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Abstract. We study the asymptotic behavior of a discrete-in-time minimizing movement scheme for square

lattice interfaces when both the lattice spacing and the time step vanish. The motion is assumed to be driven

by minimization of a weighted random perimeter functional with an additional deterministic dissipation term.
We consider rectangular initial sets and lower order random perturbations of the perimeter functional. In case

of stationary, α-mixing perturbations we prove a stochastic homogenization result for the interface velocity. We

also provide an example which indicates that only stationary, ergodic perturbations might not yield a spatially
homogenized limit velocity for this minimizing movement scheme.

Introduction

In 1993 Almgren, Taylor and Wang introduced a notion of minimizing movements suitable to describe geo-
metric motions of interfaces driven by curvature effects (see [5]). In a nutshell it can be summarized as follows:
Given a fixed time step τ > 0 and an initial set A0 ⊂ Rd, one constructs recursively a sequence of sets {Aτk}k
minimizing an energy functional of the form

(0.1) A 7→ Eτ (A,Aτk−1) =

∫
FA

ϕ(ν(x)) dHd−1 +
1

2τ

∫
A∆Aτk−1

dist(x, ∂Aτk−1) dx,

where ν(x) is the normal vector at the point x in the reduced boundary FA (we refer to [6] for a precise definition)
and ϕ is a suitable surface density. The basic idea behind this approach is the following: While minimizing
the surface functional shrinks the set, the bulk term forces the boundary of the minimizer to be close to the
boundary of the previous set. Passing to the limit as τ → 0 for the piecewise constant interpolations one obtains
a time dependent family A(t) of sets that evolves by a weighted curvature (depending on ϕ), provided the initial
set A0 is regular enough and ϕ is elliptic and smooth. In the isotropic case one obtains the well-known motion
by mean curvature. This minimizing movement procedure was later on exported to random environments by
Yip in [21] as follows: at each discrete time step, a minimizer of the energy in (0.1) is computed and then this
set is perturbed by a random diffeomorphism.

In the recent paper [14] Braides, Gelli and Novaga applied the above minimizing movement scheme within a
deterministic, discrete environment. In this setting the environment is the scaled two-dimensional lattice εZ2.
The surface term in (0.1) is replaced by a discrete interfacial energy which, in its simplest form, is derived from
the classical nearest neighbor Ising model for spin systems and can be written formally as

(0.2) Pε(u) =
1

4

∑
εi,εj∈εZ2

|i−j|=1

ε|u(εi)− u(εj)|,

where u : εZ2 → {±1} is the spin variable. Note that the energy in (0.2) takes into account only nearest neighbor
interactions. Therefore it can be interpreted as a discrete perimeter of the set {u = 1} and the relationship to
the continuum model is given by identifying the spin variable with this level set. The distance-function in the
bulk term in (0.1) is replaced by a discrete version of the l∞-distance to the boundary precisely defined in (1.2).
From a physical point of view this setup can be seen as a simplified model to describe the motion of boundaries
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of the level sets of the spin variables, which represent the magnetic domain walls at the discrete level. Since
the discrete perimeter inherits the anisotropy of the lattice, this minimizing movement scheme is related to
crystalline motions, where ϕ is not smooth (see [4, 7, 18] in the continuum case). Note that the continuum limit
(or Γ-limit; see [10]) of the energies in (0.2) is given by the crystalline perimeter, that is

(0.3) P (u) =

∫
Su

|ν(x)|1 dH1 =

∫
F{u=1}

|ν(x)|1 dH1,

where |ν|1 denotes the l1-norm of ν (see [1]). In [14] the authors observed that the asymptotic behavior of the
discrete flows depends heavily on the ratio between ε, τ when ε, τ → 0 simultaneously. When ε/τ → 0 fast
enough the motion is governed by the Γ-limit, that means one obtains the continuum motion by crystalline
curvature. If, on the other hand, ε/τ → +∞ fast enough, the motions are pinned by the presence of many
local minimizers in the discrete environment. This phenomenon is similar to any gradient flow that starts in
a local minimum. We remark that in general such a priori results are abstract and the necessary speed of
convergence/divergence might be unknown. We refer the reader to Chapter 8 in [11] for a parade of further
examples on this issue. However the exact behavior was found in [14]. The critical scaling for the discrete
perimeter energies (0.2) is ε ∼ τ , where pinning effects due do discreteness as well as a quantized crystalline
motion can occur (see also Theorem 1.9 below).

In this paper we start studying the effect of a random discrete environment on the continuum limit flow. We
take a different approach compared to [21] and associate the random effects directly to the lattice points. In [3]
Alicandro, Cicalese and the author performed a discrete-to-continuum analysis for a large class of ferromagnetic
Ising-type energies including (0.2), but where the interacting particles are located at the points of a so-called
stochastic lattice εL(ω) instead of the periodic εZ2 (or more generally εZd). In particular, assuming the
stochastic lattice to be stationary with respect to translations, one can prove the existence of a homogeneous
limit surface energy that turns out to be deterministic under some ergodicity assumptions. In that case the
continuum limit takes the form

Phom(u) =

∫
Su

ϕhom(ν(x)) dH1.

Hence the continuum limit resembles the surface term in (0.1) even though in general ϕhom might be non-
smooth. Our aim is to include dynamical effects in order to describe the curvature-driven motion of magnetic
domain walls. The natural approach in the spirit of [3, 12] would be to replace the periodic lattice in the
definition of Pε by a stationary random lattice εL(ω) with suitable short-range interactions. This seems to be a
very challenging problem. Thus we start with a much simpler model by adding very small random perturbations
directly to the periodic lattice model, that means we will study the minimizing movement of a random discrete
perimeter of the form

Pωε (u) =
1

4

∑
εi,εj∈εZ2

|i−j|=1

ε(1 + εcij(ω))|u(εi)− u(εj)|.

For the precise assumptions on the random field cij we refer to Section 1. Note that in this scaling the random
perturbations are a lower order term as they are scaled by ε. Nevertheless it turns out that they may influence at
least the velocity of the limit motion. The reason why we don’t let the bulk term be affected by the randomness
comes from the physical interpretation that we give to this model as motion of aligned spins, which differs
from lattice particle models: While the interaction between particles may be affected by some random noise
deriving from microscopic fluctuations, the energy to flip a spin should be constant, depending only on how
many boundary layers are flipped in one time step. The interpretation of the bulk term in the energy in this
setting is the following: Flipping the first layer of spins costs the least energy while the following layers are
energetically more expensive. Of course this interpretation makes sense only if one can prove that in presence
of randomness sets shrink by flipping spins close to the boundary by a certain number of layers. This is the
case in the deterministic setting considered in [14].

For the sake of simplicity, we investigate the evolution when the initial set is a coordinate rectangle, that
means a rectangle with all sides parallel to one of the coordinate axes. In Theorem 2.1 we prove that under
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stationarity and quantified mixing assumptions as well as a suitable uniform bound on the random field cij ,
the limit motion law is deterministic and coincides with the quantized crystalline flow obtained in [14]. This
however depends strongly on the fact that the random field is stationary with respect to the translation group
on Z2. In Section 3 we show that the velocity changes if we restrict stationarity to a subgroup of the form
mZ2 with m ≥ 2. Anyhow, we stress that our results should be seen as a stability result of the deterministic
problem rather than an exhaustive description of the possible effects of randomness on the limit flow. Indeed,
randomness can influence the motion drastically. For example, in [3] it is proven that when we replace the
square lattice Z2 by a suitable isotropic stochastic lattice L(ω), then, up to a multiplicative constant, the
discrete perimeters Γ-converge to the Euclidean instead of the crystalline perimeter. Thus, with an appropriate
choice of discrete distance, one should not expect a crystalline motion anymore in the limit but rather some type
of motion by mean curvature, at least if ε << τ and the initial sets Aε,τ0 converge to a smooth set. To highlight
possible difficulties even in the present very weak random setting, we provide an example of stationary, ergodic
perturbations, for which the functional describing the pointwise motion may not converge (Example 2.5). This
example also indicates strong non-uniqueness effects when we drop the mixing hypothesis (see Remark 2.6).
Moreover, in Remark 2.4 we briefly discuss what might happen when we consider random fields cij satisfying
only a generic L∞-bound.

1. Notation and preliminaries

In this section we introduce our model and recall some definitions from probability theory as well as existing
results in the deterministic setting.

1.1. The random model. First we set some notation. We define Qδ(x) = x + [− δ2 ,
δ
2 )2 as the half-open

coordinate square centered at x with side length δ. For a real number y ∈ R, we let byc be its integer part
and dye := byc + 1. By | · | we denote the Euclidean norm on R2. If B ⊂ R2 is a Borel set we denote by |B|
its Lebesgue measure and by H1(B) its one-dimensional Hausdorff measure. Moreover, we set dH(A,B) as the
Hausdorff metric between two sets A,B. The symmetric difference of two sets A,B is denoted by A∆B. We
set 1B as the characteristic function of B, and we denote by E[X] the first moment of a random variable X.

We now specify the framework for our model. Let (Ω,F ,P) be a complete probability space. As pointed
out in the introduction, we consider the easiest type of normalized ferromagnetic energies accounting only for
nearest neighbor interactions. Given ω ∈ Ω and a function u : εZ2 → {±1} we set

Pωε (u) =
1

4

∑
i,j∈Z2

|i−j|=1

ε (1 + εcij(ω)) |u(εi)− u(εj)|,

where the cij : Ω → R are uniformly bounded random variables satisfying a suitable α-mixing assumption
specified in (1.5) below. Note that without loss of generality we may assume that cij = cji for all |i − j| = 1.
We define

Aε := {A ⊂ R2 : A =
⋃
i∈I

Qε(i) for some I ⊂ εZ2}.

The family of sets Aε is closed under unions and intersections. Identifying the level set {u = 1} of a function
u : εZ2 → {±1} with the set A ∈ Aε given by

A :=
⋃

i∈Z2:u(εi)=+1

Qε(i),

we can interpret Pωε as a random perimeter defined on Aε via Pωε (A) := Pωε (u).

If Z2 := {ξ = i+j
2 : i, j ∈ Z2, |i− j| = 1} denotes the dual lattice of Z2, we can rewrite the random perimeter

as a sum over points on the boundary ∂A via

(1.1) Pωε (A) =
∑
ξ∈Z2

εξ∈∂A

ε(1 + εcξ(ω)),
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where with a slight abuse of notation we set cξ(ω) := cij(ω). From now on we assume the random variables to
be indexed by the dual lattice. Given A ∈ Aε it will be useful to define the properly scaled random perimeter
also on portions of the boundary Γ ⊂ ∂A setting

pωε (Γ) =
∑

ξ∈Z2: εξ∈Γ

εcξ(ω).

With this notion, it holds that Pωε (A) = H1(∂A) + εpωε (∂A).
In order to adapt the idea of Almgren, Taylor and Wang for studying curvature-driven motions, we have to

define a suitable discrete distance between sets. As in [14] we take a discrete version of the l∞-distance. To
this end, first note that for every x ∈ R2 there exists a unique point i ∈ εZ2 such that x ∈ Qε(i). Given a set
A ⊂ Aε we define the value of the measurable function dε∞(·, ∂A) : R2 → [0,+∞) at x ∈ Qε(i) by

(1.2) dε∞(x, ∂A) :=

{
inf{‖i− j‖∞ : j ∈ εZ2\A} if i ∈ A,

inf{‖i− j‖∞ : j ∈ εZ2 ∩A} if i /∈ A.

Observe that by definition dε∞(x, ∂A) ∈ εN for all x ∈ R2.
Now we can define the total energy to be considered in the minimizing movement scheme. Given a mesh size

ε > 0, a time step τ > 0, sets A,F ∈ Aε and ω ∈ Ω we set

Eωε,τ (A,F ) := Pωε (A) +
1

τ

∫
A∆F

dε∞(x, ∂F ) dx.

For a fixed (possibly random) initial set A0
ε(ω), we introduce the following discrete-in-time minimization scheme:

(i) A0
ε,τ (ω) := A0

ε(ω),

(ii) Ak+1
ε,τ (ω) minimizes A 7→ Eωε,τ (A,Akε,τ (ω)).

Note that this procedure might not be unique. The discrete flat flow is defined as the piecewise constant
interpolation

Aε,τ (t)(ω) := Abt/τcε,τ (ω).

As a by-product of the analysis performed in [14], the most interesting regime is τ ∼ ε. Hence throughout this
paper we assume for simplicity that

τ = γ ε for some γ > 0

and omit the dependence on τ in the notation introduced above. For a complete analysis we have to require
that the coefficient field satisfies the bound

(1.3) sup
ξ
|cξ(ω)| =: c∞(ω) <

1

4γ
P-almost surely.

Remark 1.1. Some of the results in this paper are valid for a generic L∞-bound c∞(ω) ≤ C but unfortunately
these are not enough to characterize the motion (see also Remark 2.4). The bound (1.3) allows to control
oscillations in the random part of the perimeter by the bulk term on small scales where we cannot apply the
law of large numbers. Roughly speaking this bound compensates the fact that the shape of minimal paths in
Z2 can change drastically if one adds a very small perturbation to the crystalline perimeter, so that we need
to control this deviation by the bulk term. Therefore it is clear that when τ >> ε, our random perturbations
are required to be very small. The precise value comes from a reverse isoperimetric inequality on Aε: For all
A ∈ Aε it holds

(1.4) εH1(∂A) ≤ 4|A|.

Remark 1.2. Using the boundedness of the random coefficients it is easy to see that Pωε (A) has the same
Γ-limit in the L1-topology as Pε defined in (0.2), so that it converges to the crystalline perimeter (0.3).

Now we introduce several stochastic properties of the random field {cξ}ξ∈Z2 . In what follows, given a subset
I ⊂ Z2 we set FI = σ (cξ : ξ ∈ I) as the σ-algebra generated by the random variables {cξ}ξ∈I . We recall the
following definitions from ergodic/probability theory:



MOTION OF DISCRETE INTERFACES IN LOW-CONTRAST RANDOM ENVIRONMENTS 5

Definition 1.3. We say that a family of measurable functions {τz}z∈Z2 , τz : Ω→ Ω, is an additive group action
on Ω if

τz1+z2 = τz2 ◦ τz1 ∀ z1, z2 ∈ Z2.

Such an additive group action is called measure preserving if

P(τzB) = P(B) ∀B ∈ F , z ∈ Z2.

Moreover {τz}z∈Z2 is called ergodic if, in addition, for all B ∈ F we have

(τz(B) = B ∀ z ∈ Z2) ⇒ P(B) ∈ {0, 1}.

Definition 1.4. Let {τz}z∈Z2 : Ω → Ω be a measure preserving group action. We say that the random field
{cξ}ξ∈Z2 is

(i) stationary, if cξ ◦ τz = cξ+z ∀z ∈ Z2 and ∀ξ ∈ Z2;
(ii) ergodic, if it is stationary and {τz}z is ergodic;
(iii) strongly mixing (in the ergodic sense), if it is stationary and

lim
|z|→+∞

P(A ∩ (τzB)) = P(A)P(B) ∀A,B ∈ F ;

(iv) α-mixing, if there exists a sequence α(n)→ 0 such that for all sets I1, I2 ∈ Z2 with dist(I1, I2) ≥ n we
have

sup{|P(A ∩B)− P(A)P(B)| : A ∈ FI1 , B ∈ FI2} ≤ α(n).

Remark 1.5. In contrast to ergodicity, the property of α-mixing is conserved on subsets of Z2. In general,
it might seem natural to start with the easiest case of an independent and identically distributed random field
{cξ}. However this does not simplify the arguments since our approach heavily relies on Theorem 1.7 below.
Indeed, in addition to this theorem we only use stationarity. We recall that in general, up to switching to a
product space, we have the following implications (always assuming stationarity):

independence ⇒ α-mixing ⇒ strongly mixing in the ergodic sense ⇒ ergodicity.

In our analysis we have to study averages of sequences of the form {cξj}j , where the sequence {ξj}j describes
a single side in the boundary of a rectangle. For sequences the definition of α-mixing reads as follows:

Definition 1.6. A sequence {Xj}j∈N of random variables is said to be α-mixing if there exists a sequence
α(n)→ 0 such that for all sets I1, I2 ⊂ N with dist(I1, I2) ≥ n it holds that

sup{|P(A ∩B)− P(A)P(B)| : A ∈ FI1 , B ∈ FI2} ≤ α(n).

Here again FI denotes the σ-algebra generated by the random variables {Xj}j∈I .

Similar to independent random variables (which are α-mixing with α(n) = 0), α-mixing allows for quantitative
estimates for the error probabilities in the law of large numbers. We will need the following polynomial decay
theorem for bounded α-mixing sequences, proved by Berbee in [8].

Theorem 1.7. Let p > 1 and {Xj}j∈N be an α-mixing sequence of random variables bounded by 1 such that
E[Xj ] = 0 for all j. If ∑

n≥1

np−2α(n) < +∞,

then, setting Sk =
∑k
j=1Xj, for all δ > 0 it holds∑

n≥1

np−2P
(

sup
k≥n
|Sk/k| > δ

)
< +∞.
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While for static problems stationarity and ergodicity are often enough to prove stochastic homogenization
results for variational models (see for example [2, 3, 12, 15]), in this minimizing movement setting we make use
of mixing properties. More precisely, motivated by Theorem 1.7 we require that the random field is α-mixing
with coefficients satisfying

(1.5)
∑
n≥1

α(n) < +∞.

Remark 1.8. There are stronger notions of mixing in the literature, however we prefer to choose α-mixing
with a suitable decay rate of α(n) rather than a general φ-mixing condition since the generalization of φ-
mixing conditions to two-dimensional random fields is not trivial and many of them already imply a finite range
dependence assumption (see [9]). Moreover, in general α-mixing is much weaker than φ-mixing.

1.2. Results for deterministic models. Let us collect some results obtained in the deterministic setting.
Within a discrete, deterministic environment, the problem we are interested in has first been studied by Braides,
Gelli and Novaga in [14] in the case cξ(ω) = 0. For coordinate rectangles as initial sets they prove the following:

Theorem 1.9 (Braides, Gelli, Novaga). Let A0
ε ∈ Aε be a coordinate rectangle with sides S1,ε, ..., S4,ε. Assume

that A0
ε converges in the Hausdorff metric to a coordinate rectangle A. Then, up to subsequences, Aε(t) converges

locally in time to A(t), where A(t) is a coordinate rectangle with sides Si(t) such that A(0) = A and any side
Si moves inward with velocity vi(t) given by

vi(t)


= 1

γ

⌊
2γ
Li(t)

⌋
if 2γ

Li(t)
/∈ N,

∈ 1
γ

[ (
2γ
Li(t)

− 1
)
, 2γ
Li(t)

]
if 2γ

Li(t)
∈ N,

where Li(t) := H1(Si(t)) denotes the length of the side Si(t), until the extinction time when Li(t) = 0.
Assume in addition that the lengths L0

1, L
0
2 of A satisfy one of the three following conditions (assuming that

L0
1 ≤ L0

2):

(i) L0
1, L

0
2 > 2γ (total pinning),

(ii) L0
1 < 2γ and L0

2 ≤ 2γ (vanishing in finite time with shrinking velocity larger than 1/γ),
(iii) L0

1 < 2γ such that 2γ/L0
1 /∈ N and L0

2 > 2γ (partial pinning).

Then Aε(t) converges locally in time to A(t) as ε→ 0, where A(t) is the unique rectangle with side lengths L1(t)
and L2(t) solving the following system of ordinary differential equations

d
dtL1(t) = − 2

γ

⌊
2γ
L2(t)

⌋
,

d
dtL2(t) = − 2

γ

⌊
2γ
L1(t)

⌋
for almost every t with initial conditions L1(0) = L0

1 and L2(0) = L0
2.

It is the aim of this paper to extend these results to small random perturbations of the perimeter. While
in [14] more general classes of sets are studied, we restrict ourselves to rectangles as the analysis of these
sets already contains the main features deriving from randomness. We mention that some effects of periodic
perturbations have already been studied in [16, 19]. In [16] the authors treat the following type of high-contrast
periodicity: Let Na, Nb ∈ N and Nab = Na + Nb. The coefficients cξ are Nab periodic and on the periodicity
cell 0 ≤ ξ1, ξ2 < Nab they satisfy

cξ =

{
b if 0 ≤ ξ1, ξ2 ≤ Nb,
a otherwise,

with weights a < b. It is shown that minimizers avoid the b-interactions and thus the limit velocity does not
depend on b but only on the geometric proportions Na, Nb of the periodicity cell. It would be interesting to see
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how random interactions acting on this scale influence the minimizing sets, since without periodicity it might
be impossible to take only a-interactions. However, in this paper we take the same scaling as the periodic
perturbations considered in [19]. These are so called low-contrast perturbations since they vanish when ε→ 0.
It is shown in [19] that the right scaling to obtain also b-interactions is b − a ∼ ε. More precisely, one has to
require that |b− a| < ε

2γ . Note that this bound agrees with (1.3). Hence with a = 1 this model corresponds to

a deterministic version of (1.1). In this sense, up to the bound (1.3), our Theorem 3.2 generalizes the results of
[19] to the most general periodic interactions as well as to the random case. While in the above deterministic
setting coefficients with |b− a| ≥ ε

2γ lead to rectangular interfaces using only a-interactions, in the random case

it is not clear what happens. We leave this issue as well as the high-contrast case open for future studies. For
the interested reader we mention the recent papers [13, 17], where the minimizing movements have been studied
for other discrete surface-type models.

2. Homogenized limit motion of a rectangle

In the sequel we study the case, when the initial data A0
ε is a coordinate rectangle. We further assume for

the rest of this paper that

(2.1) sup
ε
H1(∂A0

ε(ω)) = C < +∞.

This bound implies that, for ε small enough, any sequence chosen by the minimizing movement has equibounded
perimeter. Indeed, by minimality we have

Pωε (Ak+1
ε (ω)) ≤ Eωε (Ak+1

ε (ω), Akε(ω)) ≤ Eωε (Akε(ω), Akε(ω)) = Pωε (Akε(ω)),

so that by induction and L∞-boundedness of the random perturbations we infer for ε small enough that

(2.2) H1(∂Akε(ω)) ≤ 2Pωε (Akε(ω)) ≤ 2Pωε (A0
ε(ω)) ≤ 4H1(∂A0

ε(ω)).

The following theorem is the main result of Section 2.

Theorem 2.1. Assume that the random field {cξ}ξ is stationary and α-mixing such that (1.5) holds. Then
with probability 1 the following holds: Let εj ↓ 0 and let A0

j (ω) ∈ Aεj be a coordinate rectangle with sides

S1,j(ω), ..., S4,j(ω). Assume that A0
j (ω) converges in the Hausdorff metric to a coordinate rectangle A(ω). Then

we can choose a subsequence (not relabeled) such that Aεj (t)(ω) converges locally in time to A(t)(ω), where
A(t)(ω) is a coordinate rectangle with sides Si(t)(ω) such that A(0)(ω) = A(ω) and any side Si(t)(ω) moves
inward with velocity vi(t)(ω) solving the following differential inclusions:

vi(t)(ω)


= 1

γ

⌊
2γ

Li(t)(ω)

⌋
if 2γ

Li(t)(ω) /∈ N,

∈ 1
γ

[(
2γ

Li(t)(ω) − 1
)
, 2γ
Li(t)(ω)

]
if 2γ

Li(t)(ω) ∈ N,

where Li(t)(ω) := H1(Si(t)(ω)) denotes the length of the side Si(t)(ω). The differential inclusions are valid
until the extinction time when Li(t)(ω) = 0.

Following word by word the proof of [14, Theorem 2] we obtain unique limit motions in many cases:

Corollary 2.2. Let A0
εj (ω) and {cξ}ξ be as in Theorem 2.1. Assume in addition that the lengths L0

1(ω), L0
2(ω)

of A(ω) satisfy one of the three following conditions (assuming that L0
1(ω) ≤ L0

2(ω)):

(i) L0
1(ω), L0

2(ω) > 2γ (total pinning),
(ii) L0

1(ω) < 2γ and L0
2(ω) ≤ 2γ (vanishing in finite time with shrinking velocity larger than 1/γ),

(iii) L0
1(ω) < 2γ and 2γ/L0

1(ω) /∈ N, and L0
2(ω) > 2γ (partial pinning).
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The sequence Aεj (t)(ω) converges locally in time to A(t)(ω), where A(t)(ω) is the unique coordinate rectangle
with sides S1(t)(ω) and S2(t)(ω) such that A(0)(ω) = A(ω) and the side lengths L1(t)(ω) and L2(t)(ω) solve
the following differential equations for all but countably many times until the extinction time:

d
dtL1(t)(ω) = − 2

γ

⌊
2γ

L2(t)(ω)

⌋
,

d
dtL2(t)(ω) = − 2

γ

⌊
2γ

L1(t)(ω)

⌋
with initial condition L1(0)(ω) = L0

1(ω) and L2(0)(ω) = L0
2(ω).

We postpone the proof of Theorem 2.1 and first derive some auxiliary results.

2.1. Qualitative behavior. In this part we prove that during the minimization scheme coordinate rectangles
remain sets of the same type as long as its sides don’t degenerate to a point. As we will see later, this property
is enough to derive the equation of motion at a fixed time t. The argument splits into two steps. First we
prove that any minimizer must be connected and second, using the precise bound in (1.3), we conclude that this
component has to be a coordinate rectangle. The idea to prove connectedness is as follows: First we compare
the energy with a fast flow of a deterministic functional to conclude that the minimizer must contain a very
large rectangle. Then the remaining components are ruled out using the isoperimetric inequality.

Proposition 2.3. Assume that {cξ}ξ fulfills (1.3). Let η > 0 and suppose Akε(ω) is a coordinate rectangle with
all side lengths greater than η. Then, for ε small enough, Ak+1

ε (ω) is again a coordinate rectangle contained in
Akε(ω).

Proof. As explained above we divide the proof into two steps. As the arguments are purely deterministic we
drop the ω-dependence of the sets.
Step 1 Connectedness of minimizers
We consider the minimizing movement for an auxiliary deterministic functional that turns out to yield a faster
flow. Given 0 < δ << 1, we define

Gδε(A,F ) := H1(∂A) +
δ

γε

∫
A∆F

dε∞(x, ∂F ) dx.

By the uniform bound in (1.3) the random weights defining Pωε are nonnegative for ε small enough. Thus for
any sets A,B, F ∈ Aε we have the (in)equalities

Pωε (A ∪B) + Pωε (A ∩B) ≤Pωε (A) + Pωε (B),∫
F∆(A∩B)

dε∞(x, ∂F ) dx+

∫
F∆(A∪B)

dε∞(x, ∂F ) dx =

∫
F∆A

dε∞(x, ∂F ) dx+

∫
F∆B

dε∞(x, ∂F ) dx.

The inequality also holds for the standard perimeter, which implies the two general estimates

Eωε (A ∩B,F ) + Eωε (A ∪B,F ) ≤ Eωε (A,F ) + Eωε (B,F ),

Gδε(A ∩B,F ) +Gδε(A ∪B,F ) ≤ Gδε(A,F ) +Gδε(B,F ).
(2.3)

Now let Rδε ∈ Aε be the smallest minimizer of Gδε(·, Akε) with respect to set inclusion. This is well-defined due
to (2.3). From the analysis in [14] we know that Rδε ⊂ Akε is a coordinate rectangle and, denoting by Ni,εε the
distance between corresponding sides of Rδε and Akε , for ε small enough it holds that(

2γ

δLi,ε
− 1

)
ε ≤ Ni,εε ≤

(
2γ

δLi,ε
+ 1

)
ε,

where Li,ε denotes the length of the side Si,ε of Akε . In particular, using (2.1), (2.2) and the assumptions on
the sides of Akε , we infer the two-sided bound

(2.4)
( γ

Cδ
− 1
)
ε ≤ Ni,εε ≤

(
2γ

δη
+ 1

)
ε.
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In particular Ni,ε is positive for small δ. We argue that, upon further reducing δ, it holds Rδε ⊂ Ak+1
ε . Assume

by contradiction that Rδε\Ak+1
ε 6= ∅. Since (2.4) implies that

(2.5) dε∞(x, ∂Akε) ≥
( γ

Cδ
− 1
)
ε ∀x ∈ Rδε,

using (2.3) and that both Ak+1
ε and Rδε are minimizers of the corresponding functionals, we obtain

0 ≥Eωε (Ak+1
ε , Akε)− Eωε (Rδε ∪Ak+1

ε , Akε) ≥ Eωε (Rδε ∩Ak+1
ε , Akε)− Eωε (Rδε, A

k
ε)

=ε
(
pωε (∂(Rδε ∩Ak+1

ε ))− pωε (∂Rδε)
)

+
1− δ
γε

∫
Rδε\A

k+1
ε

dε∞(x, ∂Akε) dx

+H1(∂(Rδε ∩Ak+1
ε ))−H1(∂Rδε) +

δ

γε

∫
Rδε\A

k+1
ε

dε∞(x, ∂Akε) dx

=ε
(
pωε (∂(Rδε ∩Ak+1

ε ))− pωε (∂Rδε)
)

+
1− δ
γε

∫
Rδε\A

k+1
ε

dε∞(x, ∂Akε) dx

+Gδε(R
δ
ε ∩Ak+1

ε , Akε)−Gδε(Rδε, Akε)

≥ε
(
pωε (∂(Rδε ∩Ak+1

ε ))− pωε (∂Rδε)
)

+
1− δ
γε

∫
Rδε\A

k+1
ε

dε∞(x, ∂Akε) dx,

where we used several times that Rδε ⊂ Akε to simplify the symmetric differences. In combination with (2.5), for
δ ≤ 1

2 the last estimate yields

(2.6)

(
1

2Cδ
− 1

2γ

)
|Rδε\Ak+1

ε | ≤ ε
(
pωε (∂Rδε)− pωε (∂(Rδε ∩Ak+1

ε ))
)
.

In order to use this inequality, we need to analyze which boundary contributions cancel in the last difference.
Given ξ = i+j

2 ∈ Z
2 we distinguish two exhaustive cases:

(i) i ∈ Rδε, j /∈ Rδε: If i ∈ Ak+1
ε we have i ∈ Rδε ∩Ak+1

ε and j /∈ Rδε ∩Ak+1
ε which implies ξ ∈ ∂(Rδε ∩Ak+1

ε )
and thus this contribution cancels. Otherwise i /∈ Ak+1

ε and consequently ξ ∈ ∂(Rδε\Ak+1
ε );

(ii) i ∈ Rδε ∩ Ak+1
ε , j /∈ Rδε ∩ Ak+1

ε : If j /∈ Rδε, then ξ ∈ ∂Rδε and the contribution cancels, while j ∈ Rδε
yields j /∈ Ak+1

ε and therefore ξ ∈ ∂(Rδε\Ak+1
ε ).

From those two cases and (1.3) we infer that

εpωε (∂Rδε)− εpωε (∂(Rδε ∩Ak+1
ε )) ≤ c∞(ω)εH1(∂(Rδε\Ak+1

ε )).

Using the reverse isoperimetric inequality (1.4), we can put together the last estimate and (2.6) to deduce(
1

2Cδ
− 1

2γ

)
|Rδε\Ak+1

ε | ≤ 4c∞(ω)|Rδε\Ak+1
ε |.

Choosing δ small enough this yields a contradiction. Hence we proved that Rδε ⊂ Ak+1
ε for δ small enough.

Next we rule out any other connected component except the one containing Rδε. Note that estimate (2.4)
implies

(2.7) dε∞(x, ∂Akε) ≤ (
2γ

δη
+ 1)ε ∀x ∈ Akε\Rδε.
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Consider a connected component A of Ak+1
ε not containing Rδε. We set A′ = Ak+1

ε \A. Due to (2.1) and (2.7)
it holds that |Akε ∩A| ≤ |Akε\Rδε| ≤ Cδ,ηε. Hence, for ε small enough, we obtain from (1.3) that

Eωε (Ak+1
ε , Akε)− Eωε (A′, Akε) ≥(1− c∞(ω)ε)H1(∂A)− 1

γε

∫
Akε∩A

dε∞(x, ∂Akε) dx

≥H
1(∂A)

2
−
( 2

δη
+

1

γ

)
|Akε ∩A| ≥

H1(∂A)

2
− |Akε ∩A|

1
2

≥H
1(∂A)

2
− |A| 12 ≥ 1

2
(1− 1√

π
)H1(∂A) > 0,

where we first used the general set inclusion (F\A)∆B ⊂ F∆B∪ (B∩A) to estimate the integrals and then the
two-dimensional isoperimetric inequality. This estimate contradicts the minimality of Ak+1

ε and we conclude
that Ak+1

ε has exactly one connected component for ε small enough.
Step 2 Reduction to coordinate rectangles
First note that if we replace an arbitrary set A ∈ Aε by the set A∩Akε we strictly reduce the energy if the sets
are not equal. To see this, we observe that

Eωε (A,Akε)− Eωε (A ∩Akε , Akε) ≥ 1

γ ε

∫
A\Akε

dε∞(x, ∂Akε) dx+ Pωε (A)− Pωε (A ∩Akε)

≥|A\A
k
ε |

γ
+ Pωε (A)− Pωε (A ∩Akε).(2.8)

Again we need to analyze which interactions cancel due to the random perimeter difference in (2.8). As Akε is a
coordinate rectangle, by elementary geometric considerations one can prove that H1(∂A) ≥ H1(∂(A∩Akε)). On
the other hand, reasoning similar to the lines succeeding (2.6) one can show that all random interactions cancel
except those coming from ∂(A\Akε). In case this set is non-empty, by the precise bound in (1.3) we conclude
that (2.8) can be further estimated via the strict inequality

Eωε (A,Akε)− Eωε (A ∩Akε , Akε) >
|A\Akε |
γ

− 1

4γ
εHd−1(∂(A\Akε)) ≥ 0,

where we used again the reverse isoperimetric inequality in Aε. Whenever A is a minimizer we obtain a
contradiction which shows that ∂(Ak+1

ε \Akε) = ∅, or equivalently Ak+1
ε ⊂ Akε .

To conclude we assume by contradiction that Ak+1
ε is not a coordinate rectangle. Consider then the minimal

coordinate rectangle R containing Ak+1
ε (see Figure 1). Then again by elementary geometric arguments it holds

that H1(∂Ak+1
ε \∂R) ≥ H1(∂R\∂Ak+1

ε ). Moreover, as Ak+1
ε ⊂ R one can check that

(2.9)
(
∂Ak+1

ε \∂R
)
∪
(
∂R\∂Ak+1

ε

)
= ∂(R\Ak+1

ε ).

Since R ⊂ Akε by the previous argument, using (1.3) the difference of the energies can be estimated by

0 ≥Eωε (Ak+1
ε , Akε)− Eωε (R,Akε) ≥ 1

γ
|R\Ak+1

ε |+ Pωε (Ak+1
ε )− Pωε (R)

≥ 1

γ
|R\Ak+1

ε |+ (1− c∞(ω)ε)H1(∂Ak+1
ε \∂R)− (1 + c∞(ω)ε)H1(∂R\∂Ak+1

ε )

≥ 1

γ
|R\Ak+1

ε | − c∞(ω)ε
(
H1(∂Ak+1

ε \∂R) +H1(∂R\∂Ak+1
ε )

)
≥
( 1

γ
− 4c∞(ω)

)
|R\Ak+1

ε |,

where in the last inequality we used (2.9) and (1.4). We conclude the proof by the strict bound in (1.3). �

Remark 2.4. We want to comment on the L∞-bound (1.3): Note that we used the precise bound by 1
4γ only

in Step 2. If we assume a generic bound, then Step 2 would probably need probabilistic arguments. We believe
that, starting from a coordinate rectangle and using the law of large numbers, one can show that any minimizer
must have the same deterministic perimeter as the minimal coordinate rectangle containing it. In particular
the new set must be contained in the previous one and can differ from a rectangle only at the corners. However
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Figure 1. The minimal coordinate rectangle R containing a connected set Aε ∈ Aε.

Aε

R

when (1.3) is violated, then with positive probability this minimal rectangle can have higher energy since cutting
the edges leaves the deterministic perimeter unchanged and leads to a competition between the random part
and the bulk term. Even though the bulk term yields a control on the behavior at the corners, cuts can exist
and that causes difficulties. Indeed we are not able to rule out that cuts grow with the number of time steps,
but for an inductive argument (which is necessary also for connectedness) one needs to control the deviation
from a rectangle.

2.2. Computation of the velocity. As a next step we derive a precise formula for the velocity of the discrete
motion still assuming that the side lengths of Akε(ω) are bounded away from zero. We follow [14] and express
the functional to be minimized by the distance from each side of the optimal rectangle to the corresponding side
of the previous set Akε(ω). Let Ak+1

ε (ω) be a minimizer. To reduce notation, we let si,ε and s′i,ε (i = 1, . . . , 4)

be the sides of Akε(ω) and Ak+1
ε (ω) respectively and set li,ε = H1(si,ε). We define Nk+1

i,ε ε as the distance from

the side si,ε to the side s′i,ε. Observe that for ε small enough Ak+1
ε (ω) must contain the center of the previous

rectangle Akε(ω). Otherwise the bulk term would blow up, while choosing A = Akε(ω) as a candidate yields

equibounded energy. Rewriting the functional Eωε (A,Akε) in terms of the four integer numbers Nk+1
i,ε , we obtain

that these are minimizers of the function f̃ωε : N4
0 → R defined by

f̃ωε (N) :=

4∑
i=1

(li,ε − 2Niε) +

4∑
i=1

pωε (si,ε +Niεn̂i)ε− ε2eperε +
ε

γ

4∑
i=1

Ni∑
n=1

li,εn− ε2ebulkε

=ε

4∑
i=1

(
(
li,ε
ε
− 2Ni) + pωε (si,ε +Niεn̂i) +

(Ni + 1)Ni li,ε
2γ

)
− ε2(eperε + ebulkε ),

where n̂i ∈ {±e1,±e2} denotes the vector representing the inward motion of each side and the error terms
eperε , ebulkε account for the fact that we neglect the shrinking effect on the random part of the energy and that
we count twice the bulk part in the corners (one time with the wrong distance). For these errors we have the
following bounds:

(2.10) |eperε | ≤
2

γ
max
i
Ni, |ebulkε | ≤ 4

γ
(max

i
Ni)

3.

We argue that the error terms are negligible as ε→ 0. To this end we show that maxiNi,ε is equibounded with

respect to ε as long as li,ε ≥ η > 0 for some η > 0. Indeed, suppose without loss of generality that N := maxiNi
corresponds to the right vertical side si,ε. Let us denote by P the center of Akε(ω). Then, for ε small enough,
one can easily prove that

{x ∈ Akε(ω) :
N

2
ε ≤ dist(x, si,ε) ≤ Nε, |〈x− P, e2〉| ≤

η

4
} ⊂ Akε(ω)\Ak+1

ε (ω).



12 MATTHIAS RUF

Thus for the bulk term we obtain the lower bound

1

γε

∫
Akε (ω)\Ak+1

ε (ω)

dε∞(x, ∂Akε(ω)) dx ≥
min{η4 ,

N
2 ε}

γ

Nη

4
.

Using (1.3) and (2.1), for ε small enough, we deduce a lower bound for the random perimeter via

Pωε (Ak+1
ε (ω)) ≥ Pωε (Akε(ω))− 8Nε− 1

2γ
εH1(∂Akε(ω))− 2

γ
ε2N ≥ Eωε (Akε(ω), Akε(ω))− ε

(
9N +

C

2γ

)
.

Assuming that N ≥ C
2γ , we infer that such N can’t yield a minimizer as soon as

(2.11) −10Nε+
min{η4 ,

N
2 ε}

γ

Nη

4
> 0.

From (2.11) we deduce that N has to be bounded when ε→ 0.
It follows from (2.10) that, asymptotically, we can instead minimize the functional

(2.12) fωε (N) =

4∑
i=1

(
−2Ni + pωε (si,ε +Niεn̂i) +

1

2γ
(Ni + 1)Ni li,ε

)
,

provided that the minimizer of the limit is unique. In particular, as in [14] each side moves independently from
the remaining ones. More precisely, we have to study the minimizers of the one-dimensional random function

(2.13) vωi,ε(N) := −2N + pωε (si,ε +Nεn̂i) +
1

2γ
(N + 1)N li,ε.

We have a good a priori estimate for the minimizers which holds without any stationarity assumption. Indeed,
by (1.3) it holds

sup
N,N ′

|pωε (si,ε +Nεn̂i)− pωε (si,ε +N ′εn̂i)| ≤
1

2γ
li,ε,

while (one of) the integer minimizers for the polynomial P (x) = −2x+
li,ε
2γ (x+ 1)x is given by x∗ = b 2γ

li,ε
c. We

deduce the estimate

|P (x∗ ± 2)− P (x∗)| =

{
3li,ε
γ − 4 +

2li,ε
γ x∗ ≥ li,ε

γ ,
li,ε
γ + 4− 2li,ε

γ x∗ ≥ li,ε
γ .

We infer that for minimizing vωi,ε we need only to consider three values, namely

(2.14) min
N

vωi,ε(N) = min{vωi,ε(x∗), vωi,ε(x∗ + 1), vωi,ε(x
∗ − 1)}.

Thus the randomness can only cause one additional jump forwards or backwards. The precise asymptotic
behavior of the stochastic term in (2.13) is more involved since the segment si,ε can vary along infinitely many
different lattice positions as ε→ 0. Thus a direct application of Birkhoff’s ergodic theorem to prove the existence
of a limit is not possible. Indeed, in Example 2.5 below we construct a stationary, ergodic field of perturbations
where for at least one side si,ε the term pωε (si,ε +Nεn̂i) does not converge with probability 1.

Example 2.5. Let γ = 1 and let {Xi}i∈Z be a sequence of non-constant independent and identically distributed
random variables on a probability space (Ω,F ,P) equipped with a measure-preserving, ergodic map τ : Ω→ Ω
such that Xk(ω) = X0(τkω), where τk denotes the k-times iterated composition of the map τ (this whole setting
can be realized on a suitable product space with the shift operator). Moreover assume that ‖Xi‖∞ < 1

4 and set

cξ(ω) = Xbξ1c(ω). Then cξ is a stationary, ergodic random field. If the initial coordinate rectangles A0
ε converge

in the Hausdorff metric to a coordinate rectangle A0, then for at least one of the vertical sides we have that,
for all N ∈ N0,

P
(
{ω : lim

ε→0
vωi,ε(N) exists}

)
= 0.
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The above can be seen as follows: When εn → 0, note that for at least one vertical side the x-component of
si,εn
εn

diverges to ±∞. Then so does the x-component of
si,εn
εn

+ Nn̂i. Without loss of generality we assume

that these x-components form a sequence of positive numbers {kn + 1
2}n → +∞ with kn ∈ N. Passing to a

subsequence (not relabeled) we can assume that this sequence is monotone increasing. Since li,εn converges to
the vertical side length li of A0, we only have to take into account the random term. Since A0

εn ∈ Aεn , we have

pωεn(si,εn +Nεnn̂i) = Xkn(ω)li,εn .

For li,εn converging to li 6= 0, the asymptotic behavior of pωεn(si,εn +Nεnn̂i) is characterized by Xkn(ω). Since
these variables are non-constant and independent, it follows from Kolmogorov’s 0-1 law that

P({ω : lim
n
Xkn(ω) exists}) = 0.

Moreover we can define the measure preserving group action τz : Ω→ Ω as

τzω := τz1ω.

From the construction of the random field, it follows immediately that {cξ}ξ is stationary. By assumption the
group action is ergodic, too.

Remark 2.6. In addition to the lack of convergence for the random field in Example 2.5, it is not clear whether
for this example one can neglect the error terms in (2.10). This is due to possible non-uniqueness of minimizers:
Denote by xj the x-component of a left vertical side si,εj (ω)/εj and set N∗j = b2/li,εjc and kj := bxj + N∗j c.
Recall that we assume γ = 1. Comparing the three possibilities in (2.14), one can show that minimizers of the
function vωi,εj are not unique if and only if

2

li,εj
−N∗j ∈

{
(Xkj (ω)−Xkj−1(ω)), 1 + (Xkj+1(ω)−Xkj (ω))

}
.

Now take Xk to be uniformly distributed on the interval (0, ρ) with ρ ∈ (0, 1
4 ). Then for every k the random

variable Yk = Xk−Xk−1 have a triangular distribution on (−ρ, ρ). Hence the sequence {Y2k}k is an independent
and identically distributed sequence of random variables, which implies

P (ω : {Y2k(ω)}k is not dense in (−ρ, ρ)) = 0.

Indeed, given q ∈ Q ∩ (−ρ, ρ) and n ∈ N, from independence we infer

P
(
ω : Y2k(ω) /∈ q + (− 1

n
,

1

n
) ∀k

)
= 0.

In order to obtain the convergence of the sequence vωi,ε when ε → 0, we need a stronger condition than

ergodicity, which in particular has to be preserved on one-dimensional sections of Z2. It turns out that the
α-mixing condition introduced in (1.5) is enough. Indeed, we have the following crucial result:

Proposition 2.7. Assume that the random field {cξ}ξ is stationary and α-mixing such that (1.5) holds and set
µ := E[cξ]. Let εj ↓ 0. There exists a set Ω′ ⊂ Ω of full probability (independent of the particular sequence εj)
such that for every ω ∈ Ω′ and every sequence of sides {Sj}j∈N such that Sj converges in the Hausdorff metric
to a segment S, we have

lim
j
pωεj (Sj) = H1(S)µ.

Proof. We assume that the side is a vertical side, the case of horizontal sides works the same way with another
set of full measure. Moreover it is not restrictive to consider the case µ = 0. To reduce notation we let
[x]∗ := bxc+ 1

2 . Given q ∈ Q ∩ (0,+∞) we define the following sequences of random variables:

Xq,±
n (ω) := sup

k≥qn

∣∣∣∣∣ 1

2k + 1

k∑
l=−k

c([±n]∗,l)(ω)

∣∣∣∣∣ .
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Given δ > 0, by stationarity and an elementary fact about average sums we have

P
(
|Xq,±

n | > δ
)

= P
(

sup
k≥qn

∣∣∣∣ 1

2k + 1

k∑
l=−k

c([0]∗,l)

∣∣∣∣ > δ

)

≤ P
(

sup
k≥qn

∣∣∣∣ 1

k + 1

k∑
l=0

c([0]∗,l)

∣∣∣∣ > δ

)
+ P

(
sup
k≥qn

∣∣∣∣1k
k∑
l=1

c([0]∗,−l)

∣∣∣∣ > δ

)
.(2.15)

Upon rescaling cξ we can apply Theorem 1.7 with p = 2 to the two bounded and α-mixing sequences {c([0]∗,l)}l∈N0

and {c([0]∗,−l)}l∈N and deduce from (2.15) that

∑
n≥1

P(|Xq,±
n | > δ) ≤

∑
n≥1

P
(

sup
k≥qn

∣∣∣∣ 1

k + 1

k∑
l=0

c([0]∗,l)

∣∣∣∣ > δ

)
+ P

(
sup
k≥qn

∣∣∣∣1k
k∑
l=1

c([0]∗,−l)

∣∣∣∣ > δ

)

≤ dq−1e
∑
i≥1

P
(

sup
k≥i

∣∣∣∣ 1

k + 1

k∑
l=0

c([0]∗,l)

∣∣∣∣ > δ

)
+ P

(
sup
k≥i

∣∣∣∣1k
k∑
l=1

c([0]∗,−l)

∣∣∣∣ > δ

)
< +∞.

Hence by the Borel-Cantelli Lemma there exists a set of full probability Ωq such that both Xq,+
n and Xq,−

n

converge to 0 pointwise on Ωq. We set Ω′′ :=
⋂
q Ωq.

Next we check that we can relate the random length of the side Sj to one of the random variables Xq,±
n . Let

Sj converge to a segment S in the Hausdorff metric and denote by x ∈ R the x-coordinate of S. We start with
the case x > 0. Fix β > 0 and let xj ∈ Z + 1

2 be the x-component of Sj/εj . Then there exists j0 = j0(β) such

that for all j ≥ j0 we have x+ β ≥ εjxj and εj#{ξ ∈ Sj/εj ∩ Z2} ≥ H1(S)− β. For such j we infer that

#{ξ ∈ Sj
εj
∩ Z2} ≥ H

1(S)− β
x+ β

xj .

For β small enough, there exists q ∈ Q such that H
1(S)−β
x+β > 3q > 0. Now for every j we let nj ∈ N satisfying

[nj ]
∗ = xj (we may assume that xj > 0 for all j). Then

(2.16) #{ξ ∈ Sj
εj
∩ Z2} > 3qnj .

Let us first assume that S = {x} × 1
2 [−H1(S),H1(S)] is a centered side. Then for j large enough it holds

(2.17) #
({
ξ ∈ Sj

εj
∩ Z2

}
∆
{
ξ = (xj , l) ∈ Z2 : |l| ≤ H

1(Sj)

2εj

})
≤ β

εj
,

so that by (1.3) we have∣∣∣∣ ∑
εjξ∈Sj

εjcξ(ω)

∣∣∣∣ = H1(Sj)

∣∣∣∣ 1

#{εjξ ∈ Sj}
∑

εjξ∈Sj

cξ(ω)

∣∣∣∣
≤ Cβ + C

∣∣∣∣ 1

#{εjξ ∈ Sj}
∑

2εj |l|≤H1(Sj)

c(xj ,l)(ω)

∣∣∣∣ ≤ Cβ + CXq,+
nj (ω),(2.18)

where we used that bH1(Sj)/(2εj)c ≥ qnj for all but finitely many j by (2.16). Since β > 0 is arbitrary and
Xq,+
nj (ω)→ 0 for all ω ∈ Ω′′ we conclude in this special case.

Now assume that S = {x} × 1
2 [y − H1(S), y + H1(S)] with y > 0 (the other case is similar). We aim to

transfer the variables pointwise with the help of the group action. For β > 0 and q fixed as above, we define
the events

QN :=

{
ω ∈ Ω : ∀n ≥ N

2
it holds |Xq,+

n (ω)| ≤ β
}
.
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By the arguments hitherto we know that the function 1QN converges to 1Ω almost surely. Let us denote by Je2
the (maybe non-trivial) σ-algebra of invariant sets for the measure preserving map τe2 . Fatou’s lemma for the
conditional expectation yields

1Ω = E[1Ω|Je2 ] ≤ lim inf
N→+∞

E[1QN |Je2 ].

Hence we know that, given δ > 0, almost surely we find N0 = N0(ω, δ) such that

1 ≥ E[1QN0
|Je2 ](ω) ≥ 1− δ.

Due to Birkhoff’s ergodic theorem, almost surely, there exists n0 = n0(ω, δ) such that, for any m ≥ 1
2n0,∣∣∣∣∣ 1

m

m∑
i=1

1QN0
(τie2ω)− E[1QN0

|Je2 ](ω)

∣∣∣∣∣ ≤ δ.
Note that the set we exclude will be a countable union of null sets (depending only on the sequences Xq,±

n and
rational β). With a slight abuse of notation we still denote the smaller set by Ω′′.

We now fix ω ∈ Ω′′. For m ≥ max{n0(ω, δ), N0(ω, δ)} we denote by R the maximal integer such that for all
i = m + 1, . . . ,m + R we have τie2(ω) /∈ QN0

. In order to bound R let m̃ be the number of non-zero elements
in the sequence {1QN0

(τie2(ω))}mi=1. By definition of R we have

δ ≥
∣∣∣∣ m̃

m+R
− E[1QN0

|Je2 ](ω)

∣∣∣∣ =

∣∣∣∣1− E[1QN0
|Je2 ](ω) +

m̃−m−R
m+R

∣∣∣∣ ≥ R+m− m̃
m+R

− δ.

Since m− m̃ ≥ 0 and without loss of generality δ ≤ 1
4 , this provides an upper bound by R ≤ 4mδ. Thus for an

arbitrary m ≥ max{n0(ω, δ), N0(ω, δ)} and R̃ = 6mδ we find lm ∈ [m + 1,m + R̃] such that τlme2(ω) ∈ QN0
.

Then for all n ≥ N0

2 it holds that

(2.19) |Xq,+
n (τlme2ω)| ≤ β.

For j large enough we have by/εjc ≥ max{n0(ω, δ), N0(ω, δ)}, so that there exists lj ∈ N satisfying (2.19) and
moreover

(2.20) |by/εjc − lj | ≤ 6δby/εjc.

In addition we can assume that |H1(S) −H1(Sj)| ≤ β. Note that (2.20) is the analogue of (2.17). Thus from
(2.19), stationarity and the definition of Xq,+

n we deduce that

(2.21) |pωεj (Sj)| ≤ Cy(β + δ)

for all j large enough. By the arbitrariness of β and δ we proved the claim.
The case x < 0 can be proved the same way using the random variables Xq,−

n instead. It remains the case
when x = 0. For fixed z ∈ Z we consider the following sequences of random variables:

Y zn (ω) := sup
k≥n

∣∣∣∣∣ 1

2k + 1

k∑
l=−k

c([z]∗,l)(ω)

∣∣∣∣∣ .
With essentially the same arguments as above one can show that there exists a set Ωz of full probability such
that for every sequence of sides Sj contained in [z]∗ × R and all ω ∈ Ωz we have

pωεj (Sj)→ 0,

where Ωz does not depend on the sequence εj . We finally set Ω′ := Ω′′ ∩
⋂
z Ωz. Let us fix ω ∈ Ω′. Note that if

x = 0, then for every subsequence of εj there exists a further subsequence εjk , such that either

(i) xjk → ±∞,
(ii) xjk = [z]∗ for all k and for some z ∈ Z

In the first case we can use the construction for x 6= 0 with arbitrary q ∈ Q ∩ (0,+∞) since ω ∈ Ω′′ and in the
second case we use that ω ∈ Ωz to conclude. �
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Remark 2.8. It is straightforward to check that the limit relation of Proposition 2.7 holds for convergence in
probability even under the weaker assumption that both the σ-algebras invariant with respect to the two group
actions τe1 , τe2 are trivial.

With Proposition 2.7 at hand we are now in a position to prove the main result of this section.

Proof of Theorem 2.1. Let Ω′ be the set of full probability given by Proposition 2.7. We fix ω ∈ Ω′. Since
A0
j (ω) converges to a coordinate rectangle we can assume that the sides of A0

j (ω) are larger than η > 0 for
some η independent of j. Therefore we can apply Proposition 2.3 for all j large enough. For fixed j and
i = 1, ..., 4, the minimizing movement procedure yields two random sequences Lki,εj (ω), Nk

i,εj
(ω) of side-lengths

and displacements. Let us denote by Lji (t)(ω) = L
bτj/tc
i,εj

(ω) and N j
i (t)(ω) = N

bτj/tc
i,εj

(ω) the piecewise constant

interpolations. Note that the function Lji (t)(ω) is decreasing in t. Set

t∗ := min
i

{
inf{t > 0 : lim inf

j
Lji (t)(ω) = 0}

}
∈ [0,+∞].

Recall that we already deduced from (2.11) that the discrete velocity, that is the distance between two corre-
sponding sides between two time steps is equibounded by Cηε for some constant Cη depending on the minimal
side-length. Thus it follows that

min
i

lim inf
j

Lji (t
∗)(ω) = 0

and consequently t∗ > 0. Without changing notation we consider the subsequence realizing the lim inf. Then,
by monotonicity, one can verify that for all t < t∗ we have

min
i

lim inf
j

Lji (t)(ω) > 0.

Now fix t1 < t∗. Taking i into account modulo 4, by construction it holds

(2.22)
Lk+1
i,εj

(ω)− Lki,εj(ω)

τ
= − 1

γ
(Nk

i−1,εj (ω) +Nk
i+1,εj (ω)).

Hence on [0, t1] the piecewise affine interpolations t 7→ Lj,ai (t)(ω) are uniformly Lipschitz-continuous and de-

creasing whereas N j
i (t)(ω) is locally bounded in L∞. Thus, by a diagonal argument, we can find a further

subsequence such that Lji (t) → Li(t) pointwise and locally uniformly on [0, t∗) for some locally Lipschitz-

continuous, decreasing function Li(t)(ω) and additionally N j
i (t)(ω) weakly*-converges in L∞loc((0, t∗)) to some

function Ni(t)(ω). It follows that, up to a subsequence, Aεj (t)(ω) converges in the Hausdorff metric to a
coordinate rectangle A(t)(ω) for all 0 ≤ t < t∗.

We conclude the proof by computing the velocity of each side Li(t)(ω). Again we fix 0 < t < t∗. Then

lim infj L
j
i (t)(ω) > 0 for all i. Therefore we have that the minimizersNk

i,εj
(ω) of the functional fωεj (N) introduced

in (2.12) are uniformly bounded if |kτj − t| is small enough. Hence they converge (up to subsequences) to
minimizers of the Γ-limit of fωεj , which in case of a discrete domain coincides with the pointwise limit. By

Proposition 2.7 and the precedent discussion we know that for any N ∈ N4
0

fωεj (N)→
4∑
i=1

−2Ni + Li(t)(ω)µ+
1

2γ
(Ni + 1)NiLi(t)(ω)

with µ = E[cξ]. A straightforward calculation shows that the minimizers are given by

Ni


=
⌊

2γ
Li(t)(ω)

⌋
if 2γ
Li(t)(ω) /∈ N,

∈
{

2γ
Li(t)(ω) − 1, 2γ

Li(t)(ω)

}
otherwise.
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Summing the equality (2.22) we further infer that

Lji (t)(ω) = Lji (0)(ω)− 1

γ

bt/τjc∑
k=0

τj(N
j
i−1(kτj)(ω) +N j

i+1(kτj)(ω))

= Lji (0)(ω)− 1

γ

∫ t

0

(
N j
i−1(s)(ω) +N j

i+1(s)(ω)
)

ds+O(τj).(2.23)

Passing to the limit as j → +∞ in (2.23), we deduce from local weak convergence that

(2.24) Li(t)(ω) = Li(0)(ω)− 1

γ

∫ t

0

(Ni−1(s)(ω) +Ni+1(s)(ω)) ds.

To conclude, we note that if t is such that 2γ/Li(t)(ω) /∈ N, then by continuity we have that 2γ/Li(t
′)(ω) /∈ N

for |t− t′| ≤ δ and some δ > 0. It follows from comparing pointwise convergence with weak*-convergence that

Ni(t
′)(ω) = γvi(t

′)(ω) for almost all |t− t′| ≤ δ.

In particular Ni(·)(ω) has a constant representative on (t − δ, t + δ) so that the velocity of the side Si(t)(ω)
given by

lim
h→0

1

2

Li−1(t+ h)(ω)− Li−1(t)(ω)

h
= −vi(t)(ω)

exists by (2.24) whenever 2γ/Li(t)(ω) /∈ N. Note that the formula for the velocity is true because if 2γ/Li(t)(ω) /∈
N, then at least in every short time interval opposite sides move with the same velocities. The claim for
2γ/Li(t)(ω) ∈ N follows from well known properties of weak*-convergence (note that for these values of t the
velocity may not be a classical derivative). �

Remark 2.9. Without any assumptions on the distribution of the random field except the bound (1.3), up to
subsequences, we can still obtain a rectangular limit motion. Due to (2.14) we can also give an estimate of the
velocity via

vi(t)(ω) ∈ 1

γ

[⌊
2γ

Li(t)(ω)

⌋
− 1,

⌊
2γ

Li(t)(ω)

⌋
+ 1

]
.

Note that the subsequence may depend on ω. This estimate shows that for any possible limit velocity it holds

lim
γ→+∞

vi(t)(ω) =
2

Li(t)
,

which corresponds to the velocity of the continuum flow. However observe that (1.3) requires vanishing ran-
domness when γ → +∞.

Remark 2.10. For the continuum flow it is known that rectangles always shrink to a point; see for example
the more general result contained in [20, Proposition 3.1]. The same occurs for any possible limit motion in
our discrete model provided the sets vanish in finite time. Indeed, assume by contradiction that Li(t

∗)(ω) = 0
and Li+1(t∗)(ω) = a > 0. Then, for any t < t∗, by monotonicity of the side-lengths and the velocity estimate
in Remark 2.9 there exists a constant c > 0 such that

Li(t
∗)(ω)− Li(t)(ω) ≥ −c(t∗ − t).

By definition of t∗ we obtain the bound Li(t) ≤ c(t∗ − t). Inserting this bound in the estimate of Remark 2.9
we conclude that, again for any 0 < t < t∗ and a slightly larger constant c > 0,

Li+1(t)(ω)− Li+1(0)(ω) ≤ −
∫ t

0

c

t∗ − s
ds = c log(1− t/t∗).

Letting t ↑ t∗ we obtain a contradiction.
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3. Dependence on the range of stationarity

In the previous section we proved that the velocity of the limit motion is the same as in the unperturbed
deterministic case. For the homogenization of the velocity we used in particular Theorem 1.7 which required
normalized random variables with zero expectation. For stationary random fields this is not a restriction since
they all have the same expectation. However the situation changes if we require stationarity only for shifts
belonging to a subgroup of the form mZ2 since the distributions then are only m-periodic. We will prove that
in this case we can indeed obtain a velocity that differs from the homogeneous case. In particular this highlights
that the results obtained hitherto are not only due to the additional scaling of the random terms but indeed
due to homogenization. Note that in a deterministic setting the results of this section corresponds to replacing
constant weights by mZ2-periodic ones. A possible example with m-stationary coefficients (see the Definition
below) can be constructed by taking mZ2-periodic perturbations and adding an independent and identically
distributed random field.

Definition 3.1. Let m ∈ N. We say that the random field {cξ}ξ is m-stationary if

cξ ◦ τmz = cξ+mz ∀z ∈ Z2 and ∀ξ ∈ Z2.

As we will see there are 2m quantities that can affect the velocity. For k = 0, ...,m− 1 set [k]∗ = k + 1
2 and

consider the following averaged random variables:

ceff
k,|(ω) :=

1

m

m−1∑
j=0

c([k]∗,j)(ω), ceff
k,−(ω) :=

1

m

m−1∑
j=0

c(j,[k]∗)(ω).

These averages represent the random weights of a vertical or horizontal side inside a periodicity cell of the
distribution. We denote their expectations by

(3.1) µk = E[ceff
k,|], λk = E[ceff

k,−].

Before we state the main theorem on the motion for m-stationary perturbations we need to introduce the
singular side lengths where the velocity may not be well-defined. We will see later that they are given by

Sl| := {L ∈ (0,+∞) : 2γ/L ∈ N0 + γ(µk − µk−1) for some k} ,
Sr| := {L ∈ (0,+∞) : 2γ/L ∈ N0 − γ(µk − µk−1) for some k} ,

Sd− := {L ∈ (0,+∞) : 2γ/L ∈ N0 + γ(λk − λk−1) for some k} ,
Su− := {L ∈ (0,+∞) : 2γ/L ∈ N0 − γ(λk − λk−1) for some k} .

(3.2)

Here the indices mean left, right, down and up, which describe the type of side. Whenever it is clear from
the context, we associate to a side Si the corresponding set Si ∈ {Sl| ,S

r
| ,S

d
−,Su−}. Given L0 ∈ Si and a

non-increasing function vi : (0,+∞)\Si → R we set

v
(−)
i (L0) = lim

L↓L0

vi(L), v
(+)
i (L0) = lim

L↑L0

vi(L).

Now we are in a position to state the main theorem for m-stationary fields under the same α-mixing hypothesis
as in Theorem 2.1.

Theorem 3.2. Assume that the random field {cξ}ξ satisfies (1.3), is m-stationary and α-mixing such that

(1.5) holds. For i = 1, . . . , 4 there exist non-increasing functions veff
i : (0,+∞)\Si → [0,+∞) such that

with probability 1 the following holds: Let εj ↓ 0 and let A0
j (ω) ∈ Aεj be a coordinate rectangle with sides

S1,j(ω), ..., S4,j(ω). Assume that A0
j (ω) converges in the Hausdorff metric to a coordinate rectangle A(ω). Then

we can choose a subsequence (not relabeled), such that Aεj (t)(ω) converges locally in time to A(t)(ω), where
A(t)(ω) is a coordinate rectangle with sides Si(t)(ω) such that A(0)(ω) = A(ω). Each side Si(t)(ω) moves
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inward with velocity vi(t)(ω) solving the following inclusions:

vi(t)(ω)


= 1

γ v
eff
i (Li(t)(ω)) if Li(t)(ω) /∈ Si,

∈ 1
γ

[
(veff
i )(−)(Li(t)(ω)), (veff

i )(+)(Li(t)(ω))
]

otherwise,

where Li(t)(ω) := H1(Si(t)(ω)) denotes the length of the side Si(t)(ω). The inclusions are valid until the
extinction time when Li(t)(ω) = 0.

Remark 3.3. (i) We are not able to provide an explicit formula for the effective velocities veff
i . However

for a given set of perturbations the value can be calculated using the algorithm described before Lemma
3.5. Due to (3.7) the minimization problem therein is solved by comparing three values. We will show
that this algorithm stops after at most m steps. Moreover by construction the velocity depends only on
the expectations in (3.1). Lemma 3.5 contains some further properties of the velocities.

(ii) In contrast to the deterministic environments considered in [16, 19] in our setting the effective velocity
of two opposite sides can be different. However this is not due to random effects but can already be
caused by a slightly more complex periodic structure as shown in Example 3.7.

Again we postpone the proof of Theorem 3.2. First we construct the effective velocities. To this end we first
need the following generalization of Proposition 2.7.

Proposition 3.4. Assume that the random field {cξ}ξ is m-stationary and α-mixing such that (1.5) holds.
Then there exists a set Ω′ ⊂ Ω of full probability such that for all ω ∈ Ω′ the following holds: Suppose that a
vertical side Sj converges in the Hausdorff sense to a limit side S and that for all j we have that the x-component
xj of Sj/εj fulfills

(3.3) xj = k +
1

2
mod m ∀j.

Let µk be given by (3.1). Then it holds that

lim
j
pωεj (Sj) = H1(S)µk.

Moreover the convergence is locally uniform in the following weak sense: there exists j0 = j0(ω) such that for
all j ≥ j0 and all sequences of vertical sides S′j such that (3.3) holds and dH(Sj , S

′
j) ≤ δ we have

(3.4)
∣∣∣pωεj (S′j)−H1(S′j)µk

∣∣∣ ≤ Cδ
for some positive constant C > 0 independent of S′j.
The same statement holds for horizontal sides with the condition on the y-component and µk replaced by λk.

Proof. The argument to show convergence is very similar to the one used in Proposition 2.7 restricted to a
thinned dual lattice. We therefore only provide the main steps. We fix k as in (3.3) and define the two-sided
sequence of random variables {zi}i∈Z via

zi(ω) := ceff
k,|(τime2ω).

Note that this sequence is stationary and α-mixing such that (1.5) holds. For q ∈ Q ∩ (0,+∞) we define the
following average sequences:

Zq,±n (ω) := sup
i≥qn

∣∣∣∣∣ 1

2i+ 1

i∑
l=−i

zi(τ±nme1ω)− µk

∣∣∣∣∣
Using m-stationarity and the mixing property we can argue as in the proof of Proposition 2.7 to show that
there exists a set Ω′′ of full probability such that all the sequences Zq,±n converge to 0 pointwise on Ω′′. Up to
minor changes the proof of convergence now is the same as for Proposition 2.7. We omit the details.
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In order to prove (3.4) we have to distinguish two cases: First assume that the x-coordinate (also denoted by
x) of S is positive (the case of negative x-coordinate works the same way). Then, for δ small enough (otherwise
(3.4) is trivial), we have x′j > 0 for j large enough depending only on Sj . The key is to show that we can

compare S′j to one of the sequences of random variables Zq,+n as in the proof of Proposition 2.7, where q can be

chosen only depending on the sequence Sj . Then the speed of convergence is determined by the one of Zq,+n for
one particular q.

We start with the case of a vertically centered side S, that means S = {x} × [−H1(S)/2,H1(S)/2]. Given
0 < β << δ there exists j0 such that for all j ≥ j0 we have x+β ≥ εjxj and εj#{ξ ∈ Sj/εj ∩Z2} ≥ H1(S)−β.
Using the assumption dH(Sj , S

′
j) ≤ δ, a straightforward computation yields

#{ξ ∈
S′j
εj
∩ Z2} ≥ H

1(S)− 2δ − β
x+ δ + β

x′j

for all j ≥ j0. Therefore we have to chose H
1(S)−2δ−β
x+δ+β > 3q which can be done uniformly for small δ. Moreover,

from our assumptions we deduce

#

({
ξ ∈

S′j
εj
∩ Z2

}
∆

{
ξ = (xj , l) : |l| ≤

H1(S′j)

2εj

})
≤ 4δ

εj
.

Assuming (2.1) we deduce that supj H1(S′j) ≤ C. Hence we can argue as in (2.18) to prove that

(3.5)
∣∣∣pωεj (S′j)−H1(S′j)µk

∣∣∣ ≤ Cδ + Zq,+nj (ω),

where [nj ]
∗ = x′j . Since |xj − x′j | ≤ δ/εj and εjxj → x, for every n ∈ N we can find j0 (depending only on Sj)

such that for all j ≥ j0 we have

x′j ≥
x/2− δ
εj

≥ n.

Hence nj → +∞ and since Zq,+n converges to 0 on Ω′′, the claim (3.4) holds in this particular case.
The case of a general side S = {x} × [y−H1(S)/2, y+H1(S)/2] with x, y > 0 can be treated with the same

arguments as in the derivation of (2.21) since this construction is uniformly with respect to small displacements
of the limit side. We leave out the details here.

We are left with the case when x = 0. Again it is enough to consider a centered side S since the other cases
can be deduced from this one. Let us take q small enough such that

H1(S)− 4δ

2δ
> 3q.

By construction there exists j0 such that for every sequence S′j fulfilling the assumptions we have H1(S′j)/2εj >
q|x′j | for all j ≥ j0. Thus, if x′j is not bounded we can control the speed of convergence with the random

variables Zq,±n as in (3.5). Perhaps after enlarging j0, we obtain that

|Zq,±j (ω)| ≤ δ ∀j ≥ j0.

The estimate (3.4) now follows from distinguishing the case where |x′j | > j0 for which we can use the above
bound and (3.5) or |x′j | ≤ j0, where we have to control finitely many sequences of random variables that converge
to 0 as Sj → S. �

Now we can derive a candidate for the velocity. We remark that due to Proposition 3.4 the argument is similar
to the deterministic case treated in [16]. In what follows we identify indices modulo m whenever necessary.

We have to minimize the function vωi,ε(N) given by (2.13) which is the correct one describing the velocity if
the limit function as εj → 0 has a unique minimizer. For the moment we restrict the analysis to the left vertical
side. Up to a subsequence, we have that the x-component of si,εj/εj is constant modulo m, that is there exists
n ∈ 0, ...,m− 1 such that

xij = n+
1

2
mod m ∀j.
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If si,εj converges to a limit side of length L, then by Proposition 3.4 we have that along this particular subse-
quence, it holds that

vωi,εj (N)→ vn,Li (N) := −2N + Lµk +
L

2γ
(N + 1)N if N + n = k mod m.(3.6)

As we will show in the following, we can define an effective velocity which does not depend on the particular
subsequence. Setting N∗ = b2γ/Lc, as an analogue of (2.14) we have

(3.7) min
N

vn,Li (N) = min{vn,Li (N∗), vn,Li (N∗ + 1), vn,Li (N∗ − 1)}.

Since a precise analysis of the minimization process is only possible if the limit functional has a unique minimizer,
we check when this is the case. There are three equivalences that turn out to be useful to characterize the lack
of uniqueness. Write N∗ = 2γ/L− ξ with ξ ∈ [0, 1) and suppose that N∗ + n = k∗ mod m. Then it holds

vn,Li (N∗) ≤ vn,Li (N∗ + 1) ⇐⇒ ξ ≤ 1 + γ(µk∗+1 − µk∗),

vn,Li (N∗) ≤ vn,Li (N∗ − 1) ⇐⇒ ξ ≥ γ(µk∗ − µk∗−1),(3.8)

vn,Li (N∗ + 1) ≤ vn,Li (N∗ − 1) ⇐⇒ ξ ≥ 1

2
+
γ

2
(µk∗+1 − µk∗−1).

Thus minimizers are not unique if and only if

(i) γ(µk∗+1 − µk∗) + 1 = ξ ≥ γ
2 (µk∗+1 − µk∗−1) + 1

2 ,

(ii) γ(µk∗ − µk∗−1) = ξ ≤ γ
2 (µk∗+1 − µk∗−1) + 1

2 ,

(iii) ξ = 1
2 = γ(µk∗ − µk∗−1) = γ(µk∗ − µk∗+1),

where we left out those inequalities with no information. Due to (1.3) the third possibility cannot occur and
also the inequalities in (i) and (ii) are always fulfilled since µk∗+1 − µk∗−1 = (µk∗+1 − µk∗) + (µk∗ − µk∗−1).
In particular the set of side lengths where the minimization problem (3.7) has not a unique solution is discrete
and is given by Sl| . The same analysis for the remaining sides yields that the singular side lengths are indeed

the sets introduced in (3.2).
Now let us analyze the minimization scheme. Again we illustrate the procedure only for the left vertical side.

To this end we fix L /∈ Sl| . Setting X0 = xij , we will see that the motion of the corresponding left vertical side

will be given locally by the following algorithm:

For l = 0, 1, ... set

nl := Xl − 1
2 mod m,

Nl+1 = argmin
N

vnl,Li (N),

Xl+1 := Xl +Nl+1,

where vn,Li is defined in (3.6). This algorithm is well-defined for L /∈ Sl| and after at most m steps it yields an

effective velocity as shown in the lemma below:

Lemma 3.5. There exist nonnegative integer numbers l̃, T, M such that l̃ + T ≤ m and

Xl+T −Xl = Mm ∀l ≥ l̃.
Moreover, the quotient M/T does not depend on X0.

Proof. Observe that the quotient space Z/mZ has only m distinct elements so that the first statement holds.
For the second statement we first establish a monotonicity property of the orbits with respect to the initial data
X0. To this end let X0 ≤ X ′0. We argue inductively. Due to (3.7) it is clear that X1 ≤ X ′1 in case that X0 = X ′0
or X ′0 −X0 ≥ 2. It remains the case where X ′0 −X0 = 1. We assume by contradiction that X1 > X ′1. Writing
N∗ = 2γ/L − ξ, the minimizer to determine X1 would be given by N∗ + 1, while for X ′1 minimization yields
N∗ − 1. Using minimality one derives that in that case we have

γ(µk∗+1 − µk∗) ≥ ξ ≥ γ(µk∗+1 − µk∗) + 1,
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where k∗ = X0 − 1
2 + N∗ mod m. This gives a contradiction. By iteration we obtain that Xk ≤ X ′k for all

k. Now we argue as in [16, Proposition 3.6] by comparing the long-time behavior of the orbits with starting
points X0, X

′
0 and X0 +m. For L, l0 ∈ N we let k = l0 +LT (x0)T (x′0). By the first part of the proof and orbit

monotonicity, for l0 large enough it holds that

Xl0 + LT (x′0)M(x0)m ≤ X ′l0 + LT (x0)M(x′0)m ≤ Xl0 + LT (x′0)M(x0)m+m.

Dividing this inequality by L and letting L→ +∞ yields the claim. �

Definition 3.6. For a given type of side with length L /∈ Si, let Mi, Ti be as in Lemma 3.5, where Ti is chosen
to be minimal. The effective velocity for a side Si is defined as a function veff

i : (0,+∞)\Si → [0,+∞) by

veff
i (L) =

Mim

Ti
.

In view of Lemma 3.5, this function is well-defined.

The following example shows that the effective velocities can indeed depend on the type of side.

Example 3.7. Let m = 6 and let cξ be a (maybe deterministic) field such that

µ0 = − 1

8γ
, µ1 = µ2 = µ5 =

1

8γ
µ3 = µ4 = 0.

If 2γ/L ∈ (3− 1
8 , 3), then the left side of a rectangle moves faster than the right side, namely

veff
i (L) = 3 > 2 = veff

i+2(L).

This follows from a straightforward computation based on the minimality criteria (3.8). Indeed, if the left
side starts at n0 = 0, then we have N1 = N2 = 3. If the right side starts also at n0 = 0 we deduce that
N1 = N2 = N3 = 2. We leave the details of the computation to the interested reader.

We now compute the pinning threshold, that is the critical side length above which a side does not move
after a finite number of time steps (or equivalently veff

i (L) = 0). Due to (3.7) a necessary condition is given by
L > γ. We then have to compare the values of N ∈ {0, 1, 2}. For an arbitrary starting position of a left vertical
side we obtain the conditions

L >
2γ

1 + γ(µk+1 − µk)
, L >

4γ

3 + γ(µk+2 − µk)
.

As we can chose the index k, the pinning threshold for a left vertical side is given by

Li = min
k

{
max

{
2γ

1 + γ(µk+1 − µk)
,

4γ

3 + γ(µk+2 − µk)

}}
> γ.

The pinning thresholds for the other sides are given by

Li+1 = min
k

{
max

{
2γ

1 + γ(λk−1 − λk)
,

4γ

3 + γ(λk−2 − λk)

}}
,

Li+2 = min
k

{
max

{
2γ

1 + γ(µk−1 − µk)
,

4γ

3 + γ(µk−2 − µk)

}}
,

Li+3 = min
k

{
max

{
2γ

1 + γ(λk+1 − λk)
,

4γ

3 + γ(λk+2 − λk)

}}
,

where the indices rotate clockwise. The next lemma contains some properties of the effective velocities. We
remark that the same results have been obtained in [16] but we find it difficult to reproduce the argument in
our slightly more complex setting. Therefore we provide a different proof.

Lemma 3.8. The velocity functions veff
i satisfy the following properties:

(a) veff
i is constant on each interval contained in (0,+∞)\Si.

(b) veff
i (L) = 0 if L > Li.
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(c) veff
i (·) is non-increasing in L.

(d) It holds that

lim
γ→+∞

veff
i (L)

γ
=

2

L
.

Proof. To prove the first assertion, fix an interval I ⊂ (0,+∞)\Si and let L ∈ I. We claim that there exists

an open interval IL around L such that for all n = 0, . . . ,m− 1 and all L′ ∈ IL the unique minimizers of vn,L
′

i

agree with the unique minimizer of vn,Li . As I is connected, it then follows that the minimizers are the same
for all L′ ∈ I and we conclude by iteration. To prove the claim, it is enough to observe that whenever Lj → L,

it follows that v
n,Lj
i (N) → vn,Li (N) pointwise. Due to (3.7) also the minimizers are bounded. By uniqueness

they converge to the minimizer of the limit function. Hence the claim follows for any fixed n and then we take
a finite intersection of open intervals to conclude.

The second assertion is an immediate consequence of the definition of the pinning threshold.
To prove the monotonicity, take L > L′. The claim follows from the fact that, for every n, in a multi-valued

sense it holds that

(3.9) argmin
N

vn,Li (N) ≤ argmin
N

vn,L
′

i (N).

Indeed, observe that N(L) := b2γ/Lc ≤ b2γ/L′c =: N(L′). Then by (3.7) it suffices to treat the two cases
N(L) = N(L′) and N(L) + 1 = N(L′). In any case, again applying (3.7) there are only finitely many options
for violating (3.9) that can be ruled out by a direct calculation based on a characterization as in (3.8). We omit
the details.

For the final statement it suffices to note that by (3.7) and the definition of veff
i (L) we have

2γ

L
− 2 ≤ veff

i (L) ≤ 2γ

L
+ 1.

�

Now we are in a position to prove the main result of this section.

Proof of Theorem 3.2. Due to Remark 2.9 and the monotonicity proven in Lemma 3.8 (c) we only have to verify
the formula for the velocities. We fix ω ∈ Ω′ given by Proposition 3.4. Using the same notation as in the proof
of Theorem 2.1, we have to identify the weak*-limit Ni of N j

i on the interval (0, t∗). Therefore we fix t1 ∈ (0, t∗)
such that Li(t1)(ω) /∈ Si. Given δ > 0 there exists an open interval Iδ 3 t1 and j0 such that for all j ≥ j0

(i) Lji (t)(ω) /∈ Si ∀t ∈ Iδ,
(ii) dH(Si,j(t)(ω), Si,j(t1)(ω)) ≤ δ ∀t ∈ Iδ.

Hence, by Proposition 3.4 we may assume that for j ≥ j0 and t ∈ Iδ there exists n = n(j, t) such that for

L = Lji (t)(ω) it holds

N j
i (t)(ω) = argmin

N
vn,Li (N),

where vn,Li is defined in (3.6). Since without loss of generality Lji (t)(ω) is in the same interval contained in

(0,+∞)\Si as Lji (t1)(ω), we infer from the Lemmata 3.5 and 3.8 (a) that∫
Iδ

Ni(s)(ω) ds = lim
j

∫
Iδ

N j
i (s)(ω) ds = lim

j

∑
kτj∈Iδ

τjN
j
i (kτj)(ω) +O(τj)

= lim
j
|Iδ|veff

i (Li(t1)(ω)) +O(τj) = |Iδ|veff
i (Li(t1)).

Dividing by |Iδ| and letting δ → 0 we obtain the claim using Lebesgue’s differentiation theorem. Note that
similar to the proof of Theorem 2.1 the formula for the velocity holds for every such t1 since Ni has a constant
representative locally near t1 so that the side positions are differentiable in the classical sense. However here
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we have to take the side positions and cannot deduce the velocity from the side lengths since the center might
move (see Example 3.7).

It remains the case where Li(t1)(ω) ∈ Si. Note that by (3.9) we still have the monotonicity of orbits. That
means if L−, L+ ∈ (0,+∞)\Si are in the two intervals enclosing Li(t1)(ω) such that L− < Li(t1)(ω) < L+ and
we start the algorithm for computing the effective velocity with the same initial datum choosing the minimizer
arbitrarily in the case of non-uniqueness, we have X+

k ≤ Xk ≤ X−k . This yields

|Iδ|veff
i (L+) ≤

∫
Iδ

Ni(s)(ω) ds ≤ |Iδ|veff
i (L−).

The claim follows after dividing by |Iδ|, sending δ → 0 and then taking both the limits as L− ↑ Li(t1)(ω) and
L+ ↓ Li(t1)(ω) for which we use monotonicity. �

As a last result we have several cases where a unique limit motion exists. However the equations differ from
Corollary 2.2 since the velocity of two opposite sides may be not equal. We don’t list all possible cases where
there is a unique motion.

Corollary 3.9. Let A0
εj (ω) and {cξ}ξ be as in Theorem 3.2. Assume in addition that the lengths L0

1(ω), L0
2(ω)

of A(ω) satisfy one of the three following conditions (we assume that L0
1(ω) ≤ L0

2(ω) and L1 ≤ L3 as well as
L2 ≤ L4):

(i) L0
i (ω) > Li (total pinning),

(ii) L0
1(ω) < L1 and L0

2(ω) ≤ L2 (vanishing in finite time),
(iii) L1 < L0

1(ω) < L3 and L0
1(ω) /∈ S3, and L0

2(ω) > L4 (partial pinning).

The sequence Aεj (t)(ω) converges locally in time to A(t)(ω), where A(t)(ω) is the unique coordinate rectangle
with sides Si(t)(ω) such that A(0)(ω) = A(ω) and the side lengths Li(t)(ω) solve the following differential
equations for all but countably many times until the extinction time:

d

dt
Li(t)(ω) = − 1

γ

(
veff
i−1(Li−1(t)(ω)) + veff

i+1(Li+1(t)(ω)
)

with initial condition L1(0)(ω) = L0
1(ω) and L2(0) = L0

2.

Proof. (i) and (ii) can be proven as in [14, Theorem 3.2]. In Case (iii) note that the side S3 moves inward
with a strictly positive velocity bounded away from 0. Hence L2(t)(ω) is strictly decreasing until it vanishes.
Consequently L2(t)(ω) ∈ S2 ∪ S4 only for countably many times. Moreover, as soon as L2(t)(ω) < L4 also the
side length L1(t)(ω) shrinks strictly since from that time on the side S4 moves inward with positive velocity.
Hence the times when L1(t)(ω) ∈ S1 ∪ S3 are discrete, too. Note that by continuity, the values at the critical
times are uniquely defined. In between these critical times, one can use general results from ODE-theory to
obtain that the rectangular motion is unique. The particular form of the ODE describing the motion is a
straightforward consequence of Theorem 3.2. �
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