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Abstract. We consider a quasilinear elliptic equation, with right hand side

measure, which does not satisfy the usual coercivity assumption. We prove an
existence result in the line of the Fredholm alternative. For this purpose we

develop a variant of degree theory suited to this setting.

1. Introduction

Let Ω be a bounded and open subset of RN and let

a : Ω× RN → RN , b : Ω× (R× RN )→ R
be two Carathéodory functions. We are interested in the existence of solutions u
to the problem {

−div[a(x,∇u)] + b(x, u,∇u) = µ in Ω ,

u = 0 on ∂Ω ,
(1.1)

when µ is a Radon measure on Ω with bounded total variation.
If b = 0 and {u 7→ −div[a(x,∇u)]} is a coercive Leray-Lions operator from

W 1,p
0 (Ω) into W−1,p′(Ω), then the problem has been the object of several papers.

Let us mention in particular [7], where the existence and uniqueness of an entropy
solution is proved when µ is absolutely continuous with respect to the p-capacity,
and [12], where the existence and stability of renormalized solutions is proved for a
general µ. When µ is absolutely continuous with respect to the p-capacity, the two
concepts of entropy solution and renormalized solution agree. A sharper result is
proved, in the case p = N , in [18], while the case of µ absolutely continuous with
respect to the p-capacity is treated also in [19], provided that p > 2− 1/N .

If p = 2 and the principal part is linear, then much more is known, both in
coercive and noncoercive situations (see e.g. [2, 9, 13, 15, 16, 17, 21, 23, 26]).

On the other hand, if µ ∈W−1,p′(Ω) and the operator

{u 7→ −div[a(x,∇u)] + b(x, u,∇u)}

is well defined and continuous from W 1,p
0 (Ω) into W−1,p′(Ω), then the problem has

been treated, under various assumptions, also for p 6= 2 in the noncoercive case.
Let us mention, in particular, the results in the line of the Fredholm alternative
proved in [4] and then developed with detailed descriptions, when resonance occurs
at the principal eigenvalue (see [25] and references therein).
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We are interested in a result in the same direction, when µ is a Radon measure
which has bounded total variation and is absolutely continuous with respect to the
p-capacity. More precisely, we assume that:

(i) there exist 1 < p <∞, α0, α2 ∈ L1(Ω), α1 ∈ Lp
′
(Ω), β ∈ R and ν > 0 such

that

a(x, ξ) · ξ ≥ ν|ξ|p − α0(x) ,

|a(x, ξ)| ≤ α1(x) + β|ξ|p−1 ,

|b(x, s, ξ)| ≤ α2(x) + β|s|p−1 + β|ξ|p−1 ,

for a.e. x ∈ Ω and every s ∈ R, ξ ∈ RN ; such a p is clearly unique;
(ii) we have

[a(x, ξ)− a(x, η)] · (ξ − η) > 0

for a.e. x ∈ Ω and every ξ, η ∈ RN with ξ 6= η;
(iii) there exist two Carathéodory functions

a∞ : Ω× RN → RN , b∞ : Ω× (R× RN )→ R ,

such that

[a∞(x, ξ)− a∞(x, η)] · (ξ − η) > 0 ,

for a.e. x ∈ Ω and every ξ, η ∈ RN with ξ 6= η, and such that

lim
k

a(x, τkξk)

τp−1
k

= a∞(x, ξ) , lim
k

b(x, τksk, τkξk)

τp−1
k

= b∞(x, s, ξ) ,

for a.e. x ∈ Ω, whenever τk → +∞, sk → s and ξk → ξ.

It easily follows that

a∞(x, ξ) · ξ ≥ ν|ξ|p , (1.2)

|a∞(x, ξ)| ≤ β|ξ|p−1 , (1.3)

|b∞(x, s, ξ)| ≤ β|s|p−1 + β|ξ|p−1 , (1.4)

a∞(x, τξ) = τp−1 a∞(x, ξ) , (1.5)

b∞(x, τs, τξ) = τp−1 b∞(x, s, ξ) , (1.6)

for a.e. x ∈ Ω and every τ, s ∈ R, ξ ∈ RN with τ ≥ 0.
We aim to prove the next result.

Theorem 1.1. Under hypotheses (i)–(iii), assume also that

a∞(x,−ξ) = −a∞(x, ξ) , b∞(x,−s,−ξ) = −b∞(x, s, ξ) , (1.7)

for a.e. x ∈ Ω and every s ∈ R and ξ ∈ RN .
Then one at least of the following assertions is true:

(a) the problem{
u ∈W 1,p

0 (Ω) \ {0} ,

−div[a∞(x,∇u)] + b∞(x, u,∇u) = 0 in W−1,p′(Ω)

admits a solution;
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(b) for every Radon measure µ, which has bounded total variation and is ab-
solutely continuous with respect to the p-capacity, problem (1.1) admits an
entropy solution u (see the next Section 3 for the definition of entropy so-
lution in this setting).

In order to prove Theorem 1.1, we first develop an adaptation of degree theory to
our setting. Since the problems with right hand side measure are usually treated by
an approximation procedure involving operators of Leray-Lions type, we choose a
development of the degree for maps of class (S)+ (see [10, 22, 24]), which naturally
acts in the same setting.

In Section 2 we recall the main facts concerning entropy solutions to problems
of the form {

−div[a(x,∇u)] = µ in Ω ,

u = 0 on ∂Ω ,

and prove some auxiliary results. Then we introduce, in Section 3, the adaptation of
the topological degree and state its properties. With this tool at hand, in Section 4
we prove Theorem 1.1. The subsequent sections are devoted to the construction of
such a degree and the proof of its properties.

Since each Radon measure with bounded total variation belongs to W−1,p′ if
p > N , we have no novelty in this case. Therefore, from now on we only consider
the case 1 < p ≤ N .

In the following, we denote by ‖ ‖p the usual Lp-norm and by ‖ ‖−1,p′ the norm in

W−1,p′(Ω) dual to the norm ‖∇u‖p in W 1,p
0 (Ω). If s ∈ R, we set s± = max{±s, 0}.

2. Entropy solutions

From now on, Ω will denote a bounded and open subset of RN with N ≥ 2.
According to [7], if 1 < p ≤ N we denote by Mp

b(Ω) the set of Radon measures µ
on Ω whose total variation |µ| is bounded and absolutely continuous with respect
to the p-capacity.

According to [3, 7], we also denote by T 1,p
0 (Ω) the set of (classes of equivalence of)

functions u : Ω → [−∞,+∞] such that |u| < +∞ a.e. in Ω and Tk(u) ∈ W 1,p
0 (Ω)

for any k > 0, where

Tk(s) =

s if |s| ≤ k ,
k
s

|s|
if |s| > k .

If u ∈ T 1,p
0 (Ω), there exists one and only one measurable (class of equivalence)

∇u : Ω → RN such that g(u) ∈ W 1,p
0 (Ω) and ∇[g(u)] = g′(u)∇u a.e. in Ω,

whenever g : R → R is Lipschitz continuous with g(0) = 0 and g′(s) = 0 outside
some compact subset of R.

According to [12], any u ∈ T 1,p
0 (Ω) has a Borel and capp-quasi continuous rep-

resentative ũ : Ω → [−∞,+∞], defined up to a set of null p-capacity, which we
still denote by u. Of course, the set {|u| = +∞} has null measure, but could have
positive p-capacity.

If u, u1, u2 ∈ T 1,p
0 (Ω) and t ∈ R, it is easily seen that

tu , max{u1, u2} , min{u1, u2} ∈ T 1,p
0 (Ω)
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with

∇(tu) = t∇u ,
∇u1 = ∇u2 a.e. in {u1 = u2} ,
∇max{u1, u2} = χ{u1>u2}∇u1 + χ{u2≥u1}∇u2 ,

∇min{u1, u2} = χ{u1<u2}∇u1 + χ{u2≤u1}∇u2 .

On the contrary, one cannot say (see [3]) that u1 + u2 ∈ T 1,p
0 (Ω). For reader’s

convenience, we also provide a proof of the next result.

Proposition 2.1. Let u1, u2 ∈ T 1,p
0 (Ω) with ∇u1 = ∇u2 a.e. in Ω. Assume also

that

lim inf
k→+∞

1

kp

∫
{k<|u1|<2k}

|∇u1|p dx < +∞ .

Then u1 = u2 a.e. in Ω.

Proof. Let ϑ : R → [0, 1] be a smooth function with ϑ(s) = 0 for |s| ≤ 1 and
ϑ(s) = 1 for |s| ≥ 2. Then we have

T2k(u1) , T1(u2 − T2k(u1)) , ϑ(u1/k) ∈W 1,p
0 (Ω) ∩ L∞(Ω) ,

whence

T1(u2 − u1)(1− ϑ(u1/k))

= T1(u2 − T2k(u1))(1− ϑ(u1/k)) ∈W 1,p
0 (Ω) ∩ L∞(Ω)

with

|∇[T1(u2 − u1)(1− ϑ(u1/k))]| ≤ ‖ϑ
′‖∞
k

χ{k<|u1|<2k} |∇u1| .

If (kj) is a sequence with kj → +∞ and

sup
j∈N

1

kpj

∫
{kj<|u1|<2kj}

|∇u1|p dx < +∞ ,

it follows that (T1(u2 − u1)(1 − ϑ(u1/kj))) is convergent both to T1(u2 − u1) a.e.

in Ω and to 0 weakly in W 1,p
0 (Ω). Then T1(u2−u1) = 0 a.e. in Ω and the assertion

follows. �

Remark 2.2. Let Ω =
{
x ∈ RN : |x| < 1

}
and let uj(x) = vj(|x|), where

v1(r) =


1− r

(1− 2r)2r
if 0 < r <

1

2
or

1

2
< r < 1 ,

+∞ if r = 0 or r =
1

2
.

v2(r) =



1 +
1− r

(1− 2r)2r
if 0 < r <

1

2
,

1− r
(1− 2r)2r

if
1

2
< r < 1 ,

+∞ if r = 0 or r =
1

2
.

Then u1, u2 ∈ T 1,p
0 (Ω) with ∇u1 = ∇u2 a.e. in Ω, but it is false that u1 = u2 a.e.

in Ω. One can also observe that −u1 ∈ T 1,p
0 (Ω), but u2 + (−u1) 6∈ T 1,p

0 (Ω).
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We are also interested in a smaller space, suggested by the techniques of [5, 6, 23].
Let us denote by ϕp : R→ R the increasing C∞-diffeomorphism such that

ϕ′p(s) =
1

{(1 + s2)[log(e+ s2)]4}
1
2p

, ϕp(0) = 0 .

Then we denote by Φ1,p
0 (Ω) the set of (classes of equivalence of) functions u : Ω→ R

such that ϕp(u) ∈W 1,p
0 (Ω). It is easily seen that

W 1,p
0 (Ω) ⊆ Φ1,p

0 (Ω) ⊆ T 1,p
0 (Ω)

and that ∇[ϕp(u)] = ϕ′p(u)∇u a.e. in Ω, where ∇u has to be understood in the

sense of T 1,p
0 (Ω). Moreover, any u ∈ Φ1,p

0 (Ω) has a Borel and capp-quasi continuous
representative ũ : Ω→ R, defined up to a set of null p-capacity, which we still denote
by u.

Since {u 7→ ϕp(u)} is bijective from Φ1,p
0 (Ω) onto W 1,p

0 (Ω), there is a natural

structure of complete metric space on Φ1,p
0 (Ω) which makes {u 7→ ϕp(u)} an isom-

etry. In particular, the distance function is given by

d(u, v) = ‖∇[ϕp(u)]−∇[ϕp(v)]‖p for any u, v ∈ Φ1,p
0 (Ω) .

Proposition 2.3. Let u1 ∈ Φ1,p
0 (Ω) and u2 ∈ T 1,p

0 (Ω) with ∇u1 = ∇u2 a.e. in Ω.
Then u1 = u2 a.e. in Ω.

Proof. Taking into account the behavior of ϕ′p at infinity, from∫
Ω

|ϕ′p(u1)|p|∇u1|p dx < +∞

we infer that ∫
Ω

|∇u1|p

1 + |u1|p
dx < +∞ .

Since
1

kp

∫
{k<|u1|<2k}

|∇u1|p dx ≤ 2p+1

∫
{k<|u1|<2k}

|∇u1|p

1 + |u1|p
dx

for every k ≥ 1, by Proposition 2.1 the assertion follows. �

Now let a : Ω× RN → RN be a Carathéodory function such that:

(a1) there exist 1 < p ≤ N , α0 ∈ L1(Ω), α1 ∈ Lp
′
(Ω), β1 ∈ R and ν > 0 such

that

a(x, ξ) · ξ ≥ ν|ξ|p − α0(x) ,

|a(x, ξ)| ≤ α1(x) + β1|ξ|p−1 ,

for a.e. x ∈ Ω and every ξ ∈ RN ;
(a2) we have

[a(x, ξ)− a(x, η)] · (ξ − η) > 0

for a.e. x ∈ Ω and every ξ, η ∈ RN with ξ 6= η.

Definition 2.4. Given µ ∈Mp
b(Ω), we say that u is an entropy solution of{

−div[a(x,∇u)] = µ in Ω ,

u = 0 on ∂Ω ,
(2.1)
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if u ∈ T 1,p
0 (Ω) and∫

Ω

a(x,∇u) · ∇[Tk(u− v)] dx ≤
∫

Ω

Tk(u− v) dµ ∀k > 0 , ∀v ∈ C∞c (Ω) .

If u is an entropy solution of (2.1), then u actually satisfies the equality and for
a much larger class of test functions. Following the original idea of [8], we aim to
prove a result in this direction.

If h, k ≥ 0, let Th,k : R→ R be the odd function such that

Th,k(s) =


0 if 0 ≤ s ≤ h ,

s− h if h < s < h+ k ,

k if s ≥ h+ k .

Then denote by T̃ 1,p
0 (Ω) the set of (classes of equivalence of) functions u : Ω →

[−∞,+∞] such that |u| < +∞ a.e. in Ω and Tε,k(u) ∈ W 1,p
0 (Ω) whenever ε > 0

and k > 0. It is easily seen that T 1,p
0 (Ω) ⊆ T̃ 1,p

0 (Ω). Moreover, if u ∈ T̃ 1,p
0 (Ω),

there exists one and only one measurable (class of equivalence) ∇u : Ω→ RN such

that ∇u = 0 a.e. on {u = 0} and such that g(u) ∈W 1,p
0 (Ω) with ∇[g(u)] = g′(u)∇u

a.e. in Ω, whenever g : R→ R is Lipschitz continuous with g(0) = 0 and g′(s) = 0

outside some compact subset of ]−∞, 0[∪]0,+∞[. If u ∈ T 1,p
0 (Ω), then the gradient

of u in the sense of T 1,p
0 (Ω) agrees with that in the sense of T̃ 1,p

0 (Ω).

As in the case of T 1,p
0 (Ω), any u ∈ T̃ 1,p

0 (Ω) has a Borel and capp-quasi continuous
representative ũ : Ω → [−∞,+∞], defined up to a set of null p-capacity, which

we still denote by u. Finally, let us point out that, if u ∈ T̃ 1,p
0 (Ω), we have

|u|t−1u ∈ T̃ 1,p
0 (Ω) whenever t > 0.

Theorem 2.5. Let µ ∈Mp
b(Ω) and let u be an entropy solution of (2.1). Then we

have∫
Ω

(a(x,∇u) · ∇v)+ dx+

∫
Ω

(vγ)− d|µ|

=

∫
Ω

(a(x,∇u) · ∇v)− dx+

∫
Ω

(vγ)+ d|µ| ∀v ∈ T̃ 1,p
0 (Ω) , (2.2)

where dµ = γd|µ| and γ is a Borel function with |γ| = 1 |µ|-a.e. in Ω.

Proof. As in [3, Lemma 3.3], we have∫
Ω

a(x,∇u) · ∇[Tk(u− v)] dx ≤
∫

Ω

Tk(u− v) γ d|µ|

∀k > 0 , ∀v ∈W 1,p
0 (Ω) ∩ L∞(Ω) . (2.3)

Now assume that v ∈ W 1,p
0 (Ω) ∩ L∞(Ω) with (a(x,∇u) · ∇v)+ ∈ L1(Ω) and take

k > ‖v‖∞. By (2.3) for every t > 0 we have∫
Ω

a(x,∇u) · ∇[Ttk(u− tv)] dx ≤
∫

Ω

Ttk(u− tv) γ d|µ| .

Since Ttk(ts) = tTk(s), it follows∫
Ω

a(x,∇u) · ∇
[
Tk

(u
t
− v
)]

dx ≤
∫

Ω

Tk

(u
t
− v
)
γ d|µ| ,
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whence∫
Ω

Tk

(u
t
− v
)
γ d|µ| ≥ 1

t

∫
{|ut −v|<k}

a(x,∇u) · ∇u dx

−
∫
{|ut −v|<k}

a(x,∇u) · ∇v dx

≥ −1

t

∫
Ω

α0 dx−
∫
{|ut −v|<k}

a(x,∇u) · ∇v dx .

Since (a(x,∇u) ·∇v)+ ∈ L1(Ω), passing to the lower limit as t→ +∞ and applying
Fatou’s lemma at the right hand side, we get∫

Ω

a(x,∇u) · ∇v dx ≥
∫

Ω

v γ d|µ| .

It follows a(x,∇u) · ∇v ∈ L1(Ω), which allows to apply the same argument also
to −v, obtaining ∫

Ω

a(x,∇u) · ∇v dx =

∫
Ω

v γ d|µ| .

Consider now v ∈ T̃ 1,p
0 (Ω) with (a(x,∇u)·∇v)+ ∈ L1(Ω) and (vγ)− ∈ L1(Ω, |µ|).

Then T1/k,k(v) ∈W 1,p
0 (Ω) ∩ L∞(Ω) with

(a(x,∇u) · ∇T1/k,k(v))+ ≤ (a(x,∇u) · ∇v)+ , (T1/k,k(v)γ)− ≤ (vγ)− .

First of all, it follows a(x,∇u) · ∇T1/k,k(v) ∈ L1(Ω) and∫
Ω

a(x,∇u) · ∇T1/k,k(v) dx =

∫
Ω

T1/k,k(v) γ d|µ| .

Then, if k →∞, from Fatou’s lemma we infer that∫
Ω

a(x,∇u) · ∇v dx ≥
∫

Ω

v γ d|µ| .

It follows a(x,∇u) · ∇v ∈ L1(Ω) and v γ ∈ L1(Ω, |µ|), so that we can argue on −v,
obtaining ∫

Ω

a(x,∇u) · ∇v dx =

∫
Ω

v γ d|µ| .

If v ∈ T̃ 1,p
0 (Ω) with (a(x,∇u) · ∇v)− ∈ L1(Ω) and (v γ)+ ∈ L1(Ω, |µ|), the

argument is analogous. Otherwise, both sides of (2.2) are +∞. �

In the construction of the degree, a key role will be played by the next regularity
result.

Theorem 2.6. If µ ∈ Mp
b(Ω) and u is an entropy solution of (2.1), then u ∈

Φ1,p
0 (Ω). In particular, the set {|u| = +∞} has null p-capacity. Moreover, if we

define an increasing and bounded C∞-function ψ : R→ R by

ψ′(s) =
1

{(1 + s2)[log(e+ s2)]4} 1
2

= (ϕ′p(s))
p , ψ(0) = 0 ,
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then ψ(u) ∈W 1,p
0 (Ω) ∩ L∞(Ω), ψ′(u) a(x,∇u) · ∇u ∈ L1(Ω) and∫

Ω

ψ′(u) a(x,∇u) · ∇u dx =

∫
Ω

ψ(u) dµ , (2.4)

ν

∫
Ω

|∇[ϕp(u)]|p dx ≤ ‖ψ‖∞ |µ|(Ω) + ‖α0‖1 . (2.5)

Proof. By Theorem 2.5 we have∫
Ω

a(x,∇u) · ∇[ψ(Tk(u))] dx =

∫
Ω

ψ(Tk(u)) dµ ,

whence

ν

∫
Ω

|∇[ϕp(Tk(u))]|p dx = ν

∫
{|u|<k}

ψ′(u) |∇u|p dx

≤
∫
{|u|<k}

ψ′(u) (a(x,∇u) · ∇u+ α0) dx

=

∫
Ω

ψ(Tk(u)) dµ+

∫
{|u|<k}

ψ′(u)α0 dx .

Since ψ′(s) ≤ 1, it follows

ν

∫
Ω

|∇ϕp(Tk(u))|p dx ≤ ‖ψ‖∞ |µ|(Ω) + ‖α0‖1 ,

so that (ϕp(Tk(u))) is bounded in W 1,p
0 (Ω). Therefore ϕp(u) ∈W 1,p

0 (Ω) with

ν

∫
Ω

|∇[ϕp(u)]|p dx ≤ ‖ψ‖∞ |µ|(Ω) + ‖α0‖1 .

Since ψ′(s) ≤ ϕ′p(s), a fortiori we have that (ψ(Tk(u))) is bounded in W 1,p
0 (Ω), so

that ψ(u) ∈W 1,p
0 (Ω) ∩ L∞(Ω). Coming back to the equality∫

{|u|<k}
ψ′(u) (a(x,∇u) · ∇u+ α0) dx

=

∫
Ω

ψ(Tk(u)) dµ+

∫
{|u|<k}

ψ′(u)α0 dx ,

from the monotone convergence theorem we infer that ψ′(u) a(x,∇u) · ∇u ∈ L1(Ω)
and ∫

Ω

ψ′(u) a(x,∇u) · ∇u dx =

∫
Ω

ψ(u) dµ .

�

Remark 2.7. By Theorem 2.6, in the definition of entropy solution it is equivalent
to require u ∈ T 1,p

0 (Ω) or u ∈ Φ1,p
0 (Ω).

Now let us recall the main result on entropy solutions.

Theorem 2.8. For every µ ∈Mp
b(Ω), there exists one and only one entropy solu-

tion u of (2.1). Moreover, if µ1, µ2 ∈Mp
b(Ω) satisfy∫

Ω

v dµ1 ≤
∫

Ω

v dµ2 for any v ∈ C∞c (Ω) with v ≥ 0

and u1, u2 ∈ Φ1,p
0 (Ω) are the corresponding entropy solutions of (2.1), it follows

u1 ≤ u2 a.e. in Ω.



A FREDHOLM ALTERNATIVE FOR QUASILINEAR ELLIPTIC EQUATIONS 9

Proof. If u is an entropy solution of (2.1), we clearly have

lim
h

∫
{|u|≥h}

α0 dx = 0 .

As in [7, Formula (7)], it follows

lim
h

∫
{h≤|u|≤h+k}

|∇u|p dx = 0 for any k > 0 . (2.6)

Then the existence and uniqueness of the entropy solution u can be proved as in [7]
(see also [3] and the proof of the next Lemma 5.4 for the existence part). More
specifically, the order preserving can be proved as in [19, Theorem 2.5], where the
condition p > 2− 1/N is assumed. However, the same argument works in our case.
We sketch it for reader’s convenience.

By Theorem 2.6 we have u1, u2 ∈ Φ1,p
0 (Ω). Moreover, by Theorem 2.5, it holds

whenever 0 < k < h∫
Ω

[Tk(u1 − Th(u2))]+ dµ1 =

∫
Ω

a(x,∇u1) · ∇[Tk(u1 − Th(u2))]+ dx

≥
∫
{|u1|<h , |u2|<h , 0<u1−u2<k}

a(x,∇u1) · ∇(u1 − u2) dx

−
∫
{h≤|u1|<h+k , h−k<|u2|<h}

|a(x,∇u1)| |∇u2| dx

−
∫
{|u1|≥h}

α0 dx−
∫
{|u2|≥h}

α0 dx ,

∫
Ω

[Tk(u2 − Th(u1))]− dµ2 =

∫
Ω

a(x,∇u2) · ∇[Tk(u2 − Th(u1))]− dx

≤
∫
{|u1|<h , |u2|<h , 0<u1−u2<k}

a(x,∇u2) · ∇(u1 − u2) dx

+

∫
{h≤|u2|<h+k , h−k<|u1|<h}

|a(x,∇u2)| |∇u1| dx

+

∫
{|u2|≥h}

α0 dx+

∫
{|u1|≥h}

α0 dx .

It follows∫
Ω

[Tk(u1 − Th(u2))]+ dµ1 −
∫

Ω

[Tk(u2 − Th(u1))]− dµ2

≥
∫
{|u1|<h , |u2|<h , 0<u1−u2<k}

[a(x,∇u1)− a(x,∇u2)] · ∇(u1 − u2) dx

−
∫
{h≤|u1|<h+k , h−k<|u2|<h}

|a(x,∇u1)| |∇u2| dx

−
∫
{h≤|u2|<h+k , h−k<|u1|<h}

|a(x,∇u2)| |∇u1| dx

− 2

∫
{|u1|≥h}

α0 dx− 2

∫
{|u2|≥h}

α0 dx .
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Passing to the limit as h→ +∞ and taking into account (2.6), we get

0 ≥ −
∫

Ω

[Tk(u1 − u2)]+ d(µ2 − µ1)

≥
∫
{0<u1−u2<k}

[a(x,∇u1)− a(x,∇u2)] · ∇(u1 − u2) dx ,

whence ∇u1 = ∇u2 a.e. in {u1 > u2}, namely ∇[max{u1, u2}] = ∇u2 a.e. in Ω.

Since max{u1, u2} ∈ T 1,p
0 (Ω) and u2 ∈ Φ1,p

0 (Ω), by Proposition 2.3 we infer that
max{u1, u2} = u2, namely u1 ≤ u2. �

Proposition 2.9. The following facts hold:

(a) if u ∈ Φ1,p
0 (Ω), then |∇u|p−1 ∈ Lq(Ω) and |u|p−1 ∈ Lr(Ω), whenever q <

N
N−1 and r < N

N−p (r <∞ if p = N);

(b) if (un) is bounded in Φ1,p
0 (Ω), then (|∇un|p−1) is bounded in Lq(Ω), when-

ever q < N
N−1 ; moreover, there exists u ∈ Φ1,p

0 (Ω) such that, up to a subse-

quence, (|un|p−2 un) is strongly convergent to |u|p−2 u in Lr(Ω), whenever
r < N

N−p ;

(c) if un, u ∈ Φ1,p
0 (Ω), (un) is bounded in Φ1,p

0 (Ω) and ∇un → ∇u a.e. in Ω,
then we have:

lim
n
|∇un|p−2∇un = |∇u|p−2∇u

strongly in Lq(Ω;RN ), for any q <
N

N − 1
,

(d) if (un) is convergent to u in Φ1,p
0 (Ω), then we have

lim
n
Tk(un) = Tk(u) strongly in W 1,p

0 (Ω), for any k > 0 .

Proof. The argument is an adaptation of the techniques of [5, 6, 23]. If u ∈ Φ1,p
0 (Ω)

and p < N , we have ϕp(u) ∈ Lp∗(Ω). Since ϕ′p(s) behaves like

1

{|s|(log |s|)2}
1
p

at infinity, it follows that |u|p−1 ∈ Lr(Ω) whenever r < N
N−p .

If q < p
p−1 , we also have∫

Ω

|∇u|(p−1)q dx =

∫
Ω

|∇[ϕp(u)]|(p−1)q 1

ϕ′p(u)(p−1)q
dx

≤
(∫

Ω

|∇[ϕp(u)]|p dx
) (p−1)q

p

∫
Ω

1

ϕ′p(u)
p(p−1)q

p−(p−1)q

dx


p−(p−1)q

p

.

In particular, if q < N
N−1 we also have

p(p− 1)q

p− (p− 1)q
< p(p− 1)

N

N − p
.

Taking into account the behavior of ϕ′p at infinity and the previous assertion, we

infer that |∇u|p−1 ∈ Lq(Ω). Therefore assertion (a) is proved.
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The same argument shows that, if (un) is bounded in Φ1,p
0 (Ω), then (|∇un|p−1)

is bounded in Lq(Ω) and (|un|p−1) is bounded in Lr(Ω), whenever q < N
N−1 and

r < N
N−p . Moreover, up to a subsequence, (ϕp(un)) is convergent to ϕp(u) weakly

in W 1,p
0 (Ω) and a.e. in Ω. It follows that (un) is convergent to u a.e. in Ω, so

that (|un|p−2 un) is strongly convergent to |u|p−2 u in Lr(Ω), whenever r < N
N−p .

Therefore, assertion (b) also holds. Then (c) easily follows.

Finally, if (un) is convergent to u in Φ1,p
0 (Ω), then (ϕp(Tk(un))) is strongly

convergent to ϕp(Tk(u)) in W 1,p
0 (Ω), so that (Tk(un)) is strongly convergent to

Tk(u) in W 1,p
0 (Ω).

If p = N , the arguments are similar. �

Finally, up to minor variants due to the presence of α0 in assumption (a1), the
next regularity result can be proved as in [5, 6, 23].

Theorem 2.10. If µ ∈ Mp
b(Ω) and u is the entropy solution of (2.1), then the

following facts hold:

(a) if µ ∈ Lm(Ω) with 1 < m < (p∗)′, we have |∇u|p−1 ∈ Lm∗(Ω) and |u|p−1 ∈
L

Nm
N−pm (Ω);

(b) if µ ∈Mp
b(Ω) ∩W−1,p′(Ω), we have u ∈W 1,p

0 (Ω) and

−div[a(x,∇u)] = µ in W−1,p′(Ω) .

3. A degree for a class of quasilinear elliptic equations

Consider again a bounded and open subset Ω of RN , a Carathéodory function
a : Ω× RN → RN satisfying (a1) and (a2) and µ ∈Mp

b(Ω). Let also

b : Ω× (R× RN )→ R

be a Carathéodory function such that:

(a3) there exist α2 ∈ L1(Ω), β2 ∈ R, 0 < q < N(p−1)
N−1 and 0 < r < N(p−1)

N−p
(0 < r < +∞ if p = N) such that

|b(x, s, ξ)| ≤ α2(x) + β2|s|r + β2|ξ|q

for a.e. x ∈ Ω and every s ∈ R and ξ ∈ RN .

By Proposition 2.9 and (a3), we have b(x, u,∇u) ∈ L1(Ω) for any u ∈ Φ1,p
0 (Ω).

According to Remark 2.7, we say that u is an entropy solution of{
−div[a(x,∇u)] + b(x, u,∇u) = µ in Ω ,

u = 0 on ∂Ω ,
(3.1)

if u ∈ Φ1,p
0 (Ω) and∫

Ω

a(x,∇u) · ∇[Tk(u− v)] dx+

∫
Ω

b(x, u,∇u)Tk(u− v) dx

≤
∫

Ω

Tk(u− v) dµ ∀k > 0 , ∀v ∈ C∞c (Ω) .

Remark 3.1. Let u ∈ Φ1,p
0 (Ω) and let also µ̂ ∈Mp

b(Ω) and

â : Ω× RN → RN , b̂ : Ω× (R× RN )→ R
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be two Carathéodory functions satisfying (a1) – (a3). Assume that∫
Ω

{a(x,∇z) · ∇v + b(x, z,∇z)v} dx−
∫

Ω

v dµ

=

∫
Ω

{â(x,∇z) · ∇v + b̂(x, z,∇z)v} dx−
∫

Ω

v dµ̂

∀z, v ∈W 1,p
0 (Ω) ∩ L∞(Ω) .

Then u is an entropy solution of (3.1) if and only if u is an entropy solution of{
−div[â(x,∇u)] + b̂(x, u,∇u) = µ̂ in Ω ,

u = 0 on ∂Ω .

Proof. For every u ∈ Φ1,p
0 (Ω), v ∈ C∞c (Ω) and h, k > 0, we have∫

Ω

{a(x,∇[Th(u)]) · ∇[Tk(u− v)] + b(x, Th(u),∇[Th(u)])Tk(u− v)} dx

−
∫

Ω

Tk(u− v) dµ

=

∫
Ω

{â(x,∇[Th(u)]) · ∇[Tk(u− v)] + b̂(x, Th(u),∇[Th(u)])Tk(u− v)} dx

−
∫

Ω

Tk(u− v) dµ̂ .

Passing to the limit as h→ +∞, we get∫
Ω

{a(x,∇u) · ∇[Tk(u− v)] + b(x, u,∇u)Tk(u− v)} dx−
∫

Ω

Tk(u− v) dµ

=

∫
Ω

{â(x,∇u) · ∇[Tk(u− v)] + b̂(x, u,∇u)Tk(u− v)} dx−
∫

Ω

Tk(u− v) dµ̂

and the assertion follows. �

We will also consider parametric problems, in which T is a metrizable topological
space and

a : Ω× (RN × T )→ RN , b : Ω× (R× RN × T )→ R

are two Carathéodory functions satisfying (a1) – (a3) uniformly, namely:

(u1) there exist 1 < p ≤ N , α0 ∈ L1(Ω), α1 ∈ Lp
′
(Ω), β1 ∈ R and ν > 0 such

that

at(x, ξ) · ξ ≥ ν|ξ|p − α0(x) ,

|at(x, ξ)| ≤ α1(x) + β1|ξ|p−1 ,

for a.e. x ∈ Ω and every ξ ∈ RN and t ∈ T ;
(u2) we have

[at(x, ξ)− at(x, η)] · (ξ − η) > 0

for a.e. x ∈ Ω and every ξ, η ∈ RN and t ∈ T with ξ 6= η;

(u3) there exist α2 ∈ L1(Ω), β2 ∈ R, 0 < q < N(p−1)
N−1 and 0 < r < N(p−1)

N−p such

that

|bt(x, s, ξ)| ≤ α2(x) + β2|s|r + β2|ξ|q
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for a.e. x ∈ Ω and every s ∈ R, ξ ∈ RN and t ∈ T (we write at(x, ξ),
bt(x, s, ξ) instead of a(x, (ξ, t)), b(x, (s, ξ, t))).

In Section 7 we will see that it is possible to define a topological degree

deg(−div[a(x,∇u)] + b(x, u,∇u), U, µ) ∈ Z

whenever U is a bounded and open subset of Φ1,p
0 (Ω) such that (3.1) has no entropy

solution u ∈ ∂U . We state here the main properties, referring to Section 7 for the
proofs and further details.

Theorem 3.2. (Consistency property) Suppose that µ ∈ Mp
b(Ω) ∩W−1,p′(Ω)

and that α2 ∈ L1(Ω) ∩W−1,p′(Ω) in assumption (a3).
Then the following facts hold:

(a) we have{
b(x, u,∇u)v ∈ L1(Ω)

b(x, u,∇u) ∈ L1(Ω) ∩W−1,p′(Ω)
for any u, v ∈W 1,p

0 (Ω)

and the map

W 1,p
0 (Ω) −→ W−1,p′(Ω)

u 7→ −div[a(x,∇u)] + b(x, u,∇u)

is continuous and of class (S)+;

(b) every entropy solution of (3.1) belongs to W 1,p
0 (Ω) and every u ∈W 1,p

0 (Ω)
is an entropy solution of (3.1) if and only if

−div[a(x,∇u)] + b(x, u,∇u) = µ in W−1,p′(Ω) ;

(c) if U is a bounded and open subset of Φ1,p
0 (Ω) such that (3.1) has no entropy

solution u ∈ ∂U , then the set

{u ∈ U : −div[a(x,∇u)] + b(x, u,∇u) = µ}
is compact in W 1,p

0 (Ω) and we have

deg(−div[a(x,∇u)] + b(x, u,∇u), U, µ)

= deg(S)+(−div[a(x,∇u)] + b(x, u,∇u), U ∩ V, µ) ,

whenever V is a bounded and open subset of W 1,p
0 (Ω) such that there are

no solutions of (3.1) in U \ V (we have denoted by deg(S)+ the degree for

maps of class (S)+ as defined in [10, 22, 24]).

Theorem 3.3. (Normalization property) Let µ ∈ Mp
b(Ω) and let U be any

bounded and open subset of Φ1,p
0 (Ω) containing the entropy solution u of{

−div[a(x,∇u)] = µ in Ω ,

u = 0 on ∂Ω .

Then
deg(−div[a(x,∇u)], U, µ) = 1 .

Theorem 3.4. (Existence criterion) Let µ ∈ Mp
b(Ω) and let U be a bounded

and open subset of Φ1,p
0 (Ω) such that (3.1) has no entropy solution u ∈ U .

Then
deg(−div[a(x,∇u)] + b(x, u,∇u), U, µ) = 0 .
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Theorem 3.5. (Additivity property) Let µ ∈ Mp
b(Ω) and let U be a bounded

and open subset of Φ1,p
0 (Ω) such that (3.1) has no entropy solution u ∈ ∂U . Assume

that U = U1 ∪ U2, where U1, U2 are two disjoint open subsets of Φ1,p
0 (Ω).

Then

deg(−div[a(x,∇u)] + b(x, u,∇u), U, µ)

= deg(−div[a(x,∇u)] + b(x, u,∇u), U1, µ)

+ deg(−div[a(x,∇u)] + b(x, u,∇u), U2, µ) .

Theorem 3.6. (Excision property) Let µ ∈ Mp
b(Ω) and let V ⊆ U be two

bounded and open subsets of Φ1,p
0 (Ω) such that (3.1) has no entropy solution u ∈

U \ V .
Then

deg(−div[a(x,∇u)] + b(x, u,∇u), U, µ)

= deg(−div[a(x,∇u)] + b(x, u,∇u), V, µ) .

Theorem 3.7. (Homotopy invariance property) Let

a : Ω× (RN × [0, 1])→ RN , b : Ω× (R× RN × [0, 1])→ R

be two Carathéodory functions satisfying (u1) – (u3) with respect to T = [0, 1] and
let µ0, µ1 ∈Mp

b(Ω).
Then the following facts hold:

(a) for every bounded and closed subset C of Φ1,p
0 (Ω), the set of t’s in [0, 1]

such that{
−div[at(x,∇u)] + bt(x, u,∇u) = (1− t)µ0 + tµ1 in Ω ,

u = 0 on ∂Ω ,
(3.2)

admits an entropy solution u ∈ C is closed in [0, 1];

(b) for every bounded and open subset U of Φ1,p
0 (Ω), if (3.2) has no entropy

solution with t ∈ [0, 1] and u ∈ ∂U , then

deg(−div[at(x,∇u)] + bt(x, u,∇u), U, (1− t)µ0 + tµ1)

is independent of t ∈ [0, 1].

Theorem 3.8. Let µ = 0 and let U be a bounded and open subset of Φ1,p
0 (Ω) such

that (3.1) has no entropy solution u ∈ ∂U . Assume that U is symmetric with 0 ∈ U
and that

a(x,−ξ) = −a(x, ξ) , b(x,−s,−ξ) = −b(x, s, ξ) ,

for a.e. x ∈ Ω and every s ∈ R and ξ ∈ RN .
Then

deg(−div[a(x,∇u)] + b(x, u,∇u), U, 0)

is an odd integer.



A FREDHOLM ALTERNATIVE FOR QUASILINEAR ELLIPTIC EQUATIONS 15

4. Proof of Theorem 1.1

Lemma 4.1. Let

a : Ω× RN → RN , b : Ω× (R× RN )→ R

be two Carathéodory functions satisfying (i)–(iii).
Then the following facts hold:

(a) if we set

at(x, ξ) =

t a
(
x, t−

1
p−1 ξ

)
if 0 < t ≤ 1 ,

a∞(x, ξ) if t = 0 ,

bt(x, s, ξ) =

t b
(
x, t−

1
p−1 s, t−

1
p−1 ξ

)
if 0 < t ≤ 1 ,

b∞(x, s, ξ) if t = 0 ,

then at, bt are two Carathéodory functions satisfying (i), (ii) uniformly for
t ∈ [0, 1], namely

at(x, ξ) · ξ ≥ ν|ξ|p − α0(x) , (4.1)

|at(x, ξ)| ≤ α1(x) + β|ξ|p−1 , (4.2)

|bt(x, s, ξ)| ≤ α2(x) + β|s|p−1 + β|ξ|p−1 , (4.3)

[at(x, ξ)− at(x, η)] · (ξ − η) > 0 , (4.4)

for a.e. x ∈ Ω and every s ∈ R, ξ, η ∈ RN , t ∈ [0, 1] with ξ 6= η; in
particular, at, bt satisfy (u1)–(u3) with respect to T = [0, 1];

(b) if the problem{
u ∈W 1,p

0 (Ω) \ {0} ,

−div[a∞(x,∇u)] + b∞(x, u,∇u) = 0 in W−1,p′(Ω)

has no solution then, for every µ ∈ Mp
b(Ω), there exists R > 0 such that

the problem{
−div[at(x,∇u)] + bt(x, u,∇u) = tµ in Ω ,

u = 0 on ∂Ω
(4.5)

has no entropy solution with 0 ≤ t ≤ 1 and u ∈ Φ1,p
0 (Ω) with∫

Ω

|∇[ϕp(u)]|p dx ≥ R .

Proof. Assertion (a) is easy to prove. To prove assertion (b), assume for a contra-

diction that (uk, tk) is a sequence of solutions of (4.5) with 0 ≤ tk ≤ 1, uk ∈ Φ1,p
0 (Ω)

and ∫
Ω

|∇[ϕp(uk)]|p dx ≥ k .

By (4.1) and (2.5), it follows

lim
k

∫
Ω

|btk(x, uk,∇uk)| dx = +∞ ,
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whence

lim
k

∫
Ω

(
|uk|p−1 + |∇uk|p−1

)
dx = +∞

by (4.3). If we set uk = τ
1

p−1

k vk, σk = tk/τk with

τk =

∫
Ω

(
|uk|p−1 + |∇uk|p−1

)
dx , (4.6)∫

Ω

(
|vk|p−1 + |∇vk|p−1

)
dx = 1 , (4.7)

it follows that (vk, σk) satisfies{
−div[aσk

(x,∇vk)] + bσk
(x, vk,∇vk) = σkµ in Ω ,

vk = 0 on ∂Ω

with σk → 0. By (4.7) and Proposition 2.9 we infer that

inf
k

∫
Ω

|∇[ϕp(vk)]|p dx > 0 ,

while (4.7), (4.3), (4.1) and (2.5) imply that

sup
k

∫
Ω

|∇[ϕp(vk)]|p dx < +∞ .

If we set

C =

{
u ∈ Φ1,p

0 (Ω) :
1

M
≤
∫

Ω

|∇[ϕp(u)]|p dx ≤M
}
,

where M > 0 satisfies

1

M
≤
∫

Ω

|∇[ϕp(vk)]|p dx ≤M ∀k ∈ N ,

we have that C is a bounded and closed subset of Φ1,p
0 (Ω). By (a) of Theorem 3.7,

there exists an entropy solution v ∈ C ⊆ Φ1,p
0 (Ω) \ {0} of{

−div[a0(x,∇v)] + b0(x, v,∇v) = 0 in Ω ,

v = 0 on ∂Ω .

Because of (1.4), we have that b0 satisfies (a3) with α2 ∈ L∞(Ω). From Theorem 3.2
we infer that v satisfies{

v ∈W 1,p
0 (Ω) \ {0} ,

−div[a∞(x,∇v)] + b∞(x, v,∇v) = 0 in W−1,p′(Ω) ,

and a contradiction follows. �

Proof of Theorem 1.1.
Let at, bt be as in Lemma 4.1. Assume that assertion (a) of Theorem 1.1 is false
and take µ ∈ Mp

b(Ω). Then there exists R > 0 such that (4.5) has no entropy

solution with 0 ≤ t ≤ 1 and u ∈ Φ1,p
0 (Ω) with∫

Ω

|∇[ϕp(u)]|p dx ≥ R .

If we set

U =

{
u ∈ Φ1,p

0 (Ω) :

∫
Ω

|∇[ϕp(u)]|p dx < R

}
,
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from (b) of Theorem 3.7 we infer that

deg(−div[a(x,∇u)] + b(x, u,∇u), U, µ)

= deg(−div[a∞(x,∇u)] + b∞(x, u,∇u), U, 0) .

On the other hand,

deg(−div[a∞(x,∇u)] + b∞(x, u,∇u), U, 0)

is an odd integer by (1.7) and Theorem 3.8, whence

deg(−div[a(x,∇u)] + b(x, u,∇u), U, µ) 6= 0 .

By Theorem 3.4 there exists an entropy solution u ∈ U of{
−div[a(x,∇u)] + b(x, u,∇u) = µ in Ω ,

u = 0 on ∂Ω

and assertion (b) of Theorem 1.1 follows. �

5. Entropy solutions of parametric problems

Throughout this section, we consider a metrizable topological space T , two
Carathéodory functions

a : Ω× (Rn × T )→ Rn , b : Ω× (R× Rn × T )→ R
satisfying (u1) – (u3) and the entropy solutions of{

−div[at(x,∇u)] + bt(x, u,∇u) = µ in Ω ,

u = 0 on ∂Ω ,
(5.1)

with µ ∈Mp
b(Ω).

Theorem 5.1. Let (tn) be a sequence in T , (µn) a sequence in Mp
b(Ω) and (un)

a sequence of entropy solutions of (5.1) associated with tn and µn. Let also t ∈ T
and µ ∈ Mp

b(Ω). Assume that (un) is bounded in Φ1,p
0 (Ω), (tn) is convergent to t

in T and there exist (w
(0)
n ), w(0) in L1(Ω) and (w

(1)
n ), w(1) in Lp

′
(Ω;RN ) such that∫

Ω

v dµn =

∫
Ω

vw(0)
n dx+

∫
Ω

(∇v) · w(1)
n dx ,∫

Ω

v dµ =

∫
Ω

vw(0) dx+

∫
Ω

(∇v) · w(1) dx ,

∀v ∈W 1,p
0 (Ω) ∩ L∞(Ω) ,

and such that (w
(0)
n ) is weakly convergent to w(0) in L1(Ω), while (w

(1)
n ) is strongly

convergent to w(1) in Lp
′
(Ω;RN ).

Then there exists a subsequence (unj ) converging in Φ1,p
0 (Ω) to an entropy solu-

tion u of (5.1) associated with t and µ.

Corollary 5.2. Let C be a bounded and closed subset of Φ1,p
0 (Ω) and let µ ∈

Mp
b(Ω). Then the set

{t ∈ T : (5.1) admits an entropy solution u ∈ C}
is closed in T .

Proof. It is an obvious consequence of Theorem 5.1. �
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The proof of Theorem 5.1 will be given at the end of the section. The next
lemma is an adaptation of results of [3, 7, 20] and concerns the entropy solutions
of {

−div[at(x,∇u)] = µ in Ω ,

u = 0 on ∂Ω ,
(5.2)

with µ ∈Mp
b(Ω).

Lemma 5.3. Let (tn) be a sequence in T , (µn) a sequence in Mp
b(Ω) and let

(un) be the entropy solution of (5.2) associated with tn and µn. Assume that (tn)

is convergent in T and there exist two sequences (w
(0)
n ) in L1(Ω) and (w

(1)
n ) in

Lp
′
(Ω;RN ) such that∫

Ω

v dµn =

∫
Ω

vw(0)
n dx+

∫
Ω

(∇v) · w(1)
n dx ∀v ∈W 1,p

0 (Ω) ∩ L∞(Ω) ,

and such that (w
(0)
n ) bounded in L1(Ω), while (w

(1)
n ) is strongly convergent in

Lp
′
(Ω;RN ).

Then (un) is bounded in Φ1,p
0 (Ω) and there exist u ∈ Φ1,p

0 (Ω) and a subsequence
(unj

) such that (unj
,∇unj

) is convergent to (u,∇u) a.e. in Ω.

Proof. If we set
ãn(x, ξ) = atn(x, ξ)− w(1)

n ,

it is easily seen that each ãn satisfies (a1)–(a2) for some α0, α1, β1 and ν indepen-
dent of n. Since un is an entropy solution of{

−div[ãn(x,∇un)] = w
(0)
n in Ω ,

u = 0 on ∂Ω ,

by (2.5) (un) is bounded in Φ1,p
0 (Ω).

Therefore there exist u ∈ Φ1,p
0 (Ω) and a subsequence (unj

) such that (ϕp(unj
))

is convergent to ϕp(u) weakly in W 1,p
0 (Ω) and (unj ) is convergent to u a.e. in Ω.

It follows that (Tk(unj
)) is weakly convergent to Tk(u) in W 1,p

0 (Ω).
Now let ϑ : R → [0, 1] be a C∞-function such that ϑ(s) = 1 for |s| ≤ 1 and

ϑ(s) = 0 for |s| ≥ 2. By Theorem 2.5, we have∫
Ω

atn(x,∇un) · ∇
[
ϑ
(un
k

)
v
]
dx

=

∫
Ω

[
ϑ
(un
k

)
v
]
w(0)
n dx+

∫
Ω

∇
[
ϑ
(un
k

)
v
]
· w(1)

n dx ∀v ∈ C∞c (Ω) ,

namely∫
Ω

ân(x,∇T2k(un)) · ∇v dx =

∫
Ω

vŵ(0)
n dx+

∫
Ω

∇v · ŵ(1)
n dx ∀v ∈ C∞c (Ω) ,

where

ân(x, ξ) = ϑ

(
un(x)

k

)
atn(x, ξ) ,

ŵ(0)
n = ϑ

(un
k

)
w(0)
n − ϑ′

(un
k

) [atn(x,∇T2k(un))− w(1)
n ] · ∇T2k(un)

k
,

ŵ(1)
n = ϑ

(un
k

)
w(1)
n .
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If we also set

â(x, ξ) = ϑ

(
u(x)

k

)
at(x, ξ) ,

Ek = {x ∈ Ω : |u(x)| < k} ,

we can apply [11, Theorem 1]. Therefore, for any k > 0, up to a further subsequence
(∇unj ) is convergent to ∇u a.e. in Ek. A standard diagonal argument shows that,
up to another subsequence, (∇unj

) is convergent to ∇u a.e. in Ω. �

Lemma 5.4. Let (tn), t be in T and (µn), µ in Mp
b(Ω). Let also (un), u be the

entropy solutions of (5.2) associated with tn, µn and t, µ, respectively. Assume

that (tn) is convergent to t in T and there exist (w
(0)
n ), w(0) in L1(Ω) and (w

(1)
n ),

w(1) in Lp
′
(Ω;RN ) such that∫

Ω

v dµn =

∫
Ω

vw(0)
n dx+

∫
Ω

(∇v) · w(1)
n dx ,∫

Ω

v dµ =

∫
Ω

vw(0) dx+

∫
Ω

(∇v) · w(1) dx ,

∀v ∈W 1,p
0 (Ω) ∩ L∞(Ω) ,

and such that (w
(0)
n ) is weakly convergent to w(0) in L1(Ω), while (w

(1)
n ) is strongly

convergent to w(1) in Lp
′
(Ω;RN ).

Then (un) is convergent to u in Φ1,p
0 (Ω).

Proof. First of all, by Lemma 5.3 (un) is bounded in Φ1,p
0 (Ω) and there exists

û ∈ Φ1,p
0 (Ω) such that, up to a subsequence, (un,∇un) is convergent to (û,∇û)

a.e. in Ω. Since (ϕp(un)) is weakly convergent to ϕp(û) in W 1,p
0 (Ω), it follows that

(∇[Tk(un)]) is convergent to ∇[Tk(û)] weakly in Lp(Ω;RN ) and a.e. in Ω, for any
k > 0. For any k > 0 and v ∈ C∞c (Ω), it follows that

lim
n

∫
Ω

Tk(un − v) dµn = lim
n

∫
Ω

(
Tk(un − v)w(0)

n +∇[Tk(un − v)] · w(1)
n

)
dx

=

∫
Ω

(
Tk(û− v)w(0) +∇[Tk(û− v)] · w(1)

)
dx =

∫
Ω

Tk(û− v) dµ .

On the other hand, if v ∈ C∞c (Ω) and h = k + ‖v‖∞, we have∫
Ω

Tk(un − v) dµn ≥
∫

Ω

atn(x,∇un) · ∇ [Tk(un − v)] dx

=

∫
{|un−v|<k}

atn(x,∇Th(un)) · ∇Th(un) dx

−
∫
{|un−v|<k}

a(x,∇Th(un)) · ∇v dx .

Since atn(x,∇Th(un)) · ∇Th(un) ≥ −α0, we can pass to the lower limit as n→∞
and apply Fatou’s lemma, obtaining∫

Ω

Tk(û− v) dµ ≥
∫

Ω

at(x,∇û) · ∇ [Tk(û− v)] dx ∀v ∈ C∞c (Ω) .

By the uniqueness of the entropy solution we infer that û = u.
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According to Theorem 2.6, we also have∫
Ω

ψ′(un) atn(x,∇un) · ∇un dx =

∫
Ω

ψ(un) dµn ,∫
Ω

ψ′(u) at(x,∇u) · ∇u dx =

∫
Ω

ψ(u) dµ .

Since
ψ′(un) atn(x,∇un) · ∇un − ν|∇[ϕp(un)]|p ≥ −α0 ,

again from Fatou’s lemma we infer that∫
Ω

ψ(u) dµ− ν
∫

Ω

|∇[ϕp(u)]|p dx =

∫
Ω

ψ′(u) at(x,∇u) · ∇u dx

− ν
∫

Ω

|∇[ϕp(u)]|p dx

≤ lim sup
n

∫
Ω

ψ′(un) atn(x,∇un) · ∇un dx

− ν lim sup
n

∫
Ω

|∇[ϕp(un)]|p dx

= lim sup
n

∫
Ω

ψ(un) dµn

− ν lim sup
n

∫
Ω

|∇[ϕp(un)]|p dx

=

∫
Ω

ψ(u) dµ

− ν lim sup
n

∫
Ω

|∇[ϕp(un)]|p dx .

It follows

lim sup
n

∫
Ω

|∇[ϕp(un)]|p dx ≤
∫

Ω

|∇[ϕp(u)]|p dx ,

whence the strong convergence of (un) to u in Φ1,p
0 (Ω). �

Proof of Theorem 5.1.
Since (un) is bounded in Φ1,p

0 (Ω), from (b) of Proposition 2.9 and (u3) it follows that
(btn(x, un,∇un)) is bounded in L1(Ω). By Lemma 5.3 we infer that there exists

u ∈ Φ1,p
0 (Ω) such that, up to a subsequence, (un,∇un) is convergent to (u,∇u) a.e.

in Ω.
From Proposition 2.9 and (u3) we deduce that (btn(x, un,∇un)) is (strongly)

convergent to bt(x, u,∇u) in L1(Ω). By Lemma 5.4 we conclude that (un) is con-

vergent to u in Φ1,p
0 (Ω) and that u is an entropy solution of (5.1). �

6. Degree theory in reflexive Banach spaces

Let X be a reflexive real Banach space.

Definition 6.1. A map F : D → X ′, with D ⊆ X, is said to be of class (S)+ if,
for every sequence (un) in D weakly converging to some u in X with

lim sup
n
〈F (un), un − u〉 ≤ 0 ,

it holds ‖un − u‖ → 0.
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More generally, if T is a metrizable topological space, a map H : D → X ′, with
D ⊆ X × T , is said to be of class (S)+ if, for every sequence (un, tn) in D with
(un) weakly converging to u in X, (tn) converging to t in T and

lim sup
n
〈Htn(un), un − u〉 ≤ 0 ,

it holds ‖un − u‖ → 0 (we write Ht(u) instead of H(u, t)).

Assume now that U is a bounded and open subset of X, F : U → X ′ a continuous
map of class (S)+ and w ∈ X ′.

Remark 6.2. It is easily seen that the set{
u ∈ U : F (u) = w

}
is compact (possibly empty).

According to [10, 22, 24], if w 6∈ F (∂U), one can define the topological degree

deg(S)+(F,U,w) ∈ Z .
Let us recall some basic properties.

Proposition 6.3. If w 6∈ F (∂U), then

deg(S)+(F,U,w) = deg(S)+(F − w,U, 0) .

Theorem 6.4. If w 6∈ F (∂U), u0 ∈ U and

〈F (u), u− u0〉 ≥ 〈w, u− u0〉 for any u ∈ ∂U ,
then deg(S)+(F,U,w) = 1.

Theorem 6.5. If w 6∈ F (U), then deg(S)+(F,U,w) = 0.

Theorem 6.6. If w 6∈ F (∂U) and U = U0∪U1, where U0, U1 are two disjoint open
subsets of X, then

deg(S)+(F,U,w) = deg(S)+(F,U0, w) + deg(S)+(F,U1, w) .

Theorem 6.7. Let V be another open subset of X with V ⊆ U and assume that
w 6∈ F (U \ V ).

Then deg(S)+(F,U,w) = deg(S)+(F, V,w).

Theorem 6.8. Let H : U × [0, 1]→ X ′ be a continuous map of class (S)+. Then
the following facts hold:

(a) the set {
(u, t) ∈ U × [0, 1] : Ht(u) = w

}
is compact (possibly empty);

(b) if w 6∈ H(∂U × [0, 1]), then deg(S)+(Ht, U, w) is independent of t ∈ [0, 1].

Theorem 6.9. Assume that U is symmetric with 0 ∈ U and that F is odd with
0 6∈ F (∂U).

Then deg(S)+(F,U, 0) is an odd integer.

Let us also introduce a variant, more in the line of the degree for “compactly
rooted maps” of [14].

Assume that U is a (possibly unbounded) open subset of X, F : U → X ′ is
continuous and locally of class (S)+ and w ∈ X ′.
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Proposition 6.10. If

{u ∈ U : F (u) = w} is compact (possibly empty) , (6.1)

then the following facts hold:

(a) there exists a bounded and open subset V of X such that V ⊆ U , F is of
class (S)+ on V and w 6∈ F (U \ V );

(b) if V0 and V1 are as in (a), it holds

deg(S)+(F, V0, w) = deg(S)+(F, V1, w) .

Proof. Assertion (a) is easy to prove. If V0 and V1 are as in (a), from Theorem 6.7
we infer that

deg(S)+(F, V0, w) = deg(S)+(F, V0 ∩ V1, w) = deg(S)+(F, V1, w)

and assertion (b) also follows. �

Therefore, if (6.1) holds, one can define d̃eg(S)+(F,U,w) as

d̃eg(S)+(F,U,w) = deg(S)+(F, V,w) ,

where V is any bounded and open subset of X as in (a) of Proposition 6.10.
The next results are easy consequences of the properties of the degree in the

previous setting.

Proposition 6.11. Assume that U is bounded, F : U → X ′ is continuous and of
class (S)+ and w ∈ X ′ \ F (∂U).

Then (6.1) holds and we have

d̃eg(S)+(F,U,w) = deg(S)+(F,U,w) ,

Proposition 6.12. If (6.1) holds, then

d̃eg(S)+(F,U,w) = d̃eg(S)+(F − w,U, 0) .

Theorem 6.13. If (6.1) holds, u0 ∈ U and

〈F (u), u− u0〉 ≥ 〈w, u− u0〉 for any u ∈ U ,

then d̃eg(S)+(F,U,w) = 1.

Theorem 6.14. If
{u ∈ U : F (u) = w}

is empty, then d̃eg(S)+(F,U,w) = 0.

Theorem 6.15. If (6.1) holds and U = U0 ∪ U1, where U0, U1 are two disjoint
open subsets of X, then

d̃eg(S)+(F,U,w) = d̃eg(S)+(F,U0, w) + d̃eg(S)+(F,U1, w) .

Theorem 6.16. If (6.1) holds and V is another open subset of X with V ⊆ U and

w 6∈ F (U \ V ), then d̃eg(S)+(F,U,w) = d̃eg(S)+(F, V,w).

Theorem 6.17. Assume that H : U × [0, 1] → X ′ is continuous and locally of
class (S)+ and that

{(u, t) ∈ U × [0, 1] : Ht(u) = w}
is compact (possibly empty).

Then d̃eg(S)+(Ht, U, w) is independent of t ∈ [0, 1].
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Theorem 6.18. If (6.1) holds with w = 0, U is symmetric with 0 ∈ U and F is

odd, then d̃eg(S)+(F,U, 0) is an odd integer.

7. The construction of the degree

Now consider again two Carathéodory functions

a : Ω× RN → RN , b : Ω× (R× RN )→ R

satisfying (a1) – (a3).
We first treat a particular case of (3.1), namely{

−div[a(x,∇u)] + b(x, u,∇u) = 0 in Ω ,

u = 0 on ∂Ω .
(7.1)

If we set

aτ (x, ξ) = a(x, ξ) if 0 ≤ τ ≤ 1 ,

bτ (x, s, ξ) = T1/τ (b(x, s, ξ)) if 0 < τ ≤ 1 ,

bτ (x, s, ξ) = b(x, s, ξ) if τ = 0 ,

it is easily seen that aτ , bτ satisfy (u1)–(u3) with respect to T = [0, 1]. Therefore
we can consider the entropy solutions of{

−div[a(x,∇u)] + bτ (x, u,∇u) = 0 in Ω ,

u = 0 on ∂Ω .
(7.2)

Moreover, for every τ ∈]0, 1[, we have

|bτ (x, s, ξ)| ≤ 1

τ
whenever τ ≤ τ ≤ 1 .

Therefore, we can define a continuous map

H : W 1,p
0 (Ω)×]0, 1]→W−1,p′(Ω)

by

Hτ (u) = −div [a(x,∇u)] + bτ (x, u,∇u)

and, according to [10, 24], this map is of class (S)+ (see also [1, Theorem 3.5]).

Observe also that, if U is an open subset of Φ1,p
0 (Ω), then U ∩W 1,p

0 (Ω) is an open

subset of W 1,p
0 (Ω).

Proposition 7.1. Let U be a bounded and open subset of Φ1,p
0 (Ω) such that (7.1)

has no entropy solution u ∈ ∂U .
Then the following facts hold:

(a) there exists τ ∈]0, 1] such that (7.2) has no entropy solution with 0 ≤ τ ≤ τ
and u ∈ ∂U ;

(b) if τ ∈]0, 1] is like in (a), then for every τ ∈]0, τ [ the set{
(u, τ) ∈ (U ∩W 1,p

0 (Ω))× [τ , τ ] : Hτ (u) = 0
}

is compact in W 1,p
0 (Ω)× [τ , τ ] and the topological degree

d̃eg(S)+(Hτ , U ∩W 1,p
0 (Ω), 0)

is constant for τ ∈]0, τ ].
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Proof. Since ∂U is closed and bounded in Φ1,p
0 (Ω), assertion (a) follows from Corol-

lary 5.2.
On the other hand, for every τ ∈]0, τ [, if Hτ (u) = 0 with τ ∈ [τ , τ ] and u ∈

W 1,p
0 (Ω), it turns out that u solves a problem of the form{

−div[a(x,∇u)] = z in Ω ,

u = 0 on ∂Ω ,

with z ∈ L∞(Ω) and ‖z‖∞ ≤ 1/τ . Since {(u, τ) 7→ Hτ (u)} is of class (S)+, it easily
follows that {

(u, τ) ∈W 1,p
0 (Ω)× [τ , τ ] : Hτ (u) = 0

}
is compact in W 1,p

0 (Ω) × [τ , τ ]. Moreover, Hτ (u) = 0 implies that (u, τ) is an
entropy solution of (7.2), so that there are no solutions of Hτ (u) = 0 with u on the

boundary of U ∩W 1,p
0 (Ω) in W 1,p

0 (Ω). Therefore{
(u, τ) ∈ (U ∩W 1,p

0 (Ω))× [τ , τ ] : Hτ (u) = 0
}

also is compact in W 1,p
0 (Ω)× [τ , τ ]. By Theorem 6.17 we conclude that

d̃eg(S)+(Hτ , U ∩W 1,p
0 (Ω), 0)

is constant for τ ∈ [τ , τ ], whenever τ ∈]0, τ [. �

Definition 7.2. Let U be a bounded and open subset of Φ1,p
0 (Ω) such that (7.1)

has no entropy solution u ∈ ∂U . We set

deg(−div[a(x,∇u)] + b(x, u,∇u), U, 0) = d̃eg(S)+(Hτ , U ∩W 1,p
0 (Ω), 0) ,

where τ ∈]0, 1] is any number as in (a) of the previous Proposition.

Theorem 7.3. Suppose that α2 ∈ L1(Ω) ∩W−1,p′(Ω) in assumption (a3).
Then the following facts hold:

(a) we have{
b(x, u,∇u)v ∈ L1(Ω)

b(x, u,∇u) ∈ L1(Ω) ∩W−1,p′(Ω)
for any u, v ∈W 1,p

0 (Ω)

and the map

W 1,p
0 (Ω) −→ W−1,p′(Ω)

u 7→ −div[a(x,∇u)] + b(x, u,∇u)

is continuous and of class (S)+;

(b) every entropy solution of (7.1) belongs to W 1,p
0 (Ω) and every u ∈W 1,p

0 (Ω)
is an entropy solution of (7.1) if and only if

−div[a(x,∇u)] + b(x, u,∇u) = 0 in W−1,p′(Ω) ;

(c) if U is a bounded and open subset of Φ1,p
0 (Ω) such that (7.1) has no entropy

solution u ∈ ∂U , then the set

{u ∈ U : −div[a(x,∇u)] + b(x, u,∇u) = 0}
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is compact in W 1,p
0 (Ω) and we have

deg(−div[a(x,∇u)] + b(x, u,∇u), U, 0)

= deg(S)+(−div[a(x,∇u)] + b(x, u,∇u), U ∩ V, 0) ,

whenever V is a bounded and open subset of W 1,p
0 (Ω) such that there are

no solutions of (7.1) in U \ V .

Proof. First of all, it is easily seen that χ{α2≥k}α2 ∈ L1(Ω) ∩W−1,p′(Ω) for any
k > 0. We claim that

lim
k→+∞

χ{α2≥k}α2 = 0 strongly in W−1,p′(Ω) . (7.3)

Actually, let vk ∈W 1,p
0 (Ω) ∩ L∞(Ω) be such that ‖∇vk‖p ≤ 1 and∣∣∣∣∣
∫
{α2≥k}

α2 vk dx

∣∣∣∣∣ ≥ 1

2
‖χ{α2≥k}α2‖−1,p′ .

Up to a subsequence, (vk) is convergent to some v weakly in W 1,p
0 (Ω) and a.e.

in Ω, so that (|vk|) is convergent to |v| weakly in W 1,p
0 (Ω). Now (χ{α2≥k}α2vk) is

convergent to 0 a.e. in Ω and is dominated by (α2|vk|), which is convergent to α2|v|
a.e. in Ω. According to [8], we also have α2|v| ∈ L1(Ω) and∫

Ω

α2|v| dx = 〈α2, |v|〉 = lim
k
〈α2, |vk|〉 = lim

k

∫
Ω

α2|vk| dx .

By a variant of Lebesgue’s theorem, we infer that

lim
k

∫
{α2≥k}

α2 vk dx = 0

and (7.3) follows.
Now let bτ be as before and let

bτ,1(x, s, ξ) = min {max {bτ (x, s, ξ),−α2(x)} , α2(x)} ,
bτ,2(x, s, ξ) = bτ (x, s, ξ)− bτ,1(x, s, ξ) .

It is easily seen that bτ,1, bτ,2 are Carathéodory functions satisfying

bτ (x, s, ξ) = bτ,1(x, s, ξ) + bτ,2(x, s, ξ) ,

|bτ,1(x, s, ξ)| ≤ α2(x) ,

|bτ,2(x, s, ξ)| ≤ β2|s|r + β2|ξ|q .

Moreover, if u ∈ Φ1,p
0 (Ω) and v ∈W 1,p

0 (Ω) ∩ L∞(Ω), we have∣∣∣∣∫
Ω

bτ,1(x, u,∇u) v dx

∣∣∣∣ ≤ ∫
Ω

α2 |v| dx ≤ ‖α2‖−1,p′‖[∇|v|]‖p = ‖α2‖−1,p′‖∇v‖p .

Therefore, it holds bτ,1(x, u,∇u) ∈ L1(Ω) ∩W−1,p′(Ω) with

‖bτ,1(x, u,∇u)‖−1,p′ ≤ ‖α2‖−1,p′ .

Moreover, again by [8], we have α2|v| ∈ L1(Ω), hence bτ,1(x, u,∇u)v ∈ L1(Ω), for

any v ∈W 1,p
0 (Ω).

If we set

b
(k)
τ,1(x, s, ξ) = χ{α2<k}(x) bτ,1(x, s, ξ) ,
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then b
(k)
τ,1 is a Carathéodory function and the same argument shows that

‖b(k)
τ,1(x, u,∇u)− bτ,1(x, u,∇u)‖−1,p′ ≤ ‖χ{α2≥k}α2‖−1,p′ ,

so that

lim
k
‖b(k)
τ,1(x, u,∇u)− bτ,1(x, u,∇u)‖−1,p′ = 0 uniformly for u ∈ Φ1,p

0 (Ω)

by (7.3). Since each map

W 1,p
0 (Ω)× [0, 1] −→ W−1,p′(Ω)

(u, τ) 7→ b
(k)
τ,1(x, u,∇u)

is completely continuous, as |b(k)
τ,1(x, s, ξ)| ≤ k, it follows that

W 1,p
0 (Ω)× [0, 1] −→ W−1,p′(Ω)

(u, τ) 7→ bτ,1(x, u,∇u)

is completely continuous, too.
On the other hand, it is standard that{

bτ,2(x, u,∇u)v ∈ L1(Ω)

bτ,2(x, u,∇u) ∈ L1(Ω) ∩W−1,p′(Ω)
for any u, v ∈W 1,p

0 (Ω)

and that the map

W 1,p
0 (Ω)× [0, 1] −→ W−1,p′(Ω)

(u, τ) 7→ −div[a(x,∇u) + bτ,2(x, u,∇u)

is continuos and of class (S)+ (see e.g. [10, 24]). Then

W 1,p
0 (Ω)× [0, 1] −→ W−1,p′(Ω)

(u, τ) 7→ −div[a(x,∇u) + bτ (x, u,∇u)

is continuos and of class (S)+, too, and assertion (a) follows.

For every u ∈ Φ1,p
0 (Ω) and τ ∈ [0, 1], there exists wu,τ ∈ Lp

′
(Ω;RN ) such that

bτ,1(x, u,∇u) = divwu,τ

and ‖wu,τ‖p′ is bounded by a constant independent of u and τ . Therefore, each
entropy solution of (7.2) is also an entropy solution of{

−div[ã(x,∇u)] + bτ,2(x, u,∇u) = 0 in Ω ,

u = 0 on ∂Ω ,

with

ã(x, ξ) = a(x, ξ)− wu,τ (x) ,

and ã also satisfies (a1) and (a2), possibly with different α0, α1, β1 and ν, where
‖α0‖1, ‖α1‖p′ , β1 and 1/ν are bounded by a constant independent of u and τ .

By Theorem 2.10 and a standard bootstrap argument, we infer that u ∈ W 1,p
0 (Ω).

Moreover, if B is a bounded subset of Φ1,p
0 (Ω), we have that

{(u, τ) ∈ B × [0, 1] : (u, τ) is an entropy solution of (7.2)}

is bounded in W 1,p
0 (Ω)× [0, 1].
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As in [3], any u ∈W 1,p
0 (Ω) is an entropy solution of (7.1) if and only if

−div[a(x,∇u)] + b(x, u,∇u) = 0 in W−1,p′(Ω)

and assertion (b) follows.

To prove assertion (c), observe that, since U is bounded in Φ1,p
0 (Ω), we have that

the set

{(u, τ) ∈ U × [0, 1] : (u, τ) is an entropy solution of (7.2)}
is bounded in W 1,p

0 (Ω)× [0, 1].
According to Proposition 7.1, let now τ ∈]0, 1] be such that (7.2) has no entropy

solution with 0 ≤ τ ≤ τ and u ∈ ∂U . Since the map

{(u, τ) 7→ −div[a(x,∇u) + bτ (x, u,∇u)}

is continuous and of class (S)+, the set

{(u, τ) ∈ U × [0, τ ] : (u, τ) is an entropy solution of (7.2)}

is even compact in W 1,p
0 (Ω)×[0, τ ]. Let V be a bounded and open subset of W 1,p

0 (Ω)
such that there are no solutions of (7.1) in U \ V and let W be a bounded and

open subset of W 1,p
0 (Ω) such that W ⊆ U and there are no solutions of (7.2) with

0 ≤ t ≤ τ and u ∈ U \W . Combining Definition 7.2 with Theorems 6.7 and 6.8,
we conclude that

deg(−div[a(x,∇u)] + b(x, u,∇u), U, 0)

= d̃eg(S)+(Hτ , U ∩W 1,p
0 (Ω), 0) = deg(S)+(Hτ ,W, 0)

= deg(S)+(−div[a(x,∇u)] + b(x, u,∇u),W, 0)

= deg(S)+(−div[a(x,∇u)] + b(x, u,∇u),W ∩ V, 0)

= deg(S)+(−div[a(x,∇u)] + b(x, u,∇u), U ∩ V, 0)

and assertion (c) follows. �

Theorem 7.4. Let U be a bounded and open subset of Φ1,p
0 (Ω) such that the equa-

tion (7.1) has no entropy solution u ∈ U .
Then

deg(−div[a(x,∇u)] + b(x, u,∇u), U, 0) = 0 .

Proof. Since U is closed and bounded in Φ1,p
0 (Ω), by Corollary 5.2 there exists

τ ∈]0, 1] such that (7.2) has no entropy solution with 0 ≤ τ ≤ τ and u ∈ U .

In particular, the equation Hτ (u) = 0 has no solution u ∈ U ∩ W 1,p
0 (Ω). By

Theorem 6.14 it follows

deg(−div[a(x,∇u)] + b(x, u,∇u), U, 0) = d̃eg(S)+(Hτ , U ∩W 1,p
0 (Ω), 0) = 0 .

�

In a similar way, Theorem 3.8 and the next two results can be proved taking
advantage of Theorems 6.18, 6.15, 6.16 and Corollary 5.2.

Theorem 7.5. Let U be a bounded and open subset of Φ1,p
0 (Ω) such that (7.1)

has no entropy solution u ∈ ∂U . Assume that U = U1 ∪ U2, where U1, U2 are two
disjoint open subsets of Φ1,p

0 (Ω).
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Then

deg(−div[a(x,∇u)] + b(x, u,∇u), U, 0)

= deg(−div[a(x,∇u)] + b(x, u,∇u), U1, 0)

+ deg(−div[a(x,∇u)] + b(x, u,∇u), U2, 0) .

Theorem 7.6. Let V ⊆ U be two bounded and open subsets of Φ1,p
0 (Ω) such

that (7.1) has no entropy solution u ∈ U \ V .
Then

deg(−div[a(x,∇u)] + b(x, u,∇u), U, 0)

= deg(−div[a(x,∇u)] + b(x, u,∇u), V, 0) .

Let us see more in detail the homotopy invariance.

Theorem 7.7. Let

a : Ω× (RN × [0, 1])→ RN , b : Ω× (R× RN × [0, 1])→ R

be two Carathéodory functions satisfying (u1)–(u3).
Then the following facts hold:

(a) for every bounded and closed subset C of Φ1,p
0 (Ω), the set of t’s in [0, 1]

such that{
−div[at(x,∇u)] + bt(x, u,∇u) = 0 in Ω ,

u = 0 on ∂Ω ,
(7.4)

admits an entropy solution u ∈ C is closed in [0, 1];

(b) for every bounded and open subset U of Φ1,p
0 (Ω), if (7.4) has no entropy

solution with t ∈ [0, 1] and u ∈ ∂U , then

deg(−div[at(x,∇u)] + bt(x, u,∇u), U, 0)

is independent of t ∈ [0, 1].

Proof. Assertion (a) is a particular case of Corollary 5.2. To prove (b), consider

at,τ (x, ξ) = at(x, ξ) if 0 ≤ τ ≤ 1 ,

bt,τ (x, s, ξ) = T1/τ (bt(x, s, ξ)) if 0 < τ ≤ 1 ,

bt,τ (x, s, ξ) = bt(x, s, ξ) if τ = 0 ,

for (t, τ) ∈ T = [0, 1]× [0, 1]. It is easily seen that at,τ and bt,τ satisfy (u1)–(u3).
Define also

Ht,τ (u) = −div[at,τ (x,∇u)] + bt,τ (x, u,∇u) ,

for 0 ≤ t ≤ 1, 0 < τ ≤ 1 and u ∈W 1,p
0 (Ω).

Since [0, 1]× {0} is compact, by Corollary 5.2 there exists τ ∈]0, 1] such that{
−div[at,τ (x,∇u)] + bt,τ (x, u,∇u) = 0 in Ω ,

u = 0 on ∂Ω ,

has no entropy solution with (t, τ) ∈ [0, 1]× [0, τ ] and u ∈ ∂U .
For any t ∈ [0, 1], it follows

deg(−div[at(x,∇u)] + bt(x, u,∇u), U, 0) = d̃eg(S)+(Ht,τ , U ∩W 1,p
0 (Ω), 0) .
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On the other hand, as before, the map {(u, t) 7→ Ht,τ (u)} is continuous and of
class (S)+ and the set{

(u, t) ∈ (U ∩W 1,p
0 (Ω))× [0, 1] : Ht,τ (u) = 0

}
is compact in W 1,p

0 (Ω)× [0, 1]. By Theorem 6.17 we conclude that

d̃eg(S)+(Ht,τ , U ∩W 1,p
0 (Ω), 0)

is independent of t. �

Corollary 7.8. Let U be a bounded and open subset of Φ1,p
0 (Ω) such that (7.1) has

no entropy solution u ∈ ∂U . Let also

â : Ω× RN → RN , b̂ : Ω× (R× RN )→ R
be two Carathéodory functions satisfying (a1) – (a3) and such that∫

Ω

{a(x,∇z) · ∇v + b(x, z,∇z)v} dx =

∫
Ω

{â(x,∇z) · ∇v + b̂(x, z,∇z)v} dx

∀z, v ∈W 1,p
0 (Ω) ∩ L∞(Ω) .

Then

deg(−div[a(x,∇u)] + b(x, u,∇u), U, 0)

= deg(−div[â(x,∇u)] + b̂(x, u,∇u), U, 0) .

Proof. Taking into account Remark 3.1, it is enough to apply Theorem 7.7 to

at(x, ξ) = (1− t)a(x, ξ) + tâ(x, ξ) , bt(x, s, ξ) = (1− t)b(x, s, ξ) + tb̂(x, s, ξ) .

�

Now we treat (3.1) in the general case. According to [7], any µ ∈Mp
b(Ω) satisfies∫

Ω

v dµ =

∫
Ω

vw0 dx+

∫
Ω

(∇v) · w1 dx ∀v ∈W 1,p
0 (Ω) ∩ L∞(Ω) ,

for some w0 ∈ L1(Ω) and w1 ∈ Lp
′
(Ω;RN ). On the other hand, if w0 ∈ L1(Ω) and

w1 ∈ Lp
′
(Ω;RN ), it is easily seen that the functions

ã(x, ξ) = a(x, ξ)− w1(x) , b̃(x, s, ξ) = b(x, s, ξ)− w0(x)

still satisfy (a1) – (a3).

Proposition 7.9. Let µ ∈ Mp
b(Ω) and let U be a bounded and open subset of

Φ1,p
0 (Ω) such that (3.1) has no entropy solution u ∈ ∂U . Let also w0, ŵ0 ∈ L1(Ω)

and w1, ŵ1 ∈ Lp
′
(Ω;RN ) be such that∫

Ω

v dµ =

∫
Ω

vw0 dx+

∫
Ω

(∇v) · w1 dx =

∫
Ω

vŵ0 dx+

∫
Ω

(∇v) · ŵ1 dx

∀v ∈W 1,p
0 (Ω) ∩ L∞(Ω) .

Then

deg(−div[a(x,∇u)− w1] + b(x, u,∇u)− w0, U, 0)

= deg(−div[a(x,∇u)− ŵ1] + b(x, u,∇u)− ŵ0, U, 0) .

Proof. It is a consequence of Corollary 7.8. �
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Definition 7.10. Let µ ∈ Mp
b(Ω) and let U be a bounded and open subset of

Φ1,p
0 (Ω) such that (3.1) has no entropy solution u ∈ ∂U .
We set

deg(−div[a(x,∇u)] + b(x, u,∇u), U, µ)

= deg(−div[a(x,∇u)− w1] + b(x, u,∇u)− w0, U, 0) ,

where w0 ∈ L1(Ω) and w1 ∈ Lp
′
(Ω;RN ) satisfy∫

Ω

v dµ =

∫
Ω

vw0 dx+

∫
Ω

(∇v) · w1 dx ∀v ∈W 1,p
0 (Ω) ∩ L∞(Ω) .

Theorems 3.2, 3.4, 3.5, 3.6 and 3.7 can be easily reduced to Theorems 7.3, 7.4,
7.5, 7.6 and 7.7, respectively. Let us see in detail the normalization property.

Proof of Theorem 3.3.
If we set

at(x, ξ) = a(x, ξ)− (1− t)a(x, 0) , bt(x, s, ξ) = 0 , µ0 = 0 , µ1 = µ ,

it is easily seen that at, bt satisfy (u1) – (u3), possibly with ν, α0, α1 and β1 replaced

by some ν̂, α̂0, α̂1 and β̂1. If we set

V = U ∪
{
v ∈ Φ1,p

0 (Ω) : ν̂‖∇[ϕp(v)]‖p < ‖ψ‖∞|µ|(Ω) + ‖α̂0‖1 + 1
}
,

by (2.5) there is no entropy solution of (3.2) with t ∈ [0, 1] and u ∈ ∂V . By
Theorem 3.7, it follows

deg(−div[a(x,∇u)], V, µ) = deg(−div[a(x,∇u)− a(x, 0)], V, 0)

and we also have

deg(−div[a(x,∇u)], V, µ) = deg(−div[a(x,∇u)], U, µ)

by Theorem 3.6.
On the other hand, if W is any bounded and open neighborhood of 0 in W 1,p

0 (Ω),
by Theorem 3.2 it holds

deg(−div[a(x,∇u)− a(x, 0)], V, 0)

= deg(S)+(−div[a(x,∇u)− a(x, 0)], V ∩W, 0)

and, finally,

deg(S)+(−div[a(x,∇u)− a(x, 0)], V ∩W, 0) = 1

by Theorem 6.4 with u0 = 0. �
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[21] M. Marcus and L. Véron, “Nonlinear second order elliptic equations involving measures”,

De Gruyter Series in Nonlinear Analysis and Applications, 21, De Gruyter, Berlin, 2014.
[22] D. O’Regan, Y.J. Cho and Y.-Q. Chen, “Topological degree theory and applications”,

Series in Mathematical Analysis and Applications, 10, Chapman & Hall/CRC, Boca Raton,
FL, 2006.

[23] L. Orsina, Solvability of linear and semilinear eigenvalue problems with L1 data, Rend. Sem.

Mat. Univ. Padova 90 (1993), 207–238.
[24] I.V. Skrypnik, “Methods for analysis of nonlinear elliptic boundary value problems”, Trans-

lations of Mathematical Monographs, 139, American Mathematical Society, Providence, RI,
1994.
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