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Abstract

We prove sharp homogeneous improvements to L1 weighted Hardy inequalities involving
distance from the boundary. In the case of a smooth domain we obtain lower and upper
estimates for the best constant of the remainder term. These estimates are sharp in the sense
that they coincide when the domain is a ball or an infinite strip. In the case of a ball we also
obtain further improvements.
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1 Introduction

Hardy’s inequality involving distance from the boundary of a convex set Ω (Rn; n≥ 1, asserts
that ∫

Ω

|∇u|pdx≥
( p−1

p

)p ∫
Ω

|u|p

dp dx, p > 1, (1.1)

for all u ∈ C∞
c (Ω), where d ≡ d(x) := dist(x,Rn \Ω). Due to [HLP], [D], [MS] and [MMP]

the constant appearing in (1.1) is optimal. After the pioneering results in [Mz] and [BrM], a
sequence of papers have improved (1.1) by adding extra terms on its right hand side, see for
instance [BFT2], [BFT3], [FMT3], [FTT] and primarily [BFT1] and [FMT1], [FMT2] where it
was also noted that (1.1) remains valid with the sharp constant in more general sets than convex
ones, and in particular in sets that satisfy −∆d ≥ 0 in the distributional sense.

In the case p = 1, (1.1) reduces to a trivial inequality, at least for sets having non positive
distributional Laplacian of the distance function. However, in the one dimensional case, the
following L1 weighted Hardy inequality is well known:∫

∞

0

|u′(x)|
xs−1 dx≥ (s−1)

∫
∞

0

|u(x)|
xs dx, s > 1, (1.2)

for all absolutely continuous functions u : [0,∞)→ R, such that u(0) = 0. This is the special
case p = 1 of Theorem 330 in [HLP]. Inequality (1.2) is, in fact, an equality for u increasing,
and thus the constant on the right hand side is sharp.
∗Expanded & revised edition of J. Geom. Anal. 23 (4), 1703-1728 (2013)
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In this work we are concerned with the higher-dimensional generalizations of (1.2). Let
Ω (Rn(n≥ 2) be open and let d ≡ d(x) := dist(x,Rn \Ω). We deal with inequalities of the type∫

Ω

|∇u|
ds−1 dx≥B0

∫
Ω

|u|
ds dx+B

∫
Ω

V (d)|u|dx, s≥ 1, (1.3)

valid for all u ∈C∞
c (Ω). Here V is a potential function, i.e., nonnegative and V ∈ L1

loc(R+), and
B0 ≥ 0, B ∈ R. Questions concerning sets for which this inequality is valid, sharp constants,
possible improvements and optimal potentials will be studied. Our first Theorem reads as fol-
lows

Theorem A Let Ω be a domain in Rn with boundary of class C 2 satisfying a uniform interior
sphere condition, and we denote by H the infimum of the mean curvature of the boundary. Then
there exists B1 ≥ (n−1)H such that for all u ∈C∞

c (Ω) and all s≥ 1∫
Ω

|∇u|
ds−1 dx≥ (s−1)

∫
Ω

|u|
ds dx+B1

∫
Ω

|u|
ds−1 dx. (1.4)

Let s ≥ 2. If Ω is a bounded domain in Rn with boundary of class C 2 having strictly positive
mean curvature, then the constant s− 1 in the first term as well as the exponent s− 1 on the
distance function on the remainder term in (1.4), are optimal. In addition, we have the following
estimates

(n−1)H ≤B1 ≤
n−1
|∂Ω|

∫
∂Ω

H (y)dSy, (1.5)

where H (y) is the mean curvature of the boundary at y ∈ ∂Ω, and H is its minimum value.

The following result, which is of independent interest, played a key role in establishing The-
orem A

Theorem B Let Ω ⊂ Rn be a domain with boundary of class C 2 satisfying a uniform interior
sphere condition. Then µ := (−∆d)dx is a signed Radon measure on Ω. Let µ = µac+µs be the
Lebesgue decomposition of µ with respect to L n, i.e. µac�L n and µs⊥L n. Then µs ≥ 0 in
Ω, and µac ≥ (n−1)H dx a.e. in Ω, where H := infy∈∂Ω H (y).

For domains with boundary of class C 2 satisfying a uniform interior sphere condition, −∆d
is a continuous function in a tubular neighborhood of the boundary and, moreover, −∆d(y) =
(n−1)H (y) for any y ∈ ∂Ω. This fact together with Theorem B leads to

Corollary Let Ω be a domain with boundary of class C 2 satisfying a uniform interior sphere
condition. Then Ω is mean convex, i.e., H (y)≥ 0 for all y ∈ ∂Ω, if and only if −∆d ≥ 0 holds
in Ω, in the sense of distributions.

We note that a set Ω ( Rn with distance function having non positive distributional Laplacian,
is shown in [4-5] and [13-15] to be the natural geometric assumption for the validity of various
Hardy inequalities.
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In special geometries we are able to compute the best constant B1 in (1.4):

In case Ω is a ball of radius R then the upper and lower estimates (1.5) coincide, yielding
B1 = (n− 1)/R. One then may ask whether (1.4) can be further improved. We provide a full
answer to this question by showing that for s ≥ 2 one can add a finite series of [s]−1 terms on
the right hand side before adding an optimal logarithmic correction. More precisely we prove
the following

Theorem C Let BR be a ball of radius R. Then, (i) For all u ∈C∞
c (BR), all s≥ 2, γ > 1, it holds

that

∫
BR

|∇u|
ds−1 dx≥ (s−1)

∫
BR

|u|
ds dx+

[s]−1

∑
k=1

n−1
Rk

∫
BR

|u|
ds−k dx+

C
Rs−1

∫
BR

|u|
d

X γ

(d
R

)
dx, (1.6)

where X(t) := (1− log t)−1, t ∈ (0,1] and C≥ γ−1. The exponents s and s−k; k = 1,2, ..., [s]−
1, on the distance function, as well as the constants s−1, (n−1)/Rk; k = 1,2, ..., [s]−1, in the
first and the summation terms, respectively, are optimal. The last term in (1.6) is optimal in the
sense that if γ = 1, there is not positive constant C such that (1.6) holds.

(ii) For all u ∈C∞
c (BR), all 1≤ s < 2, γ > 1, it holds that∫
BR

|∇u|
ds−1 dx≥ (s−1)

∫
BR

|u|
ds dx+

C
Rs−1

∫
BR

|u|
d

X γ

(d
R

)
dx, (1.7)

where X(t) := (1− log t)−1, t ∈ (0,1] and C ≥ γ − 1. The last term in (1.7) is optimal in the
sense that if γ = 1, there is not positive constant C such that (1.7) holds.

Note that this is in contrast with the results in case p > 1, where an infinite series involving
optimal logarithmic terms can be added (see [BFT2]) and ([BFT3]).

In case Ω is an infinite strip, using a more general upper bound on B1 (see Theorem 4.7),
we prove that B1 = 0. As a matter of fact the finite series structure of (1.6) disappears and only
the final logarithmic correction term survives. More precisely

Theorem D Let SR be an infinite strip of inner radius R. For all u ∈C∞
c (SR), all s ≥ 1, γ > 1,

there holds ∫
SR

|∇u|
ds−1 dx≥ (s−1)

∫
SR

|u|
ds dx+

C
Rs−1

∫
SR

|u|
d

X γ

(d
R

)
dx, (1.8)

where C ≥ γ−1. The last term in (1.8) is optimal in the sense that if γ = 1, there is not positive
constant C such that (1.8) holds.

The paper is organized as follows. In §2, recalling the semiconcavity properties of the dis-
tance function, we prove weighted L1 Hardy inequalities in sets without regularity assumptions
on the boundary. General open sets, sets with non negative distributional Laplacian of the dis-
tance function, as well as sets with positive reach are considered. Remainders for sets having
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finite inner radius are obtained in the first two cases and extremal domains are given. The results
imply in particular inequality (1.8). In §3, after recalling further properties of the distance func-
tion for smooth domains, we prove Theorem B. Theorem A and the optimality in Theorem D is
then proved in §4, where also an interesting lower bound for the Cheeger constant of smooth,
strictly mean convex domains is deduced (see Corollary 4.6). In §5, Theorem C is proved and in
the final section we discuss Lp analogs of our results.

After this work was completed we found that Corollary following Theorem B of this intro-
duction is also noted in [LL]. It turns out this is originally due to Gromov (see [Gr]-pg 18-19).
For proofs of this corollary (different from the one in this paper) see [LLL] and [Gr]-§5.

2 Inequalities in sets without regularity assumptions on the bound-
ary

Since all inequalities of this paper will follow by the integration by parts formula, we formalize
it as follows: let Ω be an open set in Rn and T be a vector field on Ω. Integrating by parts and
using elementary inequalities, we get∫

Ω

|T ||∇u|dx≥
∫

Ω

div(T )|u|dx, (2.1)

for all u ∈C∞
c (Ω), where we have also used the fact that |∇|u||= |∇u| a.e. in Ω.

2.1 General sets

In this subsection we recall some properties of the distance function to the boundary of a general
open set and then prove various weighted L1 Hardy inequalities.

Let Ω ( Rn be open. We set d : Rn→ [0,∞) by d(x) := inf{|x− y| : y ∈ Rn \Ω}. It is well
known that d is Lipschitz continuous on Rn and in particular |∇d(x)| = 1 a.e. in Ω (see [F]-
Theorem 4.8). The next property of d can be found for example in [CS]-Proposition 2.2.2.(i) &
Proposition 1.1.3.(c),(e). We prove it for completeness.

Lemma 2.1. Let Ω (Rn be open. It holds that

−d∆d ≥−(n−1) in Ω in the sense of distributions. (2.2)

Proof. Estimate (2.2) rests on the fact that the function A : Rn → R defined by A(x) := |x|2−
d2(x) is convex (see also [AmbM]-§2). To see this, we take x ∈ Rn and let y ∈ Rn be such that
d(x) = |x− y|. For any z ∈ Rn we get

A(x+ z)+A(x− z)−2A(x) = 2|z|2− (d2(x− z)+d2(x+ z)−2d2(x))

≥ 2|z|2− (|x+ z− y|2 + |x− z− y|2−2|x− y|2)
= 0.

4



Since A(x) is also continuous, we obtain that A(x) is convex (see [CS]-Proposition A1.2). It
follows by [EvG]-§6.3-Theorem 2, that the distributional Laplacian of A is a nonnegative Radon
measure on Rn. Since in Ω we have ∆A = 2(n−1−d∆d) in the sense of distributions, the result
follows.

The weighted L1 Hardy inequalities we obtain are deduced from the following basic fact

Lemma 2.2. Let Ω (Rn be open. For all u ∈C∞
c (Ω) and all s≥ 1∫

Ω

|∇u|
ds−1 dx≥ (s−1)

∫
Ω

|u|
ds dx+

∫
Ω

|u|
ds−1 (−∆d)dx, (2.3)

where−∆d is meant in the distributional sense. If Ω is bounded, then equality holds for uε(x) =
(d(x))s−1+ε ∈W 1,1

0 (Ω;d−(s−1)), ε > 0.

Proof. Inequality (2.3) follows from (2.1) by setting T (x) = −(d(x))1−s∇d(x) for a.e. x ∈ Ω,
while the second statement is easily checked.

A covering of Ω by cubes was used in [Avkh] to prove the next Theorem. We present an
elementary proof.

Theorem 2.3. Let Ω (Rn be open. For all u ∈C∞
c (Ω) and all s > n, it holds that∫

Ω

|∇u|
ds−1 dx≥ (s−n)

∫
Ω

|u|
ds dx. (2.4)

Proof. Coupling (2.2) and (2.3), we get∫
Ω

|∇u|
ds−1 dx ≥ (s−1)

∫
Ω

|u|
ds dx− (n−1)

∫
Ω

|u|
ds dx

= (s−n)
∫

Ω

|u|
ds dx.

Remark 2.4. The constant appearing on the right hand side of (2.4) is just a lower bound for the
best constant. The best constant in (2.4) differs from one open set to another. However, Rn \{0}
serves as an extremal domain for Theorem 2.3. More precisely, letting Ω = Rn \ {0}, we have
d(x) = |x| and (2.4) reads as follows∫

Rn

|∇u|
|x|s−1 dx≥ (s−n)

∫
Rn

|u|
|x|s

dx, s > n, (2.5)

for all u ∈ C∞
c (Rn \ {0}). To illustrate the optimality of the constant on the right hand side of

(2.5), we define the following function

uδ (x) := χBη\Bδ
(x), x ∈ Rn, (2.6)
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where, for any r > 0, by Br we henceforth denote the open ball of radius r with center at the
origin. Here 0 < δ < η and η is fixed. The distributional gradient of uδ is ∇uδ =~ν∂Bδ

δ∂Bδ
−

~ν∂Bη
δ∂Bη

where, for any r > 0, ~ν∂Br stands for the outward pointing unit normal vector field
along ∂Br = {x ∈Rn : |x|= r}, and by δ∂Br we denote the Dirac measure on ∂Br. Moreover, the
total variation of ∇uδ is |∇uδ |= δ∂Bδ

+δ∂Bη
. Using the co-area formula, we get

∫
Rn
|∇uδ |
|x|s−1 dx∫

Rn
|uδ |
|x|s dx

=
δ 1−s|∂Bδ |+η1−s|∂Bη |∫ η

δ
r−s|∂Br|dr

=
δ n−s +ηn−s∫ η

δ
rn−s−1dr

= (s−n)
δ n−s +ηn−s

δ n−s−ηn−s

→ s−n, as δ ↓ 0.

Although not smooth, functions like uδ defined in (2.6) belong to BV (Rn) (the space of functions
of bounded variation in Rn), and thus we can use a C∞

c approximation so that the calculation
above to hold in the limit (see for instance [EvG]-§5.2).

Theorem 2.5. Let Ω (Rn be open and such that R := supx∈Ω d(x)< ∞. For all u ∈C∞
c (Ω), all

s≥ n, γ > 1, it holds that∫
Ω

|∇u|
ds−1 dx≥ (s−n)

∫
Ω

|u|
ds dx+

C
Rs−n

∫
Ω

|u|
dn X γ

(d
R

)
dx, (2.7)

where C ≥ γ−1.

Proof. We set T (x) = −(d(x))1−s[1− (d(x)/R)s−nX γ−1(d(x)/R)]∇d(x) for a.e. x ∈ Ω. Since
|1− (d(x)/R)s−nX γ−1(d(x)/R)| ≤ 1 for all x ∈Ω, we have∫

Ω

|T ||∇u|dx≤
∫

Ω

|∇u|
ds−1 dx.

Using the rule ∇X γ−1(d(x)/R) = (γ−1)X γ(d(x)/R)∇d(x)
d(x) for a.e. x ∈Ω, we compute

div(T ) = (s−1)d−s[1− (d/R)s−nX γ−1(d/R)]+
s−n
Rs−n d−nX γ−1(d/R)

+
γ−1
Rs−n d−nX γ(d/R)+d1−s[1− (d/R)s−nX γ−1(d/R)](−∆d).

Since 1−(d(x)/R)s−nX γ−1(d(x)/R)≥ 0 for all x ∈Ω, we use (2.2) on the last term of the above
equality and a straightforward computation gives

div(T )≥ (s−n)d−s +
γ−1
Rs−n d−nX γ(d/R).
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This means that ∫
Ω

div(T )|u|dx≥ (s−n)
∫

Ω

|u|
ds dx+

γ−1
Rs−n

∫
Ω

|u|
dn X γ(d/R)dx.

and the result follows from (2.1).

Remark 2.6. A punctured domain serves as an extremal domain for Theorem 2.5. More pre-
cisely, let Ω = U \ {0} where U is an open, connected subset of Rn containing the origin and
satisfying R := supx∈U d(x)< ∞. We define uδ as in (2.6), where η is fixed and sufficiently small
such that d(x) = |x| in Bη . For any s≥ n, we have∫

Ω

|∇uδ |
|x|s−1 dx− (s−n)

∫
Ω

|uδ |
|x|s dx∫

Ω

|uδ |
|x|n X(|x|/R)dx

=
δ 1−s|∂Bδ |+η1−s|∂Bη |− (s−n)

∫ η

δ
r−s|∂Br|dr∫ η

δ
r−nX(r/R)|∂Br|dr

=
δ n−s +ηn−s− (s−n)

∫ η

δ
rn−s−1dr∫ η

δ
r−1X(r/R)dr

=
2ηn−s

log
(

X(η/R)
X(δ/R)

)
= oδ (1).

Thus, for a punctured domain inequality (2.7) does not hold when γ = 1, as well as the exponent
n on the second term of the right hand side in (2.7) cannot be increased.

Theorem 2.7. Let Ω (Rn be open and such that R := supx∈Ω d(x)< ∞. For all u ∈C∞
c (Ω) and

all s > n, it holds that ∫
Ω

|∇u|
ds−1 dx− (s−n)

∫
Ω

|u|
ds dx≥ 1

Rs−n

∫
Ω

|∇u|
dn−1 dx. (2.8)

Proof. We set ~T (x) =−(d(x))1−s[1− (d(x)/R)s−n]∇d(x) for a.e. x ∈Ω. Since

|~T (x)|= (d(x))1−s
[
1−
(d(x)

R

)s−n]
a.e. x ∈Ω,

we have ∫
Ω

|~T ||∇u|dx =
∫

Ω

|∇u|
ds−1 dx− 1

Rs−n

∫
Ω

|∇u|
dn−1 dx.

We also calculate

div(~T ) = (s−1)d−s[1− (d/R)s−n]+
s−n
Rs−n d−n +d1−s[1− (d/R)s−n](−∆d), in Ω,

in the distributional sense. Since 1− (d(x)/R)s−n ≥ 0 for all x ∈Ω, we may use Lemma 2.1 on
the last term of the above equality and after a straightforward computation to obtain∫

Ω

div(~T )|u|dx≥ (s−n)
∫

Ω

|u|
ds dx.

The result follows from (2.1).
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Remark 2.8. A punctured domain serves also as an extremal domain for Theorem 2.7. As
before, letting Ω = U \ {0}, where U is an open, connected subset of Rn containing the origin
and satisfying R := supx∈U d(x) < ∞, we define uδ as in (2.6) where η is fixed and sufficiently
small such that d(x) = |x| in Bη . By the co-area formula, for any ε ≥ 0 we have∫

Ω

|∇uδ |
|x|s−1 dx− (s−n)

∫
Ω

|uδ |
|x|s dx∫

Ω

|∇uδ |
|x|n−1+ε dx

=
δ 1−s|∂Bδ |+η1−s|∂Bη |− (s−n)

∫ η

δ
r−s|∂Br|dr

δ 1−n−ε |∂Bδ |+η1−n−ε |∂Bη |

=
δ n−s +ηn−s +

∫ η

δ
(rn−s)′dr

δ−ε +η−ε

=
2ηn−s

δ−ε +η−ε

=

{
oδ (1) if ε > 0

ηn−s if ε = 0.

Note that if ε = 0 then ηn−s ↓ Rn−s as η ↑ R. �

2.2 Sets with −∆d ≥ 0 in the sense of distributions

In this subsection we assume that

−∆d ≥ 0 in Ω, in the sense of distributions. (C)

This condition was first used in the context of Hardy inequalities in [3-4] and has been used
intensively in [13-15]. As we will prove in §3, domains with sufficiently smooth boundary
carrying condition (C) are characterized as domains with nonnegative mean curvature of their
boundary. However, in this section we do not impose regularity on the boundary.

Theorem 2.9. Let Ω ( Rn be open and such that condition (C) holds. For all u ∈C∞
c (Ω) and

all s > 1, it holds that ∫
Ω

|∇u|
ds−1 dx≥ (s−1)

∫
Ω

|u|
ds dx. (2.9)

Moreover, the constant appearing on the right hand side of (2.9) is sharp.

Proof. Since (C) holds we may cancel the last term in (2.3) and (2.9) follows. To prove the
sharpness of the constant, we pick y ∈ ∂Ω and define the family of W 1,1

0 (Ω;d−(s−1)) functions
by uε(x) := φ(x)(d(x))s−1+ε , ε > 0, where φ ∈C∞

c (Bδ (y)), 0≤ φ ≤ 1 and φ ≡ 1 in Bδ/2(y), for
some small but fixed δ . We have∫

Ω

|∇uε |
ds−1 dx∫

Ω

|uε |
ds dx

≤ s−1+ ε +

∫
Ω
|∇φ |dεdx∫

Ω
φd−1+εdx

≤ s−1+ ε +
C∫

Ω∩Bδ/2(y)
d−1+εdx

,

≤ s−1+oε(1)
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where C is some universal constant (not depending on ε).

Remark 2.10. In view of Theorem 2.9 and Lemma 2.2, we see that if Ω is bounded and condi-
tion (C) holds, then all constants appearing in (2.3) are optimal.

Theorem 2.11. Let Ω (Rn be open and such that condition (C) holds. Suppose in addition that
R := supx∈Ω d(x)< ∞. For all u ∈C∞

c (Ω), all s≥ 1, γ > 1, it holds that∫
Ω

|∇u|
ds−1 dx≥ (s−1)

∫
Ω

|u|
ds dx+

C
Rs−1

∫
Ω

|u|
d

X γ

(d
R

)
dx, (2.10)

where C ≥ γ−1.

Proof. We set T (x) = −(d(x))1−s[1− (d(x)/R)s−1X γ−1(d(x)/R)]∇d(x) for a.e. x ∈ Ω. Since
|1− (d(x)/R)s−1X γ−1(d(x)/R)| ≤ 1 for all x ∈Ω, we have∫

Ω

|T ||∇u|dx≤
∫

Ω

|∇u|
ds−1 dx.

Using the rule ∇X γ−1(d(x)/R) = (γ − 1)X γ(d(x)/R)∇d(x)
d(x) for a.e. x ∈ Ω, by a straightforward

calculation we arrive at∫
Ω

div(T )|u|dx = (s−1)
∫

Ω

|u|
ds dx+

γ−1
Rs−1

∫
Ω

|u|
d

X γ(d/R)dx

+
∫

Ω

|u|
ds−1 [1− (d/R)s−1X γ−1(d/R)](−∆d)dx.

Since 1−(d(x)/R)s−1X γ−1(d(x)/R)≥ 0 for all x∈Ω and also (C) holds, we may cancel the last
term and the result follows by (2.1).

Remark 2.12. We prove in §4-Example 4.10 that an infinite strip is an extremal domain for
Theorem 2.11. More precisely, if Ω= {x=(x′,xn) : x′ ∈Rn−1,0< xn < 2R} for some R> 0, then
(2.10) fails for γ = 1 and thus the exponent 1 on the distance to the boundary in the remainder
term of (2.10) cannot be increased.

The counterpart of Theorem 2.7 reads as follows

Theorem 2.13. Let Ω ( Rn be open, satisfies condition (C) and R := supx∈Ω d(x) < ∞. Then
for all u ∈C∞

c (Ω) and all s > 1∫
Ω

|∇u|
ds−1 dx≥ (s−1)

∫
Ω

|u|
ds dx+

1
Rs−1

∫
Ω

|∇u|dx. (2.11)

Proof. We insert ~T (x)=−(d(x))1−s[1−(d(x)/R)s−1]∇d(x); a.e. x∈Ω, in (2.1). Since (d(x)/R)s−1≤
1 for all x ∈Ω we have ∫

Ω

|~T ||∇u|dx =
∫

Ω

|∇u|
ds−1 dx− 1

Rs−1

∫
Ω

|∇u|dx.
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On the other hand∫
Ω

div(~T )|u|dx = (s−1)
∫

Ω

|u|
ds dx+

∫
Ω

|u|
ds−1 (1− (d/R)s−1)(−∆d)dx

≥ (s−1)
∫

Ω

|u|
ds dx,

where now we have used again the fact that (d(x)/R)s−1 ≤ 1 for all x ∈ Ω and also (C). The
result follows.

An infinite strip is an extremal domain for (2.11), in the following sense

Lemma 2.14. For fixed R > 0, set S := {x = (x′,xn) : x′ ∈Rn−1,0 < xn < 2R}. Suppose that for
some nonnegative α and s≥ 1, there holds

C := inf
u∈C∞

c (S)\{0}
Q̃[u]≥C0 > 0,

where

Q̃[u] :=

∫
S
|∇u|
ds−1 dx− (s−1)

∫
S
|u|
ds dx∫

S
|∇u|
dα dx

.

Then α = 0.

Proof. For s = 1 it is obvious. Note also that it is enough to assume that 0 < α < 1. Let s > 1.
Pick any φ ≡ φ(x′) ∈C1

c (Rn−1) such that sprt{φ} ⊂ B1, where B1 is the n−1 dimensional open
ball with radius 1 centered at 0′. Let δ > 0 and set φδ ≡ φδ (x′) := φ(δx′). Let also 0< ε <η ≤R.
We test C with uε,δ (x) := χ(ε,η)(xn)φδ (x′). First note that

∇uε,δ (x) = (χ(ε,η)(xn)∇x′φδ (x
′),(δ (xn− ε)−δ (xn−η))φδ (x

′)),

where ∇x′ = ( ∂

∂x1
, ∂

∂x2
, ..., ∂

∂xn−1
). Thus

|∇uε,δ (x)|= χ(ε,η)(xn)|∇x′φδ (x
′)|+(δ (xn− ε)+δ (xn−η))|φδ (x

′)|.

Since η ≤ R/2 we may substitute d(x) by xn in Q̃[u], and so

Q̃[uε,δ ] =

∫
S
|∇uε,δ |

xs−1
n

dx− (s−1)
∫

S
|uε,δ |

xs
n

dx∫
S
|∇uε,δ |

xα
n

dx

=

∫
η

ε

∫
B1/δ

|∇x′φδ |
xs−1

n
dx′dxn +( 1

εs−1 +
1

ηs−1 )
∫

B1/δ
|φδ |dx′− (s−1)

∫
η

ε

∫
B1/δ

|φδ |
xs

n
dx′dxn∫

η

ε

∫
B1/δ

|∇x′φδ |
xα

n
dx′dxn +( 1

εα + 1
ηα )

∫
B1/δ
|φδ |dx′

=
Kδ

∫
η

ε
x1−s

n dxn +Mδ (ε
1−s +η1−s)+Mδ

∫
η

ε
(x1−s

n )′dxn

Kδ

∫
η

ε
x−α

n dxn +Mδ (ε−α +η−α)
,

10



where we have set Kδ :=
∫

B1/δ
|∇x′φδ (x′)|dx′ and Mδ :=

∫
B1/δ
|φδ (x′)|dx′. Performing the integra-

tion appeared in the last term of the numerator we arrive at

Q̃[uε,δ ] =
Kδ

∫
η

ε
x1−s

n dxn +2Mδ η1−s

Kδ

∫
η

ε
x−α

n dxn +Mδ (ε−α +η−α)
.

By the change of variables y′ = δx′ we obtain Kδ = δ 2−nK1 and Mδ = δ 1−nM1. Thus

Q̃[uε,δ ] =
δ 2−nK1

∫
η

ε
x1−s

n dxn +2δ 1−nM1η1−s

δ 2−nK1
∫

η

ε
x−α

n dxn +δ 1−nM1(ε−α +η−α)

=
δK1

∫
η

ε
x1−s

n dxn +2M1η1−s

δK1
1−α

(η1−α − ε1−α)+M1(ε−α +η−α)
.

To proceed we distinguish cases:
• Let 1 < s < 2. Then

Q̃[uε,δ ] =
δK1
2−s (η

2−s− ε2−s)+2M1η1−s

δK1
1−α

(η1−α − ε1−α)+M1(ε−α +η−α)

= oε(1).

• Now let s = 2. Then

Q̃[uε,δ ] =
δK1 log(η/ε)+2M1η−1

δK1
1−α

(η1−α − ε1−α)+M1(ε−α +η−α)

= oε(1).

• Finally let s > 2. Then

Q̃[uε,δ ] =
δK1
s−2 (ε

2−s−η2−s)+2M1η1−s

δK1
1−α

(η1−α − ε1−α)+M1(ε−α +η−α)
.

We may set δ = εs−2 so that Q̃[uε,δ ] = oε(1).

2.3 Sets with positive reach

In this subsection we obtain an interpolation inequality between (2.4) and (2.9) via sets with
positive reach.

Let /0 6= K (Rn be closed and consider the distance function to K i.e. dK : Rn→ [0,∞) with
dK(x) = inf{|x− y| : y ∈ K}. Denote by K1 the set of points in Rn which have a unique closest
point on K, namely K1 = {x ∈ Rn : ∃! y ∈ K such that dK(x) = |x− y|}.

Definition 2.15. The reach of a point x∈K is reach(K,x) := sup{r≥ 0 : Br(x)⊂K1}. The reach
of the set K is reach(K) := infx∈K reach(K,x).

11



The above definition was introduced in [F] where it was also noted that K is convex if and
only if reach(K) = ∞.

Lemma 2.16. Let Ω (Rn be open and set h := reach(Ω)≥ 0. Then

(h+d)(−∆d)≥−(n−1) in Ω, in the sense of distributions, (2.12)

where d ≡ d(x) = inf{|x− y| : y ∈ Rn \Ω}.

Proof. If h = 0, this is Lemma 2.1. For h > 0 we set Ωh = {x ∈ Rn : d
Ω
(x) < h}. As in the

proof of Lemma 2.1, the continuous function Ā : Rn → R defined by Ā(x) = |x|2− d2
Ωc

h
(x) is

convex, and thus the distributional Laplacian of Ā is a nonnegative Radon measure on Rn. The
result follows since for x ∈ Ω we have dΩc

h
(x) = d(x)+h (see also [F]-Corollary 4.9), and thus

∆Ā = 2(n−1− (h+d)∆d)≥ 0 in Ω, in the sense of distributions.

Theorem 2.17. Let Ω ( Rn be open and set h := reach(Ω). Suppose in addition that R :=
supx∈Ω d(x)< ∞. For all u ∈C∞

c (Ω) and all s > h+nR
h+R , it holds that∫

Ω

|∇u|
ds−1 dx≥

(
(s−1)

h
h+R

+(s−n)
R

h+R

)∫
Ω

|u|
ds dx. (2.13)

Proof. Inserting (2.12) to (2.3), we obtain∫
Ω

|∇u|
ds−1 dx ≥ (s−1)

∫
Ω

|u|
ds dx− (n−1)

∫
Ω

|u|
ds

d
h+d

dx.

=
∫

Ω

(s−1)h+(s−n)d
h+d

|u|
ds dx

≥ (s−1)h+(s−n)R
h+R

∫
Ω

|u|
ds dx,

where the last inequality follows since R < ∞ and (s−1)h+(s−n)d
h+d is decreasing in d.

Note that this inequality interpolates between the case of a general open set Ω ( Rn, where
we have h = 0 and the constant becomes s−n, and the case of a convex set Ω, where h = ∞ and
the constant becomes s−1.

3 A lower bound on −∆d and the role of mean convexity

Before stating our result in this section (Theorem B of the introduction), we gather some addi-
tional properties of the distance function to the boundary that will be in use.

From now on Ω will be a domain, i.e., an open and connected subset of Rn. We will denote
by Σ the set of points in Ω which have more than one projection on ∂Ω. If x ∈Ω\Σ, then ξ (x)
will stand for its unique projection on the boundary.

The following Lemma follows from Lemmas 14.16 and 14.17 in [GTr].
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Lemma 3.1. Let Ω⊂ Rn be a domain (possibly unbounded) with boundary of class C 2.
(1) If in addition Ω satisfies a uniform interior sphere condition, then there exists δ > 0 such

that Ω̃δ := {x ∈Ω : d(x)< δ} ⊂Ω\Σ and d ∈C2(Ω̃δ ).
(2) d ∈C2(Ω\Σ) and for any x ∈Ω\Σ, in terms of a principal coordinate system at ξ (x) ∈

∂Ω, it holds that

(i) ∇d(x) =−~ν(ξ (x)) = (0, ...,0,1)

(ii) 1−κi(ξ (x))d(x)> 0 for all i = 1, ...,n−1

(iii) [D2d(x)] = diag
[ −κ1(ξ (x))

1−κ1(ξ (x))d(x)
, ...,

−κn−1(ξ (x))
1−κn−1(ξ (x))d(x)

,0
]
,

where~ν(ξ (x)) is the unit outer normal at ξ (x) ∈ ∂Ω, and κ1(ξ (x)), ...,κn−1(ξ (x)) are the prin-
cipal curvatures of ∂Ω at the point ξ (x) ∈ ∂Ω.

Remark 3.2. Part (2) of the above Lemma is proved in [GTr] only in Ω̃δ . However, it is also
true for the largest open set contained in Ω \Σ, i.e. Ω \Σ (see for instance [CrM], [LN], [CC],
[G]).

Another known, important fact we will need is that domains with boundary of class C 2

satisfy L n(Σ) = 0. This is proved in [Mnn]-Errata-§5.2 (see also [CrM] where however, only
bounded domains are discussed). At last, we shall need the following Lemma for which we add
the proof in correspondence to Lemmas 2.1 & 2.16 (see [CS]-Proposition 2.2.2.(ii) & Proposi-
tion 1.1.3.(c) and also [Fu]).

Lemma 3.3. Let Ω ( Rn be open. The function Ã : Rn→ R defined by Ã(x) =C|x|2/2−d(x),
is convex in any open ball B⊂⊂Ω, for any C ≥ 1/dist(B,∂Ω).

Proof. First note that for all a,b ∈ Rn with a 6= 0, we have

|a+b|+ |a−b|−2|a| ≤ |b|
2

|a|
. (3.1)

We choose an open ball B ⊂ Ω with r := dist(B,∂Ω) > 0, and take x ∈ B. Let y ∈ ∂Ω be such
that d(x) = |x− y|. For any z ∈ Rn such that x+ z,x− z ∈ B, we get

Ã(x+ z)+ Ã(x− z)−2Ã(x) = C|z|2− (d(x+ z)+d(x− z)−2d(x))

≥ C|z|2− (|x+ z− y|+ |x− z− y|−2|x− y|)

(by (3.1) for a = x− y and b = z) ≥ C|z|2− |z|2

|x− y|
≥ (C−1/r)|z|2.

Since Ã(x) is also continuous, we obtain that Ã(x) is convex in B for any C ≥ 1/r.

To state our main result in this subsection, we denote by H (y) := 1
n−1 ∑

n−1
i=1 κi(y) the mean

curvature of ∂Ω at the point y ∈ ∂Ω.
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Theorem 3.4. Let Ω⊂Rn be a domain with boundary of class C 2 satisfying a uniform interior
sphere condition. Then µ := (−∆d)dx is a signed Radon measure on Ω. Let µ = µac+µs be the
Lebesgue decomposition of µ with respect to L n, i.e., µac�L n and µs⊥L n. Then µs ≥ 0 in
Ω, and µac ≥ (n−1)H dx a.e. in Ω, where H := infy∈∂Ω H (y).

Proof. Letting δ be as in Lemma 3.1(1), we set Ωδ = {x ∈ Ω : d(x) < δ}. Then −∆d is a
continuous function on Ωδ and so µ0 := (−∆d)dx is a signed Radon measure on Ωδ , absolutely
continuous with respect to L n.

Next, let {Bi}i≥1 be a cover of the set Ω\Ωδ , comprised of open balls Bi for which dist(Bi,∂Ω)>
δ/2 for all i ≥ 1. According to Lemma 3.3, the function Ã(x) := |x|2/δ − d(x) is convex in
each Bi. From [EvG]-§6.3-Theorem 2, we deduce that there exist nonnegative Radon measures
{ν i}i≥1, respectively on {Bi}i≥1, such that∫

Bi

φ∆Ãdx =
∫

Bi

φdν
i,

for all φ ∈C∞
c (Bi). Since ∆Ã = 2n/δ −∆d in the sense of distributions, we get∫

Bi

φ(−∆d)dx =
∫

Bi

φdν
i− 2n

δ

∫
Bi

φdx, (3.2)

for all φ ∈C∞
c (Bi), and thus µ i := (−∆d)dx = ν i− 2n

δ
dx is a signed Radon measure on Bi.

Let {ηi}i≥1 be a C∞ partition of unity subordinated to the open covering {Bi}i≥1 of Ω\Ωδ ,
i.e.

ηi ∈C∞
c (Bi), 0≤ ηi(x)≤ 1 in Bi and

∞

∑
i=1

ηi(x) = 1 in Ω\Ωδ .

Further, for x ∈Ω define η0(x) = 1−∑
∞
i=1 ηi(x). We then have

sprtη0 ⊂Ωδ , η0(x) = 1 in Ωδ/2 and
∞

∑
i=0

ηi(x) = 1 in Ω.

We will now show that µ := ∑
∞
i=0 ηiµ

i is a well defined signed Radon measure on Ω, and
µ = (−∆d)dx. To this end, for any φ ∈C∞

c (Ω) we have∫
Ω

φ(−∆d)dx =
∞

∑
i=0

∫
Ω

φηi(−∆d)dx

(by (3.2)) =
∫

Ω

φη0dµ
0 +

∞

∑
i=1

(∫
Ω

φηidν
i− 2n

δ

∫
Ω

φηidx

)

=
∫

Ω

φη0dµ
0 +

∫
Ω

φ

∞

∑
i=1

ηidν
i− 2n

δ

∫
Ω

φ

∞

∑
i=1

ηidx

=
∫

Ω

φη0dµ
0 +

∫
Ω

φ

∞

∑
i=1

ηidµ
i

=
∫

Ω

φdµ,
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where the middle equality follows since ν i are positive Radon measures and thus ∑
m
i=0 ηiν

i is
increasing in m (see [EvG]-Section 1.9).

Next, by the Lebesgue Decomposition Theorem ([EvG]-§1.3-Theorem 3), µ = µac + µs

where

µs =
∞

∑
i=0

ηiµ
i
s =

∞

∑
i=1

ηiµ
i
s =

∞

∑
i=1

ηiν
i
s ≥ 0,

since µ i = ν i− 2n
δ

dx and ν i are nonnegative. Finally, from Lemma 3.1-(2) we get

−∆d(x) =
n−1

∑
i=1

κi(ξ (x))
1−κi(ξ (x))d(x)

≥
n−1

∑
i=1

κi(ξ (x))

= (n−1)H (ξ (x))

≥ (n−1)H , ∀x ∈Ω\Σ.

Now by Lemma 3.1-(2), −∆d is a continuous function on Ω\Σ and so

µac = (−∆d)dx≥ (n−1)H dx in Ω\Σ.

Recalling that L n(Σ) = 0 when ∂Ω ∈ C 2 and since Ω = (Ω \Σ)∪Σ, we conclude µac ≥ (n−
1)H dx a.e. in Ω.

Definition 3.5. A domain Ω with boundary of class C 2 is said to be mean convex if H (y)≥ 0
for all y ∈ ∂Ω.

Theorem 3.4 along with Lemma 3.1 provides us a characterization of mean convexity in
terms of the distance function for sufficiently smooth domains. More precisely, we have the
following

Corollary 3.6. Let Ω be a domain with boundary of class C 2 satisfying a uniform interior
sphere condition. Then Ω is mean convex if and only if condition (C) holds, i.e., −∆d ≥ 0 holds
in Ω, in the sense of distributions.

Remark 3.7. The resulting lower bound −(∆d)dx ≥ (n− 1)H dx, is optimal. To see this,
assume first that Ω is bounded and choose a point y0 ∈ ∂Ω such that H (y0) = H . Pick
0≤ φδ ∈C∞

c (Ω), such that sprt{φδ} ⊂ Bδ (y0)∩Ωδ , where δ > 0, small. For sufficiently small
δ , as x ∈ Ωδ approaches y0 we have −∆d(x) = (n− 1)H +O(d(x)). Thus, as δ ↓ 0 we have
−∆d(x) = (n−1)H +oδ (1) for all x ∈ Bδ (y0)∩Ωδ , and so

inf
0≤φ∈C∞

c (Ω)\{0}

∫
Ω

φ(−∆d)dx∫
Ω

φdx
≤

∫
Bδ (y0)∩Ωδ

φδ (−∆d)dx∫
Bδ (y0)∩Ωδ

φδ dx

= (n−1)H +oδ (1).
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If Ω is unbounded, we may consider a sequence {yn} ⊂ ∂Ω converging to y0, and repeat the
above argument for any such point, to obtain

inf
0≤φ∈C∞

c (Ω)\{0}

∫
Ω

φ(−∆d)dx∫
Ω

φdx
≤ (n−1)H (yn)+oδ (1).

Since H (y) is a continuous function on ∂Ω, we end up by letting n→ ∞.

4 Proof of Theorem A and Theorem D

Let Ω be a domain satisfying property (C). We define the quotient

Qβ [u] :=

∫
Ω

|∇u|
ds−1 dx− (s−1)

∫
Ω

|u|
ds dx∫

Ω

|u|
ds−β

dx
; s > 1, (4.1)

and we consider the following minimization problem

Bβ (Ω) := inf{Qβ [u] : u ∈C∞
c (Ω)\{0}}; 0 < β ≤ s−1.

The next Proposition shows that the essential range for β is smaller.

Proposition 4.1. Let Ω be a domain with boundary of class C 2 satisfying property (C). If s≥ 2
then Bβ (Ω) = 0 for all 0 < β < 1. If 1 < s < 2 then Bβ (Ω) = 0 for all 0 < β ≤ s−1.

Proof. For small δ > 0, let Ωδ := {x ∈ Ω : d(x) < δ} and Ωc
δ
= Ω \Ωδ . We test (4.1) with

uδ (x) = χΩc
δ
(x)φ(x), where φ ∈ C∞

c (Bε(y0)) for a fixed y0 ∈ ∂Ω and sufficiently small ε, sat-
isfying ε > 3δ . We may suppose in addition that 0 ≤ φ ≤ 1 in Bε(y0), φ ≡ 1 in Bε/2(y0) and
|∇φ | ≤ 1/ε. This function is not in C∞

c (Ω), but since it is in BV (Ω) we can mollify the charac-
teristic function so that the calculations below to hold in the limit. The distributional gradient
of uδ is ∇uδ = χΩc

δ
∇φ −~νφδ∂Ωc

δ
, where ~ν is the outward pointing, unit normal vector field

along ∂Ωc
δ
, and δ∂Ωc

δ
is the Dirac measure on ∂Ωc

δ
. Moreover, the total variation of ∇uδ is

|∇uδ |= χΩc
δ
|∇φ |+φδ∂Ωc

δ
. Since ∂Ωc

δ
= {x ∈Ω : d(x) = δ}, we obtain

Qβ [uδ ] =

∫
Ωc

δ

|∇φ |d1−sdx+δ 1−s ∫
∂Ωc

δ

φdSx− (s−1)
∫

Ωc
δ

φd−sdx∫
Ωc

δ

φdβ−sdx
. (4.2)

Using the fact that |∇d(x)|= 1 for a.e. x ∈Ω, we may perform an integration by parts in the last
term of the numerator as follows

(s−1)
∫

Ωc
δ

φd−sdx = −
∫

Ωc
δ

φ∇d ·∇d1−sdx

=
∫

Ωc
δ

[∇φ ·∇d]d1−sdx+
∫

Ωc
δ

φd1−s
∆ddx−δ

1−s
∫

∂Ωc
δ

φ∇d ·~νdSx.

16



Since ∇d is the inner unit normal to ∂Ω, we have ∇d ·~ν =−1 and substituting the above equality
in (4.2), the surface integrals will be canceled to get

Qβ [uδ ] =

∫
Ωc

δ

[|∇φ |−∇φ ·∇d]d1−sdx+
∫

Ωc
δ

φd1−s(−∆d)dx∫
Ωc

δ

φdβ−sdx
.

By the fact that −∆d(x)≤ c for all x ∈Ωc
δ
∩Bε , and by the properties we imposed on φ , we get

Qβ [uδ ] ≤
2
ε

∫
Ωc

δ
∩Bε

d1−sdx+ c
∫

Ωc
δ
∩Bε

d1−sdx∫
Ωc

δ
∩Bε/2

dβ−sdx

= c(ε)

∫
Ωc

δ
∩Bε

d1−sdx∫
Ωc

δ
∩Bε/2

dβ−sdx

=: c(ε)
N(δ )

D(δ )
.

Using now the co-area formula we compute

N(δ ) =
∫

ε

δ

r1−s
∫
{x∈Ωc

δ
∩Bε :d(x)=r}

dSxdr

≤ c1(ε)
∫

ε

δ

r1−sdr,

where c1(ε) = maxr∈[0,ε] |{x ∈Ωc
δ
∩Bε : d(x) = r}|. Also,

D(δ ) =
∫

ε/2

δ

rβ−s
∫
{x∈Ωc

δ
∩Bε/2:d(x)=r}

dSxdr

≥
∫

ε/3

δ

rβ−s
∫
{x∈Ωc

δ
∩Bε/2:d(x)=r}

dSxdr

≥ c2(ε)
∫

ε/3

δ

rβ−sdr,

where c2(ε) = minr∈[0,ε/3] |{x ∈ Ωc
δ
∩ Bε/2 : d(x) = r}|. A direct computation reveals that if

s ≥ 2 then Qβ [uδ ] ≤ oδ (1) for all 0 < β < 1, and also if 1 < s < 2 then Qβ [uδ ] ≤ oδ (1) for all
0 < β ≤ s−1.

4.1 Lower and upper estimates for B1(Ω)

In this subsection we obtain upper and lower estimates for B1(Ω). In particular we prove The-
orem A and the optimality in Theorem D of the introduction.

Theorem 4.2 (Lower estimate). Let Ω be a domain with boundary of class C 2 satisfying a
uniform interior sphere condition. If s≥ 1 then

B1(Ω)≥ (n−1)H , (4.3)

where H is the infimum of the mean curvature of ∂Ω.
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Proof. The estimate follows directly from (2.3) using Theorem 3.4.

Remark 4.3. By Theorem 2.9, if condition (C) is satisfied, then the first term in (2.3) is sharp.
The passage from (2.3) to inequality (4.3) via Theorem 3.4, is also sharp, i.e. the constant
(n−1)H in the inequality∫

Ω

|u|
ds−1 (−∆d)dx≥ (n−1)H

∫
Ω

|u|
ds−1 dx, ∀u ∈C∞

c (Ω),

is optimal. To see this, set v = d1−s|u|, to get

inf
u∈C∞

c (Ω)\{0}

∫
Ω

|u|
ds−1 (−∆d)dx∫

Ω

|u|
ds−1 dx

≤ inf
0≤v∈C∞

c (Ω)\{0}

∫
Ω

v(−∆d)dx∫
Ω

vdx

≤ (n−1)H +oδ (1),

by Remark 3.7.

We next present upper bounds. We begin with an upper bound which, although not sharp
enough for our problem, it is of independent interest.

Definition 4.4. The Cheeger constant h(Ω) of a bounded domain Ω with piecewise C 1 bound-
ary, is defined by h(Ω) := infω

|∂ω|
|ω| , where the infimum is taken over all sub-domains ω ⊂⊂ Ω

with piecewise C 1 boundary.

For existence of minimizers, uniqueness and regularity results concerning the Cheeger constant,
we refer to [FrK] and references therein (especially [StrZ]).

Proposition 4.5. Let Ω be a bounded domain with piecewise C 1 boundary such that condition
(C) holds. For all s≥ 1, we have B1(Ω)≤ h(Ω).

Proof. Take ω ⊂⊂ Ω with piecewise C 1 boundary and let uω(x) = (d(x))s−1χω(x). The dis-
tributional gradient and the total variation of this BV (Ω) function, are respectively, ∇uω =
(s− 1)ds−2χω∇d−~νds−1δ∂ω and |∇uω | = (s− 1)ds−2χω + ds−1δ∂ω , where ~ν is the outward
pointing, unit normal vector field along ∂ω, and δ∂ω is the uniform Dirac measure on ∂ω. We
test (4.1) with uω to get

Q1[uω ] =
(s−1)

∫
ω

d−1dx+
∫

∂ω
dSx− (s−1)

∫
ω

d−1dx∫
ω

dx
=
|∂ω|
|ω|

.

In particular h(Ω) = infω Q1[uω ]. By the standard C∞
c approximation of the characteristic func-

tion of the domain ω, we obtain B1(Ω)≤ |∂ω|
|ω| and thus B1(Ω)≤ h(Ω).

From Theorem 4.2 and Proposition 4.5 for s = 1, we conclude the following

Corollary 4.6. If Ω is a strictly mean convex, bounded domain with boundary of class C 2, it
holds that h(Ω)≥ (n−1)H .
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Remark. In [AltC] it is proved that a bounded convex domain Ω is a self-minimizer of h(Ω), if
and only if it belongs to the class C 1,1 and also the stronger estimate h(Ω) ≥ (n− 1)H holds.
Here H is the essential supremum of the mean curvature of the boundary (the last being defined
in the almost everywhere sense since ∂Ω ∈ C 1,1).

Remark. By Corollary 4.6, if Ω is a bounded strictly mean convex domain with boundary of
class C 2, then

|∂Ω|
|Ω|
≥ (n−1)H . (4.4)

For bounded convex domains with boundary of class C 2, this follows by one of the Minkowski
quadratic inequalities for cross-sectional measures (see [BZ] - eq(16), pg 144). It states that

|∂Ω|
|Ω|
≥ n
|∂Ω|

∫
∂Ω

H (y)dS.

Thus we have |∂Ω|/|Ω| ≥ nH from which (4.4) follows. This remark is taken from [GN],
where one can also find an application of (4.4).

The following result states a more useful upper bound for B1(Ω). It will be combined with
Theorem 4.2 to give the best possible constant for special geometries.

Theorem 4.7. Let Ω be a domain with boundary of class C 2 satisfying a uniform interior sphere
condition. If s≥ 2 then for all φ ∈C1

c (∂Ω),

B1(Ω)≤ (n−1)
∫

∂Ω
|φ(y)|H (y)dS∫
∂Ω
|φ(y)|dS

+

∫
∂Ω
|∇φ(y)|dS∫

∂Ω
|φ(y)|dS

,

where H (y) is the mean curvature at the point y ∈ ∂Ω.

Proof. Let δ > 0 such that for all x ∈ Ω̃δ := {x ∈Ω : d(x)< δ} there exists a unique point

ξ ≡ ξ (x) = x−d(x)∇d(x) ∈ ∂Ω (4.5)

with d(x) = |x− ξ |. For any t ∈ [0,δ ] the surface area element of ∂Ωc
t = {x ∈ Ω : d(x) = t} is

given by
dSt = (1−κ1t)...(1−κn−1t)dS = (1− (n−1)tH +O(t2))dS, (4.6)

where κ1, ...,κn−1, are the principal curvatures of ∂Ω, dS is the surface area element of ∂Ω

and H is the mean curvature of ∂Ω, (see [S]-§13.5 & 13.6). Now let 0 < ε < δ and chose
φ ∈C1

c (∂Ω). We test (4.1) with uε(x) = χΩc
ε\Ωc

δ
(x)φ(ξ (x)), ξ (x) as in (4.5), and then we will

check the limit as ε ↓ 0. The distributional gradient of uε , is ∇uε = (~νδ δ∂Ωc
δ
−~νεδ∂Ωc

ε
)φ(ξ )+

χΩc
ε\Ωc

δ
∇xφ(ξ ), where ~νδ ,~νε are respectively, the outward pointing unit normal vector fields

along ∂Ωc
δ
,∂Ωc

ε . Its total variation is |∇uε |= (δ∂Ωc
δ
+δ∂Ωc

ε
)|φ(ξ )|+χΩc

ε\Ωc
δ
|∇xφ(ξ )|. Thus∫

Ω

|∇uε |
ds−1 dx = δ

1−s
∫

∂Ωc
δ

|φ(ξ )|dSδ + ε
1−s
∫

∂Ωc
ε

|φ(ξ )|dSε +
∫

Ωc
ε\Ωc

δ

|∇xφ(ξ )|
ds−1 dx. (4.7)
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The first integral on the right-hand side of (4.7) is a constant since we will keep δ fixed. We
perform the change of variables y = ξ (x) in the second integral. Using (4.6) we have

ε
1−s
∫

∂Ωc
ε

|φ(ξ )|dSε = ε
1−s
∫

∂Ω

|φ(y)|(1− (n−1)εH (y)+O(ε2))dS

= ε
1−sM− (n−1)ε2−sMH +O(ε3−s), (4.8)

where M :=
∫

∂Ω
|φ |dS and MH :=

∫
∂Ω
|φ |H dS. Using the co-area formula, the third term on

the right-hand side of (4.7) is written as follows∫
Ωc

ε\Ωc
δ

|∇xφ(ξ )|
ds−1 dx =

∫
δ

ε

t1−s
∫

∂Ωc
t

|∇xφ(ξ )|dStdt. (4.9)

From (4.5) we have ξi(x) = xi−d(x) ∂

∂xi
(d(x)) and thus by Lemma 3.1-(c) we compute

∇xφ(ξ ) =
( n

∑
i=1

φξi(ξ )
∂ξi

∂x1
, ...,

n

∑
i=1

φξi(ξ )
∂ξi

∂xn

)
=

( φξ1(ξ )

1−κ1d
, ...,

φξn−1(ξ )

1−κn−1d
,0
)
.

Thus, (4.9) becomes

∫
Ωc

ε\Ωc
δ

|∇xφ(ξ )|
ds−1 dx =

∫
δ

ε

t1−s
∫

∂Ωc
t

(
n−1

∑
i=1

(
φyi

1−κit

)2
)1/2

dStdt

=
∫

δ

ε

t1−s
∫

∂Ω

(
n−1

∑
i=1

(
φyi

n−1

∏
j=1, j 6=i

(1−κ jt)
)2
)1/2

dSdt,

where we have changed variables by y = ξ (x) in the last inequality. Expanding the product as
in (4.6), we get

∫
Ωc

ε\Ωc
δ

|∇xφ(ξ )|
ds−1 dx ≤

∫
δ

ε

t1−s
∫

∂Ω

(
n−1

∑
i=1

φ
2
yi

(
1− [(n−1)H −κi]t + c1t2

)2
)1/2

dSdt

≤ K
∫

δ

ε

t1−sdt + c2

∫
δ

ε

t2−sdt, (4.10)

for some c1,c2 ≥ 0, where K :=
∫

∂Ω
|∇φ |dS. Next, using co-area formula and the same change

of variables, we get

(s−1)
∫

Ω

|uε |
ds dx = (s−1)

∫
δ

ε

t−s
∫

∂Ωc
t

|φ(ξ )|dStdt

≥ (s−1)
∫

δ

ε

t−s
∫

∂Ω

|φ(y)|[1− (n−1)tH (y)+ c3t2]dSdt

= Mε
1−s− (s−1)(n−1)MH

∫
δ

ε

t1−sdt + c4

∫
δ

ε

t2−sdt, (4.11)

20



for some c3,c4 ∈ R, and similarly

∫
Ω

|uε |
ds−β

dx≥M
∫

δ

ε

tβ−sdt− (n−1)MH

∫
δ

ε

t1+β−sdt + c5

∫
δ

ε

t2+β−sdt, (4.12)

for some c5 ∈ R. Thus inserting (4.8), (4.10), (4.11) into (4.7), and by (4.12) for β = 1, we get

Qβ [uε ]≤
(n−1)MH [(s−1)

∫
δ

ε
t1−sdt− ε2−s]+K

∫
δ

ε
t1−sdt + c6

∫
δ

ε
t2−sdt

M
∫

δ

ε
tβ−sdt− (n−1)MH

∫
δ

ε
t1+β−sdt + c5

∫
δ

ε
t2+β−sdt

, (4.13)

for some c6 ∈ R. If s = 2, then

Q1[uε ]≤
((n−1)MH +K) log(δ/ε)+Oε(1)

M log(δ/ε)+Oε(1)
,

while if s > 2, then

Q1[uε ]≤
1

s−2((n−1)MH +K)ε2−s + c7
∫

δ

ε
t2−sdt

1
s−2 Mε2−s− (n−1)MH

∫
δ

ε
t2−sdt + c8

∫
δ

ε
t3−sdt

,

for some c7,c8 ∈ R. In any case, letting ε ↓ 0 we deduce B1(Ω)≤ (n−1)MH +K
M .

An immediate consequence is

Corollary 4.8 (Upper estimate). Let Ω be a bounded domain with boundary of class C 2. If
s≥ 2 then

B1(Ω)≤ n−1
|∂Ω|

∫
∂Ω

H (y)dS

where H (y) is the mean curvature at the point y ∈ ∂Ω.

Proof. Since Ω is bounded we can chose ϕ ≡ 1 in the above Theorem.

The proof of Theorem A follows from Proposition 4.1, Theorem 4.2 and Corollary 4.8.

Example 4.9 (Ball). Let BR be a ball of radius R. By Theorem 4.2 we have B1(BR)≥ n−1
R , and

by Corollary 4.8, B1(BR)≤ n−1
R . We conclude that if s≥ 2, then B1(BR) =

n−1
R . See §5.

Example 4.10 (Infinite strip: proof of the optimality in Theorem D). Let SR = {x = (x′,xn) :
x′ ∈ Rn−1,0 < xn < 2R}. If s≥ 2, then combining Theorem 4.2 and Theorem 4.7 we can prove
that B1(SR) = 0. In fact we have Bβ (SR) = 0 for any 1 < β ≤ s− 1 and in particular we will
prove that if γ = 1, there is not positive constant C such that (2.10) holds for γ = 1. To see
this, pick any φ ≡ φ(x′) ∈ C1

c (Rn−1) such that sprt{φ} ⊂ B1 ⊂ Rn−1, where B1 is the open
ball in Rn−1 with radius 1, centered at 0′. Let η > 0 and set φη ≡ φη(x′) := φ(ηx′). Note that
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sprt{φη} ⊂ B1/η . Let also 0 < ε < δ for some fixed δ ≤ R (so that d(x) = xn). The quotient
corresponding to (2.10) is

Qγ [u] =

∫
SR

|∇u|
ds−1 dx− (s−1)

∫
SR

|u|
ds dx∫

SR

|u|
d X γ( d

R)dx
(4.14)

As in the proof of Theorem 4.7 we test (4.14) with uε,η(x) := χ(ε,δ )(xn)φη(x′), to arrive at

Qγ [uε,η ] =
Kη

∫
δ

ε
x1−s

n dxn +2Mηδ 1−s

Mη

∫
δ

ε
x−1

n X γ(xn/R)dxn
,

where we have set Mη :=
∫

B1/η
|φη(x′)|dx′ and Kη :=

∫
B1/η
|∇x′φη(x′)|dx′. Changing variables by

y′ = δx′, we obtain
Kη

Mη

=
K1η−(n−2)

M1η−(n−1) =
K1

M1
η ,

where M1 =
∫

B1
|φ(y′)|dy′ and K1 =

∫
B1
|∇y′φ(y′)|dy′. Thus

Qγ [uε,η ] =

K1
M1

η
∫

δ

ε
x1−s

n dxn +2δ 1−s∫
δ

ε
x−1

n X γ(xn/R)dxn
.

Now we select η = εs−2+ε for some fixed ε > 0. We deduce

Q1[uε,η ] =

K1
M1

εs−2+ε
∫

δ

ε
x1−s

n dxn +2δ 1−s

log(X(δ/R)
X(ε/R) )

.

It follows that Q1[uε,η ]→ 0, as ε ↓ 0. Thus, for Ω = SR inequality (2.10) does not hold when
γ = 1 and the exponent 1 on the distance function in the remainder term in (2.10) cannot be
increased.

5 Proof of Theorem C

In this section, we assume Ω is a ball of radius R. Without loss of generality, we assume it
is centered at the origin, and denote it by BR. The distance function to the boundary is then
d(x) = R− r, where r := |x|. Moreover,

−∆d(x) =
n−1

R−d(x)
, x ∈ BR \{0}. (5.1)

This section is devoted to the proof of the following fact
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Theorem 5.1. (1) For all u ∈C∞
c (BR), s≥ 2 and γ > 1, it holds that

∫
BR

|∇u|
ds−1 dx≥ (s−1)

∫
BR

|u|
ds dx+

[s]−1

∑
k=1

n−1
Rk

∫
BR

|u|
ds−k dx+

C
Rs−1

∫
BR

|u|
d

X γ

(d
R

)
dx, (5.2)

where C ≥ γ−1. The exponents s−k; k = 1,2, ..., [s]−1, on the distance function as well as the
constants (n−1)/Rk; k = 1,2, ..., [s]−1, in the summation terms are optimal. If γ = 1 the above
inequality fails in the sense of (5.5).

(2) For all u ∈C∞
c (BR),1≤ s < 2 and γ > 1, it holds that∫
BR

|∇u|
ds−1 dx≥ (s−1)

∫
BR

|u|
ds dx+

C
Rs−1

∫
BR

|u|
d

X γ

(d
R

)
dx, (5.3)

where C ≥ γ−1. If γ = 1 the above inequality fails in the sense of (5.5).

Remark 5.2. The optimality of the exponents and the constants stated in the above Theorem is
meant in the following sense: for any s≥ 1 set

I0[u] :=
∫

BR

|∇u|
ds−1 dx− (s−1)

∫
BR

|u|
ds dx,

and also for any s≥ 2 set

Im[u] := I0[u]−
m

∑
k=1

n−1
Rk

∫
BR

|u|
ds−k dx, m = 1, ..., [s]−1.

Then, for any s≥ 2

inf
u∈C∞

c (BR)\{0}

Im[u]∫
BR

|u|
dβ

dx
=

{
(n−1)/Rm+1, if β = s−m−1

0, if β > s−m−1,
(5.4)

for all m ∈ {0, ..., [s]−2}. Further, for any s≥ 1

inf
u∈C∞

c (BR)\{0}

I[s]−1[u]∫
BR

|u|
d X(d/R)dx

= 0. (5.5)

Proof. Inequality (5.3) is evident by Theorem 2.11. Let s≥ 2 and γ > 1. Since inequality (5.2)
is scale invariant it suffices to prove it for R = 1. Testing (2.1) with

T (x) =−(d(x))1−s[1− (d(x))s−1X γ−1(d(x))]∇d(x), x ∈ B1 \{0}.

we arrive at∫
B1

div(T )|u|dx = (s−1)
∫

B1

|u|
ds dx+

∫
B1

|u|
ds−1 (1−ds−1X γ−1(d))(−∆d)dx

+(γ−1)
∫

B1

|u|
d

X γ(d)dx.
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Thus, using (5.1) for R = 1, we obtain∫
B1

div(T )|u|dx = (s−1)
∫

B1

|u|
ds dx+(n−1)

∫
B1

|u|
ds−1

1−ds−1X γ−1(d)
1−d

dx

+(γ−1)
∫

B1

|u|
d

X γ(d)dx. (5.6)

Since s≥ 2, we take into account in (5.6) the fact that

1−ds−1X γ−1(d)
1−d

≥ 1−ds−1

1−d
≥ 1−d[s]−1

1−d
=

[s]−1

∑
k=1

dk−1, x ∈ B1 \{0},

and finally arrive at

I0[u]≥ (s−1)
∫

B1

|u|
ds dx+(n−1)

[s]−1

∑
k=1

∫
B1

|u|
ds−k dx+(γ−1)

∫
B1

|u|
d

X γ(d)dx,

which is (5.2) for R = 1.
We next prove (5.4). Suppose first that 2≤ s < 3. In this case all we have to prove is that

inf
u∈C1

0(B1)\{0}

I0[u]∫
B1

|u|
dβ

dx
=

{
n−1, if β = s−1

0, if β > s−1.
(5.7)

To this end, we pick uδ (x) = χB1−δ
(x), where x ∈ B1 and 0 < δ < 1. This function is in BV (B1)

and we can take a C∞
c approximation of it, so that the calculations bellow to hold in the limit.

The distributional gradient of uδ is ∇uδ = −~ν∂B1−δ
δ∂B1−δ

, and the total variation of ∇uδ is
|∇uδ |= δ∂B1−δ

. Using co-area formula we get

I0[uδ ]∫
B1

|uδ |
dβ

dx
=

δ 1−s|∂B1−δ |− (s−1)
∫ 1−δ

0 (1− r)−s|∂Br|dr∫ 1−δ

0 (1− r)−β |∂Br|dr

=
δ 1−s(1−δ )n−1−

∫ 1−δ

0 ((1− r)1−s)′rn−1dr∫ 1−δ

0 (1− r)−β rn−1dr

= (n−1)
∫ 1−δ

0 (1− r)1−srn−2dr∫ 1−δ

0 (1− r)−β rn−1dr
.

Thus
I0[uδ ]∫

B1

|uδ |
dβ

dx
→

{
n−1, if β = s−1

0, if β > s−1
, as δ ↓ 0.

Assume next that 3≤ s < 4. This time, besides (5.7) we have to prove that

inf
u∈C∞

c (B1)\{0}

I1[u]∫
B1

|u|
dβ

dx
=

{
n−1, if β = s−2

0, if β > s−2.
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Picking the same uδ as before and performing the same integration by parts in the second term
of the numerator, we conclude

I1[uδ ]∫
B1

|uδ |
dβ

dx
=

(n−1)
∫ 1−δ

0 (1− r)1−srn−2dr− (n−1)
∫ 1−δ

0 (1− r)1−srn−1dr∫ 1−δ

0 (1− r)−β rn−1dr

= (n−1)
∫ 1−δ

0 (1− r)2−srn−2dr∫ 1−δ

0 (1− r)−β rn−1dr
.

Thus
I1[uδ ]∫

B1

|uδ |
dβ

dx
→

{
n−1, if β = s−2

0, if β > s−2,
, as δ ↓ 0.

We continue in the same fashion for 4≤ s < 5, then 5≤ s < 6 and so on.
Next we prove (5.5). We pick uδ as before and perform the same integration by parts, to get

I[s]−1[uδ ]∫
B1

|uδ |
d X(d)dx

=
(n−1)

∫ 1−δ

0 (1− r)1−srn−2dr− (n−1)∑
[s]−1
k=1

∫ 1−δ

0 (1− r)k−srn−1dr∫ 1−δ

0 (1− r)−1rn−1X(1− r)dr

= (n−1)
∫ 1−δ

0 (1− r)[s]−srn−2dr∫ 1−logδ

1 t−1(1− e1−t)n−1dt

=: (n−1)
Nδ

Dδ

.

Since [s]− s > −1, we have Nδ = Oδ (1) as δ ↓ 0. Also, Dδ ≥
∫ 1−logδ

1 t−1dt +Oδ (1)→ ∞, as
δ ↓ 0.

6 From L1 to Lp weighted Hardy inequalities

In this section we discuss how far our results can go in the Lp setting. We start with the Lp

analog of Lemma 2.2.

Lemma 6.1. Let Ω (Rn be open. For all u ∈C∞
c (Ω), all s > 1, p≥ 1, it holds that∫

Ω

|∇u|p

ds−p dx≥
(s−1

p

)p ∫
Ω

|u|p

ds dx+
(s−1

p

)p−1 ∫
Ω

|u|p

ds−1 (−∆d)dx, (6.1)

where −∆d is meant in the distributional sense.

Proof. We substitute u by |u|p with p > 1 in (2.3), to arrive at

p
s−1

∫
Ω

|∇u||u|p−1

ds−1 dx≥
∫

Ω

|u|p

ds dx+
1

s−1

∫
Ω

|u|p

ds−1 (−∆d)dx. (6.2)
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The left hand side in (6.2) can be written as follows

p
s−1

∫
Ω

|∇u||u|p−1

ds−1 dx =
∫

Ω

{ p
s−1

|∇u|
ds/p−1

}{ |u|p−1

ds−s/p

}
dx

≤ 1
p

( p
s−1

)p ∫
Ω

|∇u|p

ds−p dx+
p−1

p

∫
Ω

|u|p

ds dx,

by Young’s inequality. Thus (6.2) becomes

1
p

( p
s−1

)p ∫
Ω

|∇u|p

ds−p dx≥ 1
p

∫
Ω

|u|p

ds dx+
1

s−1

∫
Ω

|u|p

ds−1 (−∆d)dx.

Rearranging the constants we arrive at the inequality we sought for.

Remark 6.2. (I) If Ω satisfies condition (C), we may cancel the last term to obtain∫
Ω

|∇u|p

ds−p dx≥
(s−1

p

)p ∫
Ω

|u|p

ds dx, (s > 1, p≥ 1).

The constant is optimal, as can be seen by arguing as in the proof of Theorem 2.11, with the
choice uε(x) = (d(x))(s−1)/p+εφ(x) ∈ W 1,p

0 (Ω;d−(s−p));ε > 0, and using the elementary in-
equality |a+ b|p ≤ |a|p + cp(|a|p−1|b|+ |b|p); a,b ∈ Rn and p > 1, in the numerator. Under
the stronger assumption that Ω is convex this result was given in [Avkh] by approximation with
bounded convex polytopes, while in the non weighted case, i.e., s = p, and Ω convex, it was first
given in [MMP]. See also [MS] for the two dimensional non weighted case.

(II) Inequality (6.1) in the non-weighted case is proved in [BFT1]-Lemma 3.3(ii) where in
addition an extra term appears on the right hand side. This allowed the authors to obtain even
more singular potentials for domains having finite inner radius and satisfying property (C). In
particular, the optimal homogeneous improvement was obtained (see [3-4]-Theorem A).

(III) If Ω is bounded, the second constant appearing on the right hand side in (6.1) is optimal.
To see this, we choose uε(x) = (d(x))(s−1)/p+ε ∈ W 1,p

0 (Ω;d−(s−p)), ε > 0, and after simple
computations, involving an integration by parts in the denominator, we conclude∫

Ω

|∇uε |p
ds−p dx− ( s−1

p )p ∫
Ω

|uε |p
ds dx∫

Ω

|uε |p
ds−1 (−∆d)dx

=
( s−1

p + ε)p− ( s−1
p )p

ε p

→
(s−1

p

)p−1
, as ε ↓ 0.

(IV) By (I) and (III), if Ω is a bounded set such that condition (C) holds, then all constants
appearing in (6.1) are optimal.

(V) Assume finally that Ω is a domain with ∂Ω ∈ C 2 and such that it satisfies a uniform
interior sphere condition. By Theorem 3.4 and (6.1), we get the Lp analog of Theorem 4.2∫

Ω

|∇u|p

ds−p dx≥
(s−1

p

)p ∫
Ω

|u|p

ds dx+(n−1)H
(s−1

p

)p−1 ∫
Ω

|u|p

ds−1 dx.
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58, Birkhäuser Boston, Inc. (2004).

[CrM] CRASTA, G., MALUSA, A.: The distance function from the boundary in a Minkowski space.
Trans. Amer. Math. Soc. 359 (12), 5725-5759 (2007).

[D] DAVIES, E. B.: Some norm bounds and quadratic form inequalities for Schrodinger operators,
II. J. Operator Theory 12 (1), 177-196 (1984).

[EvG] EVANS, L. C., GARIEPY, R. F.: Measure theory & fine properties of functions. Studies in
Advanced Mathematics, CRC Press (1992).

[F] FEDERER, H.: Curvature measures. Trans. Amer. Math. Soc. 93 (3), 418-491 (1959).

[FMT1] FILIPPAS, S., MAZ’YA, V. G., TERTIKAS, A.: A sharp Hardy Sobolev inequality. C. R. Math.
Acad. Sci. Paris 339, 483-486 (2004).

27



[FMT2] FILIPPAS, S., MAZ’YA, V. G., TERTIKAS, A.: On a question of Brezis and Marcus. Calc.
Var. Partial Differential Equations 25 (4), 491-501 (2006).

[FMT3] FILIPPAS, S., MAZ’YA, V. G., TERTIKAS, A.: Critical Hardy-Sobolev inequalities. J. Math.
Pures Appl. 87 (1), 37–56 (2007).

[FTT] FILIPPAS, S., TERTIKAS, A., TIDBLOM, J.: On the structure of Hardy-Sobolev-Maz’ya in-
equalities. J. Eur. Math. Soc. 11 (6), 1165-1185 (2009).

[FrK] FRIDMAN V., KAWOHL, B.: Isoperimetric estimates for the first eigenvalue of the p-Laplace
operator and the Cheeger constant. Comment. Math. Univ. Carolinae 44 (4), 659-667 (2003).

[Fu] FU, J. H. G.: Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52 (4), 1025-1046
(1985).

[GP] Giga, Y., Pisante, G. On representation of boundary integrals involving the mean curvature
for mean-convex domains. In: Geometric partial differential equations. CRM Series 15,
171–187, Ed. Norm. 2013.

[GTr] GILBARG D., TRUDINGER, N. S.: Elliptic Partial Differential Equations of second order
(2nd edition). Grundlehren der mathematischen Wissenschaften 224, Springer (1983).

[G] GIORGIERI, E.: A boundary value problem for a PDE model in mass transfer theory: Rep-
resentation of solutions and regularity results. PhD Thesis, Universitá di Roma Tor Vergata,
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