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ABSTRACT. We prove the existence of a weak global in time mean curvature flow of a bounded partition of
space using the method of minimizing movements. The result is extended to the case when suitable driving
forces are present. We also show that the minimizing movement solution starting from a partition made by
a union of bounded convex sets at a positive distance agrees with the classical mean curvature flow, and the
motion is stable with respect to the Hausdorff convergence of the initial partition.

1. INTRODUCTION

Mean curvature evolution of partitions became popular in recent years because of its applications in
material science and physics, especially evolutions of grain boundaries and motion of immiscible fluid
systems, see e.g. [9, 5, 34, 28] and references therein. Behaviour of the motion in the two phase case, i.e.
in the case of classical motion by mean curvature of a boundary as a gradient flow of the area functional,
is rather well-understood, see for instance [25, 22, 17, 23, 33, 6, 11] and references therein.

Mean curvature evolution of interfaces in the multiphase case in general involves motion of surface
junctions in Rn, or triple and multiple points in the plane, an already nontrivial problem. We refer to
the survey [34] and references therein for recent results on curvature evolution of planar networks.

Not much seems to be known in higher space dimensions; short time existence of the motion of
subgraph-type partitions has been derived in [21, 20] and well-posedness and short time existence of the
motion by mean curvature of three surface clusters have been recently shown in [16].

Even in the two phase case, the classical flow describes the motion only up to the appearance of the
first singularity. In order to continue the motion through singularities, several notions of generalized so-
lutions have been suggested: Brakke varifold-solution [9], the viscosity solution (see [23] and references
therein), the Almgren-Taylor-Wang [1] and Luckhaus-Sturzenhecker [31] solutions, the minimal barrier
solution (see [6] and references therein); we also refer to [19, 26] for other types of solutions. At the mo-
ment the lack of the comparison principle in the multiphase case results in a lot of difficulties to extend
such notions as viscosity and barrier solutions, while besides Brakke solution, some other generalized
solutions have been successfully extended to partitions. For example, the authors of [29] have proved
the existence of a distributional solution of mean curvature evolution of partitions on the torus using the
time thresholding method introduced in [35], see also [36, 18]; furthermore the authors of [27] showed
that their solution is indeed a Brakke solution.

In [14] De Giorgi generalized the Almgren-Taylor-Wang and Luckhaus-Sturzenhecker approach to
what he called the minimizing movements method. In the present paper, we prove the existence of
a generalized minimizing movement solution in Pb(N + 1), the collection of all partitions of Rn,
n ≥ 2, having N + 1 ≥ 2 components, with the first N -components bounded. This is the multiphase
generalization of the evolution of a compact boundary in the two-phase case (N = 1 ), for which the
generalized minimizing movement solution has been introduced and studied in [1, 31].

Let us recall the definition in [14] (see also [2, 4]).

Definition 1.1 (Generalized minimizing movement ). Let S be a topological space, F : S × S ×
[1,+∞) × Z → [−∞,+∞] be a functional and u : [0,+∞) → S. We say that u is a generalized
minimizing movement associated to F, S (shortly a GMM associated to F ) starting from a ∈ S and
we write u ∈ GMM(F, a), if there exist w : [1,+∞)× Z→ S and a diverging sequence {λj} such
that

lim
j→+∞

w(λj , [λjt]) = u(t) for any t ≥ 0,
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and the functions w(λ, k), λ ≥ 1, k ∈ Z, are defined inductively as w(λ, k) = a for k ≤ 0 and

F (λ, k, w(λ, k + 1), w(λ, k)) = min
s∈S

F (λ, k, s, w(λ, k)) ∀k ≥ 0.

When GMM(F, a) is a singleton, it is called the minimizing movement starting from a and denoted
by MM(F, a). In the present paper we apply this definition for S = Pb(N + 1) endowed with the
L1(Rn) -topology, and following [15],

F (A,B;λ) = Per(A) +
λ

2

N+1∑
j=1

∫
Aj∆Bj

d(x, ∂Bj)dx, A,B ∈ Pb(N + 1),

where Per(A) = 1
2

N+1∑
j=1

P (Aj) is the perimeter of the partition A = (A1, . . . , AN+1), d(·, E) is the

distance function from E ⊆ Rn, and a ∈ Pb(N + 1) is an initial partition. We shall also consider the
functional

FH(A,B;λ) = Per(A) +
N+1∑
j=1

∫
Aj

Hjdx+
λ

2

N+1∑
j=1

∫
Aj∆Bj

d(x, ∂Bj)dx, A,B ∈ Pb(N + 1)

for suitable driving forces Hi, i = 1, . . . , N + 1 (see Section 5).
Our main result is the following (see Theorems 4.10 and 5.1 for the precise statements):

Theorem 1.2. For any G ∈ Pb(N + 1), GMM(F,G) is nonempty, i.e. there exists a generalized
minimizing movement starting from G. Moreover,

1) any such movement M(t) = (M1(t), . . . ,MN+1(t)) is locally 1
n+1 -Hölder continuous in time;

2)
N⋃
j=1

Mj(t) is contained in the closed convex envelope of the union
N⋃
j=1

Gj of the bounded com-

ponents of G for any t > 0.
Finally, similar results are valid for FH .

To prove Theorem 1.2 we establish uniform density estimates for minimizers of F and FH . A lower-
type density estimate for minimizers of F could be proven using the slicing method for currents as in
the thesis [10], or also using the infiltration technique of [30, Lemma 4.6] (see also [32, Section 30.2]).
In Section 3 we prove that (Λ, r0) -minimizers of Per in Rn (Definition 3.5) satisfy uniform density
estimates using the method of cutting out and filling in with balls, an argument of [31].

In Theorems 6.5 and 6.7 we also show the following consistency and stability result.

Theorem 1.3. Suppose that C = (C1, . . . , CN+1) ∈ Pb(N + 1), where C1, . . . , CN are convex sets
whose closures are disjoint. Then the generalized minimizing movement associated to F and starting
from C is a minimizing movement {M} = MM(F, C) and writing

M(t) = (M1(t), . . . ,MN+1(t)),

we have that each Mi(t) agrees with the classical mean curvature flow starting from Ci , up to the
extinction time. Moreover, if a sequence {G(k)} ⊂ Pb(N+1) converges to C ∈ Pb(N+1) in the Haus-
dorff distance, then any M(k) ∈ GMM(F,G(k)) converges to {M} = MM(F, C) in the Hausdorff
distance.

The proof of the consistency with the classical mean curvature flow relies on the results of [7], while
for the stability in the Hausdorff distance we employ the comparison results from [8].

The plan of the paper is the following.
In Section 2 we set the notation and recall some results from the theory of finite perimeter sets. Section

3 is devoted to the definitions of partitions and density estimates for (Λ, r0) -minimizers. In Section 4 we
prove the existence of minimizers of F in Pb(N + 1) (Theorem 4.2), the density estimates (Theorem
4.6), and – one of our main results – the existence of GMM for F (Theorem 4.10). The existence of
GMM for FH is shown in Section 5. Finally in Section 6 we prove that the minimizers of F (·,G;λ)
with disjoint G (Definition 6.1) is also disjoint provided λ is large enough (Theorem 6.5) and as a
nontrivial application of this fact, we show Theorem 1.3.
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2. NOTATION AND PRELIMINARIES

In this section we introduce the notation and collect some important properties of sets of locally finite
perimeter. The standard references for BV -functions and sets of finite perimeter are [3, 24].

We use N0 to denote the set of all nonnegative integers. Given a finite subset I ⊂ N0, we write |I|
for the number of elements of I. The symbol Br(x) stands for the open ball in Rn centered at x ∈ Rn

of radius r > 0. The characteristic function of a Lebesgue measurable set F is denoted by χF and its
Lebesgue measure by |F |; we set also ωn := |B1(0)|. We denote by Ec the complement of E in Rn.

Op(Rn) (resp. Opb(Rn) ) is the collection of all open (resp. open and bounded) subsets of Rn. The
set of L1

loc(Rn) -functions having locally bounded total variation in Rn is denoted by BVloc(Rn) and
the elements of

BVloc(Rn, {0, 1}) := {E ⊆ Rn : χE ∈ BVloc(Rn)}
are called locally finite perimeter sets. Given a E ∈ BVloc(Rn, {0, 1}) we denote by

a) P (E,Ω) :=
∫

Ω |DχE | the perimeter of E in Ω ∈ Op(Rn);
b) ∂E the measure-theoretic boundary of E :

∂E := {x ∈ Rn : 0 < |Bρ ∩ E| < |Bρ| ∀ρ > 0};
c) ∂∗E the reduced boundary of E;
d) νE the outer generalized unit normal to ∂∗E.

For simplicity, we set P (E) := P (E,Rn) provided E ∈ BV (Rn, {0, 1}). Further, given a Lebesgue
measurable set E ⊆ Rn and α ∈ [0, 1] we define

E(α) :=
{
x ∈ Rn : lim

ρ→0+

|Bρ(x) ∩ E|
|Bρ(x)|

= α

}
.

Unless otherwise stated, we always suppose that any locally finite perimeter set E we consider coincides
with E(1) (so that by [24, Proposition 3.1] ∂E coincides with the topological boundary). We recall
that ∂∗E = ∂E and DχE = νEdHn−1 ∂∗E, where Hn−1 is the (n − 1) -dimensional Hausdorff
measure in Rn and is the symbol of restriction. Given a nonempty set E ⊆ Rn, d(·, E) stands for
the distance function from E and

d̃(x, ∂E) = d(x,E)− d(x,Rn \ E)

is the signed distance function from ∂E, negative inside E.

Theorem 2.1. [13] Let E ∈ BVloc(Rn, {0, 1}). Then for any x ∈ ∂∗E

lim
ρ→0+

|E ∩Bρ(x)|
|Bρ(x)|

=
1
2
, lim

ρ→0+

P (E,Bρ(x))
ωn−1rn−1

= 1.

Theorem 2.2. [3, Theorem 3.61] For every E ∈ BVloc(Rn, {0, 1})

Hn−1(Rn \ (E(0) ∪ E ∪ ∂∗E)) = 0.

Moreover, Hn−1(E(1/2) \ ∂∗E) = 0.

Remark 2.3. Given E ∈ BVloc(Rn, {0, 1}) the map Ω ∈ Op(Rn) 7→ P (E,Ω) extends to a Borel
measure in Rn, so that P (E,B) = Hn−1(B ∩ ∂∗E) for every Borel set B ⊆ Rn.

Theorem 2.4. [32, Theorem 16.3] If E and F are Caccioppoli sets, and we let

{νE = νF } = {x ∈ ∂∗E ∩ ∂∗F : νE(x) = νF (x)},
{νE = −νF } = {x ∈ ∂∗E ∩ ∂∗F : νE(x) = −νF (x)},

then E ∩ F, E \ F and E ∪ F are locally finite perimeter sets with

∂∗(E ∩ F ) ≈
(
F ∩ ∂∗E

)
∪
(
E ∩ ∂∗F

)
∪
{
νE = νF

}
, (2.1)

∂∗(E \ F ) ≈
(
F (0) ∩ ∂∗E

)
∪
(
E ∩ ∂∗F

)
∪
{
νE = −νF

}
, (2.2)

∂∗(E ∪ F ) ≈
(
F (0) ∩ ∂∗E

)
∪
(
E(0) ∩ ∂∗F

)
∪
{
νE = νF

}
, (2.3)

where A ≈ B means Hn−1(A∆B) = 0. Moreover, for every Borel set B ⊆ Rn

P (E ∩ F,B) = P (E,F ∩B) + P (F,E ∩B) +Hn−1
(
{νE = νF } ∩B

)
, (2.4)
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P (E \ F,B) = P (E,F (0) ∩B) + P (F,E ∩B) +Hn−1
(
{νE = −νF } ∩B

)
, (2.5)

P (E ∪ F,B) = P (E,F (0) ∩B) + P (F,E(0) ∩B) +Hn−1
(
{νE = νF } ∩B

)
. (2.6)

Finally, recall that for every E,F ∈ BVloc(Rn, {0, 1}) and Ω ∈ Op(Rn)

P (E ∩ F,Ω) + P (E ∪ F,Ω) ≤ P (E,Ω) + P (F,Ω). (2.7)

3. PARTITIONS

Now we give the notions of partition, (Λ, r0) -minimizer and bounded partition. The main result of
this section is represented by the density estimates for (Λ, r0) -minimizers (Theorem 3.6).

Definition 3.1 (Partition). Given an integer N ≥ 2, an N -tuple C = (C1, . . . , CN ) of subsets of Rn

is called an N -partition of Rn (a partition, for short) if
(a) Ci ∈ BVloc(Rn, {0, 1}) for every i = 1, . . . , N,

(b)
N∑
i=1
|Ci ∩K| = |K| for each compact K ⊆ Rn.

The collection of all N -partitions of Rn is denoted by P(N). Our assumptions Ci = C
(1)
i implies

Ci ∩ Cj = ∅ for i 6= j. Notice also that we do not exclude the case Ci = ∅.
The elements of P(N) are denoted by calligraphic letters A,B, C, . . . and the entries (also called

components) of A ∈ P(N) by the corresponding roman letters (A1, . . . , AN ). The functional

(A,Ω) ∈ P(N)×Op(Rn) 7→ Per(A,Ω) :=
1
2

N∑
j=1

P (Aj ,Ω)

is called the perimeter of the partition A in Ω. For simplicity, we write Per(A) := Per(A,Rn). We
set

A∆B :=
N⋃
j=1

Aj∆Bj

and

|A∆B| :=
N∑
j=1

|Aj∆Bj |, (3.1)

where ∆ is the symmetric difference of sets, i.e. E∆F = (E \ F ) ∪ (F \ E).
We say that the sequence {A(k)} ⊆ P(N) converges to A ∈ P(N) in L1

loc(Rn) if

|(A(k)∆A) ∩K| :=
N∑
j=1

|(A(k)
j ∆Aj) ∩K| → 0 as k → +∞

for every compact set K ⊆ Rn. Since E ∈ BVloc(Rn, {0, 1}) 7→ P (E,Ω) is L1
loc(Rn) -lower semi-

continuous for any Ω ∈ Op(Rn), the map A ∈ P(N) 7→ Per(A,Ω) is L1
loc(Rn) -lower semicontinu-

ous. The following compactness result can be proven using [3, Theorem 3.39] and a diagonal argument.

Theorem 3.2 (Compactness). Let {A(l)} ⊂ P(N) be a sequence of partitions such that

sup
l≥1

Per(A(l),Ω) < +∞ ∀Ω ∈ Opb(Rn). (3.2)

Then there exist a partition A ∈ P(N) and a subsequence {A(lk)} such that A(lk) converges to A in
L1

loc(Rn) as k → +∞.

The next result is proven for the convenience of the reader.

Proposition 3.3 (Boundaries of “neighboring” sets). Let A ∈ P(N). Then

Hn−1
(
∂∗Ai \

N⋃
j=1, j 6=i

∂∗Aj

)
= 0 ∀i = 1, . . . , N.
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Proof. The case N = 2 is classical, so we suppose N ≥ 3. It is enough to consider i = 1. Set

Σ(r) := ∂∗A1 ∩
( N⋃
j=2

∂∗Aj

)
, Σ(s) := ∂∗A1 \ Σ(r).

We divide the proof into four steps.
Step 1. If x ∈ ∂∗A1 then there exists at most one j ∈ {2, . . . , N} such that x ∈ ∂∗Aj . Indeed,

otherwise up to a relabelling we would have x ∈ ∂∗A1 ∩ ∂∗A2 ∩ ∂∗A3 and hence
3∑
j=1

|Aj∩Br|
|Br| ≤ 1,

where Br := Br(x). Now by Theorem 2.1 we get 1 ≥
3∑
j=1

lim
r→0+

|Aj∩Br|
|Br| = 3

2 , a contradiction.

Step 2. If there exists a unique j ∈ {2, . . . , N} so that x ∈ ∂∗A1 ∩ ∂Aj , then x ∈ ∂∗Aj .
Indeed, since ∂Ak is closed, and x /∈ ∂Ak there is ρ > 0 such that dist(x, ∂Ak) ≥ ρ for every

k 6= 1, j, Hence, for every r ∈ (0, ρ) up to an Ln -negligible set we have Br = (A1 ∪ Aj) ∩ Br (and
A1 ∩Aj = ∅ ). Thus, P (A1, Br) = P (Aj , Br) for all r ∈ (0, ρ), and since x ∈ ∂∗A1,

νAj (x) := − lim
r→0+

DχAj (Br)
P (Aj , Br)

= lim
r→0+

DχA1(Br)
P (A1, Br)

= −νA1(x),

hence |νAj (x)| = 1. This yields x ∈ ∂∗Aj .
Step 3. If x ∈ Σ(s), there are at least two indices 2 ≤ k < l ≤ N such that x ∈ ∂Ak ∩∂Al. Indeed,

since x ∈ ∂A1, there exists at least one k ∈ {2, . . . , N} such that x ∈ ∂Ak. If k is unique with this
property, by Step 2 x ∈ ∂∗Ak and hence, by definition x ∈ Σ(r).

Step 4. Now we prove Hn−1(Σ(s)) = 0. We may suppose that Σ(s) is bounded, otherwise we
consider Σ(s) ∩BR(0) and then let R→ +∞.

By Steps 2 and 3, x ∈ Σ(s) if and only if x ∈ (∂Ai \ ∂∗Ai) ∩ (∂Aj \ ∂∗Aj) for some i > j > 1,

therefore Σ(s) ⊆
N⋃
j=2

(∂Aj \ ∂∗Aj) and
N∑
j=2

P (Aj ,Σ(s)) = 0. Hence for every ε > 0 there exists an

open set U ⊆ Rn such that Σ(s) ⊆ U and
N∑
j=2

P (Aj , U) < ε. Since Σ(s) ⊆ ∂∗A1, by Theorem 2.1

for every x ∈ Σ(s), r1−nP (A1, Br(x))→ ωn−1 as r → 0+, thus there exists ρ(x) > 0 such that

ωn−1

2
≤ P (A1, Br(x))

rn−1
≤ 2ωn−1 ∀r ∈ (0, ρ(x)). (3.3)

Fix δ > 0 and consider the collection of balls F := {Br(x) : x ∈ Σ(s), r ∈ (0,min{δ, ρ(x)}), Br(x) ⊂
U}. Clearly, this is a fine cover of Σ(s) and hence by Vitali Covering Lemma there exists an at most
countable disjoint subfamily F′ ⊆ F with Σ(s) ⊆

⋃
Brk∈F′

B5rk . Now using (3.3), the definition of parti-

tion and (2.7) for the Hausdorff premeasures we get

Hn−1
10δ (Σ(s)) ≤

∑
Brk∈F′

ωn−1(5rk)n−1 = 2 · 5n−1
∑

Brk∈F′

ωn−1

2
rn−1
k ≤ 2 · 5n−1

∑
Brk∈F′

P (A1, Brk)

=2 · 5n−1P
(
A1,

⋃
Brk∈F′

Brk

)
≤ 2 · 5n−1P (A1, U) = 2 · 5n−1P

( N⋃
j=2

Aj , U
)

≤2 · 5n−1
N∑
j=2

P (Aj , U) < 2 · 5n−1ε.

Thus, letting δ, ε→ 0+, we establish Hn−1(Σ(s)) = 0. �
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Remark 3.4. From Proposition 3.3 it follows that

Per(A,Ω) =
1
2

N∑
j=1

Hn−1(Ω ∩ ∂∗Aj) =
1
2

N∑
j=1

N∑
i=1, i 6=j

Hn−1(Ω ∩ ∂∗Aj ∩ ∂∗Ai).

Since Hn−1(Ω∩ ∂∗Aj ∩ ∂∗Ai) is the area of the interface between the phases Ai and Aj , Per(A,Ω)
measures the total perimeter of the interfaces in Ω.

3.1. (Λ, r0) -minimizers. In order to prove Theorem 4.6 it is convenient to give the following definition.

Definition 3.5 ( (Λ, r0) -minimizers). Given Λ ≥ 0 and r0 ∈ (0,+∞] we say that a partition A ∈
P(N) is a (Λ, r0) -minimizer of Per in Rn (a (Λ, r0) -minimizer, for short) if

Per(A, Br) ≤ Per(B, Br) + Λ|A∆B|
whenever B ∈ P(N), A∆B ⊂⊂ Br, and r ∈ (0, r0).

The crucial technical tool is the following.

Theorem 3.6 (Density estimates for (Λ, r0) - minimizers). Let A ∈ P(N) be a (Λ, r0) -minimizer
and i ∈ {1, . . . , N}. Then either ∂Ai = ∅ (i.e. Ai = ∅ or Ai = Rn ) or there exists c(N,n) ∈ (0, 1)
such that for any x ∈ ∂Ai and r ∈ (0, r̂0), where r̂0 := min{r0,

n
4(N−1)Λ} if Λ > 0 and r̂0 := r0 if

Λ = 0, the following density estimates hold:( 1
2N

)n
≤ |Ai ∩Br(x)|

|Br(x)|
≤ 1− 1

2n
(

1− 1
2(N − 1)

)n
, (3.4)

c(N,n) ≤ P (Ai, Br(x))
rn−1

≤ 2N − 1
2(N − 1)

nωn. (3.5)

Moreover,
N∑
i=1

Hn−1(∂Ai \ ∂∗Ai) = 0. (3.6)

Proof. We may suppose i = 1 and ∂Ai 6= ∅. Moreover, since ∂∗A1 = ∂A1, it suffices to show
(3.4)-(3.5) whenever x ∈ ∂∗A1. Choose r ∈ (0, r̂0) such that Br := Br(x) satisfies

N∑
j=1

Hn−1(∂Br ∩ ∂∗Aj) = 0 (3.7)

and define the competitor B ∈ P(N) as

B := (A1 ∪Br, A2 \Br, . . . , AN \Br).
Then A∆B ⊂⊂ Bs for every s ∈ (r, r̂0) and thus, by (Λ, r0) -minimality,

0 ≤2 Per(B, Bs)− 2 Per(A, Bs) + 2Λ|A∆B| = P (A1 ∪Br, Bs)− P (A1, Bs)

+
N∑
j=2

(
P (Aj \Br, Bs)− P (Aj , Bs)

)
+ 2Λ|Br \A1|+ 2Λ

N∑
j=2

|Aj ∩Br|.
(3.8)

By the disjointness of the Aj ’s we have
N∑
j=2

|Aj ∩Br| = |Br \A1|. (3.9)

Moreover, recalling that A(1)
j = Aj , from (2.5), (3.7) and Hn−1(Bs ∩ {νAj = −νBr}) = 0, we get

P (Aj \Br, Bs) = P (Aj , Bs \Br) +Hn−1(Aj ∩ ∂Br) ∀j ∈ {2, . . . , N}. (3.10)

Thus,
N∑
j=2

P (Aj \Br, Bs) =
N∑
j=2

P (Aj , Bs \Br) +
N∑
j=2

Hn−1(Aj ∩ ∂Br).
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By the disjointness of the Aj ’s, Theorem 2.2 and the choice of r in (3.7),
N∑
j=2

Hn−1(Aj ∩ ∂Br) = Hn−1(A(0)
1 ∩ ∂Br) = Hn−1((Rn \A1) ∩ ∂Br).

Therefore,
N∑
j=2

P (Aj \Br, Bs) =
N∑
j=2

P (Aj , Bs \Br) +Hn−1((Rn \A1) ∩ ∂Br). (3.11)

Finally, since Hn−1(Bs ∩ {νA1 = νBr}) = 0 by (3.7), from (2.6) we deduce

P (A1 ∪Br, Bs) = P (A1, Bs \Br) +Hn−1((Rn \A1) ∩ ∂Br). (3.12)

Now inserting (3.9), (3.11), (3.12) in (3.8) we get

P (A1, Br) +
N∑
j=2

P (Aj , Br) ≤ 2Hn−1((Rn \A1) ∩ ∂Br) + 4Λ|(Rn \A1) ∩Br|. (3.13)

Applying (2.7) and using the disjointness of the Aj ’s we get
N∑
j=2

P (Aj , Br) ≥ P
( N⋃
j=2

Aj , Br

)
= P (Rn \A1, Br) = P (A1, Br)

and thus from (3.13),

P (Rn \A1, Br) ≤ Hn−1((Rn \A1) ∩ ∂Br) + 2Λ|(Rn \A1) ∩Br|. (3.14)

Adding Hn−1((Rn \A1) ∩ ∂Br) to both sides of this inequality and using (3.7) we establish

P ((Rn \A1) ∩Br) ≤ 2Hn−1((Rn \A1) ∩ ∂Br) + 2Λ|(Rn \A1) ∩Br|. (3.15)

Now by the isoperimetric inequality [12],

nω1/n
n |(Rn \A1) ∩Br|

n−1
n ≤ 2Hn−1((Rn \A1) ∩ ∂Br) + 2Λ|(Rn \A1) ∩Br|. (3.16)

Since r < r̂0 ≤ n
4(N−1)Λ ,

2Λ|(Rn \A1) ∩Br|
1
n ≤ 2Λω1/n

n r̂0 ≤
nω

1/n
n

2(N − 1)
.

As a result, from (3.16) we obtain
1
2

(
1− 1

2(N − 1)

)
nω1/n

n |(Rn \A1) ∩Br|
n−1
n ≤ Hn−1((Rn \A1) ∩ ∂Br).

Integrating this differential inequality we get

|(Rn \A1) ∩Br| ≥
1
2n
(

1− 1
2(N − 1)

)n
ωnr

n,

i.e.
|A1 ∩Br|
|Br|

≤ 1− 1
2n
(

1− 1
2(N − 1)

)n
,

which is the upper volume density estimate in (3.4). Moreover, since 2Λr ≤ n
2(N−1) , from (3.14) we

obtain

P (A1, Br) ≤ Hn−1(∂Br) + 2Λ|Br| ≤ nωnrn−1 +
nωn

2(N − 1)
rn−1 =

2N − 1
2(N − 1)

nωnr
n−1

for a.e. r ∈ (0, r̂0). Now the left-continuity of ρ 7→ P (A1, Bρ) implies the upper perimeter density
estimate.

Let us prove the lower volume density estimate. As above we may suppose i = 1 and ∂A1 6= ∅.
Take x ∈ ∂∗A1 and set

I := {j ∈ {2, . . . , N} : Hn−1(Br̂0(x) ∩ ∂∗A1 ∩ ∂∗Aj) > 0}.
7



Write as usual Bρ := Bρ(x) and let r ∈ (0, r̂0) satisfy (3.7). By virtue of Proposition 3.3 and Remark
3.4,

P (A1, Br) =
N∑
j=2

Hn−1(Br ∩ ∂∗A1 ∩ ∂∗Aj) =
∑
j∈I
Hn−1(Br ∩ ∂∗A1 ∩ ∂∗Aj). (3.17)

Since x ∈ ∂A1, one has I 6= ∅. For every j ∈ I let us define the competitor B(j) ∈ P(N) as

B(j) := (A1 \Br, A2, . . . , Aj−1, Aj ∪ (A1 ∩Br), Aj+1, . . . , AN ).

By the (Λ, r0) -minimality of A, for every s ∈ (r, r̂0) one has

P (A1, Bs) + P (Aj , Bs) ≤ P (A1 \Br, Bs) + P (Aj ∪ (A1 ∩Br), Bs) + 4Λ|A1 ∩Br|. (3.18)

From (3.7) and (2.1)
∂∗(A1 ∩Br) ≈ (A1 ∩ ∂Br) ∪ (Br ∩ ∂∗A1). (3.19)

Moreover, Hn−1(Bs ∩ {νAj = νA1∩Br}) = 0 for any j ∈ I, therefore, from (2.6)

P (Aj ∪(A1∩Br), Bs) = Hn−1((A1∩Br)(0)∩Bs∩∂∗Aj)+Hn−1(A(0)
j ∩Bs∩∂

∗(A1∩Br)). (3.20)

Now according to Theorem 2.2, (3.7), Hn−1(A1 ∩Br ∩ ∂∗Aj) = 0, and (3.19)

Hn−1((A1 ∩Br)(0) ∩Bs ∩ ∂∗Aj) =Hn−1(Bs ∩ ∂∗Aj)−Hn−1(Bs ∩ ∂∗(A1 ∩Br) ∩ ∂∗Aj)

=P (Aj , Bs)−Hn−1(Br ∩ ∂∗A1 ∩ ∂∗Aj).

Similarly, since Hn−1(Aj ∩Br ∩ ∂∗(A1 ∩Br)) = 0, for any j ∈ I

Hn−1(A(0)
j ∩Bs ∩ ∂

∗(A1 ∩Br)) =Hn−1(Bs ∩ ∂∗(A1 ∩Br))−Hn−1(Bs ∩ ∂∗(A1 ∩Br) ∩ ∂∗Aj)

=Hn−1(A1 ∩ ∂Br) + P (A1, Br)−Hn−1(Br ∩ ∂∗A1 ∩ ∂∗Aj).

Therefore, from (3.20) we get

P (Aj ∪ (A1 ∩Br), Bs) =P (Aj , Bs) +Hn−1(A1 ∩ ∂Br)

+ P (A1, Br)− 2Hn−1(Br ∩ ∂∗A1 ∩ ∂∗Aj).
(3.21)

Inserting this and
P (A1 \Br, Bs) = P (A1, Bs \Br) +Hn−1(A1 ∩ ∂Br)

(whose proof is the same as (3.10)) in (3.18) and using (3.7) once more we get

Hn−1(Br ∩ ∂∗A1 ∩ ∂∗Aj) ≤ Hn−1(A1 ∩ ∂Br) + 2Λ|A1 ∩Br|. (3.22)

Summing these inequalities in j ∈ I and using (3.17) and |I| ≤ N − 1, we obtain

P (A1, Br) ≤ (N − 1)Hn−1(A1 ∩ ∂Br) + 2(N − 1)Λ|A1 ∩Br|,

whence
P (A1 ∩Br) ≤ NHn−1(A1 ∩ ∂Br) + 2(N − 1)Λ|A1 ∩Br|. (3.23)

Since 2(N − 1)Λ|A1 ∩Br|1/n ≤ nω
1/n
n
2 for any r < r̂0, from the isoperimetric inequality we get

1
2N

nω1/n
n |A1 ∩Br|

n−1
n ≤ Hn−1(A1 ∩ ∂Br).

Now integrating this differential inequality we obtain the lower volume density estimate

|A1 ∩Br| ≥
(

1
2N

)n
ωnr

n.

The lower perimeter density estimate in (3.5) follows from the volume density estimates and the relative
isoperimetric inequality for the ball [3, page 152].

Finally, (3.6) is a consequence of a standard covering argument. �
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Remark 3.7. Let α1, α2 >
n−1
n , Λ1 ≥ 0, Λ2 > 0, r0 ∈ (0,+∞]. Suppose that A ∈ P(N) satisfies

Per(A, Br) ≤ Per(B, Br) + Λ1|A∆B|α1 + Λ2|A∆B|α2

whenever B ∈ P(N), A∆B ⊂⊂ Br and r ∈ (0, r0). Then repeating the proof of Theorem 3.6, one
obtains that (3.15) and (3.23) are replaced by

P ((Rn \A1) ∩Br) ≤2Hn−1((Rn \A1) ∩ ∂Br) + Λ1|(Rn \A1) ∩Br|α1 + Λ2|(Rn \A1) ∩Br|α2

and

P (A1 ∩Br) ≤ NHn−1(A1 ∩ ∂Br) + 2(N − 1)Λ1|A1 ∩Br|α1 + 2(N − 1)Λ2|A1 ∩Br|α2

respectively and, thus, that for every i = 1, . . . , N either ∂Ai = ∅ or for every x ∈ ∂Ai and for any
r ∈ (0, r̃0), the relations (3.4)-(3.6) hold, where

r̃0 =

min{r0, ω
−1/n
n

(
nω

1/n
n

4(N−1)Λ2

) 1
nα2−n+1 } if Λ1 = 0,

min{r0, ω
−1/n
n

(
nω

1/n
n

8(N−1)Λ1

) 1
nα1−n+1 , ω

−1/n
n

(
nω

1/n
n

8(N−1)Λ2

) 1
nα2−n+1 } if Λ1 > 0.

This will be used in the proof of Theorem 5.1.

3.2. Bounded partitions. The multiphase analog of a bounded phase in Rn is the following.

Definition 3.8 (Bounded partition). A partition C = (C1, . . . , CN+1) ∈ P(N + 1) is called bounded
if Ci is bounded for each i = 1, . . . , N.

Therefore, CN+1 is the only unbounded entry of C. We denote by Pb(N + 1) the collection of all
bounded partitions of Rn.

Given A ∈ Pb(N + 1), we denote by
co(A)

the closed convex hull of
N⋃
i=1

Ai. Since A∆B ⊂⊂ Rn for every A,B ∈ Pb(N + 1),

|A∆B| =
N+1∑
j=1

|Aj∆Bj |

is the L1(Rn) -distance in Pb(N + 1).
The following compactness result can be proven similarly to Theorem 3.2.

Theorem 3.9 (Compactness). Let A(k) ∈ Pb(N + 1), k = 1, 2, . . . , and Ω ∈ Opb(Rn) be such that

sup
k≥1

Per(A(k)) < +∞, co(A(k)) ⊆ Ω ∀k ≥ 1.

Then there exist A ∈ Pb(N+1) and a subsequence {A(kl)} converging to A in L1(Rn) as l→ +∞.

Moreover,
N⋃
i=1

Aj ⊆ Ω.

4. EXISTENCE OF GENERALIZED MINIMIZING MOVEMENTS FOR BOUNDED PARTITIONS

Given E,F ⊆ Rn set

σ̄(E,F ) :=
∫
E∆F

d(x, ∂F )dx.

Note that σ̄(E,F ) = 0 if |E∆F | = 0 whereas σ̄(E,F ) = +∞ if ∂F = ∅ and |E∆F | > 0.
Moreover, X,Y ⊆ Rn are measurable and ∂Y 6= ∅,∫

X∆Y
d(x, ∂Y )dx =

∫
X
d̃(x, ∂Y )dx−

∫
Y
d̃(x, ∂Y )dx if X ∩ Y is bounded,

∫
X∆Y

d(x, ∂Y )dx =
∫
Y c
d̃(x, ∂Y )dx−

∫
Xc

d̃(x, ∂Y )dx if Xc ∩ Y c is bounded.

(4.1)

9



Now the nonsymmetric distance between A,B ∈ Pb(N + 1) is defined as

σ(A,B) :=
N+1∑
i=1

σ̄(Ai, Bi),

where N + 1 ≥ 2. Observe that for every B ∈ Pb(N + 1) the map σ(·,B) is L1(Rn) -lower semicon-
tinuous.

Definition 4.1 (The functional F ). We let F : Pb(N + 1)× Pb(N + 1)× [1,+∞)→ [0,+∞] be the
functional defined as

F (B,A;λ) = Per(B) +
λ

2
σ(B,A) =

1
2

N+1∑
j=1

P (Bj) +
λ

2

N+1∑
j=1

∫
Bj∆Aj

d(x, ∂Aj)dx.

The domain of F is independent of Z, and F is the natural generalization of the Almgren-Taylor-
Wang functional [1] to the case of partitions [15, 10]. One can readily check that the map B ∈ Pb(N +
1) 7→ F (B,A;λ) is L1(Rn) -lower semicontinuous.

Theorem 4.2 (Existence of minimizers of F ). Given A ∈ Pb(N + 1) and λ ≥ 1 the problem

inf
B∈Pb(N+1)

F (B,A;λ) (4.2)

has a solution. Moreover, every minimizer A(λ) = (A1(λ), . . . , AN+1(λ)) satisfies the bound
N⋃
i=1

Ai(λ) ⊆ co(A).

Proof. Given a partition B ∈ Pb(N + 1) define the competitor B′ ∈ Pb(N + 1) as

B′ :=
(
B1 ∩ co(A), . . . , BN ∩ co(A),Rn \

N⋃
i=1

(Bi ∩ co(A))
)
. (4.3)

Since co(A) is convex and closed, by the comparison theorem of [2, page 152] we have P (Bi) ≥
P (Bi ∩ co(A)) for i = 1, . . . , N, and

P (BN+1) = P
( N⋃
i=1

Bi

)
≥ P

(( N⋃
i=1

Bi

)
∩co(A)

)
= P

( N⋃
i=1

(Bi∩co(A))
)

= P
(
Rn\

N⋃
i=1

(Bi∩co(A))
)
,

with equality if and only if |
N⋃
i=1

Bi \ co(A)| = 0. In addition, for i = 1, . . . , N∫
Bi∆Ai

d(x, ∂Ai)dx =
∫
Bi\Ai

d(x, ∂Ai)dx+
∫
Ai\Bi

d(x, ∂Ai)dx

≥
∫

(Bi∩co(A))\Ai
d(x, ∂Ai)dx+

∫
Ai\(Bi∩co(A))

d(x, ∂Ai)dx

=
∫

(Bi∩co(A))∆Ai

d(x, ∂Ai)dx,

(4.4)

where we used the nonnegativity of the distance function and Ai \Bi = Ai \ (Bi∩co(A)). The equality

in (4.4) holds if and only if
∣∣∣ N⋃
i=1

Bi \co(A)
∣∣∣ = 0. For the same reason, since AcN+1 =

N⋃
i=1

Ai ⊆ co(A),∫
BN+1∆AN+1

d(x, ∂AN+1)dx =
∫
BcN+1∆AcN+1

d(x, ∂AN+1)dx

≥
∫

(BcN+1∩co(A))∆AcN+1

d(x, ∂AN+1)dx.
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So we have
F (B,A;λ) ≥ F (B′,A;λ) ∀B ∈ Pb(N + 1)

and the inequality is strict whenever
∣∣∣ N⋃
i=1

Bi \ co(A)
∣∣∣ > 0.

Let {B(k)} ⊆ Pb(N+1) be a minimizing sequence, which can be supposed so that co(B(k)) ⊆ co(A)
and F (B(k),A;λ) ≤ F (T ,A;λ), T := (∅, . . . , ∅,Rn) being the trivial partition, so that

Per(B(k)) ≤ λ

2
σ(T ,A) =

λ

2

N∑
j=1

∫
Aj

(
d(x, ∂Aj) + d(x, ∂AN+1)

)
dx ∀k ≥ 1.

By Proposition 3.9 there exists A(λ) ∈ Pb(N + 1) such that B(k) → A(λ) in L1(Rn) as k → +∞.
Then the L1(Rn) -lower semicontinuity of F (·,A;λ) implies that A(λ) is a solution to (4.2).

Now let A(λ) be a minimizer of F (·,A;λ). If
∣∣ N⋃
j=1

Aj(λ) \ co(A)
∣∣ > 0, then, as shown above,

F (A(λ),A;λ) > F (A(λ)′,A;λ), where A(λ)′ is defined as in (4.3), which contradicts the minimality
of A(λ). �

Remark 4.3. Let C ⊆ Rn be a compact convex set. Suppose that G ∈ Pb(N+1) satisfies
N⋃
j=1

Gj ⊆ C;

from Theorem 4.2 it follows that every minimizer A(λ) ∈ Pb(N+1) of F (·,G;λ) satisfies co(A(λ)) ⊆
C. This property gives an a priori bound for minimizers of F (·,G;λ) using only the bound for the initial
partition and will be used in the proofs of Theorems 4.10 and 5.1.

Remark 4.4. Suppose that G ∈ Pb(N + 1) and Gi = ∅ for some i ∈ {1, . . . , N}. Then by definition
of σ̄ every minimizer A(λ) ∈ Pb(N + 1) of F (·,G;λ) satisfies Ai(λ) = ∅. In particular, for G =
(G, ∅, . . . , ∅,Rn \ G), the GMM problem for F (·,G;λ) agrees with the GMM problem of the
Almgren-Taylor-Wang functional

E ∈ BV (Rn) 7→ P (E) + λ

∫
E∆G

d(x, ∂G)dx. (4.5)

Proposition 4.5 (Behaviour of A(λ) as time goes to 0 ). Let A ∈ Pb(N + 1) be such that
N+1∑
j=1
|Aj \

Aj | = 0, and A(λ) be a minimizer of F (·,A;λ). Then:
a) lim

λ→+∞
|A(λ)∆A| = 0,

b) lim
λ→+∞

Per(A(λ)) = Per(A),

c) lim
λ→+∞

λσ(A(λ),A) = 0.

Proof. a) Choose any sequence λk → +∞. Since F (A(λk),A;λk) ≤ F (A,A;λk) = Per(A), we
have Per(A(λ)) ≤ Per(A) and

lim
k→+∞

σ(A(λk),A) = 0. (4.6)

Moreover, by Theorem 4.2 co(A(λ)) ⊆ co(A), therefore Proposition 3.9 yields the existence of a
subsequence {λkl}l and of B ∈ Pb(N + 1) such that A(λkl)→ B in L1(Rn) as l→ +∞. Now the
lower semicontinuity of σ(·,A) and (4.6) imply σ(B,A) = 0. Then from the assumption on A we get
A = B. Since λk is arbitrary, a) follows.

b) Since Per(A(λ)) ≤ Per(A), from a) we obtain

Per(A) ≤ lim inf
λ→+∞

Per(A(λ)) ≤ lim sup
λ→+∞

Per(A(λ)) ≤ Per(A).

c) From b) we have

lim sup
λ→+∞

λσ(A(λ),A) ≤ 2 lim sup
λ→+∞

(Per(A)− Per(A(λ))) = 0.

�
11



Theorem 4.6 (Density estimates). Suppose that A ∈ Pb(N + 1) and let A(λ) ∈ Pb(N + 1) be a
minimizer of F (·,A;λ). Then for every i ∈ {1, . . . , N + 1} either ∂Ai(λ) is empty or there exists
c(N,n) ∈ (0, 1) such that( 1

2(N + 1)

)n
≤ |Ai(λ) ∩Br(x)|

|Br(x)|
≤ 1− 1

2n
(

1− 1
2N

)n
, (4.7)

c(N,n) ≤ P (Ai(λ), Br(x))
rn−1

≤ 2N + 1
2N

nωn (4.8)

for any x ∈ ∂Ai(λ) and r ∈ (0,min{1, n
2λN(diam co(A)+2)}). Moreover

N+1∑
j=1

Hn−1(∂Aj(λ) \ ∂∗Aj(λ)) = 0.

Proof of Theorem 4.6. Fix r0 > 0. Then for every x ∈ Rn and C ∈ Pb(N+1) such that C∆A(λ) ⊂⊂
Bρ(x) with ρ ∈ (0, r0), by Theorem 4.2 one has

d(z, ∂Ai) ≤ diam co(A) + 2ρ ∀i = 1, . . . , N + 1, z ∈ C∆A(λ).

Therefore the minimality of A(λ) implies

Per(A(λ), Bρ(x)) ≤ Per(C, Bρ(x)) +
λ

2
(

diam co(A) + 2r0

)
|C∆A(λ)|,

i.e.

A(λ) is a (Λ, r0) -minimizer with Λ =
λ

2
(

diam co(A) + 2r0

)
.

Now application of Theorem 3.6 to A(λ) with r0 = 1 finishes the proof. �

Remark 4.7. The density estimates show that the entries of A(λ) are Lebesgue-equivalent to open sets.
Indeed, since using E \ E ⊂ ∂E, and E \ E̊ ⊂ ∂E ( E̊ being the interior of E ), we have

N+1∑
j=1

|Aj(λ)∆ ˚
Aj(λ)| ≤

N+1∑
j=1

|Aj(λ) \Aj(λ)|+
N+1∑
j=1

|Aj(λ) \ ˚
Aj(λ)| ≤ 2

N+1∑
j=1

|∂Aj(λ)|.

Now by the density estimates
N+1∑
j=1
|∂Aj(λ)| = 0, and therefore

N+1∑
j=1
|Aj(λ)∆ ˚

Aj(λ)| = 0.

To prove the existence of GMM, we need the following volume-distance inequality from [1].

Proposition 4.8. Suppose that C is a compact subset of Rn, A ⊆ Rn is Lebesgue measurable, δ, θ
and γ are positive numbers such that

λ

∫
A
d(x,C)dx ≤ γ, (4.9)

and
Hn−1(C ∩Br(x)) ≥ θrn−1

whenever x ∈ C and 0 < r ≤ δ. Then for each ρ ∈ (δ,+∞)

|A \ C| ≤
[
2Γ
(ρ
δ

)n−1
Hn−1(C)

]1/2
λ−1/2γ1/2 +

γ

ρλ
,

where
Γ := 22n+1nωnβ(n)/θ, (4.10)

and β(n) is the Besicovitch constant.

Remark 4.9. The assertion of Proposition 4.8 still holds for γ = 0. Indeed, γ = 0 in (4.9) implies that
|A \ C| = 0.

One of the main results of the present paper reads as follows.
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Theorem 4.10 (Existence of GMM ). Let G ∈ Pb(N + 1). Then GMM(F,G) is non empty. More-
over, there exists a constant ĉ = ĉ(N,n,G) > 0 such that for any M∈ GMM(F,G),

|M(t)∆M(t′)| ≤ ĉ |t− t′|
1

n+1 ∀t, t′ > 0, |t− t′| < 1 (4.11)

and
N⋃
j=1

Mj(t) ⊆ co(G) ∀t ≥ 0. (4.12)

In addition, if
N+1∑
j=1
|Gj \Gj | = 0, then (4.11) holds for any t, t′ ≥ 0 and |t− t′| < 1.

Proof. Set 2R := diam co(G). Let L(λ, k) = (L1(λ, k), . . . , LN+1(λ, k)), λ ≥ 1, k ∈ N0 be
defined as follows: L(λ, 0) := G, and for k ≥ 1

F (L(λ, k),L(λ, k − 1);λ) = min
A∈Pb(N+1)

F (A,L(λ, k − 1);λ);

recall that the existence of minimizers follows from Theorem 4.2 and also

N⋃
j=1

Lj(λ, k) ⊆ co(G) ∀λ ≥ 1, k ∈ N0. (4.13)

Clearly, F (L(λ, k),L(λ, k − 1);λ) ≤ F (L(λ, k − 1),L(λ, k − 1);λ), hence

λσ(L(λ, k),L(λ, k − 1)) ≤ 2
(

Per(L(λ, k − 1))− Per(L(λ, k))
)

∀k ≥ 1. (4.14)

Therefore, the sequence k ∈ N0 7→ Per(L(λ, k)) is nonincreasing, and Per(L(λ, k)) ≤ Per(G) for all
k ∈ N0 and λ ≥ 1 since L(λ, 0) = G.

For every t, t′ > 0, 0 < t− t′ < 1 let us prove

|L(λ, [λt])∆L(λ, [λt′])| ≤ ĉ(N,n,G)|t− t′|
1

n+1 + c̃(N,n,G)|t− t′|−
n−1

2(n+1)λ−1/2 (4.15)

provided that λ is sufficiently large depending on |t− t′|, n, N and R, where

ĉ(N,n,G) :=
(√

8Γ(N + 1) +
8N(N + 1)(R+ 1)

n

)
Per(G),

c̃(N,n,G) :=
√

8Γ(N + 1) Per(G),

and Γ is given by (4.10) for the choice of θ = c(N,n) in (4.8).
Set k0 := [λt′], m0 := [λt]. Let λ ≥ n

4(R+1)N be so large that m0 ≥ k0 + 3 ≥ 4. We apply
Proposition 4.8 as follows: for i ∈ {1, . . . , N + 1} and k ≥ k0 + 1 we take

A = Li(λ, k)∆Li(λ, k − 1),

C = ∂Li(λ, k − 1).

C satisfies the lower perimeter density estimate according to Theorem 4.6 with θ = c(N,n), and since
it satisfies also the upper density estimates, we have |A \C| = |A|. Thus (4.9) follows from (4.14) with

γ = 2
(

Per(L(λ, k − 1))− Per(L(λ, k))
)
.

Now choose

ρ =
n

4Nλ(R+ 1)
|t− t′|−1/(n+1), δ =

n

4Nλ(R+ 1)
.
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From Proposition 4.8 for k ≥ k0 + 1 we get

|L(λ, k)∆L(λ, k − 1)| =
N+1∑
j=1

|Lj(λ, k)∆Lj(λ, k − 1)|

≤
√

4Γ|t− t′|−
n−1

2(n+1)

λ1/2

(
Per(L(λ, k − 1))− Per(L(λ, k))

) 1
2
N+1∑
j=1

(
P (Lj(λ, k − 1))

) 1
2

+
8N(N + 1)(R+ 1)

n
|t− t′|

1
n+1

(
Per(L(λ, k − 1))− Per(L(λ, k))

)
.

From the inequality
l∑

i=1
ai ≤ (l

l∑
i=1

a2
i )

1/2 we get

N+1∑
j=1

(
P (Lj(λ, k − 1))

)1/2 ≤((N + 1)
N+1∑
j=1

P (Lj(λ, k − 1))
)1/2

=
(

2(N + 1) Per(L(λ, k − 1))
)1/2

≤
(

2(N + 1) Per(G)
)1/2

.

Now using
m0∑

k=k0+1

(
Per(L(λ, k − 1))− Per(L(λ, k))

)
≤ Per(G),

and
m0∑

k=k0+1

(
Per(L(λ, k − 1))− Per(L(λ, k))

) 1
2

≤(m0 − k0)
1
2

( m0∑
k=k0+1

(
Per(L(λ, k − 1))− Per(L(λ, k))

)) 1
2

≤ (m0 − k0)
1
2

(
Per(G)

)1/2

we get

|L(λ,[λt])∆L(λ, [λt′])| ≤
m0∑

k=k0+1

|L(λ, k)∆L(λ, k − 1)|

≤

(
8Γ(N + 1) Per(G)

) 1
2

λ1/2|t− t′|
n−1

2(n+1)

m0∑
k=k0+1

(
Per(L(λ, k − 1))− Per(L(λ, k))

) 1
2

+
8N(N + 1)(R+ 1)

n
|t− t′|

1
n+1

m0∑
k=k0+1

(
Per(L(λ, k − 1))− Per(L(λ, k))

)

≤
√

8Γ(N + 1) Per(G)

|t− t′|
n−1

2(n+1)

(m0 − k0

λ

) 1
2 +

8N(N + 1)(R+ 1)
n

Per(G)|t− t′|
1

n+1 .

By the definition of k0 and m0 we have

m0 − k0

λ
≤ |t− t′|+ 1

λ
,

14



hence, using (a+ b)1/2 ≤ a1/2 + b1/2,

|L(λ, [λt])∆L(λ, [λt′])| ≤
√

8Γ(N + 1) Per(G)

|t− t′|
n−1

2(n+1)

(
|t− t′|+ 1

λ

)1/2

+
8N(N + 1)(R+ 1)

n
Per(G)|t− t′|

1
n+1

≤ĉ(N,n,G)|t− t′|
1

n+1 + c̃(N,n,G)|t− t′|−
n−1

2(n+1)λ−1/2,

which is (4.15).
Now we prove the assertions of the theorem. Using (4.13), the inequality Per(L(λ, k)) ≤ Per(G),

Proposition 3.9 and a diagonal argument we obtain the existence of a diverging sequence {λk} and
M(t) ∈ Pb(N + 1) such that

lim
k→+∞

|L(λk, [λkt])∆M(t)| = 0 (4.16)

for every rational t > 0 and also (4.12) holds. By (4.15) M(t) satisfies

|M(t)∆M(t′)| ≤ ĉ(N,n,G)|t− t′|
1

n+1 ∀t′, t ∈ Q ∩ (0,+∞), |t− t′| < 1.

Hence this map extends uniquely to a map {M(t) : t > 0} ⊆ Pb(N + 1) satisfying (4.11) and (4.12).
It remains to show that M∈ GMM(F,G). Since L(λ, 0) = G, and we need just to prove (4.16) for

any t ≥ 0. Case t = 0 is trivial: M(0) = G. Fix t > 0. For every ε ∈ (0, 1) take tε ∈ Q∩ (0,+∞)
such that |t− tε| < εn+1. Since M satisfies (4.11), from (4.15) and (4.16) we deduce

lim sup
k→+∞

|L(λk, [λkt])∆M(t)| ≤ lim sup
k→+∞

|L(λk, [λkt])∆L(λk, [λktε])|

+ lim sup
k→+∞

|L(λk, [λktε])∆M(tε)|+ lim sup
k→+∞

|M(tε)∆M(t)|

≤2ĉ(N,n,G)|t− tε|
1

n+1 ≤ 2ĉ(N,n,G)ε.

Hence, (4.16) is obtained letting ε→ 0+.

Finally, let
N+1∑
j=1
|Gj \Gj | = 0. Given t ∈ (0, 1), choosing λ sufficiently large, from (4.15) we get

|L(λ, [λt])∆L(λ, 0)| ≤L(λ, [λt])∆L(λ, 1)|+ |L(λ, 1)∆G|

≤ĉ(N,n,G)
∣∣∣t− 1

λ

∣∣∣ 1
n+1 +

c̃(N,n,G)

λ1/2|t− 1
λ |

n−1
2(n+1)

+ |L(λ, 1)∆G|.

Now letting λ→ +∞ and using Proposition 4.5 a) we establish

|M(t)∆M(0)| ≤ĉ(N,n,G) t
1

n+1 .

�

In order to improve the Hölder exponent 1
n+1 to the value 1

2 in (4.11) we expect to be useful, for
minimizers A(λ) of F (·,A;λ), an estimate of the form

N+1∑
i=1

sup
Ai(λ)∆Ai

d(·, ∂Ai) ≤ O(λ−1/2).

We miss the proof of such an estimate; however, a partial result in this direction is given in Lemma 6.4.
15



5. EXISTENCE OF GMM FOR BOUNDED PARTITIONS IN THE PRESENCE OF EXTERNAL FORCES

In this section we consider the problem of the mean curvature evolution of bounded partitions with
forcing terms. Given A ∈ Pb(N + 1) and measurable functions Hi : Rn → R, i = 1, . . . , N + 1,
consider the functional

FH(B,A;λ) = F (B,A;λ) +
N+1∑
i=1

∫
Bi

Hidx, B ∈ Pb(N + 1).

When N = 1 and H2 = 0, we get the Almgren-Taylor-Wang functional with an external force H1

which is nonnegative outside a sufficiently large ball.
We suppose:{

Hi ∈ Lploc(R
n), i = 1, . . . , N + 1, for some p > n and HN+1 ∈ L1(Rn);

there exists R > 0 such that Hi ≥ HN+1 a.e. in Rn \BR(0) for any i = 1, . . . , N ;
(5.1)

in particular FH(·,A;λ) is well-defined and L1(Rn) -lower semicontinuous.
The aim of this section is to prove the following result, generalizing Theorem 4.10.

Theorem 5.1. Suppose that Hi : Rn → R, i = 1, . . . , N+1, satisfy (5.1) and let G ∈ Pb(N+1). Then
GMM(FH ,G) is non empty. Moreover, there exists a constant C = C(N,n,G, p,H1, . . . ,HN+1) > 0
such that for any M∈ GMM(FH ,G)

|M(t)∆M(t′)| ≤ C|t− t′|
1

n+1 , ∀t, t′ > 0, |t− t′| < 1 (5.2)

and
N⋃
j=1

Mj(t) ⊆ closed convex hull of co(G) ∪BR(0) ∀t ≥ 0. (5.3)

In addition, if
N+1∑
j=1
|Gj \Gj | = 0, then (5.2) holds for any t, t′ ≥ 0 and |t− t′| < 1.

Since the proof of this theorem is a minor modification of the proof of Theorem 4.10, we just sketch
it.

Proof. Step 1. Given A ∈ Pb(N + 1), the problem

inf
B∈Pb(N+1)

FH(B,A;λ)

has a solution. Let D stand for the closed convex hull of co(A) ∪BR(0) and for every B ∈ Pb(N + 1)
define the competitor B′ ∈ Pb(N + 1) as

B′ :=
(
B1 ∩D, . . . , BN ∩D,Rn \

N⋃
i=1

(Bi ∩D)
)
.

Observe that

FH(B,A;λ) = F (B,A;λ) +
N∑
j=1

∫
Bj

(Hj −HN+1)dx+
∫

Rn
HN+1dx. (5.4)

By Remark 4.3 we have F (B,A;λ) ≥ F (B′,A;λ) with the equality if and only if
∣∣ N⋃
j=1

Bj \D
∣∣ = 0.

Since Hi ≥ HN+1 a.e. in Rn \D, one has also

N∑
j=1

∫
Bj

(Hj −HN+1)dx ≥
N∑
j=1

∫
Bj∩D

(Hj −HN+1)dx.

16



Therefore, (5.4) implies FH(B,A;λ) ≥ FH(B′,A;λ) with the strict inequality when
∣∣ N⋃
j=1

Bj \D
∣∣ > 0.

Now proceeding as in the proof of Theorem 4.2 we can show that there exists a minimizer of FH(·,A;λ).
Moreover, every minimizer A(λ) satisfies

co(A(λ)) ⊆ D. (5.5)

Now we prove the density estimates for A(λ).
Step 2. Let us fix r0 ∈ (0, R) and take any B ∈ Pb(N + 1) with A(λ)∆B ⊂⊂ Br, r ∈ (0, r0).

Then
Per(A(λ), Br) ≤ Per(B, Br) + Λ1|A(λ)∆B|1−1/p + Λ2|A(λ)∆B|, (5.6)

where

Λ1 := N1/p max
i≤N
‖Hi −HN+1‖Lp(D), Λ2 :=

λ

2
(diamD + 2r0). (5.7)

Indeed, from (5.5) one has

d(z, ∂Aj) ≤ diamD + 2r, ∀j = 1, . . . , N + 1, z ∈ A(λ)∆B,

hence using (4.1)∣∣∣σ(B,A)− σ(A(λ),A)
∣∣∣ ≤ N+1∑

j=1

∫
Bj∆Aj(λ)

d(z, ∂Aj)dz ≤ (diamD + 2r0)|B∆A(λ)|,

since B∆A(λ) ⊂⊂ Br0 . Moreover, from the Hölder inequality∣∣∣ ∫
Ai(λ)

(Hi −HN+1)dx−
∫
Bi

(Hi −HN+1)dx
∣∣∣ ≤ ∫

Ai(λ)∆Bi

|Hi −HN+1|dx

≤|Ai(λ)∆Bi|1−1/p
(∫

Ai(λ)∆Bi

|Hi −HN+1|pdx
)1/p

≤ ‖Hi −HN+1‖Lp(D)|Ai(λ)∆Bi|1−1/p.

Then the concavity of the function t ∈ (0,+∞) 7→ t1−1/p implies that∣∣∣ N∑
i=1

∫
Ai(λ)

(Hi −HN+1)dx−
∫
Bi

(Hi −HN+1)dx
∣∣∣

≤N1/p max
i≤N
‖Hi −HN+1‖Lp(D)|A(λ)∆B|1−1/p.

Now minimality of A(λ) (Step 1) yields (5.6). Thus we can apply Remark 3.7 with α1 = 1 − 1/p >
1− 1/n, α2 = 1, r0 ∈ (0, R) and

r̃0 =

{
min{r0,

n
4Λ2N

} if Λ1 = 0,

min{r0, ω
−1/n
n

(
nω

1/n
n

8Λ1N

) p
p−n , n

8Λ2N
} if Λ1 > 0,

to get that for every i ∈ {1, . . . , N + 1} either ∂Ai(λ) = ∅ or there exists c(N,n) ∈ (0, 1) such that

(4.7)-(4.8) hold for any x ∈ ∂Ai(λ) and r ∈ (0, r̃0). In particular,
N+1∑
j=1
Hn−1(∂Aj(λ)\∂∗Aj(λ)) = 0.

Step 3. Given G ∈ Pb(N+1) let K denote the closed convex hull of co(G)∪BR(0). Let L(λ, 0) :=
G and L(λ, k) be defined as

FH(L(λ, k),L(λ, k − 1);λ) = min
A∈Pb(N+1)

FH(A,L(λ, k − 1);λ), k ≥ 1.

Notice that by Step 1 FH(·,L(λ, k−1);λ) has a minimizer L(λ, k) ∈ Pb(N+1) and co(L(λ, k)) ⊆ K
for any λ ≥ 1 and k ≥ 0. Observe that for any λ ≥ 1 the map

k ∈ N0 7→ Ψ(λ, k) := Per(L(λ, k)) +
N∑
j=1

∫
Lj(λ,k)

(Hj −HN+1)dx

17



is nonincreasing. Indeed, since FH(L(λ, k),L(λ, k−1);λ) ≤ FH(L(λ, k−1),L(λ, k−1);λ), recalling
(5.4) one has

λσ(L(λ, k),L(λ, k − 1)) ≤2
(
Ψ(λ, k − 1)−Ψ(λ, k)

)
.

In particular,

Per(L(λ, k)) ≤Per(G) +
N∑
j=1

∫
Lj(λ,k)∆Gj

|Hj −HN+1|dx

≤Per(G) +N max
j≤N
‖Hj −HN+1‖L1(K) =: κ.

(5.8)

We claim that for every t, t′ > 0, 0 < t− t′ < 1,

|L(λ, [λt])∆L(λ, [λt′])| ≤ C(N,n,G)|t− t′|
1

n+1 + C̃(N,n,G)|t− t′|−
n−1

2(n+1)λ−1/2

provided that λ ≥ max{4/t′, 4/(t − t′)} is sufficiently large so that the density estimates (4.7)-(4.8)
hold for r ∈ (0, δ), δ = n

4N(diamK+2r0)λ , here

C(N,n,G) :=
(√

8Γ(N + 1) +
8N(N + 1)(diamK + 2r0)

n

)
κ,

C̃(N,n,G) :=
√

8Γ(N + 1)κ,

Γ is given by (4.10). Set k0 := [λt′], m0 := [λt]. By the choice of λ, m0 ≥ k0 + 3 ≥ 4. Applying
Proposition 4.8 with

A = Lj(λ, k)∆Lj(λ, k − 1),

C = ∂Lj(λ, k − 1),

which satisfies the lower perimeter density estimate according to Step 2 with θ = c(N,n),

γ = Ψ(λ, k − 1)−Ψ(λ, k)

and
ρ =

n

4N(diamK + 2r0)λ
|t− t′|−1/(n+1), δ =

n

4N(diamK + 2r0)λ
,

for any k ≥ k0 + 1 we establish

|L(λ, k)∆L(λ, k − 1)| ≤
√

4Γ|t− t′|−
n−1

2(n+1)

λ1/2

(
Ψ(λ, k − 1)−Ψ(λ, k)

) 1
2
N+1∑
j=1

(
P (Lj(λ, k − 1))

) 1
2

+
8N(N + 1)(diamK + 2r0)

n
|t− t′|

1
n+1

(
Ψ(λ, k − 1)−Ψ(λ, k)

)
.

According to (5.8)
N+1∑
j=1

(
P (Lj(λ, k − 1))

)1/2 ≤(2(N + 1) Per(L(λ, k − 1))
)1/2

≤
(

2(N + 1)κ
)1/2

.

Now using
m0∑

k=k0+1

(
Ψ(λ, k − 1)−Ψ(λ, k)

)
≤ Ψ(λ, 0)−Ψ(λ,m0) ≤ Per(G)− Per(L(λ,m0))

+
N∑
j=1

(∫
G
(Hj −HN+1)dx−

∫
L(λ,m0)

(Hj −HN+1)dx
)

≤Per(G) +N max
j≤N
‖Hj −HN+1‖L1(K) = κ
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and
m0∑

k=k0+1

(
Ψ(λ, k − 1)−Ψ(λ, k)

) 1
2 ≤
(

(m0 − k0)
m0∑

k=k0+1

(
Ψ(λ, k − 1)−Ψ(λ, k)

)) 1
2

≤ (κ(m0 − k0))
1
2 ,

we get

|L(λ,[λt])∆L(λ, [λt′])| ≤
m0∑

k=k0+1

|L(λ, k)∆L(λ, k − 1)|

≤
√

8Γ(N + 1)κ

λ1/2|t− t′|
n−1

2(n+1)

m0∑
k=k0+1

(
Ψ(λ, k − 1)−Ψ(λ, k)

)1/2

+
8N(N + 1)(diamK + 2r0)

n
|t− t′|

1
n+1

m0∑
k=k0+1

(
Ψ(λ, k − 1)−Ψ(λ, k)

)

≤
√

8Γ(N + 1)κ

|t− t′|
n−1

2(n+1)

(m0 − k0

λ

)1/2
+

8N(N + 1)(diamK + 2r0)
n

κ|t− t′|
1

n+1 .

By the definition of k0 and m0 we have m0−k0
λ ≤ |t− t′|+ 1

λ , hence

|L(λ, [λt])∆L(λ, [λt′])| ≤
√

8Γ(N + 1)κ

|t− t′|
n−1

2(n+1)

(
|t− t′|+ 1

λ

)1/2

+
8N(N + 1)(diamK + 2r0)

n
κ|t− t′|

1
n+1

≤C(N,n,G)|t− t′|
1

n+1 + C̃(N,n,G)|t− t′|−
n−1

2(n+1)λ−1/2.

Now the proofs of (5.2) and (5.3) are exactly the same as in the proof of Theorem 4.10.

Step 4. Finally, let us show that if
N+1∑
j=1
|Gj \Gj | = 0, then (5.2) holds for any t, t′ ≥ 0, |t− t′| < 1.

We need just to show that |L(λ, 1)∆G| → 0 as λ → +∞, and then we proceed as in the proof of the
final assertion of Theorem 4.10.

Using minimality of L(λ, 1) we have FH(L(λ, 1),G;λ) ≤ FH(G,G;λ), i.e.

λ

2
σ(L(λ),G) ≤ Per(G)− Per(L(λ, 1)) +N max

j≤N
‖Hj −HN+1‖L1(K) ≤ κ. (5.9)

Choose an arbitrary diverging sequence {λk}. By (5.8) it follows Per(L(λk, 1)) ≤ κ for any k ≥ 1

and since
N⋃
j=1

Lj(λk, 1) ⊆ K, by Theorem 3.9 there exists a (not relabelled) subsequence and A ∈

Pb(N + 1) such that L(λk, 1)→ A in L1(Rn) as k → +∞. Then the L1(Rn) -lower semicontinuity
of σ and (5.9) yield

σ(A,G) ≤ lim inf
k→+∞

σ(L(λk, 1),G) ≤ lim inf
k→+∞

2κ
λk

= 0.

Hence σ(A,G) = 0 and by the assumption of G we have A = G. Since {λk} is arbitrary, L(λ, 1)→
G in L1(Rn) as λ→ +∞. �

6. UNIQUENESS AND CONSISTENCY OF GMM FOR CONVEX DISJOINT PARTITIONS

Definition 6.1 (Convex and disjoint partitions). A partition A ∈ Pb(N + 1) is called convex if the
bounded components of A are convex and is called disjoint provided

min
1≤i<j≤N

dist(Ai, Aj) > 0.
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Notice that if A ∈ Pb(N + 1) is disjoint, then Per(A) =
N∑
j=1

P (Aj). Moreover, if A and G are

disjoint and satisfy
N⋃
j=1

(Aj∆Gj) =
( N⋃
j=1

Aj

)
∆
( N⋃
j=1

Gj

)
, (6.1)

then σ(A,G) =
N+1∑
j=1

∫
Aj∆Gj

d(x, ∂Gj)dx and thus

F (A,G;λ) =
N∑
j=1

(
P (Aj) + λ

∫
Aj∆Gj

d(x, ∂Gj)dx
)
. (6.2)

The aim of this section is to prove the following consistency result.

Theorem 6.2 (Evolution of convex disjoint partitions). Assume that C ∈ Pb(N + 1) is disjoint and
convex. Then

GMM(F, C) = {M} = {(M1, . . . ,MN+1)}
is a singleton. Moreover, for any i = 1, . . . , N, Mi(·) agrees with the classical mean curvature flow
starting from Ci up to its extinction time.

In particular, for any i, j ∈ {1, . . . , N}, i 6= j, the function

t ∈ [0,min{t†i , t
†
j}) 7→ dist(Mi(t),Mj(t)) (6.3)

is nondecreasing, where t†h is the extinction time of Ch [25].
We postpone the proof of this theorem after several auxiliary results. The proof of the following

lemma is an adaptation of the proof of Theorem 3.6.

Lemma 6.3. Given G ∈ Pb(N + 1) let G(λ) ∈ Pb(N + 1) be a minimizer of F (·,G;λ). Fix i ∈
{1, . . . , N + 1}. If x ∈ Gi(λ)c ∩Gi and d(x, ∂Gi) ≥ ρ > 0, then

1
2n
≤ |Bρ(x) ∩Gi(λ)c|

|Bρ(x)|
. (6.4)

Proof. Since the idea of the proof is the same for any i, we suppose i = 1. As usual, write Br := Br(x)
and set

I := {j ∈ {2, . . . , N + 1} : Hn−1(Bρ ∩ ∂∗G1(λ) ∩ ∂∗Gj(λ)) > 0}.
Clearly, if I = ∅, then by Remark 3.4 Bρ ⊆ G1(λ)c and (6.4) is satisfied, hence we can suppose I 6= ∅.
Fix any r ∈ (0, ρ) such that

N+1∑
j=1

Hn−1(∂Br ∩ ∂∗Gj(λ)) = 0. (6.5)

For each j ∈ I define the competitor B ∈ Pb(N + 1) as

B := (G1(λ) ∪ (Gj(λ) ∩Br), G2(λ) . . . , Gj−1(λ), Gj(λ) \Br, Gj+1(λ), . . . , GN+1(λ)). (6.6)

Fix s ∈ (r, ρ). Recall that arguing as in the proofs of (3.21) and (3.10),

P (G1(λ) ∪ (Gj(λ) ∩Br), Bs) =P (G1(λ), Bs) +Hn−1(Gj(λ) ∩ ∂Br) + P (Gj(λ), Br)

− 2Hn−1(Br ∩ ∂∗G1(λ) ∩ ∂∗Gj(λ)),

P (Gj(λ) \Br, Bs) =P (Gj(λ), Bs \Br) +Hn−1(Gj(λ) ∩ ∂Br).
Therefore from (6.5)

lim
s→r+

(
P (G1(λ) ∪ (Gj(λ) ∩Br), Bs)+P (Gj(λ) \Br, Bs)− P (G1(λ), Bs)− P (Gj(λ), Bs)

)
=2Hn−1(Gj(λ) ∩ ∂Br)− 2Hn−1(Br ∩ ∂∗G1(λ) ∩ ∂∗Gj(λ)).
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Now the minimality of G(λ) and (4.1) imply

Hn−1(Gj(λ) ∩ ∂Br)−Hn−1(Br ∩ ∂∗G1(λ) ∩ ∂∗Gj(λ))

≥λ
2

∫
Gj(λ)∩Br

(
d̃(y, ∂Gj)− d̃(y, ∂G1)

)
dy.

(6.7)

Since Bρ ⊆ G1 (and hence Bρ ∩Gj = ∅ ) we have

d̃(y, ∂Gj)− d̃(y, ∂G1) = d(y, ∂Gj) + d(y, ∂G1) ≥ 0 ∀y ∈ Gj(λ) ∩Br, (6.8)

and therefore
Hn−1(Br ∩ ∂∗G1(λ) ∩ ∂∗Gj(λ)) ≤ Hn−1(Gj(λ) ∩ ∂Br). (6.9)

Then summation of (6.9) over j ∈ I and use of Remark 3.4 yield

P (G1(λ)c, Br) ≤
∑
j∈I
Hn−1(Gj(λ) ∩ ∂Br) ≤

N+1∑
j=2

Hn−1(Gj(λ) ∩ ∂Br) = Hn−1(G1(λ)c ∩ ∂Br).

Now adding Hn−1(G1(λ)c ∩ ∂Br) to both sides we get

P (G1(λ)c ∩Br) ≤ 2Hn−1(G1(λ)c ∩ ∂Br).

From the isoperimetric inequality, for a.e. r ∈ (0, ρ) we obtain

nω1/n
n |G1(λ)c ∩Br|

n−1
n ≤ 2Hn−1(G1(λ)c ∩ ∂Br). (6.10)

Since x ∈ G1(λ)c, one has |G1(λ)c ∩ Br| > 0 for any r > 0, therefore integrating (6.10) in (0, ρ),
we get (6.4). �

Lemma 6.4. Given G ∈ Pb(N + 1) let G(λ) ∈ Pb(N + 1) be a minimizer of F (·,G;λ). Then for any
i ∈ {1, . . . , N + 1},

sup
x∈Gi(λ)c∩Gi

d(x, ∂Gi) ≤
√

2n+2n√
λ

.

Proof. Without loss of generality we suppose i = 1. By contradiction, let x ∈ G1(λ)c ∩ G1 be such
that d(x, ∂G1) ≥ ρ :=

√
2n+2n+ε√

λ
for some ε > 0. Possibly decreasing ε we may suppose that

x ∈ ∂G1(λ), and ρ satisfies (6.5) with r = ρ, so that the set

J := {j ∈ {2, . . . , N + 1} : |Bρ/2 ∩Gj(λ)| > 0}

is nonempty, Bρ/2 := Bρ/2(x). Moreover for every y ∈ Bρ/2, the ball centered at y of radius ρ/2 is
contained in G1 and hence

d(y, ∂Gj) ≥ d(y, ∂G1) ≥ ρ/2 ∀j ∈ J.

Therefore, for each j ∈ J defining the competitor as in (6.6) with r = ρ/2, from the minimality of
G(λ), (4.1) and (6.7) we get

Hn−1(Gj(λ) ∩ ∂Bρ/2)−Hn−1(Bρ/2 ∩ ∂∗G1(λ) ∩ ∂∗Gj(λ))

≥ λ

2

∫
Gj(λ)∩Bρ/2

(
d̃(y, ∂Gj)− d̃(y, ∂G1)

)
dy ≥ λρ

2
|Gj(λ) ∩Bρ/2|,

since d̃(y, ∂Gj) = d(y, ∂Gj) and d̃(y, ∂G1) = −d(y, ∂G1) for any y ∈ Bρ/2. Summing these

inequalities over j ∈ J and using
N+1⋃
j=1

(Gj(λ) ∩Bρ/2) =
⋃
j∈J

(Gj(λ) ∩Bρ/2) = G1(λ)c ∩Bρ/2 (up to

a negligible set), we get

Hn−1(G1(λ)c ∩ ∂Bρ/2) ≥
∑
j∈J
Hn−1(Bρ/2 ∩ ∂∗G1(λ) ∩ ∂∗Gj(λ)) +

λρ

2
|G1(λ)c ∩Bρ/2|.
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Now Lemma 6.3 yields(1
2

)n+1
λρωn

(ρ
2

)n
≤ Hn−1(G1(λ)c ∩ ∂Bρ/2) ≤ nωn

(ρ
2

)n−1
.

But this implies ρ =
√

2n+2n+ε√
λ

≤
√

2n+2n√
λ

, a contradiction, since ε > 0. �

Given A ⊆ Rn and δ > 0 set

A+
δ := {x ∈ Rn : dist(x,A) ≤ δ}.

The following theorem, valid without any convexity assumption on the components, shows that if
the entries of the initial partition G are far from each other, then so are the entries of minimizers of
F (·,G;λ) provided λ is large.

Theorem 6.5 (Minimizers of F for a disjoint initial partition). Suppose that G ∈ Pb(N + 1) is
disjoint and set

min
1≤i<j≤N

dist(Gi, Gj) =: ε0 > 0. (6.11)

Then for λ ≥ 2n+6nε−2
0 any minimizer G(λ) of F (·,G;λ) satisfies

Gj(λ) ⊆ (Gj)+
ε0/4

, j = 1, . . . , N. (6.12)

Proof. We claim that the choice of λ implies

GN+1(λ)c ⊆ (GcN+1)+
ε0/4

. (6.13)

Indeed, obviously GN+1(λ)c∩GcN+1 ⊆ (GcN+1)+
ε0/4

. Now if x ∈ GN+1(λ)c∩GN+1, then d(x,GcN+1) =
d(x, ∂GN+1) and therefore by Lemma 6.4

d(x,GcN+1) ≤ sup
y∈GN+1(λ)c∩GN+1

d(y, ∂GN+1) ≤
√

2n+2n√
λ
≤ ε0

4
.

Hence x ∈ (GcN+1)+
ε0/4

.

We prove the assertion of the theorem arguing by contradiction. Suppose for example j = 1 and
G1(λ) is not contained in (G1)+

ε0/4
. In view of (6.13) and (6.11)

G1(λ) ⊆
N⋃
j=1

Gj(λ) ⊆
( N⋃
j=1

Gj

)+

ε0/4
=

N⋃
j=1

(Gj)+
ε0/4

.

Since our assumption implies G1(λ)∩(Gj)+
ε0/4
6= ∅ for some j ∈ {2, . . . , N}, and by virtue of Remark

4.7 the set G1(λ) can be supposed to be open, there exists a ball Br of radius r > 0 whose closure
is contained in G1(λ) ∩ (Gj)+

ε0/4
. For shortness, let j = 2. Thus setting B := (G1(λ) \ Br, G2(λ) ∪

Br, G3(λ), . . . , GN+1(λ)), and using P (G1(λ))− P (G1(λ) \Br) = P (Br), we obtain

2F (G(λ),G;λ)− 2F (B,G;λ) =P (Br) + P (G2(λ))− P (G2(λ) ∪Br)

+ λ

∫
Br

(
d̃(x, ∂G1)− d̃(x, ∂G2)

)
dx.

Since Br ∩G2(λ) = ∅, from (2.7) we get

P (Br) + P (G2(λ))− P (Br ∪G2(λ)) ≥ 0.

In addition, by the definition of ε0, d(Br, G1) ≥ 3ε0
4 , (thus d̃(·, ∂G1) = d(·, ∂G1) in Br ); moreover,

since Br ⊆ (G2)+
ε0/4

, one has

d̃(x, ∂G1)− d̃(x, ∂G2) ≥ ε0

4
∀x ∈ Br

and therefore

F (G(λ),G;λ)− F (B,G;λ) ≥λε0

8
|Br| > 0.

This implies that G(λ) is not a minimizer of F (·,G;λ). �
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Corollary 6.6. Suppose that G ∈ Pb(N + 1) is disjoint. Then for sufficiently large λ, G(λ) is a
minimizer of F (·,G;λ) if and only if each bounded component Gj(λ), j = 1, . . . , N, of G(λ) is a
minimizer of the Almgren-Taylor-Wang functional (4.5) with G replaced by Gj .

Proof. Let
min

1≤i<j≤N
dist(Gi, Gj) =: ε0 > 0. (6.14)

Suppose that Aj , j = 1, . . . , N, minimizes (4.5) with G replaced by Gj . By [31, Lemma 2.1] (see
also [8, Proposition 5.5]) there exists c(n) > 0 such that

sup
x∈Aj∆Gj

d(x, ∂Gj) ≤
√
c(n)
λ

.

Therefore, taking
λ ≥ c̃(n)ε−2

0 , c̃(n) := max{2n+6n, 16c(n)}, (6.15)

we deduce Aj ⊆ (Gj)+
ε0/4

, j = 1, . . . , N. Set A = (A1, . . . , AN ,Rn \
N⋃
j=1

Aj). Let us show that for

λ as in (6.15), A minimizes F (·,G;λ). Indeed, take any minimizer G(λ) of F (·,G;λ). By Theorem
6.5 we have Gj(λ) ⊆ (Gj)+

ε0/4
, therefore both (A,G) and (G(λ),G) satisfy (6.1). Hence, (6.2) and

the minimality of Aj yield

F (G(λ),G;λ) =
N∑
j=1

(
P (Gj(λ)) + λ

∫
Gj(λ)∆Gj

d(x, ∂Gj)dx
)

≥
N∑
j=1

(
P (Aj) + λ

∫
Aj∆Gj

d(x, ∂Gj)dx
)

= F (A,G;λ).

This implies that A is also a minimizer F (·,G;λ).
Conversely, suppose that λ satisfies (6.15) and G(λ) minimizes F (·,G;λ) and let Aj , j = 1, . . . , N,

be a minimizer (4.5) with G replaced by Gj . Recall that Aj ⊆ (Gj)+
ε0/4

, j = 1, . . . , n. Set A =

(A1, . . . , AN ,Rn \
N⋃
j=1

Aj). Then from the minimality of Aj and G(λ), as well as (6.2), we deduce

F (G(λ),G;λ) ≤F (A,G;λ) =
N∑
j=1

(
P (Aj) + λ

∫
Aj∆Gj

d(x, ∂Gj)dx
)

≤
N∑
j=1

(
P (Gj(λ)) + λ

∫
Gj(λ)∆Gj

d(x, ∂Gj)dx
)

= F (G(λ),G;λ).

Thus all inequalities are in fact equalities, which is possible if and only if

P (Gj(λ)) + λ

∫
Gj(λ)∆Gj

d(x, ∂Gj) = P (Aj) + λ

∫
Aj∆Gj

d(x, ∂Gj)dx, j = 1, . . . , N.

Hence, Gj(λ) is a minimizer of (4.5) with G = Gj . �

Proof of Theorem 6.2. Suppose that

min
1≤i<j≤N

dist(Ci, Cj) ≥ ε0 > 0. (6.16)

By [7, Corollary 5] the Amgren-Taylor-Wang solution Mi(·) starting from Ci (i.e. GMM starting
from Ci and associated with (4.5)), i = 1, . . . , N, is unique and agrees with the classical mean curva-
ture flow starting from Ci up to its extinction time. Moreover, since Mi(·) ⊆ Ci, for any t ≥ 0 we

have M(t) := (M1(t), . . . ,MN (t),Rn \
N⋃
i=1

Mi(t)) ∈ Pb(N + 1).

We claim that GMM(F, C) = {M}.
23



Indeed, let C(λ) ∈ Pb(N + 1) be a minimizer of F (·, C;λ). By Corollary 6.6 if λ satisfies (6.15),
then Ci(λ) minimizes the Almgren-Taylor-Wang functional (4.5) with G = Ci. By [7, Remark 8],
Ci(λ) ⊆ Ci, Ci(λ) is convex. Hence, C(λ) also satisfies (6.16).

Define C(λ, k) as C(λ, 0) = C and

F (C(λ, k), C(λ, k − 1);λ) = min
A∈Pb(N+1)

F (A, C(λ, k − 1);λ).

From the previous observation, for λ satisfies (6.15) and k ≥ 1 each Ci(λ, k), i = 1, . . . , N, is a
minimizer of (4.5) with G = Ci(λ, k − 1). Therefore, by [7, Corollary 5]

lim
λ→+∞

|Ci(λ, [λt])∆Mi(t)| = 0, ∀t ≥ 0, i = 1, . . . , N. (6.17)

Since Ci(λ, [λt]),Mi(t) ⊆ Ci, i = 1, . . . , N, from (6.17) we deduce

lim
λ→+∞

|C(λ, [λt])∆M(t)| = lim
λ→+∞

2
N∑
i=1

|Ci(λ, [λt])∆Mi(t)| = 0

for any t ≥ 0. Thus, GMM(F, C) = {M}.
�

Theorem 6.7 (Stability of convex disjoint partitions). Under the hypotheses of Theorem 6.2, if the
sequence {G(h)} ⊂ Pb(N + 1) converges to C in the Hausdorff distance HD as h → +∞, then for
any M(h) ∈ GMM(F,G(h)),

lim
h→+∞

HD(M(h)(t),M(t)) := lim
h→+∞

N∑
i=1

HD(M (h)
i (t),Mi(t)) = 0 ∀t ∈ [0,min

i≤N
t†i ),

where t†i is the extinction time of Ci.

Proof. Let us show first the following comparison principle:

Claim 1. If C ∈ Pb(N + 1) is convex and satisfies

min
1≤i<j≤N

dist(Ci, Cj) ≥ ε0 > 0. (6.18)

then for every G ∈ Pb(N + 1) with Gi ⊆ Ci, i = 1, . . . , N, for every minimizer G(λ) of F (·,G;λ),
the inclusion Gi(λ) ⊆ Ci holds provided λ ≥ c̃(n)ε−2

0 . In particular, G(λ) also satisfies (6.18) unless
Gi(λ) = ∅.

Indeed, let Ci(λ)∗, i = 1, . . . , N be the maximal minimizer [8, Definition 6.4] of the Almgren-Taylor-
Wang functional (4.5) with G = Ci. By [7, Remark 8] Ci(λ)∗ ⊆ Ci, and from Corollary 6.6

C(λ) =
(
C1(λ), . . . , CN (λ),Rn \

N⋃
i=1

Ci(λ)
)

is a minimizer of F (·, C;λ). Since G also satisfies (6.18), by Corollary 6.6 each Gi(λ), i = 1, . . . , N
is a minimizer of (4.5). Then by [8, Theorem 6.1] one has Gi(λ) ⊆ Ci(λ)∗ ⊆ Ci for any i ≤ N.

Now we show the following stability property of convex sets.

Claim 2. Let C ⊂ Rn be a nonempty bounded convex set and a sequence of sets of finite perimeter
G(h) converge to C in Hausdorff distance as h→ +∞. Then

G(h)(t) HD→ C(t), t ∈ [0, t†C), (6.19)

where G(h)(t) and C(t) are Almgren-Taylor-Wang solutions starting from G(h) and C respectively
(recall that C(·) is unique by [7, Corollary 5]), and t†C is the extinction time of C.

Indeed, consider arbitrary sequences {A(l)}, {B(l)} of convex sets such that A(l) ⊂⊂ C ⊂⊂ B(l),

l ≥ 1, and A(l), B(l) HD→ C as l → +∞. Then for any l ≥ 1, there exists hl > 0 such that
A(l) ⊆ C(h) ⊆ B(l) for any h > hl. Let A(l)(t) (resp. B(l)(t) ) be the minimizing movements starting
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from A(l) (resp. B(l) ) for the Almgren-Taylor-Wang functional (4.5) and G(h)(t)∗ and G(h)(t)∗ be the
maximal and minimal GMM s [8, Definition 7.2] for (4.5) starting from G(h) and so that G(h)

∗(t) ⊆
G(h)(t) ⊆ G(h)∗(t) for all t ≥ 0. By the comparison theorem [8, Theorem 7.3], A(l)(t) ⊆ G(h)

∗(t) and

G(h)∗(t) ⊆ B(l)(t) for any t ≥ 0. Moreover, from [7, Theorem 12] we have A(l)(t), B(l)(t) HD→ C(t)
as l→ +∞ for any t ∈ [0, tC), and since hl → +∞, (6.19) follows.

Now we prove the assertion of the theorem. Let A ∈ Pb(N + 1) be a convex disjoint partition with
Ci ⊂⊂ Ai, i = 1, . . . , N. Then for sufficiently large h, G(h)

i ⊂ Ai. Let G(h)(λh,k, [λh,kt]) be the se-
quence chosen in the definition of M(h)(t), i.e. G(h)(λh,k, [λh,kt]) minimizes F (·,G(h)(λh,k, [λh,kt]−
1);λh,k) and G(h)(λh,k, [λh,kt]) →M(h)(t) in L1(Rn) as k → +∞. By Claim 1 and Corollary 6.6,
each G

(h)
i (λh,k, [λh,kt]), i = 1, . . . , N minimizes (4.5) with G = G

(h)
i (λh,k, [λh,kt] − 1), therefore,

M
(h)
i (·) is an Almgren-Taylor-Wang solution starting from G

(h)
i . Now as G(h)

i
HD→ Ci, Claim 2 implies

M
(h)
i (t) HD→ Mi(t), i = 1, . . . , N as h→ +∞ for any t ∈ [0, t†i ). �
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[24] E. GIUSTI: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel, 1984.
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