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In this paper we consider the branched transportation problem in 2D as-
sociated with a cost per unit length of the form 1 + β θ where θ denotes the
amount of transported mass and β > 0 is a fixed parameter (notice that the
limit case β = 0 corresponds to the classical Steiner problem). Motivated by
the numerical approximation of this problem, we introduce a family of func-
tionals ({Fε}ε>0) which approximate the above branched transport energy.
We justify rigorously the approximation by establishing the equicoercivity
and the Γ-convergence of {Fε} as ε ↓ 0. Our functionals are modeled on
the Ambrosio-Tortorelli functional and are easy to optimize in practice. We
present numerical evidences of the efficiency of the method.

1. Introduction

In this paper, we introduce a phase-field approximation of a branched transportation
energy for lines in the plane [6]. Our main goal is to derive a computationally tractable
approximation of the Steiner problem (of minimizing the length of lines connecting a given
set of points) in a phase-field setting. Similar results have been obtained recently by [8],
however we believe our approach is slightly simpler and numerically easier to implement.
We show that we can modify classical approximations for free discontinuity problems [15,
3, 14, 12] to address our specific problem, where the limiting energy is concentrated only
on a singular one-dimensional network (and roughly measures its length). Numerical
evidence illustrate the behaviour of these elliptic approximations. In this first study, we
limit ourselves to the two-dimensional case, as in that case lines can locally be seen as
discontinuities of piecewise constant functions, so that our construction can be derived
in a quite simple way from the above mentioned previous works on free discontinuity
problems. Higher dimension is more challenging from the topological point of view; an
extension of this approach is currently in preparation.

∗CNRS, CMAP, École Polytechnique CNRS UMR 7641, Route de Saclay, F-91128 Palaiseau Cedex
France, email: antonin.chambolle@cmap.polytechnique.fr
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We now introduce precisely our mathematical framework. Let Ω ⊂ R2 be a convex,
bounded open set. We consider measures σ ∈M(Ω,R2) of the form

σ = θξ · H1xM,

where M is a 1-dimensional rectifiable set oriented by a Borel measurable mapping ξ :
M → S1 and θ : M → R+ is a Borel measurable function representing the multiplicity.
Such measure is called a rectifiable measure. We follow the notation of [16] and write
σ = U(M, θ, ξ). Given a cost function f ∈ C(R+,R+), we introduce the functional
defined on M(Ω,R2)→ R+ ∪ {+∞} as

Ef (σ) :=


∫
M

f(θ) dH1 if σ = U(θ, ξ,M),

+∞ in the other cases.

Given two probability measures ω1 and ω2 supported on a finite number of points in Ω,
denote with S the union of their support, and consider the minimization of Ef (σ) for
σ ∈M(Ω,R2) satisfying the constraint

∇ · σ = ω1 − ω2 in D′(R2). (1.1)

In general, a model for branched transport connecting a set of sources (supp(ω1)) to a set
of sinks (supp(ω2)) is obtained by choosing f(θ) = |θ|α with 0 ≤ α ≤ 1 and minimizing the
associated functional under a divergence constraint (1.1), as shown in [20]. In our result
we obtain a linear combination depending on a parameter β between the cost functions
for α = 0 and α = 1, namely f(θ) = 1+β|θ|. Such cost function for suitable choices of the
constraint and the parameter β gives a good approximation of the functional associated
to the Steiner minimal tree problem. The direct numerical optimization of the functional
Ef is not easy because we do not know a priori the topological properties of the tree M .
For this reason it is interesting to optimize an “approximate” functional defined on more
flexible objects such as functions. Such approximate model has been introduced in [16]
where the authors study the Γ-convergence (see [10]) of a family of functionals inspired by
the well known work of Modica and Mortola [15]. Another effort in this direction can be
found in the work [8] where an approximation to the Steiner minimal tree problem ([2], [13]
and [17]) is studied by means of analogous techniques.

Here, we consider variational approximations of some energies of the form Ef through
a family of functionals modeled on the Ambrosio-Tortorelli functional [3]. To be more
precise, we need to introduce some material. Let ρ ∈ C∞c (R2,R+) be a classical radial
mollifier with supp ρ ⊂ B1(0) and

∫
ρ = 1. For ε ∈ (0, 1], we set ρε(x) = ε−2ρ(ε−1x)

and we define the space Vε(Ω) of square integrable vector fields with weak divergence
satisfying the constraint

∇ · σε = (ω1 − ω2) ∗ ρε. (1.2)

For an η = η(ε) > 0, we denote

Wε(Ω) =
{
φ ∈ W 1,2(Ω) : η ≤ φ ≤ 1 in Ω, φ ≡ 1 on ∂Ω

}
.

Then we define the energy Fε :M(Ω,R2)× L1(Ω)→ [0,+∞] as

Fε(σ, φ) :=


∫

Ω

1

2ε
φ2|σ|2 dx+

∫
Ω

[
ε

2
|∇φ|2 +

(1− φ)2

2ε

]
dx, if (σ, φ) ∈ Vε(Ω)×Wε(Ω),

+∞, in the other cases.
(1.3)
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The first integral in the definition of the energy will be refered to as the “constraint com-
ponent” while the second integral will be regarded as the “Modica-Mortola component”.
Let us briefly describe the qualitative properties of the associated minimization prob-
lem. First notice that the constraint (1.2) forces σ to be supported on a set containing
S = supp(ω1)∪supp(ω2). Next, the constraint component of the energy strongly penalizes
φ2|σ|2 so that φ should be small in the region where |σ| is large. On the other hand the
behavior of φ is controlled by the Modica-Mortola component that forces φ to be close
to 1 a.e. in Ω. Finally it has been proved that such component, as ε converges to 0, has
a price proportional to the 1-Hausdorff measure of the set {φ 6= 1}. As a consequence,
we expect the support of σ and the energy to concentrate on paths joining the points in
supp(ω1) with those in supp(ω2) similarly to [20]. The main part of the paper consists in
making rigorous and quantitative this analysis.

From now on, we assume that there exists some β ≥ 0 such that

η

ε

ε↓0−→ β. (1.4)

We denoteMS(Ω) the set of R2-valued measures σ ∈M(R2,R2) with support in Ω such
that the constaint (1.1) holds. We define the limit energy Eβ : M(Ω,R2) × L1(Ω) →
[0,+∞] as

Eβ(σ, φ) =


∫
M

(1 + β θ) dH1 if φ ≡ 1, σ ∈MS(Ω) and σ = U(M, θ, ξ),

+∞ in the other cases.

(1.5)

We prove the Γ-convergence of the sequence (Fε) to the energy Eβ as ε ↓ 0. More precisely
the convergence holds inM(Ω,R2)×L1(Ω) whereM(Ω,R2) is endowed with the weak-∗
topology and L1(Ω) is endowed with its classical strong topology.
We begin by proving the equicoercivity of the sequence (Fε). In this statement and
throughout the paper, we make a small abuse of language by denoting (aε)ε∈(0,1] and
calling sequence a family {aε} labeled by a continuous parameter ε ∈ (0, 1]. In the same
spirit, we call subsequence of (aε), any sequence (aεj) with εj → 0 as j → +∞.
We establish the following lower bound.

Theorem 1.1 (Γ − lim inf). For any sequence (σε, φε) ⊂ M(Ω,R2) × L1(Ω) such that

σε
∗
⇀ σ and φε → φ in the L1(Ω) topology, with (σ, φ) ∈M(Ω,R2)× L1(Ω)

lim inf
k→+∞

Fε(σε, φε) ≥ Eβ(σ, φ).

To complete the Γ-convergence analysis, we establish the matching Γ-limsup inequality.

Theorem 1.2 (Γ− lim sup). For any (σ, φ) ⊂M(Ω,R2)×L1(Ω) there exists a sequence

(σε, φε) such that σε
∗
⇀ σ and φε → φ in the L1(Ω) topology and

lim sup
k→+∞

Fε(σε, φε) ≤ Eβ(σ, φ).

Theorem 1.3 (Equicoercivity). Assume β > 0. For any sequence (σε, φε)ε∈(0,1] ⊂
M(Ω,R2)× L1(Ω) with uniformly bounded energies, i.e.

sup
ε
Fε(σε, φε) < +∞,
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there exist a subsequence εj ↓ 0 and a measure σ ∈ MS(Ω,R2) such that σεj → σ with
respect to the weak-∗ convergence of measures and φεj → 1 in L1(Ω). Moreover, σ is a
rectifiable measure (i.e. it is of the form σ = U(M, θ, ξ)).

Remark 1 (Relation with the Steiner minimal tree problem). Let us discuss the relation
between the limit functional and the Steiner minimal tree problem ([2], [13] and [17]).
Indeed, given a set S = {x0, . . . , xN}, the Steiner problem consists in finding the 1-
dimensional connected set of minimal length containing S. Let us associate the measures

ω1 = δx0 and ω2 =
1

N

N∑
i=1

δxi

to S. Then letting β = 0 in the equation (1.5) leads to E0(σ) = H1({x ∈M : θ(x) > 0})
where σ = U(M, θ, ξ), and S ⊂ supp(σ) to fulfill the constraint (1.1). This is exactly the
functional associated with the Steiner minimal tree problem. Let us stress out that the
hypothesis β > 0 is necessary to have compactness result since in Theorem 1.3, we show
that

sup
ε
|σε|(Ω) ≤ C

β
.

Nevertheless the Γ-convergence result still holds (without compactness) for β = 0.

In the setting introduced in the previous Remark the functional defined in (1.3) is
closely related to the one studied in [8], where the authors study the functional

1

cε

N∑
1

dφ(x0, xi) +

∫
Ω

[
ε

2
|∇φ|2 +

(1− φ)2

2ε

]
dx,

where

dφ(x, y) = inf

{∫
γ

φ(x)H1(x) : γ curve in Ω connecting x and y

}
.

The link with the present work lies in the relation,

N∑
i=1

dφ(x0, xi) = min

{∫
Ω

φ|σ| dx : ∇ · σ = δx0 −
1

N

N∑
i=1

δxi

}
.

Let us observe that by choosing as constraint component the term∫
Ω

φ2|σ|p

εa

for any p > 1 we still would have obtained for Γ-limit the functional Eβ. In particular
we have chosen a quadratic penalization (p = 2) on σ since, in this way, we can solve
the problem in sigma by solving a simple dual formulation, as shown in the Numerical
Section. Finally let us point out that to ensure that the support of σ connects the points
in S we need to privilege one point, namely x0, among all the others. In our approach
the defects introduced by the constraint affects only the mass component of the limit
functional, which is controlled by the parameter β. Furthermore the family of functionals
{Eβ}, Γ-converges to E0, as β tends to zero. The latter allows to claim that for small values
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of β and ε the support of a minimizing σ for the functional Fε is a good approximation
to a solution to the Steiner minimal tree problem. A different approach to this problem
has been recently proposed in [7] where the authors study a phase-field approximation
for rank one valued vector measures. The fact that we are working in dimension 2 is
fundamental for the proof of Theorem 1.1 as it allows to locally rewrite the vector field
σε as the rotated gradient of a function. We will study the higher dimensional cases in a
forthcoming paper.

Structure of the paper: In Section 2 we introduce some notation and several tools
and notions on SBV functions and vector field measures. In Section 3 we study the
behavior of the functional Fε on vector fields of the form ∇u (dropping the divergence
constraint). In Section 4 we prove the equicoercivity result, Theorem 1.3 and we estab-
lish the lower bound stated in Theorem 1.1. In Section 5 we prove the upper bound
of Theorem 1.2. Finally, in the last section, we present and discuss various numerical
simulations.

2. Notation and Preliminary Results

In the following Ω ⊂⊂ Ω̂ ⊂ Rd are bounded open convex sets. Given X ⊂ Rd (in practice
X = Ω or X = Ω̂), we denote by A(X) the class of all relatively open subsets of X and
by AS(X) the subclass of all simply connected relatively open sets O ⊂ X such that
O ∩ S = ∅. We denote by (e1, . . . , ed) the canonical orthonormal basis of Rd, by | · | the
euclidean norm and by 〈·, ·〉 the euclidean scalar product in Rd. The open ball of radius
r centered at x ∈ Rd is denoted by Br(x). The (d− 1)-dimensional Hausdorff measure in
Rd is denoted by Hd−1. We write |E| to denote the Lebesgue measure of a measurable
set E ⊂ Rd. When µ is a Borel meaure and E ⊂ Rd is a Borel set, we denote by µxE
the measure defined as µxE(F ) = µ(E ∩ F ).
Let us remark that from Section 4 onwards, we work in dimension d = 2.
For any fixed couple (σ, φ), with Fε(σ, φ;O) we denote the value of the functional (1.3)
on any set O ∈ A(Ω). Similarly we define the with version Eβ(σ, φ;O) the restriction of
Eβ to O.

2.1. BV(Ω) functions and Slicing

BV(Ω) is the space of functions u ∈ L1(Ω) having as distributional derivative Du a
measure with finite total variation. Following the classical notation as in [1, 4] and [9] for
u ∈ BV (Ω) we have

Du = ∇u dx+ (u+ − u−)νuHd−1xJu +Dcu,

where Ju is the set of “approximate jump points” x where y 7→ u(x + ρy) converge as
ρ → 0 to u+χ{y·νu≥0} + u−χ{y·νu<0} for some (u−, u+, νu) and Dcu is the Cantor “part”.
Let us introduce the space of special functions of bounded variation and a variant:

SBV (Ω) := {u ∈ BV (Ω) : Dcu = 0},

GSBV (Ω) := {u ∈ L1(Ω) : max(−T,min(u, T )) ∈ SBV (Ω) ∀T ∈ R}.
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Eventually, in Section 3, the following space of piecewise constant functions will be useful.

PC(Ω) = {u ∈ GSBV (Ω) : ∇u = 0}. (2.1)

To conclude this section we recall the slicing method for functions of bounded variation.
Let ξ ∈ Sd−1 and let

Πξ := {y ∈ Rd : 〈y, ξ〉 = 0}.

If y ∈ Πξ and E ⊂ Rd, we define the one dimensional slice

Eξ,y := {t ∈ R : y + tξ ∈ E}.

For u : Ω→ R, we define uξ,y : Ωξ,y → R as

uξ,y(t) := u(y + tξ), t ∈ Ωξ,y.

Functions in GSBV (Ω) can be characterized by one-dimensional slices (see [9, Thm. 4.1])

Theorem 2.1. Let u ∈ GSBV (Ω). Then for all ξ ∈ Sd−1 we have

uξ,y ∈ GSBV (Ωξ,y) for Hd−1-a.e. y ∈ Πξ.

Moreover for such y, we have

u′ξ,y(t) = 〈∇u(y + tξ), ξ〉 for a.e. t ∈ Ωξ,y,

Juξ,y = {t ∈ R : y + tξ ∈ Ju},

and
uξ,y(t

±) = u±(y + tξ) or uξ,y(t
±) = u∓(y + tξ)

according to whether 〈νu, ξ〉 > 0 or 〈νu, ξ〉 < 0. Finally, for every Borel function g : Ω→
R, ∫

Πξ

∑
t∈Juξ,y

gξ,y(t) dHd−1(y) =

∫
Ju

g|〈νu, ξ〉| dHd−1. (2.2)

Conversely if u ∈ L1(Ω) and if for all ξ ∈ {e1, . . . , ed} and almost every y ∈ Πξ we have
uξ,y ∈ SBV (Ωξ,y) and ∫

Πξ

|Duξ,y|(Ωξ,y) dHd−1(y) < +∞

then u ∈ SBV (Ω).

2.2. Rectifiable vector Measures

Let us introduce the linear operator ⊥ that associates to each vector v = (v1, v2) ∈ R2 the
vector v⊥ = (−v2, v1) obtained via a 90◦ counterclockwise rotation of v. Notice that the
⊥ operator maps divergence free R2-valued measures onto curl free R2-valued measures.
Let O ⊂ R2 be a simply connected and bounded open set. It is possible to generalize
Stokes Theorem to divergence free measures. If µ is a smooth divergence free vector field
on O we have µ = ∇u⊥ for some smooth function with zero mean value. Then by Poincaré
inequality |u|L1 ≤ C|µ|L1 . The result for µ general divergence free finite vector measure
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follows by regularization. On the other hand for u ∈ PC(Ω), σ := Du⊥ is divergence free
and,

σ = (u+ − u−)ν⊥uH1 = U(Ju, [u], ν⊥u ). (2.3)

Let us now produce an elementary example of measure γ of the form U(M, θ, ξ).

Example 1. Given two points x, y ∈ Ω we consider a Lipschitz path ψ(t) linking two
points x and y in Ω, parametrized on the interval [0, 1]. We define the vector measure
γ ∈M(Ω,R2) by

(φ, γ) :=

∫
〈φ(ψ(t)), ψ̇(t)〉 dt for any φ ∈ C(Ω,R2).

We then have γ = U(ψ([0, 1]), 1, ψ̇). Notice that ∇ · γ = δx − δy. In particular we denote
with [x, y] the Lipschitz path associated to the segment connecting the two points from
x to y, namely

ψ(t) = (1− t)x+ ty.

3. Local Result

In this section we introduce a localization of the family of functionals (Fε) (see (1.3)).
We establish a lower bound and a compactness property for these local energies.

Localization. Let O ∈ AS(Ω) a simply connected relatively open subset of Ω, for uε ∈
W 1,2(O) and φε ∈ W 1,2(O), we define

LF ε(uε, φε;O) := Fε(∇uε, φε;O)

i.e. as the evaluation of the functional F on vector fields of the form ∇u with no
requirement on the divergence. Notice that for ε < d(O, S), we have ∇ · σε ≡ 0 in O for
any σε ∈ Vε(Ω). By Stokes theorem we have Du⊥ε = σε for some uε ∈ W 1,2(O) and we
have

Fε(σε, φε;O) = LF ε(uε, φε;O).

The rest of the section is devoted to the proof of

Theorem 3.1. Let (uε)ε∈(0,1] ⊂ W 1,2(O) be a family of functions with zero mean value and
let (φε) ⊂ W 1,2(O) such that φε ∈ W 1,2(O, [η(ε), 1]). Assume that c0 := supε LF ε(uε, φε;O)
is finite. Then there exist a subsequence εj and a function u ∈ BV (Ω) such that

a) φεj → 1 in L2(O),

b) uεj → u with respect to the weak-∗ convergence in BV ,

c) u ∈ PC(O).

Furthermore for any piecewise function u ∈ PC(O) and any sequence (uε, φε) such that

uε
∗
⇀ u, we have the following lower bound of the energy:

lim inf
ε→0

LF ε(uε, φε;O) ≥
∫
Ju∩O

[1 + β|[u]|] dHd−1.
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The proof is achieved in several steps and mostly follows ideas from [14] (see also [12]).
In the first step we obtain (a) and (b). In step 2 we prove (c) and the lower bound for
one dimensional slices of LF ε. Finally in step 3 we prove (c) and the lower bound in
dimension d. The construction of a recovery sequence that would complete the Γ-limit
analysis is postponed to the global model in Section 5.

Proof. Step 1: Item (a) is a straightforward consequence of the definition of the functional.
Indeed, we have ∫

O

(1− φε)2 dx ≤ εLF ε(σε, φε) ≤ c0 ε
ε↓0−→ 0.

For (b), since (uε) has zero mean value, we only need to show that supε∈(0,1] |Duε|(O) <
+∞. Using Cauchy-Schwarz inequality we get

[|Duε|(O)]2 =

(∫
O

|∇uε|
)2

≤
(

2 ε

∫
O

1

φ2
ε

)(
1

ε

∫
O

φ2
ε|∇uε|2

)
. (3.1)

By assumption, the second therm in the right hand side of (3.1) is bounded by 2c0. In
order to estimate the first term we split O in the two sets {φε < 1/2} and {φε ≥ 1/2}.
We have,

2 ε

∫
O

1

φ2
ε

= 2 ε

(∫
{φε<1/2}

1

φ2
ε

+

∫
{φε≥1/2}

1

φ2
ε

)
.

Since η ≤ φε ≤ 1/2 on {φε ≤ 1/2} it holds φ2
ε(1− φε)2 ≥ η2(1− 1/2)2 therefore∫

{φε<1/2}

1

φ2
ε

≤ 2ε

η2(1− 1/2)2

∫
{φε<1/2}

(1− φε)2

2ε
≤ 8ε

η2
c0,∫

{φε≥1/2}

1

φ2
ε

≤
∫
{φε≥1/2}

1

(1/2)2
= 4|{φε ≥ 1/2}|.

Eventually, as |{φε ≥ 1/2}| ≤ |O|, combining these estimates with (3.1) we obtain

[|Duε|(O)]2 ≤ ε2

η2
16c2

0 + 8ε|O|c0
ε↓0−→ 16c2

0

β2
< ∞. (3.2)

This establishes (b).

Step 2: In this step we suppose O to be an interval of R, so that uε, φε are one-
dimensional. We first prove that u is piecewise constant. The idea is that in view of the
constraint component of the energy, variations of uε are balanced by low values of φε. On
the other hand the Modica-Mortola component of the energy implies that φε ' 1 in most
of the domain and that transitions from φε ' 1 to φε ' 0 have a constant positive cost
(and therefore can occur only finitely many times).

Step 2.1: (Proof of u ∈ PC(O).) Let us define

Bε :=

{
x ∈ O : φε(x) <

3

4

}
⊃ Aε :=

{
x ∈ O : φε(x) <

1

2

}
, (3.3)

and let
Cε = {I connected component of Bε : I ∩ Aε 6= ∅}. (3.4)
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Let us show that the cardinality of Cε is bounded by a constant independent of ε. Let ε be
fixed and consider an interval I ∈ Cε. Let a, b ∈ Ī such that {φε(a), φε(b)} = {1/2, 3/4}.
Using the usual Modica-Mortola trick, we have

LF ε(uε, φε; I) ≥
∫
I

ε|φ′ε|2 +
(1− φε)2

4ε
dx ≥

∫
(a,b)

|φ′ε|(1− φε) dx ≥
∫ 3/4

1/2

(1− t) dt =
3

25
.

Since all the elements of Cε are disjoint and LF ε(uε, φε, ·) is additive, we deduce from the
energy bound that

#Cε ≤ 25c0/3,

where we denote #Cε the cardinality of Cε. Next, up to extracting a subsequence we
assume that #Cε = N is fixed. The elements of Cε are written on the form Iεi =
(mε

i − wεi ,mε
i + wεi ) for i = 1, · · · , N with mε

i < mε
i+1. Since φε → 1 in L1(O) we have∑

Iεi ∈Cε

|Iεi | =
∑
i

2wεi → 0. (3.5)

Up to extracting a subsequence, we can assume that each sequence (mε
i ) converges in O.

We call m1 ≤ m2 ≤ · · · ≤ mN their respective limits. We now prove that

|Du|(O \ {mi}Ni=1) = 0, (3.6)

thus supp(|Du|) ⊂ {m1, · · · ,mN}. The latter ensures that u has no Cantor component
since Du is supported on a finite number of points and that is a.e. constant outside
{m1, · · · ,mN} so that u ∈ PC(O), (2.1). To this aim, we fix x ∈ O \ {mi}Ni=0 and
establish the existence of a neighborhood Bδ(x) of x for which |Du|(Bδ(x)) = 0. Let
0 < δ ≤ mini |x−mi|/2. Equation (3.5) ensures that for ε small enough Bδ(x)∩Cε = ∅.
Notice that from the definitions in (3.3) and (3.4) we have that φε ≥ 1/2 outside the union
of the sets in Cε. Hence, using Cauchy-Scwarz inequality, we have for ε small enough,(∫

Bδ(x)

|u′ε| dx
)2

≤ 2δ

∫
Bδ(x)

|u′ε|2 dx ≤ (2δ)(2ε)4

(
1

2ε

∫
Bδ(x)

φ2
ε|u′ε|2 dx

)
≤ 16c0εδ

ε↓0−→ 0.

By lower semicontinuity of the total variation on open sets we conclude that |Du|(Bδ(x)) =
0, which proves the claim (3.6).

Step 2.2: (Proof of the lower bound for LF ε.) Without loss of generality we can assume
N = 1, thus Ju is composed of a single point, otherwise the argument we propose can be
applied on each mi separately. Up to a translation m1 = 0 and we denote D := u(0+) =
−u(0−) > 0. For any 0 < d < D there exist six points y1 < x1

ε ≤ x̃1
ε < x̃2

ε ≤ x2
ε < y2 such

that

lim
ε→0

φε(y1) = lim
ε→0

φε(y2) = 1,

lim
ε→0

φε(x
1
ε) = lim

ε→0
φε(x

2
ε) = 0, (3.7)

uε(x̃
1
ε) = −D + d, uε(x̃

2
ε) = D − d.

Since φε → φ and uε → u in L1 up to a subsequence they converge point-wise almost
everywhere and this implies the first and third fact. Let inf(y1,y2) φε = cε, then Jensen
inequality implies

c0 ≥
∫ y2

y1

φ2
ε|u′ε|2

2ε
dx ≥ c2

2ε(y2 − y1)

(∫ y2

y1

|u′ε| dx
)2

.
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Then cε must vanish with ε implying statement (3.7). Using the Modica-Mortola trick in
the intervals (y1, x

1
ε) and (x2

ε, y2) as above, we compute:

lim inf
ε↓0

LF ε(uε, φε; (y1, x
1
ε)∪(x2

ε, y2)) ≥ lim inf
ε↓0

∫ x1ε

y1

(1−φε)|φ′ε| dx+

∫ y2

x2ε

(1−φε)|φ′ε| dx ≥ 1.

(3.8)
For the estimate on the interval Iε = (x̃1

ε, x̃
2
ε) let us introduce:

Gε :=
{
w ∈ W 1,2(Iε) : w(x̃1

ε) = −D + d, w(x̃2
ε) = D − d

}
,

Zε :=
{
z ∈ W 1,2(Iε) : η ≤ z ≤ 1 a.e. on Iε

}
,

Hε(w, z) :=

∫
Iε

(
1

2ε
z2|w′|2 +

(1− z)2

2ε

)
dx,

hε(z) = inf
w∈Wε

Hε(w, z) for z ∈ Zε.

Note that for w ∈ Gε and z ∈ Zε, we can apply an inequality similar to (3.1). In particular,
for z replacing φε and w′ taking the place of Du we get(∫

Iε

|w′| dx
)2

≤
(∫

Iε

z2|w′|2
)(∫

Iε

1

z2

)
.

Reversing the latter and taking into account the conditions on w obtains∫
Iε

z2|w′|2 ≥
(∫

Iε

|w′| dx
)2(∫

Iε

1

z2

)−1

≥ 4(D − d)2

(∫
Iε

1

z2

)−1

.

From this we deduce the lower bound

hε(z) ≥ 4(D − d)2

(
2ε

∫
Iε

1

z2
dx

)−1

+

∫
Iε

(
(1− z)2

2ε

)
dx. (3.9)

Let us remark that optimizing Hε(w, z) with respect to w ∈ Gε we see that this inequality
is actually an equality.
Consider for 0 < λ < 1 the inequalities:∫
{x∈Iε:φε≥λ}

1

φ2
ε

≤ L
1(Iε)

λ2
and

∫
{x∈Iε:φε<λ}

1

φ2
ε

≤ 1

(1− λ)2

2ε

η2

(∫
Iε

(1− φε)2

2ε
dx

)
.

Applying both of them in (3.9) we obtain

LF ε(uε, φε, Iε) ≥ hε(φε)

≥ 2(D − d)2

εL1(Iε)
λ2

+ 1
(1−λ)2

2ε2

η2

(∫
Iε

(1−φε)2
2ε

dx
) +

∫
Iε

(
(1− φε)2

2ε

)
dx

≥ 2(1− λ)
η

ε
(D − d)− (1− λ)2 η

2

2ε

L1(Iε)

λ2
(3.10)

where the latter inequality is obtained by minimizing the function:

t 7→ 2(D − d)2

εL1(Iε)
λ2

+ 1
(1−λ)2

2ε2

η2
t

+ t.

10



Therefore we can pass to the limit in (3.10) and obtain:

lim inf
ε↓0

LF ε(uε, φε, Iε) ≥ (1− λ)β 2(D − d).

Sending λ and d to 0 and recalling the estimate in (3.8) we get

lim inf
ε↓0

LF ε(uε, φε, (y1, y2)) ≥ 1 + β 2D = 1 + β|u(0+)− u(0−)|. (3.11)

Step 3: Indeed by Fatou’s Lemma for any ξ ∈ Sd−1 and Hd−1 almost every y ∈ Ωξ it holds

lim inf
ε↓0

LF ε(uε, φε;O) ≥∫
Πξ

lim inf
ε↓0

(∫
Oξy

1

2ε
(φ2

ε)
ξ
y|(u′ε)ξy|2 +

ε

2
|(φ′ε)ξy|2 +

(1− (φε)
ξ
y)

2

2ε
dt

)
dHd−1(y).

Then by the results in Step 2.1 and 2.2, in particular inequality (3.11), it holds

lim inf
ε↓0

LF ε(uε, φε;O) ≥
∫

Πξ

∑
mi∈(Ju)ξy

[
1 + β|uξy(m+

i )− uξy(m−i )|
]

dHd−1(y).

Therefore by Theorem 2.1 we have u ∈ SBV (O). Moreover, since (u′)ξy = 0 on each slice,
we have u ∈ PC(O). Applying identity (2.2) we get

lim inf
ε→0

LF ε(uε, φε;O) ≥
∫
Ju∩O

|νu · ξ| [1 + β|[u]|] dHd−1. (3.12)

In order to conclude, we use the following localization method stated by Braides in [9,
Prop. 1.16].

Lemma 3.1. Let µ : A(X)→ [0,+∞) be an open-set function superadditive on open sets
with disjoint compact closures and let λ be a positive measure on X. For any i ∈ N let
ψi be a Borel function on X such that µ(A) ≥

∫
A
ψi dλ for all A ∈ A(X). Then

µ(A) ≥
∫
A

ψ dλ

where ψ := supi ψi.

For any u ∈ PC(O) let us introduce the increasing set function µ defined on A(O) by

µ(A) := inf
φε→1,uε

∗
⇀u

{
lim inf
ε→0

LF ε(uε, φε;A)
}
, for any A ∈ A(O).

Observe that for any two open sets A and B with disjoint compact closure and for any
(uε, φε) such that uε

∗
⇀ u and φε → 1 on A ∪ B, the restriction of uε to A (resp. B)

weak-∗ converges in A (resp. B) to the restriction of u on A (resp. B) and it follows

µ(A+B) ≥ µ(A) + µ(B).

This proves that µ is superaddittive on open sets with disjoint compact closures. Let λ
be a Radon measure defined as

λ := [1 + β|u(x+)− u(x−)|]Hd−1xJu.

11



Fix a sequence (ξi)i∈N dense in Sd−1. By (3.12) we have

µ(O) ≥
∫
O

ψi dλ, i ∈ N,

where

ψi(x) :=

{
|〈νu(x), ξi〉|, if x ∈ Ju,
0, if x ∈ O \ Ju.

Hence by Lemma 3.1 we finally obtain

lim inf
ε→0

LF ε(uε, φε;O) ≥
∫
O

sup
i
ψi(x) dµ =

∫
Ju∩O

[1 + β|[u]|] dHd−1.

4. Equicoercivity and Γ-liminf

Let us first produce the following construction.

Lemma 4.1. Given two probability measures ω1 and ω2 supported on a finite set of points
S = {x0, . . . , xN}, there exists a vector measure γ = U(Mγ, θγ, ξγ) and a finite partition
(Ωi) ⊂ A(Ω) of Ω such that

a) ∇ · γ = −ω1 + ω2,

b) each Ωi is a polyhedron,

c) Mγ ⊂
⋃
i ∂Ωi,

d) Ωi is of finite perimeter for each i and Ωi ∩ Ωj = ∅ for i 6= j,

e) L2(Ω \ ∪iΩi) = 0.

Moreover if M is a 1 dimensional countably rectifiable set, we can choose γ and (Ωi) such
that H1(M ∩

⋃
i ∂Ωi) = 0.

Proof. Let us fix a point p ∈ Ω \ S and assume

ω1 − ω2 =
N∑
i=0

aiδxi .

Following the Example 1 we can construct a measure γi supported on the segment [p, xi]
such that ∇ · γi = δxi − δp for i ∈ {0, · · · , N}. We define

γ =
N∑
i=1

aiγi.

By construction (a) holds true. Moreover, up to a small shift of p we may assume that
[p, xi] ∩ [p, xj] = {p} for i 6= j.
Next, let Dj be the straight line supporting [p, xj]. We define the sets (Ωi) as the connected
components of Ω \ (D0 ∪ · · · ∪DN). We see that (c, d, e) hold true.
For the last statement, we observe that by the coarea formula, we haveH1(M∩

⋃
i ∂Ωi) = 0

for a.e. choice of p.
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Figure 1: Example of the construction of the H1-rectifiable measure γ (red) and of the
partition {Ωi} (gray) in the case M (green) is being a H1-rectifiable set. Here
ω1 = δx0 and ω2 = 1/3(δx1 + δx2 + δx3).

We now prove the compactness property (Theorem 1.3). Let us consider a sequence
(σε, φε) ∈M(Ω,R2) uniformly bounded in energy by c0 < +∞,

0 ≤ Fε(σε, φε) ≤ c0 for ε ∈ (0, 1]. (4.1)

Proof of Theorem 1.3. First observe that by definition (1.3) and equation (4.1), we have
σε ∈ Vε(Ω) and φε ∈ Wε(Ω). Next, using the arguments of Step 1 of the proof of
Theorem 3.1, with |σε| instead of |∇uε|, inequality (3.2) reads

|σε|(Ω) ≤

√
16
ε2

η2
c2

0 + 8ε|Ω|c0
ε↓0−→ 4c0

β
< ∞. (4.2)

Thus the total variation of (σε)ε is uniformly bounded as long as β > 0 and there exists

a σ ∈MS(Ω) such that up to a subsequence σε
∗
⇀ σ inM(Ω). Now, considering the last

term in the energy (1.3) we have∫
Ω

(1− φε)2 dx ≤ 2ε Fε(σε, φε) ≤ 2ε c0 → 0.

Hence, φε → 1 in L2(Ω).

Let us now study the structure of the limit measure σ. Let us recall that Ω̂ is a bounded
convex relatively open set such that Ω ⊂ Ω̂ and let us extend σε by 0 and φε by 1 in Ω̂\Ω.
Obviously we have Fε(σε, φε; Ω̂) = Fε(σε, φε; Ω), therefore for any O ∈ As(Ω̂) applying
the localization described in Section 3 we can associate to each σε a function uε ∈ W 1,2(O)
with mean value 0 such that σε = ∇u⊥ε in O. Since |∇u⊥ε | = |∇uε| by Theorem 3.1 there

exists a u ∈ PC(O) such that, up to extracting a subsequence, uε
∗
⇀ u. Eventually, from

formula (2.3), we get

σxO = Du⊥xO = −[u]ν⊥JuH
1x(Ju ∩O).

Since we can cover Ω\S by countable many sets O ∈ AS(Ω̂), this shows that σ decomposes
as

σ = U(Mσ, θσ, ξσ) + µ.
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Where µ is a measure absolutely continuous with respect to H0xS. By Lemma 4.1 there
exists a rectifiable measure γ = U(Mγ, θγ, ξγ) such that∇·(σ+γ) = 0 andH1(Mγ∩Mσ) =
0. Then there exists a u ∈ BV (Ω) such that Du = σ⊥ + γ⊥. Since u ∈ BV (Ω) and S is
composed by a finite number of points, we deduce |Du|(S) = 0 which implies |µ|(S) = 0.
Hence σ writes in the form U(Mσ, θσ, ξσ).

Let us now use the local results of Section 3 to prove the Γ− lim inf inequality.

Proof of Theorem 1.1. Let (σε, φε) such that σε
∗
⇀ σ and φε → φ as in the statement of

the theorem. Without loss of generality, we can suppose that Fε(σε, φε) < +∞.
Let Ω̂ be as in the proof of Theorem 1.3 and let us define µ = Γ − lim infεFε(σε, φε)
and λ = β|σ| + H1xMσ. Consider the countable family of sets {Oi} ⊂ AS(Ω̂) made of
the relatively open rectangles Oi ⊂ Ω̂ \ S with vertices in Q2. The local result stated in
Theorem 3.1 gives for any i ∈ N

µ(A) ≥ µ(Oi ∩ A) ≥ λ(Oi ∩ A) =

∫
A

ψi dλ.

where ψi := 1Oi . Therefore Lemma 3.1 gives

Γ− lim inf
ε↓0

Fε(σε, φε) = µ(Ω̂) ≥ λ(Ω̂) = β|σ|(Ω) +H1(Mσ)

since supi ψi is the constant function 1.

5. Γ-limsup inequality

Let us prove the Γ-limsup inequality stated in Theorem 1.2. Recall that the latter consists
in finding a sequence (σε, φε) for any given couple (σ, φ) ∈ M(Ω,R2) × L1(Ω) such that

σε
∗
⇀ σ, φε → φ in L1(Ω) and

lim sup
ε↓0

Fε(σε, φε) ≤ Eβ(σ, φ). (5.1)

When Eβ(σ, φ) = +∞ the inequality is valid for any sequence therefore by definition (1.5)
we can assume σ = U(M, θ, ξ) and φ = 1. In view of the results from White [18], [19] and
Xia [20] polyhedral vector measures are dense in energy and it is sufficient to consider
vector measures of the form

σ =
n∑
i=1

U(Mi, θi, ξi), (5.2)

where Mi is a segment, θi ∈ R+ is H1-a.e. constant and ξi is an orientation of Mi for each
i. An exaustive proof of the same result in the general case can be found in the recent
paper [11]. Nevertheless, to keep self-contained our work, we included in appendix A a
proof of this result based on BV functions. Without loss of generality we can suppose
that for each couple of segments Mi, Mj, for i 6= j, the intersection Mi ∩Mj is at most
a point (called branching point) not belonging to the relative interior of Mi and Mj. We
first produce the estimate (5.1) for σ concentrated on a single segment thus let us assume
σ = θe1 · H1x(0, l)× {0}.

14



Notation: Let us fix the values

aε :=


θβ ε

2
if β > 0

ε if β = 0
, bε := ε ln

(
1− η
ε

)
and rε = max{ε, aε}.

Let d∞(x, S) be the distance function from x to the set S ⊂ Ω relative to the infinity
norm on R2 and Qr(P ) = {x ∈ R2 : d∞(x, P ) ≤ r} the square centered in P of size 2r
and sides parallel to the axes. Introduce the sets

Iaε := {x ∈ R2 : d∞(x, [0, l]× {0}) ≤ aε} ∪Qrε(0, 0) ∪Qrε(l, 0),

Ibε := {x ∈ R2 : d∞(x, Iaε) ≤ bε},
Icε := {x ∈ R2 : d∞(x, (Iaε ∪ Ibε)) ≤ ε},
Idε := Ω \ (Iaε ∪ Ibε ∪ Icε),

Σε(t) := {(t, x2) : |x2| ≤ rε},

and define Rε = Iaε \ (Qrε(0, 0) ∪Qrε(l, 0)).

Figure 2: Example of the neighborhoods of the segment [0, l]× {0}. On the left the case
in which rε = ε, on the right the case in which rε = aε > ε. The cyan region is
Rε and Iaε = Rε ∪ (Qrε(0, 0) ∪Qrε(l, 0)). Remark that supp(ρε) = B(0, ε).

Costruction of σε: We build σε as a vector field supported on Iaε . In particular we
add together three different constructions performed respectively on Rε, Qrε(0, 0) and
Qrε(l, 0). We construct σε on Rε in order to obtain the Γ-limsup inequality, on the other
hand we are forced to modify such construction in a square neighborhood of each ending
point of the segment to control ∇ · σε. As a matter of fact we need to verify that the
piecewise definition coincide on the sets Σε(rε) and Σε(l − rε) which correspond to the
interfaces between Qrε(0, 0) and Rε, and, Rε and Qrε(l, 0). Let r = rε/ε and consider the
problem

∆u = ±θ (δx0 ∗ ρ) , on Qr(0, 0),

∂u

∂ν
=
±θ
H1(Σ)

, on Σ± =

{
x ∈ R2 : x1 = ±1, |x2| ≤

θβ

2

}
,

∂u

∂ν
= 0, otherwise on ∂Qr(0, 0) \ Σ±.

∑+

(0,0)

Qr(0,0)

B1(0,0)

∑-
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In the latter the set Σ+ (resp. Σ−) is the image of the set Σε(rε) (resp. Σε(l − rε)) via
the map

x 7−→ x

ε
,

(
resp. x 7−→ x− (l, 0)

ε

)
.

Let u+ be the solution relative to the problem in which every occurrence of ± is replaced
by + and let u− defined accordingly. Then set

σε =



∇u+(x/ε)

ε
, on Qrε(0, 0),

θ

2aε
· e1, on Rε,

∇u−((x− (l, 0))/ε)

ε
, on Qrε(l, 0).

(5.3)

Indeed, the Neumann Boundary conditions imposed for u+ (resp. u−) on Σ+ (resp. Σ−)
ensure that the latter piecewise definition is continuous on Σε(rε) and Σε(l − rε). By

construction we have that ∇ · σε = θ [(δ(0,0) − δ(l,0)) ∗ ρε] and σε
∗
⇀ σ. Let us point out as

well that there exists a constant c(α, θ) such that

c(α, θ) :=

∫
Qrε (l,0)

|σε|2 dx =

∫
Qrε (0,0)

|σε|2 dx =

∫
Qr(0,0)

∣∣∇u+(x)
∣∣2 dx =

∫
Qr(0,0)

∣∣∇u−(x)
∣∣2 dx.

(5.4)

Costruction of φε: Most of the properties of φε are a consequence of the inequalities
obtained in Theorem 3.1 and the structure of σε. On one hand we need φε to attain the
lowest value possible on Iaε in order to compensate the concentration of σε in this set,
on the other, as shown in inequality (3.8), we need to provide the optimal profile for the
transition from this low value to 1. For this reasons we are led to consider the following
ordinary differential equation associated with the optimal transitionw′ε =

1

ε
(1− wε),

wε(0) = η.
(5.5)

Observe that wε = 1− (1− η) exp
(−t
ε

)
is the explicit solution of equation (5.5) and set

φε(x) :=


η, if x ∈ Iaε ,
wε(d∞(x, Iaε)), if x ∈ Ibε ,
d∞(x, Ibε)− ε+ 1, if x ∈ Icε ,
1, otherwise.

(5.6)

Evaluation of Fε(σε, φε): (case of a σ concentrated on a line segment) We prove inequal-
ity (5.1) for the sequence we have produced. Since the sets Iaε , Ibε , Icε and Idε are disjoint
we can split the energy as follows

Fε(σε, φε) = Fε(σε, φε; Iaε) + Fε(σε, φε; Ibε) + Fε(σε, φε; Icε) + Fε(σε, φε; Idε) (5.7)

and evaluate each component individually. Since σε is null and φε is constant and equal
to 1 in Idε we have that Fε(σ, φε; Idε) = 0. For the other components we strongly use the
definitions in (5.3) and (5.6). First we split again the energy on the set Iaε as following

Fε(σε, φε; Iaε) = Fε(σε, φε;Rε) + Fε(σε, φε;Qrε(0, 0)) + Fε(σε, φε;Qrε(l, 0)).

16



Now identity (5.4) leads to the estimate

Fε(σε, φε;Qrε(0, 0)) = Fε(σε, φε;Qrε(l, 0)) =
η2

2ε
c(β, θ) +

(1− η)2

2ε
r2
ε

and

Fε(σε, φε;Rε) =

[
1

2ε
η2

∣∣∣∣ θ2aε
∣∣∣∣2 +

(1− η)2

2ε

]
|Rε| ≤

[
(θη)2

8εa2
ε

+
1

2ε

]
2aεl.

Then passing to the limsup we obtain

lim sup
ε↓0

Fε(σε, φε; Iaε) ≤ θβl = θβH1([0, l]× {0}). (5.8)

To obtain the inequality on the sets Ibε and Icε we are going to apply the coarea formula
therefore let us observe that for both d∞(x, Iaε) and d∞(x, Ibε) there holds |∇d∞(x, ·)| = 1
for a.e. x ∈ Ω and that there exist a constant k = k(β, θ) such that the level lines
{d∞(x, ·) = t} have H1 length controlled by 2l + kt. In view of these remarks we obtain

Fε(σε, φε; Ibε) =

∫
Ibε

[
ε

2
|∇φε|2 +

(1− φε)2

2ε

]
|∇d∞(x, Iaε)| dx

=

∫ bε

0

[
(1− wε(t))2

2ε
+
ε

2
|w′ε(t)|2

]
H1({d∞(·, Iaε) = t}) dt

≤ (2l + kε)

[
1

2
(1− wε(t))2

]bε
0

=

(
l − kε

2

)[
(1− η)2 − ε2

]
−−→
ε↓0

l = H1([0, l]× {0}) (5.9)

and

Fε(σε, φε; Icε) =

∫
Icε

[
ε

2
|∇φε|2 +

(1− φε)2

2ε

]
|∇d∞(x, Ibε)| dx

=

∫ ε

0

[
(1− t+ ε− 1)2

2ε
+
ε

2

]
H1({d∞(·, Ibε ∪ Iaε) = t}) dt

≤ (2l + kε)

[
(t− ε)3

6ε
+
ε

2
t

]ε
0

= (2l + kε) ε2 2

3
−−→
ε↓0

0. (5.10)

Finally adding up equations (5.7), (5.8), (5.9) and (5.10) we obtain

lim sup
ε↓0

Fε(σε, φε) ≤ (1 + β θ) H1([0, l]× {0}).

Case of a generic σ of the form (5.2):
Let us call σiε, φ

i
ε the functions obtained above for each σi = θiξiH1xMi and set

σε =
n∑
i=1

σiε, φε = min
i

φiε.
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In view of the contraint (1.1), it holds

(ω1 − ω2) = ∇ · σ =
∑
i

∇ · (θiξiH1xMi) =
∑
i

θi(δP+
i
− δP−

i
),

where P+
i and P−i are the starting and ending point of the segment Mi according to its

orientation ξi. Replacing each σi with σiε we have

∇ · σε =
∑
i

∇ · σiε =
∑
i

θi(δP+
i
− δP−

i
) ∗ ρε = (ω1 − ω2) ∗ ρε.

Thus σε satisfies constraint (1.2). We now prove inequality (5.1). The following inequality
holds true

Fε(σε, φε) =

∫
Ω

1

2ε
|min

i
φiε|2|

n∑
i=1

σiε|2 +
ε

2
|∇(min

i
φiε)|2 +

(1−mini φ
i
ε)

2

2ε
dx

≤
∫

Ω

1

2ε
|min

i
φiε|2|

n∑
i=1

σiε|2 dx+
n∑
i=1

∫
Ω

ε

2
|∇φiε|2 +

(1− φiε)2

2ε
dx, (5.11)

therefore let us estimate the first integral in the latter. Observe that for ε sufficiently
small we can assume that all the Ri

ε are pairwise disjoint thus we study the behavior in
the squares. Let Mi1 , . . . ,MimP

be the segments meeting at a branching point P . For
j = i1, . . . , imP let us call Qrjε

(P ) the squared neighborhood of P relative to the segment
Mj as constructed previously. Let us recall that by definition φε is constant and equal to
η on ∪mPj=i1Qrjε

(P ) then we have the estimate∫
∪mPj=i1 (Rjε∪Q

r
j
ε
(P ))

φ2
ε

2ε
|σε|2 dx =

mP∑
j=i1

∫
Rjε

φ2
ε

2ε
|σε|2 dx+

∫
∪mPi=i1Qrjε

(P )

φ2
ε

2ε
|
mP∑
j=i1

σjε|2 dx

≤
mP∑
j=i1

∫
Rjε

φ2
ε

2ε
|σε|2 dx+mP

η2

2ε

mP∑
j=i1

∫
Q
r
j
ε
(P )

|σjε|2 dx

≤
mP∑
j=i1

∫
(Rjε∪Q

r
j
ε
(P ))

1

2ε
|φjε|2|σjε|2 dx+ (mP − 1)

imP∑
j=i1

c(β, θj)

 η2

2ε︸ ︷︷ ︸
c(mP ,β,θi1 ,...,θimP

)ε

.

(5.12)

Applying inequality (5.12) on each branching point in equation (5.11) and recomposing
the integral gives

lim sup
ε↓0

Fε(σε, φε) ≤ lim sup
ε↓0

n∑
i=1

Fε(σiε, φiε) + n c(n, β, θi, . . . , θn)ε

≤
n∑
i=1

(1 + β θi) H1(Mi)

=

∫
supp(σ)

(1 + β θ) dH1 = Eβ(σ, 1)

which ends the proof.
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6. Numerical Approximation

In this section we present numerical evidence of the Γ-convergence result we have shown
in the setting introduced in Remark 1. The first issue we address is how to impose the
divergence constraint. To this aim it is convenient to introduce the following notation

fε =

(
δx0 −

1

N

N∑
j=1

δxj

)
∗ ρε,

Gε(σ, φ) =


∫

Ω

[
1

2ε
|φ|2|σ|2

]
dx, if σ ∈ Vε,

+∞, otherwise in L2(Ω,R2),

Λε(φ) =


∫

Ω

[
ε

2
|∇φ|2 +

(1− φ2)

2ε

]
dx, if φ ∈ Wε,

+∞, otherwise in L1(Ω).

(6.1)

Then let us observe that the following equality holds

min
σ∈L2(Ω,R2)

Gε(σ, φ) = inf
σ∈L2(Ω,R2)

{
sup

u∈W 1,2(Ω)

∫
Ω

1

2ε
|φ|2|σ|2 + u(∇ · σ − fε) dx

}
.

By von Neumann’s min-max Theorem [4, Thm. 9.7.1] we can exchange inf and sup ob-
taining for each ε > 0 and φ ∈ Wε

min
σ
Gε(σ, φ) = sup

u
inf
σ

∫
Ω

1

2ε
|φ|2|σ|2 − (〈∇u, σ〉+ ufε) dx

= −min
u

∫
Ω

ε|∇u|2

2|φ|2
+ ufε dx = −min

u
Gε(u, φ),

with σ = ε∇u
φ2

, this naturally leads to the following alternate minimization problem: given
an initial guess φ0 we define

σj :=
ε∇uj
φ2
j

where uj := argminGε(u, φj),

φj+1 := argminGε(σj, φ) + Λε(φ).

This formulation led to Algorithm 1. We define a circular domain Ω containing the
points in S endowed with a uniform mesh and four values β, εin, εend and Niter and
a gaussian convolution kernel ρεend in order to define fε. We have implemented the
algorithm in FREEFEM++ choosing for the discrete spaces for u and φ the space of
piecewise polynomials of order 1. To validate Algorithm 1 we tested on the constraint
given by four points defining a square inscribed in the unitary circumference, namely x0 =
(−
√

2/2,−
√

2/2), x1 = (
√

2/2,−
√

2/2), x2 = (
√

2/2,
√

2/2) and x4 = (−
√

2/2,
√

2/2).
Indeed, for such constraint, we can obtain an explicit solution which allows a visual
comparison with the one obtained with Algorithm 1. As it is shown in Figure 3 the
solution is far from being satisfactory. We think the failure of this procedure is due to the
relation between the geometry of the space and the one of the solution itself. In particular,
to obtain a good approximation it is necessary to refine the mesh where φ attains values
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Algorithm 1 Alternate Minimization

Input: S = {x0, . . . , xN}, εin, εend, Niter, β, index.
function Alt. Min.(x0, . . . , xN , εin, εend, Niter, β, ρ)

Set fε = (Nδx0 −
∑N

i=1 δxi) ∗ ρεend and φ0 = 1
for j = 1, . . . , Niter do

εj =
(
j−Niter
Niter

)
εin −

(
j

Niter

)
εend

φ̃← L1-projection of φ2
j−1

Set uj as the minimizer of Gεj(·, φj−1)

Set σj =
εj∇uj
φ̃j−1

Set φj as the minimizer of Gεj(σj, ·) + Λε(·)
Set φj = max{η, φj}

end for
end function
return φNiter , σNiter .

Figure 3: On the left: Graph of φNiter obtained via the Alternate Minimization Algo-
rithm 1. On the right: in red, one of the solutions to the Steiner problem, while
in blue, a minimizer of the energy Eβ.

close to zero but we observed that this restrains the process of approaching the solution.
To overcame the problem we propose a modifications to Algorithm (1) to include a step
of joint minimization. Let us consider a smooth diffeomorphism T : Ω→ Ω and define

φT = φ ◦ T (x), σT = σ ◦ T (x),

and the functional
Fε(T ) = Gε(σ ◦ T, φ ◦ T ) + Λε(φ ◦ T ).

Let dFε(Id) be the differential of the the functional Fε evaluated for T = Id. We represent
dF as function V ∈ W 1,2(Ω,Ω) by solving the elliptic problem

〈V,W 〉W 1,2 = 〈dFε(Id),W 〉W 1,2 for any test vector field W.

Let V be a solution to the latter problem, we perform a gradient descent in the direction
−V . In Algorithm 2, we implemented this joint minimization step. As it is possible to
remark from a visual comparison of Figure 4 and Figure 3 the joint minimization proce-
dure allows to displace the functions. Indeed, as shown in Figure 5, the energy decreases
during the joint minimization procedure as it. Let us propose a second modification to
Algorithm 1. Let us observe that the optimization of the component Λε defined in equa-
tion (6.1) is the one responsible for the length minimization of the support of σ. Therefore
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Algorithm 2 Joint Minimization

Input: S = {x0, . . . , xN}, εin, εend, Niter, β, index.
function Joint Min.(x0, . . . , xN , εin, εend, Niter, β, ρ)

Set fε = (Nδx0 −
∑N

i=1 δxi) ∗ ρεend and φ0 = 1
for j = 1, . . . , Niter do

εj =
(
j−Niter
Niter

)
εin −

(
j

Niter

)
εend

φ̃← L1-projection of φ2
j−1

Set uj as the minimizer of Gεj(·, φj−1)

Set σj =
εj∇uj
φ̃j−1

Set φj as the minimizer of Gεj(σj, ·) + Λε(·)
if j%10 == 0 & j ≥ index then

Solve 〈V,W 〉 = 〈dFεj(Id),W 〉
Set φj = φj(x− V )

end if
Set φj = max{η, φj}

end for
end function
return φNiter , σNiter .

Figure 4: On the left the graph of φNiter on the right the one of σNiter obtained via the
Joint Minimization Algorithm 2.

Figure 5: Behaviour of the energy during the joint minimization iterations of Algorithm 2.

it is reasonable to look for a gradient descent in the component Λε. In Algorithm 3 we
implement such procedure. This method enhances the length minimization process since
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Algorithm 3 Length Minimization

Input: S = {x0, . . . , xN}, εin, εend, Niter, β, index.
function Length Min.(x0, . . . , xN , εin, εend, Niter, β, ρ)

Set fε = (Nδx0 −
∑N

i=1 δxi) ∗ ρεend and φ0 = 1
for j = 1, . . . , Niter do

εj =
(
j−Niter
Niter

)
εin −

(
j

Niter

)
εend

φ̃← L1-projection of φ2
j−1

Set uj as the minimizer of G′εj(·, φj−1)

Set σj =
εj∇uj
φ̃j−1

Set φj as the minimizer of Gεj(σj, ·) + Λε(·)
if j%10 == 0 & j ≥ index then

Solve 〈V,W 〉 = 〈dΛεj(Id),W 〉
Set φj = φj(x+ T )

end if
Set φj = max{η, φj}

end for
end function
return φNiter , σNiter .

but has the drawback is that displacing φ and σ in the direction −dΛ we could loose the
divergence constraint. To avoid such eventuality we perform several steps of Alternate
Minimization after the displacement. In the next figures we show the graphs obtained for
the couple (σNiter , φNiter) via Algorithm 3 with the choices β = 0.05, εin = 0.5, εend = 0.05,
β = 0.05, Niter = 500 and index = 300. We have chosen to make simulations for points
located on the vertices of regular polygons of respectively 3, 4, 5 and 6 vertices. A direct
visual comparison between the obtained results in Figure 6 and the exact solutions in
Figure 7.

Figure 6: Graph of the couple (σNiter , φNiter) obtained via Algorithm 1 in the case of 3, 4,
5 and 6 points located on the vertices of a regular polygon.
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Figure 7: Graph of the exact solutions to the Steiner Problem constrained as in the pre-
vious figure.

A. A density result

We show that measures which have support contained in a finite union of segments, are
dense in energy. Without loss of generality let us assume that σ ∈ MS(Ω) is such that
Eβ(σ, 1) < ∞. In particular σ = U(Mσ, θσ, ξσ) is a H1-rectifiable measure. Applying
Lemma 4.1 we obtain an H1-rectifiable measure γ = U(Mγ, θγ, ξγ) and a partition of Ω
made of polyhedrons {Ωi} such that Mγ ⊂ ∪i∂Ωi, H1(Mσ ∩ ∪i∂Ωi) = 0 and σ + γ is
divergence free.
From the above properties, we can write

σ⊥ + γ⊥ = Du

for some u ∈ PC(Ω). Our strategy is the following, using existing results [5], we build
an approximating sequence for u on each Ωj whose gradient is supported on a finite
union of segments. We then glue these approximations together to obtain a sequence (wj)

approximating u in Ω̂. The main difficulty is to establish that Dwjx[∪i∂Ωi] is close to
Dux[∪i∂Ωi] = γ⊥. First let us recall the result in [5]

Lemma A.1. Let u ∈ PC(Ω) be such that

Ef (u,Ω) =

∫
Ω∩Ju

f([u]) dHn−1 < +∞.

for f a continuous, sub-additive and increasing function on [0,+∞) such that f(0) = 0

and limt→0
f(t)
t

= +∞. Then there exists a sequence (uh) ⊂ PC(Ω) with the following
properties:

• limh→+∞ uh = u in L1(Ω),

• limh→+∞ Ef (uh,Ω) = Ef (u,Ω),

• Juh is contained in a finite union of facets of polytopes for any h ∈ N. In particular
for any h ∈ N,

Hn−1(Ω ∩ Juh) = Hn−1(Ω ∩ Juh) and Hn−1(Juh) < +∞.

Lemma A.2 (Approximation of u). There exists a sequence (wj) ⊂ PC(Ω̂) with the
following properties:
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a) wj → u weakly in BV (Ω̂),

b) suppwj ⊂ Ω,

c) lim supj→∞ Eβ(wj, 1) ≤ Eβ(u, 1),

d) Jwj is contained in a finite union of segments for any j ∈ N,

e) |Dwj −Du|(∪∂Ωi)→ 0.

Proof. Step 1: In order to apply the results of [5], we first need to modify u and the
energy. Let us denote the energy density function f(t) = 1 + βt and for k ≥ 0 and t ≥ 0
let us introduce the approximation

fk(t) :=

{
(2k/2 + β2−k/2)

√
t, for t ≤ 2−k,

f(t), otherwise.

We have 0 ≤ fk ≤ f and fk ≡ f on [2−k,+∞). Notice that fk is continuous, sub-additive
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Figure 8: Graph of f and two of its approximations fk1 and fk2 with k1 < k2.

and increasing on [0,+∞) and that fk(0) = 0 with limt→0
fk(t)
t

= +∞. We define the

associated energy for functions v ∈ PC(Ω̂) as Efk(v, Ω̂) :=
∫
Jv∩Ω̂

fk([v]) dH1.

Now we denote PCk(Ω̂) the set of functions v ∈ PC(Ω̂), (2.1), such that v(Ω̂) ⊂ 2−kZ. For
these functions we have |v+(x)− v−(x)| ≥ 2−k for H1-almost every x ∈ Jv. Consequently,
one has

Efk(v, Ω̂) = Ef (v, Ω̂).

For each fixed k ≥ 0, let us introduce the function

uk = 2−kb2kuc

where btc denotes the integer part of the real t. Note that uk ∈ PCk(Ω̂) with Juk ⊂ Ju
and ‖u−uk‖∞ ≤ 2−k. Notice also that in view of

∣∣(u+
k − u

−
k )− (u+ − u−)

∣∣ ≤ 2−k we have

|Duk −Du|(Ω̂) ≤ 2−kH1(Ju). (A.1)

Indeed, uk → u strongly in BV (Ω̂), as H1(Ju) < +∞. Moreover, we see that

Efk(uk, Ω̂) = Ef (uk, Ω̂) ≤ Ef (u, Ω̂) + β2−kH1(Ju). (A.2)

24



Step 2: Let us approximate the function uk. Let us fix k ≥ 0 and Ωi. We can apply
Lemma A.1 to the function ukxΩi and to the energy Efk(·,Ωi). We obtain a sequence
(wij) which enjoys the following properties:

wij(Ωi) ⊂ uk(Ωi) ⊂ 2−kZ, ∀j ∈ N, hence wij ∈ PCk(Ω̂),

wji → uk in L1(Ωi) as j → +∞,
lim

j→+∞
Efk(wij,Ωi) = lim

j→+∞
Ef (wij,Ωi) = Ef (uk,Ωi),

Jwji
is contained in a finite union of segments for any j ∈ N,∫

∂Ωi

|Twij − Tuk| dH1 → 0 where T : BV (Ωi)→ L1(∂Ωi) denotes the trace operator.

Let us now define globally

wj :=
∑
j

wij1Ωi .

From the above properties, we have wj
∗
⇀ uk,

lim Ef (wij, Ω̂) = Ef (uk,Ωi) (A.3)

and
|Dwj −Duk|(∪i∂Ωi) → 0 as j →∞. (A.4)

Eventually, using a diagonal argument, we have proved the existence of a sequence (wj) ⊂
PC(Ω̂) satisfying claims (a), (b) and (d) of the lemma. Moreover, item (c) is the
consequence of (A.2) and (A.3) and item (e) follows from (A.1) and (A.4).

Going back to the H1-rectifiable measures σ = U(Mσ, θσ, ξσ), we define the sequence

σj := −Dw⊥i − γ.

We recall that γ = U(Mγ, θγ, ξγ) with Mγ ⊂ ∪∂Ωi. In particular γ = −Du⊥x(∪i∂Ωi).
We deduce from the previous lemma:

Lemma A.3. There exists a sequence (σj) ∈MS(Ω) with the properties:

- σj → σ with respect to weak-∗ convergence of measures,

- σj = U(Mσj , θσj , ξσj) with Mσj contained in a finite union of segments,

- lim supj→∞ Eβ(σj, 1) ≤ Eβ(σ, 1).
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