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Introduction

The aim of this thesis is the study of diffusion processes under low regularity and ellipticity
assumptions, both on their coefficients and the ambient space. This is accomplished mainly
by extending techniques and results from [Ambrosio and Trevisan, 2014], moving from the
deterministic to the stochastic case. When specialized to different contexts, such as Euclidean
or Gaussian spaces, large parts of previously known results, as well as novel ones, to the
author’s knowledge, are obtained at once. Moreover, as in [Ambrosio and Trevisan, 2014],
our framework fits within that of Γ-calculus, developed e.g. in the monograph [Bakry et al.,
2014], and is well-suited for the class of RCD(K,∞) metric measure spaces, recently introduced
by Ambrosio et al. [2014b] and object of extensive research.

The problem of well-posedness, i.e. existence, uniqueness (and stability) properties, for
ordinary or stochastic differential equations, lies at very heart of many investigations in anal-
ysis and probability, both in finite and infinite dimensional spaces, aiming at going beyond
the usual (Itô-)Cauchy-Lipschitz theories.

In the theory of ordinary differential equations (ODE’s) in Euclidean spaces,

dXt = b(t,Xt)dt, t ∈ (0, T ), (0.1)

a major breakthrough is DiPerna-Lions theory, initiated in the seminal paper [DiPerna and
Lions, 1989], which provides well-posedness, by means of a suitable notion of flow, for the
equations associated to large classes of non-smooth vector fields, most notably that of Sobolev
vector fields. More recently, Ambrosio [2004] extended the theory to include BV vector fields
and, at the same time, he introduced a more probabilistic axiomatization based on the duality
between flows and continuity equation, while the approach of DiPerna and Lions relied on
characteristics and the transport equation.

In recent years the theory developed in many different directions, including larger classes
of vector fields, quantitative convergence estimates, mild regularity properties of the flow, and
non-Euclidean spaces, including infinite-dimensional ones. We refer to [Ambrosio and Crippa,
2008] for a more exhaustive, but still incomplete, description of the developments on this topic.
In [Ambrosio and Trevisan, 2014], we extend the theory of well posedness for the continuity
equation and the theory of flows to metric measure spaces (E, d,m). Roughly speaking, and
obviously under additional structural assumptions, we prove that if {b(t, ·)}t∈(0,T ) is a time-
dependent family of Sobolev vector fields then there is a unique flow associated to b, namely
a family of absolutely continuous maps {X(·, x)}x∈E from [0, T ] to E satisfying:

(i) X(·, x) solves the ODE (0.1), with X(0, x) = x, for m-a.e. x ∈ E;

(ii) the push-forward measures X(t, ·)#m are absolutely continuous with respect to m and
have uniformly bounded densities.
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Of course the notions of “Sobolev vector field” and even “vector field”, as well as the notion
of solution to the ODE have to be properly understood in this nonsmooth context.

Concerning the theory of stochastic differential equations (SDE’s),

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ (0, T ), (0.2)

Itô-Cauchy-Lipschitz theory was first outdone by the martingale approach, developed by
Stroock and Varadhan [2006] (collecting results appeared in a series of articles from the late
‘60s). The crucial observation is that any solution to (0.2) induces many martingales: indeed,
by choosing any sufficiently smooth function f : Rd → R and applying Itô formula, we obtain
that

[0, T ] 3 t 7→ f(Xt)−
ˆ t

0
(Lsf)(Xs)ds

is a martingale with respect to the Brownian filtration, where we let

Ltf(x) :=

d∑
i=1

bi(t, x)
∂f

∂xi
(x) +

1

2

d∑
i,j=1

ai,j(t, x)
∂2f

∂xi∂xj
(x), for t ∈ (0, T ), (0.3)

be the associated diffusion (Kolmogorov) operator, and a := σσ∗ is regarded as an infinitesimal
covariance. The martingale problem consists in choosing precisely this property as a definition
of solution to (0.2), and the main achievement by Stroock and Varadhan is that they provide
well-posedness (in law) for equations associated to bounded measurable vector fields and
uniformly bounded, continuous and elliptic a’s.

Since then, the theory has been growing, due to its robustness and strong connections with
the theory of semigroups and PDE’s, also in abstract (metric) frameworks, see e.g. [Ethier
and Kurtz, 1986]. In our thesis, we are concerned uniquely with martingale problems, but let
us mention here that very active research lines deal with well-posedness for strong solutions to
SDE’s, i.e. closer to Itô’s original approach to the problem of diffusions: besides the seminal
paper [Veretennikov, 1980], we refer e.g. to [Krylov and Röckner, 2005] and [Da Prato et al.,
2013] for recent striking results. Rigorous correspondences between the two descriptions are
provided by the classical Yamada and Watanabe [1971] theorem and more recent extensions,
see e.g. [Kurtz, 2007].

Figalli [2008] was first to develop a precise connection between DiPerna-Lions theory and
martingale problems, providing in particular well-posedness for a wide class of diffusion whose
associated operators L in (0.3) have not necessarily continuous or elliptic coefficients, provided
that some Sobolev regularity holds. Of course, well-posedness, in particular uniqueness, has
to be understood “in average” with respect to L d-a.e. initial condition. More precisely, a
formalization akin to that of Ambrosio-DiPerna-Lions is introduced, the main objects being
Stochastic Lagrangian Flows, i.e., Borel families (Px)x∈Rd of probabilities on C([0, T ];Rd),
satisfying:

(i) Px solves the martingale problem associated to L, starting from x, for L d-a.e. x ∈ Rd;

(ii) the push-forward measures (et)]
´
Px dL d(x), where et is the evaluation map at t ∈

[0, T ], are absolutely continuous with respect to L d, with uniformly bounded densities.

Let us stress the fact that, as in the deterministic theory, uniqueness is understood for flows,
thus in a selection sense: we are not claiming well-posedness for m-a.e. initial datum. No-
tice that these conditions might seem in perfect correspondence with the deterministic case
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sketched above, but Stochastic Lagrangian Flows are not necessarily (neither expected to be)
deterministic maps of the initial point only; this is reflected also when the the operator L

in (0.3) reduces to a derivation, i.e. when a = 0, and a solution to the martingale problem
is any probability concentrated on possibly non-unique solutions to the ODE. Despite this
discrepancy, the theory provides rather efficient tools to study SDE’s under low regularity
assumptions, in Euclidean spaces, and, together with [Le Bris and Lions, 2008], which deals
with analogous issues from a PDE point of view, has become the starting point for further
developments.

In this thesis we investigate well-posedness for diffusion processes, from the point of view
of martingale problems, in the spirit of [Figalli, 2008] and in the setting of metric measure
spaces, as introduced in [Ambrosio and Trevisan, 2014]. Motivations for performing such a
study come at least from two sides. From an analytical one, the theory of “Riemannian” metric
measure spaces mentioned in the first paragraph, currently under development, requires new
calculus tools, and diffusion processes are a natural extension of flows and ODE’s, also strictly
connected with parabolic partial differential equations. From a probabilistic side, since the
framework in [Ambrosio and Trevisan, 2014] is actually that of Dirichlet forms and Γ-calculus,
it is almost compulsory to investigate whether the fruitful approach initiated therein provides
results for classes of diffusion processes which lie beyond the scope of non-symmetric Dirichlet
forms, as developed e.g. in [Ma and Röckner, 1992], [Stannat, 1999], or the results on well-
posedness for singular diffusions developed e.g. in [Eberle, 1999]. In particular, our approach
is naturally well-suited for degenerate diffusions, since it emerges as a generalization of the
deterministic case.

Moreover, as in [Ambrosio and Trevisan, 2014], we are certain that the advantages of
dealing with abstract frameworks are made clear by the wide range of settings to which
our results can be then specialized: for the sake of brevity, in this thesis we mostly limit
ourselves to a rigorous investigation of Euclidean and Gaussian cases, as chief examples of
finite and infinite dimensional spaces. Another interesting feature of our approach is that
some techniques, initially developed for the abstract framework, may provide a new point of
view on the Euclidean case: as a first example we remark that our results non-trivially extend
those from [Figalli, 2008]; a second one is that the so-called commutator estimate, which is
certainly the technical core of the theory, seems to rely on a quite different identity from that
in [DiPerna and Lions, 1989], as described in Section 11.2.2. This might even reveal some
new features, and will be object of further investigations.

The thesis is organized in four parts, each one relying on the previous ones, although the
fourth part, where we specialize the general theory, may be also read independently from the
abstract development. The first part deals uniquely with diffusions in Euclidean spaces and
should be considered a prelude to the following developments: we describe in a concise form
the equivalences between “Eulerian” and “Lagrangian” descriptions of diffusions processes,
i.e. respectively between Fokker-Planck equations and martingale problems, highlighting the
role of the so-called superposition principle, similarly to the approach in [Figalli, 2008]. In the
second part, we move from Euclidean to metric measure spaces and study the counterparts
of these equivalences in this framework, after the right notions are introduced: diffusion
operators, martingale problems, etc. In the third part, we address well-posedness for Fokker-
Planck equations under suitable (but low) regularity assumptions both on the space and the
diffusion operator, obtaining as a consequence of the well-posedness for martingale problems
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and associated flows. The fourth part is devoted to the specialization of the results thus
obtained, so we return to Euclidean spaces and then consider the case of Gaussian, possibly
infinite dimensional, spaces.

As stated in the very first paragraph, large parts of the techniques we employ are ex-
tensions to the case of diffusions of those originally introduced in [Ambrosio and Trevisan,
2014]: the first one is a general superposition principle for diffusion processes metric mea-
sure spaces that allows us to lift solutions to Fokker-Planck equations to measures on spaces
of continuous functions, which solve correspondent martingale problems; the second one is
an approach to commutator estimates with Γ-calculus tools, which in this case is extended
to deal with diffusion operators. Let us also mention that, in the first part, we focus on a
superposition principle for multidimensional diffusions processes, whose coefficients are not
necessarily locally bounded or continuous: this result may be of independent interest, beyond
its direct application to the study of diffusions in metric measure spaces, and we provide a
self-contained exposition.

We now give a more accurate description of the four parts.
Part 1. In this part, we study multidimensional diffusion processes associated to an operator
L as in (0.3), establishing abstract equivalences between well-posedness from different points
of view, regardless of the fact that well-posedness actually holds, which may depend on
various assumptions on the coefficients. We focus on the “Eulerian” description provided by
Fokker-Planck (or forward Kolmogorov) equations

∂tνt = (Lt)
∗νt, in (0, T )× Rd, (0.4)

and the “Lagrangian” approach of martingale problems. We also introduce “martingale flows”
on [0, T ]× Rd as selections of solutions to martingale problems, for (s, x) ∈ [0, T ]× Rd.

In Chapter 1, we prove that well-posedness for Fokker-Planck equations in the class of
curves of probability measures is equivalent to that of martingale problems, as well as existence
and uniqueness for martingale flows, provided that a superposition principle holds.

In Chapter 2, we investigate the validity of a general superposition principle, showing
that solutions to the Fokker-Planck equations (0.4) can be lifted to solutions to martin-
gale problems in spaces of continuous paths, extending the results in [Figalli, 2008] to the
case of diffusion operators with integrable coefficients. Although these results could be also
investigated using tools e.g. from [Ethier and Kurtz, 1986], here we provide a complete and
self-contained derivation, highlighting a general scheme of proof, which we may say to be clas-
sical, based on approximation, tightness and limit arguments. By iterations of this scheme,
we pass from smooth to bounded coefficients, then to locally bounded and finally to the gen-
eral case. A crucial tool is played by estimates on the modulus of continuity of solutions to
martingale problems, based on fractional Sobolev energies: as in the case of ODE’s, the size
of the coefficients determines the regularity of paths, and in this case the processes exhibit
Hölder continuity, of any order smaller than 1/2, in case of bounded coefficients, which gets
worse as they become larger.

Part 2. From Chapter 3 to Chapter 5 we introduce our abstract setup, which is the typical
one of Γ-calculus and of the theory of Dirichlet forms: the distance is absent and we are
given only a topology τ on X and a reference measure m on X, which is required to be
Borel, nonnegative and σ-finite. On L2(m) we are given a symmetric, densely defined and
strongly local Dirichlet form (E, D(E)) whose semigroup P is assumed to be Markovian. We



vii Introduction

write V := D(E) and assume that a carré du champ Γ : V× V→ L1(m) is defined, and that
we are given a “nice” algebra A which plays the role of the C∞c functions in the theory of
distributions. Using A , in Chapter 4, we define “vector fields” as derivations, as in [Ambrosio
and Trevisan, 2014] which is in turn influenced by Weaver [2000] (and parallel developments
in the theory of metric currents, [Ambrosio and Kirchheim, 2000]). A derivation b is a linear
map from A to the space of real-valued Borel functions on X, f 7→ df(b), satisfying the
Leibniz rule d(fg)(b) = fdg(b) + gdf(b), and a pontwise m-a.e. bound in terms of Γ. Besides
the basic example of gradient derivations, the carré du champ provides, by duality, a natural
pointwise norm on derivations; such duality can be used to define, via integration by parts, a
notion of divergence div b for a derivation (the divergence depends only on m, not on Γ).

By introducing the bilinear counterparts of derivations, we are led to study 2-tensors,
and finally define diffusion operators L as linear operators on A , f 7→ Lf , such that the
associated carré du champ

(f, g) 7→ a(f, g) :=
1

2
[L(fg)− fL(g)− gL(f)]

defines a symmetric, non-negative, 2-tensor, i.e. a(f, g) = a(g, f), a(f, f) ≥ 0, for f , g ∈ A .
As with derivations, we introduce a natural notion of divergence divL, whose negative part
plays an important role in several quantitative estimates.

In chapters 6 and 7, we introduce Fokker-Planck equations,

∂tu = L∗tut, on (0, T )×X, (0.5)

which specialize (0.4) in the case νt = utm. We also define martingale problems, flows,
and study their abstract equivalences, closely following the first part. In this case, however,
we restrict the attention to well-posedness “in average” with respect to the measure m, in
the sense of Ambrosio-DiPerna-Lions theory, as extended by Figalli. Let us remark that
we prefer to introduce a slightly different notion than that of Stochastic Lagrangian Flows,
by considering families of solutions to martingale problems for m-a.e. x ∈ X and for every
s ∈ [0, T ]; we also prefer to refer to them as regular martingale flows, where the term “regular”
stands for condition (ii) above regarding absolute continuity and bounds on densities, while
the term “martingale” remarks that that the solution is understood in the sense of Stroock-
Varadhan’s martingale problem. After abstract equivalence is settled, we investigate the
validity of a superposition principle for diffusions in metric measure spaces, by extending the
approach in [Ambrosio and Trevisan, 2014], which in turn is heavily influenced by a change of
variables technique appearing in the recent paper by Kolesnikov and Röckner [2014], although
not in a Lagrangian perspective.

Part 3. We address in this part well-posedness results for solutions to Fokker-Planck equa-
tions. In Chapter 8, we formally describe the estimates that provide well-posedness, in elliptic
or degenerate cases, and even in presence of Sobolev inequalities. As in DiPerna-Lions the-
ory, a crucial role is played by the quantity divL−, which governs the exponential rate of
accumulation of mass, e.g. the estimate

d

dt

ˆ
|ut|2 dm ≤

∥∥divL−
∥∥
L∞(m)

ˆ
|ut|2 dm, L 1-a.e. t ∈ (0, T ). (0.6)

From this differential inequality, Gronwall lemma entails bounds in L∞((0, T );L2(m)), as long
as u0 ∈ L2(m); in particular, if u0 = 0, we would obtain u = 0 and so uniqueness, simply
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arguing by linearity on the difference u1 − u2 between two solutions with the same initial
datum.

Notably, if d-dimensional Sobolev inequalities hold and the diffusion is elliptic, we can
drop (usual) L∞-bounds in favour of Ld-bounds: ellipticity has the effect of spreading mass
and prevents collapsing.

In Chapter 9 we prove existence of solutions. The strategy of the proof is classical: first
we add a viscosity term and get a V-valued solution by Hilbert space techniques, then we take
a vanishing viscosity limit, exploiting the bound provided by (0.6). Together with existence,
we recover also higher (or lower, since our measure m might be not finite and therefore no
inclusion between Lp spaces might hold) integrability estimates on solutions, depending on
the initial condition. Also, under a suitable assumption on A , we prove that the L1 norm is
independent of time.

Chapter 10 is devoted to the proof of uniqueness of solutions, which is the most delicate
part of the theory; the literature on this subject is already vast and currently growing, with
contributions coming both from analytic and probabilistic sides, on finite and infinite dimen-
sional spaces: see e.g. [Jordan et al., 1998], [Lisini, 2009], [Natile et al., 2011], [Peletier et al.,
2013], [Bogachev et al., 2002], [Bogachev et al., 2011], and references therein. The classical
proof in [DiPerna and Lions, 1989] is based on a smoothing scheme that, in our context, is
played by the semigroup P, or slight variants of it: this approach proved to be successful in
[Ambrosio and Figalli, 2009] and [Trevisan, 2014a], in Wiener spaces.

Aiming at rigorously establishing (0.6) for any solution to the FPE (0.5), the main problem
is that multiplication by u itself is an operation not allowed by the weak formulation of (0.5),
which holds only in duality functions in A . Therefore, we study the equation solved by a
smooth approximation of u, namely uα := Pαu, which reads as

∂tu
α = L∗tu

α
t − rαt , on (0, T )×X,

where the “error term” rαt := [L∗t ,Pα]ut is the commutator between P and the action of the
diffusion operator L. The approximated FPE above allows for establishing an approximated
version of (0.6), which in the limit α ↓ 0, entails uniqueness, provided that the commutator
is infinitesimal.

For for the sake of clarity, let us sketch here the strategy to deal with derivations, settled
in [Ambrosio and Trevisan, 2014], since the general case is a variation on this theme (although
non-trivial). By duality, we are reduced to study the commutator

[Pα, b]f = Pα(df(b))− d(Pαf)(b), for f ∈ A , α > 0,

and the main idea is to imitate Bakry-Émery’s Γ-calculus (see the already quoted monograph
[Bakry et al., 2014]), interpolating and writing, at least formally,

[Pα, b]f =

ˆ α

0

d

ds
Ps(d(Pα−sf)(b))ds

=

ˆ α

0
Ps [∆ [d(Pα−sf)(b)]− d(∆Pα−sf)(b)] ds

=

ˆ α

0
Ps [∆, b]Pα−sfds.

(0.7)

It turns out that an estimate of the commutator involves only the symmetric part of the deriva-
tive (this, in the Euclidean case, was already observed by Capuzzo Dolcetta and Perthame
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[1996] for regularizations induced by even convolution kernels). This structure can be re-
covered in our context: inspired by the definition of Hessian in [Bakry, 1994] we define the
symmetric part Dsymb by

ˆ
Dsymb(u, f)dm := −1

2

ˆ
[du(b)∆f + df(b)∆u− (div b)Γ(u, f)] dm.

Using this definition in (0.7) (assuming here for simplicity div b = 0) we establish the identity

ˆ
u[Pα, b]fdm = 2

ˆ α

0

ˆ
Dsymb(Psu,Pα−sf)dm ds, for u, f ∈ A .

Then, we assume the validity of the estimates which, in a smooth context, amount to an
Lq control (q > 1) on the symmetric part of derivative and some regularizing properties
of the semigroup P, which hold assuming an abstract Ricci curvature lower bound on the
underlying space, and in particular for Euclidean and Gaussian spaces, regardless of their
dimension. These provide uniform bounds in α, which by standard density arguments lead
to convergence towards 0 for the general commutator.

In case of diffusions, similar strategies can be employed, e.g. by interpolating up to a
second order Taylor expansion in the possibly degenerate case, or computing the commutator
between ∂t and a time-dependent family of semigroups, in the elliptic case, similarly as in
[Figalli, 2008]. Let us remark again, however, that our strategy seems to be well-suited for
degenerate cases, while in the elliptic case the novel contribution becomes more modest, in
particular if compared to the extensive studies available in the literature of stochastic analysis,
e.g. the theory of non-symmetric Dirichlet forms quoted above. Apparently, however, the
DiPerna-Lions approach still provides some new insight since, e.g., it allows to go beyond the
L2-framework and consider more general integrability assumptions.

Part 4. In this part, we mainly specialize the general results to Euclidean and Gaussian
settings; for brevity, we prefer not to address the full family of spaces considered in [Ambrosio
and Trevisan, 2014], although non-trivial results hold also for RCD(K,∞) spaces, as we sketch
in Chapter 13; we focus instead with greater detail in these two well-studied frameworks.
In Chapter 11, we provide explicit computations that parallel those in the previous part,
comparing our approach first with that of DiPerna-Lions, in the deterministic case, and
then with Figalli’s extension, in the general case. In Chapter 12, we specialize to infinite
dimensional Gaussian frameworks, both with respect to Malliavin calculus on Wiener spaces
and to Gaussian Hilbert spaces: we also include the main result from [Trevisan, 2014a], where
well-posedness for continuity equations associated to vector fields with bounded variation in
Wiener spaces is settled, marking an ideal connection with our Master’s Thesis, centred
around functions of bounded variations in Wiener spaces. Finally, in Chapter 13, we briefly
report how curvature assumptions on the underlying geometry of the space, both from the
“Eulerian” and the “Lagrangian” point of view, provide an abstract but rich enough structure,
where non-trivial examples can be studied, at least in the deterministic case.

From the description above, it is clear that this thesis is based on, but significantly ex-
pands, the original contents in [Ambrosio and Trevisan, 2014] and, in the last chapter, results
from [Trevisan, 2014a] also well fit within. In general, a PhD thesis should report on the whole
research activity: for the sake of uniformity of exposition, we have not included other math-
ematical works, obtained during the candidate’s Perfezionamento (PhD) course at Scuola
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Normale Superiore. Below, we briefly mention them: they provide a wider picture about
our interests on interactions between analysis and probability, in particular for the study of
differential equations and analysis on metric measure spaces.

Functions of Bounded Variation on the Classical Wiener Space and an Extended
Ocone-Karatzas Formula, [Pratelli and Trevisan, 2012]. This joint work is largely based
on the candidate’s Master’s Degree thesis. We prove an extension of Ocone-Karatzas integral
representation, roughly giving a function as the Itô integral of (the predictable projection of)
its Malliavin derivative. We cover the case of BV functions on the classical Wiener space,
i.e. when the distributional derivative is a measure; quite surprisingly, it turns out that the
integral term in the formula is nevertheless a function, i.e. an absolutely continuous measure.
We also establish an elementary chain rule formula and combine the two results to compute
explicit integral representations for some classes of BV composite random variables.

BV -regularity for the Malliavin derivative of the maximum of a Wiener process,
[Trevisan, 2013a]. Also this work is partially based on the candidate’s Master’s Degree thesis,
although parts of it were settled during the first year of PhD studies. In Malliavin calculus,
a well-known example of non-smooth random variable is the following one: let (Wt)t∈[0,T ]

be the real-valued Wiener process and let M := supt∈[0,T ]Wt be its maximum. Then, M
is differentiable in Malliavin’s sense, and its derivative DtM is I{t<σ}, where σ is the first
time at which the maximum is hit. In this article, we prove that the second-order derivative
Ds,tM is a measure, with bounded variation, or equivalently, that the DM is a BV vector
field on the classical Wiener space. The total variation measure

∣∣D2M
∣∣ is a finite measure on

the Wiener space which is singular with respect to Wiener’s measure and we show that it is
supported on paths which hit their maximum exactly twice.

Zero noise limits using local times, [Trevisan, 2013b] . We consider a well-known family
of SDE’s with irregular drifts and the correspondent zero noise limits, namely

dXε
t = sign(Xε

t ) |Xε
t |
γ dt+ εdWt, Xε

0 = 0,

for some γ ∈ [0, 1). Using mollified versions of local times, we show which trajectories are
selected in the narrow limit ε ↓ 0. Of course, it was already known that the selection concen-
trates on the extremal ones, but our approach is new and completely “Lagrangian”, relying
on elementary stochastic calculus only, in particular a careful analysis of the application of
Itô-Tanaka formula to with f(x) = |x|, to show that noise and vector field interact positively,
allowing for the solution to leave the origin.

Uncertainty and isoperimetric inequalities on groups and homogeneous spaces,
[Dall’Ara and Trevisan, 2014]. In this joint work, we prove a family of uncertainty inequalities
on fairly general groups and homogeneous spaces, both in the smooth and in the discrete
framework. They hold on Lp, for p ∈ [1,∞), and the proof is based on a link between the L1

endpoint and a general weak isoperimetric inequality.

A short proof of Stein’s universal multiplier theorem, [Trevisan, 2014b] . In this note,
we give a brief proof of Stein’s universal multiplier theorem, purely by probabilistic methods,
avoiding any use of harmonic analysis techniques (complex interpolation or transference meth-
ods). Stein’s celebrated result, [Stein, 1970, Corollary IV.6.3], provides continuity bounds for
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a general family of operators related to a Markovian semigroup (T t)t≥0, virtually without
any assumption on the underlying measure space (X,m). Our novel proof of this result relies
only on Rota’s martingale representation and Burkholder-Gundy inequalities.
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Diffusion processes in Rd
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Chapter 1

Equivalent descriptions for diffusion
processes

In this chapter, we study the abstract correspondence between “Eulerian” and “Lagrangian”
descriptions of multidimensional (i.e., in Rd) diffusion processes, in particular with respect to
existence and uniqueness issues. To this aim, in Section 1.1 we introduce diffusion operators
in Rd, as well as Fokker-Planck equations, martingale problems and flows and in Section 1.2
we study their equivalences.

The results appearing in this chapter cannot be considered novel, since they rely on
arguments well established in the literature, particularly those contained in the seminal paper
[Figalli, 2008], where many ideas from the deterministic setting of continuity equations and
ODE’s, see e.g. the lecture notes [Ambrosio and Crippa, 2008], meet with others of more
stochastic nature, classically developed in the monograph [Stroock and Varadhan, 2006].
However, differently from [Figalli, 2008], here we seek to provide abstract and full equivalences
between various notions, emphasizing the crucial role played by the superposition principle
for diffusions, whose validity is addressed in Chapter 2. We also remark that the arguments
in Section 1.2 adapt almost verbatim to the setting of metric measure spaces, specifically in
Chapter 6.

1.1 Definitions and basic facts

In this section we introduce measure-valued solutions to Fokker-Planck equations and martin-
gale problems, associated to a diffusion operator in Rd (d ≥ 1). For a brief historical account
of these different approaches to describe multidimensional diffusion processes, we refer to the
well-written Introduction in [Stroock and Varadhan, 2006].

We let throughout A = C1,2
c ((0, T )×Rd)), i.e. f ∈ A if and only if f has compact support

and is continuously differentiable once with respect to t ∈ (0, T ) and twice with respect to
x ∈ Rd: here and below, the superscript (1, 2) counts the number of derivatives with respect
to (t, x). We endow A with the norm

‖f‖C1,2 = sup
(0,T )×Rd

{
|f |+ |∂tf |+ |∇f |+ |∇2f |

}
.

We also let

a = (ai,j)di,j=1 : (0, T )× Rd → Sym+(Rd), b = (bi)di=1 : (0, T )× Rd → Rd, (1.1)

3
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be respectively a Borel map, taking values in the space of symmetric, non-negative definite
n× n matrices on R and a Borel time-dependent vector field on Rd.
Definition 1.1 (diffusion operators in Rd). We say that the linear operator L = L(a, b),
given by

A 3 f 7→ Lf : (t, x) 7→
d∑

i,j=1

ai,j(t, x)
∂2f

∂xi∂xj
(t, x) +

d∑
i=1

bi(t, x)
∂f

∂xi
(t, x)

is the diffusion operator with coefficients a, b.

The vector field b is sometimes referred as the drift (or infinitesimal mean) of L and the
matrix valued map a as the infinitesimal covariance of L. If a = 0, thus L reduces to a
derivation, we also say that we are in the deterministic case.

For brevity, we introduce the notation, for vectors v, w ∈ Rd and matrices A, B ∈ Rd×d,

v · w =
d∑
i=1

viwi, |v|2 = v · v, (v ⊗ w)i,j := viwj for i, j ∈ {1, . . . d}

A : B =

d∑
i,j=1

Ai,jBi,j , |A|2 = A : A, A(v, w) = A : (v ⊗ w),

and the following standard notation for differential calculus in Rd,

g(t, ·) = gt(·), (Lf)t = Ltf, ∂tf =
∂f

∂t
, for t ∈ (0, T ),

∂if =
∂f

∂xi
, ∂i,jf =

∂2f

∂xi∂xj
, for i, j ∈ {1, . . . , d},

∇f = (∂if)di=1, ∇2f = (∂i,jf)di,j=1, thus

b · ∇f =
d∑
i=1

bi∂if and a : ∇2f =
d∑

i,j=1

ai,j∂i,jf.

Given a Polish space (X, τ), we write M (X) for the space of signed (real-valued) Borel
measures on X, whose total variation measure is finite, M +(X) ⊆ M (X) for the cone of
finite non-negative measures and P(X) ⊆ M +(X) for the convex set of Borel probability
measures. We say that a curve ν = (νt)t∈(0,T ) ⊆M (X) is Borel if, for every Borel set A ⊆ Rd,
the map t 7→ νt(A) is Borel. We let |ν| = (|νt|)t∈(0,T ) be the curve of total variation measures:
if ν is Borel, then |ν| is Borel as well. Since many of the bounds that appear below are integral
with respect to the variable t, with respect to Lebesgue measure L 1 restricted to (0, T ), if
ν = (νt)t∈(0,T ) ⊆M (Rd) is Borel, with a slight abuse of notation we let |ν| also be the measure

on Rd mapping A 7→ |ν| (A) =
´ T

0 |νt| (A)dt, for A ⊆ Rd Borel. When ν = (νt)t ⊆M +(Rd),
we also let |ν| = ν, with the same abuse of notation. We say that a, b ∈ Lp(|ν|), for p ∈ [1,∞),
if there holds ˆ

(|a|p + |b|p) d |ν|
(

:=

ˆ T

0

ˆ
(|at|p + |bt|p) d |νt| dt

)
<∞.

Similarly, we say that a, b ∈ Lploc(|ν|) if, for every compact set B ⊆ Rd, it holdsˆ
(0,T )×B

(|a|p + |b|p) d |ν| <∞.
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Fokker-Planck equations

We consider weak solutions to Fokker-Planck equations, in duality with A , and state some
elementary properties, whose simple proof can be found at the beginning of [Ambrosio et al.,
2008, §8.1], in the deterministic setting, i.e., when a = 0 and the Fokker-Planck equation
reduces to the continuity equation.

Definition 1.2 (solutions to FPE’s). Let a, b be Borel maps as in (1.1). A Borel curve
ν = (νt)t∈(0,T ) ⊆M (Rd) is a (weak) solution to the Fokker-Planck equation (FPE)

∂tνt = L∗t νt, in (0, T )× Rd, (1.2)

if a, b ∈ L1
loc(|ν|) and it holds

ˆ T

0

ˆ
[∂tft + Ltf ] dνt dt = 0, for every f ∈ A . (1.3)

Our main interest lies in solutions to FPE’s that are curves of probability measures, but
general measure valued solutions are useful, e.g. since linearity allows for adding or subtracting
solutions.

Remark 1.3 (extension of the weak formulation). If a, b ∈ L1(|ν|), the validity of (1.3) can
be easily extended to any f ∈ C1,2

b ((0, T ) × Rd) whose support has compact projection on
(0, T ), arguing as in [Ambrosio et al., 2008, Remark 8.1.1]. Since the proof of this fact requires
the introduction of useful cut-off functions, we sketch it here. For R ≥ 1, let χR : Rd → [0, 1]
be a smooth function with χR(x) = 1, for |x| ≤ R, χR(x) = 0, for |x| ≥ 2R, with the uniform
bounds |∇χR| ≤ 4R−1 and

∣∣∇2χR
∣∣ ≤ 4R−2. Given f ∈ C1,2

b ((0, T )× Rd) whose support has
compact projection on (0, T ), set fR = fχR ∈ A , so that (1.3) holds. The chain rule for
diffusion operators

Ltf
R = (Ltf)χR + ftLtχR + 2at(∇ft,∇χR)

entails the bound

|LtfR| ≤ |Ltf |+ |ft| |LtχR|+ 2 |at| |∇ft| |∇χR| ≤ C ‖ft‖C2
b

[|at|+ |bt|] .

Letting R→∞, by dominated convergence, we extend the validity of (1.3) as required. �

Remark 1.4 (narrowly continuous representative). Arguing as in [Ambrosio et al., 2008,
Lemma 8.1.2], it is not difficult to prove that any solution ν = (ν)t∈(0,T ) to the FPE associated
with L(a, b), with a, b ∈ L1(|ν|), enjoys a (unique) narrowly continuous representative ν̃ =
(ν̃)t∈[0,T ] (i.e. for every f ∈ Cb(Rd), f 7→

´
fdν̃t is continuous) such that νt = ν̃t, for L 1-a.e.

t ∈ (0, T ) and for every f ∈ C1,2
b ((0, T )× Rd), it holds

ˆ
ft2dν̃t2 −

ˆ
ft1dν̃t1 =

ˆ t2

t1

ˆ
[∂tf + Ltf ] dνtdt, for every t1, t2 ∈ [0, T ], with t1 ≤ t2.

Martingale problems

We introduce solutions to the martingale problem associated to L, following [Stroock and
Varadhan, 2006, Chapter 6]. We make use of the following notation: let T > 0 and, on the
space C([0, T ];Rd) (endowed with the sup norm), let et : γ 7→ γt := γ(t) ∈ Rd be the evaluation
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map at t ∈ [0, T ]. The natural filtration on C([0, T ];Rd) is the increasing family of σ-algebras
F = (Ft)t∈[0,T ] with Ft := σ(es : s ∈ [0, t]). Given η ∈ P(C([0, T ];Rd)), we let ηt := (et)]η

be the 1-marginal law at t ∈ [0, T ]. Notice that the family η := (ηt)t∈[0,T ] ⊆ P(Rd) is Borel
and actually narrowly continuous.

Definition 1.5 (solutions to MP’s). Let a, b be Borel maps as in (1.1). A probability measure
η ∈P(C([0, T ];Rd)) is a solution to the martingale problem (MP) associated to L(a, b) if a,
b ∈ L1

loc(η) and, for every f ∈ A , the process

[0, T ] 3 t 7→ ft ◦ et −
ˆ t

0
[∂tfs + Lsf ] ◦ esds (1.4)

is a martingale with respect to the natural filtration on C([0, T ];Rd).

The assumption a, b ∈ L1
loc(η) entails that t 7→

´ t
0 [∂tfs + Lsf ] ◦ esds can be defined

as a progressively measurable process and moreover it belongs to L∞loc(η, (Ft)t), i.e. there
exists an increasing sequence of stopping times τn, converging towards T , η-a.s., such that´ τn

0 [∂tfs + Lsf ] ◦ esds ∈ L∞(η) for every n ≥ 1: indeed we let

τn := inf

{
t ∈ [0, T ] :

ˆ t

0
|∂tfs + Lsf | ◦ esdsdη ≥ n

}
.

Remark 1.6 (the deterministic case). When a = 0, solutions to the MP reduce to probability
measures concentrated on absolutely continuous solutions to the ordinary differential equation
(ODE)

d

dt
γt = bt(γt), for L 1-a.e. t ∈ (0, T ).

Indeed, arguing as in [Figalli, 2008, Lemma 3.8], every martingale (1.4) is identically zero:
from this the thesis easily follows. �

Remark 1.7 (solutions to MP’s induce solutions to FPE’s). Integrating with respect to η,
i.e., taking expectation, we deduce that any solution η to the MP provides, by means of its
1-marginals η = (ηt)t∈(0,T ) a narrowly continuous solution to the FPE associated to the same
diffusion L. Moreover, arguing as in Remark 1.3, if a, b ∈ L1(η), then the martingale property
extends for processes of the form (1.4), with f ∈ C1,2

b ((0, T )× Rd). �

Solutions to martingale problems (as well as solutions to FPE’s) enjoy many stability
properties with respect to natural operations. The next proposition investigates the behaviour
upon restriction of the interval of definition: quite obviously, all the definitions above can be
given also with respect to any interval [t1, T ] in place of [0, T ].

Proposition 1.8. Let t1 ∈ [0, T ), η ∈ P(C([t1, T ];Rd)) be a solution to the martingale
problem associated to a diffusion L = L(a, b), with a, b as in (1.1). Let t2 ∈ [t1, T ] and let
ρ : C([t1, T ];Rd)→ [0,∞) be a probability density (with respect to η), measurable with respect
to Ft2. Let π denote the natural restriction map

C([t1, T ];Rd) 3 γ 7→ (γt)t∈[t2,T ] ∈ C([t2, T ];Rd).

Then, π](ρη) ∈ P(C([t2, T ];Rd) is a solution to the martingale problem associated to L in
C([t2, T ];Rd).
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Proof. It is sufficient to fix any f ∈ C1,2
c ((t2, T );Rd), let t ∈ [t2, T ] and g : C([t2, T ];Rd)→ R

be any bounded function, measurable with respect to σ(er : t2 ≤ r ≤ t), and prove

ˆ [
fT −

ˆ T

t2

(∂t + Ls)fs ds

]
g dπ](ρη) =

ˆ [
ft −

ˆ t

t2

(∂t + Ls)fs ds

]
g dπ](ρη), (1.5)

(here and below, for simplicity of notation, we omit to write es). The key point is to consider
f as a function belonging to C1,2

c ((t1, T )×Rd), letting fs = 0 for s ∈ (t1, t2]. The assumption
on η gives that

[t1, T ] 3 t 7→ ft −
ˆ t

t1

(∂t + Ls)fs dr

is a martingale on the space C([t1, T ];Rd) endowed with the probability η and the natural
filtration. Since ft = 0 for t ∈ (t1, t2], it holds, for t ∈ (t2, T ),

ft −
ˆ t

t1

(∂t + Lr)fr dr = ft −
ˆ t

t2

(∂t + Lr)fr dr.

On the other hand, as (g ◦ π)ρ is Ft2-measurable, it holds

ˆ [
fT −

ˆ T

t1

(∂t + Ls)fs ds

]
(g ◦ π) ρdη =

ˆ [
ft −

ˆ t

t1

(∂t + Ls)fs ds

]
(g ◦ π) ρdη.

These two identities entail (1.5). �

Next, we prove stability of solutions to MP’s with respect to convex combinations. The
correspondent statement for weak solutions to Fokker-Planck equations holds as well, see e.g.
[Figalli, 2008, Lemma 2.4].

Proposition 1.9. Let L = L(a, b) be a diffusion operator with a, b as in (1.1). On a
measurable space (Z,A), let ν̄ ∈ P(Z) and (ηz)z∈Z ⊆ P(C[0, T ];Rd) be a Borel family of
probability measures, such that ηz is a solution to the MP associated to L, for ν̄-a.e. z ∈ Z.
Assume moreover that, for every f ∈ A , it holds

ˆ
Z

ˆ
|Lf | dηzdν̄(z) <∞.

Let η :=
´
ηzdν̄(z) ∈P(C[0, T ];Rd)), i.e.

η(A) :=

ˆ
ηz(A) dν̄(z), for every A ⊆ C[0, T ];Rd) Borel.

Then, η is a solution to the MP associated to L.

Proof. The integrability assumption entails that, for every f ∈ A , t ∈ [0, T ], the function
Mt := ft ◦ et −

´ t
0 (∂t + Ls)f ◦ es ds belongs to L1(η). To check the martingale property, it is

sufficient to apply Fubini’s theorem: for t ∈ [0, T ] and any bounded Ft-measurable function
g, it holds

ˆ
MT g dη =

ˆ [ˆ
MT g dηz

]
dν̄(z) =

ˆ [ˆ
Mtg dηz

]
dν̄(z) =

ˆ
Mtg dη.

�
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Martingale flows

We define martingale flows as selections of solutions to martingale problems.

Definition 1.10 (martingale flows). Let L = L(a, b) be a diffusion operator with a, b as in
(1.1). A family of probability measures (η(s, x))(s,x)∈[0,T ]×Rd ⊆P(C([0, T ];Rd)) is said to be
a martingale flow (MF) associated to L if, for every s ∈ [0, T ], the map x 7→ η(s, x) is Borel
and for every ν̄ ∈P(Rd), the probability measure

η :=

ˆ
η(s, x)dν̄(x) ∈P(C([0, T ];Rd)) (1.6)

is a solution to the martingale problem in C([0, T ];Rd), associated to the diffusion χ[s,T ]L,
with ηs = ν̄.

If we let ν̄ = δx we deduce that for any martingale flow, η(s, x) is a solution to the MP
such that η(s, x)s = δx. In view of Proposition 1.9, one could directly introduce martingale
flows requiring that η(s, x) solves the martingale problem with initial datum δx, but we choose
the formulation above since it translates directly to the metric measure spaces setting, see
Definition 6.11 and Remark 6.12. Notice that one can equivalently require for η in (1.6) to
be a solution of the martingale problem in C([s, T ];Rd) associated to the diffusion L, but it
is technically easier to consider the flow as consisting of probability measures all defined the
same space C([0, T ];Rd). On the other hand, it clearly holds ηt = ν̄ also for t ≤ s.

Remark 1.11. In [Ambrosio and Crippa, 2008] as well as in [Figalli, 2008], the definition of
flow is given without the parameter s ∈ [0, T ], i.e. by considering a Borel selection of solutions
of the MP only at s = 0. Here, we prefer to look at forward solutions starting from every
s ∈ [0, T ] and x ∈ Rd, essentially because in the stochastic setting, Lemma 1.14 below does
not provide a full counterpart of [Ambrosio and Crippa, 2008, Theorem 9]. Moreover, the
collection (η(s, x))(s,x)∈[0,T ]×Rd provides, in some sense, a more complete description of the
diffusion process associated to L. �

Remark 1.12 (Markov property). We are not imposing to martingale flows any Markov or
semigroup property, which in this formulation reads as the Chapman-Kolmogorv equations

η(s, x)t =

ˆ
Rd

η(r, y)t η(s, x)r(dy), for every x ∈ Rd, r, s, t ∈ [0, T ] with s ≤ r ≤ t. (1.7)

We obtain them as a consequence of uniqueness, in Lemma 1.16. However, let us remark that
it is of independent interest to restrict the study to flows that are Markov, as in [Stroock and
Varadhan, 2006, Chapter 12].

The strong Markov property for flows (roughly, (1.7) with stopping times in place of
deterministic times) seems to require for the joint map (s, x) 7→ η(s, x) to be Borel. We say
that a flow is strong if such a condition holds: this notion is technical and we prefer not
do not address strong flows: throughout this thesis, we restrict the attention to existence
and uniqueness issues for martingale flows (once uniqueness is proved, one may investigate
whether the flow is strong). �
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The superposition principle

We conclude this section with an abstract definition for the validity of a superposition principle
for diffusions, providing a “lift” of solutions to Fokker-Planck equations ν = (νt)t to solutions
η to martingale problems, i.e. a converse to Remark 1.7.

Definition 1.13 (superposition principle). Let a, b be Borel maps as in (1.1) and let ν =
(νt)t∈(0,T ) ⊆P(Rd) be a weak solution to the FPE (1.2), with L = L(a, b). We say that the

superposition principle holds for ν if there exists η ∈P(C([0, T ];Rd)), called a superposition
solution for ν, which solves the MP associated to L(a, b) and it holds ηt = νt for L 1-a.e.
t ∈ (0, T ).

In the deterministic case of vector fields, continuity equations and ODE’s, the term “su-
perposition principle” stems from the fact that, in the general case of non-regular coefficients,
the superposition solution η is non-trivially distributed among the non-unique solutions to
the ODE, thus introducing some randomness in an otherwise deterministic setting. Notice
that, in the general case of diffusion operators and martingale problems, all the solutions show
already some “intrinsic” randomness, so at this level the term is justified only by extension
from the deterministic case.

1.2 Equivalence between FPE’s, MP’s and flows

The superposition principle is a crucial tool for establishing a perfect correspondence between
the Eulerian (FPE’s) and Lagrangian (MP’s and flows) point of views on diffusion processes,
transferring well-posedness results both ways. This connection is firmly established in the
deterministic case, see e.g. [Ambrosio and Crippa, 2008, §4], in the case of diffusion operators,
e.g. as in [Figalli, 2008, §2], but also for more abstract generators, see [Ethier and Kurtz,
1986, §4]. As already remarked at the beginning of the chapter, in this section we provide
a complete equivalence, in particular between well-posedness of FPE’s and MP’s, in Lemma
1.15, provided that the superposition principle holds. We postpone the investigation of its
validity, for general diffusions in Rd, in Chapter 2.

Fokker-Planck equations ⇔ martingale problems

Equivalence for existence results is immediate, if the superposition principle holds: from exis-
tence of solutions ν to the FPE associated to L, to which the superposition principle applies,
we obtain existence of solutions to the correspondent MP, simply because the superposi-
tion principle is already a more precise statement. A first result that allows for transferring
uniqueness is the following one, see [Figalli, 2008, Theorem 2.3].

Lemma 1.14 (transfer of uniqueness for 1-marginals). Let a, b be Borel maps as in (1.1), let
ν̄ ∈ P(Rd) and assume that the superposition principle holds for every narrowly continuous
solution ν = (ν)t∈[0,T ] ⊆P(Rd) to the FPE

∂tνt = L∗t νt, in (0, T )× Rd, with ν0 = ν̄. (1.8)

Then, the following conditions are equivalent:

i) there exists at most one narrowly continuous solution ν to the FPE (1.8);
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ii) any two solutions η1, η2 to the MP associated to L, with η1
0 = η2

0 = ν̄, have identical
1-marginals, i.e. η1

t = η2
t for t ∈ [0, T ].

Proof. i) ⇒ ii). Let ηi be solutions to the MP associated to L, with ηi0 = ν̄ for i ∈ {1, 2}.
Then ηi = (η1

t )t is a narrowly continuous weak solution to the FPE associated to L with
ν0 = ν̄, thus η1 = η2.

ii) ⇒ i). It is sufficient to consider superposition solutions ηi for i ∈ {1, 2} to deduce that
ν1 = η1 = η2 = ν2. �

A stronger uniqueness result, at the level of processes, can be deduced assuming uniqueness
for every initial datum and for all the restricted problems to intervals of the form [s, T ] for
s ∈ [0, T ], together with the correspondent superposition principles. The argument we employ
dates back at least to [Stroock and Varadhan, 2006, Theorem 6.2.3]; see also [Figalli, 2008,
Proposition 5.5]. In the deterministic case, however, a different argument shows that it is not
necessary to consider uniqueness starting from intermediate times, see [Ambrosio and Crippa,
2008, Theorem 9].

Lemma 1.15 (transfer of uniqueness). Let a, b be Borel maps as in (1.1). For every s ∈ [0, T ],
let the superposition principle hold, for every solution (ν)t∈(s,T ) ⊆P(Rd) to the FPE

∂tνt = L∗t νt, in (s, T )× Rd,

where any superposition solution is required to solve the MP associated to L on C([s, T ];Rd).
Then, the following conditions are equivalent:

i) for every s ∈ [0, T ] and ν̄ ∈P(Rd), there exists at most one narrowly continuous solution
ν = (νt)t∈[s,T ] to the FPE

∂tνt = L∗t νt, in (s, T )× Rd, with νs = ν̄;

ii) for every s ∈ [0, T ], if η1, η2 ∈P(C([s, T ];Rd)) are solutions to the MP associated to L

on C([s, T ];Rd), with η1
s = η2

s , then η1 = η2.

Proof. ii) ⇒ i). goes identical as in Lemma 1.14: given νi, we consider a superposition
solution ηi ∈ P(C([s, T ];Rd)), for i ∈ {1, 2}, and by the assumption we deduce η1 = η2, in
particular ν1 = η1 = η2 = ν2.

i) ⇒ ii). In this case, the proof relies (implicitly) on the Markov property. Let s ∈ [0, T ]
and η1, η2 ∈P(C([s, T ];Rd)) be solutions to the MP associated to L on C([s, T ];Rd), with
η1
s = η2

s . To deduce that η1 = η2, it is enough to show that, for every n ≥ 1, the n-marginals
of η1 an η2 coincide, i.e., for any s ≤ t1 < . . . < tn ≤ T and A1, . . . , An ⊆ Rd Borel sets, it
holds

η1(et1 ∈ A1, . . . , etn ∈ An) = η2(et1 ∈ A1, . . . , etn ∈ An). (1.9)

We argue by induction on n ≥ 1. The case n = 1 holds true, as a consequence of i) ⇒
ii) in Lemma 1.14, i.e. we use the fact that (ηit)t∈[s,T ] for i ∈ {1, 2} are narrowly continuous
solutions to the same FPE, with η1

s = η2
s . To perform the induction step from n to n+ 1, we

argue as follows. For fixed s ≤ t1 < . . . < tn < tn+1 ≤ T and A1, . . . , An, An+1 ⊆ Rd Borel
sets, let

ρ :=

∏n
i=1 χAi(eti)

η1(et1 ∈ A1, . . . , etn ∈ An)
: C([s, T ];Rd)→ [0,∞),
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i.e., in probabilistic jargon, the density of η conditioned upon the event
⋂n
i=1 {eti ∈ Ai}. We

assume that the denominator above is not null: otherwise there is nothing to prove since,
by the inductive assumption, (1.9) holds true. Notice also that the inductive assumption
similarly gives (etn)](ρη

1) = (etn)](ρη
2), since it amounts to the identity

η1(et1 ∈ A1, . . . , etn ∈ (An ∩B)) = η2(et1 ∈ A1, . . . , etn ∈ (An ∩B)), for all B ⊆ Rd Borel.

For i ∈ {1, 2}, define ηiρ as the push-forward of the measure ρηi with respect to the natural
projection

π : C([s, T ];Rd) 3 γ 7→ (γt)t∈[tn,T ] ∈ C([tn, T ];Rd).

By Proposition 1.8, ηiρ solves the martingale problem associated to L on C([tn, T ];Rd), with
identical laws at tn:

(η1
ρ)tn = (etn)](ρη

1) = (etn)](ρη
2) = (η2

ρ)tn

Again by the implication i) ⇒ ii) in Lemma 1.14, we deduce that (η1
ρ)t = (η2

ρ)t for t ∈ [tn, T ],
in particular for tn+1, entailing

η1(et1 ∈ A1, . . . , etn ∈ An, etn+1 ∈ An+1)

η1(et1 ∈ A1, . . . , etn ∈ An)
=
η2(et1 ∈ A1, . . . , etn ∈ An, etn+1 ∈ An+1)

η2(et1 ∈ A1, . . . , etn ∈ An)
,

and so the correspondent of (1.9) for the case n+ 1 is settled. �

Martingale problems ⇔ martingale flows

We investigate the link between well-posedness for martingale problems and flows. Since
both these notions are “Lagrangian”, there is no need of the superposition principle here.
Let us introduce the following notation: for (s, ν̄) ∈ [0, T ] ×P(Rd), we write Cs,ν̄(L) ⊆
P(C([0, T ];Rd)) for the set of solutions η to the martingale problem associated to χ[0,s]L,
with ηs = ν̄.

Lemma 1.16 (well-posedness for MF’s). Let L = L(a, b) be a diffusion with a, b as in (1.1),
and assume that Cs,x := Cs,δx(L) is compact for every (s, x) ∈ [0, T ]× Rd, with

[0, T ]× Rd 3 (s, x) 7→ Cs,x ∈ K (P(C([0, T ];Rd)))

Borel, where the target space is that of compact sets of P(C([0, T ] × Rd)) endowed with the
Hausdorff distance, see e.g. [Stroock and Varadhan, 2006, Chapter 12, §1]. Assume also that

sup
x∈Rd,η∈Cs,x

ˆ T

s

ˆ
|Ltf | dηt dt <∞,

for every s ∈ [0, T ], f ∈ A = C1,2
c ((0, T )× Rd).

Then, the following conditions are equivalent:

i) for every s ∈ [0, T ], ν̄ ∈P(Rd), there exists a unique η(s, x) ∈ Cs,ν̄(L);

ii) there exists a unique martingale flow associated to L.

In such a case, the (unique) martingale flow satisfies (1.7).
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Proof. i) ⇒ ii). Uniqueness of a martingale flow assuming uniqueness of martingale problems
is trivial. By the assumption, the map x 7→ η(s, x) is Borel being composition of Borel maps
(projecting the singleton into its point is Borel), for every s ∈ [0, T ]. To check that it provides
a martingale flow, it is sufficient to apply Proposition 1.9.

ii) ⇒ i). Existence of solutions to the martingale problem, assuming existence of a
martingale flow follows trivially from (1.6). To prove uniqueness we argue as follows: assume
that there exists s̄ ∈ [0, T ], µ̄ such that η1, η2 ∈ Cs̄,µ̄ with η1 6= η2. By disintegrating
with respect to es̄, we deduce with no loss of generality that µ̄ = δx̄, for some x̄ ∈ Rd. Let
(η(s, x))s,x be a martingale flow (here we use existence) and then modify it only at the point
(s̄, x̄), letting η(s̄, x̄) = ηi(s̄, x̄), for i ∈ {1, 2}. Clearly, the two maps obtained are Borel and
provide two different martingale flows, in contrast with the uniqueness assumption. To check
that they are martingale flows, it is sufficient to argue for s = s̄ and rely on the identityˆ

ηi(s̄, x)dν̄(x) =

ˆ
{x 6=x̄}

η(s̄, x)dν̄(x) + ηi(s, x)ν̄(x̄),

and Proposition 1.9.
To prove that (1.7) holds, it is enough to notice that, if we let π : C([s, T ];Rd) 7→

C([r, T ];Rd) be the natural projection, by Proposition 1.8, then π](η(s, x)) ∈ Cr,ν̄ (to be
rigorous, we have to extend it trivially on [0, r]), where ν̄ = η(s, x)r, by definition. By
uniqueness, we deduce

π](η(s, x)) =

ˆ
Rd

η(r, y) η(s, x)r(dy), as measures on C([r, T ];Rd),

which entails (1.7). �

An identical proof shows that if

[0, T ]× Rd 3 (s, x) 7→ Cs,x ∈ K (P(C([0, T ]× Rd)))

is Borel, then the unique martingale flow, if it exists, is strong in the sense introduced in
Remark 1.12.

Remark 1.17 (flows in the deterministic case). When a = 0, we noticed in Remark 1.6
that solutions to the martingale problem associated to L(0, b) correspond to probability mea-
sures concentrated solutions to the ODE driven by b. Under the assumptions of the result
above, for every (s, x) ∈ [0, T ] × Rd there exists a unique solution X(s, x) ∈ C([0, T ];Rd)
and η(s, x) = δX(s,x), thus the martingale flow reduces to the unique flow in the usual
sense. In particular, Chapman-Kolmogorov (1.7) equations reads as the semigroup law
X(s, x)(t) = X(r,X(s, x))(t), for x ∈ Rd, r, s, t ∈ [0, T ], with s ≤ r ≤ t. �

The results developed in this section apply in the case of diffusions with bounded and
continuous coefficients a, b, as investigated by Stroock and Varadhan [2006]. In particular,
the superposition principle holds, e.g. by Theorem 2.12, and Corollary 2.11 shows that the
sets Cs,ν̄ are pre-compact. To prove that they are closed, one relies and the continuity of
the coefficients to show that narrow limits of solutions to martingale problems solve the limit
problem. Notice that continuity for (s, ν̄) 7→ Cs,ν̄ is equivalent to the statement that for
every sequence (sn, ν̄n) with sn → s in [0, T ], ν̄n → ν̄ narrowly in P(Rd), up to extracting a
subsequence, there exists ηn ∈ Csn,ν̄n narrowly convergent to some η ∈ Cs,ν̄ . We deduce that
the following statements are equivalent:
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i) for every s ∈ [0, T ], ν̄ ∈ P(Rd), there exists a unique narrowly continuous solution to
the FPE;

∂tνt = L∗t νt, in (s, T ), with νs = ν̄;

ii) for every s ∈ [0, T ], ν̄ ∈P(Rd), there exists a unique solution to the martingale problem
associated to L in C([s, T ];Rd), with law of es given by ν̄;

iii) there exists a unique martingale flow associated to L.

Theorem 7.2.1 in Stroock and Varadhan [2006] entails that these conditions hold whenever
a is uniformly bounded, continuous and elliptic, i.e. there exists λ > 0 such that a ≥ λId in
Sym+ Rd.



1.2. EQUIVALENCE BETWEEN FPE’S, MP’S AND FLOWS 14



Chapter 2

The superposition principle

In this chapter, we establish the superposition principle for rather general diffusions in Rd, in
particular under minimal regularity and no ellipticity assumptions on coefficients: this both
settles the equivalence results in the previous chapter and provides a rigorous foundation on
which we build our deductions in the metric measure space setting, in Chapter 7.

The main result obtained in this chapter, i.e., Theorem 2.14, provides a far-reaching
extension of [Figalli, 2008, Theorem 2.6], which gives superposition solutions in the case of
diffusions whose coefficients are uniformly bounded in (0, T )×Rd. Let us mention that results
in a similar spirit appear quite often in the literature, e.g. [Smirnov, 1993] in the framework
of (deterministic) currents, or Echeverria’s theorem [Ethier and Kurtz, 1986, Theorem 4.9.17]
and extensions [Kurtz and Stockbridge, 1998] in the framework of martingale problems in
spaces of càdlàg paths. Large parts of our deductions are to be regarded as counterparts of
[Ambrosio et al., 2008, §8.1 and §8.2] in the setting of diffusions. From this premises, the
result itself is rather natural, but let us remark that its derivation is not immediate from the
available literature, due to non-trivial technical points (see Remark 2.15).

We also aim at providing a complete and self-contained exposition, thus in Section 2.1,
we begin by establishing the superposition principle for diffusions having sufficiently smooth
coefficients, which is our base case for subsequent deductions. In Section 2.2, we focus on
some general features shared by many proofs of superposition principles in the literature, as
well as in our case. In Section 2.3.1, we extend the superposition to diffusions with uniformly
bounded coefficients, that is roughly the case covered in [Figalli, 2008, Theorem 2.6]. In
Section 2.3.2 and Section 2.3.3 we move forward in generality, first to the case of locally
bounded coefficients and then to our main result.

2.1 Case of smooth and bounded diffusions

We address the superposition principle for diffusions in Rn with sufficiently smooth and
bounded coefficients. Precisely, we prove the following theorem.

Theorem 2.1 (superposition principle, smooth case). Let a, b be Borel maps as in (1.1),
with ˆ T

0

[
‖at‖C2

b (Rd) + ‖bt‖C2
b (Rd)

]
dt <∞. (2.1)

Then, the superposition principle holds for every solution ν = (νt)t∈(0,T ) ⊆P(Rd) to the
FPE (1.2) associated to L = L(a, b).

15
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The argument is standard and based on two well-known facts: the first one, of “La-
grangian” nature, is well-posedness for Itô stochastic differential equations with bounded
Lipschitz coefficients, Theorem 2.2; the second one is “Eulerian”, being uniqueness for nar-
rowly continuous solutions to FPE’s (1.2) for L = L(a, b) with a b satisfying (2.1), Theorem
2.4. Here, the only novelty with respect to the classical approach with these problems consists
in relaxing uniform bounds with respect to t ∈ (0, T ) to mere integral bounds.

Let us remark that, for the only purpose of establishing a case base for the validity of a
general superposition principle, thanks to the scheme that we introduce in the next section (see
also Remark 2.6), we may also argue under much stronger assumptions on the coefficients, e.g.
a, b ∈ C∞b ((0, T )×Rd), but it seems that there is no real gain in simplicity of our deductions.

Theorem 2.2 (existence for smooth MP’s). Let a, b be Borel maps as in (1.1), satisfying
(2.1). Then, for every ν̄ ∈P(Rd), there exists a solution η to the MP associated to L(a, b),
with η0 = ν̄.

Proof. The assumption a ∈ L1
t (C

2
b (Rd)) entails that the symmetric non-negative square-root

of a, i.e. the essentially unique map

σ : (0, T )× Rd → Sym+(Rd) such that σ2
t = at, L 1-a.e. t ∈ (0, T ),

is bounded and Lipschitz with respect to x ∈ Rd, with bounds integrable with respect to
t ∈ (0, T ), see e.g. [Stroock and Varadhan, 2006, Lemma 3.2.3].

Let (Ω, (Ft)t∈[0,T ],P), be a filtered probability space (it is not necessary that the so-called
usual assumptions on the filtration hold, see [Stroock and Varadhan, 2006, Lemma 4.3.3] and
the discussion above it) endowed with a continuous F-Wiener process W = (Wt)t∈[0,T ] with

values in Rd. Let also X be a real-valued random variable, defined on the same probability
space, and F0-measurable, thus independent of W .

Assume first that X ∈ L2(P). Then, by Picard fixed point we solve the Itô stochastic
differential equation (SDE)

dXt = bt(Xt)dt+
√

2σt(Xt)dWt, X0 = X, (2.2)

obtaining a P-a.s. continuous progressively measurable process X = (Xt)t∈[0,T ] [Stroock and
Varadhan, 2006, Theorem 5.11] such that it holds

Xt = X +

ˆ t

0
bs(Xs)ds+

√
2

ˆ t

0
σs(Xs)dWs, for t ∈ [0, T ], P-a.e. in Ω.

Itô’s formula entails that the law of X, i.e. P]X, is a solution to the martingale problem
associated to L(a, b).

Moreover, by pathwise uniqueness, hence uniqueness in law, for the SDE (2.2), the function
mapping the law ofX into P]X is injective, one is able to provide a Borel family of probabilities
(η(x))x∈Rd ⊆ P(C([0, T ];Rd)), each solving the martingale problem associated to L(a, b),
with η(x)0 = δx, see [Stroock and Varadhan, 2006, Theorem 5.11]. Therefore, even if the
law of ν̄ has no finite second moments, we show existence of a solution to the MP letting
η =

´
η(x)dν̄(x). �

Arguing as above, for s ∈ [0, T ], one is able to define a Borel family (η(s, x))(s,x)∈[0,T ]×Rd

with η(s, x) solving the MP on C([s, T ];Rd), i.e. a martingale flow after Definition 1.10.
One can also prove that (s, x) 7→ η(s, x) is narrowly continuous, arguing as in [Stroock and
Varadhan, 2006, Theorem 5.1.4].
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Remark 2.3 (the smooth, locally bounded, case). Assuming that the coefficients a, b satisfy
the local analogue of (2.1), i.e.

ˆ T

0

[
‖at‖C2(B) + ‖bt‖C1(B)

]
dt <∞, for every bounded B ⊆ Rd,

one is able to provide existence as well as unique for a maximal solution X = (Xt)t∈[0,τ) to

the SDE (2.2), up to an explosion time τ . By taking the one-point compactification of Rd,
i.e. adding the point ∞ and letting Xt = ∞ for t ≥ τ , one can prove that X thus defined is
continuous and that its law η is a solution to the martingale problem associated to L(a, b), in
duality with C2

c ((0, T )×Rd) (with a slight abuse, since we view η as a probability measure on
continuous curves with values in the compactification of Rd or as a sub-probability measure
in Rd). �

Before we address the uniqueness result for FPE’s, we recall some known results on (back-
ward) Kolmogorov equations, referring e.g. to the expository notes by Krylov [1999] for more
details. For simplicity, we let a, b be C∞b ((0, T ) × Rd) and g ∈ C∞c ((0, T ) × Rd). Then,
Kolmogorov equations of the form

∂tf = −Ltf + g, in (0, T )× Rd, fT = f̄ , (2.3)

provide a dual point of view to that of FPE’s. Notice that in the deterministic case they
reduce to (bakward) transport equations, with a source term g. A solution to the equation
(2.3) is by definition a function f ∈ C1,2

b ((0, T )× Rd) such that

∂tf(s, x) = −Lsf(s, x) + g(s, x), for every (s, x) ∈ (0, T )× Rd and lim
s↑T

f(s, x) = f̄(x).

Kolmogorov equations can be investigated with martingale flows η = (η(s, x))[0,T ]×Rd , at
least if the coefficients are sufficiently smooth, as we assume here. Indeed, one can prove by
stochastic methods that, if f̄ ∈ C2

b (Rd), then

f(s, x) :=

ˆ
f̄ dη(s, x)T −

ˆ T

s

ˆ
gr dη(r, x)Tdr

provides a solution to (2.3). Notice that ‖f‖∞ ≤ ‖f̄‖∞+T ‖g‖∞ and if g ≥ 0 then f ≤
∥∥f̄∥∥∞,

which can be seen as consequence either of the fact that η(s, x) are probability measures
or by the maximum principle and ultimately because a is non-negative, see [Stroock and
Varadhan, 2006, Theorem 3.1.1]. Indeed, the maximum principle entails also uniqueness for
solutions to (2.3), while existence can be proved by PDE techniques, e.g. by vanishing viscosity
approximation as in [Stroock and Varadhan, 2006, Theorem 3.2.5 and Theorem 3.2.6]. We
sketch the proof the following bound for solutions f , in terms of (2.1), which is useful for our
purpose:

sup
t∈[0,T ]

‖ft‖C2(Rd) ≤ C
{ˆ T

0

[
‖at‖C2

b
+ ‖bt‖C1

b

]
dt+ T ‖g‖C2

}(
‖f̄‖C2 + T ‖g‖C2

)
, (2.4)

where z 7→ C{z} denotes some function depending on the dimension d only. As already
noticed, the maximum principle entails a bound for ‖ft‖∞, uniform in t ∈ [0, T ], so that
we are reduced to investigate the bounds for the derivatives. Let us highlight the formal
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argument in the proof, referring to [Stroock and Varadhan, 2006, Theorem 3.2.4] for a more
general result. Assuming that f is sufficiently smooth, we write the equations solved by
|∇ft|2 = ∇ft · ∇ft and

∣∣∇2f
∣∣2 = ∇2f : ∇2f , which read as

∂t |∇f |2 = 2∇f · ∇∂tf = −L |∇f |2 − 2R(f), |∇fT |2 =
∣∣∇f̄ ∣∣2 ,

and
∂t
∣∣∇2f

∣∣2 = 2∇2f : ∇2∂tf = −L
∣∣∇2f

∣∣2 − 2R′(f),
∣∣∇2fT

∣∣2 =
∣∣∇2f̄

∣∣2 ,
where we also omit to denote the dependence upon t ∈ (0, T ) and let

R(f) :=
1

2

[
L |∇f |2 − 2∇f · ∇Lf

]
−∇g · ∇f,

R′(f) :=
1

2

[
L
∣∣∇2f

∣∣2 − 2∇2f : ∇2Lf
]
−∇2g : ∇2f.

The crucial point is to provide suitable bounds from below for R, R′ in terms of a, b and their
derivatives. By linearity, we deal separately with the cases L(a, 0) and L(0, b) and let g = 0,
the general case being a simple variant. In the latter case,

2R(f) = b · ∇ |∇f |2 − 2∇f · ∇(b∇f) = −2∇b : (∇f ⊗∇f) ≥ −‖∇b‖∞ |∇f |
2 ,

for R(f), while for R′(f), we estimate

2R′(f) = b · ∇
∣∣∇2f

∣∣2 − 2∇2f : ∇2(b · ∇f)

= b · ∇
∣∣∇2f

∣∣2 − 2∇2f :
[
(∇2b)∇f + 2(∇b)∇f + b∇3f

]
= −2∇2f :

[
(∇2b)∇f

]
− 4∇2f :

[
(∇b)∇2f

]
≥ −2

[∥∥∇2b
∥∥2

∞ + 2 ‖∇b‖∞
] ∣∣∇2f

∣∣2 − 1

2

∥∥∇2b
∥∥2

∞ ‖∇f‖
2
∞ .

Computing the commutator for L(a, 0), we obtain

2R(f) = a : ∇2 |∇f |2 − 2∇f · ∇(a∇2f)

= 2a : (∇3f ∇f) + 2a : (∇2f)2 − 2∇f ·
[
(∇a)(∇2f)

]
− 2∇f · a∇3f

= 2a : (∇2f)2 − 2∇f ·
[
(∇a)(∇2f)

]
= 2

∣∣σ∇2f
∣∣2 − 4∇f ·

[
(∇σ)σ∇2f)

]
± 2 |(∇σ)∇f |2

= 2
∣∣σ∇2f − (∇σ)∇f

∣∣2 − 2 |(∇σ)∇f |2

≥ −2 ‖∇σ‖2∞ |∇f |
2 ,

using the identities A : (Bv) = AB · v and A2 : B2 = |AB|2. To handle the second order
commutator, we argue similarly and obtain in conclusion the bound

R′(f) ≥ −
∣∣(∇σ)∇2f

∣∣2 −∇2f :
[
(∇2a)∇2f

]
≥ −

[
‖∇σ‖2∞ +

∥∥∇2a
∥∥
∞

] ∣∣∇2f
∣∣2 .

Thanks to these bounds, we obtain that |∇f |2 satisfies

∂t |∇f |2 ≤ −L |∇f |2 +
[
‖∇b‖2∞ + ‖∇σ‖2∞

]
|∇f |2 , |∇fT |2 =

∣∣∇f̄ ∣∣2 .
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By Gronwall lemma and the maximum principle for L we deduce

sup
t∈[0,T ]

‖∇f‖∞ ≤ exp

{ˆ T

0

[
‖∇bt‖2∞ + ‖∇σt‖2∞

]
dt

}∥∥∇f̄∥∥∞ .
Now that this uniform bound is established, from the fact that

∣∣∇2f
∣∣2 solves

∂t |∇f |2 ≤ −L |∇f |2+2
[∥∥∇2b

∥∥2

∞ + 2 ‖∇b‖∞
] ∣∣∇2f

∣∣2+
1

2

∥∥∇2b
∥∥2

∞ ‖∇f‖
2
∞ ,

∣∣∇2fT
∣∣2 =

∣∣∇2f̄
∣∣2

and again Gronwall lemma and the maximum principle for L, we obtain a uniform upper
bound for

∣∣∇2f
∣∣2 in terms of

exp

{ˆ T

0

[
‖∇bt‖2∞ + ‖∇σt‖2∞

]
dt

}[∥∥∇2f̄
∥∥
∞ + sup

t∈[0,T ]
‖∇ft‖2∞

ˆ T

0

∥∥∇2bt
∥∥2

∞ dt

]
,

which leads to the inequality (2.4). These computations are formal, but can be made rigorous
by considering the uniformly elliptic case, which provides sufficient regularity and then argue
in the vanishing viscosity limit.

We are in a position to prove the following uniqueness and comparison theorem for weak
solutions to Fokker-Planck equations, akin to [Ambrosio et al., 2008, Proposition 8.1.7].

Theorem 2.4 (uniqueness and comparison for smooth FPE’s). Let a, b be Borel maps as in
(1.1) and satisfy the following local version of (2.1):

ˆ T

0
‖at‖C2(B) + ‖bt‖C2(B) dt <∞, for every bounded open B ⊆ Rd.

Let ν = (νt)t∈[0,T ] ⊆ M (Rd) be a narrowly continuous solution to the FPE associated to
L(a, b), with a, b ∈ L1(ν). Then, the condition ν0 ≤ 0 entails νt ≤ 0, for every t ∈ [0, T ], and
in particular there exists at most one narrowly continuous solution ν with a, b ∈ L1(ν).

Proof. Let g ∈ C∞c ((0, T )× Rd), with g ≥ 0. Our aim is to show that
´
g dν ≤ 0. Fix R ≥ 1

large enough so that the support of g is contained in (0, T ) × BR(0) and let χR be as in
Remark 1.3. Notice that letting aR = aχR and bR = bχR in place of a, b, condition (2.1)
holds and LRf = Lf on (0, T )×BR(0), for every f ∈ C2

b ((0, T )× Rd).
For ε > 0, let aεR, bεR be a double mollification with respect to the space and time variables,

and define LεR = L(aεR, b
ε
R), which is a diffusion operator with smooth and bounded coeffi-

cients, satisfying (2.1) uniformly in ε > 0. Let f ε be a solution to the backward Kolmogorov
equation

∂tf
ε = −LεRf ε + g, f εT = 0,

and choose f εχR in the weak formulation (1.3), which is admissile because f ε ∈ C1,2
b ((0, T )×

Rd) (see also Remark 1.4). Since f ε ≤ 0 and ν0 ≤ 0, we have

0 ≥ −
ˆ
f εχR dν0 =

ˆ
[χR ∂tf

ε + L(f εχR)] dν

=

ˆ
[−χR LεRf + L(f εχR)] dν

=

ˆ
{χR [g + LεRf

ε − Lf ε] + f εLχR + 2a(∇f ε,∇χR)} dν

≥
ˆ
g dν − sup

t∈[0,T ]
‖f εt ‖C2

b (Rd)

ˆ
[χR |aεR − a|+ |bεR − b|+ |LχR|+ 2 |a| |∇χR|] d |ν| .
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As ε ↓ 0, since aR = a and bR = b on (0, T ) × B(0, R), the second integral converges to´
[|LχR|+ 2 |a| |∇χR|] d |ν|, and supt∈[0,T ] ‖f εt ‖C2

b
is uniformly bounded in ε > 0, by (2.4).

Finally, we let R → ∞ and conclude, since |∇χR| + |∇χR| → 0, pointwise and uniformly
bounded. �

Proof of Theorem 2.1. By Remark 1.4, any weak solution ν = (νt)t∈(0,T ) admits a narrowly
continuous representative ν̃. Let η be a solution to the martingale problem associated to L,
as provided by Theorem 2.2, with ν̄ = ν̃0. By Remark 1.7, η = (ηt)t∈[0,T ] provides a narrowly
continuous solution to the Fokker-Planck equation associated to L, with η0 = ν̃0. By Theorem
2.4, we conclude that ηt = ν̃t, for t ∈ [0, T ]. �

2.2 The approximation-tightness-limit scheme

There is a common structure in many proofs of superposition principles available in the
literature, e.g. [Ambrosio et al., 2008, Theorem 8.2.1], [Ambrosio and Crippa, 2008, Theorem
12], [Ambrosio and Figalli, 2009, Theorem 4.5], [Figalli, 2008, Theorem 2.6], [Ambrosio and
Trevisan, 2014, Theorem 7.1]. In this section, we highlight its main steps, providing at the
same time useful auxiliary results.

Let ν = (νt)t∈(0,T ) be a solution to the FPE associated to a diffusion operator L(a, b). To
deduce existence of a superposition solution for ν, we argue in three steps.

Step 1 (approximation). We build from ν a sequence of solutions (νn)n to FPE’s associated
respectively to diffusions (Ln)n, for which the superposition principle is already known to
hold, thus providing a sequence of solutions (ηn)n to correspondent MP’s. Here the difficulty
is to provide a good approximation, so that νn converge towards ν, e.g., narrowly, and L

towards L, in a sense to be made precise, as n→∞.

Step 2 (tightness). We prove that the sequence (ηn)n ⊆ P(C([0, T ];Rd)) is tight, thus
obtaining existence of a narrow limit η, up to extracting a subsequence. By Ascoli-Arzelà
criterion, this step reduces to prove bounds on the modulus of continuity.

Step 3 (limit). From convergence νn → ν, Ln → L, as n → ∞, we argue that η is a
superposition solution for ν.

2.2.1 Approximation

The approximation step consists in mollifying by convolutions or considering suitable push-
forwards of solutions via smooth maps. In this section we remark some general features of
these transformations.

Push forward via smooth maps

Let ν = (νt)t∈(0,T ) ⊆M +(Rd) be a solution to the FPE associated to L(a, b), where a, b are
Borel maps as in (1.1) in L1(ν). Let k ≥ 1, and let π be a map

π : Rd → Rk, with πi ∈ C2
b (Rd), for i ∈ {1, . . . k}.

Then, it is possible to define a diffusion operator π(L) on Rk such that π(ν) := (π]νt)t∈(0,T )

is a solution to the associated FPE, in duality with Ak = C1,2
c ((0, T ) × Rk). Indeed, the
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composition f ◦ π(t, x) := f(t, π(x)) belongs to C1,2
b ((0, T )×Rd), thus by Remark 1.3 we can

take f ◦ π as a test function in the weak formulation (1.3) and the chain rule for diffusion
operators entails that

L(f ◦ π) =
k∑
i=1

L(πi) [(∂if) ◦ π] +
k∑

i,j=1

a(∇πi,∇πj) [(∂i,jf) ◦ π] .

We define, for (t, x) ∈ (0, T )× Rd,

π(a)i,jt (x) := Eνt
[
a(∇πi,∇πj) |π = x

]
=
dπ]

[
a(∇πi,∇πj)νt

]
dπ]νt

(x), for i, j ∈ {1, . . . k},

and similarly

π(b)it(x) := Eνt
[
L(πi) |π = x

]
=
dπ]

[
L(πi)νt

]
dπ]νt

(x), for i ∈ {1, . . . k},

we obtain that π(L) := L(π(a), π(b)) is a well-defined diffusion operator on Rk and π(ν) is a
weak solution to the FPE

∂tπ(ν) = π(L)∗π(ν), in (0, T )× Rd.

Notice that, if a, b ∈ Lp(ν), then π(L) has coefficients in Lp(π(ν)), since conditional ex-
pectations reduce norms and the derivatives of πi are uniformly bounded. Moreover, uniform
bounds on the coefficients are preserved by the operation (ν,L) 7→ (π(ν), π(L)), but in gen-
eral local bounds are not. Moreover, since π is continuous, narrowly continuous curves are
preserved.

Convolutions

Let ν = (νt)t∈(0,T ) ⊆M +(Rd) be a solution to the FPE associated to L(a, b), with a, b Borel

maps as in (1.1) and let ρ ≥ 0 be a Borel probability density on Rd (with respect to L d). For
our discussion, if a, b belong only to L1

loc(ν), we have to assume that ρ has compact support,
but as our interest lies on the case when ρ has full support, thus we let a, b ∈ L1(ν). Then, it
is possible to prove that the family of measures ν∗ρ := (νt∗ρ)t∈(0,T ), obtained by convolution,
consists of solution to FPE’s associated to suitably defined diffusion operators. Indeed, for
f ∈ A , it holds f ∗ ρ ∈ C1,2

b ((0, T )× Rd) and

L(f ∗ ρ) =

d∑
i=1

bi∂i(f ∗ ρ) +

d∑
i,j=1

ai,j∂i,j(f ∗ ρ)

=

d∑
i=1

bi(∂if) ∗ ρ+

d∑
i,j=1

ai,j(∂i,jf) ∗ ρ.

We define

(aρ)i,j :=
d(ai,jνt) ∗ ρ
d(νt ∗ ρ)

, (bρ)i :=
d(biνt) ∗ ρ
d(νt ∗ ρ)

, ∀i, j ∈ {1, . . . d} .
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Then, (νt ∗ ρ)t∈(0,T ) is a weak solution to the FPE associated to Lρ := L(aρ, bρ), since for
f ∈ A it holds

ˆ
∂tf d(ν ∗ ρ) =

ˆ
(∂tf) ∗ ρ dν =

ˆ
∂t(f ∗ ρ) dν

= −
ˆ

L(f ∗ ρ) dν = −
ˆ

Lρf d(ν ∗ ρ).

In the next lemma, we study integrability and regularity properties for (aρ, bρ), referring
to [Ambrosio et al., 2008, Lemma 8.1.10] for more details.

Lemma 2.5. Let ρ be a smooth probability kernel on Rd with ρ > 0 and
∣∣∇iρ∣∣ ≤ Cρ, for

i ∈ {1, . . . k}, where C ≥ 0 is some constant. Let µ, ν ∈M +(Rd), with µ� ν.

Then, it holds µ ∗ ρ� ν ∗ ρ, and the following version of its density,

d(µ ∗ ρ)

d(ν ∗ ρ)
(x) =

´
ρ(x− y) dµ(y)´
ρ(x− y) dν(y)

, for every x ∈ Rd (2.5)

is Ck(Rd). Moreover, for every convex, lower semicontinuous function β : R 7→ [0,∞], it
holds ˆ

β

(
d(µ ∗ ρ)

d(ν ∗ ρ)

)
d(ν ∗ ρ) ≤

ˆ
β

(
dµ

dν

)
dν. (2.6)

Similar conclusions hold when µ = (µt)t∈[0,T ] ⊆ M (Rd) is Borel and ν = (νt)t∈[0,T ] ⊆
M +(Rd) is narrowly continuous, with µt � νt for every t ∈ [0, T ]. We obtain moreover the
bound

sup
t∈[0,T ]

∥∥∥∥d(µt ∗ ρ)

d(νt ∗ ρ)

∥∥∥∥
Ck

b (B)

<∞,

for every open bounded set B ⊆ Rd.

When we apply the lemma above to a narrowly continuous solution ν = (νt)t∈[0,T ] to the
FPE associated to L, we deduce that, for p ∈ [1,∞], if a, b ∈ Lp(ν), then aρ, bρ ∈ Lp(ν ∗ ρ)
and moreover, if ν is narrowly continuous and a, b ∈ L1(ν), then aρt , b

ρ
t are Ck(Rd), uniformly

in t ∈ [0, T ] and in particular, locally bounded, uniformly in t ∈ [0, T ].

Proof. The proof of µ ∗ ρ � ν ∗ ρ is trivial and we omit it. With a slight abuse of notation,
we denote let µ ∗ ρ(x), (respectively ν ∗ ρ(x)) the numerator (respectively the denominator)
in the right hand side of (2.5). These functions are clearly Ck(Rd), with∣∣∇i(µ ∗ ρ)

∣∣ (x) ≤ C(µ ∗ ρ)(x), for x ∈ Rd, ∀i ∈ {1, . . . , k}.

and similar bounds hold for ∇i(ν ∗ ρ). The assumption ρ > 0 entails ν ∗ ρ(x) > 0 for every
x ∈ Rd, thus the quotient in (2.5) is Ck(Rd).

The second statement follows from Jensen’s inequality at fixed x ∈ Rd, applied to the
1-homogeneous, convex and lower semicontinuous function (0, T ) × Rd(t, z) 7→ tβ(|z| /t) and
the measure ρ(x − ·)ν (notice that it does not need to be a probability measure, thanks to
1-homogeneity). The conclusion follows then by integration over x ∈ Rd.

Finally, the t-dependent case is handled similarly, simply noticing that (t, x) 7→ νt ∗ ρ(x)
is continuous and always strictly positive. �
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Remark 2.6. Notice that we may let the kernel ρ depend also on t, by extending any narrowly
continuous solution ν, letting νt = ν0 for t < 0 and νt = νT for t > T . The measures obtained
by convolution solve suitable FPE’s, whose coefficients are smooth also with respect to t. �

Let us point out that more general approximations can be devised, e.g. by replacing π and
ρ by Borel probability kernels K = (Kx)x∈Rd ⊆ P(Rk), for some k ≥ 1. The commutator
between K and L plays an important role, and it seems difficult (perhaps worthless) at this
stage to look for variants, as the two strategies discussed above are sufficient for our purposes.

2.2.2 Tightness

In this section we provide a compactness criterion for solutions to martingale problems in Rd.
By Ascoli-Arzelà theorem, tightness is achieved by estimating the modulus of continuity of
solutions to martingale problems. In the deterministic case, solutions to ODE’s are absolutely
continuous curves; here we rely on analogous results for stochastic processes, leading to Hölder
regularity for their paths from bounds on the quadratic variation of associated martingales.
The technical tools that we employ are fractional Sobolev spaces of curves, clearly related
to Kolmogorov criterion. Let us provide general definitions, for curves with values in metric
spaces, as they become useful also in Part II.

Let (Y, d) a metric space. For δ ∈ (0, 1), p ∈ [1,∞), we introduce the energy functional
‖·‖δ,p on Borel curves γ : (0, T ) 7→ Y , given by

‖γ‖pδ,p :=

ˆ T

0

ˆ T

0

d(γt, γs)
p

|t− s|1+δp
dsdt ∈ [0,∞],

For δ ∈ (0, 1), recall that a curve γ : (0, T ) 7→ R is said to be δ-Hölder continuous if

‖γ‖δ,∞ := sup
s 6=t∈(0,T )

d(γt, γs)

|t− s|δ
<∞.

The following embedding theorem holds, see e.g. [Di Nezza et al., 2012, Theorem 8.2].

Theorem 2.7 (fractional Sobolev embedding). Let (Y, d) be a complete metric space, let
δ ∈ (0, 1), and p ∈ [1,∞), satisfy δp > 1. Then, every Borel curve γ : (0, T ) 7→ Y with
‖γ‖δ,p < ∞ admits a (unique) (δ − 1/p)-Hölder continuous representative γ̃, i.e. γt = γ̃t,

L 1-a.e. t ∈ (0, T ). Moreover, it holds

‖γ̃‖(δ−1/p) ≤ C ‖γ‖δ,p ,

for some constant C depending on δ, p and T only.

Before we address the specific situation of solutions to martingale problem, we give a
general result relying on the previous theorem and Burkholder-Gundy inequalities.

Lemma 2.8. Let (Ω, (Ft)t∈[0,T ],P) be a filtered probability space and let

ϕ = (ϕt)t, ` = (`t)t, α = (αt)t

be progressively measurable processes, with α ≥ 0. Assume moreover that

[0, T ] 3 t 7→Mt := ϕt −
ˆ t

0
`s ds, and [0, T ] 3 t 7→M2

t −
ˆ t

0
αs ds



2.2. THE APPROXIMATION-TIGHTNESS-LIMIT SCHEME 24

are P-a.s. continuous local martingales. For p ∈ (1,∞), δ ∈ (1/p, 1), let

C([0, T ];R) 3 A(γ) := inf
γ=γ1+γ2

{∥∥γ1
∥∥
δ−1/p

+
∥∥γ2
∥∥

(δ−1/p)/2

}
. (2.7)

Then, for some constant C depending on p, δ and T only, it holds

E [A(ϕ)] ≤ C

{[ˆ T

0
E [|`t|p] dt

]1/p

+

[ˆ T

0
E [αpt ] dt

]1/2p
}
. (2.8)

Proof. The assumptions give that (Mt)t is a local martingale, whose quadratic variation
process is t 7→

´ t
0 αsds. We let

γ1
t :=

ˆ t

0
`s ds, γ2

t := Mt, for t ∈ [0, T ],

thus the left hand side in (2.8) is smaller than

E
[∥∥γ1

∥∥
δ−1/p

]
+ E

[∥∥γ2
∥∥

(δ−1/p)/2

]
, (2.9)

for which we provide separate bounds. For the first term, we use Hölder inequality

E
[∥∥γ1

∥∥
δ−1/p

]
≤ E

[∥∥γ1
∥∥p
δ−1/p

]1/p
,

Theorem 2.7 and Fubini’s theorem, reducing the problem to bound from above

E
[∥∥γ1

∥∥p
δ,p

]
=

ˆ
(0,T )2

E
[´ t
s |`r| dr

]p
|s− t|1+δp

dsdt

≤
ˆ

(0,T )2

´ t
s E [|`r|p] dr
|s− t|2−p(1−δ)

dsdt

=

ˆ T

0
E [|`r|p] gp(1−δ),

where we let, for σ > 0,

gσ(r) :=

ˆ T

r

ˆ r

0
|s− t|σ−2 dsdt.

Notice that gσ is uniformly bounded, since

gσ(r) =
1

σ − 1

ˆ T

r

[
(t− r)σ−1 − tσ−1

]
dt =

(T − r)σ − (T σ − rσ)

σ(σ − 1)
,

thus we obtain, for some constant C depending on δ, p and T only,

E
[∥∥γ1

∥∥
δ

]
≤ C

[ˆ T

0
E [|`t|p]

]1/p

.

Next, we provide a bound for the second term in (2.9). We use again Hölder inequality,
with exponent 2p,

E
[
‖M‖(δ−1/p)/2

]
≤ E

[
‖M‖2p(δ−1/p)/2

]1/2p
,
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Theorem 2.7 and Fubini’s theorem, reducing the problem to bound from above the quantity

E
[
‖M‖2pδ/2,2p

]
=

ˆ
(0,T )2

E
[
|Mt −Ms|2p

]
|s− t|1+δp

dsdt.

By Burkholder-Gundy inequalities with exponent 2p, there exists some constant depending
on p only such that

E
[
|Mt −Ms|2p

]
≤ CE

[∣∣∣∣ˆ t

s
αrdr

∣∣∣∣p] ≤ C |t− s|p−1
ˆ t

s
E [αpr ] dr,

thus, arguing as in the previous case, we obtain

E
[
‖M‖2pδ/2,2p

]
≤ C

ˆ T

0
E [αpr ] gp(1−δ)(r)dr.

and (2.8) is settled. �

Notice that, given any coercive function θ : R 7→ [0,∞], the functional γ 7→ θ(γ0)+A(γ) is
coercive, since if A(γ) ≤ K, then it belongs to the image of a compact rectangle in C([0, T ];R)2

by means of the mapping (γ1, γ2) 7→ γ1 + γ2.

Remark 2.9. In the deterministic case, i.e. when a = 0, we obtain that ϕ is P-a.s. δ-Hölder
continuous on (0, T ), for any δ ∈ (0, 1− 1/p). This result is almost optimal, since it does not
entail (1 − 1/p)-Hölder continuity. On the other side, it is well-known that the real valued
Wiener process, obtained by letting ` = 0 and α = 1, is concentrated on paths that are P-a.s.
δ-Hölder continuous for every δ ∈ (0, 1/2), but not 1/2-Hölder continuous: from this point of
view the result is optimal (as we may let p → ∞). We may also provide a variant allowing
for different integrability on ` and α. It is reasonable to assume that in the case p = 1 one
can provide a different coercive functional, for the absolutely continuous part, as in the proof
of [Ambrosio and Crippa, 2008, Theorem 12]. On the other side, for the martingale part, it
is not clear how to deal with the case p = 1. �

We now discuss how Lemma 2.8 becomes useful in the tightness step. Given a solution η
to the martingale problem associated to L(a, b) with a, b as in (1.1), for any f ∈ A , we claim
that letting

ϕt = ft ◦ et, `t = [∂tf + Ltf ] ◦ et, αt = 2at(∇ft,∇ft) ◦ et, for t ∈ [0, T ].

we are in the situation of Lemma 2.8, with Ω = C([0, T ];Rd), P = η and F being the canonical
filtration. Indeed, Mt := ft −

´ t
0 `s ds is a martingale by the very definition of solution to the

martingale problem, so we only have to prove that M2
t −

´ t
0 αs ds is a local martingale.

To this aim, we notice first that, as f2 ∈ A , the process

[0, T ] 3 t 7→ f2
t −

ˆ t

0
[∂t + Ls] f

2 ◦ es ds (2.10)

is a martingale as well. The key point is to use the identity

a(∇f,∇f) =
1

2

[
(∂t + L)f2 − 2f(∂t + L)f

]
.
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To keep notation simple, we omit to write any appearance of et, es or er in the following
identities. Developing the square of Mt, it holds

M2
t = (ft −

ˆ t

0
`s ds)

2 = f2
t + 2

ˆ t

0
(∂t + L)fs

[ˆ t

s
(∂t + L)fr dr − ft

]
ds.

Then, we replace f2
t by using (2.10), to deduce that

t 7→M2
t −

ˆ t

0
(∂t + L)f2

s ds− 2

ˆ
(∂t + L)fs

[ˆ t

s
(∂t + L)frdr − ft

]
ds

is a martingale. We add and subtract 2
´ t

0 fs(∂t + L)fsds, obtaining that

t 7→M2
t −

ˆ t

0
αs ds+ 2

ˆ t

0
(∂t + L)fs

[
ft − fs −

ˆ t

s
(∂t + L)frdr

]
ds

is a martingale. We conclude by noticing that

t 7→
ˆ t

0
(∂t + L)fs

[
ft − fs −

ˆ t

s
(∂t + L)fr dr

]
ds =

ˆ t

0
`s (Mt −Ms) ds

is a local martingale, as a consequence of the following lemma (see also [Stroock and Varadhan,
2006, Theorem 1.2.8]).

Lemma 2.10. Let (Ω, (Ft)t∈[0,T ],P) be a filtered probability space and let ` = (`t)t be progres-
sively measurable, M = (Mt)t ∈ L∞loc(P, (Ft)t) be a local martingale, and

ˆ T

0
E [|`t|] dt <∞.

Then, the process
´ t

0 `s (Mt −Ms) ds is a local martingale.

Proof. After localization, we are reduced to the case M ∈ L∞(P), so that
´ t

0 `s (Mt −Ms) ds ∈
L1(P), for every t ∈ [0, T ], so we focus on orthogonality of increments. It is sufficient to fix
t ∈ [0, T ] and show that

E
[ˆ T

0
`s (MT −Ms) ds |Ft

]
=

ˆ t

0
`s (Mt −Ms) ds.

The integrability assumptions provide a justification for exchanging the order between condi-
tional expectation and integration with respect to s. We consider two cases: if s ∈ [0, t], then
`s in Fs measurable so

E [`s (MT −Ms) |Ft] = `s E [MT −Ms |Ft] = `s (Mt −Ms) .

If s ∈ [t, T ], then

E [`s (MT −Ms) |Ft] = E [E [`s (MT −Ms) |Fs] |Ft] = E [`s E [MT −Ms |Fs] |Ft] = 0,

and the thesis follows. �

As a conclusion, we can specialize Lemma 2.8 as follows.
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Corollary 2.11. Let a, b be Borel maps as in (1.1), let η ∈ P(C([0, T ];Rd)) be a solution
to the martingale problem associated to L(a, b). For any p ∈ (1,∞), δ ∈ (0, 1− 1/p) define A

as in (2.7) let and f ∈ C1,2
b ((0, T )× Rd). Then, letting ϕt := ft ◦ et, it holds

E [A(ϕ)] ≤ C

{[ˆ T

0

ˆ
|∂tft + Ltf |p dηt dt

]1/p

+

[ˆ T

0

ˆ
|at(∇ft,∇ft)|p dηt dt

]1/2p
}
,

where C is some constant depending on p, δ and T only.

2.2.3 Limit

In the third step we assume that the probability measures (ηn)n, obtained as superposition
solutions for an approximating sequence (νn)n, narrowly converge in P(C([0, T ];Rd)) towards
some limit η. To deduce that η provides a superposition solution for ν is not obvious, due
to the fact that, although test functions f ∈ A are continuous, we must deal with a limit in
the weak formulation, with terms involving the coefficients a, b, in general not continuous.
The strategy is to rely on density arguments and exploit the approximation procedure that
provides the sequence (νn)n.

More precisely, to show that η is a solution for the martingale problem associated to a
limit diffusion L, it is enough to establish following property: for every s, t ∈ [0, T ] with s ≤ t,
for every f ∈ A (with ‖f‖C1,2 ≤ 1) and for every g bounded (with ‖g‖∞ ≤ 1), continuous
and Fs-measurable on C([0, T ];Rd), it holds

ˆ
g

[
f ◦ et − f ◦ es −

ˆ t

s
[(∂t + Lr)f ] ◦ er dr

]
dη = 0.

Assuming that the correspondent identity holds for ηn and Ln, i.e.

ˆ
g

[
f ◦ et − f ◦ es −

ˆ t

s
[(∂t + Lnr )f ] ◦ er dr

]
dηn = 0,

to deduce that η is a solution to the martingale problem associated to L, since f and ∂tf are
bounded and continuous, the crucial limit is

ˆ
g

[ˆ t

s
(Lnr f) ◦ er dr

]
dηn −

ˆ
g

[ˆ t

s
(Lrf) ◦ er dr

]
dη → 0. (2.11)

We argue accordingly to the two approximating strategies introduced in Section 2.2.1.

Push forward via smooth maps

Let a, b ∈ L1(ν) and, for n ≥ 1, let πn ∈ C2
b (Rd,Rk) converge towards a π ∈ C2

b (Rd,Rk),
in the following sense: πn → π pointwise, uniformly on compact sets and ∇πn → ∇π and
∇2πn → ∇2π, pointwise and uniformly bounded. Our interests lie in the case k = d and
π = Id, but the general argument might gain in clarity.

Let νn = πn(ν), Ln = πn(L), and ηn be superposition solutions for νn. We argue that η
to be a superposition solution for π(ν), with respect to the diffusion operator π(L). We begin
by adding and subtracting the term

ˆ
g

[ˆ t

s
(Lrf) ◦ er dr

]
dηn −

ˆ
g

[ˆ t

s
(Lrf) ◦ er dr

]
dη
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in (2.11), where L = L(a, b) is a diffusion operator on Rk, with continuous and compactly
supported coefficients a, b. The difference terms above are infinitesimal as n→∞, by narrow
convergence of ηn, obtaining therefore a bound from above for the absolute value of (2.11),
as n→∞, in terms of

lim sup
n→∞

ˆ ∣∣Lnf − Lf
∣∣ dνn +

ˆ ∣∣π(L)f − Lf
∣∣ dπ(ν). (2.12)

Let us focus on the last term in the right hand side above. By definition of π(L), it holds

π(L)f(y) = Eν [L(f ◦ π) |π = y] , ν-a.e. y ∈ Rk,

so by the abstract change of variables with respect to π,ˆ ∣∣π(L)f − Lf
∣∣ dπ(ν) =

ˆ ∣∣Eν [L(f ◦ π) |π]− (Lf) ◦ π
∣∣ dν.

Being (Lf) ◦ π a function of π, the conditional expectation leaves it unchanged, up to ν-
negligible sets, soˆ ∣∣Eν [L(f ◦ π) |π]− (Lf) ◦ π

∣∣ dν =

ˆ ∣∣Eν [L(f ◦ π)− (Lf) ◦ π |π
]∣∣ dν

≤
ˆ ∣∣L(f ◦ π)− (Lf) ◦ π

∣∣ dν,
where the last inequality holds because conditional expectation reduces L1-norms. Writing
explicitly the difference

L(f ◦ π)− (Lf) ◦ π =
k∑

i,j=1

[
a(∇πi,∇πj)− ai,j ◦ π

]
(∂i,jf) ◦ π +

k∑
i=1

[
L(πi)− bi ◦ π

]
(∂if) ◦ π,

and recalling that ‖f‖C1,2 ≤ 1, we conclude that

ˆ ∣∣Lf − Lf
∣∣ dν ≤ ˆ k∑

i,j=1

∣∣a(∇πi,∇πj)− ai,j ◦ π
∣∣ dν +

ˆ k∑
i=1

∣∣∣L(πi)− bi ◦ π
∣∣∣ dν. (2.13)

A similar bound can be proved for the first term in (2.12):

lim sup
n→∞

ˆ ∣∣Lnf − Lf
∣∣ dνn ≤ ˆ k∑

i,j=1

∣∣a(∇πi,∇πj)− ai,j ◦ π
∣∣ dν +

ˆ k∑
i=1

∣∣∣L(πi)− bi ◦ π
∣∣∣ dν.

Indeed, arguing similarly but for fixed n ≥ 1, with πn in place of π, we obtain

ˆ ∣∣Lnf − Lf
∣∣ dνn ≤ ˆ k∑

i,j=1

∣∣a(∇(πn)i,∇(πn)j)− ai,j ◦ πn
∣∣ dν+

ˆ k∑
i=1

∣∣∣L((πn)i)− bi ◦ πn
∣∣∣ dν,

By the assumptions on πn → π, as n→∞, Lebesgue dominated convergence applies.
To conclude, we have to choose a, b, minimizing the right hand side in (2.13), which

can be made arbitrary small if a(∇πi,∇πj) and L(πi) are measurable with respect to π, for
i, j ∈ {1, . . . , k}: indeed, we perform again a change of variables back to the measure π(ν)
and rely on density of continuous, compactly supported functions in L1(π(ν)).
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Convolution

In this case, the argument follows closely that in the proof of [Ambrosio et al., 2008, Theorem
8.2.1]. We assume that a sequence ρn of probability densities on Rd is given, let νn = ν ∗ ρn
and Ln be the diffusion operator with coefficients

an :=
d(aν ∗ ρn)

d(ν ∗ ρn)
and bn :=

d(bν ∗ ρn)

d(ν ∗ ρn)
.

Moreover, let ρnL d → δ0 narrowly as n → ∞, so that νn → ν narrowly. As in the previous
case, the argument begins with adding and subtracting in (2.11) the term

ˆ
g

[ˆ t

s
Lrf ◦ er dr

]
dηn −

ˆ
g

[ˆ t

s
Lrf ◦ er dr

]
dη,

where L = L(a, b) is a diffusion operator on Rd, with continuous and compactly supported
coefficients a, b. Write ω for a common (bounded and continuous) modulus of continuity for
a, b.

As in the previous case, the difference terms above are infinitesimal as n→∞, by narrow
convergence of ηn, entailing therefore a bound from above for the absolute value of (2.11), as
n→∞, in terms of

lim sup
n→∞

ˆ ∣∣Lnf − Lf
∣∣ dνn +

ˆ ∣∣Lf − Lf
∣∣ dν.

We claim that

lim
n→∞

ˆ ∣∣∣Lnf − Lf
∣∣∣ dνn = 0,

where L
n

is the diffusion on Rd with coefficients

an :=
d(aν ∗ ρn)

d(ν ∗ ρn)
, b

n
:=

d(bν ∗ ρn)

d(ν ∗ ρn)
.

Indeed, recalling that ‖f‖C1,2 ≤ 1, we estimate

ˆ ∣∣∣Lnf − Lf
∣∣∣ dνn ≤ ˆ

|an(x)− a(x)| dνn +

ˆ
|bn − b| dνn

=

ˆ
|(aν ∗ ρn)(x)− a(x)(ν ∗ ρn)(x)| dx+

ˆ ∣∣(bν ∗ ρn)(x)− b(x)(ν ∗ ρn)(x)
∣∣ dx

≤ 2

ˆ [ˆ
ω(y − x)ρn(y − x)dx

]
ν(dy) = 2

ˆ
ω(z)ρn(z)dz → 0.

Thanks to this fact, we write

lim sup
n→∞

ˆ ∣∣Lnf − Lf
∣∣ dνn = lim sup

n→∞

ˆ ∣∣∣Lnf − L
n
f
∣∣∣ dνn

= lim sup
n→∞

ˆ
B
|an − an|+

ˆ
|bn − bn|dνn

≤
ˆ
B
|a− a|+ |b− b|dν
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where in the last step we apply (2.6) (whose validity does not rely on smoothness assumption
on ρ) and B is any bounded set containing the support of f .

A similar and actually easier argument gives that
ˆ ∣∣Lf − Lf

∣∣ dν ≤ ˆ
B
|a− a|+ |b− b| dν

as well. To conclude that (2.11) is infinitesimal, it is sufficient to rely on the density of
continuous, compactly supported functions in the space L1(χBν).

2.3 Proof of the superposition principle

In this section, we address the proof of our general superposition superposition principle for
diffusions in Rd, i.e. Theorem 2.14 below, by using Theorem 2.1 as a base case and iterating
the approximation-tightness-limit scheme.

2.3.1 Case of bounded diffusions

We extend the validity of the superposition principle to case of solutions to Fokker-Planck
equations associated to diffusion operators L(a, b) with bounded coefficients. This result
already provides a slight extension of [Figalli, 2008, Theorem 2.6], as uniform bounds are
only imposed on the variable x ∈ Rd.

Theorem 2.12 (superposition for bounded diffusions). Let a, b be Borel maps as in (1.1),
with ˆ T

0
sup
x∈Rd

[|at(x)|+ |bt(x)|] dt <∞. (2.14)

Then, the superposition principle holds for every weak solution ν = (νt)t∈(0,T ) ⊆ P(Rd) to
the FPE (1.2).

Proof. We follow the approximation-tightness-limit scheme discussed in the previous section.

Step 1 (approximation). We argue by convolution with a Gaussian kernel ρ. For ε ∈ (0, 1),
let ρε(x) = εnρ(x/ε): notice that

∣∣∇iρε∣∣ ≤ Cε−2, for i ∈ {1, 2}, where C is some absolute
constant.

Let νε = ν∗ρε, which solves a FPE with respect to a diffusion operator with coefficients aε,
bε satisfying (the correspondent of) (2.1), as a consequence of the last statement in Lemma
2.5. By Theorem 2.1, existence of superposition solutions ηε ∈ P(C([0, T ];Rd)) for the
associated martingale problems follows.

Step 2 (tightness). For R ≥ 1, let χR : Rd → [0, 1] be the usual cut-off function (as in Remark
1.3) and, for i ∈ {1, . . . , d}, let xiR(x) := xiχR ∈ A . For any p ∈ (1,∞) and δ ∈ (1/p, 1),
Corollary 2.11 with ϕiR := xiR ◦ et provides a bound for the energy A(ϕiR) in terms of

` = [∂t + Lε]xiR, α = 2aε(∇xiR,∇xiR).

Since ∂tx
i
R = 0,

∥∥∇xiR∥∥∞ is bounded and
∥∥∇2xiR

∥∥
∞ is infinitesimal as R→∞, we deduce a

bound for the energy A(ϕi), where ϕit = xi ◦ et, in terms of the quantities

` = (bε)i, α = 2(aε)i,i.
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We notice that (2.8) combined with (2.6) entails that these bound are uniform for ε ∈ (0, 1).
Since the measures νε0 are tight, as they narrowly converge towards ν0, there exists a coer-
cive functional θ : Rd → [0,∞] such that supε∈(0,1)

´
θdνε0 < ∞. Introducing the coercive

functional

C([0, T ];Rd) 3 γ 7→ Θ(γ) := θ(γ0) +

d∑
i=1

A(γi),

we conclude that
´

Θdηε is uniformly bounded for ε ∈ (0, 1), thus ηε is tight.

Step 3 (limit). This step is fully covered by the discussion in the previous section. �

2.3.2 Case of locally bounded diffusions

We extend our result from uniform bounds to local bounds on the coefficients.

Theorem 2.13 (superposition for locally bounded diffusions). Let a, b be Borel maps as in
(1.1) such that

ˆ T

0
sup
x∈B

[|at(x)|+ |bt(x)|] dt <∞, for every bounded borel B ⊆ Rd, (2.15)

Then, the superposition principle holds for every weak solution ν = (νt)t∈(0,T ) ⊆ P(Rd) to
the FPE (1.2) such that, for some p ∈ (1,∞), it holds

ˆ T

0

ˆ
[|b|p + |a|p] dνtdt <∞. (2.16)

Proof. Step 1 (approximation). We argue here by push-forward via smooth maps. For R ≥ 1,
let χR be a cut-off function as in Remark 1.3 and let πR : Rd 7→ Rd be the map

πR(x) = xχR(x), so that πiR(x) = xiχR(x) ∈ C2
c (Rd).

By (2.15), it holds∣∣L(πiR)
∣∣ ≤ ∥∥πiR∥∥C2 sup

|x|≤2R
[|a(x)|+ |b(x)|] , for x ∈ Rd, i ∈ {1, . . . d},

and similarly∣∣∣a(∇πiR,∇π
j
R)
∣∣∣ ≤ ∥∥πiR∥∥C1 sup

|x|≤2R
|a(x)| for x ∈ Rd, i, j ∈ {1, . . . d}.

Since conditional expectations reduce norms, we deduce that νR := πR(ν) solves a FPE
associated to a diffusion on Rd, whose coefficients aR, bR satisfy (2.14): Theorem 2.12 provides
correspondent superposition solutions ηR.

Step 2 (tightness). We argue similarly as in the proof of Theorem 2.12 (with the same
notation), but at fixed p and δ ∈ (1/p, 1). This leads to a bound for the energy A(γi), for
any i ∈ {1, . . . , d}, in terms of

`R := (bR)i, and αR := 2(aR)i,i.
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Jensen’s inequality and (2.16) entail that these bounds are uniform as R → ∞, so that
tightness follows at once.

Step 3 (limit). Here, we rely on the deductions in Section 2.2.3, for the case of push-forward
of measures, because that all the assumptions therein are fulfilled in this situation. The only
fact to notice is that, since the limit map π is the identity map, the optimization for a, b can
be performed. �

2.3.3 General case

We finally prove the superposition principle for diffusions in Rn, assuming only the bound
(2.16), for some p ∈ (1,∞).

Theorem 2.14 (superposition for diffusions in Rd). Let a, b be Borel maps as in (1.1). Then,
the superposition principle holds for every weak solution ν = (νt)t∈(0,T ) ⊆P(Rd) to the FPE
(1.2) such that, for some p ∈ (1,∞), it holds

ˆ
[|a|p + |b|p] dν <∞.

Proof. Step 1 (approximation). We perform the approximation procedure by convolution,
exactly as in the proof of Theorem 2.12. This provides measures (νε)ε that solve FPE’s with
respect to diffusions satisfying the assumptions of Theorem 2.13, as a consequence of Lemma
2.5. We consider superposition solutions (ηε)ε to the correspondent martingale problem.

Step 2 (tightness). As a consequence of Corollary 2.11 and arguing as in the final part of
the correspondent step in the proof of Theorem 2.12, we deduce again that the family (ηε)ε
is tight.

Step 3 (limit). We argue as in the correspondent step in the proof of Theorem 2.12. �

Remark 2.15. One could combine all the arguments in the three sections above and deduce
Theorem 2.14 at once from Theorem 2.1. We choose to argue by establishing first Theorem
2.12 and then Theorem 2.13 in order to clarify the different approximation procedures in-
volved. Indeed, the crucial improvement with respect to [Figalli, 2008, Theorem 2.6] is to
pass from bounded to locally bounded coefficients, which is a rather delicate step if one only
knows that the superposition principle holds for diffusions with smooth and bounded coef-
ficients. In Section 2.1 and particularly in Theorem 2.1, uniform bounds play an important
role, but in the deterministic case, one is able to deal directly with locally smooth coefficients
(compare with [Ambrosio et al., 2008, Proposition 8.1.8]), essentially because deterministic
paths either go to infinity, i.e., the solution explodes in a finite time, or stay in a compact set.
Roughly speaking, the source of difficulties in the stochastic case is that we have to deal with
averages of such behaviours: indeed the solution to a truly stochastic martingale problem is
expected to instantaneously “diffuse” over every compact set, of course with small probability
as the sets become large. �



Part II

Diffusions processes in metric
measure spaces

33





Chapter 3

The metric measure space setting

In this chapter, we introduce the general framework where we study diffusion processes: we
consider spaces endowed with a sufficiently rich structure, allowing for basic calculus opera-
tions, in particular where gradients and Laplacians of functions, vector fields and diffusions
operators can be suitably defined.

We are led therefore to consider, as in [Ambrosio and Trevisan, 2014], Polish spaces and
symmetric Dirichlet forms, enjoying carré du champ operators, as abstract, possibly infinite
dimensional, Riemannian manifold-like spaces. Let us remark that our framework provides
a rigorous foundation to the so-called Γ-calculus, very close to that developed e.g. in the
recent monograph [Bakry et al., 2014]. The formulation introduced is both rigorous and
flexible, as it allows for dealing with finite and infinite dimensional space at the same time:
this is further clarified in Part IV. Moreover, it is strongly linked with the theory of Markov
processes, via Dirichlet forms, for which we refer mainly to [Bouleau and Hirsch, 1991], but
see also [Fukushima et al., 2011] or [Ma and Röckner, 1992]; and also with the growing field
of analysis on metric measure spaces, at least when the infinitesimal structure is Riemannian,
see [Ambrosio et al., 2014b].

We can rigorously summarize our framework as follows: we let (X, τ) be a Polish topo-
logical space, endowed with a σ-finite Borel measure m with full support, i.e., suppm = X,
and

a strongly local, densely defined and symmetric Dirichlet form E on L2(X,B(X),m)

enjoying a carré du champ Γ : D(E)×D(E)→ L1(X,B(X),m) and

generating a Markov semigroup (Pt)t≥0 on L2(X,B(X),m).

(3.1)

The precise meaning of (3.1) is recalled in Section 3.1, while in Section 3.2, we introduce
and study basic properties of Sobolev spaces of functions. Most of the results are well-known
and for their proof we frequently refer to the first chapter of [Bouleau and Hirsch, 1991].

3.1 Notation and abstract setup

To keep notation simple, we write Lp(m) (or even Lpx) instead of Lp(X,B(X),m) and denote
Lp(m) norms by ‖·‖p. We also write L0(m) for the space of m-a.e. equivalence classes of Borel
functions f : X 7→ [−∞,+∞] that take finite values m-a.e. in X. Sums and intersections of
Lebesgue spaces will be constantly used, i.e. Lp(m)+Lq(m)(= Lpx+Lqx), Lp∩Lq(m)(= Lpx∩Lqx),

35
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for p, q ∈ [1,∞]: these spaces are endowed with natural Banach norms, denoted respectively
with ‖·‖Lp

x+Lq
x

and ‖·‖Lp
x∩Lq

x
. Since m is σ-finite, these spaces are separable for p, q ∈ [1,∞),

and dual spaces are obtained exchanging intersections with sums (and exponents with their
duals), in a natural way.

3.1.1 Dirichlet form and carré du champ

A symmetric Dirichlet form E is a L2(m)-lower semicontinuous quadratic form satisfying the
Markov property

E(η ◦ f) ≤ E(f) for every normal contraction η : R→ R, (3.2)

i.e., a 1-Lipschitz map satisfying η(0) = 0. We refer to the already quoted monographs
[Bouleau and Hirsch, 1991, Fukushima et al., 2011] for equivalent formulations of (3.2). Recall
that

V := D(E) ⊂ L2(m), endowed with ‖f‖2V := ‖f‖22 + E(f)

is a Hilbert space. Furthermore, V is separable because L2(m) is separable, see [Ambrosio
et al., 2014b, Lemma 4.9] for the simple proof.

We still denote by E(·, ·) : V × V → R the associated continuous and symmetric bilinear
form

E(f, g) :=
1

4

(
E(f + g)− E(f − g)

)
.

We will assume strong locality of E, namely

∀ f, g ∈ V, (f + a)g = 0,m-a.e. in X, for some a ∈ R, ⇒ E(f, g) = 0.

It is possible to prove [Bouleau and Hirsch, 1991, Proposition I.2.3.2] that V ∩ L∞(m) is an
algebra with respect to pointwise multiplication, so that for every f ∈ V ∩ L∞(m) the linear
form on V ∩ L∞(m)

Γ[f ;ϕ] := 2E(f, fϕ)− E(f2, ϕ), ϕ ∈ V ∩ L∞(m), (3.3)

is well defined and, for every normal contraction η : R→ R, it satisfies [Bouleau and Hirsch,
1991, Proposition I.2.3.3]

0 ≤ Γ[η ◦ f ;ϕ] ≤ Γ[f ; g] ≤ ‖ϕ‖∞ E(f) for all f, ϕ ∈ V ∩ L∞(m), ϕ ≥ 0. (3.4)

The inequality (3.4) shows that for every nonnegative ϕ ∈ V∩L∞(m) the function f 7→ Γ[f ;ϕ]
is a quadratic form in V ∩ L∞(m) which satisfies the Markov property and can be extended
by continuity to V.

We assume that for all f ∈ V the linear form ϕ 7→ Γ[f ;ϕ] can be represented by an
absolutely continuous measure, with respect to m, with density Γ (f) ∈ L1

+(m), the so-called
carré du champ. Since E is strongly local, [Bouleau and Hirsch, 1991, Theorem I.6.1.1] yields
the representation formula

E(f, f) =

ˆ
X

Γ (f) dm, for all f ∈ V. (3.5)
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It is not difficult to check that Γ as defined by (3.5) (see e.g. [Bouleau and Hirsch, 1991,
Definition I.4.1.2]) is a quadratic continuous map defined in V with values in L1

+(m), and that
Γ[f − g;ϕ] ≥ 0 for all ϕ ∈ V ∩ L∞(m) with ϕ ≥ 0, yields

|Γ(f, g)| ≤
√

Γ (f)
√

Γ (g), m-a.e. in X. (3.6)

We use the Γ notation also for the symmetric, bilinear and continuous map

Γ(f, g) :=
1

4

(
Γ(f + g)− Γ(f − g)

)
∈ L1(m) f, g ∈ V,

which, thanks to (3.5), represents the bilinear form E by the formula

E(f, g) =
1

2

ˆ
X

Γ(f, g)dm, for all f, g ∈ V.

Because of the Markov property and locality, Γ satisfies the chain rule [Bouleau and Hirsch,
1991, Corollary I.7.1.2]

Γ(η(f), g) = η′(f)Γ(f, g) for all f, g ∈ V, η : R→ R Lipschitz with η(0) = 0, (3.7)

and the Leibniz rule:

Γ(fg, h) = fΓ(g, h) + gΓ(f, h) for all f, g, h ∈ V ∩ L∞(m).

Notice that by [Bouleau and Hirsch, 1991, Theorem I.7.1.1] (3.7) is well defined, since for
every Borel set N ⊂ R (as the set where η is not differentiable) one has

L 1(N) = 0 ⇒ Γ (f) = 0 m-a.e. on f−1(N).

3.1.2 Laplace operator and Markov semigroup

The Dirichlet form E induces a densely defined, negative and selfadjoint operator ∆ : D(∆) ⊂
V → L2(m), via the integration by parts formula E(f, g) = −

´
X g∆fdm for all g ∈ V.

The operator ∆ is of “diffusion” type, since it satisfies the following chain rule for every
η ∈ C2(R) with η(0) = 0 and bounded first and second derivatives, see [Bouleau and Hirsch,
1991, Corollary I.6.1.4]: whenever f ∈ D(∆) with Γ (f) ∈ L2(m), then η(f) ∈ D(∆) and

∆η(f) = η′(f)∆f + η′′(f)Γ (f) . (3.8)

The “heat flow” Pt associated to E is well defined starting from any initial condition f ∈ L2(m).
Recall that in this framework the heat flow (Pt)t≥0 is an analytic Markov semigroup and that
f t = Ptf can be characterized as the unique C1 map f : (0,∞) → L2(m), with values in
D(∆), satisfying 

d

dt
f t = ∆f t for t ∈ (0,∞),

lim
t↓0

f t = f in L2(m).

Because of this, ∆ can equivalently be characterized in terms of the strong convergence
(Ptf − f)/t→ ∆f in L2(m) as t ↓ 0.
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We have the regularization estimates, in the more general context of gradient flows of
convex functionals, see for instance [Ambrosio et al., 2008, Theorem 4.0.4(ii)])

E(Ptf) ≤ inf
v∈V

{
E(v, v) +

‖v − f‖22
2t

}
<∞, ∀t > 0, f ∈ L2(m), (3.9)

‖∆Ptf‖22 ≤ inf
v∈D(∆)

{
‖∆v‖22 +

‖v − f‖22
t2

}
<∞, ∀t > 0, u ∈ L2(m). (3.10)

One useful consequence of the Markov property is the Lp contraction of (Pt)t≥0 from
L2 ∩Lp(m) to L2 ∩Lp(m). By density in Lp, for p ∈ [1,∞), this allows to extend uniquely Pt
to a strongly continuous semigroup of linear contractions in Lp(m), p ∈ [1,∞), for which we
retain the same notation. Furthermore, (Pt)t≥0 is sub-Markovian (cf. [Bouleau and Hirsch,
1991, Proposition I.3.2.1]), since it preserves one-sided essential bounds, namely f ≤ C (resp.
f ≥ C) m-a.e. in X for some C ≥ 0 (resp. C ≤ 0) implies Ptf ≤ C (resp. Ptf ≥ C) m-a.e. in
X for all t ≥ 0.

It is easy to check, using L1-contractivity of P, that the dual semigroup P∞t : L∞(m) →
L∞(m) given by ˆ

gP∞t fdm =

ˆ
fPtgdm, f ∈ L∞(m), g ∈ L1(m)

is well defined. It is a contraction semigroup in L∞(m), sequentially weak-* continuous, and
it coincides with P on L2 ∩ L∞(m).

Similar continuity and contraction properties can be established for intersections Lp ∩
Lq(m) and sums Lp(m) + Lq(m) of Lebesgue spaces, for p, q ∈ [1,∞].

3.2 Spaces Vp and Dp(∆)

In this section, we study subspaces of V and D(∆), where stronger integrability conditions
are imposed.

3.2.1 Spaces Vp

We define

Vp :=

{
u ∈ V ∩ Lp(m) :

ˆ
(Γ(u))p/2dm <∞

}
, for p ∈ [1,∞),

with the obvious extension to p =∞. As in [Bouleau and Hirsch, 1991, §I.6.2], one endow Vp
with the norm

‖f‖Vp = ‖f‖V + ‖f‖p + ‖
√

Γ(u)‖p,

obtaining a Banach space, akin to the intersection of classical Sobolev spaces W 1,2 ∩W 1,p.
We notice that V2 = V, with an equivalent norm, and the inclusion Vp ⊆ Vq holds whenever
2 ≤ p ≤ q ≤ ∞ or 1 ≤ q ≤ p ≤ 2.

The following result is a useful criterion to deduce convergence in Vp.

Proposition 3.1. Let p ∈ [1,∞), f ∈ V, (fn)n ⊆ Vp satisfy fn → f in L2 ∩ Lp(m),

Γ(f − fn)→ 0, m-a.e. in X and ‖
√

Γ (fn)‖L2∩Lp → ‖
√

Γ (f)‖L2∩Lp, as n→∞.

Then, f ∈ Vp and fn → f in Vp.
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Proof. The proof is a straightforward application of Fatou’s lemma and the triangle inequality

|
√

Γ (fn)−
√

Γ (f)| ≤
√

Γ (fn − f) ≤
√

Γ (fn) +
√

Γ (f), m-a.e. in X.

Indeed this inequality implies Γ(fn)→ Γ(f), m-a.e. in X, as n→∞ and

(Γ(fn − f))p/2 ≤ 2p−1
[
(Γ(fn))p/2 + (Γ(f))p/2

]
.

Fatou’s lemma gives

2p
ˆ

(Γ(f))p/2dm ≤ lim inf
n→∞

ˆ {
2p−1

[
(Γ(fn))p/2 + (Γ(f))p/2

]
− (Γ(fn − f))p/2

}
dm

≤ 2p
ˆ

(Γ(f))p/2dm− lim sup
n→∞

ˆ
(Γ(fn − f))p/2dm,

from which the thesis follows, arguing also for p = 2. �

Remark 3.2. The argument above is similar to a classical lemma by F. Riesz, entailing
convergence in Lp(m) for any sequence of functions (fn)n ⊆ Lp(m) such that fn → f , m-a.e.
in X and ‖fn‖p → ‖fn‖p, as n→∞, for p ∈ [1,∞). �

We introduce here a family of inequalities which play a key role in Part III, dealing with
uniqueness for Fokker-Planck equations. They provide a smoothing effect for P in the spaces
Vp and their validity corresponds, in the smooth setting, to integral bounds on the gradient of
the kernel of P, see Chapter 11. Here, we provide the definition and some basic consequences
of their validity, which however we do not assume in all what follows, remarking explicitly
when it is the case.

Definition 3.3 (Lp-Γ inequalities). Let p ∈ [1,∞]. We say that the Lp-Γ inequality holds if
there exists cΓ

p ≥ 0 satisfying

‖
√

Γ (Ptf)‖p ≤
cΓ
p√
t
‖f‖p , for every f ∈ L2 ∩ Lp(m), t ∈ (0, 1). (3.11)

Although the Lp-Γ inequality is expressed for t ∈ (0, 1), from its validity and Lp contrac-
tivity of P, we easily deduce that

‖
√

Γ (Ptf)‖p ≤ cΓ
p (t ∧ 1)−1/2 ‖f‖p , for every f ∈ L2 ∩ Lp(m), t ∈ (0,∞). (3.12)

Notice also that (3.9) shows that the the L2-Γ inequality always holds, with cΓ
2 = 1/

√
2. By

Marcinkiewicz interpolation, if the Lp-Γ inequality holds, then the Lq-Γ inequality holds as
well, for every q between 2 and p.

Other straightforward consequences of the validity of Lp-Γ are that, for every t > 0, the
operator

L2 ∩ Lp(m) 3 f 7→ Ptf ∈ Vp

is well defined and continuous and that the space Vp is dense in L2 ∩ Lp(m). Moreover,
for every f ∈ L2 ∩ Lp(m) the curve (0,∞) 3 t 7→ Ptf is continuous with values in Vp and
t 7→

√
tPtf ∈ Vp is uniformly bounded, for t ∈ (0, 1). Since it converges to 0 in L2 ∩ Lp(m)

as t ↓ 0, it is natural to ask whether a similar convergence, with respect to the stronger norm
on Vp, holds. The following proposition reduces the problem to continuity at 0 for the map
t 7→ Ptf ∈ Vp, when f ∈ Vp.
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Proposition 3.4. Let p ∈ [1,∞), let the Lp-Γ inequality hold and assume that t 7→ Ptf ∈ Vp
is continuous at 0, for every f ∈ Vp. Then,

lim
t↓0

√
t ‖Ptf‖Vp = 0, for every f ∈ L2 ∩ Lp(m).

Proof. This is a standard density and uniform boundedness argument. Clearly, if f ∈ Vp the
limit holds since ‖Ptf‖Vp → ‖f‖Vp , as t ↓ 0. Given f ∈ L2 ∩ Lp(m) and g ∈ Vp, we have, for
every t ∈ (0, 1), √

t ‖Ptf‖Vp ≤ sup
s∈(0,1)

√
s ‖Ps(f − g)‖Vp +

√
t ‖Ptg‖Vp ,

thus, for some constant c depending on cΓ
p only, it holds

lim sup
t↓0

√
t ‖Ptf‖Vp ≤ c ‖f − g‖L2∩Lp .

By density of Vp in L2 ∩ Lp(m), the thesis follows. �

To study continuity at 0, let us first consider the case p = 2, for which it always holds,
since the energy decreases, i.e. E(Ptf) ≤ E(f), for t ≥ 0, e.g. by (3.10) with v = f , which
also gives E(Ptf) → E(f), as t ↓ 0. In particular, the curve (Ptf)t is bounded in the Hilbert
space V, thus it weakly converges to f as t ↓ 0, arguing by density of D(∆) in V. Moreover,
‖Ptf‖V → ‖f‖V, thus Ptf → f strongly in V. The general case p ∈ [1,∞) is handled similarly,
using Fatou’s lemma and Proposition 3.1 in place of Hilbert space arguments, and we obtain
the following necessary and sufficient condition for continuity at 0 of the curve t 7→ Ptf , for
f ∈ Vp:

lim sup
t↓0

‖
√

Γ (Ptf)‖p ≤ ‖
√

Γ (f)‖p. (3.13)

3.2.2 Spaces Dp(∆)

We define

Dp(∆) := {f ∈ D(∆) ∩ Lp(m) : ∆f ∈ Lp(m)} , for p ∈ [1,∞),

with the obvious extension for p =∞. We endow Dp(∆) with the norm

‖f‖Dp(∆) = ‖f‖L2∩Lp + ‖∆f‖L2∩Lp ,

obtaining a Banach space. Notice that, for p ∈ [1,∞), Dp(∆) is only contained in the domain
of the generator of P in Lp(m), characterized in terms of strong convergence for (Ptf − f)/t
in Lp(m), as t ↓ 0. Indeed, for every f ∈ D(∆) it holds

Ptf − f =

ˆ t

0
∆Psfds =

ˆ t

0
Ps(∆f)ds,

where the integral above is the sense of Bochner. By the Lp-contraction property for P, it
holds ‖Ps(∆f)‖p ≤ ‖∆f‖p, for every s ≥ 0, thus the right hand side divided by t is bounded
and it actually converges in Lp(m) to ∆f . For p =∞ one obtains only weak-* convergence.
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For p ∈ [1,∞], we consider the following analogue of the Lp-Γ inequality, that reads an a
Lp version of (3.10), that we refer as the Lp-∆ inequality:

‖∆Ptf‖p ≤
c∆
p

t
‖f‖p , for every f ∈ L2 ∩ Lp(m) and every t ∈ (0, 1). (3.14)

Quite differently from the Lp-Γ inequality, it turns out that the Lp-∆ inequality always holds
for p ∈ (1,∞) and can be obtained as a consequence of the fact that P is analytic [Stein,
1970, Theorem III.1]: it is actually equivalent to it, see [Yosida, 1995, §X.10]. Let us remark
that, in some settings, e.g. for the standard heat semigroup in Euclidean spaces, see Chapter
11, the Lp-∆ inequality for p =∞ holds and further consequences could be drawn.

A direct consequence of (3.14) is the following estimate.

Corollary 3.5. Let p ∈ [1,∞] and let c∆
p denote the constant in (3.14). Then

‖Ptf − Pt−t′f‖p ≤ min

{
c∆
p log

(
1 +

t′

t− t′

)
, 2

}
‖f‖p , for every f ∈ L2 ∩ Lp(m).

for every t, t′ ∈ (0, 1), with t′ ≤ t.

Proof. The estimate with the constant 2 follows from Lp-contractivity. For the other one, we
apply (3.14) as follows:

‖Ptf − Pt−t′f‖p ≤
ˆ t′

0
‖∆Pt−t′+rf‖p dr ≤

ˆ t′

0

c∆
p

t− t′ + r
dr ‖f‖p = c∆

p log

(
1 +

t′

t− t′

)
‖f‖p .

�

We conclude this section by providing an analogue of Proposition 3.4, whose proof goes
along the same lines, but uses the fact that continuity at 0 for the map t 7→ Ptf ∈ Dp(∆)
is straightforward, for f ∈ Dp(∆), because of strong continuity of P and the commutation
∆Ptf = Pt(∆f).

Proposition 3.6. For every p ∈ (1,∞), it holds

lim
t↓0

t ‖Ptf‖Dp(∆) = 0, for every f ∈ L2 ∩ Lp(m).
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Chapter 4

Derivations and diffusion operators

In this chapter, we introduce and study suitable notions of vector fields, by means of deriva-
tions (Section 4.2), of maps with values in symmetric, non-negative, matrices (Section 4.3)
and then of diffusions operators (Section 4.4).

Our main assumption is the existence of some algebra of functions A , that we regard as
test functions on X, enjoying suitable stability and density properties, for which we perform a
detailed study in Section 4.1. Diffusion operators that are then defined on A and subsequently
extended to larger domains, provided that a priori bounds and density results for A hold: as
the reader may expect, density is crucial especially dealing with uniqueness. Besides linearity,
another remarkable feature is locality, so the usual rules of calculus for diffusion operators
hold.

4.1 The algebra A

In all what follows, we assume that an algebra A ⊆ L1 ∩ L∞(m) is prescribed, with

Φ(f1, . . . , fn) ∈ A whenever Φ ∈ C2
b (Rn) with Φ(0) = 0 and f1, . . . , fn ∈ A , (4.1)

for every n ≥ 1.

Let us remark that further assumptions on A are to be imposed below, in particular
dealing with the time-dependent setting, see Chapter 5.

Notice that A is an algebra also directly from (4.1): this stability property is rather useful
to extend the validity of suitable density assumptions, as we investigate below.

Proposition 4.1. If A is dense in L2(m), then it is also dense in Lp ∩ Lq(m), for 1 ≤ p ≤
q <∞, and weakly-* dense in Lp ∩ L∞(m), for p ∈ (1,∞].

Proof. The argument relies on the following two facts. First, we consider a sequence of
functions Φk ∈ C2

b (R) with Φk(0) = 0, |Φk(z)| ≤ |z|, for k ≥ 1 and Φk(z)→ z for every z ∈ R,
as k →∞. For p ∈ [1,∞) and f ∈ Lp, Φk(f) converges to f in Lp, by Lebesgue theorem (and
weakly-* in L∞(m), because of pointwise and uniformly bounded convergence).

As a second fact, we notice that if (fn)n ⊆ L2(m) converges to f in L2(m) and Φ ∈ C2
b (R)

satisfies Φ(0) = Φ′(0) = 0, then Φ(fn) → fn in Lp(m) for every p ∈ [1,∞) and weakly-*
in L∞(m). For p ∈ [1,∞), it is sufficient to notice that the assumptions entail, up to a

subsequence, Φ(fn) → Φ(f) m-a.e. in X and |Φ(x)| ≤ c |x|2/p (for some constant c ≥ 0

43
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depending on Φ only) so that by Lebesgue theorem, ‖Φ(fn)‖p → ‖Φ(f)‖p and by Remark 3.2
we conclude. Again, weak-* convergence in L∞ follows by pointwise and uniformly bounded
convergence.

To conclude, since L2 ∩ Lp ∩ Lq(m) is dense in Lp ∩ Lq(m), it is sufficient to approximate
any f in the former space with a sequence in A . Furthermore, by the first fact and a diagonal
argument, it is sufficient to approximate Φk(f), for any fixed k ≥ 1. By density of A in L2(m),
we consider a sequence (fn)n ⊆ A which converges to f in L2(m) and set gn := Φk(gn) ∈ A ,
which converges to Φk(f) in Lp ∩ Lq(m) by the second fact. To show weak-* convergence in
Lp ∩ L∞(m), we argue similarly. �

A similar result can be proved starting from density of A in V, with the notable difference
that density in the spaces Vp is obtained only for 1 ≤ p ≤ 2: as it is intuitively clear, it is not
possible to improve regularity simply by composition with smooth functions.

Proposition 4.2. If A is contained and dense in V, it is also dense in Vp, for p ∈ [1, 2].

Proof. The argument is a variant of the previous proof. Regarding the first fact, we notice
that, for f ∈ Vp, with 1 ≤ p ≤ 2, the functions Φk(f) converge to f in Vp, by the chain rule√

Γ (Φk(f)) = |Φ′k(f)|
√

Γ (f) and Proposition 3.1.
In the second step, we notice that if fn ∈ V is a sequence converging to f in V then, for

any Φ ∈ C2
b (R), with Φ(0) = Φ′(0), then Φ(fn) → fn in Vp for every p ∈ [1, 2] again by the

chain rule and Proposition 3.1.
The conclusion is then identical, being sufficient to approximate any function of the form

Φ(f) in Vp, where f ∈ Vp, with a sequence of functions in A . �

Intersection spaces Dp(∆) ∩ V2p can be considered as well.

Proposition 4.3. If A is dense in D(∆)∩V4, then it is contained and dense in Dp(∆)∩V2p,
for p ∈ [1, 2].

Proof. Again, regarding the first fact, given f ∈ Dp(∆) ∩ V2p, with 1 ≤ p ≤ 2, the functions
Φk(f) converge to f in Vp, by the chain rule for Γ,

√
Γ (Φk(f)) = |Φ′k(f)|

√
Γ (f), the chain

rule for ∆ stated in (3.8), Proposition 3.1 and Remark 3.2. We argue similarly for the second
fact and then conclude. �

Clearly, analogues can be considered, deducing from density in Vq, for any q ∈ [1,∞) and
in intersection spaces Dq(∆) ∩ V2q, entailing densities in spaces with smaller exponents.

Remark 4.4. Under the additional condition that

A is invariant under the action of P, i.e. PtA ⊆ A for every t > 0, (4.2)

the density assumption of A in V can be weakened to density of A in L2(m); indeed, standard
semigroup theory shows that an invariant subspace is dense in V if and only if it is dense in
L2(m), see for instance [Ambrosio et al., 2014b, Lemma 4.9].

For p ∈ [1,∞), density of A in L2 ∩ Lp(m), (4.2) and the Lp-Γ inequality entail density
in Vp, provided that Ptf → f in Vp as t ↓ 0, for every f ∈ Vp, or equivalently if (3.13)
holds for every f ∈ Vp. Indeed, this continuity assumption and the Lp-Γ inequality entail
that

⋃
t>0 Pt(A) is dense in Vp, for every set A, dense in L2 ∩Lp(m), as one can approximate

f ∈ Vp by Ptf for t > 0 small enough, and then approximate Ptf with Ptg in L2 ∩Lp(m), for
g ∈ A. �
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4.2 Derivations

This section follows closely [Ambrosio and Trevisan, 2014, §2], where vector fields are intro-
duced as derivations, i.e. linear operators on A satisfying a pointwise upper bound in terms
of Γ.

Throughout this section, we assume for simplicity of exposition that

A is dense in V, (4.3)

which, by the results in the previous section, entails various density properties for A .

Definition 4.5 (derivations). A derivation is a linear operator b : A → L0(m), f 7→ df(b),
satisfying

|df(b)| ≤ h
√

Γ (f), m-a.e. in X, for every f ∈ A ,

for some h ∈ L0(m). The smallest function h (in the m-a.e. sense) with this property is
denoted by |b|.

For q ∈ [1,∞], we write b ∈ Lq if |b| ∈ Lq(m), and similarly for intersections and sum of
Lebesgue spaces, Lp ∩ Lq(m), Lp(m) + Lq(m), for p, q ∈ [1,∞]. Clearly, |b| is the m-essential
supremum among all functions f ∈ A of the expression |df(b)| /

√
Γ (f) (set equal to 0 on

{Γ (f) = 0}).
Linearity and the m-a.e. upper bound are sufficient to entail “locality” and thus Leibniz

and chain rules, with proof akin to that of [Ambrosio and Kirchheim, 2000, Theorem 3.5].
We point out also the recent work [Gigli, 2014], where derivations are introduced in a similar
setting, and their structure is deeply investigated. For our purpose, which is to study diffusion
processes by means of Fokker-Planck equations and martingale problems, few basic properties
of derivations are sufficient, and for completeness we prove them, in this section.

Proposition 4.6 (Leibniz and chain rules). Let b be a derivation and let Φ ∈ C2
b (Rn,R),

with Φ(0) = 0. Then, for any f = (f1, . . . , fn) ∈ A n, one has

d(Φ ◦ f)(b) =

n∑
i=1

∂iΦ(f)dfi(b) = ∇Φ(f) · df(b), m-a.e. in X, (4.4)

where we let df(b) := (df1(b), . . . , dfn(b)). In particular, for every f , g ∈ A , it holds

d(fg)(b) = df(b)g + fdg(b), m-a.e. in X.

Proof. Since Φ(f) ∈ A , the terms in (4.4) are well-defined as elements in L0(m), thus we
only have to prove that they coincide. To this aim, let λ = (λ1, . . . , λn) ∈ Qn, apply the
chain rule in V and use bilinearity of Γ to obtain the identity

Γ(Φ(f)− λ · f) =

n∑
i,j=1

(∂iΦ(f)− λi)Γ(fi, fj)(∂jΦ(f)− λj) =

= [Γ(f)] (∇Φ(f)− λ,∇Φ(f)− λ)

where we let [Γ(f)]i,j := Γ(fi, fj), for i, j ∈ {1, . . . , n}. Notice that [Γ(f)] is m-a.e. valued in
the space of n× n, non-negative symmetric matrices, Sym+(Rn).
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From (4.4), we deduce the inequality

|dΦ(f)(b)− λ · f(b)| ≤ |b|
√

[Γ(f)] (∇Φ(f)− λ,∇Φ(f)− λ), m-a.e. in X.

By sub-additivity, the same inequality holds for every λ ∈ Qn, for every x ∈ A, where Ac

is m-negligible. Given x ∈ A, we choose a sequence λk → ∇Φ(f(x)), as k → ∞, and we
conclude that

|dΦ(f)(b)(x)−∇Φ(f(x)) · [df(b)] (x)| = 0.

Leibniz rule follows letting n = 2 and Φ(x1, x2) = x1x2. �

Remark 4.7 (derivations ub). Let b be a derivation and let u ∈ L0(m). Then, the operator
ub, defined on A by f 7→ udf(b) is a derivation, with |ub| ≤ |u||b|. In particular, if b ∈ Lq(m)
and u ∈ Lr(m), with q−1 + r−1 ≤ 1, then ub ∈ Ls

′
(m), where (s′)−1 = q−1 + r−1, i.e.

q−1 + r−1 + s−1 = 1. and let u ∈ Lr(m), with q−1 + r−1 ≤ 1. Then, ϕ 7→ udf(b) defines a
derivation ub in Ls

′
, where (s′)−1 = q−1 + r−1, i.e. q−1 + r−1 + s−1 = 1. By linearity, similar

remarks apply when b is a derivation in Lp ∩ Lq(m) or Lp(m) + Lq(m). �

Example 4.8 (gradient derivations). Every g ∈ V induces a derivation bg,

A 3 f 7→ df(bg) := Γ(f, g). (4.5)

These derivations belong to L2(m), as (3.6) yields |bg| ≤
√

Γ (g) (with equality assuming A
to be dense in V). If g ∈ Vp, then bg ∈ L2 ∩ Lp(m).

By linearity, finite sums
∑

i χibgi with χi ∈ L∞(m) and gi ∈ V, define derivations in
L2(m). �

It is very useful to extend the action of a derivation from A to larger spaces.

Remark 4.9 (extension of derivations). Let q ∈ (1,∞], r, s ∈ (1,∞) satisfy q−1+r−1+s−1 =
1. If A is dense in Vs, then any derivation b ∈ Lq(m) extends uniquely to a continuous linear
operator b : A ⊆ Vs → Lr

′
(m), still denoted by f 7→ df(b), defined on Vs, with values in the

space Lr
′
(m), which still satisfies, for every f ∈ Vs,

|df(b)| ≤ |b|
√

Γ(f), m-a.e. in X,

as well as Leibniz and chain rules, with respect to composition with functions Φ ∈ C1
b (Rn)

such that Φ(0) = 0. �

Assuming only density of A in Vr and no integral bounds on |b|, any derivation b may
still be extended uniquely to a linear operator defined on Vr, with values in L0(m), continuous
when the latter is endowed with convergence in measure. However, this extension is not useful
for our purposes, as we often deal with integral functionals involving df(b), defined initially
on A , which are not continuous with respect to this topology. An important example is div b,
whose definition is given below.

Definition 4.10 (divergence of a derivation). Let q ∈ [1,∞], A ⊂ Vq′ and let b ∈ Lq(m) be
a derivation. The distributional divergence div b is the linear operator on A defined by

A 3 f 7→ [div b](f) := −
ˆ
df(b)dm.
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We say that div b ∈ Lq(m) if the distribution div b is induced by g ∈ Lq(m), i.e.

ˆ
df(b)dm = −

ˆ
fgdm, for all f ∈ A .

Similarly, we say that div b− ∈ Lq(m) if there exists a non-negative g ∈ Lq(m) such that

ˆ
df(b)dm ≤

ˆ
fgdm, for all f ∈ A , f ≥ 0.

The condition A ⊂ Vq′ ensures integrability for df(b). As for |b|, div b− can be defined
as the m-a.e. smallest non-negative function g ∈ Lq(m) for which the inequality above holds:
existence follows by a simple convexity argument, because the class of admissible g’s is convex
and closed in Lq(m) (for q =∞, it is weakly-* closed).

Example 4.11 (divergence of gradients). The divergence of the gradient derivation induced
by g ∈ V as in (4.5) coincides with the Laplacian ∆g, still understood in distributional terms.

When the divergence of a derivation b is represented by some function, the problem of
extension of b can be addressed more precisely, introducing Sobolev spaces of functions.

Definition 4.12 (spaces W p(b)). Let q ∈ [1,∞] let A ⊆ Vq′ and b ∈ Lq(m) be a derivation
with div b ∈ Lq(m). Let p, s ∈ [q′,∞], satisfy p−1 + q−1 + s−1 = 1, and let A ⊂ Vs .

We say that f ∈W p(b) if f ∈ Lp(m) and, for some h ∈ Lp(m), it holds

ˆ
hg = −

ˆ
f [dg(b) + g div b] dm, for every g ∈ A .

We write df(b) := h.

When endowed with the norm ‖f‖p+‖df(b)‖p, the space W p(b) is Banach and, if (fn)n ∈
W p(b) converges to f , dfn(b) → h ∈ Lp(m), in duality with Lp

′
(m), then f ∈ W p(b) and

df(b) = h.

Remark 4.13 (spacesHp(b)). As it happens with Sobolev spaces in Euclidean spaces, density
of test functions (in this case, A ) is not always fulfilled. For p ∈ [q′,∞), we let Hp(b) be
the closure of A in W p(b). By continuity of the terms in (4.4) with respect to convergence
in W p(b), Leibniz and chain rules extend from A to Hp(b). Moreover, when p = q′ and
f ∈ Hq′(b), it holds

ˆ
df(b) = −

ˆ
(div b)fdm, for every f ∈ Vq

′
.

Notice that Remark 4.9 gives the inclusion Vs ∩ Lr′(m) ⊆ Hr′(b). �

Finally, not only Definition 4.5, but also the notions above easily generalize replacing
Lq(m) with sums or intersections of Lebesgue spaces.
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4.3 2-tensors

In this section, we briefly introduce the bilinear generalizations of derivations, instrumental
to define diffusion operators. The approach is still inspired by that of differential geometry:
a matrix valued map a : Rn → Rn×n is described by the functional (v, w) 7→ a(v, w), for v, w
vector fields. A basic example is the operator Γ, thus we try to adopt a consistent notation.
Again, we assume that (4.3) holds.

Definition 4.14 (2-tensors). A 2-tensor is a bilinear operator

a : A ×A → L0(m), (f, g) 7→ a(f, g),

such that

|a(f, g)| ≤ h
√

Γ (f)
√

Γ (g), m-a.e. in X, for every f , g ∈ A ,

for some h ∈ L0(m). The smallest function h with this property is denoted by |a|.

For q ∈ [1,∞], we write a ∈ Lq(m) if |a| ∈ Lq(m), and similarly for sums and intersections
of Lebesgue spaces.

A 2-tensor a is said to be symmetric if

a(f, g) = a(g, f) m-a.e. in X, for every f , g ∈ A ,

non-negative if

a(f) := a(f, f) ≥ 0 m-a.e. in X, for every f ∈ A

λ-elliptic, for some λ > 0, if it is symmetric and it holds

a(f) ≥ λΓ(f) m-a.e. in X, for every f ∈ A ,

and finally elliptic if it λ-elliptic for some λ > 0.

Example 4.15 (sum of squares). Besides the example a(f, g) = Γ(f, g), non-negative sym-
metric 2-tensors can be built as follows. Let (bi)i≥1 be a sequence of derivations with

∑
i |bi|

2 <
∞ m-a.e. in X, and define the 2-tensor a :=

∑∞
i=1 bi ⊗ bi by

a(f, g) :=
∞∑
i=1

df(bi)dg(bi), for f , g ∈ A .

Notice that the series converges and it holds |a| ≤
∑∞

i=1 |bi|
2, m-a.e. in X.

For every g ∈ A , the map A 3 f 7→ a(f, g) defines a derivation, with |a(·, dg)| ≤
|a|
√

Γ (g). Thanks to this fact, large parts of the discussion on derivations above easily
extends to the case of 2-tensors. For example, the chain rule entails, for any Φ ∈ C1(Rn,R)
with Φ(0) = 0, and f = (f1, . . . fn) ∈ A n, the identity

a(dΦ(f)) =

n∑
i,j=1

a(fi, fj)∂iΦ(f)∂jΦ(f) := [a(f)](∇Φ(f),∇Φ(f)), m-a.e. in X,

where [a(f)]i,j := a(fi, fj), for i, j ∈ {1, . . . , n}.
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Remark 4.16. Let q ∈ (1,∞], r, s ∈ (1,∞) satisfy q−1 + r−1 + s−1 = 1. If A is dense
both in Vr and in Vs, then any 2-tensor a ∈ Lq(m) extends uniquely to a bilinear continuous
operator, still denoted by a, defined on Vr × Vs, with values in L1(m), which satisfies

|a(f, g)| ≤ |a|
√

Γ (f)
√

Γ (g), m-a.e. in X, for every f ∈ Vr, g ∈ Vs.

Remark 4.17 (Dirichlet forms induced by 2-tensors). Let a ∈ L∞(m) be an elliptic sym-
metric 2-tensor and consider the bilinear form

A ×A 3 (f, g) 7→ E[a](f, g) :=

ˆ
a(f, g)dm.

Since we assume that A ⊆ V is dense, then a and E[a] extend to continuous bilinear functional
on V × V. We claim that (E[a],V) is a Dirichlet form on L2(m), which induces a Markov
semigroup P[a]. Indeed, ellipticity and the assumption a ∈ L∞(m) entail that V 3 f 7→
‖f‖22 + E[a](f) defines a Hilbert norm equivalent to the natural one ‖f‖V. Moreover, normal
contractions operate on E[a] because of the chain rule for a. One may even go further and
show that conditions (3.1) hold, replacing E with E[a], with Γ[a](f) := a(f), for f ∈ V.
Ellipticity and the assumption a ∈ L∞(m) give that the spaces Vp[a] (naturally built with
respect to Γ[a]) coincide with Vp, for p ∈ [1,∞]. Let us remark, however, that this is not
necessary the case for the spaces Dp(∆[a]), which may not coincide with Dp(∆), even for
p = 2. �

4.4 Diffusion operators

The main difficulty with introducing diffusion operators in the metric measure space setting
is due to the fact that we prefer not to introduce Hessians of functions, although it would
be certainly possible, e.g. as in [Bakry et al., 2014] or [Gigli, 2014], assuming curvature lower
bounds. On the other side, Dirichlet forms allow for the introduction of a Laplacian operator
almost immediately from their definition. Moreover, in the Euclidean space Rd, one recovers
the coefficients a of a diffusion operator f 7→ (a : ∇2)f simply choosing f(x) = xi, g(x) = xj ,
for i, j ∈ {1, . . . , d} in the identity

a : ∇2(fg)− (a : ∇2f)g − f(a : ∇2g) = 2a(∇f,∇g), (4.6)

the same which defines the carré du champ Γ in terms of ∆, compare with (3.3). Therefore,
our strategy consists in introducing diffusion operators in such a way that (4.6) holds.

Definition 4.18 (diffusion operators). A diffusion operator is a linear map L : A → L0(m)
such that

A ×A 3 (f, g) 7→ 1

2
[L(fg)− L(f)g − fL(g)] (4.7)

is a non-negative symmetric 2-tensor.

Given a diffusion operator L, we write a the 2-tensor defined by (4.7) (one should write
a[L], but there is no danger of confusion in what follows).

Example 4.19. If A ⊆ D(∆), then L := ∆ is a diffusion operator with a = Γ. Another
example is L := b, for a derivation b, so that a = 0, by Leibniz rule. More generally, diffusion
operators are stable with respect to sums and multiplications with non-negative functions a ∈
L0(m), e.g. L := a∆ + b defines a diffusion operator, with associated 2-tensor aΓ.
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An important difference between diffusion operators and derivations is that we do not
impose pointwise bounds directly on Lf , as they would require at least the introduction of
Hessians for functions in A , unless we deal with special cases, as in the example above.
Instead, to extend calculus for diffusion operators, we require some continuity or closability
assumption.

Example 4.20 (extension of diffusion operators). Let q ∈ (1,∞], r, s ∈ (1,∞) satisfy
q−1 + r−1 + s−1 = 1. If A is dense in Ds(∆) and, for some constant c ≥ 0, it holds

‖L(f)‖r′ ≤ c ‖f‖Ds(∆) ,

then L extends uniquely to a linear continuous operator on Ds(∆), with values in Lr
′
(m).

Other spaces may be considered as well, e.g. Vs, or Ds(∆) ∩ Vs.

We are in the situation of the example above when L = a∆, for A ⊆ Dr(∆) and a ∈
Lq(m). When L = b is a derivation, with b ∈ Lq(m), if A is dense in Vr, we recover Remark
4.9.

Definition 4.21 (divergence). Let L be a diffusion operator such that Lf ∈ L1(m), for every
f ∈ A . The distributional divergence divL is defined as the linear functional

A 3 f 7→ [divL](f) := −
ˆ

L(f)dm.

For q ∈ [1,∞], we say that divL ∈ Lq(m) if there exists g ∈ Lq(m) such that
ˆ

L(f)dm = −
ˆ
fgdm, for all f ∈ A .

Similarly, we say that div b− ∈ Lq(m) if there exists a non-negative g ∈ Lq(m) such that
ˆ

L(f)dm ≤
ˆ
fgdm, for all f ∈ A , f ≥ 0.

Example 4.22. Let a ∈ Dq(∆), A ⊆ Dq′(∆) and define Lf := a∆f , for f ∈ A . Then, it
holds divL = −∆a ∈ L2 ∩ Lq(m),

By combining the definition of a and divL, if L maps A into L1(m), we deduce the
identityˆ

L(f)gdm = − [divL] (fg)−
ˆ

[fL(g) + 2a(f, g)] dm, for all f , g ∈ A , (4.8)

which could be used to provide an extension of L, in a similar way as in Definition 4.12. In
the next proposition, we use it to prove the chain rule for diffusion operators.

Proposition 4.23 (chain rule for diffusion operators). Let L be a diffusion operator, with
Lf ∈ L1(m) for every f ∈ A . Let p, q, s ∈ [1,∞] satisfy p−1 + q−1 + s−1 = 1, and a,
divL ∈ Lq(m) and assume that A ⊆ Vp ∩ Vs.

For any Φ ∈ C2(Rn) with Φ(0) = 0 and f = (f1, . . . , fn) ∈ A n, it holds

L(Φ(f)) =

n∑
i,j=1

∂2
i,jΦ(f)a(fi, fj) +

n∑
i=1

∂iΦ(f)L(fi), m-a.e. in X. (4.9)
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We may also write L(Φ(f)) = a(f) : ∇2Φ(f) + L(f) · ∇Φ(f), if we denote [a(f)]i,j =
a(fj , fj), L(f)i = L(fi) for i, j ∈ {1, . . . , n}.

Proof. Notice first that both terms in (4.9) belong to L1(m), thus it is sufficient to show
that they coincide. By induction and identity (4.7), the chain rule (4.9) holds whenever Φ
is a polynomial in n variables, with Φ(0) = 0. To obtain the general case, we let (pk)k≥1 be
a sequence of polynomial functions, with pk(0) = 0, converging towards Φ locally uniformly
towards in C2(Rn). The assumptions, together with Proposition 3.1 entail that pk(f)→ Φ(f)
in Vp ∩Vs and the right hand side in (4.9), with pk in place of Φ converges to some limit h in
L1(m), as k →∞. On the other side, we let g ∈ A be any function and consider (4.8), with
pk(f) in place of f , which reads as

ˆ
L(pk(f))gdm = −

ˆ
pk(f) [g divL + Lg] + 2a(pk(f), g)dm.

Passing to the limit in this expression, we deduce

ˆ
hgdm = −

ˆ
Φ(f) [g divL + Lg] + 2a(Φ(f), g)dm =

ˆ
L(Φ(f))gdm,

and being g ∈ A arbitrary, (4.9) holds. �

We conclude this section by introducing a class of diffusion operators that can be expressed
in divergence form; the main example being L = ∆ and suitable perturbations. These play an
important role especially in Chapter 9, since the are particularly well-suited for applications of
Hilbert-space techniques, see also [Le Bris and Lions, 2008]. On the other side, let us remark
that our general theory, in particular the validity of the superposition principle (Chapter 7),
holds for diffusion operators not necessarily in divergence form.

Definition 4.24 (diffusion operators in divergence form). Let L be a diffusion operator such
that L(f) ∈ Lr

′
(m) for f ∈ A , and assume that the associated 2-tensor a ∈ Lq(m), and

A ⊆ Vs, for q, r, s ∈ [1,∞], with q−1 + r−1 + s−1 = 1.
We say that L is in divergence form if there exists a derivation b ∈ Lq(m) such that, for

every f ∈ A , g ∈ Vr it holds

ˆ
L(f)gdm = −

ˆ
a(f, g)dm + df(b)gdm.

If Vs is dense in Ls(m), then the derivation b above is unique. Notice that, when L is
written in divergence form, then divL = div b.

Example 4.25. Let q, r, s ∈ [1,∞], satisfy q−1+r−1+s−1 = 1, assume that A ⊆ Dr(∆)∩Vr
and consider the diffusion L := a∆. Then, L is in divergence form if a ∈ Vq, and we let b
be the gradient derivation associated to a. Indeed, if g ∈ Vs, then it holds ag ∈ Vr′ [Bouleau
and Hirsch, 1991, Proposition I.6.2.3] and

ˆ
(a∆f)gdm = −

ˆ
Γ(f, ag)dm = −

ˆ
[aΓ(f, g) + Γ(a, f)g] dm.
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Chapter 5

Adding time to the framework

In this chapter, we extend the framework of chapters 3 and 4, allowing for a “time-dependent”
setting, i.e. on the product space (0, T )×X, for some T > 0. There is indeed a straightforward
way to perform this operation, i.e. simply by replacing the spaceX with the product (0, T )×X,
the measure m with L 1 ⊗m, and the Dirichlet form E with

L2(L 1 ⊗m) 3 f 7→
ˆ T

0
E(ft)dt ∈ [0,∞], (5.1)

where ft(x) := f(t, x), for (t, x) ∈ (0, T )×X.
Although this extension is a rather natural operation, more details are provided in the

next section. Then, in Section 5.2, we recall some technical facts on Sobolev and absolutely
continuous curves with values in Banach spaces, which are useful in Part III.

5.1 The time-extended framework

For fixed T ∈ (0,∞) we endow the space X̃ := X × (0, T ) with the product topology and
the product measure m̃ := L 1⊗m. We introduce the notation Lpt for integration over (0, T ),
so that e.g. Lpt (L

p
x) := Lp((0, T );Lp(m)) = Lp(m̃). An important role in our deductions is

played by norms on Lebesgue spaces with different exponents with respect to the variables t
and x, e.g. L∞t (Lpx) or L1

t (L
p
x): this already provides a sufficient reason for which the time-

extended framework is not fully recovered by the general metric measure space point of view
on (0, T )×X.

We endow the space (X̃, m̃) with the form Ẽ given by (5.1), which is clearly quadratic,
lower semicontinuous with respect to convergence in L2

t (L
2
x), by Fatou’s lemma, and that

normal contractions operate, i.e. the analogue of (3.2) holds, for every 1-Lipschitz function
η : R 7→ R, with η(0) = 0.

Actually, the form Ẽ satisfies all the assumptions (3.1), its domain being L2
t (V) and the

carré du champ being Γ̃(f)(t, ·) := Γ(ft)(·), L 1-a.e. t ∈ (0, T ). It is also easy to prove
that the heat semigroup associated to Ẽ, that we denote by P̃, acts on f ∈ L2

t (L
2
x) by

f 7→ [P̃αf ](t, ·) = (Pαft)(·), L 1-a.e. t ∈ (0, T ), for α ∈ [0,∞) (here and below, we obviously
avoid to use the variable t ∈ [0,∞) as a subscript for semigroups). The domain of the
generator ∆̃ is clearly D(∆̃) = L2

t (D(∆)).
Spaces Ṽp and Dp(∆̃) can be defined as well, but we do not use them extensively, as we

are more interested on their variants with respect to mixed norms, e.g. L1
t (Vp), or L1

t (D
p(∆)).

53
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Thanks to the time-extended framework we may study more general derivations, 2-tensors
and diffusion operators, provided that a suitable algebra of functions Ã is fixed. This is a
rather delicate part, since one would like to introduce minimal conditions on Ã , but at the
same time require regularity with respect to t for elements in Ã : so far we are simply “gluing
together” the sections {t} × X in a Borel way for t ∈ (0, T ), but for studying diffusion
processes, we need some regularity also with respect this variable, thus we summarize our
standing assumptions on Ã as follows:

Φ(·, f1, . . . , fn) ∈ Ã , for Φ ∈ C1,2
b ((0, T )× Rn) with Φ(·, 0) = 0 and f1, . . . , fn ∈ Ã , n ≥ 1,

Ã ⊆ L2
t (V) is dense, Ã ⊆W 1,2((0, T );Lpx)

and for every t ∈ [0, T ], the image of Ã 3 f 7→ ft ∈ Lp(m), is dense for p ∈ [1,∞),
(5.2)

Arguing as in Section 4.1, one obtains density of Ã in Lpt (L
p
x), for p ∈ [1,∞) as well as

density in spaces with mixed norms. The Sobolev assumption (see Definition 5.2) on t 7→ ft,
for f ∈ Ã , instead of a more natural C1

b assumption is introduced here to obtain more
degrees of freedom and becomes useful e.g. when dealing with elliptic diffusion operators.
Clearly, writing ft at fixed t ∈ [0, T ], we always mean the continuous representative for f , see
Proposition 5.6.

We let Ãc be the class of functions f ∈ Ã such that ft = 0, for t ∈ {0, T}. Thanks to
(5.2), Ãc is a class of functions large enough in order to deduce whether a curve belongs to
some Sobolev space with respect to t, see Remark 5.3 in the next section.

Remark 5.1. An alternative, but not equivalent, approach to the time-dependent framework
consists in defining a Dirichlet form as the closure of

C1
b ((0, T );L2(m)) ∩ L2((0, T );V) 3 f 7→

ˆ T

0

[
‖∂tft‖22 + E(ft)

]
dt.

However, the variable t ∈ (0, T ) plays a distinguished role in all what follows, that we prefer
to highlight from its very introduction. �

5.2 Sobolev and absolutely continuous Banach-valued curves

In this section, we recall basic facts on weakly differentiable curves, defined on the interval
(0, T ), with values in some Banach space B. Although we are interested mainly in the case
B = Lr(m), we first provide some general definitions and results, closely following [Showalter,
1997, §III.1], and then we consider particular cases of our interest.

Let B be a Banach space (not necessarily separable) with norm ‖·‖ and denote the duality
pairing B × B∗ → R by (f, ϕ) 7→ 〈f, ϕ〉 := ϕ(f). We say that a curve u = (ut)t∈(0,T ) ⊆ B
is measurable if it can be obtained as a L 1-a.e. limit of a sequence of simple (i.e., with
finite range) Borel curves: this notion becomes particularly useful when dealing with non-
necessarily separable spaces. We write u ∈ L1

t (B) if u is measurable and |u| = (‖ut‖)t ∈ L1
t ,

i.e., L1((0, T ),L 1). We consider Lebesgue spaces Lpt (B) of equivalence classes of functions,
in a similar way as for B = R: these are complete Banach spaces, and for p ∈ [1,∞], the

continuous dual (Lpt (B))∗ contains Lp
′

t (B∗), via the map

Lp
′

t (B∗) 3 ϕ = (ϕt)t∈(0,T ) 7→
[
Lpt (B) 3 f 7→

ˆ T

0
〈ft, ϕt〉 dt

]
.
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These spaces are separable B is separable and p <∞ as simple Borel curves are dense (when
p =∞ and B is a dual space, simple functions provide only a weakly-* dense set).

Spaces of weakly differentiable curves with values in B are defined by means of distri-
butional derivatives, and precisely in duality with the space of test functions C1

c ((0, T );M),
where we let M ⊆ B∗ be some closed subspace (this allows to deal with the case of B being
a dual space, and letting M be the primal space embedded in the bidual). For the sake of
simplicity, we often omit to write M in all what follows, and we consider it as fixed; moreover,
we assume that M is sufficiently large, namely we require ‖f‖ = supϕ∈M 〈f, ϕ〉 / ‖ϕ‖B∗ , for
every f ∈ B. We say that ϕ : (0, T ) → M is differentiable at t ∈ (0, T ) with derivative
ϕ′t ∈M if, for every f ∈ B,

lim
ε→0

∣∣∣∣〈f, ϕt+ε〉 − 〈f, ϕt〉ε
−
〈
f, ϕ′t

〉∣∣∣∣ = 0.

Definition 5.2 (weak derivatives). Let p ∈ [1,∞], and let u ∈ Lpt (B). We say that h ∈ Lpt (B)
is (the) weak derivative of u if it holds

ˆ T

0

〈
ut, ϕ

′
t

〉
dt = −

ˆ T

0
〈ht, ϕt〉 dt, for every ϕ ∈ C1

c ((0, T );M), (5.3)

and write h = ∂tu. We denote by W 1,p
t (B) the Banach space of functions u ∈ Lpt (B) for

which ∂tu ∈ Lpt (B) exists, endowed with the norm

‖u‖
W 1,p

t (B)
:= ‖u‖Lp

t (B) + ‖∂tu‖Lp
t (B) .

From (5.3), we deduce that if (un)n ⊆W 1,p
t (B) is a sequence with un → u, ∂t → h weakly

in Lpt (B), then u ∈W 1,p
t (B) with ∂tu = h.

Remark 5.3. It is not difficult to show that u ∈W 1,p
t (B) still holds if the identity (5.3) is sat-

isfied for ϕ belonging to a smaller set, e.g. as those functions ϕ of the form ϕt = ψtφ, for some
ψ ∈ C1

c ((0, T );R) and φ ∈ D, with D weakly-* dense in M ⊆ B∗. Indeed, it is sufficient to
approximate any ϕ ∈ C1

c ((0, T );R) with a pointwise convergent, uniformly bounded sequence
of linear combinations of such functions. In turn, this is possible writing ϕ = ϕ0 +

´ t
0 ϕ
′
sds,

and approximating ϕ0 and ϕ′ ∈ L∞t (B∗), with respect to weak-* convergence, with bounded
simple functions whose range belongs to D. �

Proposition 5.4 (H = W ). Let p ∈ [1,∞) and u ∈ W 1,p
t (B). There exists (un)n≥1 ⊆

C1
b ((0, T );B) with un → u in W 1,p

t (B). For p = ∞, one can find (un)n such that un → u,
∂tu

n → ∂tu in duality with L1
t (B

∗), as n→∞.

Proof. Extend u to a curve on (−T, T ) by reflection, i.e. let u(t) = u(−t) for t ∈ (−T, 0). It can
be checked that u ∈ W 1,p((−T, T );B), with ∂tut = ∂tu−t, a.e. t ∈ (−T, 0).Let ρ ∈ C1

c (0, T )
be a convolution kernel, i.e. ρ ≥ 0, and

´
ρ(s)ds = 1 and for n ≥ 1 define (via Bochner’s

integral) the convolution

unt :=

ˆ T

0
u(t− s/n)ρ(s)ds, for t ∈ (0, T ).

For n ≥ 1, it holds un ∈ C1
b ((0, T );B), with

(un)′t =

ˆ T

0
(∂tu)(t− s/n)ρ(s)ds =

1

n

ˆ T

0
u(t− s/n)ρ′(s)ds.
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where continuity follows for strong continuity of translations in Lpt (B). Again by strong
continuity of translations, as n→∞, one obtains the claimed convergence un → u in W 1,p

t (B).
�

Definition 5.5 (absolutely continuous curves). Let p ∈ [1,∞]. We say that a curve u :
(0, T ) 7→ B is absolutely continuous and it belongs to ACp((0, T );B) (or briefly ACpt (B)) if
there exists h ∈ Lp(0, T ) such that

‖ut − us‖ ≤
ˆ t

s
hrdr, for every s, t ∈ (0, T ), s ≤ t. (5.4)

If u ∈ ACpt (B), then the L 1-essentially smallest among all h’s such that (5.4) holds is
called the metric speed of u and denoted by (‖u̇t‖)t∈(0,T ). Notice that, if u ∈ ACpt (B), then
it is uniformly continuous so the limits u0 := limt↓0 ut and u0 := limt↑T ut exist.

In the case B = R, it is known that ACp(0, T ) = W 1,p(0, T ), so in particular every
Sobolev function admits a continuous representative belonging to ACp(0, T ). We provide a
weak generalization of this (only in one direction) to the case of a general space B, see e.g.
[Showalter, 1997, Proposition III.1.1].

Proposition 5.6. Let u ∈ W 1,p
t (B). Then, there exists a (unique) representative ũ ∈

ACpt (B), with
∥∥ ˙̃u
∥∥ ≤ ‖∂tu‖, L1-a.e. in (0, T ), and

‖ũ‖C([0,T ];B) := sup
t∈(0,T )

‖ũ‖ ≤ C ‖u‖
W 1,p

t (B)
, (5.5)

where C is some constant depending on p and T only.

It actually holds
∥∥ ˙̃u
∥∥ = ‖∂tu‖, L 1-a.e. in (0, T ), but we do not need this fact. Thanks to

this proposition, we always identify u = ũ whenever u ∈W 1,p
t (B).

Proof. It is sufficient to establish (5.5) for p = 1 and u ∈ C1
b ((0, T );B) arguing then by

density, using Proposition 5.4. Let s, t ∈ (0, T ), with s ≤ t and ϕ ∈M . Then, it holds

〈ut, ϕ〉 − 〈us, ϕ〉 =

ˆ t

s

〈
u′r, φ

〉
dr,

so that we have

‖ut − us‖ = sup
ϕ∈M,‖ϕ‖B∗≤1

|〈ut, ϕ〉 − 〈us, ϕ〉| ≤ sup
ϕ∈M,‖ϕ‖B∗≤1

ˆ t

s

∣∣〈u′r, ϕ〉∣∣ dr, ≤ ˆ t

s

∥∥u′r∥∥ dr
and by averaging with respect to s, we deduce, for t ∈ (0, T ),

T ‖ut‖ ≤
ˆ T

0
‖ut − us‖ ds+

ˆ T

0
‖us‖ ds ≤ T

ˆ T

0

∥∥u′s∥∥ ds+

ˆ T

0
‖us‖ ds,

which entails (5.5). �

We conclude this section by providing some variants of Proposition 5.6, first in a Gelfand
triple setting [Showalter, 1997, Proposition III.1.2] and then in the case of B being a Lebesgue
space.
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Recall that a Gelfand triple is defined by fixing some separable Hilbert space H and a
dense (continuous) inclusion i : B ↪−→ H. Then, by identifying H ∼ H∗ via the Riesz map,
one obtains

B
i
↪−→ H ∼ H∗ i∗

↪−→ B∗,

where i∗ ◦ i : B ↪−→ B∗ is a dense inclusion (i∗ is injective because the range of i is dense). As
a consequence, the spaces Lpt (B) are embedded into Lpt (B

∗). Let b ∈ B, h ∈ H. Then, by
definition of adjoint, it holds 〈i(b), h〉H = 〈b, i∗(h)〉B, thus |〈h, i(b)〉H | ≤ ‖b‖B ‖i∗(h)‖B∗ (we
naturally introduce a specific notation for the norms and duality maps in the various spaces).
In this case, we naturally let M := B.

Proposition 5.7. In the Gelfand triple setting introduced above, let p ∈ [1,∞] and u ∈
W 1,p
t (B∗)∩Lp

′

t (B). Then, u ∈ C([0, T ];B∗) actually belongs to C([0, T ];H) and (‖ut‖2H)t∈(0,T )

is absolutely continuous, with

∂t ‖ut‖2H = 2 〈ut, ∂tut〉B , a.e. t ∈ (0, T ).

Proof. The proof is similar to that of the previous proposition. The proof of Proposition 5.4
clearly shows that it is sufficient to argue for u ∈ C1

b ([0, T ];B) and provide a quantitative
bound that entails the general case by density. For s, t ∈ (0, T ), with s ≤ t and ϕ ∈ B ⊆ H,
it holds

〈ut, ϕ〉H − 〈us, ϕ〉H =

ˆ t

s

〈
u′r, ϕ

〉
H
dr,

thus, letting ϕ = ut − us ∈ B ⊆ H, we obtain

|ut − us|2H =

ˆ t

s

〈
ut − us, u′r

〉
H
dr ≤

ˆ t

s
‖ut − us‖B

∥∥u′r∥∥B∗ dr.
By averaging over s ∈ (0, T ), we obtain

T

2
‖ut‖2H ≤

ˆ T

0
‖ut − us‖2H ds+

ˆ T

0
‖ut‖2H ds

≤ T

ˆ T

0
‖us‖B

∥∥u′s∥∥B∗ ds+

ˆ T

0
‖us‖2B ds,

≤ T ‖u‖
Lp′
t (B)

‖∂tu‖Lp
t (B∗) + T ‖u‖2L∞((0,T );B∗) ,

where the last inequality is a consequence of Hölder inequality. By the previous proposition,
the last term is estimated from above by ‖u‖

W 1,1
t (B∗), thus providing the required bound.

The second statement follows again by density, arguing first for u ∈ C1
b ((0, T );B), thus

(‖ut‖2H)t∈(0,T ) ∈ C1
b (0, T ), with

d

dt
‖ut‖2H = 2

〈
ut, u

′
t

〉
H
, for t ∈ (0, T ).

�

We deduce more precise results in the case of spaces of functions in our framework, i.e.
we let H = L2(m) and B = V.
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Proposition 5.8. Let p ∈ [1,∞], u ∈ Lpt (V∗) ∩ L
p′

t (V), β ∈ C2
b (R), with β(0) = β′(0) = 0.

Then, the curve (0, T ) 3 t 7→
´
β(ut)dm is AC1(0, T ), with

∂t

ˆ
β(ut)dm =

〈
β′(ut), ∂tut

〉
V , L 1- a.e. t ∈ (0, T ).

Recall that we tacitly identify u with its continuous representative, which by the previous
result is continuous with values in H = L2(m), so that the curve above is well-defined.

Proof. Again, we argue by density, letting u ∈ C1
b ((0, T );V). Notice that the map t 7→´

β(ut)dm is well defined and continuous, by the assumptions on β. By a Taylor expansion,
it is not difficult to prove that it is C1

b (0, T ), with

d

dt

ˆ
β(ut)dm =

ˆ
β′(ut)u

′
tdm, for t ∈ (0, T ). (5.6)

Let un ∈ C1
b ((0, T );V) converge towards u in Lpt (V∗) ∩ L

p′

t (V). Then, the regularity and
growth assumptions on β give that for every t ∈ (0, T ), β(unt ) converge towards β(ut), which
also provides a continuous curve. To show its absolute continuity, AC1(0, T ), it is sufficient
to prove that it belongs to W 1,1(0, T ), passing to the limit in (5.6) with un in place of u, with
respect to convergence in L1(0, T ). This is a consequence of β′(un)→ β′(u) in Lpt (V), by the
chain rule, the uniform bound on β′′ and Proposition 3.1. �

We conclude this section with another generalization of Proposition 5.6, where we deal
with Lebesgue spaces. Its easy proof is just a variant of the arguments provided so far.

Proposition 5.9. Let p, q, r, s ∈ [1,∞], satisfy p−1+r−1+s−1 = 1 and let u ∈W 1,p
t (Ls

′
(m))∩

Lpt (L
r(m)).

Then, for every β ∈ C1
b (R) with β(0) = β′(0) = 0, the curve (β(ut))t∈(0,T ) is AC1

t (Ls
′
(m)),

with
∂tβ(ut) = β′(ut)∂tut, L 1-a.e. t ∈ (0, T ).

Remark 5.10. It is possible to state and prove variants where β′ has controlled growth. In
particular, for |β′(z)| ≤ |z|s/r we obtain that the curve β(u) belongs to AC1

t (L1(m)). Further
variants can be devised, e.g. dealing with sums and intersections of Lebesgue spaces.



Chapter 6

Fokker-Planck equations,
martingale problems and their
equivalence

In this chapter, we introduce Fokker-Planck equations, martingale problems and flows, for
diffusions in metric measure spaces, analogously to Chapter 1: although the arguments are
perfectly parallel to those developed for diffusion processes in Rd, the theory is different in a
crucial aspect, besides its framework. Indeed, there is no hope for pointwise investigations,
and we always look for results averaged with respect to m.

Throughout all this section, we let (X, τ), m and E satisfy (3.1), fix T > 0 and consider
the time-extended framework as introduced in the previous chapter, letting in particular Ã
satisfy (5.2). Finally, we let r ∈ (1,∞] and L be a diffusion operator on (0, T )×X, such that

Lf = (Ltf)t∈(0,T ) ∈ L1
t (L

r′
x ), for every f ∈ Ã . (6.1)

For simplicity, as there is no danger of confusion, we also write A in place of Ã .

6.1 Definition and basic facts

In this section, which parallels Section 1.1, we introduce suitable notions of solutions to
Fokker-Planck equations, martingale problems and flows associated to L, together with basic
results.

Fokker-Planck equations

Definition 6.1 (solutions in L∞t (Lrx) to FPE’s). A Borel function u on (0, T )×X is said to
be a solution in L∞t (Lrx) to the Fokker-Planck equation (FPE)

∂tut = L∗t (ut), in (0, T )×X, (6.2)

if it holds u = (ut)t ∈ L∞t (Lrx) and

ˆ T

0

ˆ
[∂tft + Ltf ]utdmdt = 0, for every f ∈ Ac. (6.3)

59
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Let us explicitly remark that we prefer to consider a solution u as a function and not an
equivalence class with respect to m̃-negligible sets in (0, T )×X: to keep a perfect correspon-
dence with Section 1.1, the natural object to consider should be the Borel curve of measures
ν := (utm)t∈(0,T ), but we prefer to work directly with densities.

As usual with weak formulations for PDE’s, the main advantage is that no regularity
assumption on u, but only integrability, is imposed.

Remark 6.2 (extension of the weak formulation). Assume that L is extended on a space
F ⊆W 1,1

t (Lr
′
(m)), containing Ac, and such that any f ∈ F can be approximated by sequence

(fn)n ⊆ Ac such that

fn → f, ∂tfn → ∂tf, Lfn → Lf, weakly in L1
t (L

r′
x ). (6.4)

Then, any solution u in L∞t (Lrx) to the FPE (6.2) clearly satisfies (6.3) also with f ∈ F . �

Remark 6.3 (equivalent formulation). By (5.2), A is stable with respect to multiplication
by elements in C1

c (0, T ), letting fg in place of f ∈ A in (6.3), with g ∈ C1
c (0, T ), we obtain

that any solution u in L∞t (Lrx) to the FPE (6.2) satisfies

ˆ T

0
∂tgt

[ˆ
ftutdm

]
dt =

ˆ T

0
gt

ˆ
[∂tft + Ltf ]utdmdt

thus the curve (0, T ) 3 t 7→
´
ftutdm is W 1,1(0, T ), with

∂t

ˆ
ftutdm =

ˆ
[∂tft + Ltf ]utdm, L 1-a.e. t ∈ (0, T ). (6.5)

Clearly, by integration over t ∈ (0, T ), requiring (6.5) to hold for every f ∈ Ac is equivalent
to the original formulation (6.3). �

We next address the validity of an analogue of Remark 1.4, i.e., of [Ambrosio et al., 2008,
Lemma 8.1.2] in this setting. The assumption r > 1 plays a role here; the main difficulty is
to formulate the correct “separability” condition on A , which we add as a hypothesis.

Lemma 6.4 (existence of a continuous representative). Let u be a solution in L∞t (Lrx) to
the FPE (6.2). Assume that there exists a countable set A ∗ ⊆ A such that every f ∈ A is
approximated by a sequence (fn)n ⊆ A ∗ in the sense of (6.4).

Then, there exists a (unique) weakly-* continuous curve ũ = (ũt)t∈[0,T ] ⊆ Lr(m), with
ut = ũt m-a.e. in X, L 1-a.e. t ∈ (0, T ), such that

ˆ
ft2 ũt2dm−

ˆ
ft1 ũt1dm =

ˆ t2

t1

ˆ
[∂tfs + Lsf ]usdmds, for t1, t2 ∈ [0, T ], with t1 ≤ t2.

(6.6)

Proof. For every f ∈ A ∗, let Af ⊆ (0, T ) be the set of Lebesgue points for the Borel curve
t 7→

´
ftutdm and let A := ∩f∈A ∗Af . Notice that the function u, restricted to A×X provides

a bounded Borel curve (ut)t∈A ⊆ Lr(m).
Moreover, such a curve (ut)t∈A can be also be seen as a family of linear functionals on A .

Indeed, it holds, for every t1, t2 ∈ A with t1 ≤ t2 and f ∈ A ∗,

ˆ
ft2ut2dm =

ˆ
ft1ut1dm +

ˆ t2

t1

ˆ
[∂tfs + Lsf ]usdmds,
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and the right hand side is continuous with respect to the convergence in (6.4), thus we may
define uniquely a linear functional `t2 : A → R. Notice the the precise choice for t1 ∈ A is
not relevant, thus the condition t1 ≤ t2 can be dropped. The right hand side can be used to
define similarly `t2 for t2 ∈ (0, T ] (again, choosing any t1 ≤ t2 with t1 ∈ A) and even `0, by
letting

`0(f) =

ˆ
ft2ut2dm−

ˆ t2

0

ˆ
[∂tfs + Lsf ]usdmds,

for any t2 ∈ A. Notice that, for every f ∈ A , [0, T ] 3 t 7→ `t(f) is a continuous curve. The
left hand side above provides the bound

|`t(f)| ≤ sup
s∈A
‖us‖r ‖ft‖r′ , for t ∈ A,

whose validity can be extended, by taking limits, for t ∈ [0, T ]. By density of the range of
f 7→ ft ∈ Lr

′
(m) in (5.2), we see that `t induces a linear continuous functional on Lr

′
(m),

with norm smaller than sups∈A ‖us‖r and so, by duality between Lebesgue spaces (where we
use r > 1), we conclude that for every t ∈ [0, T ], there exists `t(f) =

´
ftũtdm and moreover,

t 7→ ũt ∈ Lr(m) is weakly-* continuous and satisfies (6.6). �

From a classical PDE point of view, Definition 6.1 is very weak, since e.g. in the case of
L = ∆, we integrate by parts twice. The usual definition of weak solution, i.e. integrating by
parts once, can be recovered whenever L is in divergence form and u ∈ L2

t (V), as the next
Proposition shows: its proof is straightforward from the definition of diffusion in divergence
form.

Proposition 6.5 (solutions to FPE’s in divergence form). Let r ∈ [2,∞] and L be in diver-
gence form, with

|a| , |b| ,∈ L2
t (L

q
x), with 1/q = 1/2 + 1/r.

Then, u ∈ L∞t (Lrx) ∩ L2
t (V) is a solution to the FPE (6.2) if and only if it holds

ˆ
[(∂tf − df(b))u− a(f, u)] dm̃ = 0, for every f ∈ Ac.

In the next section, we prove that a satisfactory correspondence between well-posedness
of FPE’s and martingale problems can be established, dealing with solutions in L∞t (Lrx), not
only in L2

t (V).

Martingale problems

Before we define solutions to the martingale problem associated to a diffusion operator L, let
us introduce the following notation, which parallels that in Section 1.1: on the Polish space
C([0, T ];X), we define et : γ 7→ γt := γ(t) ∈ X be the evaluation map, for t ∈ [0, T ]. The
natural filtration on C([0, T ];X) is the increasing family of σ-algebras F = (Ft)t∈[0,T ] with
Ft := σ(es : s ∈ [0, t]). Given η ∈ P(C([0, T ];X)), we let ηt := (et)]η be the 1-marginal
law at t. Notice that the family η := (ηt)t∈[0,T ] is Borel and actually narrowly continuous.
We also write η ∈ L∞t (Lrx) when ηt � m, with density belonging to Lr(m), with a uniform
bound in t ∈ [0, T ]. With a slight abuse of notation we then write ‖ηt‖r for the Lr(m)-norm
of dηt/dm and ‖η‖L∞t (Lr

x) for supt∈[0,T ] ‖ηt‖r.
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Definition 6.6 (Lr-regular solutions to MP’s). A probability measure η ∈ P(C([0, T ];X))
is a Lr-regular solution to the martingale problem (MP) associated to L if η ∈ L∞t (Lrx) and,
for every f ∈ A , the process

[0, T ] 3 t 7→ ft ◦ et −
ˆ t

0
[∂tfs + Lsf ] ◦ esds (6.7)

is a martingale with respect to the natural filtration on C([0, T ];X).

The assumption η ∈ L∞t (Lrx) entails, for t ∈ [0, T ], the bound
ˆ
|ft| ◦ etdη +

ˆ ˆ t

0
[|∂sfs| ◦ es + |Lsf | ◦ es] dη ≤ C ‖|∂tf |+ |Lf |‖L1

t (Lr′
x ) ‖η‖L∞t (Lr

x) , (6.8)

where C is some constant depending on T and r only (due to the norm of the trace operator
f 7→ ft). The process defined in (6.7) is therefore uniformly bounded in L1(η), so that one is
always reduced to check orthogonality of increments, and in particular that for every t ∈ [0, T ]
and bounded Ft-measurable g : C([0, T ];X)→ R it holds

ˆ
g

[
fT ◦ eT −

ˆ T

0
[∂tfs + Lsf ] ◦ esds

]
dη =

ˆ
g

[
ft ◦ et −

ˆ t

0
[∂tfs + Lsf ] ◦ esds

]
dη.

We also notice that the process [0, T ] 3 t 7→
´ t

0 [∂tfs + Lsf ] ◦ esds can be defined as a
progressively measurable, a.s. continuous process in L∞loc(η, (Ft)t), see right after Definition
1.5.

Remark 6.7 (the deterministic case). When L = b is a derivation, the martingales

t 7→ ft ◦ et −
ˆ t

0
[∂tfs + dfs(bs)] ◦ esds, for f ∈ A

reduce to constant processes, since their quadratic variation, which in general is given by
2a(f) is identically zero, see also Section 2.2.2. Therefore, martingale solutions are proba-
bility measures η concentrated on curves for which t 7→ ft ◦ et is Sobolev with ∂tft ◦ et =
[∂tft + dft(bt)] ◦ et, η-a.e., which recovers the notion of solution to the ODE induced by b
given in [Ambrosio and Trevisan, 2014, Definition 7.3]. �

Remark 6.8 (solutions to MP’s induce solutions to FPE’s). Integrating with respect to
η, i.e., taking expectation, any Lr-regular solution η to the MP provides, by means of its
1-marginals, a weakly-* continuous solution η = (ηt)t ⊆ Lr(m) to the FPE (6.2). �

As in Section 1.1, we investigate stability properties for solutions to martingale problems,
remarking that all the definitions above can be given also with respect to any interval [t1, T ],
in place of [0, T ].

Proposition 6.9. Let t1 ∈ [0, T ), η ∈P(C([t1, T ];X) be a Lr-regular solution to the martin-
gale problem associated to L. Let t2 ∈ [t1, T ] and let ρ : C([t1, T ];X)→ [0,∞) be a probability
density (with respect to η) belonging to L∞(η), measurable with respect to Ft2. Let π denote
the natural restriction map

C([t1, T ];X) 3 γ 7→ (γ(t))t∈[t2,T ] ∈ C([t2, T ];X).

Then, π](ρη) ∈P(C([t2, T ];X) is a Lr-regular solution to the martingale problem associated
to L, on the space C([t2, T ];X).
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Proof. The proof goes exactly as that of Proposition 1.8, noticing also that the inequality

(π](ρη)) ≤ ‖ρ‖L∞(η) π](η)

entails the bound in Lr(m) for the 1-marginals of π](ρη), uniformly in t ∈ [t2, T ]. �

Stability with respect to convex combinations can be proved exactly as in Proposition 1.9;
the proof is even simpler, as the integrability assumptions are automatically fulfilled because
of (6.8). Finally, Lr-regularity follows by Jensen’s inequality.

Proposition 6.10. Let (Z,A) be a measurable space, ν ∈P(Z) and (ηz)z∈Z ⊆P(C[0, T ];X)
be a Borel family of probability measures, such that ηz is a Lr-regular solution to the MP asso-
ciated to L, for ν-a.e. z ∈ Z. Then, η :=

´
ηzdν(z) ∈P(C[0, T ];X) is a Lr-regular solution

to the MP associated to L.

Martingale flows

The notion of martingale flows consists in a Borel selection of solutions to martingale problems,
so that Lr-regularity is preserved: this idea originates in DiPerna-Lions theory for ODE’s with
weakly differentiable coefficients and was subsequently put in a more convenient formulation
by [Ambrosio, 2004].

Definition 6.11 (Lr-regular martingale flows). A family (η(s, x))(s,x)∈[0,T ]×X of probability
measures on C([0, T ];X) is said to be a Lr-regular martingale flow (MF) associated to L if,
for every s ∈ [0, T ], x 7→ η(s, x) is Borel and for every u ∈ Lr(m), with um probability,

η :=

ˆ
η(s, x)u(x)dm(x) ∈P(C([0, T ];X)) (6.9)

is a Lr-regular solution to the martingale problem on [0, T ], associated to the diffusion χ[s,T ]L,
with ηs = um.

Remark 6.12. Differently from Chapter 1, we are not allowed to let um = δx for x ∈ X and
deduce that η(s, x) is a solution the martingale problem in [s, T ] with law at s given by δx.
Still, from the identity

um =

ˆ
η(s, x)su(x)dm(x), u ∈ Lr(m), with um probability,

we obtain η(s, x)s = δx, m-a.e. x ∈ X, for every s ∈ [0, T ]. �

Remark 1.11 as well as Remark 1.12 can be rephrased also in this setting. Notice that
Chapman-Kolmogorov equations, which read as

η(s, x)t =

ˆ
X
η(r, y)tη(s, x)r(dy), m-a.e. x ∈ X, for every r, s, t ∈ [0, T ] with s ≤ r ≤ t,

(6.10)
are not a condition for defining a Lr-regular martingale flow, as we obtain them as a conse-
quence of well-posedness.
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The superposition principle

Definition 6.13 (superposition principle). Let u = (ut)t∈(0,T ) be a solution in L∞t (Lrx) to the
FPE (6.2). We say that the superposition principle holds for u if there exists a superposition
solution η ∈P(C([0, T ];X)), i.e., a Lr-regular solution to the MP associated to L such that
ηt = utm, L 1-a.e. t ∈ (0, T ).

Clearly, existence of a superposition solution for u entails existence of a weakly-* contin-
uous representative and that utm is a probability measure, L 1-a.e. t ∈ [0, T ]. Moreover, if
utm is already weakly-* continuous, one has utm = ηt for every t ∈ [0, T ]. We address the
validity of the superposition principle in metric measure spaces, under suitable assumptions,
in the next chapter.

6.2 Correspondence between FPE’s, MP’s and flows

Arguing similarly as in Section 1.2, we show that the validity of the superposition principle
entails abstract correspondences between well-posedness for the notions introduced above.

Fokker-Planck equations ⇔ martingale problems

If the superposition principle holds, then existence results are transferred easily both ways:
in particular existence of solutions ν in L∞t (Lrx) to the FPE associated to L, to which the
superposition principle applies, entails existence of solutions to the MP. With an identical
proof, the following analogue of Lemma 1.14 holds.

Lemma 6.14 (transfer of uniqueness for 1-marginals). Let u ∈ Lr(m), with um probability.
Assume that the superposition principle holds for every weak-* continuous solution in L∞t (Lrx)
to the FPE

∂tut = L∗tut, in (0, T )×X, with u0 = u. (6.11)

Then, the following conditions are equivalent:

i) there exists at most one weak-* continuous solution in L∞t (Lrx) to the FPE (6.11)

ii) any two Lr-regular solutions η1, η2 to the MP associated to L, with η1
0 = η2

0 = um, have
identical 1-marginals, i.e. η1

t = η2
t for t ∈ [0, T ].

Next, we provide an analogue of Lemma 1.15. Let us point out that the proof goes
identically and relies on Proposition 6.9, which in turn exploits

0 ≤ u ≤ v ∈ Lr(m) ⇒ u ∈ Lr(m). (6.12)

Indeed, as explicitly remarked in [Ambrosio and Crippa, 2008, §3] and [Figalli, 2008, §3.1],
besides minor technicalities, one could restate all these results, at least in the Euclidean
framework, for solutions to FPE’s in L∞t (L) and L-regular martingale problems, where L is
any class of measures such that the analogue (6.12) holds, i.e.

0 ≤ u ≤ v ∈ L ⇒ u ∈ L.

One may also consider mixed integrability conditions, both with respect to t and x.
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Lemma 6.15 (transfer of uniqueness). For every s ∈ [0, T ], let the superposition principle
hold for every weakly-* continuous solution in L∞t (Lrx) to the FPE

∂tut = L∗tut, in (s, T )×X.

Then, the following conditions are equivalent:

i) for every s ∈ [0, T ] and probability density u ∈ Lr(m), there exists at most one weakly-*
continuous solution u in L∞t (Lrx) to the FPE

∂tut = L∗tut, in (s, T )× Rd, with us = u;

ii) for every s ∈ [0, T ], if η1, η2 ∈ P(C([s, T ];X)) are Lr-regular solutions to the MP
associated to L on C([s, T ];X), with η1

s = η2
s , then η1 = η2.

Martingale problems ⇔ martingale flows

We provide the analogue of Lemma 1.16. We introduced the notation Cs,u ⊆P(C([0, T ];X))
for the set of Lr-regular solutions to the MP associated to χ[0,s]L, with ηs = um. Notice that
we are not able to prove the implication ii) ⇒ i), except for the case r =∞.

Lemma 6.16 (well-posedness of MF’s). Consider the following two conditions:

i) for every s ∈ [0, T ], u ∈ Lr(m), with um probability, there exists a unique u ∈ Cs,u;

ii) there exists a m-essentially unique Lr-regular martingale flow associated to L, i.e. given
any two flows η1, η2, there holds

η1(s, x) = η2(s, x), m-a.e. in X, for every s ∈ [0, T ].

Then, it always holds i) ⇒ ii), while ii) ⇒ i) holds if r =∞. Moreover, if i) holds, then the
Lr-regular martingale flow satisfies (1.7).

Proof. i)⇒ ii). Uniqueness of a Lr-regular martingale flow assuming uniqueness of Lr-regular
martingale problems is trivial. To prove existence, we argue at fixed s ∈ [0, T ]. For any
u ∈ Lr(m) with um probability density, we consider (the unique) ηu ∈ Cs,u and disintegrate
it with respect to es, i.e., we consider a regular conditional probability for the identity map
in C([s, T ];X), given es. We thus obtain a Borel family of probability measures ηu(s, x). We
claim that, for any v ∈ Lr(m) with vm probability, it holds

ηu(s, x) = ηv(s, x), m-a.e. x ∈ X such that u(x) > 0 and v(x) > 0.

To this aim, it is sufficient to fix ε > 0, let ρ ∈ L1 ∩ L∞(m) be any probability density
concentrated on {u > ε, v > ε}, and show that

ˆ
ηu(s, x)ρ(x)dm(x) =

ˆ
ηv(s, x)ρ(x)dm(x) as measures on C([0, T ];X),

and this follows from uniqueness, as we show that both members belong to Cs,ρ. By definition
of disintegration of measure, one can rewrite both sides above as

ˆ
ηu(s, x)ρ(x)dm(x) = (ρ ◦ es)ηu and

ˆ
ηv(s, x)ρ(x)dm(x) = (ρ ◦ es)ηv.



6.2. CORRESPONDENCE BETWEEN FPE’S, MP’S AND FLOWS 66

Since it holds
ρ ≤ ‖ρ‖∞ χ{u>ε} < ε−1 ‖ρ‖∞ u, m-a.e. in X,

we obtain ρ◦es ≤ ‖ρ‖∞ /ε, ηu-a.s., and similarly ρ◦es ≤ ‖ρ‖∞ /ε, ηv-a.s.. Moreover, as ρ◦es
is clearly Fs-measurable, by Proposition 6.9, the claim is proved.

Now fix any v ∈ Lr(m), with vm probability and v > 0, m-a.e. in X, and define η(s, x) :=
ηv(s, x). Our aim is to show that

ηu =

ˆ
η(s, x)u(x)dm(x). (6.13)

For n ≥ 1, let un := cn(u(x) ∧ n), where cn ensures that un is a probability density. Due to
the claim, it holdsˆ

ηu(s, x)cn(u(x) ∧ n)dm(x) = ηun =

ˆ
ηv(s, x)cn(u(x) ∧ n)dm(x),

thus ˆ
ηu(s, x)(u(x) ∧ n)dm(x) =

ˆ
η(s, x)(u(x) ∧ n)dm(x),

and so, as n→∞, by monotone convergence we obtain (6.13).
ii) ⇒ i) . Let us consider the general case first, highlight then where the assumption

r =∞ seems crucial. Existence of Lr-regular solutions to the martingale problem, given the
existence of a Lr-regular martingale flow follows trivially from (6.9). To prove uniqueness
we argue by contradiction: assume that there exists s ∈ [0, T ] and v ∈ Lr(m), with vm
probability, and η1, η2 ∈ Cs,v with η1 6= η2. By disintegration with respect to es, we obtain
two Borel families of probability measures (η1(s, x))x∈X , (η2(s, x))x∈X that differ on a Borel
set A ⊆ X with m(A) > 0 and v > ε on A, for some fixed ε > 0.

By the existence assumption, let (η(s, x))s,x be a martingale flow and then modify it only
on {s}×A, letting η(s, x) = ηi(s, x), for x ∈ A, i ∈ {1, 2}. Clearly, the two maps obtained are
Borel, and we would like to argue that they provide two different Lr-regular martingale flows,
in contrast with the uniqueness assumption. To check that they define indeed Lr-regular
martingale flows, we rely on the identity, valid for any u ∈ Lr(m), with um probability,

ˆ
ηi(s, x)u(x)dm(x) =

ˆ
Ac

η(s, x)u(x)dm(x) +

ˆ
A
ηi(s, x)u(x)dm(x)

= (1− p)
ˆ
Ac

η(s, x)
u(x)

1− p
dm(x) + p

ˆ
A
ηi(s, x)

u(x)

p
dm(x)

where p =
´
A udm, provided that this quantity is non-null, otherwise there is nothing to prove.

This identity follows from Proposition 6.10, with Z being the two point space. However, to
apply this last result, one has to show that both terms above are Lr-regular solutions to the
martingale problem: for the first one, we use the definition of Lr-regular martingale flow,
while for the second one we must restrict ourselves to the case r =∞, and use the inequality

u

p
χA ≤

u

p
χ{v>ε} ≤

‖u‖∞
pε

v, m-a.e. in X,

that gives, by definition of disintegration with respect to es,ˆ
A
ηi(s, x)

u(x)

p
dm(x) ≤

‖u‖∞
pε

ηi,
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and so by Proposition 6.9, we conclude.

To prove (6.10) assuming i), it is enough fix u ∈ Lr(m), with um probability, and repeat
the corresponding argument in the proof of Lemma 1.16, to obtain

π](

ˆ
η(s, x)u(x)dm(x)) =

ˆ
X
η(r, y)

[ˆ
X
η(s, x)r(dy)u(x)dm(x)

]
which entails (6.10), being u arbitrary. �

Remark 6.17 (Regular flows in the deterministic case). When L = b is a derivation, as
observed in Remark 6.7, solutions to the martingale problem reduce to curves concentrated
on solutions to the ODE induced by b as in [Ambrosio and Trevisan, 2014, Definition 7.3].
It is then natural to question whether uniqueness of L∞-regular martingale flows entails
that the flow is actually deterministic, i.e. it holds η(s, x) = δX(s,x), for some Borel function
X(s, ·) : X × [0, T ] → X (for every fixed s ∈ [0, T ]), thus fully recovering the results from
[Ambrosio and Trevisan, 2014, §8], which generalize Ambrosio’s approach to DiPerna-Lions
theory to metric measure spaces. Indeed, it is sufficient to prove that the marginal η(s, x)t
is a degenerate measure for every (rational) t ∈ [0, T ], and this can be performed by arguing
verbatim as in [Ambrosio and Crippa, 2008, Theorem 18], where the original argument of
[Ambrosio, 2004, Theorem 5.4] is slightly improved. For the sake of completeness, we report
it right below. �

Theorem 6.18 (no splitting criterion). Assume that L = b is a derivation, and assume that
there exists a m-essentially unique Lr-regular martingale flow (η(s, x))s,x. Then, η(s, x) is a
Dirac measure at a single curve X(s, x) ∈ C([0, T ];X), for m-a.e. x ∈ X, for every s ∈ [0, T ].
Moreover, (6.10) reads as X(s, x)(t) = X(r,X(s, x))(t), for m-a.e. x ∈ X, r, s, t ∈ [0, T ], with
s ≤ r ≤ t.

Proof. By contradiction, we assume that there exists s ∈ [0, T ] such that η(s, x) is not a
Dirac measure at a single curve in a Borel set of positive measure A ⊆ X: without any loss
of generality, we let s = 0 and omit to write it in what follows. A simple argument (see
[Ambrosio and Crippa, 2008, Lemma 15]) gives that there exists disjoint sets E, E′ ⊆ X and
t ∈ [0, T ] with η(x)t(E)η(x)t(E

′) > 0, for x ∈ A. Possibly reducing to a smaller set, we may
let both η(x)t(E) > ε and η(x)t(E

′) > ε, for x ∈ A, for some ε ∈ (0, 1). Then, we consider
the Borel functions on X × C([0, T ];X),

ρE(x)(γ) :=
χγ(t)∈E

η(x)t(E)
, ρE′(x)(γ) :=

χγ(t)∈E′

η(x)t(E′)
,

and the Borel family of probability measures ηE (respectively, ηE′), obtained by the flow η
by replacing η(0, x) with ρE(x)η(0, x) (respectively ρE′(x)η(0, x)). By construction, it holds´
A ηE(0, x)dm(x) 6=

´
A ηE′(0, x)dm(x), since the marginals at t are concentrated respectively

at E and E′ which are disjoint.

To obtain a contradiction, we only have to prove that ηE and ηE′ provide Lr-regular
martingale flows. Thus, we let ū ∈ Lr(m), with ūm probability. Since ρE ≤ ε−1η, we obtain
that, the marginals of ηE are bounded above by those of η, thus Lr-regularity holds for´
ηE(0, x)ūdm (and the same argument applies to E′). To show that the martingale property

holds, one would like to apply Proposition 6.9 with ρ(γ) := ρE(e0)(γ), γ ∈ C([0, T ];X), but
this clearly violates the condition of being F0-measurable (in general, it is only Ft measurable).
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It is precisely at this point that the deterministic assumption enters the picture: by Remark
6.7, the martingales associated to η are in fact constant, or equivalently, they are martingales
with respect to the constant filtration equal to the full Borel σ-algebra: thus the measurability
assumption on ρ in Proposition 6.9 can be removed and we conclude indeed that ηE provide
an Lr-regular martingale flow (and similarly, ηE′). �



Chapter 7

The superposition principle in
metric measure spaces

We conclude the second part of this thesis by establishing the validity of a superposition
principle for diffusion processes in metric measure spaces, under suitable assumptions. The
argument we employ is close to that of [Ambrosio and Trevisan, 2014, Theorem 7.6], where
the deterministic case is settled, in turn influenced by a change of variables appearing in
[Kolesnikov and Röckner, 2014]. The strategy roughly consists in establishing first a superpo-
sition principle in the space R∞, in Section 7.1, obtained as a limit of Euclidean spaces, and
then of transferring it to general spaces, after some technical preliminaries, that we address in
Section 7.2. Let us point out that, since we are dealing with diffusion processes, there appears
some connection between these techniques and those employed in the proof of existence for
Markov processes associated to (quasi-)regular Dirichlet forms.

7.1 Diffusions in R∞

In this section, we establish a superposition principle for diffusions on R∞, following the
strategy in [Ambrosio and Trevisan, 2014, Theorem 7.2], it is also pointed out towards the
end of [Ambrosio et al., 2008, §8.2] that one can extend the superposition principle, in the
deterministic case, from Rd to Hilbert spaces.

Let us briefly describe the setting of R∞, in particular suitable notions of diffusion oper-
ators, Fokker-Planck equations and martingale problems.

Ambient space

We endow R∞ := RN with the complete and separable distance

(x, y) 7→
∞∑
i=1

2−i min
{

1, |xi − yi|
}
,

inducing the product topology, and we let

πd : R∞ → Rd, πd(x) = (x1, . . . , xd)

69
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denote the canonical projections from R∞ to Rd, for d ≥ 1. We also endow the space
C([0, T ];R∞) with the distance

(γ, γ̃) 7→
∞∑
i=1

2−i max
t∈[0,T ]

min
{

1, |γ(t)i − γ̃(t)i|
}
,

which makes C([0, T ];R∞) complete and separable as well. Notice that a setK ⊆ C([0, T ];R∞)
is compact if and only if the set {xn ◦ γ : γ ∈ K} is compact in C([0, T ];R), for every n ≥ 1.
Therefore, if for i ≥ 1 we let Ψi : C([0, T ];R)→ [0,∞] be any coercive functional, then

C([0, T ];R∞) 3 γ 7→ Ψ(γ) :=

∞∑
i=1

Ψi(xi ◦ γt)

is coercive.

Test functions and diffusion operators

We let A∞ := FC1,2
b ((0, T ) × R∞) be the class of C1,2

b cylindrical functions, i.e. those f :
(0, T )× R∞ → R that can be written in the form

ft(x) = ft(π
n(x)) = ft

(
x1, . . . , xn

)
x ∈ R∞,

for some n ≥ 1 and f ∈ A n := C1,2
b ((0, T )× Rn). We write

∂ift := (∂ift) ◦ πn, ∂i,jft := (∂i,jft) ◦ πn for i, j ≥ 1, t ∈ (0, T ),

so that ∂if = 0 for i > n and we say that f is n-cylindrical.
Given Borel maps

a = (ai,j)∞i,j=1 : (0, T )× R∞ → Sym+(R∞), b = (bi)∞i=1 : (0, T )× R∞ → R∞, (7.1)

where Sym+(R∞) is defined as the set of double sequences (ai,j) such that,

n∑
i,j=1

ai,jξiξj ≥ 0, for every n ≥ 1, for every ξ ∈ R∞,

we define the diffusion operator L := L(a, b), mapping A into Borel functions on (0, T )×R∞,

Ltf :=
∞∑

i,j=1

ai,jt ∂
2
i,jft +

∞∑
i=1

bit∂if,

and notice that the series are actually finite sums.

FPE’s and MP’s

Solutions ν = (νt)t∈(0,T ) ⊆ M (R∞) to the FPE associated to L(a, b) are introduced exactly
as in Definition 6.1, where we replace the condition of L being locally in L1(ν) with

ˆ T

0

ˆ [
|ai,jt |+ |bit|

]
d |νt| dt, for i, j ≥ 1.

Solutions to the martingale problem associated to L(a, b) are introduced as in Definition 6.6.
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The superposition principle

In this framework, superposition solutions are defined exactly as in Definition 6.13.

Theorem 7.1 (superposition principle for diffusions in R∞). Let a, b be Borel maps as in
(7.1). Then, the superposition principle holds for every solution ν = (νt)t∈(0,T ) ⊆P(R∞) to
the FPE associated to L(a, b) provided that, for some p ∈ (1,∞), it holds

ˆ T

0

ˆ [
|ai,jt |p + |bit|p

]
dνtdt, for i, j ≥ 1. (7.2)

Proof. We rely once again on the scheme introduced in Section 2.2.

Step 1 (approximation). By means of push-forwards with cylindrical maps, we reduce the
problem in R∞ to a sequence of problems in Rd, for d ≥ 1. Precisely, we let ν̃dt := πd] (νt) ∈
P(Rd), for t ∈ [0, T ], d ≥ 1. Arguing as in the first part of Section 2.2.1, ν̃d is a solution to
the FPE associated to L(ãd, b̃d), where

(ãd)i,jt (y) := Eνt
[
ai,jt |πd = y

]
, (b̃d)it(y) := Eνt

[
bit |πd = y

]
, for i, j ≥ 1, y ∈ Rd,.

By Theorem 2.14, there exists some superposition solution η̃d ∈P(C([0, T ];Rd)).
To address tightness, it is better to embed η̃d into P(C([0, T ];R∞)), by means of the

inclusion

Jd : [0, T ]× Rd 3 (t, y) 7→ (t, y, 0, . . .) ∈ [0, T ]× R∞, for d ≥ 1.

One obtains at once that ηd := Jd] (η̃d) ∈ P(C([0, T ];R∞)) is a solution to the martingale

problem associated to L(ad, bd), where

(ad)i,jt := Eνt
[
ai,jt |πd

]
, (bd)it := Eνt

[
bit |πd

]
, for i, j ≥ 1.

Step 2 (tightness). By Corollary 2.11, there exists some constant C depending only on p,
δ ∈ (0, 1− 1/p) and T only such that

E
[
Ai
]
≤ C

ˆ [
|(bd)i|p + |(ad)i,i|p

]
dνd, for i ≥ 1, (7.3)

where we let Ai(γ) := A(xi ◦ γ) and A defined by (2.7).

To conclude, we notice that measures νd0 are tight, as they narrowly converge towards ν0,
so there exists a coercive functional ψ : R∞ 7→ [0,∞] such that supd≥1

´
ψdνd0 <∞. Finally,

we let

P(C([0, T ];Rd)) 3 γ 7→ Ψ(γ) := ψ ◦ e0 +

∞∑
i=1

ciA
i,

where ci is defined as 2−i times right hand side in (7.3), for i ≥ 1. Therefore, the functional
Ψ is coercive and

sup
d≥1

ˆ
Ψdηd <∞,

thus the family (ηd)d is tight.
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Step 2 (limit). We argue as in the first part of Section 2.2.3, with two notable differences.
First, we let ã, b̃ be bounded continuous n-cylindrical maps, i.e.

ã = Jn ◦ an ◦ πn, b̃ = Jn ◦ bn ◦ πn,

for some n ≥ 1 and bounded continuous maps

an : (0, T )× Rn → Sym+(Rn), bn : (0, T )× Rn → Rn.

Then, we notice that in the derivation of (2.13), the sum does not need to be replaced by a
full series (which we are not assuming to converge) but it can be extended only up to some
k ≥ 1, depending on the fact that f ∈ A∞ is k-cylindrical. Thanks to these remarks the
thesis follows by density of continuous cylindrical functions in L1(ν). �

7.2 Diffusions in metric measure spaces

We consider now the setting of the previous chapter, i.e. we let (X, τ), m, E be as in Section
3.1 fix T > 0, and consider the time-extended framework described in Section 5.1, letting in
particular A := Ã satisfy (5.2). We fix r > 1 and let L be a diffusion operator such that
(6.1) holds.

Together with the superposition principle, we with to obtain Hölder continuity for the
paths of solution to the martingale problem. However, X enjoys only a topology τ , a σ-finite
measure m, and a Dirichlet form E , with associated P, ∆ and Γ, but there appears to be
no distance. To overcome this situation, we introduce a further condition in the framework,
namely existence of a countable set A ∗ = {f1, f2, . . .} ⊂ A of functions admitting a contin-
uous representative. Since we assume that suppm = X, the continuous representative of a
Borel function, if it exists, is unique, and for this reason we do not use above or in the sequel
a distinguished notation. For simplicity, we also assume that functions in A ∗ are constant
with respect to t ∈ (0, T ).

As a first condition, we require that the family A ∗ separates the points:

for every x, y ∈ X, there exists f ∈ A ∗ with f(x) 6= f(y). (7.4)

Starting from A ∗, we may build several distances onX. To discuss diffusions, we introduce
d : X ×X → [0,∞), given by

d(x, y) :=
∞∑
i=1

2−i min {|fi(x)− fi(y)| , 1} ,

which clearly satisfies the axioms of distances: in particular, it holds d(x, y) = 0 if and only
if x = y, because of (7.4). Notice that, for i ≥ 1, each fi is uniformly continuous with respect
to d, since it holds

d(x, y) < 2−i ⇒ |fi(x)− fi(y)| < 2id(x, y), for all x, y ∈ X,

and the topology induced by d is coarser than τ .
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Remark 7.2. In the deterministic case, it is more natural to introduce the (possibly extended)
distance

d∞(x, y) := sup {|f(x)− f(y)| : f ∈ A ∗} . (7.5)

Then, d∞ induces a topology, in general, finer than that of d, and one is naturally led to
consider extended Polish space in the sense of [Ambrosio et al., 2014a, Definition 2.3]. Under
suitable assumptions, one proves that solutions to the ODE are concentrated on absolutely
continuous curves with respect to d∞, see Lemma 7.6, which reports [Ambrosio and Trevisan,
2014, Lemma 7.4]. For general diffusions, such a result clearly does not have an immediate
counterpart, already because of the consequent absolute continuity of paths, but there also
are subtler reasons, due to the difficulty of exchanging expectation and supremum. �

As another condition on A ∗, we require that

∃ lim f(xn) in R for all f ∈ A ∗, ⇒ ∃ limxn in X, for every (xn)n ⊆ X, (7.6)

i.e. d induces the topology τ on X, see Remark 7.4.

We are in a position to state and prove the main result in this chapter, which provides
an extension to diffusions of [Ambrosio and Trevisan, 2014, Theorem 7.6]. In the determisitic
case, it seems that less assumptions are required, and this is indeed the case, mainly because
of two reasons: the chain rule for diffusion operators does not hold for general diffusions and
we prove it, in Proposition 4.23, under an integrability assumption on divL; our superposition
principle for diffusions in R∞ require Lp-integrability on coefficients, for some p strictly greater
than 1. Despite this fact, it provides a satisfactory result, in particular because our well-
posedness results for Fokker-Planck equations rely bounds on divL.

Theorem 7.3 (superposition principle for diffusions). Assume that divL ∈ L1
t (L

1
x), a ∈

L1
t (L

r
x) and that A ⊆ L∞t (V∞). Let A ∗ ⊆ A satisfy (7.4), (7.6), and the set of functions

g := Φ(·, f1, . . . , fn), for Φ ∈ C2
b ((0, T )× Rn) with Φ(·, 0) = 0, for f1, . . . , fn ∈ A ∗,

for n ≥ 1, be dense in A in the following sense: for every g ∈ A one can find a (gk)k as
above such that, as k →∞,

gk → g, ∂tgk → ∂tg, Lgk → Lg, weakly in L1
t (L

r′
x ). (7.7)

Then, every solution u = (ut)t∈(0,T ) ⊆ L∞t (Lrx) to the FPE

∂tut = L∗tut, in (0, T )×X.

with utm probability, for L 1-a.e. t ∈ (0, T ), and, for some p > 1,

ˆ T

0

ˆ
[|Ltf |p + |at(f, g)|p]utdmdt <∞, for every f , g ∈ A ∗,

admits a superposition solution η.

Proof. The proof relies first on a transfer argument from the superposition principle in R∞,
namely Theorem 7.1, and then on a density argument. When we perform the transfer by
means of the push-forward, actually, parts of our deductions are obtained exactly as in Section
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2.2.1, but we repeat them here for the sake of clarity and because the setting there is restricted
to Rd.

We define a map J : X → R∞, letting

J(x) :=
(
f1(x), f2(x), f3(x), . . .

)
,

where we endow R∞ = RN with the topology induced by the distance introduced in Section
7.1. A simple consequence of (7.4) is that J injective, while (7.6) entails that J(X) is a closed
subset of R∞ and that J−1 is continuous from J(X) to X: actually, J is an isometry.

We define νt ∈P(R∞) by νt := J#(utm), a vector field b : (0, T )× R∞ → R∞ by

bit :=


Lt(f

i) ◦ J−1 on J(X);

0 otherwise,

and a map a : (0, T )× R∞ → Sym+(R∞) by

ai,jt :=


at(f

i, f j) ◦ J−1 on J(X);

0 otherwise,

and we notice that

|bi| ◦ J ≤ |L(f i)|, |ai,j | ◦ J ≤ a(f i, f j) m̃-a.e. in (0, T )×X,

thus (7.2) holds, with p = q. The chain rule for diffusions, Proposition 4.23 shows that
ν = (νt)t∈[0,T ] is a solution to the FPE associated to the diffusion operator in R∞ with
coefficients a, b, thus the assumptions of Theorem 7.1 are satisfied with ν = (νt)t.

As a consequence, we can apply Theorem 7.1 to obtain a superposition solution η̃ ∈
P(C([0, T ];R∞)). Since all measures νt are concentrated on J(X), one has

γ(t) ∈ J(X) for η̃-a.e. γ, for all t ∈ [0, T ] ∩Q.

Then, the closedness of J(X) and the continuity of γ give γ([0, T ]) ⊂ J(X) for η̃-a.e. γ. For
this reason, it makes sense to define

η := Θ#η̃,

where Θ : C([0, T ]; J(X))→ C([0, T ];X) is the map γ 7→ Θ(γ) := J−1 ◦ γ. Since (J−1)#νt =
utm, L-a.e. t ∈ (0, T ), we obtain immediately that (et)#η = µt, L

1-a.e. t ∈ (0, T ).
We complete the proof by showing that η provides a superposition solution for u. Since

f i ◦Θ(γ) = xi ◦ γ, for γ ∈ J(X), taking the definition of a and b into account, we obtain that
the process

[0, T ] 3 t 7→M i
t := f i ◦ et −

ˆ t

0
Ls(f

i) ◦ es ds (7.8)

is a continuous martingale, and that the covariation processes are

[M i,M j ]t = 2

ˆ t

0
as(f

i, f j) ◦ esds, for i, j ≥ 1.

To extend the martingale property from f i ∈ A ∗ to f ∈ A , by Itô formula and the chain rule
for diffusions, (7.8) from f i to compositions (t, x) 7→ Φ(t, f1(x), . . . , fn(x)). By the density
assumptions (7.7), we pass to the limit the martingale property, in the integral formulation,
and conclude. �
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Remark 7.4. So far, it is clear that the topology τ played no significant role in our deductions.
We claim therefore that, up to replacing the ambient space (X, τ) with (X, τd), where τd is
the topology generated by d on the abstract completion of X with respect to the metric d,
condition (7.6) holds. We denote by ι : (X, τ) ⊆ (X, τd) be the continuous inclusion.

Every f ∈ A ∗, being uniformly continuous, extends uniquely to a continuous function on
X, that we still denote by f , and the the distance d on X is still represented by the same
series. By taking push-forwards of the measure m (i.e. m := ι]m) the Dirichlet form E (i.e.
E(f) := E(f ◦ ι), for f ∈ L2(m)) and the algebra A , (i.e.

{
f ◦ ι−1 | f ∈ A

}
) we obtain an

enlarged but equivalent structure, at least with respect to the structural conditions (3.1) and
(5.2); but then, (7.6) holds too. Notice how this construction reminds the way one reduces
quasi-regular Dirichlet forms to regular ones, see e.g. [Chen and Fukushima, 2012, Theorem
1.4.3].

By replacing the ambient space X with X, the only remarkable difference is that provide
solutions to the MP as probability measures on continuous curves with values in X: we discuss
this problem in the examples of Part IV, in particular with respect to infinite dimensional
spaces. �

One may also look for criteria entailing stronger continuity properties, for every t ∈ [0, T ],
η-a.s., as discussed in the following results.

Lemma 7.5. Let η ∈P(C([0, T ];X) be a Lr-regular solution to the MP associated to L and
define, for p ∈ (1,∞),

‖b‖∗p := sup

{ˆ T

0

ˆ
|Lt(f)|p dηtdt : f ∈ A ∗

}
, ‖a‖∗p := sup

{ˆ T

0

ˆ
a(f)pdηtdt : f ∈ A ∗

}
.

Then, for every δ ∈ (0, 1− 1/p) it holds, for some constant C depending on p, δ and T only,

ˆ
A(γ)dη(γ) ≤ C

(
‖b‖∗p +

√
‖a‖∗p

)1/p

,

where A is defined as in (2.7), replacing R with X, endowed with the distance d.

Proof. The arguments in Lemma 2.8 and the subsequent remarks, leading to Corollary 2.11,
entail the bound

ˆ
A(γ)dη(γ) ≤ C

∞∑
i=1

2−i

{[ˆ T

0

ˆ
|Ltfi|p dηt dt

]1/p

+

[ˆ T

0

ˆ
at(fi)

pdηt dt

]1/2p
}
,

so that the conclusion is immediate. �

In the deterministic case, the situation is much clearer and we prove a precise result, with
respect to the distance d∞, which is expected to induced a topology equal or even finer than
τ , when A ∗ is chosen appropriately, see [Ambrosio and Trevisan, 2014, Lemma 9.2].

Lemma 7.6. Let η ∈P(C([0, T ];X)) be a solution to the MP associated to L = b a deriva-
tion with |b| ∈ L1

t (L
p
x), for some p ∈ [1,∞]. Then, η is concentrated on ACp([0, T ]; (X, d∞)),

with
|γ̇| (t) = |bt|∗ (γt) for a.e. t ∈ (0, T ), for η-a.e. γ,

where |bt|∗ := supf∈A ∗ {|df(bt)|}.



7.2. DIFFUSIONS IN METRIC MEASURE SPACES 76

Proof. Given f ∈ A ∗, for η-a.e. γ, the map t 7→ f ◦ γt is absolutely continuous, with

f ◦ γt − f ◦ γs =

ˆ t

s
df(br)(γr)dr, for all s, t ∈ [0, T ].

In particular one has df(bt)(γt) = (f ◦ γ)′(t) a.e. in (0, T ), for η-a.e. γ.
By Fubini’s theorem and the fact that the marginals of η are absolutely continuous w.r.t.

m we obtain that, for η-a.e. γ, one has

sup
f∈A ∗

∣∣(f ◦ γ)′(t)
∣∣ = sup

f∈A ∗
|df(bt)(γt)| = |bt|∗ (γt), for a.e. t ∈ (0, T ),

and therefore

dA ∗(γt, γs) = sup
f∈A ∗

∣∣(f ◦ γ)(t)− (f ◦ γ)(s)
∣∣ ≤ ˆ t

s
|br|∗ (γr)dr, for all s, t ∈ [0, T ],

proving that γ ∈ AC([0, T ]; (X, dA ∗)), with |γ̇| (t) ≤ |bt|∗ (γt), for a.e. t ∈ (0, T ). The converse
inequality follows from the fact that every f ∈ A ∗ is 1-Lipschitz with respect to dA ∗ , thus
for η-a.e. γ one has

|bt|∗ (γt) = sup
f∈A ∗

∣∣(f ◦ γ)′(t)
∣∣ ≤ |γ̇| (t), for a.e. t ∈ (0, T ).

�
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Fokker-Planck equations in metric
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Chapter 8

Formal energy estimates

In this chapter we study formal estimates satisfied by solutions to the Fokker-Planck equation

∂tut = L∗tut, in (0, T )×X, u0 = u, (8.1)

extending the usual a-priori estimates in the theory of parabolic equations. In the determin-
istic case, i.e. when L = b is a derivation, the key observation in [DiPerna and Lions, 1989]
is that, to obtain L∞t (Lrx) bounds for the solution, it is sufficient for div b to be bounded.
Moreover, since we consider forward solutions, the assumption div b− ∈ L1

t (L
∞
x ) is sufficient,

at least formally. Variants of this arguments can be devised, in the elliptic case, where bounds
on div b can be dropped in favour of bounds on |b| (Section 8.2), or when Sobolev inequalities
hold (Section 8.3).

8.1 General case

We formally consider the equation satisfied by some “energy” t 7→
´
β(ut)dm, where β : R 7→ R

is a smooth function,

∂t

ˆ
β(u)dm =

ˆ
β′(u)∂tu dm =

ˆ
L(β′(u))u dm,

where, for simplicity, we omit to write t ∈ (0, T ), and we used the chain rule for t 7→ β(ut),
by the fact that u is a solution to (8.1). By the definition of a in terms of L, we have

ˆ
L(β′(u))u dm =

ˆ [
L(β′(u)u)− β′(u)L(u)− 2a(β′(u), u)

]
dm,

and recalling the definition of divL and the chain rule for a,ˆ [
L(β′(u)u)− β′(u)L(u)− 2a(β′(u), u)

]
dm = −

ˆ [
uβ′(u) divL + β′(u)L(u) + 2β′′(u)a(u)

]
dm.

Finally, we use the chain rule for diffusions, Proposition 4.23, that gives

β′(u)L(u) = L(β(u))− β′′(u)a(u), m-a.e. in X,

and we conclude that

∂t

ˆ
β(u)dm = −

ˆ (
uβ′(u)− β(u)

)
divL dm−

ˆ
β′′(u)a(u) dm. (8.2)
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Unfortunately, all these steps are not rigorous, because our notion of solution to (8.1) is in
duality with A and we do not know whether β′(u) can be chosen as a test function.

However, depending on the choice of β, identity (8.2) entails several estimates, essentially
by means of Gronwall inequality. For example, if β is convex, then it holds

β(z̃) ≥ β(z) + (z̃ − z)β′(z) for every z, z̃ ∈ R,

and, if β(0) = 0, letting z̃ = 0, we obtain zβ′(z)− β(z) ≥ 0. Moreover, the term β′′(u)a(u),
is non-negative, so

∂t

ˆ
β(u)dm ≤

ˆ (
uβ′(u)− β(u)

)
divL−dm ≤

∥∥divL−
∥∥
∞

ˆ (
uβ′(u)− β(u)

)
dm.

We choose β(z) = |z|r, for r ∈ (1,∞), and deduce

∂t

ˆ
|u|r dm ≤ (r − 1)

∥∥divL−
∥∥
∞

ˆ
|u|r dm,

which entails, by Gronwall inequality, the uniform bound

sup
t∈[0,T ]

‖ut‖r ≤ exp

{(
1− 1

r

)∥∥divL−
∥∥
L1
t (L∞x )

}
‖u‖r . (8.3)

Letting r →∞, we deduce the bound

sup
t∈[0,T ]

‖ut‖∞ ≤ exp
{∥∥divL−

∥∥
L1
t (L∞x )

}
‖u‖∞ ,

while letting r → 1 we obtain

sup
t∈[0,T ]

‖ut‖1 ≤ ‖u‖1 .

These estimates, when regarded as a-priori bounds, lead to existence by compactness argu-
ments, but they also entail uniqueness, since the equation is linear. Given two solutions u1,
u2, with respect to initial data u1, u2 ∈ Lr(m), we let u = u1 − u2, which solves (8.1) with
u = u1 − u2, and deduce

‖u1 − u2‖L∞t (Lr
x) ≤ exp

{(
1− 1

r

)∥∥divL−
∥∥
L1
t (L∞x )

}
‖u1 − u2‖r .

Arguing similarly, one can consider β+(z) = (z+)r and deduce

sup
t∈[0,T ]

∥∥u+
t

∥∥
r
≤ exp

{(
1− 1

r

)∥∥divL−
∥∥
L1
t (L∞x )

}∥∥u+
∥∥
r
,

and correspondingly for β−(z) = (z−)r. In particular, we deduce that u ≥ 0 entails ut ≥ 0,
for t ∈ [0, T ] and a comparison principle.
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8.2 The elliptic case

When a is elliptic, i.e. for some λ > 0, a(u) ≥ λΓ(u), by keeping the term β′′(u)a(u) in (8.2),
we deduce stronger estimates. Indeed, let again β be convex, non-negative, with β(0) = 0,
and integrate (8.2) over t ∈ [0, T ], to deduce

ˆ
β(uT )dm−

ˆ
β(u)dm ≤

ˆ [
uβ′(u)− β(u)

]
divL−dm̃−

ˆ
β′′(u)a(u)dm̃,

where we recall the notation m̃ := L 1 ⊗ m. From this, we obtain a bound for β′′(u)a(u),
choosing e.g. β(z) = z2, thus

2

ˆ T

0

ˆ
a(ut)dm dt ≤

ˆ
|u|2 dm +

ˆ T

0

ˆ
|ut|2 divL−t dm dt.

If divL− ∈ L1
t (L
∞
x ), by (8.3) above we deduce a(u) ∈ L2

t (L
1
x), with

ˆ T

0

ˆ
a(ut)dm dt ≤

1

2

[
1 + exp

{∥∥divL−
∥∥
L1
t (L∞x )

}∥∥divL−
∥∥
L1
t (L∞x )

]ˆ
|u|2 dm,

which leads to u ∈ L2
t (V), in the elliptic case.

The quantity β′′(u)a(u) can be exploited also in a different way, providing a PDE coun-
terpart of Girsanov theorem. Precisely, we “perturb” a given diffusion operator L by adding
a derivation b and consider the FPE associated to L + b,

∂tut = (L + b)∗ut, in (0, T )×X. (8.4)

Notice that the associated 2-tensor a remains unchanged. In place of (8.2), we obtain

∂t

ˆ
β(u)dm ≤

ˆ (
uβ′(u)− β(u)

)
divL−dm +

ˆ
β′′(u) [du(b)u− a(u)] dm.

When a is λ-elliptic and |b| ∈ L1
t (L
∞
x ), the second integral in the right hand side above can

be bounded from above,
ˆ
β′′(u) [du(b)u− a(u)] dm ≤

ˆ
β′′(u)

[
|u| |b|

√
Γ (u)− λΓ(u)

]
dm

≤
ˆ
β′′(u)

[
|u|2 ‖b‖2∞

2λ
− λ

2
Γ(u)

]
dm

≤
‖b‖2∞

2λ

ˆ
β′′(u) |u|2 dm− λ

2

ˆ
β′′(u)Γ(u)dm

Letting once again β(z) = |z|r, for r ∈ (1,∞), and assuming that u ∈ Lr(m) Gronwall
inequality leads to u ∈ L∞t (Lrx), since we have

∂t

ˆ
|u|r dm ≤

[
r(r − 1) ‖b‖2∞ /(2λ) + (r − 1)

∥∥divL−
∥∥
∞

] ˆ
|u|r dm− λr(r − 1)

2

ˆ
Γ(u)dm.

We also obtain u ∈ L2
t (V) if u ∈ L2(m). Let us remark again that we impose no regularity

assumption on b, only bounds on |b|.
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8.3 Energy estimates and Sobolev inequalities

In this section, we show that the validity of Sobolev inequalities allows for improving the
bounds studied above, at least in the elliptic case. Before addressing their derivation, we
remark the following connection between energy estimates and lower bounds on spectra of
suitable Schrödinger operators, with potential energies related to divL. Letting β(z) = |z|r,
for r ∈ (1,∞), in (8.2), we obtain

∂t

ˆ
|u|r dm = −(r − 1)

ˆ [
|u|r divL + r |u|r−2 a(u)

]
dm. (8.5)

The chain rule for a entails

r |u|r−2 a(u) =
4

r
a(|u|r/2),

thus

∂t

ˆ
|u|r dm = −(r − 1)Er

(
|u|r/2

)
,

where we introduce be the quadratic form

f 7→ Er(f) :=

ˆ [
divL |f |2 +

4

r
a(f)

]
dm,

which corresponds to a Schrödinger operator with kinetic energy 4
r

´
a(f) and potential energy

divL. Notice that the contribution of the kinetic energy is infinitesimal, as r →∞.

If the form Er is bounded from below, i.e. for some c = (ct)t ∈ L1(0, T ) it holds

ˆ [
divL |f |2 +

4

r
a(f)

]
dm ≥ c(t)

ˆ
|f |2 dm, for every f ∈ L2

x, (8.6)

then, we obtain the bound from above

∂t

ˆ
|u|r dm ≤ −(r − 1)c

ˆ
|u|r dm,

and by Gronwall inequality, we conclude

sup
t∈[0,T ]

‖ut‖r ≤ exp

{(
1− 1

r

)
‖c‖L1

t

}
‖u‖r .

Notice also that, if it holds

ˆ [
divL |f |2 +

4

r
a(f)

]
dm ≥ a

ˆ
Γ(f)dm + ct

ˆ
|f |2 dm, for every f ∈ L2(m),

for some constant a > 0, we obtain u ∈ L2
t (V), arguing as in the first part of the previous

section.

Being a(f) non-negative, we may always let ct := ‖divL−‖∞. However, if some Sobolev
inequality holds, it is well known that (8.6) is true for a wide class of potentials, possibly
unbounded from below, see e.g. [Kato, 1995]. Sobolev inequalities can be formulated as
follows, see e.g. the monograph [Varopoulos et al., 1992].
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Definition 8.1 (d-dimensional Sobolev inequality). Let d ≥ 2. We say that the d-dimensional
Sobolev inequality holds if there exists some constant cd ≥ 0, depending on d only, such that

‖f‖2d/(d−2) ≤ cd ‖f‖V , for every f ∈ V.

Analogous inequalities can be stated, with exponents r ∈ [1,∞] in place of 2, replacing V
with Vr and also for d ≤ 2, using the L∞(m) norm in the left hand side.

Here, we fix some d ≥ 2, assume that the d-dimensional Sobolev inequality holds, in the
form above and investigate a lower bound for the energy

f 7→
ˆ

Γ(f) + V |f |2 dm,

assuming that V − ∈ L∞(m) +Ld/2(m). We claim that there exists some constant c ∈ R such
that ˆ

Γ(f) + V |f |2 dm ≥ c
ˆ
|f |2 dm, for every f ∈ L2(m).

Indeed, decomposing

V = V χ{V≤−α} + V χ{V≥−α}, for α ≥ 0 large enough,

without loss of generality, we assume that ‖V ‖d/2 < ε, for any but fixed ε > 0: here, ε = c−1
d

is sufficient. Then, applying Hölder inequality, with exponent d/2, and the d-dimensional
Sobolev inequality, we obtain

ˆ
|V | |f |2 dm ≤ ‖V ‖d/2 ‖f‖

2
2d
d−2
≤ εcd ‖f‖2V

Letting ε = c−1
d , we conclude that

−
ˆ
|V | |f |2 dm ≥ −

ˆ
Γ(f)−

ˆ
|f |2 dm.

Letting ε = (2cn)−1 instead, we maintain some ellipticity, and prove

ˆ
Γ(f) + V |f |2 dm ≥ 1

2

ˆ
Γ(f)dm− C

ˆ
|f |2 dm,

where C is some constant depending only on cd.

The validity of the d-dimensional Sobolev inequality allows also for improving the Girsanov-
type argument, in the previous section. Indeed, consider a solution u to (8.4), where L in a
λ-elliptic diffusion operator and b is a derivation. The chain rule gives

r |u|r−2 u du(b) = 2 |u|r/2 d |u|r/2 (b),

and in this case the problem of estimates in L∞t (Lrx) is reduced to lower bounds for the energy

ˆ
divL |f |2 +

4

r
a(f)− 2 |f | |df(b)| dm.
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We claim that we can weaken the condition |b| ∈ L1
t (L
∞
x ) to |b| ∈ L1

t (L
∞
x + Ldx). Indeed,

Hölder inequality gives

ˆ
|f | |df(b)| dm ≤

ˆ
|f | |b|

√
Γ (f)dm ≤ ‖b‖d ‖f‖ 2d

d−2
‖f‖V ≤ cd ‖|b|‖d ‖f‖

2
V .

By decomposing
b = χ{|b|≤α}b+ χ{|b|>α}b, for α large enough,

we may assume with no loss of generality ‖b‖d < ε for ε > 0 small enough, to be chosen in
terms of cd, λ and r. From this we deduce the lower bound

ˆ
divL |f |2 +

4λ

r
Γ(f)− 2 |f | |df(b)| dm ≥ c

ˆ
|f |2 dm,

for some constant c ∈ R.
Summing up, if we assume the d-dimensional Sobolev inequality holds, and let L be an

elliptic operator, such that divL− ∈ L1
t (L
∞
x + L

d/2
x ), b ∈ L1

t (L
∞
x + Ldx) be a derivation, then

energy estimates for any solution u to (8.4) formally hold, leading to bounds in L∞t (Lrx), as
well as L2

t (V).

We investigate yet another consequence of the d-dimensional Sobolev inequality, namely
ultra-contractivity for the associated semigroup P, i.e. the inequality

‖Ptf‖∞ ≤ c̃dt
−d/2 ‖f‖1 , for every t ∈ (0,∞), f ∈ L1(m),

for some constant c̃d ≥ 0, independent of f , t and related to cd only.
Following an argument from [Varopoulos et al., 1992] for which credit is given to Nash,

we prove analogous results where, in place of Ptf , we let ut be a solution to (8.1).
We begin with the identity (8.5), for r = 2,

∂t

ˆ
|ut|2 dm = −E2(ut),

we assume that, for some constant a > 0 and c ∈ L1(0, T ), we have a lower bound

E2(f) ≥ a
ˆ

Γ(f)dm + c

ˆ
|f |2 dm, for every f ∈ V.

Then, we use the d-dimensional Sobolev inequality and, up to taking c − a in place of c, we
obtain the inequality

E2(f) ≥ a ‖f‖2V + c ‖f‖22 ≥ acd ‖f‖
2
2d/d−2 + c ‖f‖22 .

Letting f = ut, we find therefore

∂t ‖u‖22 ≤ −acd ‖u‖
2
2d/(d−2) − c ‖u‖

2
2 . (8.7)

For any p ≤ q ≤ r ∈ [1,∞], Hölder inequality gives

‖f‖q ≤ ‖f‖
p(r−q)
r−p

p ‖f‖
r(q−p)
r−p

r , for every f ∈ Lr ∩ Lp(m).
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In this case, we choose p = 1, q = 2 and r = 2d/(d− 2), to deduce

‖u‖2 ≤ ‖u‖
4

d+2

1 ‖u‖
2d
d+2

2d/(d−2) .

Without loss of generality, assuming e.g. some bound on divL−, the quantity supt∈[0,T ] ‖ut‖1
is bounded in terms of ‖u‖1, so that for t ∈ [0, T ], and some constant C depending on L, and
d only, it holds

‖ut‖22d/(d−2) ≤ C ‖u‖
−4/d
1 ‖ut‖2+4/d

2 .

Substituting this inequality in (8.7), we obtain

∂t ‖u‖22 ≤ −C ‖u‖
−4/d
1 ‖u‖2+4/d

2 − c ‖u‖22 ,

thus v(t) := exp
{´ t

0 csds
}
‖ut‖22 satisfies the inequality

∂tv ≤ −C exp
{

4/d ‖c‖L1
t

}
‖u‖−4/d

1 v1+2/d,

and by comparison with t−d/2, we conclude that the ultracontractive bound

‖ut‖22 ≤ Ct
−d/2 ‖u‖1

holds true.

Let us conclude this chapter by remarking that similar arguments can be devised in
presence of a logarithmic Sobolev inequality.

Definition 8.2 (log-Sobolev inequality). We say that the log-Sobolev inequality holds if there
exists some constant c ≥ 0 such that

‖f‖L2 logL(m) ≤ c ‖f‖V , for every f ∈ V.

The only technical difficulty that appears is to deal with Orlicz spaces such as L2 logL(m),
defined as the set of Borel functions f such that

ˆ
f2 log(|f |2 + 1)dm <∞,

endowed with the associated Luxemburg norm,

‖f‖L2 logL(m) := sup

{
λ > 0 |

ˆ
(λf)2 log(|λf |2 + 1)dm ≤ 1

}
.

From the validity of the log-Sobolev inequality, lower bounds on spectra of Schrödinger op-
erators whose potential have negative parts exponentially integrable can be deduced, see e.g.
[Shigekawa, 2007], and similarly one can provide bounds for additive perturbations of elliptic
diffusion operators by means of derivations such that |b|2 is exponentially integrable.
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Chapter 9

Existence of solutions to FPE’s

In this section, we focus on existence results for solutions to the FPE

∂tut = L∗tut, in (0, T )×X, (9.1)

with prescribed initial datum u0 = u, when L is in divergence form, see Definition 4.24. In
view of the validity of the superposition principle, see Chapter 7, existence for FPE’s settles
also the problem of existence for martingale problems. Recall that our standing assumptions
on X are (3.1) and on A are (5.2).

Here, we follow a strategy similar to [Ambrosio and Trevisan, 2014, §4], but indeed clas-
sical: it consists in dealing first with the elliptic case, in Section 9.1, where existence follows
by Hilbert space techniques (Lions-Lax-Milgram theorem) and we actually provide solutions
in L2

t (V). The general case follows then compactness, where the extra regularity u ∈ L2
t (V) is

exploited to rigorously settle the energy estimates described in the previous chapter. Indeed,
to reduce to the elliptic case, we add a viscosity, i.e. we solve

∂tut = (Lt + σ∆)∗ut in (0, T )×X,

for σ > 0, and then we let σ ↓ 0. Let us remark that, in order to prove the mass-conservation
property of solutions to the continuity equation we assume the existence of (fn)n ⊂ A
satisfying

0 ≤ fn ≤ 1, fn ↑ 1 m̃-a.e. in X̃, Lfn → 0 weakly in L1
t (L

r′
x ). (9.2)

9.1 The elliptic case

In this section, we prove deal with the following result.

Theorem 9.1 (existence, elliptic case.). Let A be dense in W 1,2
t (L2

x) ∩ L2
t (V), let L be a

diffusion operator in divergence form, with

|a| , |b| ∈ L∞t (L∞x ), divL− ∈ L1
t (L
∞
x ), a elliptic.

Then, there exists a (unique) solution u ∈ C([0, T ];L2(m)) ∩ L2
t (V) to (9.1), with u0 = u, in

the following weak sense:
ˆ

[−∂tf − df(b)]u+ a(f, u)dm̃ =

ˆ
f0udm ∀f ∈ AT (9.3)
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where we let AT be the subset of functions f ∈ A with fT = 0. Furthermore, if u ∈ L2∩Lr(m),
then u ∈ L∞t (L2

x ∩ Lrx) for r ≥ 0 and if u ≥ 0, then ut ≥ 0 for L 1-a.e. t ∈ (0, T ).

We remark that the formulation (9.3) differs from the notion of weak solution in L∞t (Lrx)
to (9.1) and their precise link is discussed in Lemma 6.5. Notice that the advantage of the
formulation above is that no integrability assumption on Lf , for f ∈ A , has to be imposed,
but we pay the price of extra regularity for u.

Proof. With no loss of generality, we assume σ ∈ (0, 1]. Existence in L2(I;V) is a consequence
of J.-L. Lions’ extension of Lax-Milgram Theorem, whose statement is recalled below, for
which we refer to [Showalter, 1997, Theorem II.2.1, Corollary III.2.3].

Together with existence, we obtain the a priori estimate:∥∥∥e−λtu∥∥∥
L2
t (V)
≤

2 ‖u‖2
σ

with λ :=
σ

2
+

2

σ
‖b‖2L∞t (L∞x ) . (9.4)

To this aim, we make a preliminary change of variables ht := e−λtut and we study the
following weak formulation,

ˆ
[−∂tf + λf − df(b)]h+ a(f, h)dm̃ =

ˆ
f0udm ∀f ∈ AT . (9.5)

Existence is a consequence of the next theorem, applied with H = L2
t (V), V = AT , endowed

with the norm

‖f‖2V = ‖f‖2L2
t (V) + ‖f0‖22 , for f ∈ AT , (9.6)

and

B(f, h) =

ˆ
[−∂tf + λf − df(b)]h+ a(f, h)dm̃, `(f) =

ˆ
f0udm.

Theorem 9.2 (Lions). Let V , H be respectively a normed and a Hilbert space, with V con-
tinuously embedded in H, ‖v‖H ≤ ‖v‖V for all v ∈ V , and let B : V × H → R be bilinear,
with B(v, ·) continuous for all v ∈ V . If B is coercive, namely there exists c > 0 satisfying
B(v, v) ≥ c ‖v‖2V for all v ∈ V , then for all ` ∈ V ′ there exists h ∈ H such that B(·, h) = `
and

‖h‖H ≤
‖`‖V ′
c

. (9.7)

Let us start by proving continuity, thus let f ∈ AT . The linear functional h 7→ B(f, h) is
L2
t (V)-continuous, since we estimate |B(f, h)| from above with

‖h‖L2(I;V)

[
‖∂tf‖L2

t (L2
x) + λ‖f‖L2

t (L2
x) + (‖b‖L∞t (L∞x ) + ‖a‖L∞t (L∞x ) ‖

√
Γ (f)‖L2

t (L2
x)

]
.

The functional ` satisfies ‖`‖V ′ ≤ ‖u‖2, immediately from the definition of ‖·‖V in (9.6).

To conclude the verification of the assumptions of Theorem 9.2, we show coercivity (here
the change of variables we did and the choice of λ play a role). It holds

ˆ
[λf − df(b)] fdm̃ ≥ λ ‖f‖2L2

t (L2
x) − ‖b‖L∞t (L∞x ) ‖f‖L2

t (L2
x) ‖
√

Γ (f)‖L2
t (L2

x)

≥ σ

2
(‖f‖2L2

t (L2
x) − ‖

√
Γ (f)‖2L2

t (L2
x)).

(9.8)



89 CHAPTER 9: EXISTENCE OF SOLUTIONS TO FPE’S

Since f ∈ A ⊆W 1,2
t (L2

x), the chain rule ∂tf
2 = 2f∂tf holds and we integrate by parts

2

ˆ
f∂tfdm̃ =

ˆ
f2
Tdm−

ˆ
f2

0dm = −
ˆ
f2

0dm, using fT = 0.

Hence, inequality (9.8) entails that

ˆ
[−∂tf + λf − df(b)] f + a(f)dm̃ ≥ 1

2

ˆ
f2

0dm +
σ

2
‖f‖2L2

t (L2
x) +

σ

2
‖
√

Γ (f)‖2L2
t (L2

x).

Since σ ≤ 1, it follows from these two inequalities that

B(f, f) ≥ σ‖f‖2V . (9.9)

Finally, (9.4) follows at once from (9.7) and (9.9), taking into account that ‖`‖V ′ ≤ ‖u‖2.
Existence for the formulation (9.5) is settled.

We prove now that the solution to (9.5) belonging in L2
t (V) is actually unique and enjoys

the properties stated in the theorem. By the assumptions of A , we may extend the formu-
lation to f = W 1,2

t (L2
x) ∩ L2

t (V), thus letting f ∈ C1,2((0, T );V), the equation itself entails
that ∂tu belongs to L2

t (V∗), thus u ∈ L2
t (V)∩W 1,2

t (V∗). As a consequence of Proposition 5.7,
u admits a representative in ∈ C([0, T ];L2

t ) and from the formulation (9.5) we immediately
deduce that u0 = u, as elements in L2(m).

We also prove that some energy estimates holds. In particular, for r ∈ [1,∞], if u ∈
L2 ∩ Lr(m), then

sup
t∈[0,T ]

‖ut‖r ≤ exp

{(
1− 1

r

)∥∥divL−
∥∥
L1
t (L∞x )

}
‖u‖r (9.10)

and, if u ≥ 0, then ut ≥ 0, for every t ∈ [0, T ]. As a consequence, we obtain uniqueness for
(9.5) in L2

t (V).
To show the validity of (9.10), let r ∈ (1,∞), as the inequality for the endpoints follow

by suitable limits. To make rigorous the arguments in the previous chapter, we rely on
Proposition 5.8. Notice however that β(z) = |z|r is not allowed, since |β′(z)| / |z| and |β′′(z)|
could be unbounded. However, one can build an approximating sequence of convex functions
βn, such that the two conditions are satisfied, and it holds β′n(z)z − β(z) ≤ (r − 1)βn(z), for
every z ∈ R. Precisely, if r ≥ 2, we let

βn(z) :=


β(−n) + (r − 1)(−n)r−1(z + n) if z < −n;

β(z) if −n ≤ z ≤ n;

β(n) + (r − 1)(n)r−1(z − n) if z > n,

while if r < 2, we let

βn(z) :=


(z+)2

2ε2−r
if z ≤ ε;

(z+)r − εr

2
if z ≥ ε.

for ε = 1/n. To be rigorous, one should also consider a slightly smoothed version, since β′′(z)
does not exist at z = n in the first case, z = ε in the second case.
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Therefore, we deduce that the curve [0, T ] 3 t 7→
´
βn(ut)dm is absolutely continuous,

with
d

dt

ˆ
β(ut)dm =

〈
β′(ut), ∂tut

〉
V .

Arguing as in (8.2), we conclude that

d

dt

ˆ
β(ut)dm ≤ (r − 1)

∥∥divL−t
∥∥
∞

ˆ
βn(ut)dm, a.e. t ∈ (0, T ),

and by Gronwall’s lemma we deduce an approximated energy inequality (9.10). Letting
n→∞, we conclude by Fatou’s lemma that (9.10) holds.

Finally, letting β(z) = z2 and arguing as in Section 8.2, we deduce the bound

‖u‖L2
t (V) ≤

1

σ
C(
∥∥divL−

∥∥
L1
t (L∞x )

) ‖u‖2 , (9.11)

where the notation remarks that C is some quantity depending on ‖divL−‖L1
t (L∞x ) only.

�

Remark 9.3 (uniqueness in L2
t (V)). The argument above actually entails existence and

uniqueness in L2
t (V) for solutions to

∂tut = L∗ut + `, in (0, T )×X,

where ` is any continuous functional on W 1,2
t (L2

x) ∩ L2
t (V), where the notion of solution is

given by the following formulation:

ˆ
[−∂tf − df(b)]u+ a(f, u)dm̃ = `(f) for every f ∈ AT .

holds. Uniqueness is a consequence of the fact that the difference solves the equation with
` = 0 and u = 0. Notice that, when a is not elliptic, e.g., in the deterministic case, only
existence in this class becomes an issue. �

9.2 General case

We prove the following existence theorem, as an application of the vanishing viscosity strategy
sketched at the beginning of the chapter.

Theorem 9.4 (existence, general case). Let r ∈ (1,∞], A be dense in W 1,2
t (L2(m))∩L2

t (V),
L be a diffusion operator in divergence form, with

|a| , |b| ∈ L∞t (L∞x ), divL− ∈ L1
t (L
∞
x ),

and L : A → L1
t (L

r
x). Then, for every u ∈ Lr(m), there exists a weak solution u ∈ L∞t (Lrx)

to the FPE (9.1), whose weakly-* continuous representative satisfies u0 = u.

Furthermore, if u ≥ 0, such a solution satisfies ut ≥ 0, L 1-a.e. t ∈ (0, T ) and, provided
that (9.2) holds, if um is a probability measure, the same holds for utm, L 1-a.e. t ∈ (0, T ).
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Proof. The proof is based on a series of approximations, based on the fact that the bound
(9.10) involves only ‖divL−‖L1

t (L∞x ): we aim at expressing the given FPE as a limit of a se-

quence of bounded elliptic FPE’s so that, up to extracting a weakly-* convergent subsequence,
existence is settled.

For σ ∈ (0, 1], we consider the weak solution uσ ∈ L2
t (V) to the FPE

∂tu = (L + σ∆)∗u, in (0, T )×X,

provided by Theorem 9.1 (as already remarked just after its statement, it is not necessary to
assume A ⊆ D(∆)).

Since uσ satisfies 9.10, we deduce that it is uniformly bounded in L∞t (Lrx), thus there
exists some weak-* limit point u ∈ L∞t (Lrx). To show that the limit is a weak solution as
required, we have to face the technical problem that A is not necessarily contained in D(∆),
thus we cannot pass to the limit directly in the formulation

ˆ
[−∂tf − Lf ]uσ − σ(∆f)uσdm̃ =

ˆ
f0udm for every f ∈ AT .

However, σuσ is bounded in L2
t (V), by (9.11), thus it weakly converges towards 0 and we may

pass to the limit as σ ↓ 0 in the formulation
ˆ

[−∂tf − Lf ]u+ σΓ(f, u)dm̃ =

ˆ
f0udm ∀f ∈ A .

Finally, to prove the mass preservation property, it is sufficient to choose fn in place of f
above, and then let n→∞, to get that ∂t

´
u = 0. �

When compared with existence results in specific settings, such as Euclidean or Gaussian
spaces, the assumptions above are restrictive, as one expects existence of solutions in L∞t (Lrx)
assuming only

|a| , |b| ∈ L1
t (L

r′
x ), and divL− ∈ L1

t (L
∞
x ).

Here, it is precisely the Hilbert space technique that forces the introduction of stronger
assumptions than those known in particular classes of spaces: we trade some strength in
the result in favour of generality. However, let us stress the fact that the crucial a priori
bounds involving divL− only are comparable to those obtainable in specific settings: what
is lacking here is an approximating procedure by means of “smooth” and bounded diffusion
operators. We may state this as an existence criterion, as follows.

Proposition 9.5 (existence by approximation). Let r ∈ (1,∞], let (Ln)n be a sequence of
diffusion operators such that Lnf → Lf strongly in L1

t (L
r′
x ) for f ∈ A , as n→∞.

If (un)n ⊆ L∞t (Lrx) is a bounded sequence, with un weak solutions in L∞(Lrx) to the
FPE associated with Ln, then any weakly-* limit in L∞t (Lrx) is a weak solution to the FPE
associated with Ln. Furthermore, if un are weakly-* continuous and un0 → u, then the weakly-*
continuous for u satisfies u0 = u.

Let us finally remark that in [Ambrosio and Trevisan, 2014], a slightly different route is
taken, obtaining in particular existence for solutions in L∞t (Lrx) in case r ≥ 2, L = b is a
derivation with |b| ∈ L1

t (L
r′
x ) and div b− ∈ L1

t (L
∞
x ). By refining the arguments therein, it

seems reasonable to extend those abstract existence results if L is in divergence form, with
|a| ∈ L1

t (L
r′
x ), |b| ∈ L1

t (L
r′
x ) and div b− ∈ L1

t (L
∞
x ).
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Chapter 10

Uniqueness of solutions to FPE’s

The formal energy estimates established in Chapter 8 seem to entail uniqueness for solutions
to FPE’s in L∞t (Lrx), assuming divL− ∈ L1

t (L
∞
x ) only. However, it is well-known already

in the deterministic case, see [DiPerna and Lions, 1989, §IV.2], that a rigorous deduction
of these inequalities requires some additional assumption on L, although an optimal class
is presently not known. We follow a by-now classical strategy, initiated by DiPerna-Lions
to show uniqueness for the transport equation, assuming Sobolev regularity for the driving
vector field: it consists in the study of the equations satisfied by suitable approximations of a
given solution and a careful analysis of the error terms appearing, by means of the so-called
commutator lemmas.

Before we address our uniqueness results, we give a more detailed description of the scheme
that we follow, in Section 10.1, highlighting the crucial role of commutators. In Section 10.2,
we establish, in different situations, useful commutator lemmas that we employ in Section
10.3 to deduce uniqueness for FPE’s.

10.1 The smoothing scheme

In order to establish uniqueness, our aim is to rigorously establish the deductions that lead
to the identity

∂t

ˆ
β(u)dm = −

ˆ (
uβ′(u)− β(u)

)
divL dm−

ˆ
β′′(u)a(u) dm. (10.1)

which, as already noticed in Chapter 8, is not precise: the first identity leading to (10.1) is

∂t

ˆ
β(u)dm =

ˆ
β′(ut)∂tudm,

and uses the chain rule for the derivative of β(ut) while, in the second identity,

ˆ
β′(u)∂tudm =

ˆ
L(β′(u))udm,

we should at least ensure that L(β′(u)) is well-defined. Recall that the diffusion operator L is
initially defined on A and solutions to the Fokker-Planck equation are understood in duality
with A : under suitable assumptions, as in Remark 4.9 we may extend by continuity L to

93
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larger spaces such as L∞t (Vs), L∞t (Ds(∆)) or their intersections, but still there is no reason
for β′(ut) to be sufficiently smooth, at least in the non-elliptic case.

The main problem therefore involves the regularity of u, both with respect to t ∈ (0, T ),
in order to use the chain rule, and with respect to x ∈ X. The smoothing scheme that we
follow consists in introducing, for α ∈ (0, 1), some linear operator Rα, acting on functions
defined in (0, T )×X (symmetric with respect to m̃) such that, if we define uα := Rαu, then
uα is sufficiently regular so that (8.2) should become rigorous. Of course, the disadvantage is
now that uα is not a solution to the original FPE (8.1). However, we expect for uα to solve
an approximate FPE, namely

∂tu
α = L∗uα + wα, (10.2)

where we let

wα := [(∂t + L)∗,Rα]u = (∂t + L)∗Rαu− Rα(∂t + L)∗u

be the formal commutator between (the dual of) ∂t + L and Rα. This identity is crucial for
our deductions. Indeed, in many cases, we prove that, for α > 0, the right hand side in (10.2)
is actually a function, deducing that t 7→ uαt is a Sobolev curve. At this point, Gronwall
inequality rigorously applies, entailing approximate versions of the energy estimates, which
contain an the error term involving wα.

The key point is then to study general properties for the commutator, in particular its
convergence to 0, as α ↓ 0, assuming also that uα → u, in a sense to be made precise. To
ensure that the terms involving the commutator give no contribution in the limit, it turns
out that strong convergence in some Lebesgue space is sufficient, and in many cases we are
able to prove this, as a consequence of suitable assumptions on R and L.

So far, the strategy described is the same as in DiPerna-Lions original approach. Our
novel contribution, initiated in [Ambrosio and Trevisan, 2014], consists in choosing R to
be a Markov semigroup on functions on (0, T ) × X, argue by duality and Bakry-Eméry
interpolation, writing

Rα(∂t + L)f − (∂t + L)Rαf =

ˆ α

0

d

dσ
[Rσ(∂t + L)Rα−σf ] dσ =

ˆ ε

0
Rσ[D, (∂t + L)]Rα−σfdσ,

(10.3)
where we let D be the generator of R. Estimates on the infinitesimal commutator [D, (∂t+L)]
can be given in terms of natural quantities reflecting the relative regularity of ∂t + L with
respect to D. For example, a natural choice is letting Rf(t, x) := (Pft)(x), for (t, x) ∈
(0, T ) × X, thus [Pα, ∂t]f = 0. The decisive computation in [Ambrosio and Trevisan, 2014]
is then to link [∆, b] with the symmetric part of the derivative of b, see also Section 10.2.2
below. However, one can perform different choices for R, allowing for genuine t-dependent
semigroups, see Section 10.2.4.

10.2 Commutator estimates

This is certainly the most technical section throughout all the thesis: as introduced above,
rigorous deductions of energy estimates and then uniqueness results strongly rely on the study
of commutators terms.

Although the single identity (10.3) lies at the heart of our technique, we are currently not
able to give a unified result, and in this section we deal with different cases of commutators,
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roughly at increasing technical complexity: thus, we introduce gradually various features and
problems encountered.

First, it is proficient to study commutator estimates where ∂t + L is replaced by some
linear continuous operator A, Section 10.2.1, providing the ideal case to which we reduce in the
other ones. Also, in many (but not all) situations we let R = P, and our abstract framework
allows for considering the time-independent case, see at the beginning of Section 10.2.4. Then,
in Section 10.2.2, we study the case of a Sobolev derivation, which is the case considered in
[Ambrosio and Trevisan, 2014] and, in Section 10.2.3, we consider diffusion operators of the
form L = a∆, where a belongs to a second order Sobolev space: in this case, we perform an
interpolation based on a second-order Taylor expansion, instead of (10.3). Finally, in Section
10.2.4, we address the commutator between ∂t and the semigroup R associated to a bounded
elliptic form a on (0, T ) × X: in this case, we assume Sobolev regularity for t 7→ at, in the
spirit of [Figalli, 2008, Proof of Theorem 4.3, Step 3.3].

Throughout this section, we fix q ∈ (1,∞], r, s ∈ (1,∞), satisfying q−1 + r−1 + s−1 = 1.
We avoid to deal with the endpoint cases q = 1, r = s =∞, since we argue often by duality
and density, and for some results we also use the Lp-∆ inequality, for p ∈ {r, s} (which may
hold true in some settings for p =∞, e.g. in Chapter 11).

10.2.1 The commutator with a continuous linear map

In this section, we let
A : Ls(m) 7→ Lr

′
(m)

be a linear continuous operator. For α > 0, we introduce the commutator between the heat
semigroup Pα and A,

Ls(m) 3 f 7→ [Pα,A]f := Pα (Au)− A (Pαu) ∈ Lr′(m).

Since we argue by duality, it is useful to introduce the bilinear formulation

Lr(m) ∩ Ls(m) 3 (u, f) 7→
ˆ
u[Pα,A]fdm =

ˆ
(Pαu) (Af)− uA (Pαf) dm,

and the following infinitesimal version (with respect to α):

Dr(∆)×Ds(∆) 3 (u, f) 7→
ˆ
u[∆,A]fdm :=

ˆ
(∆u) (Af)− uA∆fdm. (10.4)

It is natural in this setting to regard any bound on
´
u[∆,A]fdm in terms of norms on u

and f that are weaker than the trivial ones, i.e. Dr(∆) and Ds(∆), as expression of some
regularity of A, relative to ∆: to fix ideas, let us consider the following example.

Example 10.1 (Multiplication operator). Let A ∈ Lq(m) and define Af := Af , for f ∈
Ls(m). If A ∈ Vq, we can integrate by parts in (10.4) and obtain, for f ∈ Ds(∆), u ∈ Dr(∆),

ˆ
u[∆,A]fdm =

ˆ
[Γ(f,Au)− Γ(Af, u)] dm =

ˆ
[Γ(f,A)u− fΓ(A, u)] dm.

In particular, it holds ∣∣∣∣ˆ f [∆,A]udm

∣∣∣∣ ≤ 2 ‖A‖Vq ‖f‖Vs ‖u‖Vr ,

although this turns out to be a rather ineffective estimate for our purposes, see Remark 10.4.
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The first lemma that we prove is a basic result to obtain bounds on [Pα,A]f exploiting
the joint validity of the Lp-Γ inequality for p ∈ {r, s}, i.e., a smoothing effect of P, together
with an inequality of the type∣∣∣∣ˆ v[∆,A]g dm

∣∣∣∣ ≤ ‖[∆,A]‖r,s ‖v‖Vr ‖g‖Vs (10.5)

for some constant ‖[∆,A]‖r,s, for sufficiently many functions v, g, i.e., some regularity of A.
Let us remark that, since A is continuous, the difficulty is not to provide some bound, but a
quantitative expression in terms of the infinitesimal commutator [∆, A].

Lemma 10.2 (basic commutator inequality). Let u ∈ Dr(∆), f ∈ Ds(∆), let the Lp-Γ
inequality hold for p ∈ {r, s} and let (10.5) hold with v = Ptu, g = Pτf , for every t, τ ∈ (0, 1),
where ‖[∆,A]‖r,s is some constant independent of t and τ .

Then, for every α ∈ (0, 1), it holds∣∣∣∣ˆ u[Pα,A]fdm

∣∣∣∣ ≤ c ‖[∆,A]‖r,s ‖u‖L2∩Lr ‖f‖L2∩Ls , (10.6)

where c ≥ 0 depends only on the constants cΓ
r , cΓ

s in (3.12).

Proof. We consider the curve

[0, α] 3 σ 7→ Afα−σ ∈ Lr′(m),

where we introduced the notation gt := Ptg. Since A is a linear and continuous and f ∈ Ds(∆),
the curve belongs to C1([0, α], Lr

′
(m)), with derivative

d

dσ
Afα−σ = −A∆fα−σ = −A(∆f)α−σ, for σ ∈ (0, α).

Similarly, since u ∈ Dr(∆), the curve σ 7→ uσ is C1([0, α], Ls
′
(m)), thus

[0, α] 3 σ 7→ F (σ) :=

ˆ
uσAfα−σdm

belongs to C1([0, α],R). By the fundamental theorem of calculus, the identity

ˆ
u[Pα,A]fdm = F (α)− F (0) =

ˆ α

0
F ′(σ)dσ,

reduces the problem to provide bounds for |F ′(σ)|, to be integrated over σ ∈ [0, α]. Leibniz
rule applies and gives

F ′(σ) =

ˆ
(∆uσ)

(
Afα−σ

)
− uσA∆fα−σdm =

ˆ
uσ[∆,A]fα−σdm, for σ ∈ (0, α). (10.7)

Then, we argue at fixed σ ∈ (0, α) and use the assumption (10.5), with v = uα−σ, g = fσ,
obtaining the inequality ∣∣F ′(σ)

∣∣ ≤ ‖[∆,A]‖r,s ‖u
α−σ‖Vr ‖fσ‖Vs .
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The validity of the Lp-Γ inequality entails that u 7→ uσ is continuous from L2 ∩Lr(m) to Vr,
with norm smaller than cr/

√
σ, where cr is some constant depending on cΓ

r only. A similar
remark holds for f 7→ fα−σ, thus we find∣∣F ′(σ)

∣∣ ≤ crcs√
σ(α− σ)

‖[∆,A]‖r,s ‖u‖L2∩Lr ‖f‖L2∩Ls .

To conclude, we integrate over σ ∈ [0, α], recalling that

ˆ α

0

dσ√
σ(α− σ)

= π,

and we deduce the validity of (10.6). �

Useful variants of Lemma 10.2 can be devised, an important one is based on the remark
that to estimate |F ′(σ)|, we are free to add and subtract some other total derivative G′(σ),
provided that the increment |G(α)−G(0)| is bounded. To show how this reasoning applies,
we provide the following improvement of Lemma 10.2, where condition (10.5) is replaced with∣∣∣∣ˆ v[∆,A]gdm +

ˆ
v [a(∆g)] dm

∣∣∣∣ ≤ ‖[∆,A]‖r,s ‖v‖Vr ‖g‖Vs , (10.8)

where a ∈ L (Ls(m), Lr
′
(m)).

Lemma 10.3 (refined commutator inequality). Let u ∈ Dr(∆), f ∈ Ds(∆), let the Lp-
Γ inequality hold for p ∈ {r, s} and let (10.8) hold with v = Ptu, g = Pτf , for every t,
τ ∈ (0, 1), for some constant ‖[∆,A]‖r,s and a ∈ L (Ls(m), Lr

′
(m)), independent of t and τ .

Then, for every α ∈ (0, 1), it holds∣∣∣∣ˆ u[Pα,A]fdm

∣∣∣∣ ≤ c [‖[∆,A]‖r,s + ‖a‖
]
‖u‖L2∩Lr ‖f‖L2∩Ls , (10.9)

where c ≥ 0 is some constant depending only on cΓ
r , cΓ

s in (3.12), c∆
r and c∆

s in (3.14).

Proof. We argue by adding and subtract suitable functions G′(σ), H ′(σ) to (10.7), in such
a way that the correspondent increments |G(α)−G(0)|, |H(α)−H(0)|, are controlled, ex-
ploiting the validity of the Lp-Γ and the Lp-∆ inequalities.

Consider the curve

[0, α] 3 σ 7→ G(σ) =

ˆ
uαa(fα−σ)dm.

By the assumption on a,
|G(α)−G(0)| ≤ 2 ‖a‖ ‖u‖r ‖f‖s ,

thus we may add and subtract G′(σ) in (10.7), and we are reduced to estimate the difference

F ′(σ)−G′(σ) =

ˆ
uσ[∆,A]fα−σdm +

ˆ
uαa∆(fα−σ)dm,

which is almost the left hand side in (10.8), with v = uσ and g = fα−σ. To obtain it, we add
and subtract

H ′(σ) =

ˆ
fσa(∆uα−σ)dm,
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and we estimate both |F ′(σ) +H ′(σ)| and |G′(σ)−H ′(σ)|. Arguing as in the proof of Lemma
10.2, but using (10.8) in place of (10.5), we deduce at once thatˆ α

0

∣∣F ′(σ) +H ′(σ)
∣∣ dσ ≤ c ‖[∆,A]‖r,s ‖u‖L2∩Ls ‖f‖L2∩Ls ,

thus, we are left with the term∣∣G′(σ) +H ′(σ)
∣∣ =

∣∣∣∣ˆ (uα − uσ)a(∆fα−σ)dm

∣∣∣∣ ≤ ‖a‖ ‖uα − uσ‖r ‖∆fα−σ‖s.
We now use (3.14) and Corollary 3.5, to obtain

‖uα − uσ‖r ‖∆f
α−σ‖s ≤ ‖u‖r ‖f‖s

c∆
s

α− σ
min

{
2, c log

(
1 +

α− σ
σ

)}
.

Finally, we integrate over σ ∈ [0, α],
ˆ α

0
min

{
2

α− σ
,

c

α− σ
log

(
1 +

α− σ
σ

)}
dσ ≤ max{2, c}

ˆ α

0
min

{
1

σ
,

1

α− σ

}
dσ

= 2 log 2 max{2, c},

and conclude. �

Remark 10.4 (further improvements). A similar argument clearly applies also if in the left
hand side of (10.8) there appears a term

´
a(∆u)fdm, for some linear continuous operator

a ∈ L(Lr, Ls
′
). In particular, in the situation of Example 10.1, we deduce commutator

inequalities for [Pα, A]f requiring no regularity for A.
Inequalities (10.6) and (10.9) are given in terms of the norms in the intersection spaces

L2 ∩ Lr(m) and L2 ∩ Ls(m). One can check that the proof holds as well for A, a ∈ L(L2 ∩
Ls(m), L2 + Lr

′
(m)).

Finally, we remark that the arguments above still hold if, in the right hand side in (10.5)
or (10.8), v is replaced with vδ and g with gγ , for any δ, γ > 0. As it is intuitively clear, the
situation can only improve, and we obtain bounds not depending on δ or γ. �

10.2.2 The commutator with a Sobolev derivation

In this section, we provide estimates for the commutator between P and a derivation b,
formally given by

[Pα, b]f = Pα (df(b))− d (Pαf) (b). (10.10)

We notice immediately that some assumption must be introduced, to ensure that the expres-
sion above actually represents a function, since b is defined on A and Pαf does not necessary
belongs to A . Clearly, invariance PαA ⊆ A is sufficient to define (10.10) but, since below
we require anyway b ∈ Lq(m) and the validity of the Lr-Γ inequality, we prove that density
of A in Vr is enough.

More precisely, given a derivation b ∈ Lq(m), if A be dense in Vs, then, by Remark
4.9, b extends uniquely to a linear continuous operator from Vs into Lr

′
(m), thus (10.10) is

well-defined in Lr
′
(m), for any f ∈ Vs.

Our crucial estimate for 10.10 requires a notion of Sobolev regularity for b, which cor-
responds in the smooth setting to some bound on the symmetric part of its derivative, the
so-called deformation of b.
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Definition 10.5 (deformation). Assume that A is dense both in Vr and in Vs, let b be a
derivation with |b| ∈ Lq(m) and div b ∈ Lq(m). We say that the deformation of b is of type
(r, s) if there exists c ≥ 0 satisfying∣∣∣∣ˆ Dsymb(u, f)dm

∣∣∣∣ ≤ c‖√Γ(u)‖r‖
√

Γ(f)‖s, (10.11)

for all u ∈ Vr ∩Dr(∆) and all f ∈ Vs ∩Ds(∆), where

ˆ
Dsymb(u, f)dm := −1

2

ˆ
[df(b)∆u+ du(b)∆f − (div b)Γ(u, f)] dm. (10.12)

and we let ‖Dsymb‖r,s be the smallest constant c in (10.11).

The density assumption of A in Vr and Vs is again necessary to extend the derivation b
to Vr and Vs, again by Remark 4.9, so that (10.12) is well-defined. Notice that the expression
in (10.12) is symmetric with respect to u and f , so it is the role of r and s above. The
connection between (10.5), (10.12) and (10.4) can be recovered formally integrating by parts
in (10.12), obtaining the identity

ˆ
Dsymb(u, f)dm := −1

2

[ˆ
u[∆, b]f − u(div b)∆f − (div b)Γ(u, f)

]
dm. (10.13)

In the following remark we show that the notion of deformation is more natural than the
commutator between ∆ and b, at least from the point of view of Riemannian geometry, see
also Chapter 11.

Remark 10.6 (deformation in the smooth case). Let (X, 〈·, ·〉) be a compact Riemannian
manifold, let m be its associated Riemannian volume and let Γ(u, f) = 〈∇u,∇f〉. Let df(b) =
〈b,∇f〉 for some smooth vector field b and let Db be the covariant derivative of b. The
expression

〈∇u,∇〈b,∇f〉〉+ 〈∇f,∇〈b,∇u〉〉 − 〈b,∇〈∇f,∇u〉〉 = 〈Db∇u,∇f〉+ 〈Db∇f,∇u〉

gives exactly twice the symmetric part of the tensor Db, i.e. 2 〈(Dsymb)f, u〉. Integrating
over X and then integrating by parts, we obtain twice the expression in (10.12), so that the
deformation of a smooth field b is of type (r, s) if |Dsymb| ∈ Lq(m). �

We are now in a position to state and prove our main commutator inequality.

Lemma 10.7 (commutator estimate for derivations). Assume that A is dense in Vp and
that the Lp-Γ inequality holds, for p ∈ {r, s}. Let b be a derivation with |b|, div b ∈ Lq and
deformation of type (r, s).

Then, for every α ∈ (0, 1), u ∈ Vr ∩Dr(∆), f ∈ Vs ∩Ds(∆), it holds∣∣∣∣ˆ u[Pα, b]fdm

∣∣∣∣ ≤ c [‖Dsymb‖r,s + ‖div b‖Lq+L∞

]
‖u‖L2∩Lr ‖f‖L2∩Ls (10.14)

where c is some constant depending only on cΓ
r , cΓ

s in (3.12) and c∆
r and c∆

s in (3.14).
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Proof. We introduce the following approximation of b via the action of P, that we denote by
B, to stress the fact that it is not a derivation. For every α > 0, we let Bα be the operator

L2 ∩ Ls(m) 3 f 7→ Bα(f) := d(fα)(b), where fα := Pαf ,

which belongs to L (L2 ∩ Ls(m), Lr
′
(m)), since b extends to a linear continuous operator

mapping Vs into Lr
′
(m) and the validity of the Ls-Γ inequality entails that the map f 7→ fα

is continuous from L2 ∩ Ls(m) into Vs. Moreover, the semigroup law gives

Bδ+α(f) = Bδ(fα), for every f ∈ L2 ∩ Ls(m) and δ > 0.

We claim that (10.14) is equivalent to the validity of∣∣∣∣ˆ u[Pα,B
δ]fdm

∣∣∣∣ ≤ c [‖Dsymb‖r,s + ‖div b‖Lq

]
‖u‖Lr∩L2 ‖f‖Ls∩L2 , (10.15)

for every δ > 0, where c ≥ 0 is some constant independent of δ.
Indeed, as δ ↓ 0, the left hand side above converges towards that of (10.14) since it holds

ˆ
uαBδ(f)dm = −

ˆ
div (uαb) f δdm→ −

ˆ
div (uαb) fdm =

ˆ
uαdf(b)dm,

as f δ → f strongly in Ls(m) and

div (uαb) = uα div b+ d(uα)(b) ∈ Ls′(m).

The second term in the commutator converges to the expected limit, since δ 7→ Bδ+α(f) is
continuous on [0,∞), at fixed α > 0.

As the left hand side in (10.15) is the commutator between Pα and Bδ, the result follows
from an application of Lemma 10.3, with A = Bδ and a = (div b)Pδ. Notice that the operator
norm of Bδ is unbounded as δ ↓ 0, but this causes no harm as it does not appear in the
estimate that we establish.

The key point is to look for a rigorous version of (10.13), relating the deformation of b
and the infinitesimal commutatorˆ

u[∆,Bδ]fdm =

ˆ
[∆u]Bδ(f)− uBδ(∆f)dm.

By the definition of div b, it holds

ˆ
uBδ(∆f)dm = −

ˆ
du(b)∆f δ + u(div b)∆f δdm,

and recalling that Bδ(f) = d(f δ)(b), we obtain

ˆ
u[∆,Bδ]fdm =

ˆ [
d(f δ)(b)∆u+ du(b)∆f δ − u(div b)∆f δ

]
dm.

Adding and subtracting (div b)Γ(u, f δ), we deduce the identity

ˆ
u[∆,Bδ]fdm +

ˆ
u(div b)∆f δdm = −2

ˆ
Dsymb(u, f δ)dm−

ˆ
(div b)Γ(u, f δ)dm.
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By the assumption on the deformation of b, we conclude that∣∣∣∣ˆ u[∆,Bδ]fdm +

ˆ
u(div b)∆f δdm

∣∣∣∣ ≤ [2 ‖Dsymb‖r,s + ‖div b‖q
]
‖u‖Vr ‖f δ‖Vs .

Finally, in order to apply Lemma 10.3, we are only left with checking that the same inequality
holds with ut in place of u and f τ in place of f , for t, τ ∈ (0, 1), but this is straightforward:
we only used the assumptions u ∈ Vr ∩Dr(∆) and f ∈ Vs ∩Ds(∆), that are stable for the
action of the semigroup P. Thus, Lemma 10.3 provides (10.15). �

Remark 10.8 (the divergence free case). If div b = 0, there is no need to add or subtract
any term and the result above is a direct consequence of Lemma 10.7. �

Corollary 10.9 (strong convergence of commutators). Assume that A is dense in Vp and
that the Lp-Γ inequality holds, for p ∈ {r, s}. Let b be a derivation with |b|, div b ∈ Lq and
deformation of type (r, s).

Then, for every α > 0, the commutator operator

Vs 3 f 7→ [Pα, b]f ∈ Lr
′
(m)

extends uniquely to a linear continuous operator in from L2 ∩ Ls(m) into L2(m) + Lr
′
(m).

Moreover, for every f ∈ L2 ∩ Ls(m), it holds

[Pα, b]f → 0, strongly in L2(m) + Lr
′
(m), as α ↓ 0.

Proof. By duality and density, (10.14) entails that the commutator extends uniquely to a
linear continuous operator as claimed. Strong convergence as α ↓ 0 is proved arguing first
with f δ in place of f , at fixed δ > 0. This follows because of continuity of α 7→ d(fα+δ)(b),
for α ↓ 0. The general case is a consequence of uniform boundedness in α ∈ (0, 1) for the
operator norm of [Pα, b] and density of this class of functions in L2 ∩ Ls(m). �

10.2.3 The commutator with a Sobolev diffusion operator

In this section we study the commutator between the heat semigroup P and a diffusion
operator of the form a∆, defined by

[Pα, a∆]f = Pα(a∆f)− a∆(Pαf).

In this case, it is sufficient to assume A ⊆ D(∆) so that the quantity above is well-defined. We
are actually interested in the case that a ∈ Lq(m), thus the commutator is a linear continuous
operator from Ds(∆) into Lr

′
(m). The estimates that we establish require more that a ∈

Lq(m), precisely Sobolev regularity for a up to second order, i.e., we assume a ∈ Vq ∩Dq(∆),
together with some bound on the deformation of gradient derivation ba, i.e. df(ba) = Γ(a, f).
In what follows, we let

H[a] := Dsymba (10.16)

be the Hessian of a.

Remark 10.10. For the only purpose of well-posedness for the FPE associated to the oper-
ator Lf := a∆f , stronger ad-hoc techniques are available in the recent literature, e.g. [Barbu
et al., 2011] and [Belaribi and Russo, 2012], which seem to extend readily to the framework
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of metric measure spaces, and require virtually no regularity of a. The approach that we
follow below, based on a refined study of the commutator between P and the multiplication
operator, introduces stronger regularity assumptions but entails uniqueness also for diffusion
operators of the form Lf := a∆f + df(b). Finally, similar computations allow for dealing
with general diffusions Lf := a : ∇2f (at least in Euclidean spaces, see Chapter 11). �

Lemma 10.11 (commutator estimate for diffusion operators). Assume that A is dense in
Vp and that the Lp-Γ inequality holds, for p ∈ {r, s}. Let a ∈ Vq ∩Dq(∆) and with Hessian
of type (r, s).

Then, for every α ∈ (0, 1), u ∈ Vr ∩Dr(∆), f ∈ Vs ∩Ds(∆), it holds∣∣∣∣ˆ u[Pα, a∆]fdm− α
ˆ
u[∆, a]∆Pαfdm

∣∣∣∣ ≤ c [‖H[a]‖r,s + ‖∆a‖q
]
‖u‖L2∩Lr ‖f‖L2∩Ls

(10.17)
where c is some constant depending only on cΓ

r , cΓ
s in (3.12) and c∆

r and c∆
s in (3.14).

Proof. The proof relies on a refined study of the commutator between Pα and the linear
continuous operator f 7→ af . Indeed, since Pα commutes with the Laplacian ∆, it holds

ˆ
u[Pα, a∆]fdm =

ˆ
u[Pα, a]hdm,

where we denote h := ∆f . Without loss of generality, by replacing f with f δ for some δ > 0
and then let δ ↓ 0, we assume also h ∈ Vs ∩Ds(∆).

As in the proof of Lemma 10.2, we introduce the curve

[0, α] 3 σ 7→ F (σ) =

ˆ
uσahα−σdm,

which is C1((0, α),R), with

F ′(σ) =

ˆ
uσ[∆, a]hα−σdm.

After Example 10.1, it holds

F ′(σ) =

ˆ
uσdhα−σ(ba)− duσ(ba)h

α−σdm

=

ˆ
uσdhα−σ(ba) + uσ div(hα−σba)dm

= 2

ˆ
uσdhα−σ(ba)dm +

ˆ
uσ(∆a)hα−σdm.

(10.18)

This identity gives at once that F ∈ C2((0, α),R), with

F ′′(σ) = 2

ˆ
uσ[∆, ba]h

α−σdm +

ˆ
uσ[∆, (∆a)]hα−σdm.

The main idea is to perform an interpolation up to the second order,

F (α)− F (0)− αF ′(0) =

ˆ α

0
F ′′(σ)(α− σ)dσ, (10.19)



103 CHAPTER 10: UNIQUENESS OF SOLUTIONS TO FPE’S

in place of the fundamental theorem of calculus: the factor (α − σ) is useful to compensate
the bound on the norm of hα−σ = ∆fα−σ. Notice that αF ′(0) is precisely the second term
in the left hand side of (10.17).

As with the case of derivations (see Remark 10.8), our deduction is straightforward in
case ∆a = 0, since (10.13) gives

ˆ
uσ[∆, ba]h

α−σdm = −2

ˆ
H[a](uσ, hα−σ)dm

and we estimate ∣∣F ′′(σ)
∣∣ ≤ 4 ‖H[a]‖r,s ‖

√
Γ (uσ)‖r‖

√
Γ (hα−σ)‖s

≤ 8cΓ
r c

Γ
s√

σ(α− σ)
‖H[a]‖r,s ‖u‖r ‖h

(α−σ)/2‖s

≤ 16cΓ
r c

Γ
s c

∆
s√

σ(α− σ)3
‖H[a]‖r,s ‖u‖r ‖f‖s ,

(10.20)

where we apply both the Lp-Γ inequality 3.11 for p ∈ {r, s} and the Ls-∆ inequality 3.14.
Integrating with respect to σ ∈ (0, α), we would conclude 10.17.

To address the general case where ∆a ∈ Lq(m), we argue as in the proof of Lemma 10.2,
i.e. we add and subtract suitable quantities. Unfortunately, the proof becomes less straight-
forward. We consider separately the terms

ˆ α

0

ˆ
uσ[∆, ba]h

α−σdm (α− σ)dσ and

ˆ α

0

ˆ
uσ[∆, (∆a)]hα−σdm (α− σ)dσ. (10.21)

We focus on the former. By (10.13), it holds, for σ ∈ (0, α),

ˆ
H[a](uσ, hα−σ)dm = −1

2

ˆ
uσ[∆, ba]h

α−σ − uσ(∆a)∆hα−σ − (∆a)Γ(uσ, hα−σ)dm,

thus, in order to reduce to the argument for the case ∆a = 0, it is enough to provide bounds
for the quantities

ˆ
uσ(∆a)∆hα−σdm, and

ˆ
(∆a)Γ(uσ, hα−σ)dm. (10.22)

The inequality ∣∣∣∣ˆ (∆a)Γ(uσ, hα−σ)dm

∣∣∣∣ ≤ ‖∆a‖q ‖√Γ (uσ)‖r
∥∥hα−σ∥∥

s

allows us to handle the second term in (10.22) exactly as in (10.20), while for the first term
in (10.22), we use a second-order analogue of Lemma 10.3. We introduce the quantity

ˆ α

0

ˆ
uα(∆a)∆2fα−σ(α− σ)dmdσ. (10.23)

By the Taylor expansion (10.19) with fα−σ in place of F (σ), we have

ˆ α

0
∆2fα−σ(α− σ)dσ = f − fα + α∆fα,
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entailing the bound∣∣∣∣ˆ α

0

ˆ
uα(∆a)∆2fα−σ(α− σ)dmdσ

∣∣∣∣ ≤ (2 + c∆
s ) ‖∆a‖q ‖u‖r ‖f‖s .

Therefore, we are allowed to add and subtract 10.23 in the first term of (10.22), and we are
reduced to provide a bound for difference∣∣∣∣ˆ (uα − uσ)(∆a)∆hα−σdm

∣∣∣∣ ,
to be integrated over σ ∈ (0, α), with respect to the measure (α − σ)dσ. By the Ls-∆
inequality, it holds∣∣∣∣ˆ (uα − uσ)(∆a)∆hα−σdm

∣∣∣∣ ≤ ‖∆a‖q ‖uα − uσ‖r ∥∥∆hα−σ
∥∥
s

≤ 2c∆
s

α− σ
‖∆a‖q ‖u

α − uσ‖r
∥∥∥∆f (α−σ)/2

∥∥∥
s

and from this point we conclude identically as in the proof of Lemma 10.3, i.e. by the Lp-
∆ inequality and Corollary 3.5. This provides the required bounds for the former term in
(10.21).

The latter term in (10.21) is easier to bound, since
ˆ
uσ[∆, (∆a)]hα−σdm =

d

ds

ˆ
uσ(∆a)hα−σdm,

and so we can integrate by parts in (10.21),
ˆ α

0

ˆ
uσ[∆, (∆a)]hα−σdm (α− σ)dσ = −α

ˆ
u(∆a)hαdm +

ˆ α

0

ˆ
uσ(∆a)hα−σdm.

The first addend in the right hand side is uniformly bounded from above by c∆
s ‖∆a‖q ‖u‖r ‖f‖s,

so we are left only with
ˆ α

0

ˆ
uσ(∆a)hα−σdm =

ˆ α

0

ˆ
uσ(∆a)∆fα−σdm,

but this can be handled directly as in the proof of Lemma 10.3, i.e. by adding and subtracting
ˆ α

0

ˆ
uα(∆a)∆fα−σdm =

ˆ
uα(∆a)(fα − f)dm,

and using the Lp-∆ inequality and Corollary 3.5. �

As a consequence of Lemma 10.11 and duality arguments, one define uniquely by extension,
the family of continuous operators

L2 ∩ Ls(m) ⊇ Ds(∆) 3 f 7→ [Pα, a∆]f − α[∆, a]∆Pαf ∈ L2(m) + Lr
′
(m),

which is moreover uniformly bounded, for α ∈ (0, 1). Since for f ∈ Ds(∆) we obtain strong
convergence towards 0 in L2(m) + Lr

′
(m), by density we also have

[Pα, a∆]f − α[∆, a]∆Pαf → 0, as α ↓ 0, for every f ∈ L2 ∩ Ls(m).
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Unluckily, it seems impossible to provide uniform bounds for the quantity

α

ˆ
u[∆, a]∆Pαfdm,

and deduce strong convergence for the original commutator. Indeed, by (10.17), the quantity
ˆ
u[∆, a]∆Pαfdm =

ˆ
(∆u)a∆Pαfdm− ua∆2Pαfdm

is of course well defined if u ∈ Dr(∆), and (10.18) shows that
ˆ
u[∆, a]∆Pαfdm =

ˆ
u [2 d(∆Pαf)(ba) + (∆a)∆Pαf ] dm,

leading to the bound∣∣∣∣α ˆ u[∆, a]∆Pαfdm

∣∣∣∣ ≤ c√
α

[
‖ba‖q + ‖∆a‖q

]
‖u‖r ‖f‖s .

However, to prove uniqueness, we choose f = Pαu, and this additional symmetry can be
crucially exploited, as we do in the following lemma.

Lemma 10.12. Assume that A is dense in Vp and that the Lp-Γ inequality holds, for p ∈
{r, s} and that (3.13) holds, for every f ∈ Vp. Let a ∈ Vq ∩Dq(∆), with H[a] of type (r, s).

Then, for every u ∈ L2 ∩ Lr ∩ Ls(m) and α ∈ (0, 1), it holds∣∣∣∣α ˆ u[∆, a]∆Pα(Pαu)dm

∣∣∣∣ ≤ c [‖H[a]‖r,s + ‖∆a‖q
]
‖u‖2L2∩Lr∩Ls , (10.24)

where c is some constant depending only on cΓ
r , cΓ

s in (3.12) and c∆
r and c∆

s in (3.14). More-
over, the left hand side in (10.24) is infinitesimal as α ↓ 0.

Proof. First, we obtain an equivalent expression where the semigroup Pα acts on the leftmost
u, gaining more symmetry. Indeed, in general, if u ∈ Vr∩Dr(∆), f ∈ Vs∩Ds(∆), integrating
by parts, it holdsˆ

u[∆, a]∆fαdm = −2

ˆ
du(ba)∆f

αdm−
ˆ
u(∆a)∆fαdm

= −2

ˆ
(∆f)Pα(du(ba))dm−

ˆ
u(∆a)∆fαdm

= −2

ˆ
(∆f)[Pα, ba]udm− 2

ˆ
(∆f)duα(ba)dm−

ˆ
u(∆a)∆fαdm.

By the first statement in Corollary 10.9, with the roles of r and s reversed, this last identity
extends by continuity to the case u ∈ L2 ∩ Lr(m), f ∈ Ds(∆).

We now specialize to the case f := Pαu. As α ↓ 0, it holds

α

∣∣∣∣ˆ (∆uα)[Pα, ba]udm

∣∣∣∣→ 0,

by the second statement in Corollary 10.9 and boundedness of α∆uα in L2 ∩Ls(m). We also
have ∣∣∣∣ˆ u(∆a)∆fαdm

∣∣∣∣ ≤ ‖∆a‖q ‖u‖r ‖∆u2α‖s → 0,
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by Proposition 3.4.

In order to handle the last term, our choice of f in terms of u seems crucial. Indeed, we
have ˆ

(∆uα)duα(ba)dm = −
ˆ
H[a](uα, uα) +

1

2

ˆ
(∆a)Γ(uα)dm,

using the very definition of deformation: this leads to the inequality∣∣∣∣ˆ (∆uα)duα(ba)dm

∣∣∣∣ ≤ [‖H[a]‖r,s + ‖∆a‖q
]
‖
√

Γ (uα)‖r‖
√

Γ (uα)‖s,

which, by the Lp-Γ inequality, for p ∈ {r, s}, entails (10.24) together with convergence towards
0 of the left hand side therein, by Proposition 3.6. �

We conclude by collecting the results proved in this section in the following corollary.

Corollary 10.13 (convergence of commutators, diffusion operators). Assume that A is dense
in Vp and that the Lp-Γ inequality holds, for p ∈ {r, s}. Let a ∈ Vq ∩Dq(∆) with H[a] of type
(r, s).

Then, for every α > 0, the commutator

Ds(∆) 3 f 7→ [Pα, a∆]f ∈ Lr′(m)

extends uniquely to a linear continuous operator from L2 ∩Ls, to L2(m) +Lr
′
(m). Moreover,

for every u ∈ L2 ∩ Lr ∩ Ls(m), it holds∣∣∣∣ˆ u[Pα, a∆](Pαu)dm

∣∣∣∣→ 0, as α ↓ 0.

Proof. By Lemma 10.11 and the discussion right after it, we deduce∣∣∣∣ˆ u[Pα, a∆](Pαu)dm− α
ˆ
u[∆, a]∆Pα(Pαu)dm

∣∣∣∣→ 0, as α ↓ 0.

Indeed, it is sufficient to notice that, if a family of uniformly bounded operators (Gα)α on a
Banach space B strongly converges to 0, i.e. for every u ∈ B, Gαu→ 0, then if uα → u in B,
it holds Gαuα → Gf , by the inequality

‖Gαfα −Gf‖B ≤ ‖fα − f‖B sup
α′
‖Gα′‖+ ‖Gαf‖ .

Finally, the second statement in Lemma 10.12, gives∣∣∣∣α ˆ u[∆, a]∆Pα(Pαu)dm

∣∣∣∣→ 0, as α ↓ 0,

and the conclusion follows. �



107 CHAPTER 10: UNIQUENESS OF SOLUTIONS TO FPE’S

10.2.4 The commutator with ∂t

In this section, we study some features that appear in the time-extended framework, as
described in Chapter 5. First of all, we notice that the abstract results for the commutators in
the sections above still hold when we consider functions, derivations and diffusions, assuming
only integrable bounds with respect to t ∈ (0, T ): indeed the bounds established therein are
quantitative and one is in a position to apply Lebesgue dominated convergence theorem.

Our next goal is to study the commutator between ∂t and R := P[a], where a = (at)t∈(0,T )

is some bounded elliptic 2-tensor on (0, T )×X, as in Remark 4.17, formally given by

[Rα, ∂t]f := Rα(∂tf)− ∂t(Rαf). (10.25)

The first problem that we address is whether ∂tRαf can be defined as a function, even if f
is smooth. This relies on some smoothness assumption for (0, T ) 3 t 7→ at and clearly all
the results below trivially apply to the case of constant coefficients at(df) = Γ(f). However,
to give an intuition of the regularity that enters in the picture, let us consider the case of
X = Rn with at(df) = at |∇f |2, for some function a : (0, T )×Rn → [0,∞), so that ∆[a]tf =
div(at∇f). To compute the commutator [Rα, ∂t]f , by interpolation along the semigroup, we
are reduced to the “infinitesimal” commutator, which reads as

[div(at∇), ∂t]f = div(a∇∂tf)− ∂t div(at∇f) = −div [(∂ta)∇f ] ,

since ∂t commutes with ∇.
In order to address rigorously this issue, we notice first that (10.25) can be defined in a

weak form, for u, f ∈ C1
c ((0, T );L2(m)), letting

ˆ
u[Rα, ∂t]fdm̃ :=

ˆ
[uRα(∂tf) + (∂tu)Rαf ] dm̃. (10.26)

Then, we formulate Sobolev regularity for the time-dependent derivation (at)t∈(0,T ) as follows.

Definition 10.14. Let a = (at)t∈(0,T ) be bounded 2-tensor, i.e. |a| ∈ L∞t (L∞x ). We say
that ∂ta is of type (r, s) if there exists c ∈ Lq(0, T ) such that, for every u ∈ C1

c ((0, T );Vr),
f ∈ C1

c ((0, T );Vs), the curve (0, T ) 3 t 7→
´
at(ut, ft)dm is weakly differentiable, with∣∣∣∣∂t ˆ at(ut, ft)dm−

ˆ
[at(∂tut, ft) + at(ut, ∂tft)] dm

∣∣∣∣ ≤ ct ‖ut‖Vr ‖ft‖Vs ,L 1-a.e. t ∈ (0, T ).

(10.27)
We let |∂ta|r,s be the smallest function such that (10.27) holds and ‖∂ta‖r,s its norm in
Lq(0, T ).

Recall that we assume A to be dense in L2
t (V), thus a above extends to a 2-tensor on it,

by Remark 4.16, and the second integral in (10.27) is well-defined.
We introduce translation operators on (0, T )×X, letting Tσf(t, x) := f(t+σ, x) if t+σ ∈

(0, T ), and Tσf(t, x) := 0 otherwise. We show that Sobolev regularity for (0, T ) 3 t 7→ at
entails bounds for suitable difference quotients.

Lemma 10.15. Let a = (at)t be a bounded 2-tensor, with ∂ta of type (r, s). Let u ∈ Lrt (Vr),
f ∈ Lst (Vs), with compact support on (0, T ), i.e.

u(t) = 0, f(t) = 0 m̃-a.e. (t, x) ∈ X for t or T − t small enough. (10.28)
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Then, for σ belonging to a suitable neighbourhood of 0 (depending on the support of u and f
only), it holds∣∣∣∣ˆ a(Tσu,Tσf)dm̃−

ˆ
a(u, f)dm̃

∣∣∣∣ ≤ σ ‖∂ta‖r,s ‖u‖Lr
t (Vr) ‖f‖Ls

t (Vs) .

Proof. Arguing by density, it is sufficient to assume that u ∈ C1
c ((0, T );Vr) and f ∈ C1

c ((0, T );Vs).
The curves

σ 7→ uσ := Tσu ∈ Lrt (Vr), σ 7→ fσ := Tσf ∈ Lst (Vs)

are continuously differentiable in a neighbourhood of σ = 0, with derivatives

d

dσ
uσ =

d

dt
(uσ),

d

dσ
fσ =

d

dt
(fσ).

Since the map

Lr(Vr)× Lst (Vs) 3 (u, f) 7→
ˆ
a(u, f)dm̃

is bilinear and continuous, we deduce that

σ 7→
ˆ
a(uσ, fσ)dm̃

is continuously differentiable in a neighbourhood of 0, with

d

dσ

ˆ
a(uσ, fσ)dm̃ =

ˆ
a(∂t(u

σ), fσ) + a(uσ, ∂t(f
σ))dm̃

≤
ˆ T

0
∂t

ˆ
at(u

σ
t , f

σ
t )dm + ‖∂ta‖r,s ‖u

σ‖Lr
t (Vr) ‖f

σ‖Ls
t (Vs)

≤ ‖∂ta‖r,s ‖u‖Lr
t (Vr) ‖f‖Ls

t (Vs)

where we use (10.27) and that the continuous representative for t 7→
´
at(u

σ
t , f

σ
t )dm at t = 0

and t = T is zero, because of (10.28). �

Lemma 10.16 (commutator estimate, bounded elliptic case). Let a = (at)t be a bounded
elliptic form with ∂ta of type (r, s). For p ∈ {r, s}, let the Lp-Γ inequality hold, with respect
to the semigroup R, i.e., for some constant cΓ

p ,

‖
√

Γ (Rαf)‖Lp(m̃) ≤ cΓ
pα
−1/2 ‖f‖Lp(m̃) for every f ∈ L2 ∩ Lp(m̃), α ∈ (0, 1). (10.29)

Then, for every α ∈ (0, 1), u ∈ C1
c ((0, T );L2 ∩ Lr(m)), f ∈ C1

c ((0, T );L2 ∩ Ls(m)), it holds,
for the commutator defined by (10.26),∣∣∣∣ˆ u[Rα, ∂t]fdm

∣∣∣∣ ≤ c ‖∂ta‖r,s ‖u‖L2∩Lr(m̃) ‖f‖L2∩Ls(m̃) , (10.30)

where c depends on the ellipticity constant of a, and cΓ
p in (10.29), for p ∈ {r, s}.

Since a is bounded and elliptic, the validity of (10.29) is equivalent to

‖
√
a(P[a]αf)‖Lp(m̃) ≤ cΓ

pα
−1/2 ‖f‖Lp(m̃) for every f ∈ L2 ∩ Lp(m̃), α ∈ (0, 1).

possibly with a different constant cΓ
p .
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Proof. We claim that it is enough to show the following analogue of (10.30), where ∂t is
replaced with σ−1Tσ, and σ 6= 0 small enough:∣∣∣∣ˆ u[Rα, σ

−1Tσ]fdm

∣∣∣∣ ≤ c ‖∂ta‖r,s ‖u‖r ‖f‖s ,
where c is some constant depending on the ellipticity of a and cΓ

p only, for p ∈ {r, s}. Once
this is holds, we have

ˆ
u[Rα, σ

−1(Tσ − Id)]fdm =

ˆ
u[Rα, σ

−1Tσ]fdm,

and ˆ
u[Rα, σ

−1(Tσ − Id)]fdm→
ˆ
u[Rα, ∂t]fdm, as σ → 0.

Notice that f 7→ σ−1Tσf is a linear continuous operator mapping L2 ∩Lr(m̃) into itself, with
norm smaller than σ−1. We prove the claim using Lemma 10.7, where we let P := R and
A = σ−1Tσ. Indeed, the infinitesimal commutator (10.4) reads as σ−1 times

ˆ
u[∆[a],Tσ]fdm̃ =

ˆ
(∆[a]u)fσ − uσ(∆[a]f)dm̃

=

ˆ
(∆[a]u)fσ − u−σ(∆[a]f)dm̃

=

ˆ
a(u−σ, f)dm̃−

ˆ
a(u, fσ)dm̃.

By Lemma 10.15, with u−σ in place of u, we deduce∣∣∣∣ˆ u[∆[a], σ−1Tσ]fdm̃

∣∣∣∣ ≤ ‖∂ta‖r,s ‖u−σ‖Lr
t (Vr) ‖f‖Ls

t (Vs) ≤ ‖∂ta‖r,s ‖u‖Lr
t (Vr) ‖f‖Ls

t (Vs) ,

since T is a contraction on Lrt (Vr). In order to apply Lemma 10.15, we actually must show
that a similar inequality holds with Rtu and Rτf in place of u and f respectively, for t,
τ ∈ (0, 1). Clearly, this holds, since the only assumptions on u and f that we used are
condition (10.28), which is preserved by Rα. �

Useful consequences are summarized in the following

Corollary 10.17 (convergence of commutators, bounded elliptic case). Let a = (at) be a
bounded elliptic form, with ∂ta of type (r, s). For p ∈ {r, s}, let the inequality (10.29) hold.

Then, for every f ∈ L2 ∩ Ls(m̃), with ∂tf ∈ L2(m̃) + Lr
′
(m̃), and α ∈ (0, 1), it holds

∂tRαf,∈ L2(m̃) + Lr
′
(m̃), and [Rα, ∂t]f,

where the commutator is defined by (10.25). Moreover, f 7→ [Rα, ∂t]f thus defined extends
uniquely to a linear continuous operator mapping L2∩Ls(m̃) into L2(m̃)+Lr

′
(m̃) and it holds

[Rα, ∂t]f → 0, in duality with L2 ∩ Lr(m̃), as α ↓ 0, for every f ∈ L2 ∩ Ls(m̃).
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Proof. From (10.30), by density and duality we obtain that the weak commutator operator
in (10.26) actually induces a linear continuous operator [Rα, ∂t] on L2 ∩ Ls(m̃). Moreover, if
∂tf ∈ L2(m̃) + Lr

′
(m̃), one argues by duality that

∂tRαf = Rα∂tf − [Rα, ∂t]f ∈ L2(m̃) + Lr
′
(m̃).

Finally, to deduce the convergence as α ↓ 0, we notice that, for f ∈ L2 ∩ Ls(m̃), the
functions [Rα, ∂t]f are uniformly bounded in L2(m̃) + Lr

′
(m̃) as α ↓ 0, and any weak limit

must be 0 arguing by duality from (10.26). �

Remark 10.18 (trace semigroup at t = 0). Another useful consequence of regularity for
t 7→ at is existence of a trace semigroup, e.g. for t = 0, defined as follows. By Corollary 10.17,
the map associating f ∈ L2∩Ls(m̃) with ∂tf ∈ L2(m̃)+Lr

′
(m̃) to (Rαf)0, i.e., the continuous

representative at t = 0 (as an element of L2(m̃) + Lr
′
(m̃)) is continuous. We use this map to

induce an operator R0,α from L2 ∩Ls(m) to L2(m) +Lr
′
(m) as follows: given f ∈ L2 ∩Ls(m),

we let f be any function with f ∈ L2 ∩ Ls(m̃), ∂tf ∈ L2(m̃) + Lr
′
(m̃) , f0 = f , and define

R0,αf := (Rαf)0. It turns out that R0,α is well-defined and provides a Markov semigroup
(R0,α)α. �

10.3 Uniqueness results

We have all the technical tools to state and prove our uniqueness results for Fokker-Planck
equations, following the smoothing scheme from Section 10.1 and relying on the commutator
estimates from the previous section.

Let us explicitly remark that we introduce assumptions on the diffusion operator L, e.g.,
bounds on its divergence, some ellipticity or Sobolev regularity, on A , e.g., density in suitable
function spaces, and on the geometry of the space, e.g., the validity of Lp-Γ inequalities.
When dealing with explicit examples, one still has to prove whether these conditions met:
currently, the largest “abstract” class for which the theory is non-empty, in particular in the
deterministic case, is that of RCD metric measure spaces, as investigated in Ambrosio and
Trevisan [2014].

By the results in the previous section, we have at disposal three commutator estimates,
namely, for Sobolev derivations, diffusion operators and bounded elliptic 2-tensors. Our aim
is to deduce correspondingly three uniqueness results, although variants can be devised. As
in the previous section, we let throughout q ∈ (1,∞], r, s ∈ (1,∞] satisfy q−1 +r−1 +s−1 = 1.

10.3.1 Back to the approximation scheme

Before we address the concrete situations, we provide a description of the technical points
that we must face, in a more accurate way than in Section (10.1). We consider solutions u
belonging to some dual Banach space of functions C ′, e.g. C∗ = L∞t (Lrx). For simplicity, let us
also assume that H = L2

t (L
2
x) ⊆ C, so that are in a Gelfand triple setting C∗ ⊆ H∗ = H ⊆ C,

and look for the energy inequality entailing bounds in L∞t (L2
x).

Step 1 (extension of the weak formulation). Intuitively, if A is too small, we cannot expect
uniqueness to hold. to this aim, we extend the validity of the weak formulation for the FPE,
from duality with A to some larger space A.
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Step 2 (stability with respect to R). Since our aim is to use Rαu as a test function, we require

RαA ⊆ A, RαC ⊆ C and [Rα, ∂t + L] : A→ C.

At this point, we deduce that uα is a solution to

∂tu
α = L∗uα + [Rα, ∂t + L]∗u, uα0 = R0,αu,

since for every f ∈ A, it holds

ˆ
[(∂t + L)f ]uαdm̃ =

ˆ
u[Rα, ∂t + L]fdm̃ + [(∂t + L)Rαf ]udm̃

=

ˆ
f [Rα, ∂t + L]∗udm̃−

ˆ
(Rαf)0udm

=

ˆ
f [Rα, ∂t + L]∗udm̃−

ˆ
f0R0,αudm,

where we use the fact that u is a solution to the FPE associated to L. Notice that the initial
condition u0 = u is replaced with uα0 = R0,αu, where R0,α is the trace semigroup at 0, defined
in Remark 10.18.

Step 3 (smoothing action of R). We require that L∗Rα : C∗ 7→ C, thus the right hand side
in (10.2) belongs to C. As a consequence, the equation gives ∂tu

α ∈ C. Thus, uα admits an
continuous representative t 7→ ũα(t) ∈ H, with uα0 = R0,αu.

Step 4 (approximate energy inequality). The curve t 7→
´
|uαt |

2 dm is absolutely continuous,
and we bound from above its derivative with

∂t

ˆ
|uαt |

2 dm ≤
∥∥divL−

∥∥
∞

ˆ
|uαt |

2 dm +

ˆ
ut[Rα, ∂t + Lt]u

α
t dm, L 1-a.e. t ∈ (0, T ).

By Gronwall lemma, we obtain the energy inequality

‖uα‖L∞t (L2
x) ≤ exp

{∥∥divL−
∥∥
L1
t (L∞x )

}(
‖R0,αu‖2 + ρ(α)

)
,

with

ρ(α) :=

ˆ T

0

∣∣∣∣ˆ ut[Rα, ∂t + Lt]u
α
t dm

∣∣∣∣ dt.
Step 5 (limit as α ↓ 0). We prove that

‖uα‖L∞t (L2
x) → ‖u

α‖L∞t (L2
x) , ‖R0,αu‖2 → ‖u‖2 , and ρ(α)→ 0, as α ↓ 0.

We deduce that

‖u‖L∞t (L2
x) ≤ exp

{∥∥divL−
∥∥
L1
t (L∞x )

}
‖u‖2 ,

and in particular uniqueness holds, letting u be the difference between any two solutions, so
that it solves the FPE with u = 0.
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10.3.2 Case of Sobolev derivations

In this section, we essentially prove [Ambrosio and Trevisan, 2014, Theorem 5.4], entailing
uniqueness for the FPE in the deterministic case, i.e., the continuity equation, when L := b
is a derivation with some bound on its deformation and its divergence.

Theorem 10.19 (uniqueness of solutions, Sobolev derivations). Let A be dense in L∞t (Vp)
in the following sense: for every f ∈ L∞t (Vp) there exists (fk)k ∈ A with fk → f and
‖fkt − ft‖Vs → 0 weakly-* in L∞(0, T ), and let the Lp-Γ inequality hold, for p ∈ {r, s}.

Let L := b = (bt)t∈(0,T ) be a Borel family of derivations, with

|b|,div b ∈ L1
t (L

q
x), ‖Dsymbt‖r,s ∈ L

1(0, T ) and div b− ∈ L1
t (L
∞
x ).

Assume that there exists (fn) ⊂ A as in (9.2).
Then, there exists at most one weakly-* continuous solution u in L∞t (L2

x∩Lrx) to the FPE

∂tut + div(utbt) = 0, in (0, T )×X, with u0 = u,

for every initial condition u ∈ L2 ∩ Lr(m).

Proof. In the scheme described above we let

C = L1(L2
x + Lr

′
x ), C ′ = L∞t (L2

x ∩ Lrx),

and R := P̃, i.e., we act with P on each fiber {t}×X for t ∈ (0, T ). Clearly, it holds R0,α = Pα.

Step 1 (extension of the weak formulation). By density of A , the weak formulation extends
from duality with f ∈ A , to duality with f ∈ A := W 1,1

t (L2
x + Lsx) ∩ L∞(Vs).

Step 2 (stability with respect to R). Since the semigroup is constant with respect to t, the
commutator [Pα, ∂t] is trivial and, by the Ls-Γ inequality, we deduce PαA ⊆ A. Moreover,
the space C = L1

t (L
2
x+Lr

′
x ) is stable with respect to the action of P̃, and [Pα, ∂t+b]f belongs

to C, by Corollary 10.9.

Step 3 (smoothing action of R). This is a consequence of the validity of the Lr-Γ inequality,
as Pαu ∈ L∞t (Vr), thus

L∗Pαu = (div uαb) = (div b)uα + duα(b) ∈ L1
t (L

2
x + Ls

′
x ).

Step 4 (approximate energy inequality). Notice that from the identity above we deduce only
∂tu ∈ L1

t (L
2
x+Ls

′
x ): this forces us to take a small departure from the argument in the previous

section, relying instead on the sequence (fn) ⊂ A satisfying (9.2). Starting from |z|1+r/s, we
let

β(z) :=


1 + r+s

s (z − 1) if z > 1

|z|1+r/s if |z| ≤ 1,

1− r+s
s (z + 1) if z < −1,

so that gβ(z) := zβ′(z)− β(z) ≤ (r/s)β(z) for z ∈ R (in the points where β′ does not exists,
we choose the larger among β′+ and β′−). Moreover, β has linear growth at infinity, thus
Lemma 5.9 and its subsequent remark entail that, for n ≥ 1, the curve t 7→

´
fnβ(uαt )dm is

absolutely continuous, with

d

dt

ˆ
fnβ(uαt )dm =

ˆ
u[Pα, bt]

(
fnβ

′(uα)
)
dm−

ˆ
fn div(β(uαt )bt) + fngβ(uαt ) div btdm,
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for L 1-a.e. t ∈ (0, T ). Hence, denoting d(t) := (r/s)‖ div b−t ‖∞ we use the inequality gβ ≤
(r/s)β to get

d

dt

ˆ
fnβ(uαt )dm ≤ d(t)

ˆ
fnβ(uαt )dm +

ˆ
u[Pα, bt]

(
fnβ

′(uαt )
)
dm +

ˆ
β(uαt )dfn(bt)dm,

which, by Gronwall inequality, leads to

sup
t∈[0,T ]

ˆ
fnβ(uαt )dm ≤ exp

{
‖d‖L1

t

}[ˆ
β(Pαu)dm + ρ(α)

]
,

with

ρ(α) :=

ˆ T

0

∣∣∣∣ˆ u[Pα, bt]
(
fnβ

′(uαt )
)
dm

∣∣∣∣+

∣∣∣∣ˆ β(uαt )dfn(bt)dm

∣∣∣∣ dt.
Step 5 (limit as α ↓ 0). Arguing at fixed n ≥ 1, we let α ↓ 0, noticing that uα → u m̃-
pointwise and bounded in L∞t (L2

x ∩Lrx), β(uαt )→ β(ut) in L2 +Lq
′
(m) for a.e. t ∈ (0, T ), and

β′(uαt )→ β′(u) in L2 ∩ Ls(m), with uniform bounds in t ∈ (0, T ).
By Corollary 10.9, we conclude thatˆ

ut[Rα, bt]fnβ
′(uαt )dm→ 0, in L1(0, T ), as α ↓ 0.

Letting finally n→∞, by monotone convergence theorem, we finally deduce

sup
t∈[0,T ]

ˆ
β(ut)dm ≤ exp

{
‖d‖L1

t

}ˆ
β(u)dm,

that leads to uniqueness. �

10.3.3 Case of Sobolev diffusions

In this section, we prove uniqueness for Fokker-Planck equations with a diffusion operator of
the form

Lf := a∆f + df(b). (10.31)

where a ≥ 0 can be degenerate, but we require some Sobolev regularity up to second order
(recall also the notation (10.16) for the Hessian H[a]). Notice that the apparently involute
assumptions become much clearer in the case q =∞, r = s = 2.

Theorem 10.20 (uniqueness of solutions, Sobolev diffusions). Let A be dense in W 1,1
t (L2

x +
Lr
′
x +Ls

′
x )∩L∞t (Vs ∩Ds(∆)), in the following sense: for every f in such a space, there exists

(fk)k ∈ A with fk → f in W 1,1
t (L2

x + Lr
′
x + Ls

′
x ) and

∥∥fkt − ft∥∥Vs∩Ds(∆)
→ 0, weakly-* in

L∞(0, T ).
Let b = (bt)t∈(0,T ) be a Borel family of derivations, with

|b|, div b ∈ L1
t (L

q
x) and ‖Dsymbt‖r,s ∈ L

1(0, T )

and let a ∈ L1
t (Vq ∩Dq(∆)), with ‖H[at]‖r,s ∈ L1(0, T ). Define L by (10.31) and let

divL− = (div b−∆a)− ∈ L1
t (L
∞
x ).

Then, for every u ∈ L2 ∩ Lr ∩ Ls(m), there exists at most one weakly continuous solution u
in L∞t (L2

x ∩ Lrx ∩ Lsx) to the FPE

∂tu = L∗u, in (0, T )×X, with u0 = u.



10.3. UNIQUENESS RESULTS 114

Proof. We closely follow the scheme described in Section 10.1, letting

C = L1
t (L

2
x ∩ Lrx ∩ Lsx), C ′ = L∞t (L2

x + Lrx + Lsx)

and the approximation provided by the semigroup R := P̃.

Step 1 (extension of the weak formulation). By density of A , we extend the validity of the
weak formulation from duality with f ∈ A , to duality with f ∈ A := W 1,1

t (L2
x+Lsx)∩L∞t (Vs∩

Ds(∆)).

Step 2 (stability with respect to R). As in the previous section, the commutator [Pα, ∂t] is
null and, since the Ls-Γ inequality holds, it holds PαA ⊆ A. Also the space C is clearly
stable with respect to the action of Pα, being a Markov semigroup, while the commutator
[Pα, ∂t + L]f belongs to C, by Corollary 10.13.

Step 3 (smoothing action of R). This is a consequence of the Lr-Γ inequality and the Lr-
∆inequality: indeed Pαu ∈ L∞t (Vr ∩Dr(∆)), thus

L∗Pαu = div uαb+ ∆(auα)) = (div b)uα + duα(b) + (∆a)uα + a∆uα + 2Γ(a, uα) ∈ L1
t (L

s′
x ),

thus we deduce u ∈W 1,1
t (L2

x + Lr
′
x + Ls

′
x ).

Step 4 (approximate energy inequality). Arguing precisely as in Section 10.1, we obtain the
energy inequality, entailing uα ∈ L∞t (L2

x), with an error term given by

ρ(α) :=

ˆ T

0

∣∣∣∣ˆ ut[Pα,Lt]u
α
t dm

∣∣∣∣ dt.
Step 5 (limit as α ↓ 0). To conclude, we non-trivial point is that ρ(α) → 0. Indeed, by
linearity we can split the commutator in two terms, one corresponding to [Pα, bt] and the
other [Pα, at∆]. The first one is infinitesimal by Corollary 10.9, while for the second one we
rely on last statement of Corollary 10.13.

�

10.3.4 Case of bounded elliptic diffusion operators

In this section, we establish uniqueness for Fokker-Planck equations associated to a diffusion
operator in the form

Lf := ∆[a]f + df(b), (10.32)

where a is a bounded elliptic form. Recall that in Chapter 9 we show existence as well as
uniqueness for solutions u ∈ L2

t (V): our aim is to prove here uniqueness in a larger space,
assuming only integral bounds. For simplicity of exposition, we restrict ourselves to the
case q = ∞, r = s = 2, which corresponds to that considered in [Figalli, 2008, Theorem
4.3], although one could use the more general commutator estimates from Section 10.2.4 to
deal with less regularity for t 7→ at, at the price of stronger assumptions on integrability of
solutions and the smoothing action for P[a].

Theorem 10.21 (uniqueness, bounded elliptic case). Let a be a bounded elliptic 2-tensor, b
be a derivation with |b| ∈ L∞t (L∞x ), let A be dense in W 1,2

t (L2
x)∩D(∆[a]) and ∂ta be of type

(2, 2).
Then, for every u ∈ L2

x, there exists at most one weakly continuous solution u in L∞t (L2
x)

to the FPE (10.32), with u0 = u.
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Proof. We follow the smoothing scheme introduced in Section 10.1, with C = L2
t (V∗), proving

u ∈ L2
t (V) =: C ′, so that uniqueness then holds by Theorem 9.1. We consider the approxi-

mation provided by the semigroup R := P[a].

Step 1 (extension of the weak formulation). By density, we extend the weak formulation to
f ∈ A := W 1,2

t (L2
x) ∩D(∆a).

Step 2 (stability with respect to R). By Corollary 10.17, it holds RαA ⊆ A; C is also stable
with respect to Rα and finally the commutator

[Rα, ∂t + ∆[a] + b]f = [Rα, ∂t + b]f ∈ C,

for every f ∈ A.

Step 3 (smoothing action of R). This is a consequence of the smoothing effect of the heat
semigroup associated to a Dirichlet form (recall Section 3.1.2).

Step 4 (approximate energy inequality). Our aim is to prove, uα ∈ L2
t (V), uniformly in

α ∈ (0, 1): arguing as in Section 8.2, we deduce

2

ˆ
a(uα)dm̃ ≤

ˆ
(R0,αu)2dm−

ˆ
u[Rα, ∂t + b]uαdm̃ +

ˆ
uαduα(b)dm̃.

We notice that the terms where b appears simplify to∣∣∣∣ˆ udu2α(b)dm̃

∣∣∣∣ ≤ ‖u |b|‖2 ‖√Γ (u2α)‖2.

Up to some constant C ≥ 0, depending on the ellipticity of a only, the term ‖
√

Γ (u2α)‖2 is
smaller than ‖

√
a(u2α)‖2, which is a decreasing function of α, thus we estimate,∣∣∣∣ˆ ud(u2α)(b)dm̃

∣∣∣∣ ≤ C ‖u |b|‖2 ‖√Γ (u)‖2,

where C is some constant depending on the ellipticity of a and ‖a‖∞. To conclude, we split
2xy ≤ ε−1x2 + εy, for ε small enough, depending on the ellipticity of a, to obtain

ˆ
Γ(uα)dm̃ ≤ C

[
‖u‖2 + C ‖u‖22 ‖|b|‖

2
∞ + ρ(α)

]
where

ρ(α) :=

∣∣∣∣ˆ u[Rα, ∂t]u
αdm̃

∣∣∣∣ .
Step 5 (limit as α ↓ 0).Ṫhe only non-trivial term in the limit is c(α), whose convergence
to 0 is established in Corollary 10.17 (actually, it is sufficient to show that it is uniformly
bounded). �

Let us remark that the argument above holds as long as the product u |b| is bounded in
Lt(m): aiming for uniqueness in a smaller space, e.g. L∞t (L1

x∩L∞x ), we may replace the bound
with |b| ∈ L2

t (L
2
x+L∞x ). Moreover, stronger results can be proved if Sobolev inequalities hold,

relying on the energy estimates established in Section 8.3.
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Chapter 11

Finite dimensional spaces

In this chapter, on one side we illustrate relevant classes of finite-dimensional spaces for
which our theory applies. On the other side, we compare our results on well-posedness of
Fokker-Planck equations and martingale problems with some of those available in the current
literature. We largely focus on the Euclidean setting, from Section 11.1 to Section 11.2. In
Section 11.3, we briefly describe how weighted Riemannian and even sub-Riemannian (Section
11.3) structures also fit in our general framework.

11.1 The Euclidean setting

We show how the theory developed for general metric measure spaces specializes in the Eu-
clidean setting of Rd, providing explicit descriptions of the objects involved.

11.1.1 Dirichlet form setup

We consider a specialization of the framework described in Chapter 3, letting X = Rd,
m = L d be the Lebesgue measure and

E(f) :=

ˆ
|∇f |2 (x)dL d(x), for f ∈W 1,2(Rd), E(f) =∞ otherwise,

where we recall that W 1,2(Rd) is the usual Sobolev space of functions f ∈ L2(Rd) whose
distributional derivative ∇f is represented by an element in L2(Rd;Rd) (here and in what
follows, we write Lp(Rd) in place of Lp(Rd,L d), for p ∈ [1,∞]). More explicitly, a function
f ∈ L2(Rd) belongs to W 1,2(Rd) if and only if, for every i ∈ {1, . . . , d}, there exists gi ∈ L2(Rd)
such that ˆ

Rd

f(x)
∂ϕ

∂xi
(x)dx = −

ˆ
Rd

gi(x)ϕ(x)dx, for every ϕ ∈ C∞c (Rd).

We let then gi = ∂if and ∇f := (∂if)di=1 ∈ L2(Rd;Rd). We then introduce the (squared)

modulus of the gradient |∇f |2 :=
∑d

i=1(∂if)2 ∈ L1(Rd) and it is easy to prove that W 1,2(Rd),
endowed with the norm ‖f‖2W 1,2 := ‖f‖2 + ‖∇f‖22 is a Hilbert space, thus, (E,W 1,2(Rn))
defines a closed quadratic form. Equivalently, the lower semicontinuity of E with respect to
convergence in L2(Rd) follows from the identity

E(f) := sup

{ˆ
Rd

f div Φ(x)dx : Φ ∈ C∞c (Rd;Rd), with
d∑
i=1

ˆ
Φi(x)2dx ≤ 1

}
,
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noticing that the functionals in the right hand side above are continuous with respect to
convergence in L2(Rd). To show the Markov property, i.e. that normal contractions η operate
on E (3.2) thus E is Dirichlet, we rely on the density of test functions C∞c (Rd) in W 1,2(Rd),
by the usual Meyers-Serrin theorem.

The Laplacian ∆ in the theory of Dirichlet forms coincides indeed the usual distributional
Laplacian, with D(∆) given by the functions f ∈ W 1,2(Rd), such that the distributional
divergence of ∇f belongs to L2(Rd), i.e. there exists g ∈ L2(Rd) such thatˆ

Rd

g(x)ϕ(x)dx = −
ˆ
Rd

〈∇f(x),∇ϕ(x)〉 dx, for every ϕ ∈ C∞c (Rd).

Notice that, also in this case, we use the density of test functions C∞c (Rd) in W 1,2(Rd), since
the abstract definition of Laplacian would require ϕ ∈W 1,2(Rd) above.

The semigroup (Pt)t≥0 corresponds to the transition semigroup of a Brownian motion,
rescaled by a factor

√
2, for which we have the following representation formula:

Ptf(x) =

ˆ
Rd

f(x+
√

2ty)
e−|y|

2/2√
(2π)n

dy, for x ∈ Rd. (11.1)

We let in what follows ρ(y) := e−|y|
2/2/

√
(2π)n, for y ∈ Rd, be the standard Gaussian kernel

in Rd.
The carré du champ is given by Γ(f) = |∇f |2, for f ∈W 1,2(Rd); the spaces Vp and D(∆)

can be identified respectively as

Vp = W 1,p ∩W 1,2(Rd) =
{
f ∈ Lp ∩ L2(Rd) : ∇f ∈ L2 ∩ Lp(Rd;Rd)

}
Dp(∆) =

{
f ∈ D(∆) ∩ Lp(Rd) : ∆f ∈ Lp(Rd)

}
,

for p ∈ [1,∞]. Let us notice that, for p ∈ (1,∞), it holds Dp(∆) = W 2,p(Rd), by the
Lp-boundedness of the second order Riesz transform f 7→ ∇2∆−1f , see e.g. [Gilbarg and
Trudinger, 2001].

To prove that the Lp-Γ inequality holds, for p ∈ [1,∞] we argue first at fixed x ∈ Rd and
integrate by parts in (11.1), thus

∇Ptf(x) =
1√
2t

ˆ
Rd

∇yf(x+
√

2ty)ρ(y)dy =
1√
2t

ˆ
Rd

f(x+
√

2ty)yρ(y)dy. (11.2)

Hölder inequality gives, for p ∈ (1,∞],

|∇Ptf(x)| ≤ 1√
2t

[ˆ
Rd

∣∣∣f(x+
√

2ty)
∣∣∣p ρ(y)dy

]1/p [ˆ
Rd

|y|p
′
ρ(y)dy

]1/p′

,

and integration over x ∈ Rd entails, by Fubini theorem and translational invariance of L d,
the inequality

‖∇Ptf‖p ≤
cΓ
p√
t
‖f‖p for every t ∈ (0,∞), (11.3)

with (cΓ
p )p
′

= 2p/(2p−2)
´
|y|p

′
ρ(y)dy <∞. To prove that the L1-Γ inequality holds, we argue

by duality or directly integrate in (11.2), obtaining
ˆ
Rd

|∇Ptf(x)| dx ≤ 1√
2t

ˆ
Rd

[ˆ
Rd

∣∣∣f(x+
√

2ty)
∣∣∣ dx] |y| ρ(y)dy =

cΓ
1√
t
‖f‖1 ,
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with cΓ
1 = 2−1

´
|y| ρ(y)dy.

Similarly, we prove directly the validity of Lp-∆ inequalities, acting with the Laplacian
on the Gaussian kernel at fixed x ∈ Rd,

∆Ptf(x) =
1

2t

ˆ
Rd

∆yf(x+
√

2ty)ρ(y)dy =
1

2t

ˆ
Rd

f(x+
√

2ty)
(
|y|2 − d

)
ρ(y)dy,

so that by Hölder inequality, as above, we obtain

‖∆Ptf‖p ≤
c∆
p

t
‖f‖p for every t ∈ (0,∞),

with (c∆
p )p

′
= 2−p/(p−1)

´
| |y|2− d|p′ρ(y)dy, for p ∈ (1,∞]. When p = 1, we directly integrate

and obtain cδ1 =
´
| |y|2−d|ρ(y)dy. Recall that the validity of Lp-∆ inequality for the endpoints

p = 1 or p =∞ is not guaranteed by the general results in Chapter 3.
Finally, we notice that similar results can be proved for higher order derivatives, entailing

the bound
‖∇kPtf‖p ≤

cp,k

tk/2
‖f‖p for every t ∈ (0,∞), (11.4)

where cp,k is some constant depending, besides p ∈ [1,∞] and k ≥ 1, on the dimension d.

11.1.2 Diffusion operators

In the time-independent framework, a natural choice for the algebra A introduced Section 4.1
is that of test functions C∞c (Rd).

Vector fields as derivations

For a Borel vector field b = (bi)di=1 ∈ L1
loc(Rd;Rd), the associated derivation b is naturally

defined by

A 3 f 7→ df(b) := b · ∇f =

d∑
i=1

bi
∂f

∂xi
∈ L1(Rd).

Then, quite obviously, div b is the usual distributional divergence and, as already noticed in
Remark 10.6, the “abstract” deformation Dsymb in Definition 10.5, namelyˆ

Dsymb(u, f)dm := −1

2

ˆ
[df(b)∆u+ du(b)∆f − (div b)Γ(u, f)] dm,

corresponds to the symmetric part of the distributional derivative of b, by integration over
Rd of the identity

∇u · ∇(b · ∇f) +∇f · ∇(b · ∇u)− b · ∇(∇u · ∇f) = 〈Db∇f,∇u〉+ 〈Db∇u,∇f〉 .

2-tensors

Given a Borel map a = (ai,j)di,j=1 ∈ L1
loc(Rd;Rd×d), its associated 2-tensor is given by

A ×A 3 (f, g) 7→ a(f, g) := a : (∇f ⊗∇g) =
d∑

i,j=1

ai,j
∂f

∂xi
∂g

∂xj
.

Clearly, symmetry and elliptic bounds on a are consequences (actually equivalent) to sym-
metry and elliptic bounds for the matrix a(x), m-a.e. x ∈ Rd.



11.1. THE EUCLIDEAN SETTING 122

Diffusion operators

Finally, given a Borel vector field b ∈ L1
loc(Rd;Rd) and a Borel map a ∈ L1

loc(Rd;Rd×d) with
values in symmetric, non-negative matrices, we introduce the diffusion operator L := L(a, b),

A 3 f 7→ Lf := a : ∇2f + b · ∇f =
d∑

i,j=1

ai,j
∂2f

∂xi∂xj
+

d∑
i=1

bi
∂if

∂xi
∈ L1(Rd). (11.5)

Notice that, differently from Part I, we always consider L as taking values in L d-equivalence
classes; this causes no harm, since at the same time we restrict ourselves to probability
measures that are absolutely continuous with respect to L d.

The diffusion operator L can written in divergence form whenever the (vector-valued)
distributional divergence div a, defined by (div a)i =

∑d
j=1 ∂ja

i,j , for i ∈ {1, . . . , d} belongs

to L1
loc(Rd;Rd), so that

Lf = div(a∇f) + (b− div a) · ∇f, for f ∈ A .

Moreover, following Definition 4.21, divL reads as the distribution mapping f ∈ A into´
LfdL d, thus

divL := div (b− div a) = −
d∑

i,j=1

∂i∂ja
i,j +

d∑
i=1

∂ib
i, as a distribution.

11.1.3 FPE’s, MP’s and flows

In the time-extended setting, we let Ã = C1,2
c ((0, T );Rd), and consider Borel families of

vector fields b = (bt)t ∈ L1
t (L

q(Rd;Rd), 2-tensors a = (at)t ∈ L1
t (L

q(Rd; Sym+(Rd)) and
correspondent diffusion operators L = (Lt)t given by Lt = L(at, bt), for q ∈ [1,∞].

The definitions introduced in Section 6.1 specialize in a straightforward way. As an exam-
ple, if let r ∈ (1,∞], q ∈ [r′,∞] and L = L(a, b) be a time-dependent diffusion, the definition
of solution u ∈ L∞t (Lrx) to the FPE

∂tut = L∗tut, on (0, T )× Rd, (11.6)

is given in duality with respect to Ã , i.e., we require

ˆ T

0

ˆ
(∂tf(t, x) + Ltf(x))ut(x)dxdt = 0, for every f ∈ C1,2

c ((0, T );Rd).

Lemma 6.4 gives that every solution to the FPE above admits a weakly-* continuous repre-
sentative in Lr(Rd). Moreover, by density, the weak formulation can be extended in duality
with f ∈ L∞t (W 2,s(Rd)), where s ∈ [1,∞] satisfies q−1 + r−1 + s−1 = 1.

One then introduces martingale problems and Lr-regular martingale flows: about the
former, we say that η ∈P(C([0, T ];Rd)) is a Lr-regular solution to the martingale problem
associated to L if, for every f ∈ A , the process

[0, T ] 7→ f ◦ et −
ˆ T

0
(∂tf + Lsf) ◦ esds
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is a martingale, with respect to the natural filtration on C([0, T ];Rd), and the marginals
ηt = (et)]η are absolutely continuous with respect tot L d, with densities in L∞t (Lr(Rd)).
Martingale flows are defined as selections (η(s, x))s,x of probability measures so that, for
every s ∈ [0, T ], ū ∈ Lr(Rd), with ūL d probability, the probability measure

´
η(s, x)ū(x)dx

defines a Lr-regular solution to the martingale problem.

11.1.4 The superposition principle

Not surprisingly, when specialized to the Euclidean framework, the superposition principle
gives back the results in Chapter 2, in the special case that νt = utL d are all absolutely
continuous probability densities. Let us sketch how this can be proved. In general, the
strategy described in Chapter 7 relies on the choice of a countable set A ∗ ⊆ A and the
distance associated to it; a natural choice would be to let A ∗ =

{
xi, . . . xd

}
, but this is

not admissible, since we choose to work with compactly supported functions. However, by
introducing cut-off functions χR, as in Remark 1.3, we may let

A ∗ =
{
ci,nx

i(χn+1 − χn) : i = 1, . . . , d, n ≥ 1
}

where ci,n are suitable constants, such that the distance associated with A ∗ is equivalent the
Euclidean distance on Rd.

11.2 Well-posedness results

We are in a position to discuss the specialization of our general existence and uniqueness
results for solutions to FPE’s and, via superposition principle, MP’s and regular martingale
flows.

11.2.1 Existence

In the Euclidean setting, the existence results from Chapter 9, providing solutions in L∞t (Lrx)
to FPE’s can be strengthened, by means of Proposition 9.5.

Theorem 11.1 (existence of solutions, Euclidean case). Let q ∈ (1,∞] r ∈ (1,∞] satisfy
q−1 + r−1 ≤ 1 and let L = L(a, b) be a diffusion operator with coefficients a, b ∈ L1

t (L
r′
x ) and

divL− ∈ L1
t (L
∞
x ). Then, for every ū ∈ Lr(Rd), there exists a Lr-weakly continuous solution

u to the FPE (11.6), which can be built in such a way that

i) if ū ≥ 0, then ut ≥ 0, for every t ∈ [0, T ], and

ii) if, for some p ∈ [1,∞], ū ∈ Lp(Rd), then u ∈ L∞t (Lp(Rd)), and

iii) if ū is a probability density, then ut is a probability density for every t ∈ [0, T ].

Proof. Indeed, it is sufficient to take convolutions with respect to both variables (t, x) thus
providing a sequence for which the criterion quoted above applies. Let us remark that conser-
vation of mass follows from the choice fn = χn in (9.2), where χn is a usual cut-off function,
as introduced e.g. in Remark 1.3. �
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When compared with existence results available in the literature, such as [DiPerna and
Lions, 1989, Proposition II.1] or the first part of [Figalli, 2008, Theorem 4.3], we see that these
are fully recovered: actually, we obtain slightly stronger results when compared to the latter
case, since we allow for unbounded coefficients. Moreover, in the elliptic case, we exploit the
validity of the d-dimensional Sobolev inequality, to strengthen our existence result, obtaining
the following

Corollary 11.2 (existence of solutions, elliptic case). Let r ∈ (1,∞], a, b ∈ L1
t (L

r′
x ), c ∈

L1
t (L

d(Rd;Rd)) and, for some λ > 0, let

a ≥ λId, div[b− div a]− ∈ L∞t (L∞x + Ld/2x ).

Then, for every ū ∈ L2 ∩ Lr(Rd), the conclusions of the previous theorem hold for L :=
L(a, b+ c), and the solution built belongs to L2

t (W
1,2(Rd)).

11.2.2 Commutator estimates

Commutator estimates lie at the core of our approach to the theory, so in this section we
carefully comment on how our computations specialize in the Euclidean setting. At the same
time, we show that the Euclidean structure allows for improving what we obtain in the general
framework, and provide a comparison with known results in the literature.

The abstract strategy for the commutator estimates developed in Section 10.2 give rise
to explicit expressions, using the representation (11.1) for the heat semigroup. We proceed
as follows: first, we focus on the case of the commutator between a derivation and the heat
semigroup, specializing the results from Section 10.2.2. Then, we consider the case of a
diffusion operator whose infinitesimal covariance belongs to the second order Sobolev space
W 2,q(Rd), slightly improving the results from Section 10.2.3.

We let throughout q, r, s ∈ [1,∞] satisfy q−1 + r−1 + s−1 = 1. As already remarked in
Section 10.2, the role played by the variable t ∈ (0, T ) is marginal, so that we directly argue
in the time-independent setting, and let A = C2

c (Rd).
By standard density results, which are far from being trivial in the metric measure space

setting, but in Euclidean spaces follow from straightforward convolution, we may assume all
the objects involved to be smooth and compactly supported, as long as we provide a-priori
estimates where only on the appropriate Sobolev norms appear.

The commutator with a Sobolev derivation

Given a smooth vector field b and functions u and f , we consider the commutator
ˆ
u[Pα, b · ∇]fdL d =

ˆ
u [Pα(b · ∇f)− b · ∇Pαf ] dL d.

For simplicity, assume that div b = 0. Then, our Bakry-Émery interpolation argument reads
as ˆ

u[Pα, b · ∇]fdL d =

ˆ α

0

ˆ
uσ[∆, b · ∇]fα−σdL ddσ

and integration by parts provides the identity
ˆ
u[Pα, b∇]fdL d = −2

ˆ σ

0

ˆ 〈
(Dsymb)∇uσ,∇fα−σ

〉
dL ddσ.
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At fixed σ ∈ (0, α), we obtain by (11.2) that 〈(Dsymb)∇uσ,∇fα−σ〉, evaluated at x ∈ Rd,
coincides with

1

2
√
σ(α− σ)

ˆ ˆ
[Dsymb(x) : y ⊗ z]u(x+

√
2σy)f(x+

√
2(α− σ)z)ρ(y)ρ(z)dydz.

It is interesting to compare this identity with the classical scheme introduced in [DiPerna
and Lions, 1989, Lemma II.1], which relies instead on approximations by convolutions. Indeed,
the heat semigroup Pα can be also written as a convolution operator,

Pαf(x) =

ˆ
f(x+

√
2αy)dρ(y) =

ˆ
τy√

2α
f(x)dρ(y),

i.e. a Gaussian average of translation semigroups τyt f(x) := f(x + ty). For each translation
operator, along the direction y ∈ Rd, one interpolates

τyε (b · ∇f)− b · ∇(τyε f) =

ˆ ε

0
τyσ [y · ∇, b · ∇]τyε−σfdσ =

ˆ ε

0
τyσ
[
(y · ∇b) · ∇τyε−σf

]
dσ,

and from this one is able to bound the commutator, after some manipulations. It looks like
that our approach is different, as the symmetric part of the derivative of the vector field b
appears as the commutator with respect to the second order operator ∆.

However, as long as |Dsymb| ∈ Lq(Rd) with q ∈ (1,∞], both approaches are equivalent,
i.e., they provide comparable estimates. When q = 1, as we proved that both the L∞-Γ and
the L∞-∆ inequalities hold, it is possible to establish the inequality∣∣∣∣ˆ u[Pα, b · ∇]fdL d

∣∣∣∣ ≤ C (‖Dsymb‖1 + ‖div b‖1) ‖u‖∞ ‖f‖∞ ,

allowing for the study of vector fields with |Dsymb| ∈ L1(Rd). Let us remark, however that it
is not clear whether the case b ∈ BV (Rd;Rd), with div b ∈ L1(Rd), first settled by Ambrosio
[2004] can be studied by means of this technique: certainly, a natural strategy would be to
consider anisotropic heat semigroups.

Let us point out, however, that the DiPerna-Lions approach easily allows for localization,
simply choosing a compactly supported mollifier, while our setting is intrinsically global. In
order to adapt our methods to the local case, such as e.g. that of more general open sets in
Rd, one could “localize the Dirichlet form” by considering X = Br(0) and the form

Er(f) =

ˆ
Br

|∇f |2 dL d, for f ∈ H1(Br).

Thus, ∆ would be the Laplacian with Neumann boundary conditions and (Pt)t would be the
semigroup correspondent to the Brownian motion, reflected at the boundary ∂Br(0). Being
the ball convex, the validity of Lp-Γ inequalities follows from lower bounds on the Ricci
curvature, see e.g. Section 13.1 and also [Ambrosio et al., 2014b, Theorem 6.20].

The commutator with a Sobolev diffusion

When focus on the commutator between the heat semigroup and a diffusion operator. It
turns out that the results in Section 10.2.3 extend, from operators of the form Lf := a∆f ,
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to the general case Lf := a : ∇2f , following an identical interpolation strategy. For the sake
of clarity, we develop it independently of the results above. Precisely, we let

[Pα, a : ∇2]f := Pα(a : ∇2f)− a : ∇2(Pαf), for f ∈ A ,

and prove the following

Lemma 11.3 (commutator lemma for Sobolev diffusions). Let a ∈ W 2,q(Rd;Rd×d). Then,
for every α ∈ (0, 1), u, f ∈ A , it holds∣∣∣∣ˆ u[Pα, a : ∇2]fdL d − α

ˆ
u[∆, a : ∇2]PαfdL

d

∣∣∣∣ ≤ c ‖a‖W 2,q ‖u‖L2∩Lr ‖f‖L2∩Ls (11.7)

where c is some constant depending on d only. Moreover, for every u ∈ L2 ∩ Lr ∩ Ls(m), it
holds ∣∣∣∣ˆ u[Pα, a : ∇2](Pαu)dL d

∣∣∣∣→ 0, as α ↓ 0. (11.8)

Proof. In order to prove (11.7), the idea is to write

a : ∇2f =
[
a : (∇2∆−1)

]
∆f = a∆f, for f ∈ A ,

thus obtaining an expression similar to that in Section 10.2.3. In place of the multiplication
by some function we have here the linear continuous operator a, from Ls(Rd) to Ls

′
(Rd) (due

to boundedness of Riesz transforms) but we perform a similar “second order” interpolation
along the semigroup, exploiting also the fact that directional derivatives, Laplacians and the
heat semigroup commute. To make computations more transparent, we prefer to directly
argue on coordinates, thus we fix i, j ∈ {1, . . . , d} and consider the commutator

[Pα, a
i,j∂2

i,j ]f := Pα(ai,j∂2
i,jf)− ai,j∂2

i,j(Pαf).

As in the proof of Lemma 10.2, we introduce the curve

[0, α] 3 σ 7→ F (σ) =

ˆ
uσai,j∂2

i,jf
α−σdL d,

which is C1((0, α),R), with

F ′(σ) =

ˆ
uσ[∆, ai,j∂2

i,j ]f
α−σdL d =

ˆ
uσ[∆, ai,j ]∂2

i,jf
α−σdL d,

since ∆ and partial derivatives commute. We let hα−σ := ∂2
i,jf

α−σ = (∂2
i,jf)α−σ, since

derivatives and semigroup commute, by the expression (11.1). By Example 10.1, it holds, for
the derivation b = bi,j induced by ∇ai,j ,

F ′(σ) =

ˆ
uσdhα−σ(b)− duσ(b)hα−σdL d

=

ˆ
uσdhα−σ(b) + uσ div(hα−σb)dL d

= 2

ˆ
uσdhα−σ(b)dL d +

ˆ
uσ(∆ai,j)hα−σdL d.
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This identity gives at once that F ∈ C2((0, α),R), with

F ′′(σ) = 2

ˆ
uσ[∆, b]hα−σdL d +

ˆ
uσ[∆, (∆ai,j)]hα−σdL d.

We then perform an interpolation up to the second order,

F (α)− F (0)− αF ′(0) =

ˆ α

0
F ′′(σ)(α− σ)dσ, (11.9)

where the factor (α− σ) is useful to compensate the bound on the norm of hα.
As with the case of derivations, our deductions are straightforward in case ∆ai,j = 0, since

(10.13) gives ˆ
uσ[∆, b]hα−σdL d = −2

ˆ 〈
(∇2ai,j)∇uσ,∇hα−σ

〉
dL d

and we estimate ∣∣F ′′(σ)
∣∣ ≤ 4

∥∥∇2ai,j
∥∥
q
‖∇uσ‖r‖∇hα−σ‖s

≤ 4cΓ
r cs,3√

σ(α− σ)3

∥∥∇2ai,j
∥∥
q
‖u‖r ‖f‖s ,

(11.10)

where we apply both the Lr-Γ inequality (11.3) and inequality (11.4) for p = s. Integrating
with respect to σ ∈ (0, α), we would conclude 11.7.

To address the general case where ∆ai,j ∈ Lq(m), we argue as in the proof of Lemma 10.2,
i.e. we add and subtract suitable quantities. We consider separately the terms

ˆ α

0

ˆ
uσ[∆, b]hα−σdL d (α−σ)dσ and

ˆ α

0

ˆ
uσ[∆, (∆ai,j)]hα−σdL d (α−σ)dσ. (11.11)

We focus on the former, recalling identity (10.13) that gives, for for σ ∈ (0, α), an equiv-
alent expression for

´ 〈
(∇2ai,j)∇uσ,∇hα−σ

〉
dL d, namely

−1

2

ˆ
uσ[∆, b]hα−σ − uσ(∆ai,j)∆hα−σ − (∆ai,j)∇uσ · ∇hα−σdL d,

thus, in order to reduce to the argument for the case ∆ai,j = 0, it is enough to provide bounds
for the quantities

ˆ
uσ(∆ai,j)∆hα−σdL d, and

ˆ
(∆ai,j)∇uσ · ∇hα−σdL d. (11.12)

The inequality ∣∣∣∣ˆ (∆ai,j)∇uσ · ∇hα−σdL d

∣∣∣∣ ≤ ∥∥∆ai,j
∥∥
q
‖∇uσ‖r

∥∥∇hα−σ∥∥
s

allows us to handle the second term in (11.12) exactly as in (11.10), while for the first term
in (10.22), we use a second-order analogue of Lemma 10.3. We introduce the quantity

ˆ α

0

ˆ
uα(∆ai,j)Ri,j∆2fα−σ(α− σ)dL ddσ, (11.13)
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where we let Ri,jf := ∂2
i,j∆

−1f be the second-order Riesz transform along the directions i, j.
By the Taylor expansion (11.9) with fα−σ in place of F (σ), we have

ˆ α

0
∆2fα−σ(α− σ)dσ = f − fα + α∆fα,

entailing the bound∣∣∣∣ˆ α

0

ˆ
uα(∆ai,j)Ri,j∆2fα−σ(α− σ)dL ddσ

∣∣∣∣ ≤ ∥∥Ri,j∥∥Lr→Lr (2 + c∆
s )
∥∥∆ai,j

∥∥
q
‖u‖r ‖f‖s .

Therefore, we are allowed to add and subtract (11.13) in the first term of (11.12), and we are
reduced to provide a bound for difference∣∣∣∣ˆ (uα − uσ)(∆ai,j)∆hα−σdL d

∣∣∣∣ ,
to be integrated over σ ∈ (0, α), with respect to the measure (α− σ)dσ. By inequality (11.4)
with k = 2, it holds∣∣∣∣ˆ (uα − uσ)(∆ai,j)∆hα−σdL d

∣∣∣∣ ≤ ∥∥∆ai,j
∥∥
q
‖uα − uσ‖r ‖∂

2
i,jP(α−σ)/2(∆f (α−σ)/2)‖s

≤ 2c2,σ

α− σ
∥∥∆ai,j

∥∥
q
‖uα − uσ‖r‖∆f (α−σ)/2‖s

and from this point we conclude identically as in the proof of Lemma 10.3, i.e. by the Lp-
∆ inequality and Corollary 3.5. This provides the required bounds for the former term in
(11.11).

The latter term in (11.11) is easier to bound, since

ˆ
uσ[∆, (∆ai,j)]hα−σdL d =

d

ds

ˆ
uσ(∆ai,j)∂2

i,jf
α−σdL d,

and so we can integrate by parts in (11.11),

ˆ α

0

ˆ
uσ[∆, (∆ai,j)]∂2

i,jf
α−σdL d (α−σ)dσ = −α

ˆ
u(∆ai,j)∂2

i,jf
αdL d+

ˆ α

0

ˆ
uσ(∆ai,j)∂2

i,jf
α−σdL d.

The first addend in the right hand side is uniformly bounded from above by cs,2
∥∥∆ai,j

∥∥
q
‖u‖r ‖f‖s,

so we are left only with

ˆ α

0

ˆ
uσ(∆ai,j)∂2

i,jf
α−σdL d =

ˆ α

0

ˆ
uσ(∆ai,j)Ri,j∆fα−σdL d,

but this can be handled directly as in the proof of Lemma 10.3, i.e. by adding and subtracting

ˆ α

0

ˆ
uα(∆ai,j)Ri,j∆fα−σdL d =

ˆ
uα(∆ai,j)Ri,j(fα − f)dL d,

and using the Lp-∆ inequality and Corollary 3.5. Summation upon i, j ∈ {1, . . . , d} yields
(11.7).
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Next, we address the validity of (11.8). Arguing at fixed i, j ∈ {1, . . . , d}, we integrate by
parts

ˆ
u[∆, ai,j∂2

i,j ]f
αdL d = −2

ˆ
du(b)∂2

i,jf
αdL d −

ˆ
u(∆ai,j)∂2

i,jf
αdL d

= −2

ˆ
(∂2
i,jf)Pα(du(b))dL d −

ˆ
u(∆ai,j)∂2

i,jf
αdL d

= −2

ˆ
(∂2
i,jf)[Pα, b]udL

d − 2

ˆ
(∂2
i,jf)d(uα)(b)dL d −

ˆ
u(∆ai,j)∆fαdL d.

By the commutator estimate for Sobolev derivations, this last identity extends by continuity
to the case u ∈ L2 ∩ Lr(Rd), f ∈W 2,s(Rd).

We now specialize to the case f := Pαu. As α ↓ 0, it holds

α

∣∣∣∣ˆ (∂2
i,ju

α)[Pα, b]udL
d

∣∣∣∣→ 0,

by the second statement in Corollary 10.9 and boundedness of α∂2
i,ju

α in L2 ∩ Ls(Rd). We
also have ∣∣∣∣ˆ u(∆ai,j)∆fαdL d

∣∣∣∣ ≤ ∥∥∆ai,j
∥∥
q
‖u‖r ‖∂

2
i,ju

2α‖s → 0.

In order to handle the last term, our choice of f in terms of u and the symmetry of a seem
crucial. Indeed, we integrate by parts once, obtaining

ˆ
(∂2
i,ju

α)duα(b)dL d = −
d∑

k=1

ˆ
∂iu

α(∂2
j,ka

i,j)∂ku
α + ∂iu(∂ka

i,j)∂2
k,judL

d.

The first term, when multiplied by α, is clearly bounded and infinitesimal as α ↓ 0, so we
focus on the last one. To show that it is bounded, we recall that a is symmetric and we are
summing upon i, j ∈ {1, . . . d}, so that we are reduced to prove that

ˆ
∂iu

α(∂ka
i,j)∂2

k,ju
α + ∂iu

α(∂ka
i,j)∂2

k,iu
αdL d

is infinitesimal, when multiplied by α. This symmetric expression can be rewritten

1

2

ˆ
(∂ka

i,j)∂k
[
(∂iu

α + ∂ju
α)2 − (∂iu

α)2 − (∂ju
α)2
]
dL d,

from which we integrate by parts, obtaining a bound in terms of ‖a‖W 2,q ‖∇uα‖2L2∩Lr∩Ls ,
which is sufficient to conclude. �

11.2.3 Uniqueness results

In this section we collect our main uniqueness results for FPE’s and flows in the Euclidean
setting.
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The (possibly) degenerate case

Following the smoothing scheme described in Section 10.3 and relying on the commutator
estimate established in the previous section, we obtain the following strengthening of Theorem
10.20, where general diffusion operators are allowed, as long as they satisfy Sobolev bounds
on their coefficients.

Theorem 11.4 (uniqueness of solutions, Sobolev diffusions). Let q ∈ (1,∞], r, s ∈ (1,∞)
satisfy q−1 + r−1 + s−1 = 1 and let

(bt)t∈(0,T ) ∈ L1
t (W

1,q(Rd;Rd)), (at)t∈(0,T ) ∈ L1
t (W

2,q(Rd;Rd×d)),

define L := L(a, b) as in (11.5) and assume that

divL− = (div b−∆a)− ∈ L1
t (L
∞
x ).

Then, for every u ∈ L2 ∩ Lr ∩ Ls(Rd), there exists at most one weakly continuous solution u
in L∞t (L2

x ∩ Lrx ∩ Lsx) to the FPE

∂tu = L∗u, in (0, T )×X, with u0 = u.

Combining this result with the existence result in Theorem 11.1, the validity of the su-
perposition principle for diffusions and the abstract correspondence for well-posedness, we
deduce the following uniqueness results for MP’s and regular flows:

Theorem 11.5 (well-posedness for martingale problems and flows, Sobolev diffusions). Let
q ∈ (1,∞], r, s ∈ (1,∞) satisfy q−1 + r−1 + s−1 = 1 and let

(bt)t∈(0,T ) ∈ L
q
t (W

1,q(Rd;Rd)), (at)t∈(0,T ) ∈ L
q
t (W

2,q(Rd;Rd×d)),

define L := L(a, b) as in (11.5) and assume that

divL− = (div b−∆a)− ∈ L1
t (L
∞
x ).

Then, for every u ∈ L2 ∩ Lr ∩ Ls(Rd), with ū probability density, there exists a unique
Lr-regular solution u to the martingale problem associated to L, on C([0, T ];Rd). Moreover,
there exists a unique L∞-regular martingale flow (η(s, x))s,x associated to L.

Notice that additional Lq-integrability with respect to t ∈ (0, T ) on the coefficients is
introduced order to apply the superposition principle for diffusions.

The uniqueness result above is novel, to the author’s knowledge. The literature on well-
posedness for degenerate FPE’s and related diffusions has been recently growing: we briefly
compare our result with those obtained by Le Bris and Lions [2008] and Zhang [2010], although
further improvements have been obtained, see e.g. [Röckner and Zhang, 2010], [Fang et al.,
2010], [Luo, 2013]. To this aim, let us first point out that the assumptions a ∈W 2,q(Rd) entail
that the matrix square root σ belongs to W 1,q(Rd), see e.g. [Stroock and Varadhan, 2006,
Lemma 3.2.3]. In [Le Bris and Lions, 2008], uniqueness for the FPE is proved in the class of
functions u ∈ L∞t (L1 ∩ L∞x ) such that σ∇u ∈ L2

t (L
2
x), provided that b and σ are belong to

first-order Sobolev spaces. Our result shows that, assuming slightly stronger differentiability
assumptions, we are able to show uniqueness in the whole space L∞t (L1 ∩ L∞x ), allowing for
the application of the general transfer mechanism between FPE’s and martingale flows. The



131 CHAPTER 11: FINITE DIMENSIONAL SPACES

approach by Zhang [2010], which is based on quantitative estimates arguing directly on the
flow, originally developed for ODE’s by Crippa and De Lellis [2008], is purely “Lagrangian”
and leads to uniqueness, provided that σ is (first order) Sobolev differentiable and bounded. In
[Röckner and Zhang, 2010], by means of the superposition principle for diffusions from [Figalli,
2008], well-posedness results are transferred to FPE’s, at least when solutions are curves of
probability measures. Presently, our results impose stronger smoothness assumptions on the
coefficients, but do not require their (local) boundedness. However, in view of the stronger
superposition principle for diffusions developed in Part I, it is reasonable to expect that one
may extend the results from [Röckner and Zhang, 2010] to the case of non-necessarily locally
bounded coefficients.

The deterministic case

The deterministic case, where a = 0 and L = L(0, b) is a time-dependent family of derivations,
can be read as a special case of the degenerate case above. In particular, Theorem 11.4
becomes a uniqueness result for continuity equations driven by Sobolev vector fields, akin to
[DiPerna and Lions, 1989, Corollary II.1], where uniqueness for transport equations is settled,
under similar assumptions.

At the level of flows, after Remark 6.17, we obtain that the unique L∞-regular martingale
flow provided by Theorem 11.5 is actually deterministic, i.e., for every s ∈ [0, T ], L d-a.e.
x ∈ Rd, η(s, x) is a Dirac measure. Equivalently, for every s ∈ [0, T ], we obtain a map
Xs : Rd × [0, T ] 7→ Rd such that

i) t 7→ Xs(x, t) is a L 1-a.e. solution to the ODE d
dtγ(t) = bt(γ(t)) in [s, T ] with Xs(s, x) = x,

for L d-a.e. x ∈ Rd;

ii) for every ū ∈ L∞(Rd), with ūm probability, the probability measure Xs(·, t)](ūL d) is
absolutely continuous with respect to L d, with density uniformly bounded in L∞(Rd).

Moreover, uniqueness entails the semigroup law Xs(t, x) = Xr(t,Xs(r, x)), for L d-a.e. x ∈ Rd,
for every r, s, t ∈ [0, T ] with s ≤ r ≤ t.

As already observed above (see Remark 1.11), when compared with the formalization of
DiPerna-Lions theory introduced by Ambrosio [2004], the first difference is due the presence
of the extra parameter s ∈ [0, T ], that seems to play an important role in the case of general
diffusions. Another difference, as remarked in the previous section, is that we are currently
not able to obtain useful commutator estimates for vector fields b ∈ BV (Rd;Rd).

The elliptic case

In the bounded elliptic case, the uniqueness result provided by Theorem 10.21 roughly cor-
responds to the uniqueness part of [Figalli, 2008, Theorem 4.3]. Let us remark that the
proof of the crucial commutator estimates therein rely on compactness of the embedding
W 1,2(Rd)→ L2

loc(Rd), while in our abstract approach this is not necessary, and this might be
useful to prove similar results in infinite dimensional spaces as well. There is however another
issue which has to be carefully addressed, that of the density of A = C1,2

b ((0, T )×Rd) in the
domain of ∆[a]f := div(a∇f). Assuming that div a ∈ L∞t (L∞x ), as it is done in Figalli [2008],
one obtains that A is contained in the domain of ∆[a], but density could not hold: clearly,
if some further regularity on the coefficients of a is imposed, (first order Sobolev regularity
should be sufficient), one obtains the required density. Another strategy instead would be
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that of enlarging A with all the functions belonging to W 1,2
t (Rd) ∩D(∆[a]), which is a set

large enough to entail uniqueness: after all, this is not surprising, since we are considering
the operator ∂t + ∆[a] as a perturbation of ∆[a].

11.3 Riemannian and sub-Riemannian spaces

Before we conclude this chapter, we sketch how the abstract arguments provide straightfor-
ward extensions of the classical DiPerna-Lions theory to the setting of weighted Riemannian
manifolds, and even sub-Riemannian spaces: we consider these as examples showing the flex-
ibility of our techniques, thus we do not enter too deep into details, as this would require
specific introductions. Of course, in order to prove strong convergence of commutators and
argue well-posedness, one could always reduce to computations in local charts, but these be-
come more cumbersome, compared to the Euclidean case, and here the advantages of our
intrinsic (and global) approach become manifest.

Weigthed Riemannian manifolds

Let (M, g) be a smooth Riemannian manifold (we refer e.g. to [Bakry et al., 2014, Appendix
C] for a brief introduction) and let µ be its associated Riemannian volume measure. Assume
that the Ricci curvature tensor Ricg is pointwise bounded from below, in the sense of quadratic
forms, by some constant K ∈ R. More generally, one can add a “weight” V : M → R to
the measure, i.e. consider the reference measure e−V µ and assume that the Bakry-Émery
curvature tensor is bounded from below by K ∈ R, i.e.

Ricg + Hess(V ) ≥ K.

The form (on smooth compactly supported functions)

f 7→ EV (f) =

ˆ
M
g(∇f,∇f)e−V dµ,

is closable and we are in the setup (3.1), the Laplace operator being a (weighted) Laplace-
Beltrami on (M, g). Once more, the algebra A of test functions can be chosen to be the
space of smooth functions with compact support.

When V = 0, Bochner’s formula entails that Lp-Γ inequalities (for p ∈ (1,∞)) holds, since
the so-called BE(K,∞) curvature condition holds (see Chapter 13) and it is a classical result
due to S.-T. Yau that the heat semigroup is conservative. In the case of weighted measures,
analogous results can be found in [Bakry, 1994, Proposition 6.2] for the curvature bound and
in [Grigor′yan, 1999, Theorem 9.1] for the conservativity of P, relying on a correspondent
volume comparison theorem, see e.g. [Wei and Wylie, 2009, Theorem 1.2].

Given a Borel vector field b, i.e. a Borel section of the tangent bundle of M , its associated
derivation b acts on smooth functions by

f 7→ df(b) = g(b,∇f).

The divergence can be given in terms of the µ-distributional divergence of b by

div b = div b− g(b,∇V ),

while the deformation is the symmetric part of the distributional covariant derivative, see
Remark 10.6.
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Sub-Riemannian spaces

Sub-Riemannian geometry has very recently become object of study from a point of view
close to that of Γ-calculus, see e.g. [Baudoin et al., 2014] [Baudoin and Kim, 2014]. On Rd,
let V =

{
v1, . . . , vn

}
be a finite family of bounded vector fields, with bounded derivatives of

all orders, and consider the form

EV (f) :=

ˆ n∑
i=1

|δif |2 dL d, for f ∈ C1
c (Rd),

where we introduce the notation δif := vi · ∇f . The form is easily seen to be closable and its
closure is a Dirichlet form which satisfies (3.1), with

∇V f = (δif)ni=1, ΓV (f) = |∇V f |2 =

n∑
i=1

|δif |2 .

In particular, the associated domain V can be described as a suitable Sobolev space along the
directions in V ), and the Laplacian is given by

∆V f :=
n∑
i=1

div(viδif), for f ∈ C2
c (Rd),

which can be proved to be a dense dense space in D(∆V ). If b is a bounded Borel vector
field along V , i.e. there exists Borel functions (bi)ni=1 such that b =

∑n
i=1 b

ivi, then our
well-posedness results entail existence and uniqueness for bounded solutions the FPE

∂tut = (∆V + b · ∇V )∗ ut, in (0, T )× Rd, u0 = ū ∈ L1 ∩ L∞(Rd).

On the other side, the more general case of degenerate diffusions seems to lie presently
outside the scope of our theory, in the sense that the conditions provided by Theorem 10.19
appear to be rather restrictive. For simplicity, assume that div b = 0, thus in the commutator
estimate we obtain the quantity

ˆ
Dsym
V b(f, g)dL d =

ˆ
〈∇V f,∇V (b∇V g)〉+ 〈∇V g,∇V (b∇V f)〉 .

An explicit computation shows that the integrand in the right hands side above coincides
with the summation upon i, j ∈ {1, . . . , n} of

δif δi(b
jδjg) + δjf δj(b

iδig)

=δif
[
δib

j + δjb
i
]
δjg + (δif) bjδiδjg + (δjg) biδjδif

=δif
[
δib

j + δjb
i
]
δjg + bjδj(δifδig) + (δif) bj [δi, δj ] g + (δjg) bi [δj , δi] f,

and it is not clear how to provide estimates for the last two terms above by means of ΓV .
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Chapter 12

Gaussian spaces

In this chapter, we show that our theory specializes to infinite dimensional spaces as well.
We limit the discussion to Gaussian spaces, i.e. Banach spaces endowed with a Gaussian
measures, where our results can be compared with those from some recent literature.

Let us remark that (at least) two different theories of analysis on Gaussian spaces can be
developed: on one side, the classical Malliavin calculus, see e.g. [Bouleau and Hirsch, 1991]
or [Nualart, 2006], on Banach spaces, and on the other side, the case of Gaussian Hilbert
spaces, see e.g. [Da Prato, 2014] or [Da Prato, 2004]. Roughly, the main difference between
the two approaches is the choice of norm in the tangent space: in the former case, we choose
the Cameron-Martin norm, in the latter one, we take the Hilbert norm, by identifying the
tangent with the space itself. Despite their distinctive features, e.g., in the latter, Sobolev
embeddings are compact, while in the former they are not, it turns out that each of them
can be recovered as a special case of our framework. For the sake of brevity, we choose to
provide a rather detailed description of the setting (Section 12.1) and well-posedness results
(Section 12.2) in the case classical Malliavin calculus only, and briefly describe how the theory
specializes to Gaussian Hilbert spaces in Section 12.4.

Moreover, in Section 12.3, we report the main result established in Trevisan [2014a],
entailing well-posedness for the continuity equation associated with BV regular vector fields,
giving a non-trivial extension to infinite dimensional spaces of the breakthrough by Ambrosio
[2004], where the case of Euclidean BV vector fields is settled.

12.1 The Wiener space setting

12.1.1 Dirichlet form setup

In the basic setup of Chapter 3, we let X be a separable Banach space, m = γ the a Gaussian
measure on the Borel sets of X, i.e. for every x∗ ∈ X∗, the law of x∗ (i.e. the push-forward
x∗]γ) is a normal law on R. We refer to the already quoted monograph [Bouleau and Hirsch,
1991] for further details. For simplicity, let γ be centred and non-degenerate, i.e. each law
(x∗)] has mean 0 and is absolutely continuous with respect to L 1. We embed X∗ ⊆ L2(γ)
and moreover the covariance operator Q : X∗ → X, given by the Bochner integral

Q(x∗) =

ˆ
yx∗(y)dγ(y), for x∗ ∈ X∗,

135
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defines a linear, continuous and injective operator. Moreover, for every x∗, y∗ ∈ X∗, it holds
ˆ
X
x∗(x)y∗(x)dγ(x) = x∗(Q(y∗)) = y∗(Q(x∗)).

For x = Qx∗ ∈ Q(X∗) ⊆ X, we define its Cameron-Martin norm by

|x|2H = x∗(x) =

ˆ
X
|x∗|2 dγ,

and define the Cameron-Martin space H as the completion of Q(X∗) with respect to |·|H:
endowed with the extension of norm it is a Hilbert space and a subspace of X, with (H,H)→
(X, ‖·‖X) compact. It can be seen that H is isometric to the closure of X∗ in L2(γ), thus

an injective map H ∈ h 7→ ĥ ∈ L2(γ) is defined. The space H plays a crucial role in the
definition of Sobolev spaces, because it fully characterizes the directions in X for which the
translation along them preserves absolute continuity with respect to γ.

We define the set of smooth cylindrical functions FC∞b (X) as the set of all functions f(x)
representable as ϕ(x∗1(x), . . . , x∗n(x)), with ϕ : Rn → R smooth and bounded, x∗i ∈ X∗ for
i ∈ {1, . . . , n}, for some integer n ≥ 1.

We introduce a notion of gradient on functions f ∈ FC∞b (X) letting ∇Hf = Qdf , where
df is the Frechét differential of f . With these definitions, for f = ϕ(x∗1, . . . , x

∗
n), one has

∇Hf(x) =
n∑
j=1

∂ϕ

∂zj
Qx∗j =

∞∑
k=1

∂f

∂hk
(x)hk, where

∂f

∂hk
(x) = lim

ε→0

f (x+ εhk)− f (x)

ε

where (hk)k is any complete orthonormal system in H. A better description is obtained by
choosing a (hk)k of the form hk = Qe∗k, for (e∗k) ⊆ X∗, which can be done by density of QX∗

in H. For brevity, we introduce the notation

∂kf :=
∂f

∂hk
= 〈hk,∇Hf〉 .

It is well-known, see [Bouleau and Hirsch, 1991], that Sobolev-Malliavin calculus on
(X, γ,H) fits into the setting (3.1), considering the closure of the quadratic form

E(f) =

ˆ
X
|∇Hf |2H dγ, for every f ∈ FC∞b (X).

The domain V coincides with the space W 1,2(X, γ), defined is the usual Sobolev space of
functions f ∈ L2(γ) with distributional derivative ∇Hf ∈ L2(γ), i.e. there exists a (unique)
function g ∈ L2(γ;H) such that, for every h ∈ H, the Gaussian integration by parts formula
holds: ˆ

X
f

[
dϕ

dh
− ϕĥ

]
γ = −

ˆ
〈h, g〉ϕdγ, for every ϕ ∈ FC∞b (X). (12.1)

We let ∇Hf := g and extend the notation ∂hf = 〈h,∇Hf〉 and ∂kf = 〈hk,∇Hf〉 as well.
Notice that the notation is consistent with the case of f ∈ FC∞b (X). It can be proved that
smooth cylindrical functions are dense in W 1,p(X, γ), for p ∈ [1,∞).

The semigroup P is the Ornstein-Uhlenbeck semigroup, given by Mehler’s formula

Ptf(x) =

ˆ
X
f(e−tx+

√
1− e−2ty)dγ(y), for γ-a.e. x ∈ X.
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The abstract Laplacian ∆ acts on x∗ ∈ X∗ by ∆x∗ = −x∗(Q(x∗)) = − |x∗|H, thus on smooth
cylindrical functions of the form f = ϕ(e∗1, . . . e

∗
n), the action of ∆ is given by

∆ϕ(e∗1, . . . , e
∗
n) =

n∑
i,j=1

∂i,jϕ(e∗1, . . . , e
∗
n)−

n∑
i=1

∂iϕ(e∗1, . . . , e
∗
n).

The carré du champ is given by Γ(f) = |∇Hf |2, the spaces Vp and D(∆) are identified
respectively as

Vp = W 1,p ∩W 1,2(X, γ) =
{
f ∈ Lp ∩ L2(γ) : ∇f ∈ Lp ∩ L2(γ)

}
Dp(∆) = {f ∈ D(∆) ∩ Lp(γ) : ∆f ∈ Lp(γ)} = W 2,p(X, γ), for p ∈ (1,∞),

where the last identity is a well-known result on Sobolev spaces on Wiener spaces (Meyer’s
theorem on the boundedness of the second order Riesz transform ∇2∆−1 [Bogachev, 1998,
Proposition 5.88]). Higher order Sobolev spaces, such as W 2,p(X, γ) are defined inductively:
for example, f ∈ W 2,p(X, γ) if and only if f ∈ W 1,p(X, γ) and ∇Hf ∈ W 1,p(X, γ;H). In
general, to define Sobolev spaces of maps F taking values in a Hilbert spaces (E, |·|E), we
require that the following extension of the integration by parts formula (12.1) holds, for some
g ∈ Lp(X, γ;H ⊗ E):

ˆ
X

〈
F,

[
dϕ

dh
− ϕĥ

]〉
E

γ = −
ˆ
〈ϕ⊗ h, g〉E dγ, for every ϕ ∈ FC∞b (X;E).

Here and below, we endow the tensor product between two Hilbert spaces with the Hilbert-
Schmidt norm.

To prove that Lp-Γ inequality holds, for p ∈ (1,∞] we integrate by parts in (11.1), thus

∂hPtf(x) = et
ˆ
X
∂yhf(e−tx+

√
1− e−2ty)dγ(y) =

et√
1− e−2t

ˆ
X
f(e−tx+

√
1− e−2ty)ĥ(y)dγ(y).

An application of Hölder inequality gives, for p ∈ (1,∞],

|∂hPtf(x)| ≤ et√
1− e−2t

[ˆ
X

∣∣∣f(e−tx+
√

1− e−2ty)
∣∣∣p dγ(y)

]1/p [ˆ
X

∣∣∣ĥ∣∣∣p′ dγ(y)

]1/p′

,

passing to the supremum over h ∈ H, with |h| ≤ 1, gives

|∇HPtf(x)| ≤
etCΓ

p√
1− e−2t

[ˆ
X

∣∣∣f(e−tx+
√

1− e−2ty)
∣∣∣p dγ(y)

]1/p

,

where (CΓ
p )p

′
=
´
|y|p

′
ρ(y)dy, since the law of ĥ for h ∈ H is normal on R, with mean 0 and

covariance |h|2H. Integration over x ∈ X entails, by Fubini theorem and rotational invariance
of product Gaussian measures γ ⊗ γ,

‖∇Ptf‖p ≤
etCp√

1− e−2t
‖f‖p for every t ∈ (0,∞),
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12.1.2 Derivations and diffusion operators

We let A = FC∞b (X), which is well-known to be dense in every Lp-space and to be stable
with respect to the action of P, i.e. (4.2) holds, by Mehler’s formula above: in particular we
obtain density in Vp spaces by the results in Section 4.1.

Given a Borel H-valued map field b =
∑∞

i=1 b
ihi ∈ L1(γ;H), its associated derivation b is

given by

A 3 f 7→ df(b) := b · ∇Hf =
∞∑
i=1

bi∂if.

In this setting, div b is the Gaussian divergence, given by the series

div b =

∞∑
i=1

∂ib
i − biĥi,

which defines a distribution, i.e. a linear functional on A .
It is easy to see that Dsymb is the symmetric part of the distributional derivative of b,

given by

(Dsymb) : hi ⊗ hj =
1

2

[
∂ib

j + ∂jb
i
]
, for i, j ≥ 1.

More generally, given a map a taking values into continuous bilinear forms on H, its
associated 2-tensor is defined by

A ×A 3 (f, g) 7→ a(f, g) = (a∇Hf,∇Hg) =
∞∑

i,j=1

ai,j(∂if)(∂jg),

so symmetry and non-negativity is a consequence (actually, equivalent) of the validity of
correspondent properties for a(x), γ-a.e. x ∈ X. A particular case, besides a = Id, is that of
a being Hilbert-Schmidt valued, but then ellipticity never holds, as Hilbert-Schmidt operators
are compact.

Finally, given a Borel vector field b ∈ L1(γ;H) and a Borel map a ∈ L1(γ;H ⊗ H)
with values in symmetric non-negative Hilbert-Schmidt operators, we introduce the diffusion
operator L = L(a, b)

Lf := a : ∇2
Hf + b∇Hf =

∞∑
i,j=1

ai,j∂i∂jf +

∞∑
i=1

bi∂if.

The integrability assumptions and the choice of A entail Lf ∈ L1(m), for f ∈ A . To deal
with elliptic operators, we may introduce directly a perturbation of ∆, extending the notation
L(σ, a, b) for the diffusion operator

Lf := σ∆f + a : ∇2
Hf + b · ∇Hf, for f ∈ A ,

for some non-negative function σ ∈ L1(γ).
Let us notice that for L(σ, a, b) can be written in divergence form when the H-valued

distribution ∇σ + div a, given by

(∇σ + div a)i = ∂iσ +
∞∑
j=1

∂ja
i,j − ĥjai,j , for i ≥ 1
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is induced by some vector field in L1(γ;H), so that we rewrite

Lf = div((σId+ a)∇Hf) + (b− div a−∇σ)∇Hf.

The distributional divergence of L is the distribution

divL = div [b− div a] = −
∞∑

i,j=1

{
∂i,ja

i,j − 2ĥj∂ia
i,j +

[
ĥiĥj − δi,j

]
ai,j
}

+
∞∑
i=1

{
∂ib

i − ĥibi
}
.

In the time-extended setting, we naturally let A = FC∞b ((0, T );X) we may consider
t-dependent Borel families of vector fields (bt)t∈(0,T ), 2-tensors (at)t∈(0,T ) and associated dif-
fusion operators (Lt)t∈(0,T ).

12.2 Well-posedness results

First, we discuss how the superposition principle specializes in this framework and then focus
on existence and uniqueness results for FPE’s and associated flows.

12.2.1 The superposition principle

Using the notation introduced in Chapter 7, the choice of A ∗ in the Wiener setting causes
some issues, since there are at least two eligible distances for which one can hope to lift
solutions to FPE’s, obtaining continuous processes: the distance induced by the Banach
norm on X and the Cameron-Martin (extended) distance dH(x, y) := |x− y|H, defined as ∞
if x− y /∈ H.

In the deterministic case, the picture is rather neat, due to Lemma 7.6. If we let A ∗ be
the set of smooth cylindrical functions f with |∇Hf | ≤ 1, we obtain that any solution to the
martingale problem is concentrated on curves that are absolutely continuous with respect to
dH. In the general, for diffusions, one cannot expect the curves of the process to be continuous
with respect to dH, otherwise, they would always be at finite distance in H from their initial
point: the heat process, which in this case is a Ornstein-Uhlenbeck process, already does not
satisfy this property. Indeed, letting ū = 1, one obtains that the trajectory γ(t) at time t is
almost surely at infinite distance (with respect to dH from its initial datum γ(0):

dH(γ(t)− γ(0))2 =
∞∑
i=1

ĥ2
i (γ(t)− γ(0)),

which is a series of identically distributed (Gaussian) independent, non-negative and non-null
random variables: the law of large numbers gives dH(γ(t)− γ(0))2 =∞ almost surely.

On the other side, continuity of trajectories with respect to the distance induced by the
norm on X seem to depend on the Malliavin regularity of x 7→ |x|. Indeed, a natural strategy
is to let ϕt := |γ(t)− γ(0)| and argue as in Section 2.2.2, to obtain Hölder regularity for
paths. However, this requires some regularity for a(|·|) and L |·|, which may be cause of
problems. For example, on the classical Wiener space X = C([0, S];R), where γ is the
law of the real-valued Wiener process on [0, S] and |x| = sups∈[0,S] |x(s)| is the supremum
norm, it is proved in [Trevisan, 2013a] that x 7→ |x| is Malliavin differentiable only once, and
its gradient is a genuine BV vector field, the total variation being singular with respect to
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γ. As another example, when X is Hilbert, thus the norm is very smooth, it is easier to
provide explicit conditions on the coefficients, ensuring that solutions to the Fokker-Planck
equations are lifted to continuous curves on X, see Section 12.4. In conclusion, a weak form
of superposition principle, i.e., with respect to a weaker topology, does hold, but we presently
lack of sufficient and easy-to-check conditions ensuring continuity of paths with respect to
the norm on X, for general norms.

12.2.2 Existence

In the Wiener setting, the existence theorems established in Chapter 9 for weak solutions to
FPE’s can be strengthened by means of the criterion of Proposition 9.5.

Theorem 12.1 (existence of solutions, Wiener case). Let q ∈ (1,∞], r ∈ (1,∞] satisfy
q−1 + r−1 ≤ 1 and let L = L(σ, a, b) be a diffusion operator, with coefficients

σ ∈ L1
t (L

r′
x ), a ∈ L1

t (L
r′(γ;H ⊗H)), b ∈ L1

t (L
r′(γ;H))

and divL− ∈ L1
t (L
∞
x ). Then, for every ū ∈ Lr(γ), there exists a Lr-weakly continuous

solution u to the FPE (11.6), which can be built in such a way that

i) if ū ≥ 0, then ut ≥ 0, for every t ∈ [0, T ], and

ii) if, for some p ∈ [1,∞], ū ∈ Lp(γ), then u ∈ L∞t (Lp(γ)), and

iii) if ū is a probability density, then ut is a probability density for every t ∈ [0, T ].

Proof. Indeed, it is sufficient to consider cylindrical approximations in the form

σN := E [σ|e∗1, . . . e∗N ] , aN :=
N∑

i,j=1

E
[
ai,j |e∗1, . . . e∗n

]
hi ⊗ hj , bN :=

N∑
i=1

E
[
bi|e∗1, . . . e∗n

]
hi,

and then argue by convolution in the space (0, T )×RN , thus providing a sequence for which
the criterion quoted above applies (see also the next section for further results on cylindrical
approximation). �

In the elliptic case, one can exploit the validity of the logarithmic Sobolev inequality
and provide existence as well in case div−L is exponentially integrable, or even when L is
perturbed by adding a vector field c with |c|2 exponentially integrable; for brevity, we omit
to write any statement, but see also towards the end of Section 8.3.

12.2.3 Uniqueness

In the deterministic case, it is not difficult to compare our well-posedness results for the
continuity equation with those contained in [Ambrosio and Figalli, 2009] and realize that
Theorem 10.19 specializes to the uniqueness part of [Ambrosio and Figalli, 2009, Theorem
3.1], with the exception of the case b ∈W 1,1(X, γ;H). As in the Euclidean setting, this seems
reachable, with some extra effort, but it is not clear whether the case b ∈ BV (X, γ;H) can
been settled by means of this technique. In the next section, we precisely address this issue.

In the general, possibly degenerate, case, Theorem 10.20 provides uniqueness for FPE’s
associated to diffusion operators L(σ, a, b) where a = 0: it seems possible to argue similarly
as in Lemma 11.3 and prove well-posedness whenever a belongs to some suitable second-order
Sobolev space.
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12.3 Uniqueness for BV vector fields

In this section, we take a brief detour from the specialization of the abstract framework
and sketch instead the argument originally developed in [Trevisan, 2014a], where we refine
in a non-trivial way the strategy by Ambrosio [2004] to show uniqueness for the continuity
equation associated to BV vector fields. We briefly introduce all these notions, referring
to [Ambrosio et al., 2010] for more details: the space BV (X, γ;H) consists of the maps
b ∈ L log1/2 L (X, γ;H), such that there exists some H ⊗H-valued measure Du on X, with
finite total variation, for which it holds

ˆ
X

〈[
dϕ

dh
− ϕĥ

]
, dDu

〉
= −

ˆ
〈ϕ⊗ h, g〉E dγ, for every ϕ ∈ FC∞b (X;E).

In [Ambrosio et al., 2010, Theorem 4.1] one proves the following alternative characterization:
b ∈ BV (X, γ;H) if and only if there exists some sequence (bn)n≥1 of smooth cylindrical fields
such that, as n → ∞, ‖bn − b‖1 → 0 and ‖∇bn‖1 is uniformly bounded (and the smallest
bound among all the sequences gives |Db| (X)). Actually, the result stated therein refers to
the scalar case, but the argument extends easily to vector fields.

Theorem 12.2 (uniqueness for L∞t (L∞x )-solutions). Let p > 1, b ∈ L1
t (BV ∩ Lp(X, γ;H)),

with div b ∈ L1
t (L

1
x) and let ū ∈ L∞(γ).

Then, there exists a unique weakly-* continuous solution u = (ut)t∈[0,T ] ∈ L∞t (L∞x ) to the
continuity equation

∂tut + div (btut) = 0, in (0, T )×X, with u0 = ū.

Proof. The key idea is to introduce a two parameter family of mollified solutions uαρ := Tραu,
and provide a refined estimate on the commutator, showing that, for every smooth cylindrical
function ϕ, it holds

lim sup
ε↓0

ˆ
X

∣∣β′(uαρ )[Tρα, b∇]ϕ
∣∣ dγ ≤ ∥∥β′∥∥∞ ˆ

X
|ϕ|Λρd |Db| , (12.2)

where |Db| is the total variation measure associated to the BV field, and Λρ is some explicit
density, depending on the choice of the mollifier. This entails that the distribution

∂tβ (ut) + div (bβ (ut))−
[
β (ut)− β′ (ut)ut

]
div b = σt

is actually a measure (the so-called defect measure), but the same expression shows that does
not depend on ρ. To conclude, it is sufficient to show that

|σ| ≤
∧
ρ

Λρ |Db| = 0, (12.3)

so that, letting β(z) = |z| (better, some suitable approximation of it) and integrating, unique-
ness is settled. �

The optimization step (12.3) is based on a Wiener space analogue of an argument due to
Alberti, see [Ambrosio, 2008, Lemma 35], and we skip its proof, referring to [Trevisan, 2014a]
for a detailed exposition. Before we address the proof of the crucial step (12.2), we compare
our technique with the original approach by Ambrosio [2004]. In the Euclidean setting, one
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argues by means of two different commutator estimates: anisotropic estimates, which are
rather good in the regions where the measure-derivative Db is mostly singular with respect
to the Lebesgue measure, and isotropic estimates, which are useful instead in the regions
where the derivative is mostly absolutely continuous. Then, an optimization procedure on
the choice of approximations gives the result. In the Wiener setting, a direct implementation
of this method fails, because of error terms depending on the dimension of the space. The
novelty consists of establishing a refined anisotropic estimate, namely (12.2), which is well-
behaved at every point and, after an optimization procedure, turns out to be sufficient to
conclude.

12.3.1 Cylindrical approximations

We establish two propositions instrumental to the proof of (12.2). The first one is a slight gen-
eralization of an argument appearing in the proof of [Ambrosio and Figalli, 2009, Proposition
3.5].

We use the notation introduced in Section 12.1, in particular we let (hk)k ⊆ H be a
complete orthonormal system of the form hk = Qe∗k, for e∗k ∈ X∗, we let πN be the projection
on the linear span of h1, . . . , hN and FN be the σ-algebra generated by e∗1, . . . e

∗
N , for N ≥ 1.

Moreover, the map x 7→ (πN (x) , x− πN (x)) induces decompositions X = ImπN⊕KerπN
and H = ImπN ⊕ Imπ⊥N . Recall that we tacitly identify ImπN = RN via hi 7→ ei. The same
map induces a decomposition γ = γN ⊗ γ⊥N , where γN is the standard N -dimensional normal
law on RN and γ⊥N is a non-degenerate Gaussian measure on KerπN , with Cameron-Martin
space given by Imπ⊥N .

Proposition 12.3. Let b ∈ BV (γ;H) with div b ∈ L1(γ) and define

bN := E [πNb |FN ] , for N ≥ 1. (12.4)

Then, bN is a cylindrical BV vector field, with

DbN =
[
(πN )] (πNDbπN )

]
⊗ γ⊥N and div bN = E [div b |FN ] . (12.5)

Moreover, it holds
lim
N→∞

‖bN − b‖1 + ‖div bN − div b‖1 = 0.

Proof. The second statement follows from the second identity in (12.5), and by density of
cylindrical fields and uniform boundedness of the operators involved. Thus, it is enough to
focus on (12.5): since we argue at fixed N ≥ 1, we let, with a slight abuse of notation, π := πN
and E [·] := E [· |FN ].

Notice that bN ∈ L1(γ;D) because projection and conditional expectation are contrac-
tions. The thesis follows from rather algebraic identities, arguing in duality with functions
ϕ ∈ FC∞b (X), using symmetry of π and E, and the commutation relation

πE [∇ϕ] = E [π∇ϕ] = ∇E [ϕ] .

It holds ˆ
ϕ div bNdγ = −

ˆ
〈∇ϕ, bN 〉 dγ = −

ˆ
〈πE [∇ϕ] , b〉 dγ

= −
ˆ
〈∇E [ϕ] , b〉 dγ =

ˆ
ϕE [div b] dγ,
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which entails the second identity in (12.5).
Analogous identities hold in duality with H ⊗ H smooth maps, acting with π ⊗ I in

place of π, where I denotes the identity operator. From this, one deduces first the identity
D (πb) = (π ⊗ I) (Db) and then conclude that, for every smooth cylindrical H ⊗H map, Φ,
it holds ˆ

〈div Φ, bN 〉 =

ˆ
〈E [div Φ] , πb〉 =

ˆ
〈(π ⊗ π)E [Φ] , dDb〉 ,

which gives the thesis. �

The second result is actually purely measure-theoretical: its proof is based on disintegra-
tion of measures and Jensen’s inequality. Notice that it proves and generalizes the inequality

|DbN | (X) ≤ |Db| (X) ,

where we let bN be as in (12.4).

Proposition 12.4. Let b ∈ BV (γ;H) and let bN be as in (12.4). Assume that

f : X × (H ⊗H)→ [0,∞]

is Borel, positively homogeneous and convex in the second variable, i.e. at every x ∈ X, f(x, ·)
is convex on H ⊗H and positively homogeneous.

Then, it holds
ˆ
f

(
πN ,

DbN
|DbN |

)
d |DbN | ≤

ˆ
f

(
πN , πN

Db

|Db|
πN

)
d |Db| . (12.6)

Proof. Again, we make implicit the dependence upon N ≥ 1 by writing π := πN . We let also
µ := πDbπ, ν = DbN and ρ = γ⊥N , the first identity in (12.5) simlply reads as ν = (π]µ)⊗ ρ,
and this factorization is actually all the information we need from the case we are considering.

Indeed, the total variation and the polar decomposition of ν factorize as

|ν| (dx, dy) = |π]µ| (dx)⊗ ρ (dy) and
ν

|ν|
(x, y) =

π]µ

|π]µ|
(x) ,

thus, the left hand side in (12.6) reads as
ˆ
f

(
x,

ν

|ν|
(x, y)

)
d |ν| (x, y) =

ˆ
f

(
x,

π]µ

|π]µ|
(x)

)
|π]µ| (dx) .

Since |π]µ| ≤ π] |µ|, it holds
π]µ

π] |µ|
=

π]µ

|π]µ|
|π]µ|
π] |µ|

,

and by positive homogeneity of f we obtain
ˆ
f

(
x,

π]µ

|π]µ|
(x)

)
|π]µ| (dx) =

ˆ
f

(
x,

π]µ

π] |µ|
(x)

)
π] |µ| (dx) .

We next disintegrate |µ| with respect to π and apply Jensen’s inequality. More precisely, since
X is a Banach space, there exists a probability kernel (Nx)x∈X such that, for every bounded
Borel function g : X ×X 7→ R it holdsˆ

g (π(z), z) d |µ| (z) =

ˆ
π] |µ| (dx)

ˆ
g (x, y)Nx (dy) .
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Moreover, if we let σ |µ| = µ be its polar decomposition, using g (z) = h (π (z))σ (z) above,
we obtain

π]µ

π] |µ|
(x) =

ˆ
σ (y)Nx (dy) , π] |µ|-a.e. x ∈ X.

By Jensen’s inequality, it holds

f

(
x,

π]µ

π] |µ|
(x)

)
≤
ˆ
f (x, σ (y))Nx (dy) , π] |µ|-a.e. x ∈ X,

and integrating with respect to π] |µ|, the right hand side above gives

ˆ
f (π (x) , σ (x)) d |µ| (x) =

ˆ
f

(
π (z) ,

µ

|µ|
(z)

)
d |µ| (z) .

To conclude, we integrate also with respect to ρ(dy) and use again the positive homogeneity
of f , together with the identities

πDbπ

|πDbπ|
|πDbπ|
|Db|

=
πDbπ

|Db|
= π

Db

|Db|
π.

�

12.3.2 Proof of the refined anisotropic estimate (12.8)

For simplicity of notation, we address the time-independent case only, and omit to write the
variable t ∈ (0, T ) in all what follows. We first describe our family of mollifiers. For any
smooth cylindrical function ρ, such that ργ is a probability measure, we introduce a modified
Ornstein-Uhlenbeck operator, letting

Tραϕ (x) =

ˆ
ϕ (xα) ρ (y) γ(dy),

where we write, here and in what follows,

xα = e−αx+
√

1− e−2αy, yα = −
√

1− e−2αx+ e−αy.

Our aim is to establish (12.2), with

Λρ (x) =

ˆ
X

∣∣∣divy

(
M̂x (y) ρ (y)

)∣∣∣ dγ (y) , (12.7)

where Mx := (Db/ |Db|) (x) is the polar decomposition of Db with respect to its total variation
measure, and M̂ denotes the vector field associated to M , i.e. roughly, the linear operator
associated to the Hilbert-Schmidt operator M , see [Trevisan, 2014a] for more details. The
precise expression in (12.7) is crucial for the optimization step, which we do not address here:
let us however recall that the strategy is to choose ρ to approximate an invariant measure for
the exponential flow associated to M̂x, at |Db|-a.e. x ∈ X, letting e.g.

ρT :=
1

T

ˆ T

0
exp(tM̂x)]γ, in the limit T →∞.
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The technical problem is then to check that these objects are well defined, but this can be
addressed with minor difficulties, see Trevisan [2014a].

To prove (12.8) with (12.7), we argue as follows. First, we let α > 0 be fixed and let b
to be a cylindrical smooth vector field, and obtain an estimate for [Tρα, b · ∇] in terms of Db.
Then, still at fixed α > 0, we extend its validity to general BV vector fields. Finally, we let
α→ 0 and conclude.

For simplicity, but without any loss of generality, we assume that ‖β′‖∞ ≤ 1 and we omit
to write ρ.

Step 1 (fixed α > 0 and cylindrical smooth b). We aim at obtaining estimate where three
terms appear, two of them being negligible as α→ 0, and the third leading to the result, in the
limit. Since Sobolev and BV spaces are well-behaved with respect to linear push-forwards,
without any loss of generality, we argue in same finite-dimensional Gaussian space (RN , γN ).

Performing some integration by parts and change of measures, one obtains the inequality

ˆ
|[Tρα, b · ∇]ϕ| dγ ≤

ˆ
|ϕ| (xα)

∣∣∣∣divy

(
b (x)− eαb (xα)

Cα
ρ (y)

)∣∣∣∣ dxdy, (12.8)

where we write dx and dy, here and in what follows, for the Gaussian measure γN on RN
(not Lebesgue measure).

We add subtract b (xα) in the difference and we split

ˆ
|ϕ| (xα)

{
eα − 1

Cα
|divy (b (xα) ρ (y))|+

∣∣∣∣divy

(
b (xα)− b (x)

Cα
ρ (y)

)∣∣∣∣} dxdy.
The first term in the sum above gives the an error term which is smaller than

√
α ‖ϕ‖∞ [‖b‖1 ‖∇ρ‖∞ + ‖div b‖1 ‖ρ‖∞] , (12.9)

noticing that Cα ≤ C
√
α, for α ∈ (0, 1] , and some absolute constant C.

We focus then on what is left, namely the expression

ˆ
|ϕ| (xα)

∣∣∣∣divy

(
b (xα)− b (x)

Cα
ρ (y)

)∣∣∣∣ dxdy. (12.10)

We interpolate as follows:

b (xα)− b (x) =

ˆ α

0

d

ds
b (xs) ds =

ˆ α

0
Db (xs) ys

ds

Cs
,

using the identity d
dsxs = ys/Cs. For brevity, we introduced the notation

 α

0
f (s) =

1

Cα

ˆ α

0
f (s)

ds

Cs
,

justified by the fact that, as α→ 0,

1

Cα

ˆ α

0

ds

Cs
→ 1. (12.11)
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Exchanging divergence and integration, we obtain

divy

(
b (xα)− b (x)

Cα
ρ (y)

)
=

 α

0
divy (Db (xs) ysρ (y))

=

 α

0
[divy (Db (xs) ys) ρ (y) + 〈Db (xs) ys,∇ρ (y)〉] .

(12.12)

Let us consider the first term in the sum above: write

v (x, y) := Db (x) y = ∂yb (x) ,

and for s ∈ (0, α), an explicit computation gives

divy (Db (xs) ys) =
√

1− e−2s [divx (v)] (xs, ys) + e−s [divy (v)] (xs, ys) (12.13)

Since the term divx (v) involves further spatial derivatives of b, the following identity, which
can be obtained by inspection in coordinates, plays a crucial role:

divx (v) (xs, ys) = Cs
d

ds
div b (xs) + b̂ (xs, ys) ,

where we used the notation b̂ for the map

(x, y) 7→ b̂(x, y) =

N∑
i=1

xibi(y).

This allows us to integrate by parts,

 α

0

√
1− e−2s divx (v) (xs, ys) =

[
e−α div b (xα)−

 α

0
div b (xs) e

−s
]
+

 α

0

√
1− e−2sb̂ (xs, ys) ,

since d
ds

√
1− e−2s = e−s/Cs.

Thanks to these computations we separate from (12.10) another error term, smaller than

‖ϕ‖∞ ‖ρ‖∞
[ˆ ∣∣∣∣e−α div b (xα)−

 α

0
div b (xs) e

−s
∣∣∣∣ dxdy +

α

2Cα
‖b‖1

]
.

The integrand above is a linear expression in div b, which reminds of some averaged Ornstein-
Uhlenbeck operator. By rotational invariance of Gaussian measures and by (12.11) above, its
L1 norm is bounded by some absolute constant, uniformly in α ∈ (0, 1]. By density of smooth
functions in L1, it defines therefore a family of continuous operators Gα and we estimate

‖ϕ‖∞ ‖ρ‖∞
[
‖Gα(div b)‖1 +

α

Cα
‖b‖1

]
. (12.14)

The following expression contains precisely what remains to be estimated from (12.10),
i.e., the second term in the second line of (12.12) and the second term in the right hand side
of 12.13,

ˆ
|ϕ| (xα)

 α

0

∣∣e−s [divy (v)] (xs, ys) ρ (y) + 〈v (xs, ys) ,∇ρ (y)〉
∣∣ dxdy.
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Once we exchange integration and perform a change of variables mapping xα to xα−s, yα to
yα−s we rewrite this expression in a way that easily easily extends to the BV case, i.e.,

ˆ
f

(
x,

Db

|Db|
(x)

)
|Db| (dx) , (12.15)

where

f (x,M) =

 α

0

ˆ
|ϕ| (xα−s)

∣∣e−s divy (My) ρ (ys) + 〈My, (∇ρ) (ys)〉
∣∣ dy.

Step 2 (fixed α > 0 and BV vector field b). The expression (12.8) is smaller than the sum
of three terms, namely (12.9), (12.14) and (12.15). We extend the validity of this fact first to
cylindrical BV fields, and then to the general case.

Under the assumption that b is cylindrical, we already showed that everything is reduced
to a computation in RN , thus it is possible to find smooth cylindrical fields (bn)n such that,
as n→∞,

‖bn − b‖1 → 0, ‖div bn − div b‖1 → 0, |Dbn| (X)→ |Db| (X)

and the sequence (Dbn)n weakly-* converges to Db, choosing e.g. a sequence extracted from
the usual Ornstein-Uhlenbeck semigroup for infinitesimal times provides such a sequence, see
[Ambrosio et al., 2010]. The left hand side in (12.8), together with the first and second error
terms (12.9), (12.14) pass to the limit with respect to this convergence. The only trouble
might be caused by (12.15), and at this point we apply Reshetnyak continuity theorem, see
e.g. [Ambrosio et al., 2000, Theorem 2.39].

We now extend the estimate to handle general BV fields, letting (bN )N≥1 as in (12.4).
Again, (12.8), together with the first and second error terms (12.9), (12.14), pass to the limit
essentially because of Proposition 12.3. To handle the term (12.15), we prove first that for
every N sufficiently large, so that both ϕ and ρ are N -cylindrical, it holds

ˆ
f

(
x,

DbN
|DbN |

(x)

)
d |DbN | (x) ≤

ˆ
f

(
x,

Db

|Db|
(x)

)
d |Db| (x) .

This follows from Proposition 12.4. Indeed, by direct inspection, the left hand side above
coincides with ˆ

fN

(
πN (x) ,

DbN
|DbN |

(x)

)
d |DbN | (x) ,

where

fN (x,M) =

 α

0

ˆ
|ϕ| (xα−s)

∣∣e−s divy (My) ρ (ys) + 〈My, (∇ρ) (ys)〉
∣∣ dγN (y) ,

which is positively homogeneous and convex in the second variable. We get therefore

ˆ
f

(
x,

DbN
|DbN |

(x)

)
d |DbN | (x) ≤

ˆ
fN

(
x, πN

Db

|Db|
(x)πN

)
d |Db| (x) .

We finally recognize that

πNMπN (y) = E
[
πNM̂ |πN = y

]
,
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and so, again by Proposition 12.3, applied this time to M̂ , we obtain

divy (πNMπN (y)) = E
[
divy M̂ |πN = y

]
.

Combining these identities in the expression for fN and recalling that ϕ and ρ are N -
cylindrical we conclude, since the conditional expectation is a contraction in L1(γ).

Step 3 (limit as α ↓ 0). The first error term (12.9) is clearly infinitesimal, but also the term
(12.14), since ‖Gα(div b)‖1 → 0 by uniform boundedness of Gα and the fact that convergence
to 0 holds for smooth cylindrical vector fields.

Finally, the term (12.15) converges to

ˆ
|ϕ| (x)

[ˆ ∣∣∣divy

(
M̂x (y)

)
ρ (y) +

〈
M̂x (y) ,∇ρ (y)

〉∣∣∣ dγ (y)

]
d |Db| (x) .

Indeed, the integrands converge because ϕ and ρ are cylindrical smooth and, for p ∈]1,∞[,
we have the bound, for some constant cp depending on p only,

f (x,M) ≤ cp ‖ϕ‖∞
(
‖ρ‖p + ‖∇ρ‖p

)
|M | .

and |M | ≤ 1, as assured by the polar decomposition theorem.

12.4 Gaussian Hilbert spaces

In this section we further specialize the setting above, letting X = H be a separable Hilbert
space, with norm |·|, thus γ is a Gaussian centered and nondegenerate measure in H. For the
sake of brevity, we do not provide a complete discussion of all the results, but focus on two
aspects: the superposition principle and uniqueness results for FPE’s.

12.4.1 Basic setup and diffusion operators

By identifying H = H∗ via the Riesz isomorphism induced by the norm, the covariance
operator Q : H → H is a symmetric positive trace class operator, thus compact. In this
setting the Cameron-Martin space reads as H = Q1/2H, with the norm |h|H =

∣∣Q−1/2h
∣∣.

We let (ei) ⊂ H be an orthonormal basis of H consisting of eigenvectors of Q, with
eigenvalues (λi), i.e. Qei = λiei for every i ≥ 1: in this setting, we define the class of
smooth cylindrical functions FC∞b (H) as those functions f : X → R of the form f(x) =
ϕ(〈ei, x〉 , . . . 〈en, x〉), with ϕ : Rn → R smooth and bounded. Given f ∈ FC∞b (H), from its
Fréchet derivative df : H → H∗ we introduce ∇f : H → H via H = H∗, in coordinates:

∇f(x) =
∑
i

∂if(x)ei, where ∂if(x) = lim
ε→0

f (x+ εei)− f (x)

ε
.

To recover the abstract setting of the previous section, notice that family hi = λ
1/2
i ei is

an orthonormal basis of H and that ∂/∂hi = λ
−1/2
i ∂i, thus it holds Q∇f = ∇Hf .

For α ∈ R, we introduce the form

Eα(f) =

ˆ
X

∣∣Q(1−α)/2∇f
∣∣2dγ, f ∈ FC∞b (H),



149 CHAPTER 12: GAUSSIAN SPACES

which is closable: its domain is the space W 1,2
α (H, γ), see [Da Prato, 2004, Chapters 1 and

2] for more details. Evidently, we recover (3.1), with Γ(f) =
∑

i λ
1−α
i

∣∣∂if ∣∣2. Notice that the

associate distance is the one induced by the norm |Q(α−1)/2x|, which is extended if and only
if α < 1.

The associated semigroup can be still be seen as the transition semigroup of an infinite
dimensional Ornstein-Uhlenbeck process, with Laplacian ∆α given by

∆αf(x) = Tr
[
Q1−αD2f(x)

]
−
〈
x,Q−α∇f(x)

〉
, for f ∈ FC∞b (H).

It can be shown that the abstract curvature bound BE2(1,∞) holds [Da Prato, 2004, Propo-
sition 2.60], entailing the validity of the Lp-Γ inequality (see the next Chapter for a more
detailed discussion). We let A = FC∞b (H), which is dense in every Lp(m) space and satisfies
(4.2), thus obtaining density results in Vp (p ∈ [1,∞)) by Remark 4.4 and Proposition 4.2

For α = 0, we recover the abstract Wiener space setting discussed above, while for α = 1
we obtain the “genuine” Gaussian-Hilbert setting.

Given b : H → H, b =
∑

i biei Borel, we consider the map

FC∞b (H) 3 f 7→ df(b) := 〈b,∇f〉H =
∑
i

bi∂if.

If
∣∣Q(α−1)/2b

∣∣ ∈ Lq(H, γ) for some q ∈ [1,∞], then b is a well-defined derivation, with |b| ≤∣∣Q(α−1)/2b
∣∣.

The Cameron-Martin theorem entails an integration by parts formula [Da Prato, 2004,
Theorem 1.4 and Lemma 1.5] that reads in our notation as

div ei(x) = −〈ei, x〉
λi

, where df(ei) = ∂if .

On smooth “cylindrical” fields b =
∑n

i biei, this gives

div b(x) =
∑
i

∂ibi(x)− 〈ei, x〉
λi

bi,

where the series reduces to a finite sum. Notice that the expression does not depend on α
but only on γ, in agreement with the notion of divergence as dual to derivation.

Notice also that vector fields do not need to take values in H and actually our results hold
even for some classes of fields not taking values in H (although their divergence must still
satisfy some bounds).

Arguing on smooth cylindrical functions, we see that

ˆ
Dsymb(u, f)dγ =

ˆ ∑
i, j

1

2

[(
λi
λj

)(1−α)/2

∂ibj +

(
λj
λi

)(1−α)/2

∂jbi

](
λ

(1−α)/2
i ∂iu

)(
λ

(1−α)/2
j ∂jf

)
dγ,

(12.16)
thus our bound on Dsymb is implied by an Lq bound of the Hilbert-Schmidt norm of the
expression is square brackets above.

2-tensor s are be defined by maps on H taking values into bilinear functionals on H and
we let ai,j := a(ei, ej). A case of particular interest is that of a being non-negative and of
trace class, i.e. it holds

∑
i≥1 a

i,i <∞.
Similarly as in the general case, we let L(σ, a, b) be the diffusion operator

Lf := σ∆1f + a : ∇2f + 〈b,∇f〉H , for f ∈ FC∞b (H).
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12.4.2 The superposition principle

As we already remarked, in the case of infinite dimensional diffusions, it is not completely
clear whether the superposition principle lifts solutions to FPE’s to continuous processes on
H, as the general arguments provides processes with values on a larger space, namely, the
completion of H with respect to a weaker distance. It is interesting to provide sufficient
conditions on the diffusion operator so that the process has continuous paths, with respect
to the natural norm on H, and in the Hilbert setting these are somewhat explicit.

Indeed, following the Kolmogorov-type argument from Section 2.2.2, the crucial quantity
to consider is L(|·|2H), which we aim at expressing in terms of a, and b. By linearity, we focus
on two separate cases. When L = a : ∇2f , we have for every i ≥ 1, L(〈ei, ·〉2) = ai,i, thus
if a takes values in the space of (bounded and) trace class operators, and belongs to Lq(γ),
for some q ∈ (1,∞], one deduces that the superposition principle for metric measure spaces
lifts solutions belonging to L∞t (Lrx), where r ∈ (1,∞], q−1 + r−1 ≤ 1, to solutions to the
martingale problem which have Hölder continuous paths in H. A similar fact holds when
L = b · ∇f , whenever b belongs to Lq(γ), for some q > 1.

12.4.3 Uniqueness results

As a consequence of the specializations above, Theorem 10.19 provides uniqueness for solu-
tions to the continuity equation associated to vector fields b with div b, |Dsymb| ∈ L1

t (L
q
x).

Comparing our setting with that in [Da Prato et al., 2014] we recognize Theorem 2.3 therein
as a consequence our uniqueness result.

We end this section considering a field b taking values outside H, to which our theory
applies (although well-posedness was already shown in [Mayer-Wolf and Zakai, 2005]). Assume
that that each eigenvalue of Q admits a two-dimensional eigenspace thus, slightly changing
the notation, we write (ei, ẽi) for an orthonormal basis of H consisting of eigenvectors of Q.
We let

b =

∞∑
i=1

λ
1/2
i [(div ẽi)ei − (div ei)ẽi] , thus

ˆ ∣∣Q(α−1)/2b
∣∣2dγ =

∞∑
i=1

λαi .

The series above converges if α = 1, and it does not if α = 0. Since (div ei,div ẽi)i are
independent, Kolmogorov’s 0-1 law entails that b is well defined as an H-valued map, but
b(x) /∈ H for γ-a.e. x ∈ H. The derivation b is therefore well-defined if α = 1, and |b| ∈
L2(m). From its structure and (12.16), both its divergence and its deformation are seen to
be identically 0, thus our results apply.



Chapter 13

Metric measure spaces with
curvature bounds

In this chapter, which follows closely [Ambrosio and Trevisan, 2014, §6 and §9F], we describe
how the abstract theory specializes, in a non-trivial way, to suitable classes of metric mea-
sure spaces, namely those enjoying an infinitesimal Riemannian structure and uniform lower
bounds on the Ricci curvature, called RCD(K,∞) spaces, recently introduced in Ambrosio
et al. [2014b].

In this (and more general) frameworks, some duality appears, because these spaces can
be studied both from a “Eulerian” point of view, emphasizing the role of functions and their
calculus, and from a “Lagrangian” one, focusing instead on measures and their distances,
measured by means via optimal transport. It turns out that in the case infinitesimal Rie-
mannian spaces, the former is connected to Γ-calculus and Bakry-Émery curvature condition
BE(K,∞), whose development dates back to [Bakry and Émery, 1984] and [Bakry, 1985] )see
the already quoted [Bakry et al., 2014] for a more recent exposition). The latter point of
view developed more recently, starting from the class of CD(K,∞) metric measure spaces,
introduced and deeply studied in [Lott and Villani, 2009], [Sturm, 2006a], [Sturm, 2006b].
Subsequently, connections with the theory of Dirichlet forms and gave rise to a series of
works, [Ambrosio et al., 2012], [Savaré, 2014] and [Ambrosio et al., 2014c]. For a brief intro-
duction to the setting and its notation, we refer to Sections 4.1 and 4.2 in Savaré [2014], and
in particular to Theorem 4.1 therein, which collects non-trivial equivalences among different
conditions.

We proceed as follows. In Section 13.1 we introduce the “Eulerian” curvature condition,
showing that it entails many of the assumptions that we imposed in the previous parts for
non-triviality of our results on Fokker-Planck equations: in particular, the validity of Lp-Γ
inequalities and existence of derivations with some bound on their deformation. In Section
13.2, we specialize on the “Lagrangian” viewpoint, showing that, in the case of continuity
equations, L∞-regular solutions to the deterministic martingale problem provide instances
of so-called 2-plans. For simplicity, we manly focus on the deterministic case: the case of
diffusion processes can be clearly reached by the techniques developed throughout all this
thesis, and will be object of future investigations.
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13.1 BE(K,∞) spaces

In this section we add to the basic setting (3.1) a suitable curvature condition, and see the
implication of this assumption on the structural conditions made in the previous parts of the
thesis.

In the sequel K denotes a generic but fixed real number, and IK denotes the real function

IK(t) :=

ˆ t

0
eKrdr =

{
1
K (eKt − 1) if K 6= 0,

t if K = 0.

Definition 13.1 (Bakry-Émery conditions). We say that BE2(K,∞) holds if

Γ (Ptf) ≤ e−2Kt Pt
(
Γ (f)

)
m-a.e. in X, for every f ∈ V, t ≥ 0. (13.1)

We say that BE1(K,∞) holds if√
Γ (Ptf) ≤ e−Kt Pt

(√
Γ (f)

)
m-a.e. in X, for every f ∈ V, t ≥ 0.

We stated both the curvature conditions for the sake of completeness only, but we remark
that BE2(K,∞) is sufficient for many of the results we are interested in this section. Obviously,
BE1(K,∞) implies BE2(K,∞); the converse, first proved by Bakry [1985], has been recently
extended to a nonsmooth setting in [Savaré, 2014, Corollary 3.5]) under the assumption that
E is quasi-regular. The quasi-regularity property has many equivalent characterizations, a
transparent one is for instance in terms of the existence of a sequence of compact sets Fk ⊂ X
such that ⋃

k

{f ∈ V : f = 0 m-a.e. in X \ Fk}

is dense in V.

The validity of the following inequality is actually equivalent to BE2(K,∞), see for instance
[Ambrosio et al., 2012, Corollary 2.3] for a proof.

Proposition 13.2 (Reverse Poincaré inequalities). If BE2(K,∞) holds, then

2I2K(t)Γ (Ptf) ≤ Ptf
2 −

(
Ptf
)2

m-a.e. in X, (13.2)

for all t > 0, f ∈ L2(m).

Corollary 13.3 (Lp-Γ inequalities). If BE2(K,∞) holds, then Lp-Γ inequalities hold for
p ∈ [2,∞].

Proof. The validity of Lp-Γ inequalities for p ∈ [2,∞] is obtained integrating (13.2),

(2I2K(t))p/2
ˆ

Γ (Ptf)p/2 dm ≤
ˆ

(Ptf
2)p/2dm ≤

ˆ
fpdm

and using 2I2K(t)−1 = O(t−1) as t ↓ 0. �

Another consequence of BE2(K,∞) is the following higher integrability of Γ(f), recently
proved in [Ambrosio et al., 2014c, Thm. 3.1] assuming higher integrability of f and ∆f .
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Theorem 13.4 (Gradient interpolation). Assume that BE2(K,∞) holds and let λ ≥ K−,
f ∈ L2 ∩ L∞(m). If p ∈ {2,∞} and ∆f ∈ Lp(m), then Γ (f) ∈ Lp(m) and∥∥Γ (f) ‖p ≤ c‖f‖∞ ‖∆f + λf‖p
for a universal constant c (i.e. independent of λ, K, X, m).

Finally, we will need two more consequences of the BE2(K,∞) condition, proved under
the quasi-regularity assumption in Savaré [2014]: the first one, first proved in [Savaré, 2014,
Lemma 3.2] and then slightly improved in [Ambrosio et al., 2014c, Thm. 5.5], is the implication

f ∈ V, ∆f ∈ L4(m) =⇒ Γ(f) ∈ V. (13.3)

In particular, this implication provides L4 integrability of
√

Γ(f), consistently with the inte-
grability of the Laplacian. Moreover, it will be particularly useful the quantitative estimate,
first proved in [Savaré, 2014, Thm. 3.4] and then slightly improved in [Ambrosio et al., 2014c,
Corollary 5.7]:

Γ (Γ (f)) ≤ 4γ2,K [f ] Γ (f) m-a.e. in X, whenever f ∈ V, ∆f ∈ L4(m). (13.4)

The function γ2,K [f ] in (13.4) is nonnegative, it satisfies the L1 estimateˆ
γ2,K [f ]dm ≤

ˆ
X

(
(∆f)2 −KΓ (f)

)
dm (13.5)

and it can be represented as the density w.r.t. m of the nonnegative (and possibly singular
w.r.t. m) measure defined by

V 3 ϕ 7→
ˆ
X
−1

2
Γ(Γ (f) , ϕ) + ∆f Γ(f, ϕ)+

(
(∆f)2 −KΓ (f)

)
ϕdm.

The nonnegativity of this measure is one of the equivalent formulations of BE2(K,∞), see
[Savaré, 2014, §3] for a more detailed discussion.

13.1.1 Choice of the algebra A

We first prove that the following “minimal” choice for the algebra A provides (4.1) and
optimal density conditions.

Proposition 13.5. Under assumption BE2(K,∞), the algebra

A1 :=

f ∈ ⋂
1≤p≤∞

Lp(m) : f ∈ V,
√

Γ(f) ∈
⋂

1≤p≤∞
Lp(m)


satisfies (4.1) and it is dense in every space Vp, for p ∈ [1,∞).

Proof. Since (4.1) is obviously satisfied by the chain rule, we need only to show density of A1.
First, we consider the algebra A = V ∩ V∞, which satisfies the weak “Feller” condition (4.2)
because of (13.1). Moreover, for p ∈ [2,∞), the validity of the Lp-Γ inequality entail that A

is dense in L2 ∩ Lp, and taking the Lp/2 norm in (13.1) gives that (3.13) holds. By Remark
4.4 we conclude that A is dense in Vp, for every p ∈ [2,∞).

To establish density of A1 in Vp for p ∈ [1,∞), we argue as in Proposition 4.2. �

Retaining the density condition and the algebra property, one can also consider classes
smaller than A1, including for instance bounds in Lp(m) for the Laplacian.
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13.1.2 Conservation of mass

In this section we see prove that the curvature condition, together with the conservativity
condition P∞t 1 = 1 for all t > 0 (recall that P∞t : L∞(m) → L∞(m) is the dual semigroup in
(3.1.2)), imply the existence of a sequence (fn) ⊂ A1 as in (9.2), at least if L is of the form
a∆+b, where a, |b| ∈ Lq(m), for q ∈ (1,∞]. Notice that the conservativity is loosely related to
a mass conservation property, for the continuity equation with derivation induced by the log-
arithmic derivative of the density; therefore, even though sufficient conditions adapted to the
prescribed derivation b could be considered as well, it is natural to consider the conservativity
of P in connection with (9.2).

Proposition 13.6. If BE2(K,∞) holds and P is conservative, then there exist (fn) ⊂ A1

satisfying (9.2).

Proof. Let (gn) ⊂ L1 ∩ L∞(m) be a non-decreasing sequence of functions (whose existence is
ensured by the σ-finiteness assumption on m) with

0 ≤ gn ≤ 1 for every n ≥ 1 and lim
n→∞

gn = 1, m-a.e. in X.

These conditions imply in particular that gn → 1 weakly∗ in L∞(m).
Let hn =

´ 1
0 Psgnds =

´ 1
0 P∞s gnds and define fn := P1hn = P∞1 hn. By linearity and

continuity of P∞ we obtain that fn → P∞1 1 = 1 weakly∗ in L∞(m). In addition, expanding
the squares, it is easily seen that

lim
n→∞

ˆ
(1− fn)2vdm = 0 ∀v ∈ L1(m).

Hence, by a diagonal argument we can assume (possibly extracting a subsequence) that fn → 1
m-a.e. in X.

Since hn ≤ 1, the reverse Poincaré inequality (13.2) entails

Γ(fn) ≤ P1h
2
n − (fn)2

2I2K(1)
≤ 1− (fn)2

2I2K(1)
, m-a.e. in X.

Taking the square roots of both sides and using the a.e. convergence of fn we obtain, thanks
to dominated convergence, that

√
Γ(fn) weakly∗ converge to 0 in L∞(m).

Finally, we discuss the regularity of fn. Since

∆fn =

ˆ 2

1
∆Psgnds = P2gn − P1gn ∈ L∞(m)

we can use Theorem 13.4 to obtain
√

Γ(fn) ∈ L∞(m). In order to obtain integrability of
the gradient for powers between 1 and 2 we can replace fn by kn := Φ1(fn)/Φ1(1), with
Φ1 : R→ R as introduced in Proposition 4.1. �

13.1.3 Derivations associated to gradients and their deformation

In this section, we study more in detail the class of “gradient” derivations bV in (4.5). More
generally, we analyze the regularity of the derivation f 7→ ωΓ(f, V ) associated to sufficiently
regular V and ω in V.
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For p ∈ (1,∞], let us denote

DLp(∆) :=
{
f ∈ V ∩ Lp(m) : ∆f ∈ Lp(m)

}
.

Thanks to the implication (13.3), DL4(∆) ⊂ V4 and the Hessian

(f, g) 7→ H[V ](f, g) :=
1

2
[Γ(f,Γ(V, g)) + Γ(g,Γ(V, f))− Γ(V,Γ(f, g))] ∈ L1(m),

is well defined on DL4(∆)×DL4(∆). Notice that the expression is symmetric in (f, g), that
(V, f, g) 7→ H[V ](f, g) is multilinear, and that

H[V ](f, g1g2) = H[V ](f, g1)g2 + g1H[V ](f, g2).

By [Savaré, 2014, Thm. 3.4], we have the estimate

|H[V ](f, g)| ≤
√
γ2,K [V ]

√
Γ (f)

√
Γ (g), m-a.e. in X, (13.6)

for every f, g ∈ DL4(∆).

Theorem 13.7. If BE2(K,∞) holds and E is quasi-regular, then for all V ∈ D(∆), ω ∈
V ∩ L∞(m) with

√
Γ(ω) ∈ L∞(m) and c ∈ R, the derivation b = (ω + c)bV has deformation

of type (4, 4) according to Definition 10.5 with q = 2, and it satisfies

‖Dsymb‖4,4 ≤ ‖ω + c‖∞
∥∥(∆V )2 −KΓ(V )

∥∥
1

+
∥∥∥√Γ(ω)

∥∥∥
∞

∥∥∥√Γ(V )
∥∥∥

2
. (13.7)

Proof. Assume first that V ∈ DL4(∆). Let f, g ∈ DL4(∆). After integrating by parts the
Laplacians of f and g, the very definition of Dsymb gives

ˆ
Dsymb(f, g)dm =

ˆ
(ω + c)H[V ](f, g) +

1

2
[Γ(ω, f)Γ(V, g) + Γ(ω, g)Γ(V, f)] dm.

By Hölder inequality, we can use (13.6) to estimate
∣∣´ Dsymb(f, g)dm

∣∣ from above with[
‖ω‖∞

∥∥∥∥√γ2,K [V ]

∥∥∥∥
2

+
∥∥∥√Γ(ω)

∥∥∥
∞

∥∥∥√Γ(V )
∥∥∥

2

] ∥∥∥√Γ (f)
∥∥∥

4

∥∥∥√Γ (g)
∥∥∥

4
.

Thus, by definition of ‖Dsymb‖4,4, (13.7) follows, taking also (13.5) into account. To pass to
the general case V ∈ D(∆), it is sufficient to approximate V with Vn ∈ DL4(∆) in such a
way that Vn → V in V and ∆Vn → ∆V in L2(m) and notice that

´
Dsymbn(f, g)dm converge

to
´
Dsymb(f, g)dm directly from (10.12). The existence of such an approximating sequence

is obtained arguing as in [Ambrosio et al., 2014c, Lemma 4.2], i.e. given f ∈ D(∆), we let
h = f −∆f ∈ L2(m),

hn := max {min {h, n} ,−n} ∈ L2 ∩ L∞(m)

and define fn as the unique (weak) solution to fn − ∆fn = hn. The maximum principle
for ∆ (or equivalently the fact that the resolvent operator R1 = (I −∆)−1 is Markov) gives
fn ∈ L2 ∩ L∞(m), thus ∆fn ∈ L2 ∩ L∞(m) and by L2-continuity of R1, as n → ∞, both hn
and fn converge, respectively towards h and f . By difference, also ∆fn converge towards ∆f
in L2(m) and this gives also easily convergence of fn to f in V. �
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13.2 RCD(K,∞) metric measure spaces

The class of CD(K,∞) consists of complete metric measure spaces such that the Shannon
relative entropy w.r.t. m is K-convex along Wasserstein geodesics, see Villani [2009] for a full
account of the theory and its geometric and functional implications. The class of RCD(K,∞)
metric measure spaces was first introduced in Ambrosio et al. [2014b], from a metric perspec-
tive, as class of spaces smaller than that of CD(K,∞) metric measure spaces. The additional
requirement, in this class of spaces, is that the so-called Cheeger energy is quadratic; with
this axiom, Finsler geometries are ruled out and stronger structural (and stability) properties
can be established.

We will use the notation W 1,2(X, d,m) for the Sobolev space, Ch for the Cheeger energy
arising from the relaxation in L2(X,m) of the local Lipschitz constant

|Df |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

of L2(m) and Lipschitz maps f : X → R.
To introduce RCD(K,∞) spaces we restrict the discussion to metric measure spaces

(X, d,m) satisfying the following three conditions:

(a) (X, d) is a complete and separable length space;

(b) m is a nonnegative Borel measure with supp(m) = X, satisfying

m(Br(x)) ≤ c eAr
2

(13.8)

for suitable constants c ≥ 0, A ≥ 0;

(c) (X, d,m) is infinitesimally Hilbertian according to the terminology introduced in Gigli
[2012], i.e., the Cheeger energy Ch is a quadratic form.

As explained in Ambrosio et al. [2014b], Ambrosio et al. [2012], the quadratic form Ch canoni-
cally induces a strongly regular Dirichlet E form in (X, τ) (where τ is the topology induced by
the distance d), as well as a carré du champ Γ : D(E)×D(E)→ L1(m). Thus, we recover the
basic setting of (3.1) and we can identify W 1,2(X, d,m) with V. In addition, P is conservative
because of (13.8) and the definition of Ch provides the approximation property

∃ fn ∈ Lip(X) ∩ L2(m) with fn → f in L2(m) and |Dfn| →
√

Γ(f) in L2(m) (13.9)

for all f ∈ V.
The above discussions justify the following definition of RCD(K,∞). It is not the orig-

inal one given in Ambrosio et al. [2014b], but it is more appropriate for our purposes; the
equivalence of the two definitions is given in Ambrosio et al. [2012].

Definition 13.8 (RCD(K,∞) metric measure spaces). We say that (X, d,m), satisfying (a),
(b), (c) above, is an RCD(K,∞) space if:

(a) the Dirichlet form associated to the Cheeger energy of (X, d,m) satisfies BE2(K,∞)
according to Definition 13.1;

(b) any f ∈W 1,2(X, d,m) ∩ L∞(m) with
∥∥Γ (f)

∥∥
∞ ≤ 1 has a 1-Lipschitz representative.
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From [Ambrosio et al., 2014b, Lemma 6.7] we obtain that E is quasi-regular. We set
throughout A be the class of Lipschitz functions with bounded support. It is easily seen that
A is dense in V.

Since both (X, d) and V are separable, it is not difficult to exhibit a countable family
A ∗ ⊂ A such that (7.4) is satisfied: let (xh) ⊂ X be dense, and set fh,k := (d(xh, ·)−k)− ∈ A
for h, k ∈ N; then, define

B :=
∞⋃

h, k=0

{fh,k} ∪
∞⋃
h=0

{gh},

with (gh) ⊂ A dense in V. Then, defining A ∗ = {f ∈ B : ‖Γ(f)‖∞ ≤ 1} ⊂ A , since
RA ∗ = B we obtain (7.4). Regarding (7.6), it is not clear in general whether one has to
enlarge the topology in order to ensure its validity. Nevertheless, the distance d∞ defined
by (7.5) coincides with d: dA ∗ ≤ d is obvious, while d ≤ dA ∗ follows from taking f = fh,k
in (7.5), with xh arbitrarily close to x and k larger than d(x, y): thus by Lemma 7.6, we
still obtain, at least in the deterministic case, probability measures on continuous curves with
respect to the original distance d.

We discuss now the fine regularity properties of functions in V, recalling some results
developed in Ambrosio et al. [2014a]. We start with the notion of 2-plan.

Definition 13.9 (2-plans). We say that a positive finite measure η in P(C([0, T ];X)) is a
2-plan if η is concentrated on AC([0, T ]; (X, d)) and the following two properties hold:

(a)
´ ´ T

0 |η̇|
2 (t)dtdη(η) <∞;

(b) there exists C ∈ [0,∞) satisfying (et)#η ≤ Cm for all t ∈ [0, T ].

Accordingly, we say that V : X → R is W 1,2 along 2-almost every curve if, for all s ≤ t
and all 2-plans η, the family of inequalitiesˆ
|V (η(s))− V (η(t))|dη(η) ≤

ˆ ˆ t

s
g(η(r))|η̇(r)|drdη(η), for all s, t ∈ [0, T ) with s ≤ t

(13.10)
holds for some g ∈ L2(m). Since Lipschitz functions with bounded support are dense in
V, a density argument [Ambrosio et al., 2014a, Theorem 5.14] based on (13.9) provides the
following result:

Proposition 13.10. Any V ∈ V is W 1,2 along 2-almost every curve. In addition, (13.10)
holds with g =

√
Γ(V ).

Actually, a much finer result could be established (see [Ambrosio et al., 2014a, §5]), namely
the existence of a representative Ṽ of V in the L2(m) equivalence class, with the property
that Ṽ ◦ η is absolutely continuous π-a.e. η for any 2-plan π, with |(Ṽ ◦ η)′| ≤

√
Γ(V )|η̇| a.e.

in (0, T ). However, we shall not need this fact in the sequel. Here we notice only that since
χBη is a 2-plan for any Borel set B ⊂ C([0, T ];X), it follows from (13.10) with g =

√
Γ(V )

that

|V (η(s))− V (η(t))| ≤
ˆ ˆ t

s

√
Γ(V )(η(r))|η̇(r)|dr, for η-a.e. η (13.11)

for all s, t ∈ [0, T ) with s ≤ t.
Now, we would like to relate these known facts to solutions to the ODE η̇ = bt(η). The

first connection between 2-plans and probability measures concentrated on solutions to the
ODE is provided by the following proposition.
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Proposition 13.11. Let b = (bt) be a Borel family of derivations with |b| ∈ L1
t (L

2) and let
u ∈ L∞t (L∞x ). Let η be concentrated on solutions to the ODE η̇ = bt(η), with (et)#η = utm
for all t ∈ (0, T ). Then η is a 2-plan.

Proof. The fact that η has bounded marginals follows from the assumption u ∈ L∞t (L∞x ).
By identification d = dA ∗ , η is concentrated on AC([0, T ]; (X, d)), with |η̇| (t) ≤ |bt| (η(t)),
L 1-a.e. in (0, T ) for η-a.e. η. Thus,

ˆ ˆ T

0
|η̇|2 (t)dtdη(η) ≤

ˆ T

0

ˆ
|bt|2 utdmdt <∞.

�

We now focus on the case of a “gradient” and time-independent derivation bV associated
to V ∈ V. Recall that in this case |bV |2 = Γ(V ) m-a.e. in X.

Theorem 13.12. Let V ∈ D(∆) with ∆V − ∈ L∞(m). Then, there exist weakly continuous
solutions (in [0, T ), in duality with A ) u ∈ L∞t (L1

x ∩ L∞x ) to the continuity equation, for any
initial condition ū ∈ L1 ∩ L∞(m). In addition, if η is given by Theorem 7.3 (namely η is
concentrated on solutions to the ODE η̇ = bV (η) and (et)#η = ut for all t ∈ (0, T )), then:

(a) η is concentrated on curves η satisfying |η̇| (t) = Γ(V )1/2(η(t)) for a.e. t ∈ (0, T );

(b) for all s, t ∈ [0, T ) with s ≤ t, there holds

V ◦ η(t)− V ◦ η(s) =

ˆ t

s
Γ(V )(η(r))dr, for η-a.e. η.

Proof. The proof of the first statement follows immediately by Proposition 9.5, approximating
V via truncations and the smoothing action of P. Since

ˆ t

s

ˆ
Γ(V, f)urdmdr =

ˆ
fut −

ˆ
fus for all s, t ∈ [0, T ) with s ≤ t

for all f ∈ A , we can use the density of A in V and a simple limiting procedure to obtain

ˆ t

s

ˆ
Γ(V )urdmdr =

ˆ
V ut −

ˆ
V us for all s, t ∈ [0, T ) with s ≤ t. (13.12)

If η is as in the statement of the theorem, since η is a 2-plan we can combine Proposi-
tion 13.10 and the inequality |η̇| ≤ |bV |(η) stated in Lemma 7.6 to get

ˆ
V (η(t))− V (η(s))dη(η) ≤

ˆ ˆ t

s
Γ(V )1/2(η(r)) |η̇| (r)drdη(η) ≤

ˆ ˆ t

s
Γ(V )(η(r))dη(η),

for all s, t ∈ [0, T ) with s ≤ t. Since (er)#η = urm for all r ∈ [0, T ), it follows that

ˆ
V ut −

ˆ
V us =

ˆ
V (η(t))− V (η(s))dη(η) ≤

ˆ t

s
Γ(V )urdmdr. (13.13)

Combining (13.12) and (13.13) it follows that all the intermediate inequalities we integrated
w.r.t. η are actually identities, so that for η-a.e. η it must be |η̇| =

√
Γ(V ) ◦ η a.e. in (0, T )

and equality holds in (13.11). �
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In particular, one could prove that η is a 2-plan representing the 2-weak gradient of V ,
according to [Gigli, 2012, Def. 3.7], where a weaker asymptotic energy dissipation inequality
was required at t = 0. Our global energy dissipation is stronger, but it requires additional
bounds on the Laplacian.

We can also prove uniqueness for the continuity equation, considering just for simplicity
still the autonomous version.

Theorem 13.13. Let V ∈ D(∆) with ∆V − ∈ L∞(m). Then the continuity equation induced
by bV has existence and uniqueness in L∞t (L1

x∩L∞x ) for any initial condition ū ∈ L1∩L∞(m).

Proof. We already discussed existence in Theorem 13.12. For uniqueness, we want to apply
Theorem 10.19 with q = 2 and r = s = 4 (which provides uniqueness in the larger class
L2 ∩ L4(m)). In order to do this we need only to know that (9.2) holds (this follows by
conservativity of P and BE2(K,∞)), that L4-Γ inequalities hold in RCD(K,∞) spaces (this
follows by BE2(K,∞) thanks to Corollary 13.3) and that the deformation of bV is of type
(4, 4) (this follows by Theorem 13.7). �
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Basel, second edition, 2008. ISBN 978-3-7643-8721-1.

Luigi Ambrosio, Michele Miranda, Jr., Stefania Maniglia, and Diego Pallara. BV functions
in abstract Wiener spaces. J. Funct. Anal., 258(3):785–813, 2010. ISSN 0022-1236. doi:
10.1016/j.jfa.2009.09.008.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Calculus and heat flow in metric measure
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Ricci curvature bounded from below. Duke Math. J., 163(7):1405–1490, 2014b. ISSN
0012-7094. doi: 10.1215/00127094-2681605.

Luigi Ambrosio, Andrea Mondino, and Giuseppe Savaré. On the Bakry–émery Condition,
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Acad. Sci. Paris Sér. I Math., 299(15):775–778, 1984. ISSN 0249-6291.

Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and geometry of Markov diffusion
operators, volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer, Cham, 2014. ISBN 978-3-319-00226-2;
978-3-319-00227-9. doi: 10.1007/978-3-319-00227-9.
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