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ABSTRACT. We give necessary and sufficient conditions for minimality of gener-
alized minimizers for linear-growth functionals of the form

F [u] =

∫
Ω

f(x, u(x)) dx, u : Ω ⊂ Rd → RN

where u is an integrable function satisfying a general PDE constraint. Our analysis
is based on two ideas: a relaxation argument into a subspace of the space of bounded
vector-valued Radon measures M(Ω;RN ), and the introduction of a set-valued
pairing in M(Ω;RN ) × L∞(Ω;RN ). By these means we are able to show an
intrinsic relation between minimizers of the relaxed problem and maximizers of
its dual formulation also known as the saddle-point conditions. In particular, our
results can be applied to relaxation and minimization problems in BV, BD.
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1. INTRODUCTION

Let Ω be an open subset of Rd with Ld(∂Ω) = 0. The aim of this work is to
establish sufficient and necessary conditions, in the sense of convex duality, for a
vector-valued Radon measure µ to be a generalized minimizer of an integral func-
tional of the form

F [u] :=

∫
Ω
f(x, u(x)) dx,

defined on functions u : Ω→ RN satisfying the PDE constraint

Au = τ in Ω, in the sense of distributions,

whereA is a linear partial differential operator of arbitrary order for which we impose
very general conditions (see (H1)-(H2) below)

As part of our main assumptions, f : Ω × RN → [0,∞) is a continuous and
convex integrand, that is, f(x, q) is convex for every x ∈ Ω. We further assume that
f satisfies the following standard coercivity and linear growth assumptions: there
exists a positive constant M such that

1

M
(|z| − 1) ≤ |f(x, z)| ≤M(1 + |z|), for all (x, z) ∈ Ω× RN . (1.1)
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We shall consider the linear partial differential operator A as a linear (possibly
unbounded) operator A : WA,1(Ω) ⊂ L1(Ω;RN )→ L1(Ω;Rn), where

WA,p(Ω) :=
{
u ∈ Lp(Ω;RN ) : Au ∈ Lp(Ω;Rn)

}
, 1 ≤ p ≤ ∞,

is the p-integrableA-Sobolev space of Ω. In this sense, we require that the candidate
linear partial differential operator A satisfies the following assumptions:

(H1) The space ImA :=
{
Au : u ∈ WA,1(Ω)

}
is a closed subspace of

L1(Ω;Rn) with respect to the L1-strong topology,
(H2) for all vector-valued Radon measures µ ∈M(Ω;RN ) such that

Aµ = 0 in Ω, in the sense of distributions,

there exists a sequence (uj) ⊂ L1(Ω;RN ) ∩ kerA such that

uj → µ area-strictly inM(Ω;RN ).

Here, we have denoted byM(Ω;RN ) ∼= (Cb(Ω;RN ))∗ the space of bounded RN -
valued Radon measures in Ω, where we say that a sequence of vector Radon measures
µj area-strictly converges to a measure µ if and only if

µj
∗
⇀ µ inM(Ω;RN ) and 〈µj 〉(Ω)→ 〈µ 〉(Ω),

for 〈 q〉 the (generalized) area functional defined in (2.2).

This general setting contemplates various applications and considerations:
(i) On the integrands. Our results remain the same up to adding a linear term to

f , i.e., considering integrands of the form

g(x, z) := f(x, z) + q∗(x) · z, q∗ ∈ L∞(Ω;RN ).

(ii) On Assumption (H1). This assumption holds for any operator A where a
Poincaré type inequality holds, for example, if for every u ∈ WA,1 it holds
that

‖u‖L1∗ ≤ cΩ‖Aw‖L1 , for some 1∗ > 1.

In particular, this includes the relaxation and minimization in BV(Ω;RN ) of
problems of the form∫

Ω
f(x,∇u(x)) dx, u ∈W1,1(Ω);

by taking A = curl. Similarly, by a Poincaré-Korn inequality (see e.g. [8,
15]), one can deal with the relaxation and optimization in BD(Ω) of problems
of the form ∫

Ω
f(x,Eu(x)) dx, u ∈ LD(Ω),

where Eu = (Du + (Du)T )/2 is the symmetric part of the distributional
derivative of u, and

LD(Ω) :=
{
u ∈ L1(Ω;Rd) : Eu ∈ L1(Ω;Md×d

sym)
}

;
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by setting A = curl curl in L1(Ω;Md×d
sym). See [3] where a generalized pair-

ing in BV(Ω;RN ) × Hdiv(Ω;RN ) from [2] is used to derive the correspon-
dent saddle-point conditions; see also [9, 10] where saddle-point conditions
in BD are established for Hencky plasticity models.

(iii) On Assumption (H2). If A is an homogeneous partial differential operator
and Ω is a strictly star-shaped domain, i.e., there exists x0 ∈ Ω such that

(Ω− x0) ⊂ t(Ω− x0), ∀ t > 1;

we refer the reader to [12] where such a geometrical assumption is made to
address a homogenization problem in the case A = curl.

(iv) One can also define the problem for more particular domains D(A) than
WA,1(Ω) as long as D(A) is dense in L1(Ω;RN ) and (H1)-(H2) hold. In
this way one may considerA-Sobolev spaces with zero boundary other char-
acterizations.

1.1. Main results. Our results concern the case where

τ = Au0 ∈ L1(Ω;Rn) ∩ ImA,
for some u0 ∈WA,1(Ω).

Consider the z-variable Fenchel conjugate f∗ : Ω×RN → R of f , which is given
by the formula1

f∗(x, z∗) := sup
z∈RN

{
z∗ · z − f(x, z)

}
, z∗ ∈ RN .

One way to derive optimality conditions for our constrained problem is to consider
the dual problems

inf
u∈L1(Ω;RN )
Au=τ∈ImA

{∫
Ω
f(x, u(x)) dx

}
, (P)

sup
w∗∈L∞(Ω;Rn)
w∗∈D(A∗)

{
R[w∗] := 〈w∗, τ〉 −

∫
Ω
f∗(x,A∗w∗(x)) dx

}
, (P∗)

where A∗ is the dual operator of A in the sense of linear (unbounded) operators and
where

D(A∗) :=
{
w∗ ∈ L∞(Ω;Rn) : ∃ c > 0 such that

|〈w∗,Au〉| ≤ c‖u‖L1 for all u ∈WA,1(Ω)
}
,

denotes its correspondent domain. Using the duality of A and A∗ it is elementary to
check that

F [u+ u0] ≥ R[w∗], for every u ∈ kerA and w∗ ∈ D(A∗),
An immediate observation is that the infimum in (P) is greater or equal than the
supremum in (P∗). Convex duality is particularly useful when these two extremal

1 For the sake of simplicity, we depart from the standard notation (f(x, q))∗ for the z-variable
Fenchel transform
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quantities agree since it leads to a saddle-point condition between minimizers of the
primal problem and maximizers of the dual problem (we refer the reader to [7] for an
extensive introduction on this topic).

Our first result relies on Ekeland’s Variational Principle and asserts that there is in
fact no gap between these two quantities:

Theorem 1.1. The problems (P) and (P∗) are dual of each other and the infimum
in problem (P) agrees with the supremum in problem (P∗), i.e.,

inf
Au=τ

F [u] = sup
w∗∈D(A∗)

R[w∗].

Moreover, the supremum in the right hand side is in fact a maximum, which is equiv-
alent to problem (P∗) having at least one solution.

If a classical minimizer u ∈ L1(Ω;RN ) of (P) exists and w∗ is a solution of (P∗),
then the pairing 〈A∗w∗, u〉 is a saddle-point of these two variational problems. This
constitutive relation between u and w∗ can be derived by standard methods and is
expressed by the following pointwise characterization:

f(x, u(x)) + f∗(x,A∗w∗(x)) = u(x) · A∗w∗(x), for Ld-a.e. x ∈ Ω.

Under the established assumptions, the infimum of problem (P) is finite and mini-
mizing sequences are L1-uniformly bounded. It is also well-known (see [14, 4, 7, 5])
that the convexity of f(x, q) is a sufficient condition to ensure the L1-weak sequential
lower semicontinuity of F , i.e.,

lim inf
j→∞

F [uj ] ≥ F [u], whenever uj ⇀ u in L1(Ω;RN ).

However, due to the lack of weak-compactness of L1-bounded sets, we may only
expect that

uj Ld
∗
⇀ µ ∈M(Ω;RN ).

One must therefore work with the so-called relaxation of F :

Theorem 1.2 (Relaxation). Let f : Ω×RN → [0,∞) be a continuous integrand
with linear growth at infinity as in (1.1), and such that f(x, q) is convex for all x ∈ Ω.
Further assume that there exists a modulus of continuity ω such that

|f(x, z)− f(y, z)| ≤ ω(|x− y|)(1 + |z|) for all x, y ∈ Ω, z ∈ RN . (1.2)

Then the relaxation,

F [µ] :=
{

lim inf
j →∞

F [uj ] : uj ∈ u0 + kerA and ujLd
∗
⇀ µ

}
,

of the functional

F [u] :=

∫
Ω
f(x, u(x)) dx, u ∈ u0 + kerA,
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is given by the functional

µ 7→
∫

Ω
f

(
x,

dµ

dLd
(x)

)
dx+

∫
Ω
f∞

(
x,

dµs

d|µs|
(x)

)
d|µs|(x),

defined for measures in the affine space u0 + kerMA, where

kerM A :=
{
µ ∈M(Ω;RN ) : Aµ = 0 in the sense of distributions

}
.

Here, µ = dµ
dLdL

d +µs is the Radon-Nikodým decomposition of µ with respect to Ld
and

f∞(x, z) := lim
x′→x
t→∞

f(x′, tz)

t
(x, z) ∈ Ω× RN .

is the recession function of f .

Extending the differential constraint toM(Ω;RN ), the relaxed functional F gives
rise to the relaxed problem

minimize F in the affine space u0 + kerMA, (P)

for which is possible to guarantee the existence of minimizers.
Since a (generalized) minimizer µ may not be absolutely continuous with respect

to Ld, it is not clear in what sense can “〈µ,A∗w∗〉” be considered a saddle-point of
(P) and (P∗). To circumvent the lack of a duality relation in (kerMA, ImA∗) we
introduce a set-valued pairing as follows:

Jµ,A∗w∗K :=
{
λ ∈M(Ω) : (uj) ⊂ u0 + kerA,

uj → µ area-strictly in Ω, and (uj · A∗w∗)Ld
∗
⇀ λ inM(Ω)

}
.

We stress that, though our notion of generalized paring is that of a set-valued
pairing, it reduces to a set containing a single Radon measure if stronger regularity
assumptions are posed on its arguments µ or w∗. It should also be noticed that the
earlier definitions by Anzellotti [2] for the (BV,L1∩ div-free) duality, and Kohn and
Temam [9, 10] in BD with respect to its dual space, both exploit the potential struc-
ture of gradients and linearized strains, which is not available for the more general
constraint µ ∈ kerMA.

As we will see, it turns out that every λ ∈ Jµ,A∗w∗K is absolutely continuous
with respect to |µ|. Even more, its absolutely continuous part with respect to Ld is
fully determined by µ and w∗ through the relation

dλ

dLd
(x) =

dµ

dLd
(x) · A∗w∗(x), for Ld-a.e. x ∈ Ω.

This means that, at least formally, elements λ in Jµ,A∗w∗K can be regarded as clas-
sical pairings up to a defect singular measure λs ⊥ Ld. In fact, λs carries the (gener-
alized) saddle-point conditions as illustrated in our main result:

Theorem 1.3 (Conditions for optimality). Let f : Ω × RN → [0,∞) be a con-
tinuous integrand with linear growth at infinity as in (1.1), and such that f(x, q) is



6 A. ARROYO-RABASA

convex for all x ∈ Ω. Further assume that there exists a modulus of continuity ω such
that

|f(x, z)− f(y, z)| ≤ ω(|x− y|)(1 + |z|) for all x, y ∈ Ω, z ∈ RN . (1.3)

Then the following conditions are equivalent:
(i) µ is a generalized solution of problem (P) and w∗ is a solution of (P∗),

(ii) The generalized pairing Jµ,A∗w∗K is the singleton{(
dµ

dLd
· A∗w∗

)
Ld Ω + f∞

( q , dµ

d|µs|

)
|µs|
}
.

In particular, if λ ∈ Jµ,A∗w∗K, then
dλ

dLd
(x) =

dµ

dLd
(x) · A∗w∗(x)

= f

(
x,

dµ

dLd
(x)

)
+ f∗(x,A∗w∗(x))

for Ld-a.e. in x ∈ Ω, and

dλ

d|µs|
(x) = f∞

(
x,

dµ

d|µs|

)
for |µs|-a.e. x ∈ Ω.

The paper is organized as follows: Firstly, in Section 2 we give a short account of
the properties of integral functionals defined on measures and their relation to area-
strict convergence. The reminder of the Section recalls some facts of convex duality
and the commutativity of the supremum on integral functionals for inf-stable fami-
lies of measurable functions. In Section 3 we rigorously derive the dual variational
formulation of (P) by means of convex analysis arguments and Ekeland’s Variational
Principle. Section 4 is devoted to the characterization of the relaxed problem (P).
In Section 5, we study the properties of pairing Jµ,A∗w∗K, from which the proof of
Theorem 1.3 easily follows.

Acknowledgments. The support of the Hausdorff Center of Mathematics and the
Bonn International Graduate School is gratefully acknowledged. The results here
presented form part of the author’s Ph.D. thesis at the University of Bonn.

2. PPRELIMINARIES

2.1. Notation. We shall work in Ω ⊂ Rd, an open domain with Ld(∂Ω) = 0 for
which we impose no further regularity assumptions.

By Lpµ(Ω;RN ) we denote the subset of Lµ(Ω;RN ) of µ-measurable functions on
Ω with values in RN which are p-integrable with respect to a given positive mea-
sure µ; we will simply write Lpµ(Ω) instead of Lpµ(Ω;R), and Lp(Ω;RN ) instead of
LpLd(Ω;RN )), where Ld stands for the d-dimensional Lebesgue measure.

In the course of this work we confine ourselves to the use of bounded Radon mea-
sures, therefore we will use the notationM(Ω;RN ) ∼= (Cb(Ω;RN ))∗ to denote the
space of RN -valued Radon measures on Ω with finite mass. Similarly to Lp, we will
simply writeM(Ω) instead ofM(Ω;R). For an arbitrary measure µ ∈ M(Ω;RN )
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we will often write dµ
dLd L

d + µs to denote its Radon-Nikodým decomposition with
respect to Ld.

We shall write x·y to denote the inner product between two vectors x, y ∈ RN . For
function and measure spaces, we reserve the notation 〈 q, q〉 to represent the standard
pairing between the space and its dual; where no confusion can arise, we shall not
emphasize the position of its arguments.

2.2. Integrands, lower semicontinuity, and area-strict convergence. We recall
some well-known and other recent results concerning integrands and recession func-
tions.

Following [1] and more recently [11], we define E(Ω;RN ) as the class of contin-
uous functions f : Ω× RN such that the transformation

(Sf)(x, z) := (1− |z|)f
(
x,

z

1− |z|

)
for (x, z) ∈ Ω× BN ,

where BN is unit open ball in RN , can be extended to the space C(Ω× Bd) by some
continuous function f̃ . In particular, for every f ∈ E(Ω;RN ), there exists a positive
constant M > 0 such that

|f(x, z)| ≤M(1 + |z|) for all (x, z) ∈ Ω× RN ,

and

f̃(x, z) =

{
(Sf)(x, z) if |z| < 1,

f∞(x, z) if |z| = 1;

where the limit

f∞(x, z) = lim
x′→x
t→∞

f(x′, tz)

t
(x, z) ∈ Ω× RN ,

exists and defines a positively 1-homogeneous function.

Lemma 2.1 (Recession functions I). If f : Ω× RN → R is a continuous convex
integrand with linear growth at infinity with a modulus of continuity ω as in (1.3),
then f ∈ E(Ω;RN ). Moreover, the recession function f∞ exists, is continuous and
has the simplified representation

f∞(x, z) := lim
t→∞

f(x, tz)

t
, for all (x, z) ∈ Ω× RN .

Proof. First we show that f(x, q) is Lipschitz with Lip(f(x, q)) ≤M (independently
of x). Indeed, by convexity we know that f(x, q) ∈ W1,∞

loc (RN ) for all x ∈ Ω. Fix
x ∈ Ω, then

∇zf(x, z) ∈ ∂zf(x, z) for LN -almost every z ∈ RN .

Again, by convexity, p∗ ∈ ∂zf(x, z) if and only if f∗(p∗) = z ·p∗−f(z) ∈ R. Thus,
f∗(∇f(x, z)) ∈ R for LN -almost every z ∈ RN . It is easy to check from the linear
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growth assumption on f that
{
p∗ ∈ RN : f∗(p∗) <∞

}
⊂ M · BN , whereby we

deduce that
‖∇f(x, q)‖L∞ ≤M.

This shows that f(x, q) is x-uniformly Lipschitz, which together with (1.3) implies
that if f∞ exists, then

f∞(x, z) = lim
t→∞

f(x, tz)

t
for all (x, z) ∈ Ω× RN .

To see that f∞ exists in Ω× RN we simply observe that

f(x, tz)

t
=
f(x, tz)− f(x, 0)

t
+ O(t−1) := Ix,z(t) + O(t−1), (2.1)

where, by the convexity of f , the functions Ix,z(t) ≤M are monotone for all (x, z) ∈
Ω× RN .

Finally, to prove that f ∈ E(Ω;RN ), we are left to show that f̃ is continuous at all
(x, z) ∈ Ω× ∂BN (this, because f ∈ C(Ω×RN )). Using the modulus of continuity
in (1.3) it is easy to show that f∞ is continuous, therefore it is enough to show that

lim
x′→x
|z′|↑1

f̃(x′, z) = f∞(x, z) for all x ∈ Ω.

The latter follows by setting t(z′) := 1
1−|z′| (which tends to ∞ as |z′| ↑ 1) in

(2.1). �

We collect some continuity properties of the class E(Ω;RN ) and recession func-
tions in the following lemmas. The first one is a lower semicontinuity result for
convex integrands from [5]. The second is a continuity result, originally proved by
Reschetnyak in the case of 1-homogeneous functions [13], but generalized to lower
semicontinuous integrands with linear growth (see for example [11, Theorem 5]).

Theorem 2.2. Let (uj) be a bounded sequence in L1(Ω;RN ) that weakly* con-
verges, in the sense of measures, to a measure µ ∈M(Ω;RN ). Then

lim inf
j→∞

∫
Ω
f(x, uj(x)) dx ≥∫

Ω
f

(
x,

dµ

dLd
(x)

)
dx+

∫
Ω
f∞

(
x,

dµs

d|µs|
(x)

)
d|µs|(x),

for all non-negative integrands f ∈ E(Ω;RN ).

We introduce the following short notation for the (generalized) area functional of
µ,

〈µ〉(A) :=

∫
A

√
1 +

∣∣∣∣ dµ

dLd
(x)

∣∣∣∣2 dx+ |µs|(A), (2.2)

defined on Borel sets A ⊂ Rd.
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We say that a sequence of measures (µj) area-strict converges to µ if

µj
∗
⇀ µ inM(Ω;RN ) and 〈µj 〉(Ω)→ 〈µ 〉(Ω).

This notion of convergence turns out to be stronger than the usual strict convergence
as the latter allows one-dimensional oscillations. The motivation behind the defini-
tion of area-strict convergence is that one can formulate the following generalized
version of Reschetnyak’s Continuity Theorem:

Theorem 2.3. The functional

µ 7→
∫

Ω
f

(
x,

dµ

dLd
(x)

)
dx+

∫
Ω
f∞

(
x,

dµs

d|µs|
(x)

)
d|µs|(x),

is area-strictly continuous in Ω for every integrand f ∈ E(Ω;RN ).

Remark 2.4. It can be easily seen that area-strict convergence is a sharp condition
for the continuity of integral functionals defined on measures by taking f(x, z) :=√

1 + |z|2 ∈ E(Ω;RN ) and observing that f∞(x, z) = |z|.

2.3. Duality on convex optimization. We recall some facts of the theory of convex
functions. We follow closely those ideas from [7, Ch. III] but we develop them in the
slight more general case for perturbations with unbounded linear operators. Along
this chapter X and Y will be two topological vector spaces placed in duality with
their duals X∗ and Y ∗ by the pairing 〈 q, q〉X∗×X (analogously for Y and Y ∗). The
subscript notation will be dropped as it is understood that the correspondent pairing
apply only on their respective domains. For a continuous function F : X → R, we
define a lower semi-continuous, and convex function by letting

F ∗(u∗) := sup
X

{
〈u, u∗〉 − F (u)

}
, u∗ ∈ X∗.

This function is known as the conjugate function of F . We will be concerned with
the minimization problem

minimize F in X, (p)

which we term as the primal problem.

Perturbations. Assume we are given a function

Φ : X × Y → R : (u, p) 7→ Φ(u, p),

such that

Φ(u, 0) = F (u), for all u ∈ X. (2.3)

The dependence on p is commonly understood as the perturbed problem.
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2.3.1. The dual problem. Let Φ∗ : X∗×Y ∗ → R be the conjugate of Φ in the duality
(X×Y,X∗×Y ∗). We define the dual problem of (p) with respect to the perturbation
Φ as

maximize
{
p∗ 7→ −Φ∗(0, p∗)

}
in Y ∗. (p∗)

We also define a function, known as the Lagrangian, L : X × Y ∗ → R by setting

−L(u, p∗) :=
(
Φ(u, q))∗(p∗)

= sup
p∈Y

{
〈p∗, p〉 − Φ(u, p)

}
.

Hence,
−Φ∗(0, p∗) = inf

u∈X
L(u, p∗),

and if additionally the function p 7→ Φ(u, p) is convex and l.s.c in Y , then

Φ(u, 0) = sup
p∗∈Y ∗

L(u, p∗). (2.4)

In this case, we observe that

sup (p∗) = sup
p∗∈Y ∗

inf
u∈X

L(u, p∗),

inf (p) = inf
u∈X

sup
p∗∈Y ∗

L(u, p∗).

2.4. Inf-stability. Next, we recall some facts on the commutativity of the supremum
of integral functionals valued on a certain family F of measurable functions. The
definitions and results gathered here can be found in [5, Theorem 1]. During this
chapter µ will denote an arbitrary positive measure.

Definition 2.5. A set F of Lµ(Ω;RN ) is said to be inf-stable if for any continuous
partition of unity (α1, ..., αm) such that α1, ..., αm ∈ C(Ω), for every u1, ..., um in
F , the sum

∑m
i=1 αiui belongs to F . A subset F of Lµ(Ω) is called C1 inf-stable

family if for every partition of unity (α1, ..., αm) such that α1, ..., αm ∈ C1(Ω) there
exists u ∈ F such that u ≤

∑m
i=1 αiui.

Theorem 2.6. For any subset F of Lµ(Ω;RN ) there exists a smallest closed-
valued measurable multifunction Γ such that for all u ∈ F , u(x) ∈ Γ(x) µ-a.e. (as
smallest refers to inclusion). Moreover, there exists a sequence (uj) in F such that
Γ(x) = {uj(x)} for µ-a.e. x ∈ Ω.

We say that Γ is the essential supremum of the multifunctions

x 7→
{
u(x) : u ∈ F

}
,

in symbols
Γ( q) = ess inf

{
u( q) : u ∈ F

}



RELAXATION AND OPTIMIZATION FOR INTEGRAL FUNCTIONALS UNDER PDE CONSTRAINTS11

Theorem 2.7. Let j : Ω× RN → R be a normal convex integrand. Denote by J
the functional

u 7→
∫

Ω
j(x, u(x)) dµ(x), for all u ∈ Lµ(Ω,RN ).

Let F be an inf-stable family in Lµ(Ω,RN ). Assume furthermore that J is proper
within F , i.e., there exists u0 ∈ F such that J(u0) ∈ R. Then,

inf
u∈F

J(u) =

∫
Ω

inf
z∈Γ(x)

j(x, z) dµ(x),

and
inf

z∈Γ(x)
j( q, z) = ess inf

{
j( q, u) : u ∈ F , J(u) < +∞

}
.

Moreover, if F is a C1 inf-stable family of Lµ(Ω), then

inf
u∈F

∫
Ω
u dµ =

∫
Ω

ess inf
{
u(x) : u ∈ F

}
dµ(x).

3. THE DUAL PROBLEM

Some of the results of this section are stated under weaker assumptions than the
ones previously established in the introduction; however, the results in subsequent
sections do require stronger these properties (for a discussion on the sharpness of our
assumptions on the integrand f we refer the reader to [5] and references therein).

In this section we study the dual formulation (P∗) of (P) in the duality (L∞,L1).
Our main goal is to prove Theorem 1.1 which states not only that (P) and (P∗) are in
duality but that there is no gap between them.

The idea is to combine the results of the last section to characterize the dual prob-
lem (P∗) as an integral functional in L∞(Ω;Rn). Once this is achieved, we will turn
to the proof of Theorem 1.1. Our approach relies on Ekeland’s Variational Princi-
ple which allows us to work asymptotically close to the constraint Au = τ . This
extra flexibility will be essential to prove that the infimum in problem (P) and the
supremum in problem (P∗) agree.

For an integrand g : Ω × RN → R, we will write Ig to denote the functional that
assigns

u 7→
∫

Ω
g(x, u(x)) dx, u ∈ L(Ω;RN ),

Following standard notation we denote, for a Banach space X and a subset U ⊂ X ,
the U -indicator function δX( q| U) : X → R defined by the functional

δX(u | U) :=

{
0 if u ∈ U
∞ if x ∈ X \ U

,

which is lower semicontinuous on ‖ q‖X -closed setsU ⊂ X . Define J : L1(Ω;RN )×
L1(Ω;Rn)→ R to be the functional given by

J(u, q) := If (u) + δL1(Ω;Rn)( q |{τ}),
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and consider the perturbation with respect to A given by

Φ(u, p) :=

{
J(u,Au− p) if u ∈WA,1(Ω)

∞ else
.

Notice that, the minimization problem (P) may be re-written as

minimize Φ( q, 0) in L1(Ω;RN ). (P)

Lemma 3.1. Let f : Ω × RN → R be a continuous and convex integrand
with linear growth at infinity. Then the Fenchel conjugate of the functional If :

L1(Ω;RN )→ R, is given by the integral functional

u∗ 7→ If∗(u
∗),

defined on functions u∗ ∈ L∞(Ω;RN ).

Proof. We argue as follows.
Step 1. We point out that L1(Ω;RN ) is an inf-stable family.
Step 2. Since f has linear growth, If − 〈u∗, q〉 is proper in L1(Ω;RN ).
Step 3. We fix u∗ ∈ L∞(Ω;RN ) and apply Theorem 2.7 to F = L1(Ω;RN ) (which
is an inf-stable family), to µ = dLd, and to

j(x, z) = f(x, z)− u∗(x) · z,
which remains a convex normal integrand, to find out that

(If )∗(u∗) = − inf
u∈L1(Ω;RN )

∫
Ω
j(x, u(x)) dx = −

∫
Ω

inf
z∈Γ(x)

j(x, z) dx,

where Γ( q) = ess inf
{
u( q) : u ∈ L1(Ω;RN )

}
= RN . Since infz∈RN j(x, z) is

nothing else than −f∗(x, u∗(x)) for a.e. x ∈ Ω, it follows that

(If )∗(u∗) = If∗(u
∗).

�

Lemma 3.2. Assume that f : Ω×RN → R is a continuous and convex integrand
with linear growth at infinity. Then,

Φ∗(u∗, w∗) =

{
If∗(u

∗ +A∗w∗)− 〈w∗, τ〉 if w∗ ∈ D(A∗)
∞ otherwise

.

Proof. By definition

Φ∗(u∗, w∗) = sup
u∈L1(Ω;RN )
p∈L1(Ω;Rn)

{
〈u∗, u〉+ 〈w∗, p〉 − If (u)− δL1(Ω;Rn)(Au− p | {τ})

}

= sup
u∈WA,1(Ω)

{
〈u∗, u〉+ 〈w∗,Au− τ〉 − If (u)

}
.

(3.1)
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Taking the supremum over all u ∈ W1,A(Ω) with ‖u‖L1 ≤ 1, the inequality above
yields

Φ(u∗, w∗) ≥ −‖u∗‖L∞ + sup
u∈WA,1(Ω)
‖u‖L1≤1

|〈w∗,Au〉| − 〈w∗, τ〉.

Hence,
Φ∗(u∗, w∗) =∞ if w∗ /∈ D(A∗).

This shows the second part of the assertion.
If w∗ ∈ D(A∗), we may use that 〈w∗,Au〉 = 〈A∗w∗, u〉 in the last line of (3.1)

to get that
Φ∗(u∗, w∗) = (If )∗(u∗ +A∗w∗)− 〈w∗, τ〉.

The first part of the sought assertion is then an immediate consequence of Lemma
3.1. �

Corollary 3.3. The dual problem of (P) reads:

maximize R in the space L∞(Ω;Rn), (P∗)

whereR : L∞(Ω;Rn)→ R is the functional defined as

R[w∗] := −Φ∗(0, w∗) =

{
〈w∗, τ〉 − If∗(A∗w∗) if w∗ ∈ D(A∗)
−∞ otherwise

.

Remark 3.4. The Lagrangian associated to the perturbation Φ is the functional
L : L1(Ω;RN )× L∞(Ω;Rn)→ R given by

L(u,w∗) := If (u)− 〈w∗,Au− τ〉.

Clearly
inf

u∈L1(Ω;RN )
L(u,w∗) = R[w∗],

and
sup

w∗∈L∞(Ω;Rn)
L(u,w∗) = F [u].

Recall that, since f is convex in the z variable for every x ∈ Ω, using the definition
of Fenchel conjugate one obtains

F [u] = J(u) = If (u)

≥ 〈u, v∗〉 − If∗(v∗), for all u ∈ u0 + kerA, and every v∗ ∈ L∞(Ω;RN ).

In particular, if we set v∗ = A∗w with w∗ ∈ L∞(Ω;Rn) ∩D(A∗), we get

F [u] ≥ 〈A∗w∗, u0〉 − If∗(Aw∗) = 〈w∗, τ〉 − If∗(A∗w∗) = R[w∗].

Hence,
inf

u0+kerA
F [u] ≥ sup

L∞(Ω;Rn)
R[w∗]. (3.2)
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So far we have not made use of the fact that ImA is a closed subspace of L1(Ω;RN );
however, it is precisely under this assumption that the infimum and the supremum
coincide:

Proof of Theorem 1.1. That problem (P) and (P∗) are dual to each other is a conse-
quence of Corollary 3.3.

To show that the equality in (3.2) holds we argue as follows:
Step 1. Case reduction. It is enough to look at integrands f : Ω× RN → R with the
property that ∂zf exists for every z ∈ RN . Indeed, as shown in the proof of Lemma
2.1, f is x-uniformly Lipschitz in its second argument with Lipschitz constant M .
Therefore,

|f δ(x, z)− f(x, z)| ≤Mδ, ∀ x ∈ Ω, z ∈ RN ,
where the notation f δ stands for the function

f δ(x, z) := (f(x, q) ∗ ρδ)(z) =

∫
RN

f(x, y)ρδ(z − y) dy,

and where ρδ is a standard (smooth and even function) mollifier at scale δ. It is not
hard to see that the mollified f δ ≥ f are again continuous and convex integrands,
and the limits: f δ ↓ f and (f δ)∗ ↑ f∗ hold uniformly in RN for every x ∈ Ω. Hence,
thanks to (3.2) and to the monotone convergence theorem it will be sufficient to show
that

inf
u0+kerA

Fδ ≤ sup
L∞(Ω;Rn)

Rδ, for all δ > 0. (3.3)

where Fδ andRδ are defined as F andR with fδ and f∗δ respectively.

Step 2. Approximative solutions. In order to prove this inequality we will make use
of the following result on approximative solutions that uses Ekeland’s Variational
Principle (cf. [3, Proposition 4.2]).

Lemma 3.5. Let g : Ω × RN → R be a normal convex integrand with linear
growth at infinity and assume that ∂zg(x, z) exists for every (x, z) ∈ Ω× RN . Let ε
be a positive constant and let u ∈ u0 + kerA be such that

Ig(u) ≤ inf
u0+kerA

Ig + ε.

Then there exist functions û ∈ u0 + kerA and v∗ ∈ L∞(Ω;RN ) with the following
properties:

Ig(û) < inf
u0+kerA

Ig + 2ε,

‖û− u‖L1 ≤
√
ε,

v∗(x) = ∂zg(x, û(x)) for a.e. x ∈ Ω,

〈v∗, η〉 <
√
ε‖η‖L1 ∀ η ∈ kerA .

Proof. Regard Ig as a continuous functional Ig : (u0 + kerA, ε−1/2‖ · ‖L1)→ R. It
follows from the growth conditions of g that Ig is well defined. Also, an application



RELAXATION AND OPTIMIZATION FOR INTEGRAL FUNCTIONALS UNDER PDE CONSTRAINTS15

of Ekeland’s Variational Principle tells us that there must exist û ∈ u0 + kerA such
that

‖û− u‖L1 ≤
√
ε,

Ig(û) < Ig(u) +
√
ε‖û− u‖L1 ∀ u ∈ u0 + kerA .

In particular, taking u = u it follows that

Ig(û) < Ig(u) + ε ≤ inf
u0+kerA

Ig + 2ε,

this proves the first estimate. If this time we take u = û − sη, for every given
η ∈ kerA we get

−
∫

Ω

g(x, û(x)− sη(x))− g(x, û(x))

s
≤
√
ε‖η‖L1 , η ∈ kerA .

Taking the limit as s ↓ 0 and using the fact that ∂zg(x, z) exists for every (x, z) ∈
Ω× RN , by Fatou’s Lemma we get

〈∂zg( q, û), η〉 ≤
√
ε‖η‖L1 , ∀ η ∈ kerA .

Notice that v∗ := ∂zg( q, û( q)) ∈ L∞(Ω;RN ) (which follows from the uniform Lip-
schitz bound for g, as it is convex and possess a uniform linear growth at infinity).
This proves the lemma. �

Let us go back to the proof of (3.3). Fix δ > 0 and let (uε) ⊂ u0 + kerA be an
ε-minimizing sequence for Fδ, i.e.,

Fδ[uε] < inf
u0+kerA

Fδ + ε.

It is clear that f δ fits the requirements of the lemma above and hence we may obtain
an L∞-bounded sequence {vε} ⊂ L∞(Ω;RN ) with the following properties:

(f δ(x, ·))∗(uε(x)) + (f δ(x, ·))∗(vε(x)) = uε(x) · vε(x), for every x ∈ Ω, (3.4)

and

〈vε, η〉 ≤
√
ε‖η‖L1 , for every η ∈ kerA. (3.5)

From the uniform boundedness of vε, we may extract a subsequence (which will not
be relabeled) to find a function v ∈ L∞(Ω;RN ) such that vε

∗
⇀ v. Observe that since

ImA is closed for the L1-strong topology it must hold that ImA∗ is closed for the L∞

topology (see [6, Theorem2.19]). Hence, (kerA)⊥ = ImA∗ and from (3.5) we then
get that v ∈ (kerA)⊥ = ImA∗. This characterization yields the existence of w∗ ∈
D(A∗) with v = A∗w∗. It follows from the convexity of (f δ)∗(x, q) at every x ∈ Ω,
and the fact that (f δ)∗ : Ω × RN → R is again a normal integrand bounded from
below (see for example [7, Chapter VIII]) that the map η 7→

∫
Ω−(f δ)∗(x, η(x)) dx

is L∞-weakly* upper semicontinuous. With this and (3.4) in mind, one easily verifies
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that

Rδ[w∗] := −
∫

Ω
(f δ)∗(x,A∗w∗(x)) dx

≥ lim sup
ε↓0

{
−
∫

Ω
(f δ)∗(x, vε(x)) dx

}
= lim sup

ε↓0

{∫
Ω
f δ(x, uε(x)) dx− 〈vε, uε〉

}
≥ lim

ε↓0

{
Fδ[uε]−

√
ε‖uε‖L1

}
= inf

u0+kerA
Fδ,

where in the last step we have used the coercivity of f to guarantee that any minimiz-
ing sequence for F is L1-uniformly bounded. This proves

inf
u0+kerA

Fδ ≤ sup
L∞(Ω;Rn)

Rδ.

Since our choice of δ was arbitrary, this proves (3.3) which in turn gives

inf
u0+kerA

F = sup
L∞(Ω;Rn)

R. (3.6)

To prove that there exists a solution w∗ ∈ L∞(Ω;Rn) of problem (P∗) we observe
the following facts: the set inclusion

{
z ∈ RN : f∗(x, z) < +∞

}
⊂M ·BN holds

for every x ∈ Ω, whereby the infimum – and hence also the supremum in (3.6) – is
finite. We may then extract a maximizing sequence (w∗j ) ⊂ D(A∗) with the property
that

sup
j∈N
‖A∗w∗j‖L∞ ≤M <∞.

The conclusion follows by the direct method: up to taking a subsequence, we may
assume that w∗j weakly* converges to some w∗ ∈ L∞(Ω;RN ). Since ImA∗ is
closed in L∞(Ω;RN ) with respect to the weak* topology, we may further find v∗ ∈
L∞(Ω;Rn) ∩ D(A∗) such that A∗ v∗ = w∗. The conclusion is then an immediate
consequence of the sequential L∞-weakly* l.s.c.2 of

η 7→ −
∫

Ω
f∗(x, η(x)) dx.

�

Remark 3.6 (Assumptions I). The results in this section hold for any partial dif-
ferential operator A with the property (H1); as it can be observed, property (H2) has
not yet been employed in our proofs. Therefore, one can think of (H1) as a technical
assumption that allows one to use convex duality methods.

2For a normal integrand f : Ω×RN → R with linear growth at infinity, its conjugate f∗ : Ω×RN →
R is again a normal integrand bounded from below.
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4. THE RELAXED PROBLEM

So far we have not discussed the optimality conditions for problem (P). In part,
this owes to the fact that (P) may not necessarily be well-posed. More precisely,
due to the lack of compactness of L1-bounded sets one must look into the so-called
relaxation of the energy F . The latter has a meaning by extending the basis space
to a subspace of the bounded vector-valued Radon measuresM(Ω;RN ). It is well
known that the largest (below F) lower semicontinuous functional with respect to the
weak*-convergence of measures is given by

F [µ] := inf
{

lim inf F [uj ] : uj
∗
⇀ µ,uj ∈ u0 + kerA

}
.

Under assumption (H2) it is easy to see that F is again an integral functional:

Proof of Theorem 1.2. Let µ ∈ u0 + kerMA, we recall that

F [µ] := inf
{

lim inf
j→∞

F [uj ] : uj ∈ u0 + kerA, ujLd
∗
⇀ µ

}
.

We divide the proof in three parts:
1. Lower bound. Let (uj) be a sequence in u0 + kerA with the property that

ujLd
∗
⇀ µ, inM(Ω;RN ),

we want to show that

lim inf
j→∞

F [uj ] ≥
∫

Ω
f

(
x,

dµ

dLd
(x)

)
dx+

∫
Ω
f∞

(
x,

dµs

d|µs|
(x)

)
d|µs|(x).

The latter is a consequence of Lemma 2.1 and Theorem 2.2 (and the fact that f ≥ 0)
2. Upper bound. We show that there exists a sequence (uj) ⊂ u0 + kerA with

ujLd
∗
⇀ µ and such that

lim sup
j→∞

F [uj ] ≤
∫

Ω
f

(
x,

dµ

dLd
(x)

)
dx+

∫
Ω
f∞

(
x,

dµs

d|µs|
(x)

)
d|µs|(x).

This time we will make use of (H2) and Theorem 2.3: Let (uj) ⊂ u0 + kerA be
a sequence that area-strict converges to u0 + µ ∈ kerMA.

A direct consequence of Theorem 2.3 is that

lim sup
j→∞

F [uj ] =

∫
Ω
f

(
x,

dµ

dLd
(x)

)
dx+

∫
Ω
f∞

(
x,

dµs

d|µs|
(x)

)
d|µs|(x),

which is the sought assertion.
3. Conclusion. A combination of the lower and upper bounds yields that

F [µ] =

∫
Ω
f

(
x,

dµ

dLd
(x)

)
dx+

∫
Ω
f∞

(
x,

dµs

d|µs|
(x)

)
d|µs|(x),

for all µ ∈ u0 + kerMA. �

Remark 4.1. The direct method can be applied to derive the existence of solutions
to (P). This follows from the sequential weakly* lower semicontinuity of F in u0 +
kerMA and the coerciveness of f .
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5. THE PAIRING Jµ,A∗ uK AND THE OPTIMALITY CONDITIONS

The pointwise product (µ · v∗) of two functions, µ ∈ u0 + kerA and v∗ ∈
L∞(Ω;RN ), may be regarded as a bounded Radon measure through the measure
that takes the values

〈µ, v∗〉(B) :=

∫
B∩Ω

µ(x) · v∗(x) dx, B ⊂ RN Borel set.

In general, if µ ∈ u0 + kerMA is only assumed to be vector-valued Radon measure,
one cannot simply give a notion to the inner product of µ and v∗ (even in the sense
of distributions). However, following the interests of our minimization problem, one
may define the following generalized pairing by setting

Jµ, v∗K :=
{
λ ∈M(Ω) : ∃ (uj) ⊂ u0 + kerA such that

(uj · v∗)Ld
∗
⇀ λ and (ujLd) area-strict converges to µ

}
In this way, the set Jµ,A∗w∗K contains information on the concentration effects of
sequences of the form (uj · A∗w∗).

The next lines are dedicated to derive the basic properties Jµ,A∗w∗K.

Theorem 5.1. Let µ ∈ u0 + kerMA and let w∗ ∈ D(A∗). Then

|λ|(ω) ≤ |µ|(ω)‖A∗w∗‖∞(ω) for every Borel set ω ⊂ Ω,

for all λ ∈ Jµ,A∗w∗K.

Proof. Let λ ∈ Jµ,A∗w∗K. By definition, there exists a sequence of functions (uj) ⊂
L1(Ω;RN ) for which the measures (ujLd) area-strict converge to µ and are such that
(uj · A∗w∗)Ld

∗
⇀ λ. Hence,

lim inf
j→∞

|〈uj ,A∗w∗〉|(ω) ≥ |λ|(ω), for every open set ω ⊂ Ω. (5.1)

On the other hand, by Hölder’s inequality, we get the upper bound

|〈uj ,A∗w〉|(ω) ≤ |uj |(ω)‖A∗w‖∞(ω), for every open set ω ⊂ Ω, (5.2)

and every j ∈ N. Plugging (5.1) into (5.2) and taking the limit as j →∞ we get, by
Theorem 2.3 (applied to f(z) = |z|), that

|λ|(ω) ≤ |µ|(ω)‖A∗w‖∞(ω), for every open set ω ⊂ Ω with |µ|(∂ω) = 0.

The assertion for general Borel sets follows by a density argument. �

Corollary 5.2. Let µ ∈ u0 + kerMA and let w∗ ∈ D(A∗). If λ ∈ Jµ,A∗w∗K,
then the Radon measures measures λ and |λ| are absolutely continuous with respect
to the measure |µ| in Ω. Moreover, an application of the Radon-Nikodỳm differentia-
tion theorem yields ∥∥∥∥ dλ

d|µ|

∥∥∥∥
L∞|µ|

≤
∥∥∥∥ d|λ|

d|µ|

∥∥∥∥
L∞|µ|

≤ ‖A∗w∗‖L∞ .
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The following proposition plays a crucial role on proving the generalized saddle-
point conditions; it characterizes the absolutely continuous part of elements in Jµ,A∗w∗K
and gives an upper bound for the density of its singular part.

Theorem 5.3. Let µ ∈ u0 + kerMA and w∗ ∈ D(A∗). If λ ∈ Jµ,A∗w∗K and
R[w∗] > −∞, then

dλ

d|µ|
(x) ≤ f∞

(
x,

dµ

d|µs|
(x)

)
, for |µs|-a.e. x ∈ Ω, (5.3)

and
dλ

dLd
(x) =

dλ

dLd
(x) · A∗w∗(x), for Ld-a.e. x ∈ Ω. (5.4)

Proof. Let λ ∈ Jµ,A∗w∗K. By definition we may find sequence (uj) ⊂ L1(Ω;RN )
that area-strict converges to µ in the sense of Radon measures, i.e., such that

uj Ld
∗
⇀ µ ∈M(Ω;RN ), 〈uj Ld 〉(Ω)→ 〈µ 〉(Ω),

for which
(uj · A∗w∗)Ld

∗
⇀ λ, inM(Ω;RN ).

Let x0 ∈ (supp λs) ∩ Ω be a point with the following properties:

dµs

d|µs|
(x0) =

dµ

d|µs|
(x0) = lim

r↓0

µ(Br(x0))

|µs|(Br(x0))
<∞, (5.5)

lim
r↓0

∫
Br(x0)

dλ
dLd (x) dx

|µs|(Br(x0))
= 0, (5.6)

dλ

d|µs|
(x0) = lim

r↓0

λ(Br(x0))

|µs|(Br(x0))
<∞. (5.7)

Using the principle

f∞(x, z) ≥
{
z · z∗ : z∗ ∈ RN , f∗(x, z∗) < +∞

}
and the assumption that f∗(x,A∗w∗(x)) is essentially bounded by M for every x ∈
Ω (here we use thatR[w∗] > −∞), we deduce the simple inequality∫

Bs(x0)
f∞(x, uj(x)) dx ≥

∫
Bs(x0)

uj · A∗w∗ dx, (5.8)

for every s ∈ (0,dist(x0, ∂Ω)). We let j →∞ on both sides of the inequality to get

lim
j→∞

∫
Bs(x0)

f∞(x, uj(x)) dx ≥ λ(Bs(x0)), for a.e. s ∈ (0, dist(x0, ∂Ω)).

Recall that uj Ld area-strict converges to µ and by construction f∞ is positively 1-
homogeneous in its second argument. Hence, we may apply Theorem 2.3 to the limit
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in the left hand side of the inequality to obtain

1

|µs|(Bs(x0))

∫
Bs(x0)

f∞
(
x,

dµ

d|µ|
(x)

)
d|µ|(x)

≥ λ(Bs(x0))

|µs|(Bs(x0))
, for a.e. s ∈ (0, r).

Using properties (5.5)-(5.7) together with the uniform Lipschitz continuity of f∞ on
its second argument we deduce that

f∞
(
x,

dµ

d|µs|
(x0)

)
≥ dλ

d|µs|
(x0).

The sought statement follows by observing that (5.5)-(5.7) hold simultaneously in Ω
for |µs|-a.e. x0 ∈ Ω.

For the equality on Lebesgue points, let x0 ∈ Ω be such that

lim
r↓0

|µs|(Br(x0))

rN
= 0, (5.9)

lim
r↓0

1

rN

∫
Br(x0)

∣∣∣∣ dµ

dLd
(x) − dµ

dLd
(x0)

∣∣∣∣ dx = 0, (5.10)

and
d( dµ

dLd · A
∗w∗)

dLd
(x0) =

dµ

dLd
(x0) · A∗w∗(x0). (5.11)

Let

P0 :=
dµ

dLd
(x0).

Then, by definition, for a.e. r ∈ (0,dist(x0, ∂Ω)) it holds that∣∣∣∣λ(Br(x0))−
∫
Br(x0)

P0 · A∗w∗ dx
∣∣∣∣

= lim
n→∞

∣∣∣∣∣
∫
Br(x0)

uj · A∗w∗ dx−
∫
Br(x0)

P0 · A∗w∗ dx

∣∣∣∣∣
≤ ‖A∗w∗‖L∞ · lim

j→∞

∫
Br(x0)

|uj − P0| dx

≤ ‖A∗w∗‖L∞ ·
(∫

Br(x0)

∣∣∣∣ dµ

dLd
− P0

∣∣∣∣ dx

+ |µs|(Br(x0))

)
= o(rN ),

where in the last step we have used that (uj−P0)Ld area-strict converges to µ−P0Ld.
This follows from Theorem 2.3 and the fact that f∞( q − P0) = f∞( q).

Essentially, this means that computing the Radon-Nikodým derivative of λ at x0 is
equivalent to calculate the correspondent derivative of the measure ( dµ

dLd · A
∗w∗)Ld



RELAXATION AND OPTIMIZATION FOR INTEGRAL FUNCTIONALS UNDER PDE CONSTRAINTS21

at x0. Under this reasoning we use (5.11) to calculate

dλ

dLd
(x0) =

dµ

dLd
(x0) · A∗w∗(x0).

Properties (5.9)-(5.11) hold simultaneously for Ld-a.e. x0 ∈ Ω from where (5.4)
follows. �

Remark 5.4. If A∗w∗ is |µs|-measurable, then one can prove (by a similar argu-
ment to the one used in the proof of (5.4)) that

dλ

d|µs|
(x0) =

dµ

d|µs|
(x0) · A∗w∗(x0), for |µs|-a.e. x0 ∈ Ω.

For a sequence (uj) ⊂ L(Ω;RN ) that area-strict converges to some µ ∈ kerMA
it is automatic to verify, by means of Theorem 2.3, that

f( q, uj)Ld ∗⇀ f

( q , dµ

dLd

)
Ld Ω + f∞

( q , dµs

d|µs|

)
d|λs| (5.12)

in M+(Ω). If one dispenses the assumption that (uj) area-strict converges µ and
only assumes that uj Ld

∗
⇀ µ inM(Ω;RN ) (or even the stronger strict convergence)

the convergence (5.12) may not hold as already observed in Remark 2.4. However,
as the next proposition asserts, it does hold for minimizing sequences.

Theorem 5.5 (Uniqueness and improved convergence). Let (uj) ⊂ u0 + kerA
be a minimizing sequence of problem (P) with uj Ld

∗
⇀ µ inM(Ω;RN ). Then the

sequence of real-valued radon measures (f( q, uj)Ld Ω) weakly* converges in Ω,
in the sense of Radon measures, to the measure

f

( q , dµ

dLd

)
Ld Ω + f∞

( q , dµs

d|µs|

)
d|µs|.

Even more, if f(x, q) and f∞(x, q) are strictly convex for all x ∈ Ω, then µ is the
unique minimizer of (P) and uj Ld area-strict converges to µ inM(Ω;RN ).

Remark 5.6. Recall that strict convexity for a positively 1-homogeneous function
g : RN → R – also called strictly convex on norms – is equivalent to the convexity
of its unit ball, this is,

g(z1) = g(z2) = g(sz1 + (1− s)z2), for s ∈ (0, 1)

implies
z1 = z2.

Proof. Set Λj ∈M(Ω) to be the real-valued Radon measure defined as

Λj(B) :=

∫
B
f(x, uj(x)) dx, for any open set B ⊂ Ω.
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Since (uj) is a minimizing sequence, it is also L1-uniformly bounded and hence

sup
j∈N
|Λj |(Ω) < +∞.

We may assume, up to taking a subsequence (not re-labeled), that there exists positive
Radon measures Λ, σ ∈M+(Ω) for which

Λj
∗
⇀ Λ, and |uj |Ld

∗
⇀ σ.

We do the following observation: the conclusion of Theorem 2.2 also holds any
arbitrary open set B ⊂ Ω. Hence,

Λ(B) = lim
j→∞

Λj(B) ≥ F(µ,B),

for every open subset B of Ω with Λ(∂B) = σ(∂B) = 0, and where we have set
F(µ, q) to be the Radon measure that takes the values

F(µ,B) :=

∫
B
f

(
x,

dµ

dLd
(x)

)
dx+

∫
B
f∞

(
x,

dµs

d|µs|
(x)

)
d|µs|(x),

on open sets B ⊂ Ω. Using a density argument, we conclude that

Λ ≥ F(µ, q), in the sense of real-valued Radon measures. (5.13)

So far we have not used the fact that (uj) is a minimizing sequence. Recall that, by
definition, this is equivalent to

Λj(Ω)→ Λ(Ω) = F(µ,Ω) = inf
u0+kerA

F .

The latter mass convergence and (5.13) are sufficient conditions for Λ and F(µ, q) to
represent the same Radon measure inM(Ω), i.e.,

Λ = F(µ, q), inM(Ω).

Since the passing to a convergent subsequence was arbitrary, this proves

f( q, uj)Ld ∗⇀ f

( q , dµ

dLd

)
Ld Ω + f∞

( q , dµs

d|µs|

)
d|λs|.

To see that for strictly convex integrands µ is the unique minimizer of (P), one simply
uses the strict convexity of f and f∞, and the fact that kerMA is a convex space. The
improvement of convergence for minimizing sequences can be found in [1, Theorem
5.3].

�

Remark 5.7. The improved convergence convergence for minimizing sequences
of strictly convex integrands plays no role in our characterization of the extremality
conditions of problems (P) and (P∗). Nevertheless, we have decided to include as it
is a standard result for applications in calculus of variations.

We are now in position to prove our main result:
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Proof of Theorem 1.3. Let µ ∈ u0 + kerMA be a generalized solution of problem
(P). Property (H2) tells us that there exists a sequence (uj) ⊂ u0 + kerA that area-
strict converges to µ so that Jµ,A∗w∗K is not the empty set; we let λ ∈ Jµ,A∗w∗K.

Now let (uj) ⊂ u0+kerA be an arbitrary sequence generating λ. By Theorem 2.3
and the minimality of µ it also holds that (uj) is a minimizing sequence for problem
(P).

In return, Theorem 5.5 implies that the sequence of measures (f( q, uj)Ld Ω)
weakly* converges to the Radon measure

f

(
x,

dµ

dLd

)
Ld Ω + f∞

( q , dµ

d|µs|

)
|µs|

inM+(Ω). Since f is convex on its second argument, it must hold that

f∗∗(x, q) = f(x, q), for every x ∈ Ω.

Hence,

(f( q, uj)Ld)(B) ≥
∫
B
uj · A∗w∗ dx−

∫
B
f∗(x,A∗w∗) dx, (5.14)

for every Borel subsetB ⊂ Ω, herewith by Theorem 5.5 and (5.14) we get (by letting
j →∞) that

f

( q, dµ

dLd

)
Ld Ω + f∞

( q, dµ

d|µs|

)
|µs|

≥ λ− f∗(x,A∗w∗)Ld Ω,

(5.15)

in the sense of measures. Also, by the equality in Proposition 1.1 we know that
F [µ] = R[w∗] so that(

f

( q, dµ

dLd

)
Ld Ω + f∞

( q, dµ

d|µs|

)
|µs|

)
(Ω)

= F [µ] = R[w∗]

=
(
〈w∗, τ〉 − f∗( q,A∗w∗)Ld)(Ω)

=
(
λ− f∗( q,A∗w∗)Ld)(Ω),

where in the last equality we used that λ(Ω) = 〈w∗, τ〉 for any λ ∈ Jµ,A∗w∗K with
µ ∈ u0 + kerMA and w∗ ∈ D(A∗). The inequality, as measures, in (5.15) and the
equality of their total mass in the last formula tells us that the measures in question
must be agree as elements ofM(Ω). In other words,

f

( q, dµ

dLd

)
Ld Ω + f∞

( q, dµ

d|µs|

)
|µs| = λ− f∗( q,A∗w∗)Ld Ω,

as measures inM(Ω). Finally, we recall the characterization from Theorem 5.3 so
that

f

(
x,

dµ

dLd
(x)

)
+ f∗(x,A∗ u∗(x)) =

dµ

dLd
(x) · A∗w∗(x),



24 A. ARROYO-RABASA

for Ld-a.e. x ∈ Ω, whereby

dλ

d|µs|
(x) = f∞

(
dµ

d|µs|
(x)

)
for |λs|-a.e. x ∈ Ω.

The latter equalities fully characterize Jµ,A∗w∗K by means of Corollary 5.2 and the
Radon-Nikodým Decomposition Theorem. In particular, Jµ,A∗w∗K is the singleton{(

dµ

dLd
· A∗w∗

)
Ld Ω + f∞

( q , dµ

d|µs|

)
|µs|
}
.

This proves that (i) implies (ii).
That (ii) implies (i) follows from the facts that inf F ≥ supR and

F [µ] = R[w∗]. (5.16)

Indeed, the equality above implies that µ solves problem (P) and w∗ solves problem
(P∗). To show that (5.16) holds let (uj) ⊂ u0 + kerA be the (area-strict convergent)
recovery sequence for µ in the proof Proposition 1.2 so that

f( q, uj) ∗⇀ f

( q, dµ

dLd

)
Ld Ω + f∞

( q, dµ

d|µs|

)
|µs|.

By assumption

λj := (uj · A∗w∗)Ld
∗
⇀ λ :=

(
dµ

dLd
· A∗w∗

)
Ld Ω + f∞

( q , dµ

d|µs|

)
|µs|

in M(Ω), and therefore using that λj(Ω) = 〈w∗, τ〉 for all j ∈ N, we get that
λ(Ω) = 〈w∗, τ〉. The pointwise identities from (ii) then yield

R[w∗] = −
∫

Ω
f∗(x,A∗w∗) dx+ λ(Ω)

= −
∫

Ω
f∗(x,A∗w∗) dx+

〈 dµ

dLd
,A∗w∗

〉
+

∫
Ω
f∞

(
x,

dµ

d|µs|
(x)

)
d|µs|(x)

= F [µ].

This proves (5.16). �

Remark 5.8 (Optimality conditions II). In the case that there exists a solution w∗

of (P∗) with substantially better regularity than the one originally posed by being
admissible to its variational problem, say, for example, w ∈ Ck(Ω;RN ) (where k is
the order of A) or A∗w∗ ∈ L∞|µs|(Ω;Rn). Then, it is easy to verify (cf. Remark 5.4)
that

f∞
(
x,

dµs

d|µs|
(x0)

)
=

dµ

d|µs|
(x0) · A∗w∗(x0) for |µs|-a.e. x0 ∈ Ω,

and

f

(
x,

dµ

dLd
(x)

)
+ f∗(x,A∗ u∗(x)) =

dµ

dLd
(x) · A∗w∗(x) for Ld-a.e. in Ω,



RELAXATION AND OPTIMIZATION FOR INTEGRAL FUNCTIONALS UNDER PDE CONSTRAINTS25

are also equivalent to (i) and (ii) in Theorem 1.3.
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