of the proof are borrowed
from this theory. More precisely, to deduce the limiting equations of motion we construct
suitable sequences of test functions for the three-dimensional problems. This is remi-
niscent of the recovery sequence construction in I'-convergence. To pass to the limit in
(d5)” we apply a I'-liminf inequality satisfied by Q* and H*. Once we have a limiting
energy inequality, condition (d5)* follows by using the reduced stress-strain duality and
its properties.

The last section of Chapter 2 is devoted to the study of some properties of solutions to
the limiting system (d1)*—(d5)*. In Proposition 2.5.1 we prove uniqueness of the normal
displacement and of the elastic strain. This does not ensure uniqueness of the solution to
the limiting problem. Indeed, in Proposition 2.5.2 we show that for “tangential” initial
and boundary data system (d1)*—(d5)* reduces to a two-dimensional quasistatic evolution,
whose solutions are in general not unique (see, e.g., [50]).

The second part of this thesis, which corresponds to Chapter 3, is devoted to the
rigorous justification of a quasistatic evolution model for a shallow shell, in the framework
of linearised perfect plasticity. Roughly speaking, a shallow shell is a shell where the
amount of deviation from a plane, measured normally to the plane, is very small. More
precisely, we assume the deviation to be of the same order of the thickness of the shell.
Hence, our analysis is reminiscent of that developed in [13] for an elasto-plastic thin plate,
but the nontrivial geometry of the shell gives rise to a substantial amount of additional
difficulties.

We consider a three-dimensional shallow shell occupying the reference configuration

Yp = Up(Q2). Here Q := w x (—%, %), where w C R? is a C? domain, and 0 < h < 1. The
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map ¥, : Q — X, is given by

Up(z) := (2, h0(2")) + hasvs, (z')  for every z = (2/,23) € Q,
where vg, is the outer unit normal to the two-dimensional surface
Sy = {(2',hl(2))) : 2’ € w},

and 6 : w — R is a scalar function.

Let T' > 0. Let wy(t) be a time-dependent displacement prescribed on a subset 0,3, :=
U1 (9482) of the lateral boundary of Xp, (where 9,42 is a portion of the lateral boundary of
), and assume there are no external loads.

Let (up,en,pn) be a solution of (cl), (¢2), (¢3), (c4), and (c5) in X, with this
choice of data. The scope of Chapter 3 is to characterise the limiting behaviour of
(up(t),en(t),pr(t)), as h tends to 0. As we did in Chapter 2, it is convenient to rescale the
triplet (up(t), en(t), pr(t)), in such a way to have it defined on . In particular, we define
the rescaled displacement u” on [0,7] x Q as

uh(t, x) = (up(t, Up(x)) - eq, hup(t, ¥p(x)) - e3). (3)

We note that here no time-scaling is performed. This would be superflous, since the
problem is rate-independent. In Theorem 3.5.3 we show the convergence of the rescaled
triplets (under suitable assumptions on the initial data and on the rescaled boundary
condition) to a limiting triplet (u(t),e(t),p(t)) in the space

BD() x L2(Q; M3X3) x My(QU 930, M2X3),

sym sym

which is a solution of the following limiting problem: for every t € [0,7] we have

(el)* reduced kinematic admissibility: u(t) is a Kirchhoff-Love displacement, and

sym Du(t) + VO ® Vug(t) = e(t) + p(t) in Q,
p(t) = (w(t) —u(t)) ©vaa  on Jull,
ei3(t)=0 in Q, pis(t) =0 in QU 049, 1=1,2,3,

where vyq is the outer unit normal to 02, and w(t) is the limiting boundary diplace-
ment;

(€2)* reduced constitutive law: o(t) := C*e(t), where C* is the reduced elasticity tensor
defined in (d2)* ;
(e3)* equilibrium equations:
dive(t) =0 inw, Ldivdive(t) +6(t): D’ =0 inw,

with corresponding Neumann boundary conditions on dw \ dqw, where dyw is the
projection of 9482 on the plane {x3 = 0};

(ed)* reduced stress constraint: o(t) € K* in €, where K* is the set introduced in (d4)* ;



8 INTRODUCTION

(e5)* reduced mazimum dissipation principle:
H*(B(t) = (o(t),p(t))" -

The dissipation potential H* in (e5)* coincides with that of (d5)*, while the duality at
the right-hand side is slightly different from that used in (d5)*, because of the different
kinematic admissibility of the limiting triplet. For 6 = 0, the model above coincides with
that of [13], that also corresponds to (d1)*—(d5)* when the inertial term is neglected. When
0 is different from 0, curvature effects need to be taken into account in the limit. This
results in the appearance of the term V0©® Vug(t) in the kinematic admissibility condition
and into a coupling of the stretching component &(t) and the bending component &(t) in
the equilibrium equations.

Since u(t) is a Kirchhoff-Love displacement, its symmetrised gradient is affine with
respect to x3, and the strains e(t) and p(t) can be still decomposed as in (2). Because of
the new kinematic admissibility condition, the zeroth and first order moments of e(t) and
p(t) now satisfy

sym Du(t) + VO © Vus(t) = e(t) + p(t)  inw, pt) = (0(t) —a(t)) ©va,H'  on dgw,
and
D2uz(t) = —(e(t) +p(t)) inw, p(t) = (Vuz(t) — Vws(t)) @ vau.H' on duw,

for every t € [0,T], where vy, is the outer unit normal to dw. As for the system (d1)*—
(d5)*, the limiting problem (el)*—(e5)* is genuinely three-dimensional, because the com-
ponent e (t), that has a non trivial dependence on the variable z3, may in general play a
role in satisfying (e4)* and (eb)*.

Now we describe the strategy of the proof of Theorem 3.5.3. The abstract theory
of evolutionary I'-convergence for rate-independent processes developed in [41] cannot be
applied directly here. Indeed, this theory consists in considering separately the I'-limit
of the stored energy functionals and of the dissipation distances, and in coupling them
through the construction of a joint recovery sequence. This approach is not applicable to
our case, since in perfect plasticity the stored elastic energy and the plastic dissipation
must be considered together to get the right compactness properties. As a first step,
we focus on the static case. We study the I'-limit, as h tends to 0, of the total energy
functional

1 d
saumqwzjjcmm:mmdx+/‘ H (29 a
2 3p YrUdgSh d’Q|

defined on all triplets (v, 7, q) satisfying
symDv=n+q in Xy, q=(wp—v)® VaEhHZ on JgXy,.

In Theorem 3.4.3, we show that the I'-limit of &, (rescaled to the domain ) is the
functional

ﬂmmm:AQ%@»m+W@>

for every (u,e,p) € Agkr(w), that is, the class of all (u,e,p) satisfying the kinematic
admissibility condition (el)*. The main difficulty in the proof of this result, compared
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with that of [13], is the following: the scaled sisplacement v in (3), which can be also
written as
u = R;lv oWy,

where

10
Ry,:=10 1
0 0

SN= O O

does not belong to BD(2), since we only know that

sym(Ry DuRp Fy ') € My(5M2)3), (4)
where Fy, := DV, R;,. Furthermore, we cannot rely on the classical Korn-Poincaré inequal-
ity for BD functions, as it was done in [13]. Indeed, if we expand Fj~ ! with respect to h
(see Lemma 3.2.1), we obtain

sym(RpDuR,F, 1) op = (sym Du — 95u © V6) g + O(h?)||ul 5y,
sym(RhDuRhFh_l)ag = % ((sym Du — 05u ® V0) a3 + O(h2)HuHBV) ,
sym(RhDuRhF{I)gg = % (agu;g(l + O(h?)) + h?*Vusz - VO + O(h4)Hu||Bv) ,

where O(hP) is a quantity uniformly bounded by h? in Q and BV () is the space of
functions with bounded variation on 2. We note that the remainders are controlled by the
BV-norm of u, which is not a priori bounded. Therefore, a bound on sym(Ry DuRp,F) D)
does not provide, in general, any bound on sym Du. To overcome this obstacle, it is
convenient to express the scaled displacement in intrinsic curvilinear coordinates, i.e., we
define the vectorfield

u(h) == (DY,)T Ryu.

The advantage is that the quantity (4), written in these coordinates (see Proposition 3.3.1),
has a simpler form; namely, it is related to
(Rp sym Du(h)Rp)ij — T (h)ug(h),

where Ffj(h) are the scaled Christoffel symbols of ¥j,. In this expression, the first term is a
rescaled symmetrised gradient, while the second term depends only on the displacement,
and not on its derivatives. This allows us to show, for the vectorfield of curvilinear
coordinates u(h), an ad-hoc Korn-Poincaré inequality on a shallow shell (Theorem 3.3.4).
We underline that in this proof, the order of the coefficients Ffj(h) with respect to h is
crucial, and it is a consequence of the shallowness assumption (that is, of the fact that the
amount of the deviation is of order h).

Theorem 3.3.4, together with a compactness result (Lemma 3.4.1), is the key ingredient
to deduce compactness for the sequence of scaled triplets. Another delicate point of the
proof is to show that the limiting triplet (u,e,p) belongs to the class Agxr(w): indeed,
it is not straightforward to establish the Dirichlet boundary condition

p=(w—u)® l/agﬂ‘l2 on 940.

The idea is to extend the scaled triplets by using the boundary datum wy,, to an open set V'
such that VNoQ = 9;0. To ensure the necessary bounds, it is again convenient to express
the scaled triplets in their curvilinear coordinates. Finally, the contruction of a recovery
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sequence is based on Lemma 3.2.7, an approximation result which ensures the density of
smooth triplets in Ag g (w). This is a technical lemma, whose proof is analogous to that
of [13, Theorem 4.7].

Once I'-convergence is established in the static case, the proof of the convergence of
the quasistatic evolutions is rather standard. We consider the three-dimensional problem
and the limiting problem in terms of their variational formulation, where the equilibrium
equations are replaced by a stability condition, and the maximum dissipation principle by
an energy balance. To deduce the global stability in the reduced problem, we use as test
functions in the three-dimensional problem the recovery sequence provided by Theorem
3.4.3. The energy equality follows from the I'-liminf inequality provided again by Theorem
3.4.3.

In the last part of Chapter 3 we extend the result about the convergence of quasistatic
evolutions to the case of nonzero external loads (Theorem 3.6.7). As usual in perfect
plasticity, we require a safe load condition that is uniform with respect to h, to guarantee
the coercivity of the total energy functional, and to overcome the lack of continuity of the
work of external loads with respect to the convergence of the displacements. Moreover,
a key result is a semicontinuity property for the plastic dissipation and the stress-strain
duality (Proposition 3.6.8).

The content of Chapter 2 corresponds to the article [37], while the results of Chapter 3
are contained in [38]. These two papers have been both obtained in collaboration with
Maria Giovanna Mora.



Chapter 1

Preliminary results

In this Chapter we collect the main notations, definitions and classical results that we
will use in the present thesis.

We will assume that Latin indices like i, j, k take their values in the set {1,2,3} and
Greek indices like o, 8, in the set {1,2}.

Moreover we will adopt the repeated index summation convention, for example

Az‘jx]‘

means

3
E Aijxj-
j=1

1.1 Notations

Vectors and matrices
e w-v:=Y ", uv;: scalar (or inner) product in R";

e |u| := y/u-u: Euclidean norm in R";

1 i
® 0 =1 1 l ] Kronecker symbol;
0, ifi#y
e {e1,ea,...,e,}: canonical basis of R";

o M™*™: get of all real matrices with m rows and n columns;
o M set of all symmetric matrices of order n;
o AT: transpose of a matrix A € M™*";

T
o symA := 7A+2A

: symmetric part of a square matrix A € M"*";
o trA: =3 a;: trace of a square matrix A € M"*";

° M%X": set of all deviatoric matrices, i.e., symmetric matrices of order n with zero
trace;

e [,«n: identity matrix of order n;

11
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Ap = A — % (trA) I, xp: deviatoric part of a matrix A € M"*" ;
det A: determinant of a square matrix A € M"™*";

cof A: cofactor matrix of a square matrix A € M"™*";

(a ®b)ij := a;bj: tensor product of two vectors a,b € R™;

(a ®b)ij := 5 (a;bj + a;b;): symmetrised tensor product of two vectors a,b € R™;

Functional spaces.

L(X;Y): space of all linear and continuous functionals between two normed spaces
X and Y

X' := L(X;R): dual of X;

X([a,b];Y): space of all functions from [a, b] into Y which belong to X, where X, Y
are two Banach spaces.

Let Q be a subset of R™.

C*(€;R™): space of all continuously differentiable functions of order k from Q C R™
into R™, in particular C*(Q) := C*(Q; R);

C®(Q;R") := {u € C¥(Q;R") for every k € N}: space of smooth functions;

CE(QR™) == {u € C®°(;R™) : supp u is compact }: space of smooth functions
with compact support;

LP(Q;R™) := {u : @ — R™ : u Lebesgue measurable , ||u|z»() < +00}: Lebesgue

spaces, where

l .
il o= { U ) 7 s} € 1420
inf{M > 0:|u(z) |[< M for ae. x € Q} if p=+o0.

Let o := (o, ..., o) € N* be a multi-index and let | a |= a1 + - - - + @,,. Then let
us define:

WHEP(Q;R?) := {u € LP(;R") : Oou € LP(Q;R"), for | a |< k}: Sobolev space,
provided with norm

{fQ Slaier | Baulz) P da:}g if p e 1, 400),

max || gt || if p = 4o00.
<k

laf

lellwnn =

Wéf’p(Q; R™) := W”'Hwk’p: closure of C.(Q; R™) in W’“%Q;R”);
HF(Q;R™) := WF2(Q; R™) and HE(Q;R") := Wg’Z(Q;R”);
— denotes the strong convergence of a sequence in a functional space;

—  denotes the weak (or weak™) convergence of a sequence in a functional space.
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1.2 Functions of bounded deformation and bounded Hes-
sian

In this section we recall some notions of measure theory, and the most important
properties of functions with bounded deformation and bounded Hessian.

Measures

The Lebesgue measure on R is denoted by £™ and the (n — 1)-dimensional Hausdorff
measure by H"~!. Given a Borel set B C R" and a finite dimensional Hilbert space X,
My(B; X) denotes the space of bounded Borel measures on B with values in X, endowed
with the norm ||i| s, == |p|(B), where |u| € My(B;R) is the variation of the measure p.
For every u € My(B; X) we consider the Lebesgue decomposition p = u® 4+ p®, where p
is absolutely continuous with respect to the Lebesgue measure £™ and p° is singular with
respect to L™, If u® = 0, we always identify p with its density with respect to £". If
the relative topology of B is locally compact, by Riesz Representation Theorem M;(B; X)
can be identified with the dual of Cy(B; X ), which is the space of continuous functions
¢ : B — X such that the set {¢ > €} is compact for every ¢ > 0. The weak* topology
of My(B; X) is defined using this duality. The duality between measures and continuous
functions, as well as between other pairs of spaces, according to the context, is denoted

by <7>

Convex functions of measures

Let U be an open set of R™ and let Iy an open subset (in the relative topology) of
oU. For every p € My(U UTo; X) let du/d|p] be the Radon-Nikodym derivative of p
with respect to its variation |u|. Let Hy : X — [0,400) be a convex and positively
one-homogeneous function such that

rlg] < Ho(§) < R[¢| for every § € X,

where 7 and R are two constants, with 0 < r < R. According to the theory of convex
functions of measures, developed in [27], we introduce the nonnegative Radon measure
Hy(p) € My(U UTy) defined by
dp
Ho(u)(A ::/H()()du
() = | mo( ) dln

for every Borel set A C U UTy. We also consider the functional Hg : My(U UTo; X) —
[0,400) defined by

Holw) = Bl U UTo) = [ o ()

for every pu € My(U UTy; X). One can prove that Hg is lower semicontinuous on M(U U
Tp; X)) with respect to weak™ convergence (see, e.g., [4, Theorem 2.38]).
Lipschitz functions with values into a Banach space

Let T > 0 and let X be the dual of a separable Banach space. We denote by
Lip([0,T7; X) the space of Lipschitz functions on [0, 7] with values in X. If

f € Lip([0, T]; X),
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then the weak™ limit
f(t) = w*-lim M

1.2.1
s—t s—t ( )

exists for a.e. t € [0, 7] (see, e.g., Theorem 7.1 in [12]). If in addition X is separable, then
for every f € Lip([0,77; X) the limit in (1.2.1) is actually in the strong topology of X, the
map ¢ — f(t) is measurable by Pettis Theorem, and

Lip([0, T; X) = W>([0, TT; X).

Functions with bounded deformation

Let U C R™ be an open set. The space BD(U) of functions with bounded deformation
is the space of all u € L'(U;R"™), whose symmetric gradient (in the sense of distributions)
sym Du belongs to the space My(U; Mg 7). It is easy to see that BD(U) is a Banach
space with the norm

lullp = [lullpr + [ sym Dul[ s,

We say that a sequence (ug)g converges to u weakly* in BD(U) if up — u weakly in
LY(U;R™) and sym Duy — sym Du weakly* in My(U; M7x"). Every bounded sequence
in BD(U) has a weakly* converging subsequence. Moreover, if U is bounded and has a
Lipschitz boundary, then BD(U) can be continuously embedded in L™ =D (U;R"™) and
compactly embedded in LP(U;R™) for every p < n/(n — 1). Moreover, every function
u € BD(U) has a trace, still denoted by u, which belongs to L!(0U;R™). Now we recall

the classical Korn-Poincaré inequality in BD.

Theorem 1.2.1. Let I' be a nonempty open subset of OU. Then there exists a constant
C > 0, depending on U and ', such that

lullap < Cllullpr(ry + | sym Dul[as)- (1.2.2)
for every w € BD(U).

For the general properties of BD(U) we refer to [51].

Functions with bounded Hessian

The space BH(U) of functions with bounded Hessian is the space of all functions
u € WH(U), whose Hessian D?u (in the sense of distributions) belongs to M;(U; Mz %)
It is easy to see that BH(U) is a Banach space endowed with the norm

lull s = lullwra + | D*ullag,

If U has the cone property, then BH(U) coincides with the space of functions in L'(U)
whose Hessian belongs to M, (U; Mg ). If U is bounded and has a Lipschitz boundary,
BH(U) can be embedded into W1/ (=1({7). If U is bounded and has a C? boundary,
then for every function u € BH(U) one can define the traces of u and Vu, still denoted
by u and Vu: they satisfy u € W11(9U), Vu € L'(0U;R"™), and % = Vu-7 € LY(9U)
for every 7 tangent vector to OU. If in addition n = 2, then BH(U) embeds into C(U),
which is the space of continuous functions on U. For the general properties of BH(U) we
refer to [17].

Finally, we recall the Poincaré inequality in BH (w) (see, e.g., [17, Proposition 1.3]).
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Theorem 1.2.2. Let v be a nonempty open subset of Ow. Then there exists a constant
C > 0 depending on w and ~y such that

lullpr < C(lull 11 y) + Vel L1y + 1D%ullag,) (1.2.3)

for every uw € BH (w).

1.3 TI'-convergence

In this Section we provide the definition and some properties of I'-convergence.

Definition 1.3.1. Let X be a metric space, let ¢ > 0 and let F., F : X — RU {£o0}.
Then F; I'-converges to F' if the following hold:

(i) (liminf inequality) for every sequence (z.) converging to x
F(z) <liminf F.(x.); (1.3.1)
e—0

(ii) (existence of a recovery sequence) there exists a sequence (x.) converging to z
such that

F(z) = lim F.(z.). (1.3.2)
e—0
We recall also the definition of equi-coercivity.

Definition 1.3.2. A sequence F. : X — R U {+£oo} is equi-coercive if for every s € R
there exists a compact set K such that {x € X : F.(z) < s} C K.

Now we can state the main convergence result of I['-convergence.

Theorem 1.3.3. Let X be a metric space and let (F.) be a equi-coercive sequence of
functions on X and assume that F. I'-converges to F'. Then there exists

min F' = lim inf F.
X e—0 X

Moreover, if (x¢) is a precompact sequence such that lim._,o F.(z:) = lim._, inf x F;, then
every limit of a subsequence of (x.) is a minimum point for F'.






Chapter 2

A dynamic evolution model for
perfectly plastic plates

2.1 Overview of the chapter

In this Chapter we consider the dynamic evolution of a linearly elastic-perfectly plastic
thin plate subject to a purely vertical body load. As the thickness of the plate goes to
zero, we prove that the three-dimensional evolutions converge to a solution of a certain
reduced model. In the limiting model admissible displacements are of Kirchhoff-Love type.
Moreover, the motion of the body is governed by an equilibrium equation for the stretching
stress, a hyperbolic equation involving the vertical displacement and the bending stress,
and a rate-independent plastic flow rule. Some further properties of the reduced model
are also discussed.

The chapter is organized as follows. In Section 2.2 we describe the formulation of the
problem. In Section 2.3, we prove the existence of three-dimensional dynamic evolutions.
Section 2.4 concerns the convergence of dynamic evolutions. Finally, in Section 2.5 we
discuss some properties of the reduced problem.

2.2 Setting of the problem

2.2.1 The three-dimensional problem

In this section we describe the setting of the three-dimensional problem.

The reference configuration. Let h > 0 and let w C R? be a domain (that is, an open,
connected, and bounded set) with a C? boundary. We consider a thin plate whose reference
configuration is given by
— h h
We set Q := Q5 and for z € Q we write x = (2/,x3), where 2’ € w and z3 € (—1/2,1/2).
We suppose that the boundary of w is partitioned into two disjoint open sets Jyw, Jpw
(which are the Dirichlet and the Neumann part of dw, respectively) and their common
boundary 0),,0qw, that is,
Ow = Oqw U Opw U 09, 0qw-

We assume that 0,0qw = {P1, 2}, where Py and P are two points of dw. Moreover,
we define I}y;, := Oqw X (—%, %) and Ty, 5 := 0 \ Tapn. We also set 949 := Tyy; and

17
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OnS) :=1}, 1. We will denote the outer unit normal to 9€);, and to dw by vpq, and by vy,
respectively.

The stored elastic energy. Let C be the three-dimensional elasticity tensor, considered as

a symmetric positive definite linear operator C : Mg’;ﬁ; — Mg;ﬁ;, and let @ : Mi’yﬁ —

[0,400) be the quadratic form associated with C, defined by

1
Q&) = 5@5 1 & for every £ € M3y
It turns out that there exists two positive constants a¢ and B¢, with ac < 8¢, such that

aclé]? < Q(€) < Belé]*  for every € € MIT. (2.2.1)

These inequalities imply that

CE| < 26c¢|  for every € € My (2.2.2)

sym*

It is convenient to introduce the quadratic form Qy, : L?(Q; M22X3) — [0, +-00) given by

sym

Qn(e) == | Qle(x))dx

Qp

for every e € LQ(Qh;I\\/HEyX,?L). It describes the stored elastic energy of a configuration of
Q,, whose elastic strain is e. Since Qy, is a convex functional, it is lower semicontinuous

with respect to the weak convergence of L2(Qh; M3X3). We set Q := 9Q;.

sym

The plastic dissipation. Let K be a convex and compact set in M%Xg, whose boundary
OK is interpreted as the yield surface. We assume that there exist two positive constants
ri and Ry, with rg < R, such that

B(O,TK> CKC B(O, RK), (2.2.3)

where B(0,7) := {¢€ € M® : |¢] < r}. The support function of K, which represents the
three-dimensional plastic dissipation potential, is the function H : M%X?’ — R given by

H() = sg}gf 7 for every £ € M,
T

It is easy to see that H is convex, positively 1-homogeneous, and satisfies the triangle
inequality. Moreover, by (2.2.3) one deduces that

ril¢] < H(E) < Ril¢]  for every € € M. (2.2.4)

From standard convex analysis we also have that the set K coincides with the subdiffer-
ential 9H (0) of H at 0.

Let 11 € My(Qp UTyp; M) and let du/d|u| be the Radon-Nikodym derivative of u
with respect to its variation |u|. According to the theory of convex functions of measures
(see [27]), we define the nonnegative Radon measure Hy,(u) as

) (B) = [ 1 (g

for every Borel set B C €, UT};,. We also consider the functional

Hp, : My(Qp U Ty MES) — [0, 4+00)
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defined by
,Hh(,u) = Hh(,u)(Qh @] Fd,h)-

One can prove (see, e.g., Chapter II-Section 4 in [51]) that

Hh(u):sup{/Q Todp

rUla

7€ Co(Qp U Fd,h;M?’st), 7(z) € K for a.e. € QpU Fd,h}-

From this characterisation it is clear that H; is lower semicontinuous with respect to the
weak* convergence of My (€, U Ty p; M3?).

We also define the total variation of a function p : [0, T] — Mjy( U Ty p; M) in an
interval [a,b] C [0,T] as

N
Vi 0,0) 1= sup { 3 llasj) = (i)l = a = s <s1 <+ < sy =b, NeN},
j=1

and the dissipation of x in [a,b] as

N
D a,b) = sup { 3" Haluls;) — plsj1): a=so<s1 <o <sy=b, NeN}.
j=1

It follows from (2.2.4) that
T Vn(p; a,b) < Dp(p;a,b) < RgVh(p;a,b).

Moreover, if 41 is absolutely continuous on [a, b] with values in M(2p, U Ty p; M%X?’), then
one has

b
Da(jisa,b) = / Hy (i) ds (2.2.5)

(see Theorem 7.1 in [12]). We set H := Hy, V :=Vy, and D := D;.

Kinematic admissibility. Given a boundary datum w € H'(Qj;R3), we define the class
Ap(w) of admissible displacements and strains, as the set of all triplets (u, e, p) € BD () %
Lz(Qh; Mg;ri:’z) X Mb(Qh @) Fd,h; Mngg) such that

symDu=e+p in Qp, p= (w—u)@l/thHQ on I'gp.

We set A(w) := Aj(w) for every w € H'(;R3).
The trace of stresses. We recall that, if o € L?(Q; Mg;ﬁ) with diveo € L%(Qy;R?), we can

define the trace [ovgq, ] € H'/2(8Q,;R3) of its normal component through the formula

(lovon)oe) = [

o: sychpdx—i—/ diveo - pdx
Qp

Qp

for every p € H'(Qp,; R?). In the following we say that [ovgg, | = 0 on L, if ([oveq, ], ¢) =
0 for every ¢ € H'(€,; R3) with ¢ = 0 on Lap-
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2.2.2 The reduced problem
In this section we introduce the setting of the limiting problem.

The reduced stored elastic energy. Let M : M2X2 — M2*3 be the operator given by

sym sym

o iz A€
ME = | &0 C22  A2(§) for every & € M2X2 (2.2.6)

ME) MlE) As(E) o

where the triplet (A1(€), A2(€), A3(€)) is the unique solution of the minimum problem

&n &2 M
min Q | {12 &2 Ao
AER A A2 A3

We observe that (A1(§), A\2(§),A\3(€)) can be characterised as the unique solution of the
linear system

0 0 G
cMe: [0 0 G| =o0 (2.2.7)
G G @

for every (; € R, i = 1,2,3. This implies that M is a linear map and
(CM&)Z:; = (CM&)& =0 for every 1= 1, 2, 3. (228)

Let Q* : M2X2 — R be the quadratic form given by

sym

Q*(¢) == Q(ME)  for every & € M2y
It follows from (2.2.1) that

aclé? < Q*(€) < Belé)?  for every € € MZ)2.

We define the reduced elasticity tensor as the linear operator C* : Mi;,,% — ngﬁi given by

C*¢ := CME  for every £ € M2x2 (2.2.9)

sym:*

Note that we can always identify C*¢ with an element of Mglﬁ in view of (2.2.8). Moreover,
by (2.2.7) we have

G1 G2 0
Ce¢:¢=C¢: |Gy Cn O for every £ € M2)2, ¢ € M2)2. (2.2.10)
0O 0 O
This implies that
1 §nn &2 0
Q&) = 5@*5 &2 &2 O for every € € Mg;ﬁl
0 0 0

Finally, we introduce the functional Q* : L2(Q; M22) — [0, +00), defined as

sym

Q%waéwmex
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for every e € LQ(Q;MEJ,%). It describes the reduced elastic energy of a configuration,

whose elastic strain is e.
The reduced plastic dissipation. In the reduced problem the plastic dissipation potential
is given by the function H* : M2X2 — [0, +00), defined as

sym

ISTRRSD Ay
H*(§) ==min H | {12 22 A2 (2.2.11)

A A — (&1 + &)

for every £ € Mg;n% From the properties of H it follows that H* is convex, positively

1-homogeneous, and satisfies
ricl€| < H*(§) < VBRilE] for every & € MZya.

The set K* := 0H*(0) represents the set of admissible stresses in the reduced problem
and can be characterised as follows:

§n &2 0 1
Ee Kt & £19 &9 O — g(tr &)Isx3 € K, (2.2.12)
0 0 O

(see Section 3.2 in [13]).
For every pu € My(2U 9,48;M2X2) we define the functional

sym

dp
H* = / H*(—— ) d|ul.
) QUOLO <d’/~6’) g

We also define the reduced dissipation of a function p : [0, T] — My(QU 048 MZy2) in an
interval [a,b] C [0,T] as
N
D*(u;a,b) ;= sup { Z”H*(,u(sj) —p(sj—1)): a=s5<s51<---<sy=0b N¢€ N}.

J=1

If ;1 is absolutely continuous on [a,b] with values in Mp(Q U 949;M222), then

sym

b
D*(,u;a,b):/ H*(f(s)) ds (2.2.13)

(see Theorem 7.1 in [12]).

Reduced kinematic admissibility. We introduce the set K L(€) of Kirchhoff-Love displace-
ments, defined as

KL(Q):={ue BD(): (symDu)iz =0, i =1,2,3}.
We note that u € KL(Q?) if and only if u3 € BH(w) and there exists « € BD(w) such that

Ue(7) = T (2") — 2300us(2’)  for x = (2/,23) € Q, a=1,2.

We call u, ug the Kirchhoff-Love components of u.
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Given a prescribed displacement w € H'(€; R3)NK L(Q), we introduce the set A, (w)
of Kirchhoff-Love admissible triplets, defined as the class of all triplets
(u,e,p) € KL(Q) x L*(Q;M3%3) 5 My(Q U 9,0; M32%3)

sym sym
such that
symDu=e+p in, p=(w—u)OvgaH? on 9,0,

ei3 =0 in Q, pis =0 in QU 9yL2, i=1,2,3.
The linear space {£ € M2)3 : &3 = 0, ¢ = 1,2,3} is isomorphic to M2x2. Thus,
in the following, given (u,e,p) € Axr(w), we will always identify e with a function in
L2(; M%) and p with a measure in My(Q U 04€; M2)2).

The following closure property holds.

Lemma 2.2.1. Let (wy), be a sequence in H*(;R3) N KL(Q) and let (un,en,pn) €
Agr(wy) be a sequence of admissible triplets. Assume that u, — u weakly* in BD(Q),
en — e weakly in L*(;M2%2), p, — p weakly* in My(Q U 0;Q;M2X2), and w, — w

sym sym
weakly in H'(;R3). Then (u,e,p) € Axr(w).
Proof. The result easily follows by adapting the proof of Lemma 2.1 in [12]. O

We now give a characterisation of the class of Kirchhoff-Love admissible triplets. To
this purpose, we introduce the following definitions.

Definition 2.2.2. Let f € L2(Q;M2%2). We denote by f, f € L?(w;M2X2) and by

sym sym

f1 € L%y ngﬁi) the following orthogonal components (in the sense of L?(; ngjﬁb)) of
f:

1 1

2 . 2

fla') = . [, x3) dus, f(a') = 12/ ) w3 f (@', x3) das
-3 -3

for a.e. 7’ € w, and

i) = f(z) = fa') — a3 f ()

for a.e. x € Q. We call f the zeroth order moment of f and f the first order moment of f.

Definition 2.2.3. Let ¢ € My(Q U 9492;M222). We denote by q, § € My(w U Jgw; M2x2)

sym sym

and by q; € My(QU 94Q; M2%2) the following measures:

sym

/ go:dq::/ p :dg, / go:d(j::12/ T3 : dq
wUdgw QUGN wUdgw QUGN

for every ¢ € Co(w U dqw; M2X2), and

sym
qLi=q-qe L — el
where ® denotes the usual product of measures. We call ¢ the zeroth order moment of q

and ¢ the first order moment of q.

With these definitions at hand one can prove the following characterisation of the class

Agr(w).
Proposition 2.2.4. Letw € H'(Q;R3)NKL(Q) and let (u,e,p) € KL()xL?(£;M2%2)x

sym

My(22U 048 Mg;,%) Then (u,e,p) € Axr(w) if and only if the following three conditions
are satisfied:
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e symDi=eé+pinwandp= (0 — ) ®vg,H' on Oqw;
o D?uzg=—(é+p) inw, u3 = ws on Ow, and p = (Vuz — Vws) © v, H' on dgw;

e p =—e; inQandp; =0 on Jyfd.

Proof. The statement easily follows from the definition of moments and from the formula
(sym Du)og = (sym Dt)opg — xgagﬁu;g for a, 8 =1,2. O

Stress-strain duality. In the reduced model, we shall consider the set 3(€2) of admissible
stresses, defined as

2(Q) := {o € L®(Q;M%2) : dive € L*(w;R?), divdivs € L*(w)}.

sym

For every o € X({) we can define the trace [org,] € L®(0w;R?) of its zeroth order
moment normal component as

([ovaw], ¥) = / o : sym D da’ + / dive - ¢ da’ (2.2.14)
for every 1 € Wll(w;RR?). Note that, since & € Loo(w;ngxﬁL) and Wl (w;R?) embeds
into L?(w;R?), all terms at the right-hand side of (2.2.14) are well defined.

Let T(W21(w)) be the space of all traces of functions in W2!(w) and let (T (W2 (w)))’
be its dual space. For every o € X(Q) we can define the traces by(5) € (T(W>!(w)))" and
b1(6) € L>(0w) of its first order moment as

—(b0(6),w)+<b1(&),aa;§ >::/& : D%/)dx'—/wdivdiv&dx' (2.2.15)

for every 1 € W2!(w). Note that the right-hand side of (2.2.15) is well defined since
& € L™ (w; MZ2).

If 6 € C?(w,M2%?), one can prove that

sym

bo(6) = div 6 - vg, + (6Tow - Vow)

OTow
bl((}) = 0Vpw * Vows
where Ty, is the tangent vector to Ow.
Since [Gvg,] € L°°(0w;R?), the expression [vs,] = 0 on d,w has a clear meaning.

The same applies to b1(6). As for by(d), in the following we say that by(6) = 0 on Jyw if
(bo(5),9) = 0 for every 1 € WL (w) with ¢ = 0 on Jyw.

We also consider the space of admissible plastic strains I15,0(£2), which is the set of all
measures p € My(QU0€; M2<2) for which there exists (u, e,w) € BD() x L?(; M22) x
(HY(;R3) N KL(Q)) such that (u,e,p) € Agr(w).

For every o € X(Q2) and £ € BD(w) we define the distribution [¢ : sym D] on w as

([0 : sym D&, o) :z—/(pdiV&-fdac’—/ g: (Vpo&)dd

for every ¢ € C2°(w). It follows from Theorem 3.2 in [30] that [7 : sym D] € My(w) and
its variation satisfies

o sym Dg]| < o | sym D¢ in w.
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Given o € () and p € II5,0(2), we define the measure [7 : p] € Mj(w U dqw) as

o [0 :symDu]—c:€e inw,
[0:p]:=1q _ o
[ovow] - (0 —a)H on Jgw.

For every o € %(2) and v € BH(w) we define the distribution [ : D?v] on w as

([6 : D*v], ) := / Yo divdivé dr’ — 2/ 6: (Voo V) da' — / v6 : D*) da’
w w w
for every 1 € C2°(w). From Proposition 2.1 in [18] it follows that [6 : D?v] € My(w) and
its variation satisfies
|6 : D?0]| < ||6]|z|D%*v| in w.

Given o € () and p € IIy,0(2), we define the measure [6 : p] € M(w U dqw) as

—[6:D*u3] —6:é inw,
[6:p] = Aus —
bl(&)M’Hl on 8dw.
OV
We are now in a position to introduce a duality between 3(Q2) and Ily,n(2). For every
o € X(Q) and p € I5,0(2) we define the measure [0 : p|, € My(QQU 0492) as

1
lo:ply=G:p@L + —[6:p@L —0) rey.

12
We also introduce the duality pairings
(0,p) = [0 :Pl(wUdaw),  (6,p) := [0 : pl(wU Igw)
and
(o0 1= [0 QU0 = (0.7) + 5(00) = [ a1 sevde (2.2.16)
One can show (see Proposition 7.8 in [13]) that
H*(p) =sup {{o,p)r : 0 €X(Q), o(x) € K* for a.e. z € N}. (2.2.17)

Finally, the following integration by parts formula holds (see Proposition 3.5 in [14]).
Proposition 2.2.5. Let 0 € X(Q), w € HY(R3) N KL(Q), and (u,e,p) € Axr(w).

Then
/ edlo : pl, / : (e — sym Dw) dx
QUL

= / (Voo (u—w ))dm’—/diva-gp(u—w)dw’

[GVa,) - (i — w) dH + 1/ 6 : (u3 — ws)D*p da’

/8 w 12
1 ~ / 1 . e, A /
+ R (Vo ® (Vus — Vws))dz' — T o(uz — ws)divdiv 6 dz
1, 1 O(p(ug —w3)) g
+ 15{b0(0), p(us — ws)) — 15 - bi(o D dH

for every p € C?*(w).
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2.3 Existence of three-dimensional dynamic evolutions

In this section we adapt the existence result of [5] of a dynamic evolution for perfectly
plastic bodies to the context of a thin plate. Indeed, in view of the dimension reduction
analysis of the next section, it is crucial to understand the dependence of all the involved
quantities on the thickness parameter h.

We start by describing the assumptions on the data of the problem.

Forces. We assume the applied body loads to be purely vertical and with the following
regularity:
fn € WEL([0, +00); L2(Q1))- (2.3.1)

We assume there are no traction forces on the Neumann part of the boundary I, .

Boundary displacement. On I'y ), we prescribe a boundary displacement

wy, € HE,.([0,400); H (Q4; R?)) N W2 ([0, +00); L2(Q4; RY)). (2.3.2)

loc

Initial data. Let

(w0,s €0,n5 Do) € An(wr(0)) N (HY(Q; R3) x L2(Qs M3X3) x L2(Qp; M),

sym 2.3.3
vo,n € H' (Q; R?), (2:3.3)
be the initial data. Setting oqj := Ceq j, we assume that
—div UO,h = fh(0)63 in Qh, [O'O’hV(‘}Qh] =0 on Fn,ha (2 3 4)
(UO,h)D € K a.e. in Qh, o
and
Vo,h = wh(()) on Fd,h- (2.3.5)

Theorem 2.3.1. Assume (2.3.1)—(2.3.5). Then there exists a triplet (up,ep, pp), with
up € Wi ([0, +00); L* (245 R?)) M Lipye([0, +00); BD()),

en € WE([0, +00); L2(Qp; M3X3)),

sym

Ph € Lipyoe([0, +00); My(2p U Ty MB)),
satisfying the following system of equations:

(i) kinematic admissibility: (up(t),ep(t), pn(t)) € Ap(wp(t)) for every t > 0;
(ii) initial conditions: (u4(0),en(0),pr(0)) = (uo h, €0,h: Do) and uy(0) = vo p;
(iii) stress constraint: (op,)p(t) € K a.e. in Qy, for every t > 0, where o (t) := Cep(t);

(iv) equation of motion: for a.e. t >0

{uh(t) —divon(t) = fa(t)es in Qy, (2.3.6)

[on(t)vaq,] = 0 on Ty p;
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(v) energy inequality: for every 0 <t; <tg

Qnfentte) + gl + [ Hlon(s)) ds < Qulentrn) + g lin(en)

+ /: /Qh(ah(s) : sym Dy (8) + dip(8) - p(s)) do ds

[ o) Cnlato) — Ginla(o) dods. - (237
o Ja,

Moreover, the following estimates hold:

o there exists a constant C' > 0, independent of h, such that
liin |l oo ((o.4.22) + lnll Lo (0.0:02) < C|lsym Dvgpllzz + 1 fall 1o, 2)
1@l o1502) + [nll Loe(po,:02) + VE || sym Diion | 2jo,5:02))  (2:3.8)

for every t > 0;
e there exists a constant C' > 0, independent of h, such that

Ipn(t2) — pr(ti)llag, < C/(”ehnL‘X’([O,T};LQ)||6h(t2) —en(t1)l| 2

+ llinll oo (o712 [l (t2) — i (B1) | 2

to
+ llenll = qozriz) / | sym Dy () | 2 dt

t
1 t2

T il e o.17,2 / i (£) 2 dt

1 .
+llin = nll=goryen [ 15Ol ) (239)
1

for every T > 0 and every ty,ts € [0,T].

Remark 2.3.2. The energy inequality (v) formally corresponds to the inequality
/ (on)p(t) : pn(t) dz > Hp(Pn(t)) (2.3.10)
QpUlgn

for a.e. t > 0. Indeed, it is enough to choose t; = t and t3 = t + ¢ in (v), divide the
inequality by J, and pass to the limit as ¢ tends to zero. Using the kinematic admissibility
én(t) = sym Duy(t) — pr(t), integration by parts, and (2.3.6), eventually yield (2.3.10).
Note, however, that the left-handside of (2.3.10) is in general not well defined, since
(o) (t) € L (S ME?) and pr(t) € My(Qp U Tap; M5,

The formal equivalence of (v) and (2.3.10) suggests that (v) contains all the relevant
information stored in the Prandtl-Reuss flow rule (see equation (d5)" in the introduction).
Indeed, the converse inequality

(on)p(t) : pr(t) < Hp(pp(t)) in QpUTgy
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is an immediate consequence of (iii) and of the definition of Hj, (if the left-handside is well
defined). Moreover, as we will see in the proof of Theorem 2.4.1, condition (v) is enough
to recover the limiting flow rule in the dimension reduction analysis of next section.

If the stress-strain duality in the sense of [12,22,30] is defined, the formal arguments
above can be rigorously justified; thus, one can show that any solution to (i)—(v) satisfies
condition (2.3.7) with an equality and this energy balance is equivalent to the Prandtl-
Reuss flow rule (see, e.g., [7]). In this case uniqueness of solutions for the system (i)—(v)
can also be proved by standard methods.

In the absence of a notion of stress-strain duality or of additional regularity, the energy
balance could in principle fail. This difficulty in establishing the energy equality under
general assumptions was already noted in [47] (Remark 6).

Proof. Proof of Theorem 2.3.1 We give here only a sketch of the proof (all the details can
be found in Theorem 1.3 of [5] or in Theorem 4.1 of [7] in a slightly different setting).
In order to simplify the notation we omit the dependence of the fields on h. Moreover,
we denote the space {u € H'(;R3) : u = 0 on 9492} by HédQ(Q;]R?’) and its dual by
Hy (9 R?).

We first prove existence for a visco-elastic regularisation of the problem. We start by
regularising the initial velocities. More precisely, let ¢ > 0 and let v5 € H'(€2;R3) be the
solution of the boundary value problem

—ediv sym Dvg + vg = vp in €2,
vg = w(0) on 0482, (2.3.11)
[sym Du§rag] = 0 on 9,2

The standard theory of linear elliptic equations gives
vs —wvg  in HY(QR?)

and
ediv sym Dv§ — 0 in L*(Q;RY).

Using a time-discretisation procedure and arguing exactly as in Theorem 3.1 of [7], one can
prove the existence and uniqueness of a triplet (ue, ez, p. ), with ue. € HE ([0, +00); H' (2;R?))N

loc

W™ ([0, +00); L2 (5 R?)) N H, ([0, +00); Hy o (% R?)), e € Hi, ([0, +00); L2 (2 ME3)),

loc sym

and p. € HL ([0, +00); L? (£ M%X?’)), satisfying the following conditions:

o kinematic admissibility: (us(t),ec(t),p:(t)) € A(w(t)) for every t > 0;
o initial conditions: (uz(0),e-(0),p:(0)) = (uo, €0, o) and . (0) = v§;
o stress constraint: (o-)p(t) € K a.e. in Q for every t > 0, where o.(t) := Ce.(t);

e cquation of motion: for every t > 0 and every ¢ € L?(0,t; HédQ(Q; R3))

t t
/0<ug(s),cp(s)>ds+/0 /Q(Us(s)—{—esymDug(s)) :sym Dop(s) dx ds
t
:/ /f(s)gpg(s)d:vds; (2.3.12)
0 JQ
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e flow rule: for a.e. t >0
H(p:(t)) = (0e)p(t) : p=(t) a.e. in Q. (2.3.13)
We now prove the following bound: for every ¢ > 0

el oo t0,622) + 167w 0,0,22) + €ll sym Die [ 72 g0 4,12
< C(EZHdIV sym DUSH%Q + || Sy1m D’USH%z + HfH%l([O,t];L2) + HwHil([O,t};Lz)
@01 F oo (0,4:22) + (€ + Ol sym D220 .12))- (2.3.14)

where C > 0 is a constant independent of ¢ and h.
To prove (2.3.14), we extend continuously the fields involved by setting for s < 0

us(s) = ug + svg, w(s) =w(0)+ sw(0), e:(s)=-eo, pe(s)=po, [f(s)=f(0).
We introduce the time incremental quotient

a(t) —a(t — 6).

Dla(t) := 5

Let T > 0, t € (0,7], and 6 > 0. Using the equation of motion, for every test function
@ € L2([0,t + 6]; HédQ(Q;R?’)) we have (2.3.12) and

t+d )
/6 (tie(s —9),p(s))ds + /6 /Q(Ug(s —0) +esym Di(s —0)) : sym Dp(s) dx ds

:/;M/Qf(s—d)go;;(s)dxds.

Subtracting (2.3.12) from the previous equation and choosing ¢ = %X(()’t)D(;(uE —w) yield
t
| D~ )(5), D~ ) () ds
0
t
+/ / D°(0. + esym D )(s) : D° sym D(ti. — w)(s) dz ds
0 Jo
t t
+/ / D% (s) - DO (tie — )(s) dz ds — / / D f(s)D%((tie)3 — 1i3)(s) dx ds
0 JQ 0 JQ
1 [° 50 ,
= 5 | [ HODA (s~ ws) dwds
0 JQ
1 0
-5 / /(Jo(s) + esym Dvs(s)) : D? sym D(t. — w)(s) dx ds.
0o Ja
Integrating by parts, the right-hand side can be rewritten as
1 [° 5
5| 1D (e)s i) da s
1 é
+5 / / div(oo(s) + e sym Dvg(s)) - DO (ite — )(s) dz ds
0o Ja
1 é

=5 |, {lloo(s) +esym Duj(s))vaql, D° (it —1i)(s)) ds
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4

- % / / div sym Dvi(s) - D (e — w)(s) dz ds
0 JQ

< e||div sym Du| 2| D° (e — )| oo (0,17;L2);

where the equality follows from (2.3.4) and (2.3.11). We now focus on the term

/ /D‘sa6 . D? sym Dt (s) da ds.

Using the kinematic admissibility sym Di. = é. + p. a.e. in [0, +00) X 2, we have that for
every 7 € L2([0,t + 0]; L?(; M3%3))

sym

//symDu8 : dxds—/ /65 : d:cds+/ /p6 :7(s)dxds

t+6 t+6
/ /symDugs—é) dxds—/ / s—20):7(s)dxds
t+4
/ / Pe(s — 7(s) dx ds.

Testing the difference of the two previous equations by 7 = %X(O’t)D(SO'E, we obtain

/ /D(SsymDuE( ) : D°0.(s)dxds
//D‘SeE Doo.(s )da:ds—l—/ D%p.(s) : D*(0.)p(s) da ds
Q
—/ /symDvS : Do, (s) dx ds
o 0 JQ
1 0
> Q(De.(t)) — 5/ /symDvS : Do, (s) dx ds,
0 JQ

where we used that D%, (0) = 0 and

/t / D%p.(s) : D*(02)p(s)dzds > 0
0 JQ

as a consequence of the stress constraint and of the flow rule (2.3.13). Since D (u.—)(0) =
0, applying the Holder inequality we deduce

%HDJ(% — @) (1)[|72 + Q(Dec(t)) + ]| D® sym Dite |72 (0.5.12)
< e|[div sym Duf|p2]|D° (tre — )|| oo (po,7722) + 28|l sym D[l z2]| D%ec | oo 0,77 22)
+1D° 1o, 22 1D ()3 — rs) | oo 0,771,122
+ (2B VE| D ec| oo (jo.17.22) + €l D° sym Dite| 12 po 77.2)) | D° sym Db || 2 (o, 7:1.2)
+ | D° (e — w)HLOO([O,T];L2)HD(SwHLl([O,T};L?)

for every T'> 0 and ¢ € [0,7T]. By Young inequality and passing to the limit as § tends to
0, we obtain (2.3.14).
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As a consequence of (2.3.14), we deduce, in particular, that

ue € W22 ([0, +00); LA(Q; R?)),

loc

so that the equation of motion (2.3.12) can be written in the strong formulation

{ile(t) — div(o:(t) + esym D (t)) = f(t)es in Q, (2.3.15)

[(0e(t) + esym D (t))vga] = 0 on 9,0

for a.e. t > 0.
We now discuss how to pass to the limit, as ¢ — 0. Arguing as in Proposition 4.3 of [7],
from the equation of motion and the flow rule we obtain the following energy balance:

Qes(t) +glie )3+ [ M) dsre [ [ [sym Dise(s) o ds = Qeo)+ 510513
—i—/o /Q((ag(s) + esym Dt (s)) : sym Du(s) + ii(s) - w(s)) dx ds

+/0 /Qf(s)((aa)g(s)—wg(s))dxds (2.3.16)

for every € > 0 and every ¢ > 0. Combining this inequality with (2.3.14) and using
Ascoli-Arzela and Helly Theorem, we deduce the existence of

u € Wi ([0,+00); L2(; R?)) N BV ([0, +00); BD(Q)),

loc

e € W2([0,+00); L2 M253)),  p € BVige([0, +00); My(Q U 9462 M%)
such that, up to subsequences,

ue(t) = u(t) weakly* in BD(£),
U (t) = u(t) weakly in L?(Q;R?),
e-(t) — e(t) weakly in L?(€Q; ngﬁi),

pe(t) = p(t)  weakly* in My(Q U 94Q; MH3)

(2.3.17)

for every t € [0,7]. From these convergences we immediately deduce that (u, e, p) satisfies
conditions (i)-(iii). By (2.3.16) we have that
esym Dt — 0 strongly in L3,.([0, +00); L*(Q; M2X3)).

sym

Since ii. — i weakly* in L2 ([0, +00); L?(Q2;R?)), we can pass to the limit in the weak

formulation of (2.3.15) and, thus, deduce condition (iv).
Taking the difference of the equations of motion (2.3.15) and (2.3.6) and testing by
Ue — w on [0,t] x €, one can prove (see Lemma 4.5 in [7]) that
te — 1 strongly in L2 ([0, +00); L2(£; R3)),

loc

e — e strongly in L ([0, +00); L2(£;R3)).

loc

(2.3.18)

We now write the energy balance (2.3.16) between two times ¢; < ¢ and using the previous
convergences and the lower semicontinuity of the elastic energy and of the dissipation, we
obtain
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Qelt2)) + ()32 + D(ps 11, 12) < Qelt)) + ¢ (e

- /t1 /Q(U(S) :sym Dii(s) + i(s) - w(s)) dv ds + /t1 /Qf(s) (ii3(s) — 1r(s)) dx ds.
(2.3.19)

Let T' > 0. Using the inequality

i ||p(te) — p(t1)|la, < D(p;ty,t2)

in (2.3.19), we deduce that
ri|[p(t2) — pt)lan, < 28cllell o o,r;22)lle(t2) — e(t1)]l 2

to
+ 1] Loo (jo,m;22) 14 (t2) — W(t1)[ 2 + 25<c||€|Loo([o,T];L2)/ | sym Diir(t)|| 2 dt
t1

to to
il oy [ 1@ de+ s —sinlam oy |15 bt (23:20)
1 1

for every t1,t2 € [0,T] with t; < t2. Hence, p is locally Lipschitz continuous on [0, +00)
with values in M(QUT g; M3?), inequality (2.3.9) is satisfied, and (2.3.19) gives condition
(v). Using the kinematic admissibility, one can prove that u is locally Lipschitz continuous
on [0, +00) with values in BD(2). Finally, inequality (2.3.8) easily follows from (2.3.14).

O

2.4 Convergence of dynamic evolutions

In this section we discuss the convergence of three-dimensional dynamic evolutions,
when the parameter h tends to 0. As it is usual in dimension reduction problems, we
perform a change of variable in order to set the problem on a fixed domain 2. We also
perform a rescaling of the time variable (as done, e.g., in [1] in the context of nonlinear
elasticity). We thus consider the change of variable ¢, : Q — €, given by

on(x) = (2, hag)

for every o = (2/,23) € Q. We define the linear operator Ay : M2X3 — M3X3 as

sym sym
&n & s
A= &2 &n 3
3z &3 2833
for every € € ngﬁ%
Let t — (up(t),en(t),pn(t)) be a dynamic evolution in 5 with boundary datum wy,
force term f, and initial conditions (uqp, €0 n,Pon) and vop, as in Theorem 2.3.1. We
associate with it an h-rescaled dynamic evolution in €, defined as follows:

tis (uh(8), e (t), p(t)) € BD(S) x LA M3X3) x My(Q U 90; M3X3),

sym sym

where for every ¢t > 0 and a.e. x € )

ul(t,x) = (uh)a(%, ¢h(x)) a=1,2, ub(t,x) = h(uh)g(%,d)h(x)),

2.4.1
et x) == Agleh(%,gbh(x)), ( )
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and for every t > 0
P (6) = A S mn(1). (24.2)

Here qﬁ#q € Mp(Q2U 049; M%X?’) denotes the pull-back measure of ¢, defined as

[ widsfa= [ weersdg
Quadﬂ QhUFd,h

for every ¥ € Cy(Q2 U 049; M3DX3). Finally, we rescale the boundary datum wy, as
wg(t,x) = (wh)a(%,th(x)) a=1,2, wé‘(t, x) = h(wh)g(%,¢h(x)) (2.4.3)
for every t > 0 and a.e. z € €0, and the vertical force f; as
Pt x) = fn(E on(x)) (2.4.4)

for every t > 0 and a.e. x € (.
The rescaled triplet satisfies the following conditions:

e kinematic admissibility: for every ¢t > 0 we have

sym Du*(t) = el (t) + p"(t) in Q,
P (t) = (w(t) — u(t)) © vgaH? on 049, (2.4.5)
P (t) + phy(t) + ;%2]9?3(75) =0in QU 048

e stress constraint: ol (t) € K a.e. in Q for every t > 0, where o"(t) := CApel(t);

equation of motion: for a.e. t > 0

250
u3

[Ano”(t)vsn] = 0 on 8,9

(2.4.6)

o energy inequality: for every 0 < t; <t
to
+ [ H(ARp"(s))ds

oo+ | () 2+ [
< Qe + 1] (M)
+/:/Q< o Ahsyme()+<h1ﬁl(i))> (hlzzla(g)>>dxds

/ /f’“” —il(s)) duds. (2.4.7)

2

L2
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We now state the assumptions on the rescaled data of the problem.

Forces. We consider a sequence of vertical loads (f") c VV;,C1 ([0, +00); L2(£2)) such that
for every T' > 0 there exists a constant C'(T") > 0 for which

Hfhuwlvl([O,T];L?) <O(T) (2.4.8)

for every h > 0. We also assume that there exists f € L ([0, 4+00); L?(Q)) such that

loc
() = f(t) strongly in L?(Q) (2.4.9)

for every t > 0.

Boundary displacements. We consider a sequence of boundary displacements

(w") c H2 ([0, +00): H (% R?)) N W ([0, +00); L2 (2 R?)) (2.4.10)

loc

such that for every T > 0 there exists a constant C(7") > 0 for which

har h
L I

for every h > 0. We assume that for every t > 0

wh(t) — w(t) weakly in L2(€;R3), (2.4.12)
Ap sym D (t) — n(t) strongly in L?(Q; M3X3), (2.4.13)
and
har - o7l 2 3
o) T wses strongly in L;,.([0, +00); L*(2; R?)) (2.4.14)
3

for some w € H}, ([0, +00); H' (% R*)NK L(Q?)) and some n € H,, ([0, +00); L (2 M%),

sym
Initial data. We fix a triplet (uf, eff, pf) € H'(;R?) x L2(Q; M3x3) x L*(Q; M2x3) satis-

fying the kinematic admissibility conditions (2.4.5) and an initial velocity v} € H'(€;R3)
such that, setting ot := CApell, we have

—divApol = f"(0)es in Q, [Apolvga] =0o0n 8,9, (ol)p € K ae.inQ, (2.4.15)

and
vl = " (0) on 9,0 (2.4.16)

for every h > 0. Moreover, we suppose that

h(vf)a N 1 T2(0- RS
Py voes strongly in L*(2; R?), (2.4.17)
(vg)3
Apel — &y strongly in L2(€; M3x3), (2.4.18)
A sym Dol 2 + 1Awph g, < € (2.4.19)

for some vy € H'(;R3), &y € L2(Q;M2*3), and some constant C' independent of h.

sym
We are now in a position to state the main result of this paper.
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Theorem 2.4.1. Assume (2.4.8)(2.4.19) and let (u", ", p") be an h-rescaled dynamic
evolution for the boundary datum w", the force term f", and the initial data (ug,eg,pg)
and vf. Then there exists a map t — (u(t),e(t),p(t)) of class

Lipje ([0, +00); K L(2) x L?(; M) x My(Q2U 846; M2y )

sym sym

with ug € W2°([0, +00); L%(w)), such that, up to subsequences,

loc
ul(t) = u(t)  weakly* in BD(L), (2.4.20)
b (t) — us(t)  strongly in L?(), (2.4.21)
eM(t) = e(t)  strongly in L?(%; Mg’yxri) (2.4.22)
Apel(t) — Me(t)  strongly in L?(; M;”;,,?;) (2.4.23)
P (t) — p(t)  weakly* in My(2U 9;Q; ngﬁi) (2.4.24)

for every t > 0. The map t — (u(t),e(t),p(t)) satisfies the following system of equations:
(i) kinematic admissibility: (u(t),e(t),p(t)) € Axr(w(t)) for every t > 0;

(ii) initial conditions: (u(0),e(0),p(0)) = (uo, €0, po) and u3(0) = (vo)s, where ult — ug

weakly* in BD(Q), e} — e strongly in L*(Q; Mg;n?;) and pf — po weakly* in

Mp(QU 8dQ;I\\/JI§;,i) (these limits exist, up to subsequences);

(iii) stress constraint: o(t) € K* a.e. in Q for every t > 0, where o(t) := Cre(t);

(iv) equations of motion: for everyt >0

diva(t) =0 inw, (2.4.25)
[G(t)ve,] =0  on Ophw, o
and for a.e. t >0
iig(t) — divdiva(t) = f(t) in w, (2.4.26)
bo(6(t)) =b1(6(t)) =0 on dhw, o
where
1/2
f(z) = / f(@' x3)dxs  for a.e. ' € w;
~1/2
(v) flow rule: for a.e. t >0
H*(p(t)) = (o(t),p(t)), - (2.4.27)

Proof. The proof of Theorem 2.4.1 is subdivided into six steps.

Step 1: Compactness estimates. We first deduce some a priori estimates. Writing the
estimate (2.3.8) on [0,¢/h] and performing the scaling, we obtain

hiil . :
(" )H o+ I8 oz < O(IAnsym Dl + 1753 oo

h
- h
. H( >HLOO([OJLL{Z)+\/{5HAhsyme le2(oazs) (2:4.28)

w3
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for every ¢ > 0. By the assumptions on the data we deduce that for every T' > 0 there
exists a constant C(T') > 0, depending on T" but independent of h, such that

-h
H ( > HLOO(OT] .L2) + [ Ane™ oo (pory:22) < C(T)- (2.4.29)

We now write the rescaled energy inequality (2.4.7) with t; = 0 and t3 € [0,¢]. By (2.2.1)
and (2.2.2) we have

06<CHAhehH%oo([o,t];L2 2” < ) HLoo ([0,¢];L2)

hy2 Uo)a 2 h ! - h
< el + 5 ("o ) [ +28eltnet oo [ IAnsym D (s)]12 s

N O oo 1)

t
+ (15Nl oo 0.0 22) + Hw§|L°o([o,t};L2))/o 1£"(5) || 2 ds.

ds

By the Cauchy inequality, the assumptions on the data and (2.4.29), we deduce that for
every T' > 0 there exists a constant C(7T") > 0, depending on T' but independent of h, such
that

AR Lo (0.17:2) + H ( ) HLOO o < T (2.4.30)

Finally, we perform the scaling in (2.3.9) and by (2.4.29) and (2.4.30) we get
1ARp" (t2) — App" (t1) 0, < C(T) (HAheh(tz) = Ape" (t1) ] 2

i H ( s ( 752% - Z?(ti) )) ‘ 2 /ttQ 1An sym D" (2)]| 2 dt
+/t1

to
<hw > I, d”/ 1@z dt)  (2.4.31)
wh(t "
for every T' > 0 and every t1,t2 € [0,T].

We now deduce some compactness properties for the triplets (u”, e”, p), as h — 0. By
(2.4.29), (2.4.30), and the Ascoli-Arzela Theorem we infer the existence of

0,8 € WE([0, +o0); L2(: M2S2))

sym

with eqg = €np for o, 8 =1,2 and e;3 = 0 for i = 1,2, 3, such that, up to subsequences,

e"(t) —e(t) weakly in L2(Q; M3x3), (2.4.32)
Ape(t) — é(t)  weakly in L2(; M2x3) (2.4.33)

for every t > 0. Moreover, by (2.4.29) and (2.4.31) the functions Axp” are equi-Lipschitz
continuous in time with values in M,(QUT4; M5?). Therefore, again by the Ascoli-Arzela
Theorem and by (2.4.19) there exist

P € Lipyo,([0, +00); My(Q U 84 MG50)), B € Lipioe([0, +00); My(2 U 94 M),

sym
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with pog = Pap for o, 8 = 1,2 and p;3 = 0 for ¢ = 1,2, 3, such that, up to subsequences,

ph(t) — p(t)  weakly* in My(Q U 049 Mg;;z), (2.4.34)
Apph(t) — p(t)  weakly* in My(Q U 9,0 M5?) (2.4.35)

for every t > 0.
We now prove the weak* compactness in BD(f2) of the sequence of displacements (u").
Since Jqw is open in Ow, there exists an open set A C R? such that dgw = AN Ow. Let

Q= (wUA) x (—3,3). By (2.4.11) and (2.4.12) we have that

sym Dw"(t) — sym Dw(t)  weakly in L?(€; M3X3) (2.4.36)

sym

for every t > 0. Thus, for every t > 0 we can extend w”(t) and w(t) to € in such a
way that w’(t) — w(t) weakly in L?(€;R3) and sym Dw"(t) — sym Dw(t) weakly in
L2(QY; M2X3) for every t > 0.

sym

We now extend the triplets (u”, e®, p) to @ by setting
ul(t) == w(t) in Q'\Q, () := sym Dw"(t) in Q'\Q, p(t) == 0in &'\ (QUIQ)
and we note that sym Du”(t) = e(t) + p"(t) in . Similarly, we set
e(t) := sym Dw(t) in Q" \ Q, p(t) :=01in Q' \ (QU 9,0Q).

By (2.4.32) and (2.4.34) we deduce that ¢”(t) — e(t) weakly in L*(€; M2x3) and p"(t) —
p(t) weakly™ in My (2; M3%3), for every ¢ > 0. Thus,

sym
sym Dul(t) = e (t) + p"(t) — e(t) + p(t)  weakly* in M(Q;M323).

sym

Since u”(t) = w"(t) in '\ Q and w"(t) is bounded in L?(€;R3), the Korn-Poincaré in-
equality implies that the sequence (u"(t)) is uniformly bounded in BD(£Y'). Consequently,
there exist u(t) € BD(Y') and a subsequence " (t) such that u" (t) — u(t) weakly* in
BD(€Y). Since

wt) =w(t) in Q\Q and sym Du(t) = e(t) +p(t) in

the Korn-Poincaré inequality ensures that the limit u(t) is uniquely determined. Therefore,
the whole sequence converges in ' and in particular,

ul(t) = u(t) weakly* in BD() (2.4.37)

for every t > 0.
Since e;3(t) = pig(t) = 0, it is easy to see that

(u(t),e(t),p(t)) € Axr(w(t))

for every ¢ > 0. Moreover, u € Lip;oc(]0, +00); KL(2)), owing to the time regularity of e,
p, and w, and as a consequence of Lemma 2.2.1,

(a(t), e(t), p(t)) € Arr(w(t)) (2.4.38)

for a.e. t > 0.
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Finally, combining (2.4.29), (2.4.30), (2.4.37), together with the Ascoli-Arzela Theo-
rem, we conclude that

uz € W22 ([0, +00); LA(Q))

and

hul(t) =0 weakly in L2(Q) for a = 1,2, (2.4.39)
b (t) — u3(t)  weakly in L2(9) (2.4.40)

for every t > 0. Moreover, we also have that

hul — 0 weakly* in W1°°([0,T]; L*(Q)) for a = 1,2, (2.4.41)
al — g weakly* in WLo°([0,T]; L?()) (2.4.42)

for every T > 0.
The previous arguments also prove that, up to subsequences, u(})’ — ug weakly* in
BD(Q), el — eg strongly in L2(;M3%3), and ph — py weakly* in My(Q U 940; M2X3),

sym sym
for some (ug, eg, po) € Axr(w(0)), and the initial conditions are satisfied.

Step 2: Identification of the limiting elastic strain. We claim that
é(t) = Me(t) (2.4.43)

for every ¢ > 0, where € satisfies (2.4.33) and M is the operator defined in (2.2.6).
We first show that (2.4.43) holds for a.e. ¢ > 0. Owing to (2.2.7), this is equivalent to
prove that for a.e. t > 0

0 0 X\
Cé(t,z): | 0O 0 X | =0
Al A2 A3
for every \; € R and a.e. z € Q. Let (a,b) C (—1,1) and let U C w be an open set. Let
(n) € CH[—3,5]) and (X)) C C}(w) be two sequences such that £, — (44 strongly in
LY(—1, 1) and X, = A\;xu strongly in L*(w) for every i = 1,2,3, as n — oc.
We define
2h\L (2/)0, (3)
n(t,z) = p(t) | 20N} (2 )n(a3) |
R2X3 (2/) 0, (3)

where ¢ € L2(0, +00). Testing (2.4.6) by ¢! yields

/0 /Q<h1213’(lt())> ol (t) dz dt + /0 +oo/ﬂ(CAheh(t):Ahsymesjz(t) dx dt
= [ et e

Owing to (2.4.30), (2.4.33), (2.4.41), and (2.4.42), we can pass to the limit as h — 0 and
then, as n — +oo. This yields

oo 0 0 M\
/ / t)Cé(t,z): | 0 0 Ay| dxdt=0.
U x(a,b) )\1 )\2 )\3
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Since the sets (a,b), U and the function 1 are arbitrary, we deduce that for a.e. ¢ > 0
é(t) = Me(t) a.e. in Q. Since é and Me are continuous functions of time, this implies
(2.4.43).

This argument also proves that éy = Meg, where € is the limit in (2.4.18).

Step 3: Equations of motions. Let T > 0. Let ¢ € L?([0,T); KL(2) N H'(;R?)) with
© = 0 on 9;. We test the rescaled equation of motion (2.4.6) by ¢ on [0,7] x Q. This
yields

/ / <h2 il (¢ >'SD(t)dxd“r/oT/QCAheh(t):Syngo(t)dmdt
:/OT/th(t)gog(t) dz dt,

where we used that Ay sym Dy(t) = sym Dep(t) since ¢(t) € KL(2). As a consequence of
(2.4.30), (2.4.33), (2.4.41), and (2.4.42), we can pass to the limit in the previous equation
and obtain

_ 2
/ /u3 st da: dt+/ / (syngp() 3D (1) O> dx dt
/ /f p3(t)dx’ dt, (2.4.44)
where o(t) := C*e(t) = CMe(t).
By choosing ¢ = (¢,0) with ¢ € L2([0, T]; H' (w; R?)), ¢(t) = 0 on d4w, in (2.4.44) we

deduce that .
/ / a(t) : sym D@(t) dx’ dt = 0.
0 w

This implies that for a.e. ¢ >0
/ a(t) : sym Dpdr’ =0

for every ¢ € H'(w;R?), = 0 on d;w. The continuity of & with respect to time implies
that the above equation is actually satisfied for every ¢ > 0. By Lemma 7.10—(i) in [13]
we conclude that

diva(t) =0inw, [7(t)ram] =0 on dyw

for every t > 0.
We now choose ¢ in (2.4.44) of the form ¢ = @se3, with @3 € L*([0,T]; H*(w)),
©3(t) =0 and Vps(t) = 0 on dgw and obtain

/OT/M 3(t)y (dxdt// 3(t) da’ dt = /OTLf(t)wg(t)dx’dt.

By Lemma 7.10—(ii) in [13] this implies that

i (1) — 1—12div dive(t) = f(#)  in [0,400) x w

together with the corresponding Neumann boundary conditions.
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Step 4: Stress constraint. We recall that (CAne™)p(t) € K a.e. in Q for every ¢ > 0 and
every h. Since CApe/(t) — o(t) weakly in L?(£; MZ’;"%) for every ¢t > 0 and K is a closed
and convex set, we have that op(t) € K a.e. in Q. By (2.2.12) this is equivalent to saying
that o(t) € K* a.e. in Q for every t > 0.

Step 5: Flow rule. We first observe that

H*(p(t) = (o(t), p(t))r (2.4.45)

for a.e. t > 0. This follows from (2.2.17) combined with the fact that o(t) € K* a.e. in Q
for every t > 0. Moreover, as a consequence of Proposition 2.2.5, (2.4.25), (2.4.26), and
(2.4.38), we have that

wmm@»z/

Q

= /ﬂa(t) D (sym Du(t) — é(t)) d + /(f(t) — iig(t)) (a3 (t) — ws(t)) da’
’ (2.4.46)

o(t) : (sym Dw(t) — é(t)) dz — % /w divdivé(t)(us(t) — ws(t)) da’

for a.e. t > 0.

On the other hand, we can pass to the limit in the rescaled energy inequality arguing
as follows. By (2.4.35), the lower semicontinuity of the dissipation and the definition of
D*, it turns out that

D*(p;0,T) < ligl_)i(r)lfD(Ahph; 0,7

for every T'> 0. Combining this inequality with the regularity of p, (2.2.5), and (2.2.13),
we have that

/ H*(p(t)) dt < hmlnf/ H(App" (1)) dt (2.4.47)

for every T' > 0. We now write the rescaled energy inequality (2.4.7) with ¢t; = 0 and
to = T. Using the lower semicontinuity of Q, the definition of @, and the assumptions
on the data (3.5.6) and (2.4.13)—(2.4.18), we deduce that

Q" (e() + Jlis(TEs + [ 1 e < @ (e0) + 3O

r 7 . . ’
+/0 /Q (C*e(t) : sym Du(t) + iig(t)s(t)) d dt —I—/O /wf(t) (us(t) —ws(t)) le dt |
2.4.48

for every T' > 0. Here we used that 7,5(t) = sym Dw,g(t) by (2.4.13) and (2.4.36). By
the time regularity of e and wu, inequality (2.4.48) can be rewritten as

/H )t < // t (sym Dw(t) — é(t)) du dt
/ / ) — i3 (t)) (U (t) — ws(t)) da’ dt.

T T
/ H*(p(t)) dt < / (o(t),p(t)), dt. (2.4.49)
0 0

Hence, by (2.4.46)
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Combining the above inequality with (2.4.45), we deduce the flow rule (2.4.27).

We also note, for future references, that the flow rule implies that the inequality in
(2.4.49) is actually an equality. Therefore, by (2.4.46) inequality (2.4.48) is an equality,
as well. In other words, the following energy balance holds:

* 1. 2 T Y * L. 2
Q" (e(T)) + 5 llus(T)lIze +/0 H(B(2)) dt = Q"(e(0)) + 5 [l (0)[72

T T
+ /0 /Q C*e(t) : sym Dir(t) du dt + /0 / (ii(t)is(t) + F(£) (is(t) — s (t))) da’ dt
(2.4.50)

for every T > 0.

Step 6: Strong convergence of the stress and the wvelocity. We conclude the proof by
showing the strong convergence of the sequences (12 (t)), (e(t)), and (Anel(t)).
By (2.4.7), (2.4.50), and the assumptions on the data we have

liI}?_S)E)lP{Q(Aheh( 2H ( > / H(App"( }

< Q,(e(0)) + 5”“:3(0)”%2 —I—/O /Q(f(t) : sym Dw(t) dx dt

+/0 /<u3<> $(1) + F(8)(is(t) — s(t)) da’ dt

= Q% (e(T)) + fllug HL2+/ H*(p(t)) da dt.
Recalling (2.4.47) and
* . h . 9 .. -h 2
O*(e(T)) < liminf QAKM(T)), [l (T) 32 < lim inf il (7).

the inequality above implies that @2 (t) — 13(t) strongly in L2(Q2) and
Q(Ane"(t)) — Q*(e(t)) = Q(Me(t))

for every t > 0. Since
Q(Apel(t) — Me(t)) = Q(Anel(t)) + Q(Me(t / CApe(t) : Me(t) de,

equations (2.4.33) and (2.4.43) imply that

lim Q(Ane" (t) — Me(t)) = 0

for every ¢t > 0. Hence, by (2.2.1) we conclude that Ape(t) — Me(t) strongly in

L2(% Mg’yxn?;) for every t > 0. As an immediate consequence, we deduce that e(t) — e(t)

strongly in L?(Q; M3X3) for every t > 0.

sym

This concludes the proof of Theorem 2.4.1. O

Remark 2.4.2. A key ingredient in the proof of Theorem 2.4.1 is given by the higher reg-
ularity estimates (2.3.8) and (2.3.9). Using (2.4.1)—(2.4.4) these estimates can be written
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in the scaled variables. This leads to inequalities (2.4.28) and (2.4.31), which are instru-
mental to deduce compactness of the three-dimensional evolutions in the energy space.
At this point, is it crucial to have a purely vertical body load. Indeed, in the presence
of a nontrivial tangential force, the regularity estimates (2.3.8) and (2.3.9) do not have
the right invariance property with respect to scaling in h, because of the different order
of magnitude of the horizontal and vertical loads in terms of h (which is, in turn, due
to the different order of magnitude of the horizontal and vertical displacements), so that
the simple scaling argument described above does not allow to make the dependence on h
fully explicit in estimates (2.4.28) and (2.4.31).

2.5 Some properties of the reduced model

In this section we collect some results about uniqueness for the reduced dynamic model,
that has been derived in the previous section. We first prove uniqueness of the vertical
displacement, of the elastic strain, and of some components of the plastic strain.

Proposition 2.5.1. Let t — (u(t),e(t),p(t)) be a reduced dynamic evolution, that is, a
solution to system (1)—(v) in Theorem 2.4.1. Then the vertical displacement ug, the elastic
strain e, and the plastic strain components p and p| are unique.

Proof. Let (u,e,p) and (v,7,q) be two solutions. Let o(t) := C*e(t) and 7(t) := C*n(t).
Subtracting the two equations of motion for us and v3 leads to

i (£) — () — 1—12div div (5(t) — #(#) =0 inw

for a.e. ¢ > 0. Multiplying this equation by u3(t) — 03(¢) and integrating on [0,7] X w
yields

/OT /w (i13(t) — U3(t))(u3(t) — v3(t)) da’ dt
- % /OT /w div div (6(t) — 7()) (i3(t) — 03(t)) da’ dt = 0. (2.5.1)
Since 3(0) = 3(0), we have
/OT /w(ag(t) — g (1)) g (1) — (1)) dt = o Jis(T) — () 3. (25.2)
On the other hand, by Proposition 2.2.5, (2.4.25), and (2.4.26), we obtain

1 T
- — / divdiv (6(t) — 7(¢))(us(t) — 03(t)) da’ dt

12 .
OT T

— [ [0 =) @) iy drat+ [ (ol = r(0).5(0) - ) dt. (253)
0 Q 0

where we have also used that (u(t) — 0(t),é(t) — n(t),p(t) — 4(t)) € Ax(0) for a.e. t > 0.
Since e(0) = n(0), we have

T
/0 /Q (o) — 7(8)) = ((t) — (1)) da dt = Q*(e(T) — 1(T"). (2.5.4)
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Moreover, using the flow rule, (2.2.17), and the fact that 7(¢f) € K* a.e. in 2, we infer that

{o(t) = 7(t),p(t))r = 0

for a.e. t > 0. Similarly,
(r(t) —o(t),4(t))r 2 0

for a.e. t > 0. Summing up the previous inequalities and integrating in time yields

T
/O (o(t) — (1), p(t) — (1)) dt > 0. (2.5.5)

Gathering (2.5.1)—(2.5.5) we deduce that

%H%(T) = 03(T)[I72 + Q*(e(T) = n(T)) < 0.

By (2.2.1) we conclude that 43 = 03, hence ug = v3, and that e = 7. Finally, by Proposi-
tion 2.2.4 we deduce that p=¢ and p; =q, . O

The following proposition gives a two-dimensional characterisation of the reduced dy-
namic evolution model for a specific choice of the data.

Proposition 2.5.2. For everyt > 0 let

w(t,x) = (w(téx/)) for a.e. x € Q,

where w € HZ, ([0, +00); H (w; R?)). Let (ug, eq,po) € Axr(w(0)) be of the form

ugp(z) = <uogx/)> , eo(z) =ep(a’)  for ae. x € Q, Ppo = Do ® L.

Then a map t — (u(t),e(t),p(t)) is a reduced dynamic evolution, that is, a solution to
(1)—(v) in Theorem 2.4.1, with boundary datum w, force term f =0, and initial conditions

(u(0),e(0),p(0)) = (uo, €0, po) and u3(0) = 0, if and only if

u(t,z) = <ﬂ(t(’)$/)> , e(t,z) =e(t,z’)  for a.e. x €Q, p(t) =p(t) @ L (2.5.6)

for every t > 0, where
t e (a(t), €(t), p(t)) € BD(w) x L*(w; M) x My(w U Ogw; M)
satisfies the following conditions:
(a) sym Du(t) = &(t) + p(t) in w, p(t) = (w(t) — u(t)) © va,H' on dgw for every t > 0;
(b) (E(O),E(O),ﬁ(())) = (anéOaﬁO);
(c) a(t) € K* a.e. inw for everyt > 0;

(d) for everyt >0

[0(t)vow] =0  on Onpw;

{div at)=0 inw,
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(e) H*(p(t)) = (a(t),p(t)), for a.e. t > 0.

Proof. Assume that ¢ — (u(t),e(t),p(t)) is a reduced dynamic evolution with the given
data. We have to prove that (2.5.6) and (a)—(e) are satisfied. To do this we argue as in
Proposition 7.16 in [13]. The theory of convex functions of measure ensures that

H(p(t) = H (P () + 1" (P°(1)). (2.5.7)

By the Fubini-Tonelli Theorem and the Jensen inequality we have
1
2 . 2 .
HE ) = [ [ w0 - ) don e
wuadw —%
1

> /w anH*( /_ ®(50(E) + wsp (1) —él(t))dx;),) do’
= H(P"(t)) (2.5.8)

N|=

for a.e. t > 0. Let A(t) := |[p*(t)| + |p°(¢)| for a.e. t > 0. Then the measure °(t) + z3p°(t)
is absolutely continuous with respect to A(t) for every z3 € (—3, 3). Thus, by the Radon-
Nikodym Theorem we can write

) = (Cjzﬁ;((f)) s ff;((ff)w ERs

gen.
where ® denotes the generalised product of measures (see, e.g., Definition 2.27 in [4]).

By the Fubini-Tonelli Theorem and the Jensen inequality, we obtain
1 . .
‘o T o (dpi(t) | dpi(t)
5(t)) = H* dxs dX(t
wew) = [ [ (G e e
d 2

> o R e ) o
= H(P°(1) (2.5.9)

for a.e. t > 0. Combining (2.5.7)—(2.5.9), we conclude that
H*(p(t)) > H*(P"(t)) + H* (p° () = H*(D(t)) (2.5.10)

for a.e. t > 0.
On the other hand, by (2.2.16), (2.2.17), (2.4.26), (2.4.27), and Proposition 2.2.5, we
deduce that

M (5(1)) = (o (1), PO = (o0), B(1)) + 756 (0), (D) ~ /Q oL () : éu(t)da
<H*(p(t))—/QaL(t) el (t) dx—lg/&(t) é(t) dx’—/ug(t)ug(t) dx’

Here we used that ws(t) = 0 and f(t) = 0 for every ¢ > 0.
Therefore, by (2.5.10) we have
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/QO'L(t) e (t) dx+112/w6(t):é(t) dx/+/wu3(t)ii3(t) dz’
d

= (@ (ext) + 52 Ew) + i) <0

for a.e. t > 0. Integrating with respect to time, this inequality yields

Q" (1 () + 152 (6(0)) + 5l us D)
< Q% (e (0)) + 75 @ (E(0)) + 5 is(0) 32 = 0.

Since u3(0) = 0, this implies that u3 = 0 and é = e; = 0. By Proposition 2.2.4 we deduce
that p = p; = 0. In other words, (2.5.6) is satisfied.

Condition (a) follows immediately from Proposition 2.2.4, (b) is straightforward, and
(d) follows from (2.4.25). Since o(t) € K* a.e. in {2, it is easy to check that (¢) € K* a.e.
in w, that is, (c) holds. Finally, (2.5.11) and (2.5.10) yield (e).

Conversely, if t — (u(t),e(t),p(t)) is of the form (2.5.6) and conditions (a)—(e) are
satisfied, it is trivial to check that ¢ — (u(t), e(t), p(t)) is a reduced dynamic evolution. [J

Remark 2.5.3. The previous proposition suggests that, in general, one cannot expect
uniqueness for the components u and p of a reduced dynamic evolution. Indeed, Proposi-
tion 2.5.2 shows that for some specific choice of the data the reduced dynamic evolution
coincides with a two-dimensional quasistatic model, for which uniqueness of displacement
and plastic strain in general fails (see, e.g., [50]).



Chapter 3

A quasistatic evolution model for
perfectly plastic shallow shells

3.1 Overview of the chapter

In this Chapter we rigorously deduce a quasistatic evolution model for shallow shells by
means of ['-convergence. The starting point of the analysis is the three-dimensional model
of Prandlt-Reuss elastoplasticity. We study the asymptotic behaviour of the solutions, as
the thickness of the shallow shell tends to 0. As in the case of plates, the limiting model is
genuinely three-dimensional. Limiting displacements are of Kirchhoff-Love type, and the
stretching and bending components of the stress are coupled in the flow rule and in the
stress constraint. Moreover, in contrast with the case of plates, the equilibrium equations
are not decoupled, because of the presence of curvature terms. An equivalent formulation
of the limiting problem in rate form is also deduced. We discuss the case of external loads.

Let us now briefly outline the content of this Chapter. In Section 3.2 we describe the
setting of the problem. In Section 3.3 we prove a Korn Poincaré inequality on a shallow
shell. Section 3.4 is devoted to the I'-convergence of the static functionals, while in Section
3.5 we study the convergence of the quasistatic evolutions. Finally, Section 3.6 we consider
the general case where external loads are applied to the shallow shell.

3.2 Setting of the problem

3.2.1 The three-dimensional problem

We start by describing the setting of the three-dimensional problem.

The reference configuration

Let w C R? be a domain (that is, an open, connected, and bounded set) with a C?
boundary. Let Oqw and d,w be two disjoint open subsets of dw such that

dawUdw=0w  and  JuwNoww = {P1, P2},

where Py and P» are two points of Ow (here topological notions refer to the relative topology
of Ow). The set Jyw is the Dirichlet boundary of w and d,w is the Neumann boundary.
We also consider the set

)

N[

Q:=wx (—%,

45
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and its Dirichlet boundary

94 := 04w x (=3, 3).

Let 0 € C3(w). For every 0 < h < 1 we consider the two-dimensional surface
Sp = {(2/,h0(2')) : 2’ € w}.

A shallow shell of thickness h is a three-dimensional body whose reference configuration
is given by the set
Y= UR(Q),

where U}, : Q — R3? is the function
Uy, (z) := (', h0(2")) + hasvs, (2')  for every z = (2/,23) € Q (3.2.1)
and vg, is the outer unit normal to S}, given by

1
VI RVE()

vg, (') (—hdab(x')eq +e3) for every 2’ € w.

Here {e;} denotes the canonical basis of R3. The Dirichlet boundary of ¥, is given by
the set
8d2h = \I]h (6dQ) .

For every 0 < h < 1 we introduce the diagonal matrix

1 00
Rp:={0 1 0 (3.2.2)
00 ;
and we define
Fh(a;) = D\Ilh(a;)Rh (323)
for every = € €. The elementary properties of the determinant give
det DW,(x) = hdet Fp(x) (3.2.4)

for every z € Q. The asymptotic behaviour of Fj,, as h — 0, is made explicit by the
following result.

Lemma 3.2.1. As h — 0, the following expansions hold:
(Fh)a,@ = 504/3 — h2$36369 + O(hS), (Fh)ag = —ho,0 + O(hg),
(Fn)sg = hdgh + O(h?), (Fr)ss = 1 — $h2[VO[> + O(h?),

where O(h3) denotes a quantity that is uniformly bounded by h® in Q. Moreover, F}, is
inwvertible for h small enough and the following expansions hold:

(Fjy s = 0ap + h* (230250 — 0.0050) + O(h?), (Fy, M = hoad + O(h3),
(Fy s = —hdgf + O(h%),  (Fy ')z = 1— 3h2[VOP + O(h%),

and

det Fj, = 1+ O(h?).
Proof. See, e.g., [10, Theorem 3.3-1]. O
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The stored elastic energy

Let C be the three-dimensional elasticity tensor, considered as a symmetric positive
definite linear operator C : M3X3 — M2*3 and let @Q : M2*3 — [0, +00) be the quadratic

sym sym> sym

form associated with C, defined by

Q(&) :==3CE: ¢ for every £ € M3,
It turns out that there exists two positive constants cc and B¢, with ac < S¢, such that

aclél? < Q(€) < Belel>  for every € € MEX3. (3.2.5)

These inequalities imply that

CE| < 26| for every & € M2 (3.2.6)

sym-

The integral
Q(n(x)) dx

Xp

describes the stored elastic energy of a configuration of the shallow shell ¥, with elastic
strain n € L?(Xp; M3X3).

sym

The plastic dissipation

Let K be a convex and compact set in M%X?’, whose boundary 0K is interpreted as
the yield surface. We assume that there exist two positive constants rx and Ry, with
rik < Ry, such that

B(O,?”K) CKC B(O, RK), (3.2.7)

where B(0,7) := {£ € M3 ¢ |¢| <r}. Let H : M — R be the support function of K,
that is,
H(¢):=sup&:7 for every & € My,
TEK

It is easy to see that H is convex, positively 1-homogeneous, and satisfies the triangle
inequality. Moreover, by (3.2.7) one deduces that
ril|¢| < H(€) < Rk|¢|  for every & € My, (3.2.8)

From standard convex analysis we also have that the set K coincides with the subdiffer-
ential 0H(0) of H at 0.

Let ¢ € My(Xp U 0gXn; M5P) and let dg/d|q| be the Radon-Nikodym derivative of ¢
with respect to its variation |g|. The integral

dq
H(——)d|q
/EhuadEh (d‘q|) | ’

describes the plastic dissipation potential on a configuration of the shallow shell ¥; with
plastic strain q.
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Kinematic admissibility and energy

Given a boundary datum z € H!(X;;R?), we define the class A(Xp, z) of admissible
displacements and strains, as the set of all triplets (v,7,q) € BD(Xp) % LQ(Eh;Mg’;ﬁ;) X
My (X, U 0455 M5 such that

symDv=n+q in Xy, q=(z—v)Ovys, H> on 9g¥p, (3.2.9)

where vgy,, is the outer unit normal to 0%;. We define the total energy as

d
()= | Quola) do+ /E a(gh) (3.2.10)

for every admissible triplet (v,7,q) € A(Xh, w).

3.2.2 The rescaled problem

In this section we introduce a suitable scaling of the admissible triplets and of the total
energy.

Let z € H(Z),;R?). To any triplet (v,7,q) € A(Xh, z) we associate a triplet (u, e, p)
defined as follows:

_ 1
u = R, 'vo Wy, e:=noWy, pi= mﬁlf(q), (3.2.11)

where U, and Ry, are defined in (3.2.1) and (3.2.2), and \Ifﬁ(q) is the pull-back measure

of g, that is,
/ go:dlllh#(q):/ poW, ! :dg
QUadQ 2h,uadEh

for every ¢ € Cop(Q U adQ;M%XS). It is clear that u € L'(Q;R3), e € LQ(Q;MZ’;,%), and
p € Mp(2U 049; I\\/JISDX3). Moreover, we have that

sym(RpDuR, F; ') € M,(; M2x3) (3.2.12)
and
/gp:dsym(RhDuRhFhl):/ (det DU, 1) o Wyt 2 d(sym Do) (3.2.13)
Q Zh

for every ¢ € Cy(; ngxn%) Indeed, if v is smooth, then by direct computations and by
(3.2.3) we obtain
(sym Dv) o ¥, = sym(R, DuR,F; ), (3.2.14)

so that (3.2.12) and (3.2.13) follow by an approximation argument.
We also introduce the rescaled boundary datum w € H'(Q;R?), defined as

w:=R; 207, (3.2.15)

and we note that

/ poW,t:dg = / po W, ((z—v) Oy, ) dH?
0g%p 04>

= h/ ¢ : (Rp(w —u) ® (cof Fi,)Rpvan) dH?  (3.2.16)
0q2
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for every ¢ € C(Q;M3X3), where vq is the outer unit normal to 9.

sym

Since (v,1,q) € A(Xh,w), we deduce by (3.2.9), (3.2.11), (3.2.13), and (3.2.16), that

sym(RhDuRhFh_l) =e+p inQ,

Rp(w — u) ® (cof Fy)RpvoaM?  on 940 (3.2.17)

p= dech

Motivated by the results above, we introduce the space

Vi(2) = {u € LY RY) - sym(RhDuRhFh—l) € Mpy(9; M3X3)}.

sym
For every w € H'(Q;R3) we denote by A, (€2, w) the class of all triplets

(u,e,p) € Vi(Q) x LA(Q;M2X3) x My(Q U 99 M)

sym

satisfying (3.2.17). According to the scaling (3.2.11) and to (3.2.4), the total energy can
be written as

(v,7,9 /Q )) det Fy (z) di + h H(p),

where

dp
Hn(p) :—/ H (d )det FEy, d|p).
QU2 | ‘

We thus define the scaled energy as

(u,e,p) /Q )) det Fy(z) dz + Hp(p) (3.2.18)

for every (u,e,p) € Ap(2,w). This will be the starting point of the asymptotic analysis
of Sections 3.4 and 3.5.
3.2.3 The limiting problem

In this section we introduce the limiting functional, that describes the asymptotic
behaviour of the rescaled energy Zj, as h tends to 0.
The reduced stored elastic energy

Let M : M2X2 — M3X3 be the operator given by

sym sym
§11 &2 M(§)
M¢:=| &2 & Ma(§) |  forevery £ € MZy7, (3.2.19)

AL(€) A2(8)  As(€)
where the triplet (A1(€), A2(€), A3(&)) is the unique solution of the minimum problem

&l &2 M
min @ | {12 &2 Ao
AER A1 A2 A3

We observe that (A1(£), A\2(£),A3(£)) can be characterised as the unique solution of the
linear system
0 0 G
CMe: [0 0 &) =0 (3.2.20)
G G @
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for every (; € R. This implies that M is a linear map and

(CM);3 = (CM&)3; = 0. (3.2.21)
Let Q* : Mg;ﬁl — R be the quadratic form given by
Q(&) = Q(M¢)  for every & € M2y (3.2.22)

It follows from (3.2.5) that
aclé]? < Q*(¢) < Beléf*  for every € € ngj,fb.

We define the reduced elasticity tensor as the linear operator C* : M2x2 — M2*3 given by

C*¢ := CME  for every &€ € M2x2 (3.2.23)

sym:*
Note that we can always identify C*¢ with an element of ngxn% in view of (3.2.21). More-
over, by (3.2.20) we have

i G2 O
C*¢:¢=C*¢: ¢ G 0 for every £ € M2, ¢ € M35, (3.2.24)
0O 0 O
This implies that
1 En &2 0
Q"¢ = 5(@*5 | &2 &2 O for every £ € ngxn%
0 0 0
Finally, we introduce the functional Q* : L?(Q; M2y%) — [0, +00), defined as

0% (e) = /Q Q*(e(x)) da

for every e € L%Q;Mg;ﬁ). It describes the reduced elastic energy of a configuration,

whose elastic strain is e.

The reduced plastic dissipation

In the reduced problem the plastic dissipation potential is given by the function H* :
M2%2 — [0, +00), defined as

sym

11 &12 A
H*(§) :==min H | {12 &2 A2 (3.2.25)

At Ao — (&1 +&o2)
for every & € M2X2. From the properties of H it follows that H* is convex, positively

sym:*
1-homogeneous, and satisfies

ri|é] < H* () < \/§RK\£| for every & € M?X2

sym*
The set K* := 0H*(0) represents the set of admissible stresses in the reduced problem
and can be characterised as follows:

€1 &2 0
¢ € K & 190 &2 O — g(trf)fgxg e K, (3.2.26)
0 0 O
(see [13, Section 3.2]). For every p € My(Q U 0,8 Mg;ﬁl) we define the functional

dp
H*(p) = / H*(—=)d|p|.
2 QUBLQ <d|19|) P
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Generalised Kirchhoff-Love triplets and limiting energy

We consider the set K L(2) of Kirchhoff-Love displacements, defined as
KL(Q):={ue BD(Q): (symDu);z =0}.
We note that u € K L(?) if and only if us € BH (w) and there exists « € BD(w) such that
e () = g (2") — 2304us(x)

for every x = (2/,x23) € Q. We call @, ug the Kirchhoff-Love components of u.
For every u € KL(Q2) we define the measure

Eu := sym Du + V0 ® Vus.

Given a prescribed displacement w € H(Q;R?) N K L(R), the set Agkr(w) of gener-
alised Kirchhoff-Love triplets is defined as the class of all triplets
(u,e,p) € KL(Q) x L*(Q;M2X3) x My (Q U 0,0; M2X3)

sym sym

such that

Eu=e+p inQ, p=(w—u)OvgaH? on 90,
e;3 =0 in Q, pig =0 in QU gyA.
The linear space {£ € M2X3 . &3 = 0, i = 1,2,3} is isomorphic to M2*2. Thus,

sym sym*
in the following, given (u,e,p) € Agkr(w), we will always identify e with a function
in LQ(Q;ME;%), Fu with a measure in M,(£; M2X2), and p with a measure in M;(2 U

sym
D44 MZy2). We observe that the class Agxr(w) is nonempty as it contains (w, E*w, 0).
Finally, the limiting energy will be given by the functional Z : Agxr(w) — [0, +00),
defined as

Z(u,e,p) = Q*(e) + H*(p) (3.2.27)

for every (u,e,p) € Agxr(w).
We conclude this section by collecting some properties of the class Agxr(w). The
following closure property holds.

Lemma 3.2.2. Let (wy,) be a sequence in H'(;R3) N KL(Q) and let (un,en,pn) be a
sequence of triplets such that (un,en,pn) € Agrr(wy) for every n. Assume that u, — u
weakly* in BD(SY), e, — e weakly in L?(; M2X2), p, — p weakly* in My(Q2U08; M2X2),

sym sym

and w, — w weakly in H(Q;R3). Then (u,e,p) € Agkr(w).
Proof. The result easily follows by adapting the proof of [12, Lemma 2.1]. O

A characterisation of triplets in Agxr(w) can be given in terms of moments, whose
definition is recalled below.

Definition 3.2.3. Let f € L2(Q;M2X2). We denote by f, f € L2(w;M§;"2L) and by

sym

f1 € L*(Q;MZ2)2) the following orthogonal components (in the sense of L*(Q; M2x?%)) of
f:

fla') = ’ [, x3) dus, f@') =12 /_2 z3f(a', x3) das

for a.e. ' € w, and ) R
fi(z) = f(x) = f(a') — 23 f(a')

for a.e. € Q. We call f the zeroth order moment of f and f the first order moment of f.
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Definition 3.2.4. Let ¢ € My(Q U 949;M22). We denote by ¢, § € My(w U Ggw; M2X2)

sym sym

and by q; € My(Q U 9;0; M2%2) the following measures:

sym

/ gp:dcj::/ p :dg, / gp:d(j::12/ T3¢ : dq
wUdgw QU wUdqw QUGN

for every ¢ € Co(w U dgw; M2X2), and

sym
qLi=q—q®L -zl

where ® denotes the usual product of measures. We call g the zeroth order moment of g

and ¢ the first order moment of q.

With these definitions at hand one can prove the following result.

Proposition 3.2.5. Letw € H'(Q;R*)NK L(Q) and let (u, e,p) € KL(Q)x L*(;MZ)2) x

My(22U 0482, ngxn%) Then (u,e,p) € Agkr(w) if and only if the following three conditions
are satisfied:

(i) sym Dii+ V0 ® Vug =€+ p inw and p = (0 — @) © vy, H' on O4w;

(ii) D?*u3 = —(é+p) in w, uz = w3 on Ogw, and p = (Vuz — Vws) ® vg,H' on Oqw;
(iii) p1 = —ey in Q and py =0 on 0412,
where vy, 1s the outer unit normal to Ow.
Proof. The proof is analogous to that of [13, Proposition 3.4]. O

Finally, we prove an approximation result in terms of smooth triplets. First of all, we
give a definition.

Definition 3.2.6. The space L2, .(€;MZ2)2) is the set of all p € L*(Q; M2x2) satisfying:

(i) 8&8%]) € L?(Q;M2X2) for every i, € NU {0},

sym
(ii) there exists a set U CC w U dpw such that p =0 a.e. on w\ U x (—3,3).

We note that functions in Lgo’C(Q; ngxn%) have a smooth dependence on the variable

2’; namely, if p € quc(Q;I\\/JIQXQ), then p(-, z3) € C2°(wUdw; M22) for ae. z3 € ( L 1).

sym sym )

Lemma 3.2.7. Let w € HY (;R3) N KL(Q) and let (u,e,p) € Agkr(w). Then there
exists a sequence of triplets

(u*, ", p") € (H'(%R?) x L2 M30) x L3, (9 MF0)) N Agkr (w)

sym sym
such that

uF —u  weakly* in BD(S), (3.2.28)

ek — e strongly in L?($; Mg;,%), (3.2.29)

p"—p  weakly® in My(QU 9gQ; M252), (3.2.30)

1* 122, = [lpllas, (3.2.31)

as k — +o0.
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Proof. The proof is analogous to [13, Lemma 4.5] and [13, Theorem 4.7]. The only differ-
ence is in the definition of the zeroth order moment of €*, that we detail below. Following
the same notation of [13], we replace & on page 629 with

&= ((p@) * ps, + (Vip; © @) % ps; = (V0 © Vug) * p5, )
j=1

+V0o Z ((¢;Vus + Vjus) * ps,),
j=1

and &> on page 632 with
e = (o ¢5) o Vi1 + @1 sym((€ 0 ¢5)Dps) — p1sym (((Vug © V) o ¢5) Deps)
+ (uz 0 ¢5)VO © Vo1 + 01V © (Deps) " (Vuz o ¢s).
Using this definition, equation (4.38) in [13] is replaced by
el 5 0O Ve +pre+usVer © VO strongly in L*(w; Miyﬁ%)
On page 633 of [13] we replace €’ with

e’ = e — (p1 + p2) (€ + x36) + &1 + &2 + w3(e + ¢2?)

2
+ ) (10 Voo — usV © Vs + z3u3D%00 + 223V 00 © Vus).

a=1

and formula (4.55) on page 634 with

m m m
&= "(gie) o i+ poe+ Y (Vi ©) 0Ty + Vipo @i — Y (V0 © Vug) o 7,
=1 =1 =1

+VOOo Z ((“3V90i) ok + (Vpsus) o Ti,k)) +u3VO © Vg
i=1

By implementing these changes the construction of [13, Lemma 4.5] and [13, Theorem 4.7]
provides the desired approximating sequence. ]

3.3 A Korn-Poincaré inequality on a shallow shell

In this section we prove an ad hoc version of the Korn-Poincaré inequality for shal-
low shells. To this purpose it is useful to express displacements in intrinsic curvilinear
coordinates. More precisely, to any displacement v : 2 — R? we associate the vectorfield
u(h) :  — R3 defined by

u(h) := (DY)T Ryu, (3.3.1)

whose components are the scaled curvilinear coordinates of u with respect to the con-
travariant basis of ¥j,. In particular, from (3.2.3) and (3.3.1) it follows immediately that

Rpu(h) = Fl Ryu. (3.3.2)

In the following proposition we express the strain in terms of the curvilinear coordi-
nates.
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Proposition 3.3.1. Let 0 < h < 1. Let u € V,(Q) and let u(h) be defined by (3.3.1).
Then u(h) € BD(QY) and the following equality holds:

F sym(R, DuR,F, ") F}, = E(h,u(h)), (3.3.3)

where

E(h,u(h))ij == (Rp(sym Du(h))Rp)i; — Ffj(h)uk(h) (3.34)

and the quantities Ffj(h) are given by
_ 1 -
L) =T7(h) = (0a(Fy)Fy iey  Tau(h) = i (h) = 1+ (0a(F) By )is,
1

) (3.3.5)
53(h) == 5(83(F5)F{T)3a7 T35(h) = ﬁ(a?)(Fi?)Fh_T)S?r

Proof. Assume u smooth. Differentiating (3.3.2) yields
(RhDU)ij = (F,;TRhDu(h))ij + aj(F}:T)ik(Rh)klu(h)l.
This implies that

sym(Ry DuRpF,);; = sym(F; T Ry Du(h) Ry Fy Y)ij

1

+3 (8m(Fh_T)ik(Rh)klu(h)l(Rh)mn(Fh_l)nj + 8p(Fh_T)jk(Rh)kv“u(h)r(Rh)PQ(Fh_l)qi)‘

Using the equality
Ff On(F, ") = ~0m(EDE T

direct computations lead to
(K sym(RyDuRyFy, ') Fy),. = sym(RyDu(h)Ry)i
+ %((@(FhT)F{TRh)ik(Rh)U + (3m(FhT)F{TRh)jk(Rh)mi>Uk;(h)-
To deduce (3.3.3) it remains to show that, if we set
215;(h) == (Ou(Fy) ) Fy, " Ri)  (R)ij + (8m(Fi?)F;:TRh)jk(Rh)mi7

then Ffj(h) satisfies (3.3.5). By (3.2.2) and (3.2.3) we have that

1
Ou(Feg) = 0g(Feq), O0a(Fez) = E@g(Fea).
Using these equalities and again (3.2.2), we obtain

209 5(h) = (0s(F)Fy ") 0 + (OB FLT) 5, = 2(08(FD)F,T)

Bo

oo

and
1
" h
The other equalities in (3.3.5) can be proved similarly.

The general case follows by an approximation argument. O

20%,(h) = — (Os(ED)F ) o+ (0a(FDVETT),, = 2(0a(EDE,T)

30"
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Remark 3.3.2. Note that (3.3.4) coincides, up to a scaling, with the quantity considered
in [11, Theorem 1.3.1]. Moreover, the coefficients Ffj(h) are the suitably scaled Christoffel
symbols of ;. In particular, for h = 1 (that is, when R}, is replaced by the identity
matrix and thus, Fj, is equal to D¥;) they exactly coincide with the Christoffel symbols
of ¥p,. Indeed, following the notation of [11, Section 1.2], let ¢; := Fpre; = 0; V), (where e;
is the canonical basis of R3), and let ¢/ := F Tej, so that g; - ¢/ = ;5. Then
Ffj(h) = gk : ajgz',
which is the usual definition of the Christoffel symbols in differential geometry.

In the following lemma we study the dependence of Ffj(h) on the thickness parameter
h.

Lemma 3.3.3. The following expansions hold:
25(h) = h*07 40 0,0 — >33 5,0 + O(hP), (3.3.6)
[op(h) = 020 + O(h?), (3.3.7)
74(h) = —hd2,0 + O(h?), (3.3.8)
53(h) = Tas(h) =0, (3.3.9)
where O(hP) denotes a quantity uniformly bounded by h?, as h — 0.
Proof. Let gl := Fye; and g™ := F, Te;. These definitions, (3.2.2), and (3.3.5) lead to
L%i(h) = g™ - Bagl,

1
Tai(h) = 39" Auglt,

1 (3.3.10)
33(h) = ﬁgh’a - D3gh,

F§3(h) o 339:])}-

1
By direct computations we have that
9o = o+ hdobe3 + hasdavs,, g5 = vs,.

Since gf” M = di;, we immediately deduce that

h,3

g = VS

while by applying Lemma 3.2.1 we obtain
g = eq 4+ hdab ez + O(h?).
Since
vs, = e3 — hd10e; — hdab ex + O(h?),
Oavs, = —hdi,0e1 — hds,0 ez + O(h?),
D2gvs, = —hd,p0 €1 — hds, g0 e2 + O(h?),

we deduce (3.3.6)—(3.3.8) from (3.3.10). Equalities (3.3.9) follow again from (3.3.10) by
observing that ds3g% = 0 and

1
gh’3 . aagg = iaa(ugh -vg,) =0.

This concludes the proof of the lemma. O
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We are ready to prove the announced Korn-Poincaré inequality on a shallow shell.

Theorem 3.3.4. There exist hg > 0 and C > 0, depending on Q and 0,52, such that

[ull 22 + | Br(sym Du) Rpllag, < C (1E(h, w)llag, + lullr2o,0)) (3.3.11)

for every 0 < h < hg and every u € BD((2).

Proof. Assume, by contradiction, that for every n € N there exist h, — 0% and (u") C
BD(Q) such that
[u"lzs + || R, (sym Du™) Ry, ||p, = 1 (3.3.12)

and

1E(hn, w") | ar, + 0" L1 8,0) = O- (3.3.13)
By (3.3.12) the sequence (u") is uniformly bounded in BD(f2); therefore, there exists
u € BD(Q) such that v — u weakly* in BD(Q) and strongly in L'(;R3), up to
subsequences. On the other hand, it follows from (3.3.4) and (3.3.9) that

(R, (sym Du") R, )ap = (sym Du")ag = E(hn, un)as + Lap(hn)uf,

1
(Rp,, (sym Du™ )Ry, )as = h—(sym Du")o3 = E(hp,un)as + Tos(hy)ul,

1
(Rp,, (sym Du" )Ry, )33 = h—2(sym Du")33 = E(hy, up)s3s3-

n

Using (3.3.13), Lemma 3.3.3, and the strong convergence of (u") in L!(€2;R?), we deduce
that
Ry, (sym Du™)Ry,, — sym Du  strongly in My (€; M2%3) (3.3.14)

sym

with (sym Du);3 = 0 and (sym Du)ag = U38359. Thus, v € KL(Q2) and
u" — u  strongly in BD(2). (3.3.15)

Together with (3.3.13), this implies that u = 0 on 94£2.
Let now @ € BD(w) and ug € BH (w) be the Kirchhoff-Love components of u. Since

(sym Da)opg — xgagﬁu;g = U3625(9, (3.3.16)

we obtain that 83 gus = 0. Moreover, the boundary condition v = 0 on 0482 implies that
u — x3Vus = 0 on 0412, hence Vuz = 0 on dyw, and uz = 0 on dyw. By (1.2.3) we deduce
that ug = 0 in w. Thus, sym Du = 0 in w by (3.3.16) and, in turn, sym Du = 0 in .
Since u = 0 on 0412, it follows from (1.2.2) that u = 0 in Q. Since ||u|]|pp = 1 by (3.3.12),
(3.3.14), and (3.3.15), we arrive at a contradiction. O

3.4 TI'-convergence of the static functionals

In this section we study the asymptotic behaviour of minimisers of the rescaled energy
Th, as h tends to 0. We begin with a compactness result for scaled displacements.

Lemma 3.4.1. Let (w") ¢ H*(Q;R?) be such that ||wh||L2(6dQ) < C for every 0 < h < 1.
Let (u") be a sequence in Vi,(Q) such that

| sym(Ry Du" Ry Fyy )| ag, + | Ra(w” — ") © (cof Fy) Ruvaall 11 a,0) < C (3.4.1)
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for every 0 < h < 1. Then there ezists u € K L(2) such that, up to subsequences,
uh = u  strongly in LY(Q;R?) (3.4.2)

and
sym(RhDuthFgl)aﬁ — (Bu)op  weakly* in My(Q), (3.4.3)

as h — 0.

Proof. For every h we consider the vectorfield u”(h) given by the curvilinear coordinates
of u”, defined according to (3.3.1). For simplicity of notation, we write u(h) instead of
ul(h).

By Lemma 3.2.1 the sequence (F},) is uniformly bounded with respect to h. Thus, by
(3.3.3) and (3.4.1) we deduce that

1E(h, u(h))l[m, < C

for every 0 < h < 1. Since [a ©® b| > %\a“b[ for every a,b € R", it follows from (3.4.1)
that

R = (ot Fi) Rivaol di? < ©

0482

for every 0 < h < 1. Moreover,

R
(cof Fy)Ruvonl = 190 5 0| Ryvgg| > €,
| cof F} |

where we used that cof Fj- by Igus uniformly by Lemma 3.2.1. Therefore, we conclude
that
1Bn (0" — ")l L1(9,0) < C-

In particular, we have that |w" _UhHLl(adQ) < C, hence ”uhHLl(adQ) < C for every h small
enough. By Lemma 3.2.1 we can write

0 0 0.6
(DY) 'Ry, =Isx3+ |0 0 020 | +O(h), (3.4.4)
00 O

hence by (3.3.1) we have that ||u(h)|1,9,0 < C for every h.
By applying Theorem 3.3.4 to the sequence (u(h)), we deduce that

[u(h)llLr + [ R (sym Du(h)) Ry lag, < C.

Thus, there exists « € KL(2) such that u(h) — @ weakly™ in BD(Q2) and strongly in
L' (€2;R?), up to subsequences. In particular, we deduce that (3.4.2) holds with u € K L(£2)
defined by

Uy = fLa — 8a9 7]3, us = fL3. (345)

Indeed, by (3.3.1) and (3.4.4) we have that

0
u = (DUR)TRM) T u(h) =u(h) + [0 0 =320 | u(h) + ul, (3.4.6)
0
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where
[ull| 1 < Chlu(h)|| 22 < Ch,

with C independent of h. Passing to the limit in (3.4.6), we obtain (3.4.2) and (3.4.5).

Since Fj, — I3x3 uniformly as h tends to 0, equality (3.3.3) implies that E(h,u(h)) and
sym (R, Du" R, F, ') have the same weak* limit in M, (€; M3x3). In particular, by (3.3.6)
and (3.3.7) we obtain

E(h,u(h))ag = (sym Da)a5 — 113(9350 weakly* in M(£2),
and by (3.4.5) we have

(sym Dt)op — agagﬂe = (sym Du) o + sym(D(uzV0))as — 1@,8259
= (sym Du)op + (VO © Vus)ap
= (Eu)ag.

This proves (3.4.3) and concludes the proof. O

Remark 3.4.2. As a consequence of the continuous embedding of BD(2) in L3/2(Q; R?)
and of the compact embedding of BD(Q) in LP(Q;R3) for every p < %, in Lemma 3.4.1 we
also have that u” — u weakly in L?/?(Q;R3) and u" — w strongly in LP(Q;R3) for every
p <3

The following theorem is the main result of this section. The proof is in the spirit of
I'-convergence.

Theorem 3.4.3. Let (w") C H'(;R3) be such that

[w"|| 29,0y < C for every 0 < h < 1, (3.4.7)
sym(RththFh*l) — 2z strongly in L?(Q; M3X3),

sym

where C > 0 is independent of h and z € LQ(Q;ME;T%). Let (ul, el ph) € An(Q,w") be
a minimiser of Iy. Then there exist w € KL(2) N HY(;R3) and a triplet (u,e,p) €
Acrkr(w) such that, up to subsequences,

wh — w  strongly in H'(Q;R?), (3.4.9)
sym(R, Dw' Ry Fi V) og — (B*w)ap  strongly in L*(R), (3.4.10)
ul — u  strongly in L' (;R3), (3.4.11)
sym(Rp,DuM R Fy V) op — (Eu)as  weakly® in My(S), (3.4.12)
e — Me  strongly in L?(%; Mi;ﬁ;), (3.4.13)
pgﬁ — pap  weakly® in My(QU 040). (3.4.14)
Moreover, (u,e,p) is a minimiser of T and

lim Zp, (u”, €, p") = T(u, e, p). (3.4.15)

h—0

Remark 3.4.4. By the definition (3.2.19) of the operator M convergence (3.4.13) implies,
in particular, that egﬁ — eqp strongly in L?(€).
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Proof of Theorem 3.4.3. The proof is subdivided into four steps. First of all, as a conse-
quence of Lemma 3.2.1, we note that the following expansions hold:

sym(Rp,DvRLF; Y apg = (sym Dv — 950 @ V0)ap + O(R)||v] 51,
sym(R, DvRLF; oz = 3+ ((sym Dv — 050 ® V)3 + O(h?)||v]| 1) , (3.4.16)
sym(Ry DvRpFy, V)33 = 77 (8303(1 4+ O(h?)) + h*Vuz - VO + O(h*)||v]| 1)

for every v € H(Q; R3).
Step 0: Convergence of (w"). In this step we prove (3.4.9) and (3.4.10).

By (3.4.16) and the fact that 030 = 0 we deduce that
| sym(Ry Dw" Ry Fy Y| g2 > || sym Dw” — 83w™ © V0| 2 — O(h?)||w" | 1.

This implies that for A small enough

HwhHL2(adQ) + || sym(Rp Dw" Ry Fy; 1) | 12
> [|w”(| 2 (a,0) + || sym Dw" — dsw™ © V0|12 — O(h?)[|w" ||
> C|w"|| g1, (3.4.17)

where the last estimate follows from a generalised Korn inequality in H' for shallow shells
(see, e.g, [10, Theorem 3.4-1]). By (3.4.7) and (3.4.8) we conclude that the sequence (w")
is uniformly bounded in H'(Q; R3) for h small enough. Thus, there exists w € H!(2;R?)
such that

wh = w  weakly in H'(Q;R3), (3.4.18)

up to subsequences. Convergence (3.4.18) yields

sym Duw" — 830" ® VO — sym Dw — 3w ® VO  weakly in L2(Q; M2X3).

sym

Owing to (3.4.8) and (3.4.16), we also have that (sym Dw" — d5uw" ® V0),5 — 245 and
(sym Dw" — 93w" ® V)3 — 0 strongly in L?(92). Therefore, we deduce that

sym Dw" — d3w™ © VO — sym Dw — 93w ® VO strongly in L*(Q;M323)  (3.4.19)

sym
and (sym Dw — d3w ® V#);3 = 0. Since 030 = 0, this last equality implies that
(sym Dw — 03w ® V)33 = O3ws = 0,
and consequently
(sym Dw — 93w ® V)43 = (sym Dw)qa3 = 0.

In other words, (sym Dw);3 = 0, that is, w € K L(Q). In particular, we have that dsw, =
—0qws, hence J3w © VO = —Vws ©® V0, so that (3.4.16) and (3.4.19) give (3.4.10).

To conclude it remains to show that convergence (3.4.18) is strong. By applying
again [10, Theorem 3.4-1] we obtain

Hwh - wh/HHl

< O(Jw" - wh,||L2(adQ) + || sym Duw" — d5uw" © VO — sym Dw" + 95w © V|| 12)
(3.4.20)
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for every 0 < h,h’ < 1. By (3.4.18) and the compactness of the trace operator we have
that w" — w strongly in L?(9;Q;R3). Thus, by (3.4.19) and (3.4.20) we conclude that
(w") is a Cauchy sequence in H'(€2;R?), hence (3.4.9) holds.

Step 1: Compactness. Since

(w", sym(Ry, Dw" Ry F; 1), 0) € Ap(Q, w™), (3.4.21)
the minimality of (u”, ", p) implies

Tn(ul, e, p™) < T (wh, sym(RththFh_l), 0)<C (3.4.22)

for every 0 < h < 1, where the last inequality is a consequence of (3.2.5), (3.4.8), and
Lemma 3.2.1. Using again Lemma 3.2.1, (3.2.5), and (3.2.8), the bound (3.4.22) yields

le"llz2 + 19" llag, < © (3.4.23)
for every 0 < h < 1. Thus, there exist € € L*(; M2)?) and p € My(Q2U 84Q; M2<3) such
that, up to subsequences,

e ~ & weakly in L*(Q; M353), (3.4.24)
P =P weakly* in M(Q U 9,0 M5). (3.4.25)

We introduce e € L?(Q; Mg;,%) and p € My(Q2U98; Mg;,%) defined by e 1= €43, €i3 := 0,

and pag = Pag, Pi3 := 0, respectively.
Since @ is convex and det Fj, — 1 uniformly, as h — 0, by Lemma 3.2.1, we have

h—0

lim inf / Q(e") det F, dz > / Q(é) dz > Q*(e), (3.4.26)
Q Q

where the last inequality follows from the definition of Q*. Analogously, by the Reshetnyak
Theorem and the definition of H* we deduce

. dp
lim inf H,, (p" 2/ H< —
h—0 n(P") QUOLD d|p|

By (3.2.17) and (3.4.23) we can apply Lemma 3.4.1. Thus, there exists u € KL(2)
such that, up to subsequences,

) dlfl = 7). (3.4.27)

uh = u  strongly in L'(Q;R?), (3.4.28)
sym(Rp,DuM R Fy Vop — (Eu)ap  weakly™ in M(€). (3.4.29)

We claim that (u,e,p) € Agkr(w). Combining (3.4.24), (3.4.25), and (3.4.29), we
deduce that Eu = e+ p in Q.

To conclude it remains to show that p = (w — u) ® vgoH? on 9482. We argue as
in [12, Lemma 2.1]. Since 74 is open in dw, there exists an open set A C R? such that
Ya = ANow. Weset U := (wWUA) x (—%,%) We extend 6 to U in such a way that
9 € C3(U). Consequently, ¥;, € C?(U;R3) and F}, € CY(U;M3*3) for every 0 < h < 1.
Let u"(h) and w"(h) be the vectorfields given by the curvilinear coordinates of u” and w",
defined according to (3.3.1). For simplicity we write u(h) and w(h) instead of u”(h) and

wh(h). By (3.3.1), (3.4.4), and (3.4.9) we have that

w(h) — 1 :=w + w3V strongly in L*(Q;R?). (3.4.30)
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By Proposition 3.3.1, Lemma 3.3.3, and (3.4.8), the sequence (sym Dw(h)) is also strongly
convergent in L?(; Mg?,i) for h small enough. Thus, by the Korn inequality the conver-
gence in (3.4.30) is strong in H'(2;R3). Moreover, we can extend w(h) and @ to U in
such a way that

w(h) = w  weakly in H'(U;R3). (3.4.31)
We now define the triplet (v(h),n(h),q(h)) € BD(U) x L*(U; M%) x My(U; M2x3)
a o(h) = {u(h) in Q, o) = {RglF,?ehFhR,;l in Q,
w(h) inU\Q, R,'E(h,w(h))R;' inU\Q,
and

) RI'FIp'FL R, in QU 0,0,
q(h) =

0 in U\ (QU9.0),
where E(h,w(h)) is defined as in (3.3.4). We have that

(sym Do(h))y; = n(h)ij + a(h)ij + (B Dalp (o ()(By Yy U, (34.32)

Indeed, this equality holds in € and in U \ € as a consequence of (3.2.17), (3.3.3), and
(3.3.4), while on 049 it follows from (3.2.17), (3.3.2), and the definition of the cofactor.
By (3.3.1), (3.4.4), (3.4.28), and (3.4.31) we deduce that

v(h) = v strongly in L'(U;R3), (3.4.33)

where

U+U3V9 in Q,
v =
w in U\ €.

Since (n(h)) is uniformly bounded in LQ(Q;M‘;’;,%) by (3.4.24), Lemma 3.2.1, (3.3.4), and
(3.4.31), we have that there exists € L?(U; M3X3) such that

sym
n(h) —=n  weakly in L*(U;M3;0), (3.4.34)

up to subsequences. Finally, it follows from Lemma 3.2.1 and (3.4.25) that

q(h) = q weakly* in My(U;M3%3), (3.4.35)

sym
where

0 inU\(QUON).
Passing to the limit in (3.4.32) by (3.4.33)—(3.4.35) and Lemma 3.3.3, we obtain

{p in QU 9,9,
q =

symDv =1+ q+v3D?0 in U.
In particular, since W = w 4+ w3V#, the previous equality on 0;€) reads as
p=(w—u+ (w3 —u3)VO) ®vgoH? on I

Since pa3 = 0, vgq - ez = 0 on 0482, and 030 = 0, this implies that ug = w3 on 9,2 and, in
turn, the desired equality.
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Step 2: Existence of a recovery sequence. We show that for every (v,n,q) € Agkr(w)

there exists a sequence of triplets (v, 1", ¢") € Aj,(Q,w") such that

v — v strongly in L'(Q;R?), (3.4.36)
sym(Rp D' Ry Fy M )ap — (Ev)ag  weakly® in My(Q), (3.4.37)
n" — Mn  strongly in L?(;M2x3), (3.4.38)
qgﬁ — qop  weakly™ in M;,(Q2U 04€2), (3.4.39)
Hi(q") = H(a). (3.4.40)
and

lim Z,,(v", 7", ¢") = Z(v,n,q). (3.4.41)

h—0

Owing to Lemma 3.2.7, it is enough to construct an approximating sequence for a triplet

(v,n,q) € (H' (4 R?) x L2 (4 M2)3) x L2, (M%) N Agrer (w). (3.4.42)
Indeed, in the general case one can argue by density as in [13, Theorem 5.4].
Let (v,m,q) be as in (3.4.42). Since q € LQ(Q;MZ’;‘Z), we have that ¢ = 0 on 942 and
v =w on 9;. Let ¢1,po, d3 € L?(0) be such that

mi 2 @1
Mn={n2 n2 ¢2]. (3.4.43)
¢1 b2 P3
As q € Lz(Q;ngX,%), by the measurable selection lemma (see, e.g., [21]) and by the defi-
nition of H* there exist &1, & € L?(2) such that
Q1 qi2 S
H*(q)=H | q21 2 & : (3.4.44)

& & —(qu1+q2)

We approximate the functions ¢; and &, by means of elliptic regularisations, namely for
every h we consider the solutions ¢ € H(Q) and " € H}(Q) of the problems

—hA@h + ¢l =¢;  in Q, —hAEr + € =¢, inQ,
=0 on 012, =0 on 0f2.

Similarly, for every h we define u? € HZ(Q) as the solutions of the problems

—hApl + pl = —23,  in Q, —hApE + b = V(ws —v3) - VO — 233 in Q,
puh =0 on 012, ph =0 on 012,

where z3; are the components of the function z in (3.4.8). The standard theory of elliptic
equations implies that

¢ — ¢;  strongly in L?(Q), (3.4.45)

fg — &, strongly in LZ(Q), (3.4.46)

pul — —23,  strongly in L?(Q), (3.4.47)

ph — V(ws —v3) - VO — 233 strongly in L?(Q), (3.4.48)
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as h — 0, and
_1
IVE |2 + IV 2 + IV uf |l L2 < Ch™> (3.4.49)

for every h. We also introduce the function k" € L?(€; M>*3), defined componentwise as

3
Khp(a'saa) =20 [ (@' 9) + 056" ) + D' ) s,
3
ksg(2', x3) := h2/ (aﬁgbé‘(w', s) + 85u§(m’, s) — Opqu1 (', 8) — Dpgaa(a’, s)) ds,
0
kha == 2h(of + &b + ), ks = h2(dh + ph — qu1 — q22).

We are now in a position to define the recovery sequence. We set
b= vl = o+ 20 [ (O 8) + € ) + (e ) i,
VB = v3 + wh — w3 + h? /0903 ((;S’?f(z’, )+ ph(ax’,s) — qui(a’, s) — qoa(a, s)) ds.
It is straightforward to check that
Dv" = Dv + Duw" — Dw + K"

This leads us to define

0 0 ¢h
" =g+ (0 0 & :
& & —(qu + q2)
n" := sym(Ry(Dv + Dw" — Dw)Ry F};, b)) + sym(Rpk" Ry Fy Y) — ¢
Since ¢f, &0 uh € HL(Q), q € Lgo,c(QSngXn%), and v = w on 9,8, we have that v" = w"
on 9. Hence, it is clear that (v, 7", ¢") € Ap(Q, w").
It follows from (3.4.9) and (3.4.45)-(3.4.48) that v® — v strongly in L2(;R3). In
particular, (3.4.36) holds. By definition of ¢" we immediately deduce (3.4.39). Owing to
(3.4.46), we obtain that

0 0 &1
=g+ [0 0 & strongly in L*(; Mg’;n?;) (3.4.50)
& & —(qu +g2)

Convergence (3.4.50), together with (3.4.44) and Lemma 3.2.1, implies (3.4.40).
We now prove (3.4.38). Since v,w € KL(f2), expansions (3.4.16) imply that

sym(Ry,(Dv — Dw)R,F, Vap = (Ev — E*w)ap + O(h?),
sym(Ry(Dv — Dw)Ry,F; V)as = O(h), (3.4.51)
sym(Ry,(Dv — Dw)RpF; )33 = VO - V(vz — w3) + O(h?).
Thus, by (3.4.8) and (3.4.10) we deduce that
sym(Ry(Dv + Dw" — Dw)RyFy Y ap — (Ev)as  strongly in L2(),

(3.4.52)
sym(Rp,(Dv + Dw" — Dw)R,F M)as — 2a3  strongly in L3(9),
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and
sym(Ry(Dv+Dw" — Dw) Ry Fy Y)33 — 233+ V0-V(v3—ws)  strongly in L*(Q). (3.4.53)
From (3.4.45)—(3.4.49) it follows that
(Rhk"Ry)is — 0 strongly in L?(Q),
(Rhk"Rp)as — 2(da + €a — 230)  strongly in L2(9),
(Rpk"Rp)ss — ¢3 + V(ws — vs) - VO — 233 — 11 — qo2  strongly in L?(€2).
This, together with the uniform convergence F;~ 1 to I3, implies that
sym(ththFgl)w — 0 strongly in L2(Q),
sym(ththFh_l)ag — o +E€q — 230 strongly in L?(Q),
sym(ththFh_l)gg — ¢34+ V(w3 —v3) - VO — 233 — q11 — g2 strongly in L2(€).

Combining the convergences above with (3.4.43), (3.4.50), (3.4.52), and (3.4.53), yields
(3.4.38).
Finally, (3.4.37) follows from (3.4.38) and (3.4.39), while (3.4.41) is a consequence of
(3.2.22), (3.4.38), and (3.4.40).
Bk gh)

Step 3: Conclusion. Let (v,1,q) € Agkr(w). By Step 2 there exists a sequence (v", 1", q
in Ap(Q,w") such that (3.4.36)(3.4.41) hold. Therefore,

Z(v,71,q) > lim T, (0", 0", ¢") > limsup T, (u”, ", p"), (3.4.54)
h—0 h—0

where the last inequality follows from the minimality of (u”, e, p?). On the other hand,
by (3.4.26) and (3.4.27)

lim inf Zp, (u”, ", p") > Z(u, e, p). (3.4.55)
h—0

Combining (3.4.54) and (3.4.55), we conclude that (u, e, p) is a minimiser of Z. Moreover,
by choosing (v,7,q) = (u,e,p) in (3.4.54) we deduce (3.4.15).
It remains to prove (3.4.13). From (3.4.26), (3.4.27), and (3.4.15) it follows that

lim / Q(eh) det Fy, dx = Q*(e).

h—0 Jo

Since det F, — 1 uniformly, as h — 0, this implies that

lim / Q) dz = Q*(e). (3.4.56)
h—0 Jq
On the other hand, by (3.2.22) we have

Q(e" —Me) = Q(e") + Q*(e) — CMe : €.
Therefore, owing to (3.4.24), (3.4.56), and (3.2.21), we get

li —M =0.

By the coercivity (3.2.5) of @ this implies (3.4.13). O
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Remark 3.4.5. In our framework we cannot rely on the abstract theory of evolutionary I'-
convergence for rate-independent systems, developed in [41]. Indeed, this theory consists in
studying separately the I'-limit of the stored-energy functionals and that of the dissipation
potentials, and in coupling them through the construction of a joint recovery sequence.
This technique has been successfully applied, for example, in [34] and in [35], where the
presence of hardening gives rise to an energy functional that is coercive in the L? norm
both with respect to e and p. This approach is not suited to our case, since the elastic
energy is coercive only with respect to the elastic strain e, while the plastic strain p can
be controlled only through the dissipation. For this reason, to identify the correct limiting
energy we studied the I'-convergence of the total energy functional, given by the sum of
the stored energy and of the dissipation distance.

3.5 Convergence of quasistatic evolutions

In this section we focus on the convergence of the quasistatic evolution problems as-
sociated with the functionals Z; and Z.
We fix a time interval [0, 7] with 7" > 0 and we give the following definitions.

Definition 3.5.1. Let 0 < h < 1 and let w" € Lip([0, T]; H'(;R3)). An h-quasistatic
evolution for the boundary datum w” is a function t — (u”(t), e*(t), p(t)) from [0, T] into
Vi () x L2(Q;M2X3) x My(Q U 949 M%) that satisfies the following conditions:

sym

(qs1) global stability: for every t € [0, T] we have that (u”(t),e"(t),p"(t)) € Ap(Q,w"(t))
and

/Q dechdx</Q ) det Fj, dx + Hp(q — p"' (1)) (3.5.1)
for every (v,1,q) € Ap(Q, w(t));

(as2) energy balance: p" € BV ([0, T]; My(2 U 049; M2X3)) and for every ¢ € [0, T]

sym

/Q )) det Fy, dz + Dy (p"; 0, 1)

/Q dechd$—|—/ /(Ce sym(Rthh(s)Rthl)dechdmds.
(3.5.2)

In the formula (3.5.2) the notation Dy (p";0,t) stands for the dissipation of p” in the
interval [0, ], defined as

N
Dn(u;a,b) == sup{Z’Hh(,u(sj) —u(sj—1)): a=s9<s51<---<sy=b, N€ N}
j=1

for every u € BV ([0, T]; My(Q U 9;Q; M2%3)) and every 0 < a < b < T.

sym

Definition 3.5.2. Let w € Lip([0,7]; H'(Q; R})NKL()). A reduced quasistatic evolution
for the boundary datum w is a function ¢ — (u(t),e(t),p(t)) from [0,7T] into BD(f2) x
L2(; M2X2) x My(Q U 0492; M2X2) that satisfies the following conditions:

sym sym
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(gs1)* reduced global stability: for every t € [0,T] we have that

(u(t), e(t), p(t)) € Agrer(w(t))

and

Q*(e(t)) < Q"(n) + H'(q — p(t)) (3.5.3)
for every (v,m,q) € Agrr(w(t));

(qs2)* reduced energy balance: p € BV ([0, T]; My(Q U 9;Q; M2%2)) and for every t € [0,T]

sym
0% (e(1)) + D*(p; 0,1) = O*(e(0)) + /0 /Q Cre(s): BYis)deds.  (3.5.4)

In the formula (3.5.4) the notation D*(p;0,t) stands for the reduced dissipation of p in
the interval [0, t], defined as

N
D*(u;a,b) :=sup { ZH*(,U,(S]') —u(sj—1)): a=s0<s1<---<sy=b, N¢ N}
j=1
for every u € BV ([0, T]; My(Q U 9;Q; M2%2)) and every 0 < a < b < T.

sym

In the following we will show the convergence of a sequence of h-quasistatic evolutions
to a reduced quasistatic evolution, as h — 0. This will be proved under the following
assumptions on the boundary and initial data.

Boundary displacements.

We consider a sequence of boundary displacements
(wh) c Lip([0, T); H'(Q; R?)) (3.5.5)
such that for every 0 < h <« 1
[0 [0 (o772 (0,083 + | sym(Ru Dw” R Fy )l oo (o,77:02) < C (3.5.6)

with a constant C' > 0, independent of h. Furthermore, we assume that for every ¢t € [0, T

sym (R, Dw(t)RpF; ') — 2(t) strongly in L2 M3X3), (3.5.7)
sym(Rp D" (t)RpFy ') — 2(t)  strongly in L?(; M23) (3.5.8)

for some z € Lip([0, T7; L2(Q;M3X3))_

sym
Initial data.
Let (ult,el, ph) € Ap(Q,w"(0)) such that

/ Q(eh) det Fy, dx < / Q(n) det Fy, dz + Hp,(q — ph) (3.5.9)
Q Q

for every (v,n,q) € Ap(Q,w"(0)). Moreover, we assume that

el — &y strongly in L?(Q; M2X3) (3.5.10)

sym
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for some &y € L2(;M3X3) and for every 0 < h < 1

sym
IpGllas, < C (3.5.11)

for some constant C' > 0, independent of h.
We are now in a position to state the main result of this paper.

Theorem 3.5.3. Assume (3.5.5)(3.5.11). For every 0 < h < 1 let
t = (u(t), " (1), p"(1))

be an h-quasistatic evolution for the boundary datum w" such that (u™(0),e"(0),p"(0)) =
(ul, el pl). Then there exist w € Lip([0, T]; H*(Q; R3)NK L(Q)) and a reduced quasistatic
evolution

(u,e,p) € Lip ([0,T]; BD(Q) x L*(Q;M22) x My(QU 949 M2<2))

sym sym

for the boundary datum w such that, up to subsequences,

wh(t) — w(t)  strongly in H'(Q;R3), (3.5.12)

ul(t) — u(t)  strongly in L'(S;R3), (3.5.13)
sym(Ry Dul(t) Ry Fy M ap — (Eu(t))ag  weakly* in My(S), (3.5.14)
e"(t) — Me(t)  strongly in L*(Q; M2X3), (3.5.15)

pgﬁ(t) — pag(t)  weakly* in My(QU 0482), (3.5.16)

as h — 0, for every t € [0,T].

Remark 3.5.4. Given a boundary datum w”" and a triplet (u},el ph) € A, (Q,w"(0))
satisfying (3.5.9), the existence of an h-quasistatic evolution ¢ — (u”(t), e’ (t), p"(t)) with
boundary datum w”" and initial condition (u"(0),e"(0),p"(0)) = (ul, ek, ph) follows from
[12, Theorem 4.5]. In [12] this result is proven for 92 of class C?, but, as observed in [22],
Lipschitz regularity of the boundary is sufficient in absence of external forces. Furthermore,
since the problem is rate-independent, one can always assume the data to be Lipschitz

continuous in time (and not only absolutely continuous), up to a time scaling.

For the proof of Theorem 3.5.3 we will need some preliminary results. The first one is
a characterisation of the global stability condition (qs1)* of the reduced problem.

Lemma 3.5.5. Let w € H'(Q;R3) N KL(Q) and let (u,e,p) € Agxr(w). The following
conditions are equivalent:

(a) Q*(e) < Q*(n) + H*(q—p)  for every (v,n,q) € Agkr(w);

(b) —H*(q) < / Ce:ndx  for every (v,n,q) € Agkr(0).
Q

Proof. Assume (a) and let (v,7,q) € Agxr(0). For every € > 0 we have that (u +ev,e +
en,p+¢eq) € Agkr(w), therefore

Q*(e) < Q*(e+en) + H*(gq).

Using the positive homogeneity of H*, dividing by e and sending ¢ to 0, we get (b).
Conversely, (b) implies (a) by convexity of Q* and H*. dJ
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Arguing in the same way as in the previous lemma, one can prove the following char-
acterisation of the global stability condition (gsl) of the h-quasistatic evolution problem.

Lemma 3.5.6. Let 0 < h < 1, let w € H'(Q;R?), and let (u,e,p) € Ax(Q,w). The
following conditions are equivalent:

(a) /QQ(e) det F, dx < /QQ(n) det Fj,dx + Hp(q —p)  for every (v,n,q) € Ap(Q,w);

(b) —Hp(q) < /Q(Ce :ndet Fpdx  for every (v,n,q) € Ap(2,0).

The next lemma concerns a variant of the Gronwall inequality.

Lemma 3.5.7. Let ¢, : [0,T] — [0, +0o0) be such that ¢ € L°°(0,T) and ¢ € L'(0,T).
Assume that

t
o7 < [ o)t ds
for every t € [0,T]. Then
1t
o) < 5 [ o) as
for every t € [0,T].
Proof. We define
t
P = [ otopits) ds

for every t € [0,7]. Thus, F € AC([0,T]) and by assumption ¢(t)?> < F(t) for every
t € [0,T]. Therefore,
F/(t) = o(t)(t) < F(1)! /(1)

for a.e. t € [0, T]. This leads to

POY2 < ;/0 () ds

for every t € [0, T, which implies the thesis by using the assumption again. O
We have now all the ingredients to prove Theorem 3.5.3.

Proof of Theorem 8.5.3. The proof is split into five steps.

Step 0: Convergence of w". Hypothesis (3.5.6) and estimate (3.4.17) ensure that the
sequences (w”(t)) and (w"(t)) are uniformly bounded with respect to h in H'(Q;R3),
with a constant independent of ¢ € [0,T7], that is,

HwhHWLOO([O,T];Hl) <C

for every 0 < h < 1. By the Ascoli-Arzeld Theorem there exist w € Lip([0, T]; H'(2; R?))
and a subsequence (w"), not relabeled, such that

w'(t) = w(t) weakly in H'(Q;R?),
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for every ¢t € [0,7]. Arguing as in Step 0 of the proof of Theorem 3.4.3, we infer that
w(t) € KL(Q) and the above convergence is strong, namely (3.5.12) holds. Moreover,

sym(Rthh(t)Rthl)ag — (E*w(t))ap  strongly in L*(Q) (3.5.17)
for every ¢t € [0,T]. In particular, by (3.5.7) we have that

zap(t) = (E*w(t))as- (3.5.18)

Step 1: Compactness estimates. We claim that there exists C' > 0, independent of h, such
that

le"(t2) = e"(t) |2 < Clta — ta| || sym(Rp D" Ry Fy Y| Lo o,y (3:5.19)
Ip"(t2) = " (t) s, < Clta — ta] || sym(Rp D" Ry V) pooo,rysr2) - (3.5.20)

for every t1,ty € [0,7] and every 0 < h < 1.
From (3.5.2), (3.2.5), (3.2.8), Lemma 3.2.1, and the Holder inequality it follows that

(ac + O())[le" (72 + (rx + OB*) " (8) = plas,

t
< (Bc+ O(hQ))/O e ()1l 22 | sym(Rn D" (s) Ru Fy, 1) 2 ds + (B + O(h?)) lleg |7z
Owing to (3.5.6), (3.5.10), (3.5.11), and the Cauchy inequality, we deduce that

sup [l (t)|lr2 + sup [Ip"(t)llag, < C (3.5.21)
te[0,7) t€[0,T]

for every h sufficiently small.
We now use condition (gsl) at time ¢;. Let

v = uh(tg) — uh(tl) — wh(tg) + wh(tl),
n = e"(ta) — "(t1) — sym(Rp Dw" (t2) R Fy, ) + sym(Ry Dw" (1) Ry Fy 1),
q=p"(t2) — p"(tr).

Since (v,7,q) € Ap(£,0), by Lemma 3.5.6 we have that

~

- / Ce(t1) : (eM(t2) — (1)) det By da
Q
+/ Cel(t) : (sym(Rthh(tz)RhFl;l) - Sym(Rthh(tl)Rthl)) det F}, dx
Q

< Hu("(t2) = p" (1) < Du(p"ita,ta),

where the last inequality is an immediate consequence of the definition of Dy. Using the
previous inequality in the energy balance (3.5.2) written at times ¢; and to, we get

/QQ(eh(tg))dechdx—/QQ(eh(tl))dechda:—/Q(Ceh(tl) (e (t2) — (1)) det By da

1)
< / / C (eh(s) - eh(tl)) : Sym(Rthh(s)RhFh_l) det F}, dx ds.
t1 Q
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We observe that the left-hand side of the previous inequality is exactly
/ QM (t) — e (11)) det F) da.
Q
Thus, from (3.2.5), (3.2.6), Lemma 3.2.1, and the Holder inequality it follows that

(ac + O(h?))lle" (t2) — " (t1) 7

< (26c + O(hZ))/ 2 le” (s) = €"(¢1) | 2 || sym(Rp D" (s) Rp Fy, 1) | 2 ds.

t1

By Lemma 3.5.7 we deduce that
t2
e (t2) — " (t1)[|2 < C/ I sym(Ry D" (s) Ru 1) | 2 ds,
t1
hence (3.5.19).

Using again the energy balance (3.5.2) at times ¢; and t9, together with (3.2.8) and
Lemma 3.2.1, we obtain

(ric + O(W) 1" (t2) = p"(t1) |1as,
< /Q(eh(tl))dechdx—/QQ(eh(tg))dechdx

to
/ / Ce"(s) : sym(R, D" (s) R, Fy ') det Fy, dx ds
t1

IN

C sup ||eh<t>||Lz( / | sym(Rn D (s) Ry )l 2 ds + |l e (t2) — € (#1)l] 2 )
t€[0,T] t1

VAN

Clta — t1] [l sym(Ry D" Ry Fyy )| oo (jo,7352)

where the last inequality follows from (3.5.21) and (3.5.19), and C' > 0 is a constant
independent of h. This proves (3.5.20) and concludes Step 1.

Step 2: Reduced kinematic admissibility. By (3.5.6), (3.5.19), and (3.5.20) we can apply
the Ascoli-Arzela Theorem to the sequences (¢”) and (p) and deduce the existence of
é € Lip([0,T); L2(Q;M2%3)) and p € Lip([0,T]; Mp(Q U 949; M%?)) such that, up to

sym

subsequences,
eh(t) — é(t) weakly in L(€; M3x3), (3.5.22)
p'(t) = p(t)  weakly* in My(Q U 940; M%) (3.5.23)
for every t € [0,T]. We introduce e € Lip([0,T]; L*(Q; M2x3)) and p € Lip([0, T]; My(2 U
0aQ; M2)%)) defined by eqs(t) := €qp(t), eis(t) := 0 for every ¢ € [0,T], and pag(t) :=

Pap(t), pi(t) := 0 for every t € [0, T, respectively.

Since (u"(t),e(t),p"(t)) € An(Q;w"(t)), and owing to (3.5.6) and (3.5.21), we can
apply Lemma 3 4.1 and infer that for every ¢ € [0,T] there exists u(t) € KL(2) and a
subsequence /i (t), possibly depending on ¢, such that

uli(t) — u(t) strongly in L'(€;R3), (3.5.24)
sym (R, Duli () Ry Fy 1)) ap — (Bu(t))ap  weakly™ in M(€). (3.5.25)
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Furthermore, arguing as in Step 1 of the proof of Theorem 3.4.3, and using (3.5.22) and
(3.5.23), we infer that (u(t),e(t),p(t)) € Agxr(w(t)). Now we want to prove that wu(t)
is uniquely determined. Assume that there exist ¢ € [0, 7] and two subsequences (u" (t))
and (u3(t)) with two limits w1 (¢) and ug(t). We set z(t) := w1 (£) — ua(t). Since

(u1(t), e(t), p(t)), (ua(t), e(t), p(t)) € Agrr(w(t)),
we have that z(t) € KL(Q) and
E*2(t)=0in Q, z(t) =0 on ;0.
Hence, we have
sym DZ(t) + Vz3(t) © VO = x3D?23(t)  in Q. (3.5.26)

Thus, D?23(t) = 0 in © and the boundary condition z(t) — z3Vz23(t) = 0 on 949 gives
V2z3(t) = 0 on dyw and z3(t) = 0 on Jyw. By (1.2.3) we deduce that z3(t) = 0 in w. Hence,
sym DZ(t) = 0 in w by (3.5.26) and, in turn, sym Dz(¢) = 0 in Q. Since z(t) = 0 on 042,
it follows from (1.2.2) that z(t) = 0 in Q. This proves that u(¢) is uniquely determined,
hence convergences (3.5.24) and (3.5.25) hold for the whole sequence. Thus, (3.5.13) and
(3.5.14) are proved.

It remains to check that u € Lip([0,7]; BD(Q2)). Since e,p, and w are Lipschitz
continuous, by kinematic admissibility we infer that

(u, Bu) € Lip([0, T]; L' (048 R?) x My(Q; M2X2)).

sym
Now let us consider the first order moments of u and Eu. One can prove that
1E*u(®)llas, < ClEw®agy,  [[a(t)llzr < Cllut)lls,
with C' > 0. These estimates, together with the relations @i, (t) = —9aus(t) and E*u(t) =
—D?us(t), imply that
(us, Vug, D?u3) € Lip([0, T]; L' (8492) x L' (8492; R?) x My(; M2y2))

sym
and, in turn, owing to (1.2.3), that usz € Lip([0,T]; BH (w)). It follows now from (3.5.26)
that sym Du € Lip([0,T]; BD(w)). Therefore it is a consequence of (1.2.2) that

u € Lip([0,T]; BD(2)).

The previous arguments, together with (3.5.10) and (3.5.11), also prove that, up to sub-
sequences,

ul — ug  strongly in L'(Q;R?),
(sym(RyDub R Fy V) as — (Bug)ap  weakly™ in My(Q),
(ef)ap — (e0)ap  strongly in L*(9),
(Ph)ap = (Po)as  weakly™ in Mjy(),
for some (ug, eg,po) € A (w(0)). Since (u(0),e"(0),p"(0)) = (ul,elt, pl), we have that
(u(0),€(0), p(0)) = (uo, €0, po)-

Step 3: Reduced global stability. We prove (3.5.3). Let t € [0,7]. By Lemma 3.5.5
condition (3.5.3) at time ¢ is equivalent to

q) < / C*e(t) : pdx  for every (v,n,q) € Ackr(0). (3.5.27)
Q
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Let (v,7n,q) € Agkr(0). By Step 2 in the proof of Theorem 3.4.3 there exists a sequence
(" ", ¢") € An(Q,0) such that

n" — Mn  strongly in L2(Q;M323), (3.5.28)

sym

Ha(q") = H*(q)- (3.5.29)

By Lemma 3.5.6 and (3.5.1) at time ¢ we have that
—Hn(q / (Ce 77h det F}, dx

for every 0 < h < 1. By (3.5.22), (3.5.28), and (3.5.29) we can pass to the limit in the
previous estimate, as h tends to 0, and deduce that

—H*( /(Ce :Mndx  for every (v,m,q) € Agxr(0).

Since Cé(t) : Mn = CMe(t) : Mn = C*e(t) : n by (3.2.24), this inequality reduces to
(3.5.27).
Step 4: Identification of the limiting elastic strain. We now prove that é(t) = Me(t) for
every t € [0,T].

Let t € [0,T]. For every ¢ € H'(£;R3) with ¢ = 0 on 949 we consider the triplets
(£, isym(Rth/JRhFh_l), 0) as test functions in condition (b) of Lemma 3.5.5 at time ¢.
This leads to

/ (Ce :sym(Rp, Dy Ry Fy- Ddet Fj,dz =0

for every 0 < h < 1. Let (a,b) C (—%,1) and let U C w be an open set. Let (£,) C
C’l([—g, 1)) and (\,) € Cl(w) be sequences such that ¢, — X(a,p) Strongly in L*(— 1.3
and \! — \;xp strongly in L*(w) for every i = 1,2,3, as n — oo.
We define
2hAL (2")0, (23)
ol (x) = [ 2hN2 (/)0 (3) | . (3.5.30)
R2X\3 (/)0 (3)
Since ¢! € HY(Q;R?) and ¢! = 0 on 942, we have
/ Cel'(t) : sym RhngnRhF Y det Fy, dz = 0. (3.5.31)

Using that F,;l = I3x3 4+ O(h) by Lemma 3.2.1, we obtain that
sym(Ry DL Ry F; Y ap = O(h),  sym(RpDé!RLE, )iz = \otl, + O(h).

These expansions, together with (3.5.22) and the uniform convergence of det Fj, to 1, allow
us to pass to the limit in (3.5.31), first as h — 0, and then, as n — oco. This yields

0 0 XN\
/ Ce(t): | 0 0 X| dx=0.
Ux(a,b) A A2 A3

Since the sets (a,b) and U are arbitrary, we conclude from (3.2.20) that é(¢) = Me(t) a.e.
in Q. In particular, we have that ey = Meg, where € is the limit in (3.5.10).
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Step 5: Reduced energy balance. The lower semicontinuity of @* and D*, together with
(3.5.22) and (3.5.23), imply that

Q*(e(t)) < lim mf/ Q(e"(t)) det Fy, du,
h=0 (3.5.32)
D*(p; 0,t) < liminf Dy(p";0,1)
h—0
for every t € [0,T]. Passing to the limit in the energy balance (3.5.2) yields
Q*(e(t)) + D*(p; 0,1)
< limsup / Q(e"(0)) det Fy, da + / / Ce"(s) : sym(R, D" (s) Ry Fy b) det Fy, da ds}
h—0

= /QeodaH—//(Ce : Z2(s) dx ds,

where the second equality is a consequence of (3.5.8), (3.5.6), (3.5.10), (3.5.21), and the
Dominated Convergence Theorem. By Step 4 and (3.5.18) we conclude that

Q" (e(t)) + D*(p; 0,1) < Q*(ep) //@ ) Ei(s) da ds.

As it is standard in the variational theory for rate-independent processes, the converse en-
ergy inequality follows from the minimality condition (qsl*) (see, e.g., [39, Theorem 4.4]
r [12, Theorem 4.7]). We have thus proved that t — (u(t),e(t),p(t)) is a reduced qua-
sistatic evolution.
To conclude the proof it remains to show the strong convergence of e"(t) to Me(t) for
every t € [0,T]. Since we have showed that the right-hand side of (3.5.2) converges to the
right-hand side of (3.5.4), we have that

lim /Q )) det Fy da+ Dy (p:0,1) | = Q*(e(1) + D" (p:0,1)

for every ¢ € [0,T]. Thus, by (3.5.32) and Lemma 3.2.1 we deduce that

—hm/Q dechdx—hm/Qe ) dx

h—0
e(t)) :/QQ(Me(t))dx

convergence (3.5.15) follows from (3.5.22), Step 4, and the coercivity (3.2.5) of . The
proof of Theorem 3.5.3 is concluded. O

Since

3.5.1 Characterisation of reduced quasistatic evolutions in rate form

We conclude this section with a characterisation of reduced quasistatic evolutions.
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Stress-strain duality

In the framework of the reduced problem we introduce a notion of duality between
elastic stresses and plastic strains. Here we follow [13, Section 7].
We define the set X(£2) of admissible stresses as
2(Q) == {o € L®(Q;MZ2) : dive € L*(w;R?), divdive € L*(w)}.
For every o € X(2) we can define the trace [6vs,] € L (0w;R?) of its zeroth order
moment normal component as

([ovaw], ) = / & : sym D1 dm'+/div5~wdx’ (3.5.33)

w w

for every 1 € Whl(w;R?). Note that, since & € Loo(w;MEqu%) and W1l (w;R?) embeds
into L?(w;R?), all terms on the right-hand side of (3.5.33) are well defined.

Let T(W?'(w)) be the space of traces of functions in W2!(w) and let (T(W?!(w)))’
be its dual space. For every o € 3(£2) we can define the traces by(6) € (T(W?!(w)))" and

b1(6) € L>°(0w) of its first order moment as
R L O0Y 20 T
—(bo(6), ¥y + (b1 (), %> = [ 6:D*Ydx' — | Ydivdivedr (3.5.34)

for every 1 € W2!(w). Note that the right-hand side of (3.5.34) is well defined since
6 € L®(w;M2X2). If 6 € C?%(w,M2X2), one can prove that

sym sym

bo(6) = div 6 - v, (6Tow * Vow)

+ 0Toe,

bl(&) = &V&u * Vow,

where 7y, is a unit tangent vector to dw (see [16, Théoréme 2.3]).

Let (h,mg,m1) € L®(0w;R?) x T(W?1(w)))" x L>®(dw). Since [Gvy,,] € L (0w; R?),
the expressions [Gvg,] = h on Opw and b1(6) = m; on J,w have a clear meaning. As for
bo(5), we say that by(6) = mg on dpw if (bo(5) — mo,1b) = 0 for every ¥ € W(w) with
¥ =0 on Jgw.

We also define the space of admissible plastic strains I15,0(£2) as the set of all mea-
sures p € My(Q U 048 M2)7%) for which there exists (u,e,w) € BD(Q) x L*(Q;M22) x
(HY(;R3) N KL(Q)) such that (u,e,p) € Agkr(w).

For every o € () and £ € BD(w) we define the distribution [¢ : sym D¢] on w as

(7 : sym DE], @) :z—/cpdiv&-fdx'—/ : (Vpo&)da

for every ¢ € C2°(w). It follows from [30, Theorem 3.2] that [7 : sym D¢] € My(w) and its
variation satisfies
[+ sym D€ < ]~ sym DE| i .

Given o € X(2) and p € II5,0(€2), we define the measure [& : p] € Mj(w U Oqw) as

(3.5.35)

o [0:symDul+6: (VOO Vug)—c:e inw,
[0:p] =

[6vaw] - (w0 — @) H! on Jqw,
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where (u,e,w) € BD() x L*(Q;M2%) x (H'(Q;R?) N KL(Q)) are such that (u,e,p) €
Acrr(w). Note that since Vug € BV (w;R?) and BV (w; R?) embeds into L?(w;R?), the
term & : (VO©® Vug) is in L1(Q). Moreover, definition (3.5.35) is independent of the choice
of (u,e,w).

For every o € %(Q) and v € BH(w) we define the distribution [6 : D?v] on w as

([6 : D*v),9) := / Yo divdivé dr’ — 2/ 6: (Voo V) da' — / v6 : D*) da’
for every ¢ € C°(w). From [19, Proposition 2.1] it follows that [6 : D?v] € My(w) and its
variation satisfies
|6 : D*]| < ||6||p~|D?*v| in w.

Given o € () and p € II5,0(€2), we define the measure [6 : p| € My(w U Oqw) as

—[6:D*ug] —6:é inw,
6] = B — ws) (3.5.36)

bi1(0) o H! on O,

where (u,e,w) € BD(Q) x L?(;M22) x (H'(€;R?) N KL()) are such that (u,e,p) €
Ackr(w). Note that definition (3.5.36) is independent of the choice of (u, e, w).
We are now in a position to define the duality between ¥(€2) and II5,o(€2). For every

o € X(Q) and p € Ip,a(Q2) we define the measure [0 : p|* € My(2U 942) as

1
o:p* =[F:p L +=[6:p@L —0, €.

12
We also introduce the duality pairings
(,p) :== [0 : pl(wU dgw), (6,p) := [0 : pl(w U dqw)
and )
(o,p)* :=[o:p]"(QUIN) = (7,p) + E(&,ﬁ) - / ol :eqdr. (3.5.37)
Q

The next two results concern some useful properties of the stress-strain duality. We
first show that the duality satisfies an integration by parts formula.

Proposition 3.5.8. Let 0 € X(Q), w € HY(QR3) N KL(Q), and (u,e,p) € Ackr(w).
Then

/ @d[a:p]*+/g00:(e—E*w)daj
QUILO Q

= —/wa:(Vgo@(u—w))da:’—/wdivo-cp(u—w)da:/—i-/ [Gva0] - (@ — w) dH?

Onw

1 1
+ 1 / o (ug — wg)Dzap dx’ + 5 / 6: (Vo ® (Vug — Vws)) dr’

Opw

- /(U3 —ws3)a : (Vi ® V) dz' + / o(uz — w3)[Gva,) - VO dH!
1

(bo(6), plus — ws)) — — /a b (6) 2P = 19))

12 g,

for every p € C?(w).
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Proof. The proof follows from [14, Proposition 4] by observing that

/ wdlo :p]* = / wdlo: (p— V0O Vus)|, + / 0o : (VO Vws) da’
QUOQ QUOQ w

+ / 05 : (VOO V(uz — ws)) da',
where [0 : p|, is the notion of duality introduced in [13,14]. Moreover, by (3.5.33) we have

/ 05+ (VOO V(ug — ws)) da’

£~

o : sym D(p(ug — w3) V) dx' — /(U3 —ws3)5 : (Vo © V) da'
o(uz — w3)d : D0 da’

o(uz — ws)divae - VO da'’ —i—/ o(uz — w3)[Gva,) - VO dH!

Onw

Il
E\&\E\

(ug —w3)a : (Vo ® V) dr' — / ©(us — ws)d : D6 da’,

w

where we used that ¢(us — w3)V6 € BH(w;R?), hence p(ug — w3)VH € Whi(w;R?) and
ug = ws on Jgw by Proposition 3.2.5. ]

The next lemma is a characterisation of the dissipation potential H* in terms of the
duality.

Lemma 3.5.9. Let p € llp,q(?). Then the following equalities hold:
H*(p) = sup{{o,p)" : 0 € X(Q)NK*(Q)} =sup{(o,p)" : 0 € O(Q)}, (3.5.38)

where
K*(Q) = {0 € L*(MZ2): o(zx) € K* for a.e. 7 € Q}

sym

and O(Q) is the set of all o € X£(Q) NK*() such that [ovg,] = 0 on Opw and by(6) =
b1(6) =0 on Opw.

Proof. Let ' := (8nw X (—%, %)) (w X {i }) From [51, Chapter II, Section 4] it follows
that

W =swwd [ oidpsoe CUEMERD 0 @), s o0 =0
< sup{{(o,p)" : 0 € O(Q)}
<sup{(o,p)* : 0 € (Q) NKL*(Q)}.

The converse inequality can be proved as in [13, Proposition 7.8] by an approximation
argument, where the density result is provided in our framework by Lemma 3.2.7. ]

Now we are ready to state and prove the main result of this section.

Theorem 3.5.10. Let w € Lip([0,T]; HX(Q;R3) N KL(Q)). Let t — (u(t),e(t),p(t)) be
a map from [0, T] into KL(Y) x L?($; szﬁ%) X Mp(Q U OdQ;MEyXT%). Let o(t) := C*e(t).
Then the following conditions are equivalent:
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(a) t— (u(t),e(t),p(t)) is a reduced quasistatic evolution for the boundary datum w;
(b) t— (u(t),e(t),p(t)) is Lipschitz continuous and
(b1) for every t € [0,T] we have (u(t),e(t),
diva(t) = 0 inw and Ldivdive(t) + o(t
(b2) for a.e. t € [0,T] there holds
H(p(1)) = (o(t), p(£))"-

Proof. Arguing as in [12, Theorem 5.2] one can prove that every reduced quasistatic evo-
lution is Lipschitz continuous.

We first prove the equivalence between (qs1*) and (bl). Let t € [0,7]. By Lemma 3.5.5
we have to show that (bl) is equivalent to the following condition:

—H*(q) < / o(t) :mdx  for every (v,m,q) € Ackr(0). (3.5.39)
Q

Assume (3.5.39). Let B C Q2 be a Borel set and let xp be its characteristic function. Let
€ € M2X2 and let 1 := xg€. By choosing (0,71, —1) € Agxr(0) as test function in (3.5.39),

sym
we have that

o(t,r): £ < H*() forae. x€ B.

Since B is arbitrary, we conclude that o(t) € K*(Q).
Let now v € H'(Q;R3) N KL(Q) be such that v = 0 on J4f. Since (+v,+Ewv,0) €
Ack1(0), equation (3.5.39) implies

/ o(t): Bvdr =0 (3.5.40)
Q

for every v € HY(Q;R3) N KL(Q2) with v = 0 on 9;Q. By choosing v = 1,6, with
Y € HY(w;R?) and ¥ = 0 on d4w in (3.5.40), we deduce that

/ a(t) :sym Dy dx’ =0

for every ¢ € H'(w;R?), ¢ = 0 on Jyw. Since this holds, in particular, for every ¢ €
C(w; R?), we have
diva(t) =0 in w. (3.5.41)

Moreover, by [13, Lemma 7.10-(i)] we obtain
[G(t)vow]) =0 on Jhw. (3.5.42)

We now choose v in (3.5.40) of the form v = pes, with ¢ € H?(w), ¢ =0 and Vy = 0
on Jyw. This leads to

/ a(t) : (Voo Vo) da' — 112/ 6(t) : D*pda’ = 0.
By (3.5.41), (3.5.42), and (3.5.33) we obtain
/5(25) (VO o Vy)dr = / a(t) : V(pVo)dr' — / wa(t) : D60 da’

= —/ ©a(t) : D*0dd’.
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Thus, we deduce that

1
/ ©a(t) : D*0dx’ + T / 6(t) : D*pdx’ =0

for every ¢ € H?(w), ¢ = 0 and Vi = 0 on dyw. Since this holds, in particular, for every
¢ € CX(w), we have

1
a(t) : D?0 + Ediv divég(t) =0 in w.

Moreover, by [13, Lemma 7.10-(ii)] we obtain that by(6) = b1(6) = 0 on d,w. In particular,
o(t) € ©(f) and (bl) holds.

Assume now (bl) and let (v,n,q) € Agxr(0). Applying Proposition 3.5.8 to (v,n,q)
and ¢ =1 yields

(o(t),q)" = — /Q o(t) : nds.

Since o € ©(Q), we deduce (3.5.39) by Lemma 3.5.9.
We now show, that if (b1) holds, then (qs2*) and (b2) are equivalent. Assume (bl).
Since p is Lipschitz continuous, [12, Theorem 7.1] guarantees that

D*(p;0,t) = /0 W (p(s)) ds (3.5.43)

for every t € [0,7]. Moreover, using Lemma 3.2.2 one can prove that (u(t),é(t),p(t)) €

Ackr(w(t)) for a.e. t € [0,T]. Applying Proposition 3.5.8 to (u(t),é(t),p(t)) and ¢ =1
yields

(o(t),p(t))* = /Qa(t) c (E*w(t) — é(t)) da. (3.5.44)

Differentiation of (qs2*) with respect to time, together with (3.5.43) and (3.5.44), yields

(b2), and conversely, integration of (b2) with respect to time yields (gs2*). O

Remark 3.5.11. Observe that, in contrast with the plate model deduced in [13], the equilib-
rium equations div &(t) = 0 and 5divdivé(¢) +a(t) : D?6 = 0 are coupled. In particular,
in the case of plates one can show that the reduced quasistatic evolution problem can be
written in the two-dimensional domain w, when initial and boundary data are “horizon-
tal”, [13, Proposition 7.6]. This result is in general false for a shallow shell with 6 # 0.
We also underline that, as in the case of plates, the reduced problem is genuinely three-
dimensional. Indeed, in general, the stress component o, (¢), which has a non trivial
dependence on 3, is different from 0 (for an explicit example see, e.g., [14, Section 5]).
From a mechanical point of view, this is due to the plastic response of the material, since
the location of the plastic zone (that is, the region where o(t) € 9K*) may depend also
on the thickness variable z3.

3.6 Applied loads

In this section we show that Theorem 3.5.3 still holds when the shallow shell is sub-
jected to applied loads. We consider a body force of density

fn € Lip([0,T]; L*(Sh; R?))
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and a surface force of density
gn € Lip([0, T1; L= (9, 31; R?)),
where
8n2h = \Ilh(ﬁnw X (—%, %))

We also set
0%, = Up(wx {—3}), 0% =Wy (wx {3}).

For every t € [0,T] we introduce the functional L£;(t) € (BD(Xp))’, defined as
(Ln(t),0) = | falt)-vdo + / gn(t) - v dH?
Sh nSh

for every v € BD(3,). We assume the following safe-load condition: there exist a function
pn € Lip([0,T]; L*(Xp; M2)2)), with (pn)p € Lip([0,T]; C(En; M2y3)), and a constant
a > 0 such that
—div pp(t) = fu(t) in Xy,
pr(t)vos, = gn(t) on 03, pr(t)ves, =0 on 0¥, U 82;, (3.6.1)
(pn(t))p +E§ € K

for every ¢ € M3 with [¢] < a.

Remark 3.6.1. As proved in [12], conditions (3.6.1) are crucial to guarantee the existence
of a quasistatic evolution t — (up(t), en(t), pr(t)) in presence of nonzero loads. Note that
we assume (pp(t))p € C(Xp;M2)3) and not in L°(X,; M2X?) as in [12], since we prefer
not to rely on the notion of stress-strain duality in this setting.

Condition (3.6.1) lead to the following formula (for a proof see, e.g., [12, Lemma 3.1]):

(Lan(t) v —2)) = [ bpn(t): (n— symDz)de + / S(on)p(t) : dg

Xh YpUdgn

(3.6.2)
+/ pr(t) : (v—2) ® Vodr,
P
for every (v,m,q) € A(Xh, 2), z € H (Zp;R?), and for every ¢ € C1(2}).
We introduce the following scaling for the forces:
F(t) == Rufu(t) o Wn,  g"(t) := Rugn(t) o ¥ (3.6.3)

for every ¢ € [0, 7], while we scale pp(t) as

p'(t) == pn(t) o Wy (3.6.4)
for every t € [0,T]. For every v € BD(2) we denote by u € V,,(€2) the vectorfield defined
in (3.2.11). Owing to (3.6.3), we can rewrite Ly (t) as

(Lp(t),v) = h/ fh(t) -udet Fydx + h/ gh(t) . u](Coth)Rhuag|d7—l2
Q On

= h/ fh(t)-udechda:+h/ g"(t) - u|cof Fyvpq|dH?, (3.6.5)
Q On 2
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where we used that Rpvgq = vgo on 0,1, because vgq - e3 = 0 on 0,§2. We thus define
the functional

(Lh(t),u) == /Q fi(t) - udet Fydx + /a . g"(t) - u|cof Fyvpq|dH> (3.6.6)

for every u € V(). In the next proposition we collect some consequences of (3.6.1) in
the scaled domain (2.

Proposition 3.6.2. Let t € [0,T]. Then the following hold:

i) for every £ € M?’DX3 with |£] < a we have

pPht) +€ € K; (3.6.7)
ii) for every ¢ € HY(Q;R3) with o = 0 on 040 we have

/Q P(t) : sym(RaDoRyFY) det By do = (£P(2), ) (3.6.8)

iii) for every ¢ € C1(Q) we have

(L£"(1), p(u—w))
/ goph(t) (e — sym(RthRhFh_l)) det F}, dx

(3.6.9)

o)

- / @ det Fiph(t) : dp + / Rup"()F 'Ry« (u — w) @ Vpdet Fy, da
QUILQ Q

for every (u,e,p) € Ap(Q,w), and w € H(;R3).

Proof. Condition i) immediately follows from the last equation in (3.6.1) and from (3.6.4).
Now we prove (3.6.8). Let ¢ € H'(;R3) with ¢ = 0 on 949 and let ¢ := po \Ilgl.
Since ¢ = 0 on 9g%p, the first three conditions in (3.6.1) imply that

/E on(t) - sym Do d = (L4(1), 6).

Equation (3.6.8) is now a consequence of (3.6.4), (3.2.14), (3.6.5), and of a change of
variable.

Now we show (3.6.9). Let ¢ € C1(Q) and let ¢ := 9o ¥, ! Let w € H'(Q;R?) and
(u,e,p) € Ap(w), let z € H (Z;R?) and (v,7,q) € A(Xh, 2) be defined as in (3.2.11) and
(3.2.15). By a change of variable we rewrite formula (3.6.2) in  and we divide by h. All
the terms in (3.6.9) are straightforward, except for the last one, which comes from the last
integral in (3.6.2). In fact, since Vo ¥y, = (D¥,)~ TV, owing to (3.2.11), (3.2.15), and
(3.6.4) we infer

/ pr(t): (v—2)©Vodr = h/ p"(t) : Ryp(u —w) ® (DY, )V det Fy, dr.
%), 0

Since D\II}_LT = Fh_TRh, we obtain the last term in (3.6.9) by dividing by h. O
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Hypotheses on the forces.

Let F1 and F3 be the tangential component and the out-of-plane component of a vector
field F : R? — R3, respectively. We suppose that there exists a body load f and a surface

load g, with

fr € Lip([0, T]; H' (% R?)),  fs € Lip([0,T7; L*(€2)),

gt € Lip([0,T); H'(9,Q; R?) N L™(0,84R?)), g3 € Lip([0,T]; L™ (9,9)),

a matrix-valued
p € Lip([0, TT; L*(9; M23))
and a vector-valued

p € Lip([0, T]; L*(2;R?)),
such that for every t € [0, 7]

() = f(t) strongly in L3(Q;R?),
g"(t) — g(t) strongly in L?(9,Q;R3),

p'(t) = p(t)  strongly in L*(Q; M),
1

+Pas(t) = pa(t)  strongly in L3(Q)
for every t € [0,T], and
) — f(t)  strongly in L3(Q; R?),
pI(t) — p(t)  strongly in L3(Q;M2<3),
1

Eﬁ)zg)(t) — palt)  strongly in L3(9)

(3.6.10)
(3.6.11)

(3.6.16)
(3.6.17)

(3.6.18)

for a.e. t € [0,T]. Moreover, we suppose that there exists a constant C' > 0, independent

of h, such that
Hp}bHWL"O([O,T];LOO) < Ca
o™ lwros (orry22) < C

for every 0 < h < 1.
In the next Lemma we deduce some properties of p and p.

Lemma 3.6.3. Assume (3.6.10)—(3.6.20). Then for every t € [0,T]

pig(t) =0 in Q.

Moreover, p(t) satisfies this uniform safe-load condition: for everyt € [0,T]

—divp(t) = fr(t)  inw,
[p(t )Vaw] =gr(t) on dhw,

- ﬂhv div j(t) — p(t) : D26 = Fa(t) + %div Fr(t) = Fr(t)- V6

bo(p ()) mo(t), bi(p(t)) =ma(t) on Ohw,
p(t) + & € K~

(3.6.19)
(3.6.20)
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for every & € M2X2 such that €] < «. Here

sym

mot) = 126(0) + - (a7(0) - 7o) — F(8) - vw — 127(8) - VO,

(3.6.27)
ma(t) = gr(t) - vow-
Finally, the following equation holds for every t € [0,T)]:
1 - 1 -
ﬁdiv p(t) +p(t) + p(t) Vo = EfT(t) mn w. (3.6.28)

Proof. 1t is a consequence of (3.6.14) and (3.6.15) that p,s3(t) = 0 for every ¢t € [0,T].
Furthermore, if in (3.6.8) we choose a variation ¢ = ¢”, where ¢! is defined in (3.5.30),
the same argument as in Step 4 of Theorem 3.5.3 implies that ps3(t) = 0 for every t € [0, 7.
This proves (3.6.21). Because of this property, we will identify p(¢) with a two-dimensional
matrix.

Assume that ¢ € KL(Q) in formula (3.6.8). By applying the expansions in (3.4.16)
we deduce that

sym(R,DoRyF; ') — E*¢  strongly in L?(Q; M22).

sym

Moreover, by Lemma 3.2.1 we have that det £}, — 1 and cof F}, — I3x3 uniformly, as h
tends to 0. These facts, together with (3.6.12), (3.6.13), and (3.6.14), allow us to pass to
the limit in (3.6.8) and obtain that

c E*odr = - pdr . 2, .6.
/qu)-E od /Qf(t) od +/Mg<t> o dH (3.6.29)

Choosing ¢ in (3.6.29) of the form ¢ = (¢,0), with ¢ € H'(w;R?) and ¢ = 0 on Jyw,
yields

/ﬁ(t):symD@dx’z/fT<t>-¢dx’+/a gr(t) - paHL.

Therefore, (3.6.22) and (3.6.23) hold.
We now choose ¢ in (3.6.29) of the form ¢ = (—x3V, 1), where ¢ € H?*(w), ¢ = 0
on Jgw, and Vi = 0 on Ogw. This leads to

1

~ . 2 /
-WQWWyD¢m+/

+ /8 y (gg(tw - 112@T<t)0-dw> .

Therefore, (3.5.34), (3.6.10), (3.6.11), (3.6.22), and integration by parts imply (3.6.24) and
(3.6.25).

Now we prove (3.6.26). We recall that K = 0H(0). Hence, the last condition in (3.6.1),
together with (3.6.4), leads to

) Voo Vs = | (f3<t>w - i w) aa’

/ (p%(t)+s>:<dx§/ H(C) de
U x(a,b)

Ux(a,b)

for every ¢ € M?’DX?’, for every open set U C w and for every (a,b) C (—%, %) Owing to

convergence (3.6.14), we can pass to the limit in the previous inequality, as h tends to 0.
Since U and (a,b) are arbitrary, we deduce that

(p(t) +&)p € K
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for a.e. x € Q. This is equivalent to (3.6.26), by (3.6.21) and (3.2.26).
To conclude we have to prove (3.6.28). To this aim, we consider in (3.6.8) variations
of the form ¢ = (23¢,0), with ¢ € Hj(w;R?). It follows from (3.4.16) that

p(t) : sym(Ry Dop(t) RiFy ') = plg(t) (w3 sym Dg(t) — ¢(t) © VO)ap
+0(h?)pas 6|l + %Pﬁg(t)%(t) +O(h)pas )6 1 + Oh®) pls(t)16(t) | 111
Hence (3.6.12), (3.6.14), and (3.6.15) yield

/Q<,0(t) (x3sym D¢ — ¢ © VO) + p(t dx = / f(t) - (z30,0) (3.6.30)

An easy computation shows that
(00 @asym D6 =60 V6) = 1)) dx = 15 [ p(t): Do’
- [ wve-o- i) -6) dr'

while )
[ 10 @0y =5 [ Frie)- oa
12 J,
These two equalities, together with (3.6.30), yield (3.6.28). O

Now we give the definitions of h-quasistatic and reduced quasistatic evolution for a
shallow shell subjected to nonzero applied loads.

Definition 3.6.4. Let 0 < h < 1 and let w” € Lip([0, T]; H'(€;R3)). An h-quasistatic
evolution for the boundary datum w” is a function t s (u”(t), e"(t), p"(t)) from [0, T] into
Vi(Q) x L2(Q;M2X3) x My(Q U 949; M53) that satisfies the following conditions:

sym

(as1) global stability: for every t € [0, T] we have that (u”(t),e"(t),p"(t)) € Ap (2, w"(t))
and

/ Q(e"(#)) det F, dz — (£" (1), u" (1)
(3.6.31)
< /Q Q) det Fy dr + Halq — (1)) — (£(1),v)
for every (v,7,q) € An(Q,w"(t));
(qs2) energy balance: p" € BV ([0, T]; My(Q U 949; M2X3)) and for every t € [0, T]

sym

/ Q(e(t)) det Fy, dx + Dy (p™;0,1) — (LM (), u"(t))
=/Q(eh(O))dechdx—<£h(0),uh(0)>—/Ot(<£h(s),uh(s)>+<Eh(8),wh(8)>)d8
/ / Ce"(s) : sym(Ry, D" (s) Ry Fy t) det Fy, du ds, (3.6.32)
where
(Lh(t), / Rt - wdet F, do + /6 anh(t)-u]cothl/aQ]dHQ

for every u € V4(Q).
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Definition 3.6.5. Let w € Lip([0,7]; HL(Q; R3)NKL(R)). A reduced quasistatic evolution
for the boundary datum w is a function t — (u(t),e(t),p(t)) from [0,7] into BD(f2) x
L2(;M222) x My(Q U 048; M22%2) that satisfies the following conditions:

sym sym

(gs1)* reduced global stability: for every t € [0, T] we have that (u(t),e(t),p(t)) € Agxr(w(t))
and

Q (e(t)) — (L£(1),u(t)) < Q"(n) + H"(q — p(t)) = (L(D),v) (3.6.33)
for every (v,n,q) € Agkr(w(t)), where
= ~udz -udH?
(L(t),u) := /Qf(t) dx + /BnQ g(t) - udH
for every u € BD(9Q);

(qs2)* reduced energy balance: p € BV ([0,T]; My(Q U 048 MZ2)) and for every ¢ € [0,T]

Q*(e(t)) + D" (p; 0, 1) — (L(t), u(t))
t
= Q*(G(O))—@(O),U(O))—/O ((L(s), uls)) + (L(s), i (s))) ds

t
+/0 /QC e(s) : E*w(s) dx ds, (3.6.34)

where

(L(t),u) = /Qf(t) -udw—{—/a Qg(if) cudH?
for every u € BD(Q2).

It follows from (3.6.9) (where we choose ¢ = 1) that conditions (3.6.31) and (3.6.32)
are equivalent to

(qs1’) for every t € [0,T] we have that (u”(t),e"(t),p"(t)) € Ap(,w"(t)) and

/Q(eh(t))dechdﬂﬁ—/ph(t) : e (t) det F), dx

Q Q

< / Q(n) det Fy, do — / P (t) : pdet Fy dx + Hp(q — p"(t))
Q Q

- / det Fyply (1) : d(q — p"(£))
QU

for every (v,7,q) € An(Q, w"(t));
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(as2’) p" € BV ([0,T]; Myp(Q2U 94Q; M3<3)) and for every ¢ € [0,T]

/ Q(el(t)) det Fy, dx + Dy, (p";0,1) — / det Fyp () = dp"(t)
QUL

/ h(t) : (e"(t) — sym(Ry Dw" (t) Ry F, 1)) da

/ Q(e"(0)) det Fj, dz — / §(0) : (€"(0) — sym(Ry Duwh(0)RpF,Y)) da

—/ det Fj,p%(0) : d / /Ce : sym(Ry, D" (s )Ry F, 1) det Fy, dx ds
QUALN
/ / s) — sym(R, Dw" (s YRy E, ) da ds

—/ / det Fj,p(s) : dp"(s)ds.
0 JQUOIQ

Owing to (3.6.22)—(3.6.25), and Proposition 3.5.8, we have that

(L), u— w) = /Q o(t) : (e — E*w) dz + (p(t),p)*

for every (u,e,p) € Agxr(w).

Remark 3.6.6. Note that p(t) € £(Q2) by Lemma 3.6.3, so that the duality (p(t),p(¢))* is
well defined for every ¢ € [0,T].

It follows that (3.6.33) and (3.6.34) are equivalent to

(gs1’)* reduced global stability: for every t € [0, T] we have that (u(t),e(t),p(t)) € Agrr(w(t))
and

Q'(e(t) - |

Q

p(t) :e(t) de < Q%(n) —/Qp(f) tndz+H (g —p(t)) — (p(t),q — p(1)"
for every (v,m,q) € Agkr(w(t));

(qs2')* reduced energy balance: p € BV ([0,T]; My(2 U 94Q; M2X2)) and for every t € [0, 7]

sym

Q*(e(t)) + D*(p; 0,1) — /Qp(t) H(e(t) = Efw(t)) do — (p(t), p(t))”
= Q"(e(0)) - /QP(O) + (e(0) = E*w(0)) dz — (p(0), p(0))"

s [ e mratdnas— [ [ o) )~ Bue)deds

- / (5(3). p(s))" ds.
0

We are ready to state the main result of this section.

Theorem 3.6.7. Assume (3.5.5)—(3.5.8), (3.6.7)~(3.6.9), and (3.6.10)—(3.6.20). Further-
more, assume that (ull, e, pl) € Ay (Q,w"(0)) satisfies (3.5.10), (3.5.11), and

/Q Q(eg) det Fy, dz — (L£"(0), u) < /Q Q(n) det F, dz + Hy(q — p) — (£"(0),v) (3.6.35)
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for every (v,m,q) € Ap(Q,w"(0)). For every 0 < h < 1 let t v+ (ul(t),e(t), p"(t)) be an
h-quasistatic evolution for the boundary datum w", according to Definition 3.6.4, such that
(u"(0),€"(0), p"(0)) = (ul, ek, ph). Then there exist w € Lip([0,T]; H*(Q;R?) N KL(Q))
and a reduced quasistatic evolution

(u,e,p) € Lip ([0,T]; BD(Q) x L*(Q;M22) x My(QU 949; M2<2))

sym sym

for the boundary datum w, according to Definition 3.6.5, such that, up to subsequences,

wh(t) = w(t)  strongly in H'(Q;R3), (3.6.36)

ul(t) = u(t)  strongly in L'(Q;R3), (3.6.37)
sym(R, Dul () Ry F; Vap — (Bu(t))as  weakly* in My(S2), (3.6.38)
e (t) — Me(t)  strongly in L?(9; M3x3), (3.6.39)

pgﬁ(t) — pap(t)  weakly” in My(Q2U 04%2), (3.6.40)

as h — 0, for every t € [0,T].

In the remaining of this section we discuss how to modify the proof of Theorem 3.5.3,
in order to establish Theorem 3.6.7.

The proof of Step 0 of Theorem 3.5.3 is exactly the same. To prove the remaining
steps, it is convenient to start from conditions (gsl’) and (gs2’), and deduce (gsl’)* and
(gs2’)*. Now we focus on the proof of Step 1. It follows from (3.6.7) and Lemma 3.2.1
that

Halg) - / det Fnply : dg > (a+ O(h?)) llallas (3.6.41)
QUL

for every ¢ € My(Q2U 94 M5?). Owing to (3.6.41), we can argue as in [12, Theorem 5.2]
and infer that there exists a constant C' > 0, independent of h, such that

le” (t2) — " (t1) || 2

< Clta — ta] (H Sym(RththFh_l)HLOO([O,T};LQ) + ”P%”Lw([o,T};Lw) + HPhHLw([o,T};m)) ;
(3.6.42)

Ip" (t2) — " (t1) | s,

< Clta —ta] (” sym (R Di" R Fy ) || oo o,77:02) + 16D || oe 0.7, 100 + ||P'hHL°<>([0,T};L2))
(3.6.43)

for every ti,t2 € [0,7] and for every 0 < h < 1. In particular, it follows from (3.5.6),
(3.6.19), and (3.6.20), that the right-hand side of (3.6.42) and (3.6.43) is uniformly
bounded with respect to h. Therefore, Step 1 is proved.

The proof of Step 2 of Theorem 3.5.3 is unchanged.

To conclude the proof of Theorem 3.6.7, we establish a semicontinuity property for the
plastic dissipation and the duality (-,-)*.

Proposition 3.6.8. For every t € [0,T] we have
t
D*(p; 0, 1) +/0 (6(s),p(s))"ds — (p(t), p(£))" + (p(0), p(0))"
t
< liminf {Dh(ph; 0,t) + / / det Fj,pl(s) : dp”(s)ds
h—0 0 JQUILQ

- / det Fj,pl(t) = dp”(t) —|—/ det Fj,p%(0) dph(())}.
QUL QUYL



3. A QUASISTATIC EVOLUTION MODEL FOR PERFECTLY PLASTIC SHALLOW SHELLS 87

Proof. Let § > 0, ¢ € C*°(R) be such that ¢(s) = 0if s <1 and ¢(s) =1if s > 2 and
assume that 0 < ¢ < 1. Let 95 : 2 — R given by

1
vs(z) == <6dist(x', 8nw)>
for every x € Q. It follows from the definition of H and (3.6.7) that the measure

det Fj,H (q) — det Fyp" : ¢

is nonnegative for every ¢ € My(Q U 9;9; M?)DX?’). Thus,

Hp (sp(t)) — /Q Lo et Fnplh(t) - dp'(t)

< Hu (G (1)) /Q et Fugh(0): () (3.6.44)

As a consequence of [12, Theorem 7.1] we have

Duai0.0) = | Halds)) ds

for every ¢ € AC([0,T); My(Q U 949; M2X3)). Applying this identity to ¢sp(t) and to

sym

pl(t), integrating (3.6.44) with respect to time, and using integration by parts we obtain

t
Da(Whsp; 0, ) + / / s det Fyply(s) - dph(s) ds
0 QUL

- / s det Fiph(t) = dp”(t) + / s det Fiph(0) = dp”(0)
QUOLN QUOLN

t (3.6.45)
< Dp(p";0,t) + / / det Fj,p%(s) : dp™(s) ds
o Joua,n
- / det Fj,pl%(t) : dp(t) —|—/ det F,p (0) : dp™(0).
QUL QUL
We know by (3.5.23) that
p(t) = p(t)  weakly* in My(Q U 9,0 ME3).
This convergence, together with the lower semicontinuity of D*, gives
D*(1sp; 0,t) < lim inf Dy (sp"; 0, ). (3.6.46)
—

It follows from (3.6.9) that for a.e. ¢t € [0, 7]
/ s det Fiply (1) : dph(t)
QUOLD
= / Ysp(t) : (sym(Rthh(t)RhF,fl) — (1)) det Fy, dx
Q

+ / o (0) - (b () — wh (1)) det Fy di
Q
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+ / Rup"(t)F; TRy, (wh(t) — " (t)) ® Vips det F), du,
Q

where we also used that 5 = 0 on 9,2. We already know, owing to Remark 3.4.2 and to
(3.5.22), that for every t € [0,T]

u(t) — u(t)  weakly in L3/2(Q; R?), (3.6.47)
e(t) — é(t) weakly in L?(€; M?;n?;) (3.6.48)
w'(t) — w(t) strongly in H*(Q;R3). (3.6.49)

By Lemma 3.2.1 we have that det F}, — 1 uniformly in §2 as h tends to 0, and the following
expansions hold:

(B (0 Fy T Rias = e (1)(8:5 + O(h?)) + pla(HO(h), (3.6.50)

(R ()T Ba)ss = 3 ils(0) + (6 (0) + () O(h) + pls(1)(960 + O(%). (3.6.51)

Moreover, since d315 = 0, we have that ((w”(t) —u"(t)) ® V45)i3 = 0. This fact, together
with (3.6.47)—(3.6.51), (3.5.18), assumptions (3.5.7), (3.6.16)—(3.6.18), and (3.6.21) give

lim Ys det Fi ol (t) : dp’(t)
h=0 Jaua,0

/w(;p (E*w(t) — e(t) dw—i—/w(sf (u(t) —w(t)) dx
T /Q pE) = Vs © (w(t) — u(t)) de + /Q 3) - Vs ws(t) — us(t)) da
— / () : (B w(t) — e(t)) d + / s e () - (a(t) — w(t)) da’
/%fT - (Vus(t) — V’w3(t))d37/+/1/15Jé3(t)(u3(t)—w3(t))dwl

* / )+ V5 © (lt) — a(0) de’ = = [ 3(0): Vs © (Tus(t) — Tus(0)) o’

€

+/5 - Vips(ws(t) — us(t)) da’,

where we also used that w(t),w(t) € KL(Q2). An integration by parts, the fact that
usz(t) = ws(t) on dgw and (3.6.22) yield

lim Ys det Fyplh(t) : dp”(t) =
h=0Jaua.n

= [ ble) s (Bw(t) = ett)) da = [ v ) - ) = w(0) o
+ / B(E) : Vabs © (@(t) — a(t)) da’ — % B(E) : Vibs © (Vws(t) — Vug(t)) da’
Vs <f3(t) + %div fT(t)> (uz(t) — ws(t)) da’

(50 = 15770 - (aa(0) ~ wa(0) Vs
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Integrating by parts and using (3.6.24), (3.6.28) we get

lim Vs det Fi,ph(t) « dp(t) =
h—0 Jouan

= [ hlt) s (B*w(t) = ett)) da = [ v ) - ) 0 (0) o
+ [ 30 Vs o (w0~ at)ds’ ~ ¢ [ 56): Vo5 @ (Vua(®) - Vua(t) do'

- / U5 <112div div p(t) + p(t) : D0 + div j(t) - VH) (ug(t) — ws(t)) dz’

1

— 15 [ walt) —us(e)ie) s D265 da’ + [ )98 (w(t) — usl0) T '

w

It follows now from Proposition 3.5.8 that for every ¢t € [0, T]

lim s det Fypp(t) = dp”(t) = ([p(t) : p()]", ¥s)- (3.6.52)
—UJQuogQ

Moreover, owing to (3.6.19) and to the estimate

thHLw([o,T];M,,) <C

for every 0 < h < 1 (where C is positive and independent of h), we can apply the
Dominated Convergence Theorem and infer that

lim /0 /Q g Vst Fuib(s) - dpl(s) ds = /0 Up(s) : p(s)]", 0s) ds. (3.6.53)

h—0

Hence (3.6.45), (3.6.46), (3.6.52), and (3.6.53) lead to
D*(sp; 0,1) + /O ([p(s), p(s)]",1bs)ds — ([p(t), p()]", bs) + ([p(0), p(0)]*, ¢s)
< hl,}ljélf {Dh(ph; 0,t) —i—/o /Quadﬂ det Fyp(s) : dp”(s)ds

- / det Fj,plt(t) = dp™(t) —I—/ det Fj,p/%(0) dph(O)}.
QU2 QU

We can pass to the limit as § tends to 0 in the previous inequality and deduce the thesis. [

Now we conclude the proof of Theorem 3.6.7. To prove Step 3, that is, (u(t), e(t), p(t))
satisfies the reduced stability, we note that, arguing as in Lemma 3.5.5, this is equivalent
to require that

—H*(q) < /Q(C*e(t) —p(t) s ndx — (p(t), q)"

for every (v,1,q) € Agkr(0). We can derive this inequality arguing as in Step 3 of
Theorem 3.5.3, using (3.6.52) (with p% (t) replaced by p%(t)) and sending § to 0.

The proof of Step 4 does not present additional difficulties with respect to that of
Theorem 3.5.3.

To conclude it remains to prove the energy balance (Step 5). Proposition 3.6.8 pro-
vide the lower energy inequality, while the converse inequality follows, as usual, from the
reduced stability.
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