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1. introduction

For a set E ⊂ Rn the Gaussian measure is defined as

γ(E) =
1

(2π)
n
2

∫
E

e−
|x|2

2 dx.

Note that the Gauss space (Rn, γ) is a probability space, since γ(Rn) = 1. It plays a central role

in various branches of Probability Theory. For a smooth set E, the Gaussian perimeter is defined

as

Pγ(E) =
1

(2π)n/2

∫
∂E

e−
|x|2

2 dHn−1(x).

This definition can be extended to general sets of locally finite perimeter by replacing ∂E with the

so called reduced boundary, see Section 2. The isoperimetric inequality in Gaussian space states

that among all subsets of Rn with prescribed Gaussian measure halfspaces have the least Gaussian

perimeter. More precisely, given s ∈ R and setting Hs = {x ∈ Rn : xn < s}, we have

Pγ(E) ≥ Pγ(Hs) (1)

for all Borel subsets E ⊂ Rn such that γ(E) = γ(Hs), with equality holding if and only if E

coincides with Hs up to a rotation around the origin. Inequality (1) was indipendently established

in [3], [18], while the equality case was obtained much later in [8].

Let us now set for all s ∈ R

Φ(s) =
1√
2π

∫ s

−∞
e−

t2

2 dt.

Note that Φ is an increasing function from R into (0, 1) and that

γ(Hs) = Φ(s), Pγ(Hs) =
1√
2π
e−

s2

2 .

With this notation the Gaussian isoperimetric inequality can be restated in the following analytical

way

Pγ(E) ≥ 1√
2π
e−

[Φ−1(γ(E)]2

2 .

In this paper we consider th of sets E symmetric around the origin, i.e., E = −E. We show that

when restricted to this class balls Br centered at the origin are local minimizers for the perimeter,

at least when r is not too big. More precisely we have the following local minimality result.

Theorem 1. Let n ≥ 2 and σ ∈ (0, 1/2). There exist δ and κ such that if r ∈ [σ,
√
n+ 1− σ], E

is a set of locally finite perimeter with E = −E, γ(E) = γ(Br) and γ(E∆Br) < δ, then

Pγ(E)− Pγ(Br) ≥ κ(n, σ)γ(E∆Br)
2. (2)

1
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Let us now comment briefly on this result. First, observe that Theorem 1, beside stating

the local minimality of balls Br when r ∈ (0,
√
n+ 1), provides also a quantitative estimate of the

isoperimetric gap Pγ(E)−Pγ(Br) in terms of the square of the measure of the symmetric difference

between E and Br. In this respect this inequality is close to the recente quantitative isoperimetric

inequalities in Gaussian space proved in [4], [13], [16], [17]. Note also that the constant κ in (2)

is uniformly bounded from below when r is away from 0 and
√
n+ 1. In addition, Proposition 1

shows that the result above is sharp in the sense that if r >
√
n+ 1 then Br is never a local

minimizer for the perimeter. Also the power 2 is optimal, as it can be easily checked with an

argument similar to the one used for the quantitative inequality in the Euclidean case, see [11,

Section 4]. However, if balls Br are not in general global minimizers among symmetric sets with

the same Gaussian measure, at least if r is sufficiently small, see Proposition 2.

Our Theorem 1 is closely related to a well known conjecture, known as Symmetric Gaussian

Problem, see [14]. Indeed, as observed in [14], if this conjecture were true it would imply the

global minimality of Br or of its complement in Rn. This is precisely what happens in the 1-

dimensional case where one can prove that Br is always a local minimizer of the perimeter among

all symmetric sets with the same Gaussian measure, see Section 4. Moreover, balls are the unique

global minimizers for r > r0, where r0 is the unique positive number such that

1√
2π

∫ r0

−r0
e−

t2

2 dt =
1

2
,

while R \Br is the unique global minimizers when 0 < r < R0.

We conclude this introduction with a few words about the proof of Theorem 1, which is

achieved following the strategy introduced in this context by Cicalese and Leonardi in [10] and

later on modified in [1]. More precisely, we first prove inequality (1) for nearly spherical sets, i.e.,

sets that are close in C1 to a ball Br with the same Gaussian volume and symmetric around the

origin. Then we extend it to the general case with a contradiction argument based on the regularity

theory for sets of minimal perimeter, see a more detailed account of this strategy in Section 3, before

the proof of Theorem 1. Note that in our case the above strategy is more complicated. An obvious

difficulty comes from the constraint that the competing sets must be symmetric with respect to the

origin. However the main source of problems is represented by possible unbounded competitors of

balls.

2. Nearly spherical sets

In the following we shall denote by Br(x0) the ball with center at x0 and radius r. If the

center is at the origin we shall write Br.

We recall the basic definitions of the theory of sets of finite perimeter. If E is any Borel subset

of Rn and Ω ⊂ Rn is an open set, the perimeter of E in Ω is defined by setting

P (E; Ω) = sup

{∫
E

divϕdx : ϕ ∈ C∞c (Ω;Rn), ‖ϕ‖∞ ≤ 1

}
.

The perimeter of E in Rn is denoted by P (E). We say that E has locally finite perimeter if

P (E; Ω) <∞ for all bounded open sets Ω. It is well known, see [2, Ch. 3], that E is a set of locally

finite perimeter if and only if its characteristic function χ
E

has distributional derivative Dχ
E

which is a measure in Rn with values in Rn. Then, from the above definition we have immediately

that P (E; Ω) = |Dχ
E
|(Ω) for every open set Ω.

From Besicovitch derivation theorem we have that for |Dχ
E
|-a.e. x ∈ Rn there exists

νE(x) = − lim
r→0

Dχ
E

(Br(x))

|Dχ
E
|(Br(x))

and |νE(x)| = 1. (3)
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The set ∂∗E where (3) holds is called the reduced boundary of E, while the vector νE(x) is the

generalized exterior normal at x. For all the properties of sets of finite perimeter used herein we

refer to the book [2].

As recalled in the Introduction, the Gauss space is the space Rn endowed with the measure γ

given for any Lebesgue measurable set E ⊂ Rn by

γ(E) =
1

(2π)n/2

∫
E

e
−|x|2

2 dx.

Similarly to the Euclidean case, the Gaussian perimeter of a Borel set E in an open set Ω is defined

by setting

Pγ(E; Ω) = sup

{∫
E

(divϕ− ϕ · x) dγ : ϕ ∈ C∞c (Ω;Rn), ‖ϕ‖∞ ≤ 1

}
.

The Gaussian perimeter of E in the whole Rn will be denoted by Pγ(E). If E has finite Gaussian

perimeter then E has locally finite perimeter (in the Euclidean sense) and

Pγ(E) =
1

(2π)n/2

∫
∂∗E

e
−|x|2

2 dHn−1,

where, for 0 ≤ s ≤ n, Hs stands for the s-dimensional Hausdorff measure. In the following we

shall denote by Hsγ the measure defined by setting for every Borel set E ⊂ Rn

Hsγ(E) =
1

(2π)n/2

∫
E

e−
|x|2

2 dHs.

Thus, if E is a set of locally finite perimeter in Rn we may write

Pγ(E) = Hn−1
γ (∂∗E).

A set E ⊂ Rn is said to be nearly spherical if there exist a ball Br and a Lipschitz function

u : Sn−1 → (−1/2, 1/2) such that

E = {y = trx(1 + u(x)) : x ∈ Sn−1, 0 ≤ t < 1}. (4)

In the following, given any function u : Sn−1 → R we shall always assume that u is extended to

Rn \ {0} by setting u(x) = u
(
x
|x|
)
.

It is easily checked that if E is defined as in (4) then its Gaussian measure and it Gaussian

perimeter are given, respectively, by the two formulas below

γ(E) =
rn

(2π)n/2

∫
B

(1 + u(x))ne−
r2|x|2(1+u(x))2

2 dx (5)

Pγ(E) =
rn−1

(2π)n/2

∫
Sn−1

(1 + u(x))n−1

√
1 +

|Dτu(x)|2
(1 + u(x))2

e−
r2(1+u(x))2

2 dHn−1, (6)

where Dτu stands for the tangential gradient of u on Sn−1.

When E is a measurable set such that γ(E) = γ(Br) we shall often use the following notation

Dγ(E) = (2π)n/2
[
Pγ(E)− Pγ(Br)

]
(7)

to denote its Gaussian isoperimetric deficit with respect to the ball Br.

Next theorem states that if r is smaller than a critical radius depending on the dimension,

the Gaussian isoperimetric deficit of a nearly spherical set symmetric with respect to the origin is

strictly positive and the following Fuglede type estimate holds.

Theorem 2. Let n ≥ 2 and r ∈ (0,
√
n+ 1). There exist ε ∈ (0, 1/2), depending on n and r, and

κ0, depending only on n, with the following property. If E is a nearly spherical set as in (4) with



4 LOCAL MINIMALITY OF THE BALL FOR THE GAUSSIAN PERIMETER

‖u‖W 1,∞(Sn−1) < ε, symmetric with respect to the origin and such that γ(E) = γ(Br), then

Pγ(E)− Pγ(Br) ≥ κ0r
n−1(n+ 1− r2)‖u‖2W 1,2(Sn−1). (8)

Proof. Step 1. Fix r ∈ (0,
√
n+ 1). Using the expression of Pγ(E) provided in (6) we may split

Dγ(E) = (2π)n/2
[
Pγ(E)− Pγ(Br)

]
= rn−1

∫
Sn−1

(1 + u)n−1e−
r2(1+u)2

2

(√
1 +

|Dτu|2
(1 + u)2

− 1

)
dHn−1

+ rn−1

∫
Sn−1

[
(1 + u)n−1e−

r2(1+u)2

2 − e− r
2

2

]
dHn−1

= rn−1e−
r2

2 I1 + rn−1e−
r2

2 I2. (9)

Observe that
√

1 + t ≥ 1 + t
2 −

t2

8 for all t > 0. Therefore, from the smallness assumption

‖u‖W 1,∞(Sn−1) < ε ≤ 1
2 , we get

I1 =

∫
Sn−1

(1 + u)n−1e−r
2(u+u2/2)

(√
1 +

|Dτu|2
(1 + u)2

− 1

)
dHn−1

≥
∫
Sn−1

(1 + u)n−1e−r
2(u+u2/2)

(1

2

|Dτu|2

(1 + u)2
− 1

8

|Dτu|4

(1 + u)4

)
dHn−1

≥
(1

2
− Cε

)∫
Sn−1

(1 + u)n−1e−r
2(u+u2/2)|Dτu|2 dHn−1 ≥

(1

2
− Cε

)∫
Sn−1

|Dτu|2 dHn−1, (10)

for some constant C depending only on n, but not on r. Concerning the integral term I2 we have,

by Taylor expansion,

I2 =

∫
Sn−1

[
(1 + u)n−1e−r

2(u+u2/2) − 1
]
dHn−1

= (n− 1− r2)

∫
Sn−1

u dHn−1 +
[ (n− 1)(n− 2)

2
−
(
n− 1

2

)
r2 +

r4

2

] ∫
Sn−1

u2 dHn−1 +R1,

where the remainder term R1 can be again estimated by Cε‖u‖22, for some constant C depending

only on n. Therefore, recalling the previous estimate (10) and the equality in (9) we have

r1−ne
r2

2 Dγ(E) ≥ 1

2

∫
Sn−1

|Dτu|2 dHn−1 + (n− 1− r2)

∫
Sn−1

u dHn−1

+
[ (n− 1)(n− 2)

2
−
(
n− 1

2

)
r2 +

r4

2

] ∫
Sn−1

u2 dHn−1 − Cε‖u‖2W 1,2(Sn−1). (11)

To estimate the integral of u in the previous inequality we are going to use the assumption that

the Gaussian measures of E and Br are equal. This equality, using (5), can be written as∫ 1

0

tn−1 dt

∫
Sn−1

[
(1 + u)ne−

r2t2(1+u)2

2 − e− r
2t2

2

]
dHn−1 = 0

Using again Taylor expansion, we then easily get

0 =

∫ 1

0

tn−1e−
r2t2

2 dt

∫
Sn−1

[
(1 + u)ne−r

2t2(u+u2/2) − 1
]
dHn−1

=

∫ 1

0

tn−1e−
r2t2

2 dt

∫
Sn−1

[
(n− r2t2)u+

(n(n− 1)

2
− (2n+ 1)r2t2

2
+
r4t4

2

)
u2
]
dHn−1 +R2

=

∫
Sn−1

[
(nan − r2bn)u+

(n(n− 1)an
2

− (2n+ 1)r2bn
2

+
r4cn

2

)
u2
]
dHn−1 +R2, (12)
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where we have set

an =

∫ 1

0

tn−1e−
r2t2

2 dt, bn =

∫ 1

0

tn+1e−
r2t2

2 dt, cn =

∫ 1

0

tn+3e−
r2t2

2 dt

and where the remainder term R2 is estimated as before

|R2| ≤ Cε‖u‖2L2(Sn−1). (13)

A simple integration by parts gives that

bn =
nan
r2
− e−

r2

2

r2
, cn =

n(n+ 2)an
r4

− (n+ 2)e−
r2

2

r4
− e−

r2

2

r2
.

Thus, inserting the above values of bn and cn into (12) we immediately get that∫
Sn−1

u dHn−1 = −n− 1− r2

2

∫
Sn−1

u2 dHn−1 − e r
2

2 R2. (14)

Then, substituting in (11) the integral of u on Sn−1 by the right hand side of the above equality,

we obtain the following estimate

r1−ne
r2

2 Dγ(E) ≥ 1

2

∫
Sn−1

|Dτu|2 dHn−1 − n− 1 + r2

2

∫
Sn−1

u2 dHn−1 − Cε‖u‖2W 1,2(Sn−1). (15)

Step 2. For any integer k ≥ 0, let us denote by yk,i, i = 1, . . . , G(n, k), the spherical harmonics

of order k, i.e., the restrictions to Sn−1 of the homogeneous harmonic polynomials of degree k,

normalized so that ||yk,i||L2(Sn−1) = 1, for all k ≥ 0 and i ∈ {1, . . . , G(n, k)}. The functions yk,i
are eigenfunctions of the Laplace-Beltrami operator on Sn−1 and for all k and i

−∆Sn−1yk,i = k(k + n− 2)yk,i .

Therefore if we write

u =

∞∑
k=0

G(n,k)∑
i=1

ak,iyk,i, where ak,i =

∫
Sn−1

uyk,idHn−1,

we have

||u||2L2(Sn−1) =

∞∑
k=0

G(n,k)∑
i=1

a2
k,i, ||Dτu||2L2(Sn−1) =

∞∑
k=1

k(k + n− 2)

G(n,k)∑
i=1

a2
k,i . (16)

Note that since E is symmetric with respect to the origin, we have that u is an even function, hence

in the harmonic decomposition only the terms with k even will appear. In particular a1,i = 0 for

all i = 1, . . . , n. Note also that from (14) and (13) we have

|a0,1| ≤ Cε‖u‖L2(Sn−1). (17)

Thus, from (15),(16) and (17) we have

r1−ne
r2

2 Dγ(E) ≥ 1

2

∞∑
k=2

k(k + n− 2)

G(n,k)∑
i=1

a2
k,i −

n− 1 + r2

2

∞∑
k=2

G(n,k)∑
i=1

a2
k,i − C0ε‖u‖2W 1,2(Sn−1)

=
n+ 1− r2

2

G(n,2)∑
i=1

a2
2,i +

1

2

∞∑
k=4

[k(k + n− 2)− (n− 1− r2)]

G(n,k)∑
i=1

a2
k,i − C0ε‖u‖2W 1,2(Sn−1),

≥ c0(n+ 1− r2)

∞∑
k=4

k(k + n− 2)

G(n,k)∑
i=1

a2
k,i − C0ε‖u‖2W 1,2(Sn−1),
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for some positive constants c0, C0 depending only on n. Using again (17) and the fact that a1,i = 0

for i = 1, . . . , n, from the previous inequality we deduce that there exist two constants c1, C1 > 0

depending only on n such that

r1−ne
r2

2 Dγ(E) ≥ c1(n+ 1− r2)‖u‖2W 1,2(Sn−1) − C1ε‖u‖2W 1,2(Sn−1).

From this inequality (8) immediately follows provided that we choose

0 < ε ≤ min
{1

2
,
c1(n+ 1− r2)

2C1

}
. (18)

�

The following uniform estimate is a straightforward consequence of the previous theorem.

Corollary 1. Let n ≥ 2 and r0 ∈ (0,
√
n+ 1). There exist ε ∈ (0, 1/2), κ1 > 0, depending only on

n and r0, such that if r ∈ (0, r0] and E is a nearly spherical set as in (4) with ‖u‖W 1,∞(Sn−1) < ε,

then

Pγ(E)− Pγ(Br) ≥ κ1r
−1−nγ(E∆Br)

2. (19)

Proof. Fix r0 and a nearly spherical set E as in the statement. Then, arguing as in the proof of

(12), we get

γ(E∆Br) =
rn

(2π)
n
2

∫
B

∣∣(1 + u)ne−
r2|x|2(1+u)2

2 − e−
r2|x|2

2

∣∣ dx
=

rn

(2π)
n
2

∫ 1

0

tn−1e−
r2t2

2 dt

∫
Sn−1

∣∣(1 + u)ne−r
2t2(u+u2/2) − 1

∣∣ dHn−1

≤ C(n)rn
∫
Sn−1

|u| dHn−1, (20)

where in the last inequality we have used the assumption that ‖u‖W 1,∞(Sn−1) ≤ 1/2. Then, choosing

ε = min
{1

2
,
c1(n+ 1− r2

0)

2C1

}
,

where c1 and C1 are as in (18), from (20) and (8) we get at once

γ(E∆Br)
2 ≤ C(n)rn+1

n+ 1− r2

[
Pγ(E)− Pγ(Br)

]
,

for a suitable constant C(n). Hence (19) follows. �

Consider the isoperimetric problem in the Gaussian space

min{Pγ(E) : γ(E) = m} (21)

for some fixed m > 0. The Euler-Lagrange equation associated with the minimum problem (21)

H∂E − x · νE = λ on ∂E, (22)

where H∂E is the sum of the the principal curvatures of the boundary of E and λ is a suitable

Lagrange multiplier. Observe that Br is a solution of (22), hence a critical point of the isoperimetric

problem (21) for all r > 0. Theorem 2 shows that if 0 < r <
√
n+ 1 thenBr is also a local minimizer

for the isoperimetric problem with respect to small variations, close to Br in C1 and symmetric

with respect to the origin. In this respect the above theorem is sharp since if r >
√
n+ 1 then

Br is never a local minimizer for the Gaussian perimeter under the constraints γ(E) = m and

E = −E, as it can be shown by a simple second variation argument.
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Proposition 1. Let n ≥ 2, r >
√
n+ 1 and k a positive integer. For every ε > 0 there exists a

function u ∈ C∞(Sn−1), with ‖u‖Ck(Sn−1) < ε such that the corresponding nearly spherical set

E = {y = trx(1 + u(x)) : x ∈ Sn−1, 0 ≤ t < 1} (23)

is symmetric with respect to the origin, γ(E) = γ(Br) and Pγ(E) < Pγ(Br).

Proof. Fix r >
√
n+ 1, a positive integer k and ε > 0. Given an even function ϕ ∈ C∞(Sn−1)

such that ∫
Sn−1

ϕ(x) dHn−1 = 0, (24)

let X ∈ C∞c (Rn;Rn) be a vector field such that X(−x) = −X(x) and

X(x) =
e
|x|2

2

|x|n
ϕ
( x
|x|

)
x for x ∈ B2r \B r

2
. (25)

Let Φ be the flow associated to X, that is the unique C∞ map Φ : Rn × (−1, 1) → Rn such that

for all x ∈ Rn and t ∈ (−1, 1)

∂Φ

∂t
(x, t) = X(Φ(x, t)), Φ(x, 0) = x. (26)

Set Et = Φ(·, t)(Br) for all t ∈ (−1, 1). Since Ψ(x, t) = −Φ(−x, t) is also a solution to (26), by

uniqueness we have that Φ(−x, t) = −Φ(x, t), hence each Et is symmetric with respect to the

origin. Moreover, there exists δ > 0 such that for |t| < δ the set Et is a nearly spherical set as in

(23) and the corresponding function u satisfies ‖u‖Ck(Sn−1) < ε. We claim that we can choose δ so

that γ(Et) = γ(Br) for |t| < δ. To see this, let us choose δ > 0 so that B r
2
⊂⊂ Et ⊂⊂ Br. Then,

see [15, Prop. 17.8], for all t ∈ (−δ, δ)
d

dt
γ(Et) =

1

(2π)
n
2

∫
∂Et

X · νEte−
|x|2

2 dHn−1.

The equality γ(Et) = γ(Br) will follow by observing that the integral on the right hand side of

the above formula vanishes for all t ∈ (−δ, δ). Indeed, if % > r/2 is such that B% ⊂⊂ Et, from the

divergence theorem, recalling (24) and (25), we have∫
∂Et

X · νEte−
|x|2

2 dHn−1 =

∫
∂B%

X · x
|x|
e−
|x|2

2 dHn−1 +

∫
Et\B%

div
(
Xe−

|x|2
2

)
dx

=
1

%n−1

∫
∂B%

ϕ
( x
|x|

)
dHn−1 +

∫
Et\B%

div
( x

|x|n
ϕ
( x
|x|

))
dx = 0.

Set now p(t) = (2π)
n
2 Pγ(Et) for t ∈ (−δ, δ). Using the formula for the first variation of the

perimeter, see [15, Th. 17.5], the divergence theorem on manifolds and (24), we have

p′(0) =

∫
∂Br

(divτX −X · x)e−
|x|2

2 dHn−1 =

∫
∂Br

(
X · x
|x|

H∂Br −X · x
)
e−
|x|2

2 dHn−1

=

∫
∂Br

(n− 1

rn+1
− 1

rn−2

)
ϕ
( x
|x|

)
dHn−1 = 0

Thus, in order to conclude the proof it will be enough to show that we may always choose ϕ

satisfying (24) and such that p′′(0) < 0.

To this aim, let us evaluate p′′(0). Note that the general formula for the second variation of the

Gaussian perimeter is quite complicate, see for instance [4, Eq. (17)]. However in our case, since

Br satisfies the Euler-Lagrange equation (22), it simplifies a lot. Indeed, see [4, Prop. 3] we have

p′′(0) =

∫
∂Br

[
|Dτ (X · ν∂Br )|2 − |IIBr |2(X · ν∂Br )2 − (X · ν∂Br )2

]
e−
|x|2

2 dHn−1,
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where |IIBr |2 is the sum of the squares of the principal curvatures of ∂Br. Hence,

p′′(0) =
e
r2

2

r2n−2

∫
∂Br

[∣∣∣Dτ

(
ϕ
( x
|x|

))∣∣∣2 − n− 1

r2
ϕ
( x
|x|

)2

− ϕ
( x
|x|

)2 ]
dHn−1

=
e
r2

2

rn−1

∫
Sn−1

( 1

r2
|Dτϕ(x)|2 − n− 1

r2
ϕ(x)2 − ϕ(x)2

)
dHn−1.

Then, choosing ϕ = y2, where y2 is any homogeneous harmonic polynomial of degree 2, normalized

so that ‖y2‖L2(Sn−1) = 1, (24) is obviously satisfied and from the above formula we get

p′′(0) =
e
r2

2

rn−1

(2n

r2
− n− 1

r2
− 1
)

=
(n+ 1− r2)e

r2

2

rn+1
< 0,

thus concluding the proof. �

3. L1-local minimality

In this section we show how to derive from Theorem 2 the L1-local minimality of balls centered

at the origin with sufficiently small radii. Our proof follows the strategy devised in [1] with a few

difficulties due to the fact that in the Gauss space the presence of a density in the measure γ does

not allow us to reduce the proof to the case of bounded sets as it happens in the Euclidean case.

We now introduce a functional that will be used in the proof of the L1-local minimality of the

ball. Given r > 0 for every set E of locally finite perimeter we define

J(E) = Pγ(E) + Λ1γ(E∆Br) + Λ2|γ(E)− γ(Br)|, (27)

where Λ1,Λ2 ≥ 0. Next lemma, which is the counterpart in our setting of [1, Lemma 4.1], shows

that if Λ1 is sufficiently large, then the unique minimizer of J among all sets of locally finite

perimeter E is the ball Br.

Lemma 1. Let n ≥ 2. There exists C0(n) > 0 such that if r > 0, Λ1 > C0

(
r + 1

r

)
and Λ2 ≥ 0,

then Br is the unique minimizer of J among all sets E ⊂ Rn of locally finite perimeter.

Proof. Let η : R→ [0, 1] be a smooth function such that η ≡ 0 outside the interval (1/3, 3), η ≡ 1

on the interval (1/2, 2). Fix r > 0 and denote by Xr the vector field

Xr(x) = η
( |x|
r

) x
|x|

for all x ∈ Rn.

Then

J(E)− J(Br) ≥
∫
∂∗E

Xr · νE dHn−1
γ −

∫
∂Br

Xr · νBr dHn−1
γ + Λ1γ(E∆Br)

=

∫
E

(divXr −Xr · x) dγ −
∫
Br

(divXr −Xr · x) dγ + Λ1γ(E∆Br)

=

∫
E∆Br

(divXr −Xr · x) dγ + Λ1γ(E∆Br).

Since by construction ||divXr −Xr · x||∞ ≤ C0

(
1
r + r

)
for some constant C0 depending only on n,

the result immediately follows. �

One difficulty in the proof of L1-local minimality of the balls Br for small radii is that the

Gaussian measure is not scaling invariant. The following simple lemma is a helpful tool to deal

with this issue.
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Lemma 2. Let n ≥ 2, σ ∈ (0, 1/2). For every ε > 0 there exists δ < σ/2 depending only on ε, n, σ,

such that for all r ∈
[
σ,
√
n+ 1

]
and τ ∈ (0, δ)

Pγ(Br)− Pγ(Br−τ ) ≤ εPγ(Hs(r,τ)), (28)

where the half space Hs(r,τ) is such that γ(Hs(r,τ)) = γ(Br)− γ(Br−τ ).

Proof. For r ∈
[
σ,
√
n+ 1

]
, we set

f(r, τ) = e−
s(r,τ)2

2 for 0 < τ ≤ r, f(r, 0) = 0.

Then, for 0 < τ ≤ σ/2 we have

Pγ(Br)− P (γ(Br−τ )

Pγ(Hs(r,τ))
=

nωn

(2π)
n−1

2

rn−1e−
r2

2 − (r − τ)n−1e−
(r−τ)2

2

f(r, τ)− f(r, 0)
.

Therefore, by the Cauchy’s mean value theorem there exists ϑ ∈ (0, τ), such that

Pγ(Br)− Pγ(Br−τ )

Pγ(Hs(r,τ))
=

nωn

(2π)
n−1

2

−(n− 1)(r − ϑ)n−2e−
(r−ϑ)2

2 + (r − ϑ)ne−
(r−ϑ)2

2

−s(r, ϑ)e−
s(r,ϑ)2

2
∂s

∂τ
(r, ϑ)

. (29)

On the other hand, since by definition

1√
2π

∫ s(r,τ)

−∞
e−

t2

2 dt =
nωn

(2π)
n
2

∫ r

r−τ
tn−1e−

t2

2 dt,

differentiating this equation with respect to τ we have that

∂s

∂τ
(r, ϑ) =

nωn

(2π)
n−1

2

nωn(r − ϑ)n−1e
s(r,ϑ)2−(r−ϑ)2

2 .

Thus, inserting this value in (29) we have

Pγ(Br)− P (γ(Br−τ )

Pγ(Hs(r,τ))
=
−(n− 1) + (r − ϑ)2

−s(r, ϑ)(r − ϑ)

≤ 2

−Φ−1
(
γ(Br)− γ(Br−ϑ)

)
(r − ϑ)

≤ 2

−Φ−1(C(n)ϑ)σ
≤ 4

−Φ−1(C(n)τ)σ
,

for a suitable constant depepnding only on n. Then the conclusion follows since Φ−1(τ)→ −∞ as

τ → 0+. �

As in [1] the proof of Theorem 1 uses heavily the regularity theory for area minimizing sets.

For the reader’s convenience we recall the relevant definitions and the main results that we need

in the sequel.

Definition 1. Let E ⊂ Rn be a set of locally finite perimeter, ω, r0 > 0 and let Ω be an open subset

of Rn. We say that E is a (ω, r0)-quasiminimizer of the (Euclidean) perimeter in Ω if for every

ball B%(x) ⊂ Ω with % < r0 and any set F of locally finite perimeter such that E∆F ⊂⊂ B%(x)

P (E;B%(x)) ≤ P (E;B%(x)) + ω%n. (30)

Note that this notion of minimality is slightly weaker than the so called almost minimality

where on the right hand side of (30) the term ω%n is replaced by Λ|E∆F |, where Λ is a fixed positive

constant. Nevertheless, the regularity theory for perimeter minimizers or almost minimizers carries

also to quasiminizers. In particular we have the following two results. For the first one we refer

to [19, Th. 1.9], see also [15, Th. 21.14]. For a proof of Theorem 4 the reader may see [10, Prop.
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2.2] or [15, Th. 26.6]. Note that when dealing with a set of finite perimeter E we always tacitly

assume that E is a Borel set such that its topological boundary ∂E coincides with the support of

the perimeter measure, i.e.,

∂E = {x ∈ Rn : 0 < |E ∩Br(x)| < ωnr
n for every r > 0},

see for instance [15, Prop. 12.19]. Finally, we say that a sequence of measurable sets Eh converges

to E, or converges locally to E, in an open set Ω if the characteristic functions χ
Eh

converge in

L1(Ω), respectively in L1
loc(Ω), to χ

E
. Observe that

Eh converge locally in Rn to E =⇒ γ(Eh)→ γ(E) as h→∞. (31)

Theorem 3. Let Eh be a sequence of (ω, r0)-quasiminimizers in Ω converging locally to a set of

locally finite perimeter E. Then the two following properties hold:

(i) if xh ∈ ∂Eh ∩ Ω and xh → x ∈ Ω, then x ∈ ∂E;

(ii) if x ∈ ∂E ∩ Ω, then there exists a sequence xh such that xh ∈ ∂Eh ∩ Ω for all h and xh → x.

We will also need a regularity theorem stating that if F is a perimeter quasiminimizer, suffi-

ciently close in L1 to a smooth open set E, then F is indeed C1,α close to E.

Theorem 4. Let Eh be a sequence of equibounded (ω, r0)-quasiminimizers in Rn, converging in

Rn to a bounded open set E of class C2. Then, for h large enough Eh is of class C1, 12 and

∂Eh = {x+ ψh(x)νE(x) : x ∈ ∂E}

with ψh → 0 in C1,α for all α ∈ (0, 1
2 ).

We are now ready to prove our main result. Roughly speaking it states that if Br is a ball whose

radius is below the critical value
√
n+ 1, then it is a local minimizer of the Gaussian perimeter

among all sets with the same Gaussian measure and symmetric with respect to the origin. Moreover

this local minimality property holds with a uniform quantitative estimate, provided r is away from

0 and from
√
n+ 1.

Before giving the proof of this theorem, let us briefly describe its strategy. We argue by

contradiction assuming that there exists a sequence of symmetric sets Eh, with γ(Eh) = γ(Brh),

such that εh = γ(Eh∆Brh)→ 0 as h→∞, for which the inequality (2) is violated. At this point,

as first observed in this context by Cicalese and Leonardi in [10], one may replace the sets Eh with

a new sequence Fh, still violating inequality (2), but converging in C1,α to a ball Br. This leads

to a contradiction with the local minimality property of Br, provided the constant κ is sufficiently

small. The new sequence Fh is obtained by minimizing the functionals

Jh(F ) = Pγ(F ) + Λ1|γ(F∆Brh)− εh|+ Λ2|γ(F )− γ(Brh)|, (32)

for suitable Λ1,Λ2 > 0, among all subsets of Rn symmetric with respect to the origin. The choice of

this particular functional is inspired by a similar one first introduced in [1] and later on successfully

modified in [5], [6], [7], [12]. To get the C1,α convergence of the minimizers Fh we prove that they

are also (ω, r0)-quasiminimizers of the Euclidean perimeter in every ball BR, a fact that in our

case is not completely trivial, since each Fh minimizes the functional Jh only among sets which are

symmetric with respect to the origin. At this point, if we knew that the sets Fh were equibounded,

the C1,α convergence would follow immediately from Theorem 4. However, there is no reason why

this should be true and to overcome this difficulty we have to show that even if the Fh may be

unbounded they all split into two regions, a bounded one which converge in C1,α to the ball Br
and another one of small mass which disappears at infinity.
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Proof of Theorem 1. Throughout this proof we are going to use the following notation. Given a

measurable set E we denote by r(E) the radius of the ball centered at the origin such that

γ(E) = γ(Br(E)). (33)

Step 1. We argue by contradiction assuming that there exists a sequence Eh of sets symmetric

with respect to the origin, with γ(Eh) = γ(Brh), rh ∈ [σ,
√
n+ 1− σ], such that

εh = γ(Eh∆Brh)→ 0, Pγ(Eh)− Pγ(Brh) ≤ κε2
h, (34)

for a suitable κ that will be fixed later in the proof. Let us fix

Λ1 > C0

(√
n+ 1 +

1

σ

)
, Λ2 ≥ max{3Λ1, C̃}, (35)

where C0 is the constant provided in Lemma 1 and C̃ is a constant, depending only on n and σ,

that will be fixed later.

For every h we consider the following minimum problem

min
{
Jh(F ) : F = −F, F has locally finite perimeter

}
, (36)

where Jh is the functional defined in (32).

The existence of a minimizer for the the problem in (36) is readily proved by observing that any

minimizing sequence is compact with respect to the local convergence in Rn and recalling the lower

semicontinuity of the perimeter and the continuity of the Gaussian measure, see (31), with respect

to the local convergence in Rn.

Let us now assume, without loss of generality, that rh → r for h → ∞ and observe that the

minimizers Fh converge locally in L1 to Br. In fact, since by the minimality of Fh

Pγ(Fh) ≤ Pγ(Eh) ≤ C(n), for all h,

we have, see [2, Th. 3.39], that up to a (not relabelled) subsequence, they converge locally in Rn

to some set of locally finite perimeter F̃ . We claim that F̃ = Br. To see this let us take a set of

locally finite perimeter E, symmetric with respect to the origin. By the minimality of Fh we have

that

Pγ(Fh) + Λ1|γ(Fh∆Brh)− εh|+ Λ2|γ(Fh)− γ(Brh)| ≤ Jh(E).

Recalling (31), from the previous inequality we get immediately that

Pγ(F̃ ) + Λ1γ(F̃∆Br) + Λ2|γ(F̃ )− γ(Br)| ≤ Pγ(E) + Λ1γ(E∆Br) + Λ2|γ(E)− γ(Br)|.

Hence, recalling the first inequality in (35), Lemma 1 yields F̃ = Br.

Note that for every BR there exist ω > 0, r0 ∈ (0, 1) such that, for h large, the sets Fh are all

(ω, r0)-quasiminimizers in BR. The proof of this latter property is given in Lemma 3 below.

Step 2 We claim that for h large

γ(Fh∆Brh) ≥ εh
4
. (37)

To this end observe that by the minimality of Fh, the inequality in (34) and Lemma 1 again, we

have

Pγ(Fh) + Λ1|γ(Fh∆Brh)− εh|+ Λ2|γ(Fh)− γ(Brh)| ≤ Pγ(Eh)

≤ Pγ(Brh) + κε2
h ≤ Pγ(Fh) + Λ1γ(Fh∆Brh) + κε2

h. (38)

If γ(Fh∆Brh) ≥ εh/2, inequality (37) is trivially satisfied. Otherwise, if γ(Fh∆Brh) ≤ εh/2, from

(38) we deduce

εh − γ(Fh∆Brh)) ≤ γ(Fh∆Brh) +
κ

Λ1
ε2
h.

Hence, the claim (37) follows for h sufficiently large, since εh → 0 by (34).
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Since γ(Fh) may be different from γ(Brh), it is convenient to consider the balls Br(Fh) defined as

in (33). From (37) and (38), recalling the second inequality in (35), we have for h large

|γ(Fh)− γ(Brh)| ≤ Λ1

Λ2
γ(Fh∆Brh) +

κ

Λ2
ε2
h ≤

γ(Fh∆Brh)

2
.

Thus, we may estimate, for h large

γ(Fh∆Brh) ≤ γ(Fh∆Br(Fh)) + γ(Br(Fh)∆Brh)

= γ(Fh∆Br(Fh)) + |γ(Fh)− γ(Brh)| ≤ γ(Fh∆Br(Fh)) +
γ(Fh∆Brh)

2
.

Therefore, recalling (37), we have

γ(Fh∆Brh) ≤ 2γ(Fh∆Br(Fh)), hence γ(Fh∆Br(Fh)) ≥
εh
8
. (39)

From (38) and the second inequality in (39) we have with some easy computations

Pγ(Fh) + Λ2|γ(Fh)− γ(Brh)| ≤ Pγ(Brh) + 64κγ(Fh∆Br(Fh))
2

= Pγ(Br(Fh))) + [Pγ(Brh)− Pγ(Br(Fh))] + 64κγ(Fh∆Br(Fh))
2

≤ Pγ(Br(Fh))) + C(n)|rh − r(Fh)|+ 64κγ(Fh∆Br(Fh))
2

≤ Pγ(Br(Fh))) + C̃(n, σ)|γ(Br(Fh))− γ(Brh)|+ 64κγ(Fh∆Br(Fh))
2,

for a suitable constant C̃ depending only on n and σ. Therefore, recalling that Λ2 ≥ C̃ by (34),

we end up by proving that also the sets Fh satisfy a ‘reverse’ quantitative inequality as the one in

(34), with a possibly bigger constant

Pγ(Fh) ≤ Pγ(Br(Fh))) + 64κγ(Fh∆Br(Fh))
2. (40)

Note that if we knew that the Fh were equibounded we would have by Theorem 4 that they

were converging in C1,α to the ball Br and, taking κ sufficiently small, from (40) we would get a

contradiction to (19), thus concluding the proof. Instead, since it may happen that the sets Fh are

unbounded or that they are not equibounded, we split them as follows

Gh = Fh ∩Bn, Lh = Fh \Bn.

Clearly, the Gh converge in L1 to Br, while γ(Lh)→ 0 as h→∞. Moreover, since

γ(Fh∆Br(Fh)) ≤ γ(Fh∆Gh) + γ(Gh∆Br(Gh)) + γ(Br(Gh)∆Br(Fh))

= γ(Gh∆Br(Gh)) + 2γ(Lh),

from (40) we conclude that

Pγ(Fh) ≤ Pγ(Br(Fh))) + C2κ
[
γ(Gh∆Br(Gh))

2 + γ(Lh)2], (41)

for some universal constant C2 not even depending on n.

Step 3. We claim now that for h large

Fh ∩ (Bn+1 \Bn) = ∅. (42)

To prove this we argue by contradiction assuming that for infinitely many h the intersection

Fh ∩ (Bn+1 \ Bn) is not empty. On the other hand, since Fh ∩ Bn is converging in Rn to Br, we

have that for h large also (Bn+1 \ Bn) \ Fh is not empty. Therefore, there exists an increasing

sequence hk → ∞ such that for any k there exists xk ∈ ∂Fhk ∩ (Bn+1 \ Bn) (note that since

the sets Fh are quasiminimizers of the perimeter in every ball BR, they are of class C1 and thus

∂Fh coincides with the topological boundary). Passing possibly to another, and not relabelled,
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subsequence we may assume that xk → x for some x ∈ Bn+1 \Bn. But this is impossible since by

Theorem 3 the point x should belong to ∂Br.

Note that (42) yields in particular that

Gh ⊂ Bn, Lh ⊂ Rn \Bn+1. (43)

As an immediate consequence of the above inclusions we have that the sets Gh are quasiminimizers

of the Euclidean perimeter in Rn.

Another consequence of (43) is that for h large Pγ(Fh) = Pγ(Gh) + Pγ(Lh). Thus, from (41) we

get that for h large

Pγ(Gh) ≤ Pγ(Br(Fh))− Pγ(Lh) + C2κ
[
γ(Gh∆Br(Gh))

2 + γ(Lh)2].

Now, let sh ∈ R be such that γ(Hsh) = γ(Lh). From the inequality above and the Gaussian

isoperimetric inequality we have

Pγ(Gh) ≤ Pγ(Br(Fh))− Pγ(Hsh) + C2κ
[
γ(Gh∆Br(Gh))

2 + γ(Hsh)2].

In turn, using (28) with ε = 1/2 to estimate Pγ(Br(Fh)), we have that for h sufficiently large

Pγ(Gh) ≤ Pγ(Br(Gh))−
1

2
Pγ(Hsh) + C2κ

[
γ(Gh∆Br(Gh))

2 + γ(Hsh)2]. (44)

Finally, observe that

lim
s→−∞

γ(Hs)

Pγ(Hs)
= 0.

Therefore, from (44) we may conclude that for h sufficiently large

Pγ(Gh) ≤ Pγ(Br(Gh)) + C2κγ(Gh∆Br(Gh))
2. (45)

Now, since the sets Gh are converging to Br in Rn, by Lemma 4 they also converge in C1,α to Br,

i.e.

∂Gh = {x(1 + uh(x)) : x ∈ ∂Br}
where uh → 0 in C1,α(∂Br). Thus, still denoting by uh the 0-homogeneous extension of the above

functions uh, we conclude that

Gh =
{
y = tr(Gh)x

(
1 +

r(1 + uh(x))− r(Gh)

r(Gh)

)
: x ∈ Sn−1, 0 ≤ t < 1

}
,

where, since r(Gh)→ r,

r(1 + uh(x))− r(Gh)

r(Gh)
→ 0 in C1,α(Sn1).

Thus, by (19) we conclude that for h sufficiently large

Pγ(Gh)− Pγ(Br(Gh)) ≥ κ1r(Gh)−1−nγ(Gh∆Br(Gh))
2 ≥ κ1

(n+ 1)
n+1

2

γ(Gh∆Br(Gh))
2,

which contradicts (45) if we choose

κ <
κ1

C2(n+ 1)
n+1

2

.

Hence the conclusion follows by this contradiction. �

The arguments used in the proof of next lemma are similar to the ones used for the standard

perimeter. However, in our case the proof is more involved due presence of the constraint F = −F
in the minimum problems (36).
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Lemma 3. Let n ≥ 2 and σ ∈ (0, 1/2) as in Theorem 1. Moreover, let Fh be a sequence of

minimizers of the (36), with Fh converging locally in Rn to a ball Br, with r ∈ [σ,
√
n+ 1−σ]. There

exists h0 such that for very ball BR, there exist ω, r0 > 0, such that Fh is a (ω, r0)-quasiminimizer

in BR for all h ≥ h0.

Proof. Step 1. Let us fix R ≥ 1. We start proving that there exist r1, ϑ > 0, depending on R,

such that if x ∈ ∂Fh ∩BR, % < r1, then

|Fh ∩B%(x)| ≤ (ωn − ϑ)%n. (46)

To this end, let us observe that if x ∈ Rn, % > 0 and G is a set of locally finite perimeter with G =

−G, such that Fh∆G ⊂⊂ B%(x) ∪ B%(−x), then from the minimality inequality Jh(Fh) ≤ Jh(G)

we get

Pγ(Fh;B%(x) ∪B%(−x)) ≤ Pγ(G;B%(x) ∪B%(−x)) + (Λ1 + Λ2)γ(Fh∆G).

From this inequality, setting

m(x, %) =
1

(2π)
n
2

min
y∈B%(x)

e−
|y|2

2 , M(x, %) =
1

(2π)
n
2

max
y∈B%(x)

e−
|y|2

2 ,

we immediately get the following inequality for the Euclidean perimeter

m(x, %)P (Fh;B%(x) ∪B%(−x)) ≤M(x, %)P (G;B%(x) ∪B%(−x)) + (Λ1 + Λ2)M(x, %)|Fh∆G|.

Thus, dividing both sides of this inequality by m(x, %) and observing that if 0 < % < 1 we have

(M(x, %)−m(x, %))/m(x, %) < C%, for some constant C depending on R, we get that

P (Fh;B%(x) ∪B%(−x)) ≤ (1 + C%)P (G;B%(x) ∪B%(−x)) + C ′|Fh∆G|. (47)

Recalling that Fh∆G ⊂⊂ B%(x) ∪B%(−x) from the standard isoperimetric inequality we get

|Fh∆G| ≤ |B%(x) ∪B%(−x)| 1n |Fh∆G|
n−1
n ≤ nωn%P (Fh∆G;B%(x) ∪B%(−x))

≤ nωn%[P (Fh;B%(x) ∪B%(−x)) + P (G;B%(x) ∪B%(−x))],

where the last inequality follows by using the precise expression of the reduced boundary of the

symmetric difference of two sets of finite perimeter, see [15, Th. 16.3]. Inserting this inequality in

(47) we conclude that there exists χ > 1 depending only on n, Λ1 and Λ2 and R such that for all

0 < % < 1

(1− χ%)P (Fh;B%(x) ∪B%(−x)) ≤ (1 + χ%)P (G;B%(x) ∪B%(−x)). (48)

Let us now fix x ∈ Rn and 0 < % < 1/χ and set G = Fh ∪ (B%′(x)∪B%′(−x)) for some 0 < %′ < %.

Note that G is an admissible comparison set since G = −G. With this choice of G, using again the

precise expression of the reduced boundary of the difference between two sets of finite perimeter,

see again [15, Th. 16.3], from (48) we easily obtain that

(1− χ%)P (Fh;B%(x) ∪B%(−x)) ≤ (1 + χ%)
[
Hn−1

(
F

(0)
h ∩ ∂(B%′(x) ∪B%′(−x))

)
+ P (Fh; (B%(x) ∪B%(−x)) \ (B%′(x) ∪B%′(−x))),

where F
(0)
h denotes the sets of points in Rn where Fh has density 0. From this inequality, letting

%′ → %, we deduce that if 0 < % < 1/χ, then

P (Fh, B%(x)) ≤ 2(1 + χ)

1− χ
Hn−1

(
F

(0)
h ∩ ∂B%(x)

)
. (49)

Let us now fix x ∈ ∂Fh. In this way, setting m(%) = |B%(x) \ Fh|, we have that m(%) > 0 for all

% > 0. Since m′(%) = Hn−1
(
F

(0)
h ∩∂B%(x)

)
for a.e. % > 0, from (49) we get that for all % ∈ (0, 1/χ)

m(%)
n−1
n ≤ 2κn(1 + χ)

1− χ
m′(%),
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where κn is the constant of the Euclidean relative isoperimetric in balls, see for instance [2, Eq. 3.43].

Integrating this inequality we then get that for all 0 < % < 1/χ

|B%(x) \ Fh| ≥ ϑ%n−1,

hence (46) follows.

Step 2. Let us now prove that there exists an integer h0 such that

|Bσ
2
\ Fh| = 0 for all h ≥ h0. (50)

To prove this inclusion we argue by contradiction assuming that there exists a strictly increasing

sequence hk of integers such that |Bσ
2
\Fhk | > 0 for all k. On the other hand, since the sets Fhk∩Bσ

2

are converging in Rn to Bσ
2
, we have also that |Bσ

2
∩ Fhk | > 0 for all k sufficiently large. Thus,

from the relative isoperimetric inequality on balls we have that for all k large P (Fhk ;Bσ
2
) > 0,

hence there exists a point xk ∈ ∂Fhk . Without loss of generality we may assume that the sequence

xhk converges to a point x ∈ B σ
2
. We now apply (46) with R=1 and 0 < % < min{r1, σ/2}. From

the local convergence of Fh in Rn and we then have

|B%(x)| = lim
k
|Fhk ∩B%(xk)| ≤ (ωn − ϑ)%n.

From this contradiction (50) immediately follows.

Step 3. Let us now fix R ≥ 1 and set r0 = min{σ/4, 1/χ}, where χ is the constant in (49)

(note that this constant depends on R but not on h). Let us consider a ball B%(x) ⊂ BR, with

0 < % < r0, and a set G of locally finite perimeter such that Fh∆G ⊂⊂ B%(x), for a given h ≥ h0.

Assume first that |x| ≥ σ/4 and observe that in this case B%(x) ∩B%(−x) = ∅. Then, define

G′ = [F \ (B%(x) ∪B%(−x))] ∪ (G ∩B%(x)) ∪ (−G ∩B%(−x)).

By construction, the set −G′ = G′ and, inserting it in (47) we immediately get that

P (Fh;B%(x)) ≤ (1 + C%)P (G;B%(x)) + C ′|Fh∆G|.

Adding C% to both sides of this inequality and recalling (49) we have

(1 + C%)P (Fh;B%(x)) ≤ (1 + C%)P (G;B%(x)) +
2C%(1 + χ)

1− χ
Hn−1

(
F

(0)
h ∩ ∂B%(x)

)
+ C ′|Fh∆G|.

Dividing this inequality by 1 + C% we immediately get that

P (Fh;B%(x)) ≤ P (G;B%(x)) + ω%n, (51)

for a suitable ω depending only on n, χ,Λ1,Λ2 and R.

If |x| < σ/4, recalling the inclusion (50), we have that P (Fh;B%(x)) = 0 and thus (51) holds

trivially. This concludes the proof of the lemma. �

Now we want to show that Br is not a global minimizer among symmetric sets with prescribed

Gaussian measure, at least if r is small. To this end, we set Cs = Rn \Bs, and for every r > 0 we

denote by s(r) the unique number such that∫ r

0

tn−1e−
t2

2 dt =

∫ ∞
s(r)

tn−1e−
t2

2 dt (52)

In other words, s(r) is such that γ(Br) = γ(Cs(r))

Proposition 2. For every n > 2 there exists r0 > 0 such that

Pγ(Cs(r)) < Pγ(Br) (53)

for every r < r0.

If n = 2, then Br is never a global minimizer.
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Proof. Differentiating (52) with respect to r, we have

rn−1e−
r2

2 = −sn−1(r)e−
s2(r)

2 s′(r) (54)

In order to show that Pγ(Br) > Pγ(Cs(r)) for r small enough, using (54) we evaluate the quotient

as follows

Pγ(Br)

Pγ(Cs(r))
=

rn−1e−
r2

2

sn−1(r)e−
s2(r)

2

= −s′(r) (55)

Since limr→0+ s(r) = +∞, limr→0+ s′(r) = −∞. Then there exists r0 > 0 such that if r < r0 we

have s′(r) < −1. Therefore
Pγ(Br)

Pγ(Cs(r))
= −s′(r) > 1,

hence (53) follows.

For n = 2 we can give the explicit expression of s(r). In fact integrating (52) we have

1− e− r
2

2 = e−
s2(r)

2

and then

s(r) =

√
−2 log(1− e− r

2

2 ), s′(r) = − re−
r2

2(
1− e− r

2

2

)√
−2 log(1− e− r

2

2 )

.

A numerical plot of s′′(r) shows that this function is strictly positive for r ∈ [0, 4]. Therefore we

have that for all r ∈ [0,
√

3]

s′(r) < s′(
√

3) ' −1.063

Since Br is a local minimizer only for 0 < r <
√

3, the above estimate implies, together with (55),

that Br is never a global minimizer. �

4. The 1-dimensional case

In this section we shall briefly discuss the 1-dimensional case. Beside being much simpler, this

case exhibits quite different features. Before stating the local minimality result we recall that in

one dimension a set of locally finite perimeter is locally the union of a finitely many intervals.

Proposition 3. Let n = 1. For every r > 0, there exists δ = δ(r) such that if E ⊂ R is a set of

finite perimeter, 0 < γ(Br∆E) < δ, E = −E and γ(E) = γ(Br), then

Pγ(E) > Pγ(Br) (56)

Moreover, there exists r0 such that:

(a) if r > r0 then Br is the unique global minimizer of the perimeter among all the sets E such

that E = −E and γ(Br) = γ(E).

(b) if r < r0 then Cs = (−∞,−s) ∪ (s,+∞) is the unique global minimizer of the perimeter

among all the sets E such that E = −E and γ(Br) = γ(Cs) = γ(E).

(c) if r = r0, then both Br0 and Cr0 are global minimizers.

Proof. The proof is quite easy, and it is based on the minimality property of the halfline. Fix any

r > 0 and E such that γ(E) = γ(Br). Since a set of locally finite perimeter is locally the union of

a finite number of intervalls, the generic symmetric set E will be of the type

E =

M⋃
i=1

(−bi,−ai) ∪
M⋃
i=1

(ai, bi) ∪ (−a, a)
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for some 0 ≤ a < a1 < b1 < · · · < ai < bi < . . . , with M ∈ N ∪ {∞} and bM ∈ (0,∞].

Take R > r such that R 6= ai, R 6= bi, ∀i ∈ N and such that bj < R < aj+1 for some j ∈ N. Using

the isoperimetric inequality it is easy to check that if H−s is a halfline such that

γ(H−s) =
1

2
γ(E \BR),

then

Pγ((E ∩BR) ∪ Cs) ≤ Pγ(E).

Therefore we may assume without loss of generality that

E = (−∞,−b) ∪
k⋃
i=1

(−bi,−ai) ∪
k⋃
i=1

(ai, bi) ∪ (−a, a) ∪ (b,+∞) (57)

where k = max{i ∈ N : bi < R} and γ(E) = γ(Br).

Observe that if 0 < a < r then
√

2π

2
Pγ(Br) = e−

r2

2 < e−
a2

2 ≤
√

2π

2
Pγ(E)

and thus (56) follows. On the other hand, since γ(E) = γ(Br), a = r if and only if E = Br.

Therefore we are left with the case a = 0. In this case we fix δ <
γ(B r

2
)

2 and let γ(Br∆E) < δ.

This last inequality implies that a1 <
r
2 . In fact, if a1 >

r
2 , we would have

√
2π

2
γ(B r

2
) =

∫ r
2

0

e−
x2

2 dx ≤
∫ a1

0

e−
x2

2 <

√
2π

2
γ(E∆Br) <

√
2π

4
γ(B r

2
).

This contradiction shows that a1 <
r
2 , hence Pγ(Br) < Pγ(E).

Let us prove (a). Let r0 > 0 be such that

1√
2π

∫ r0

−r0
e−x

2

dx =
1

2
.

Let r > r0 and assume by contradiction that there exists a set E such that E = −E, γ(E) = γ(Br)

and Pγ(E) < Pγ(Br). Arguing as before we may assume

E = (−∞,−b) ∪
k⋃
i=1

(−bi,−ai) ∪
k⋃
i=1

(ai, bi) ∪ (b,+∞) (58)

for some a1 > 0. Let s > 0 be such that

1

2
γ(E) =

1√
2π

∫ ∞
s

e−x
2

dx

and consider Cs = (−∞,−s)∪ (s,∞). Using the isoperymetric inequality and the fact that a1 > 0

we have

Pγ(E) > Pγ(Cs).

Since γ(Cs) = γ(Br) >
1
2 we have that s < r and thus

Pγ(Br) < Pγ(Hs) < Pγ(E).

Assume now r < r0. In this case Pγ(Cs) < Pγ(Br) since r < s. Hence Br cannot be a global

minimizer.

In case (b) the proof that Cs is a global minimizer among all the symmetric sets follows by the

same argument as in (a).

Finally if r = r0, Pγ(Br0) = Pγ(Cr0) and both minimize the Gaussian perimeter among symmetric

sets. �
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We want to emphatize that this argument applies only when n = 1 because of the rigidity of

the structure of the sets of locally finite perimeter and because in one dimension the measure of

the perimeter of the ball is a strictly decreasing function of the radius r. On the other hand, for

n > 1 the measure of the perimeter of the ball is increasing for r <
√
n− 1 and decreasing for

r >
√
n− 1.

The previous minimality result holds indeed also in a quantitative form. The simple proof of

this property uses an argument of [9].

Proposition 4. Let n = 1. For every r > 0 there exists δ(r) > 0 such that for any E ⊂ R,

E = −E, γ(E) = γ(Br) and γ(E∆Br) ≤ δ(r) there exist a positive constant C(r) such that

Pγ(E)− Pγ(Br) > C(r)γ(E∆Br)

√
log

(
1

γ(E∆Br)

)
(59)

Proof. First, note that it is enough to prove the inequality in the case Pγ(E) − Pγ(Br) < δ0(r),

for some positve δ0 to be chosen later. Let E ⊂ R be a set of locally finite perimeter. As before,

we may assume without loss of generality that E is of the form (58). Let δ(r) be as in Proposition

3. We have 2 cases: a = 0 and r > a > 0.

Let a = 0. Since γ(E∆Br) < δ, as before we have that a1 <
r
2 and then

Pγ(E)− Pγ(Br) > e−
r2

8 − e− r
2

2 = f(r).

Then, we set δ0(r) = f(r). With such a choice of δ0(r) we are immediately reduced to the case

a > 0.

Let 0 < a < r. Since γ(E∆Br) < δ, arguing as in the proof of Proposition 3, we have that there

exists ε > 0 such that a > r − ε. Let Kε such that

2√
2π

∫ ∞
Kε

e−
t2

2 dt = γ(E)− 1√
2π

∫ a

−a
e−

t2

2 dt

If we set E′ = (−a, a) ∪ CKε , we have P (E′) ≤ P (E) and γ(E′∆Br) ≥ γ(E∆Br) and then it is

enough to estimate the isoperimetric gap for E′. From this point on, the calculation are exactly

as in [9, Theorem 1.2].

�
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