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Abstract. In this paper we investigate upper and lower bounds of two shape functionals

involving the maximum of the torsion function. More precisely, we consider T (Ω)/(M(Ω)|Ω|)
and M(Ω)λ1(Ω), where Ω is a bounded open set of Rd with finite Lebesgue measure |Ω|, M(Ω)

denotes the maximum of the torsion function, T (Ω) the torsion, and λ1(Ω) the first Dirichlet

eigenvalue. Particular attention is devoted to the subclass of convex sets.
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1. Introduction

The two most classical (and most studied) elliptic PDEs are probably the torsion problem, also
known as St-Venant problem, and the Dirichlet eigenvalue problem, see (1.3) and (1.4) below.
Many estimates and qualitative properties have been obtained for these classical problems, see
for example works by G. Pólya, G. Szegö, M. Schiffer, L. Payne, J. Hersch, C. Bandle and
many others. In this paper, following these former works, we are interested in finding bounds (if
possible optimal) for quantities involving the maximum of the torsion function. We have been
particularly inspired by two recent works in [4] and [6], where the ratio T (Ω)λ1(Ω)/|Ω| has been
investigated in a similar way. Here T (Ω) denotes the torsion, λ1(Ω) the first Dirichlet eigenvalue,
and |Ω| the volume of Ω, see Section 1.2 for the precise definitions.

Le M(Ω) be the maximum of the torsion function. In this paper we investigate upper and
lower bounds for the shape functionals

F (Ω) :=
T (Ω)

M(Ω)|Ω|
,

G(Ω) := M(Ω)λ1(Ω) ,

defined over the bounded open sets Ω of Rd with finite Lebesgue measure. In Section 2, we
prove that the obvious upper bound F (Ω) ≤ 1 is actually sharp. Then, we show that for convex
domains we have indeed F (Ω) ≤ 2/3 and we give more precise lower and upper bounds for
regular plane convex domains in terms of the curvature of their boundaries. In Section 3, we
consider the functional G. We prove that the easy lower bound G(Ω) ≥ 1 is actually sharp. For
convex domains, we recall the lower bound G(Ω) ≥ π2/8 obtained by L. Payne. Finding the
optimal upper bound for G seems much more difficult. Using topological derivatives, we prove
that no maximizer exists in a wide class of domains. When we restrict to the class of convex
domains, we can prove existence of an optimal domain but we cannot identify it. In the plane,
we suspect that it is the equilateral triangle (which is definitely better than the disk). At last,
we write the shape derivative of G and prove that the equilateral triangle does not cancel this
shape derivative, in other words it is not a critical point among all regular open sets.

1.1. Notations. We adopt standard notations for Lebesgue and Sobolev spaces on a bounded
open set of Rd, for example L2(Ω) and H1(Ω) (space of functions in L2 whose derivative, in the
sense of distributions, are still in L2). The boundary values of a Sobolev function are always
intended in the sense of traces. The (d− 1)-dimensional Hausdorff measure is denoted by Hd−1.

Given a bounded open set Ω ⊂ Rd, we denote by |Ω| its Lebesgue measure, by −
∫

Ω
the average

integral over it, and by D(Ω) the space of C∞ functions having compact support contained into
Ω. The closure of D(Ω) in H1(Ω) is denoted by H1

0 (Ω). If the open set Ω has Lipschitz boundary,
we denote by n the outer unit normal vector to ∂Ω, defined a.e. on the boundary.

Given a point x ∈ Rd and a positive parameter r > 0, we denote by Br(x) the ball of radius
r centered in x, and with Br(x) its closure.

1
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We define the minimal width of a set as the minimal distance between two parallel supporting
hyperplanes.

We denote by f+ the positive part of a scalar function f , namely f+(x) := max{f(x), 0}.
The partial derivative of a scalar function f defined in Rd with respect to the i-th variable is

denoted either by ∂f/∂xi or by f,i; the same notation is used for higher order partial derivatives.
We adopt the convention of summation over repeated indices.

1.2. First properties. Given a bounded open set Ω of Rd with finite Lebesgue measure, we
denote by uΩ the torsion function of Ω, that is, the solution of{

−∆u = 1 in Ω
u ∈ H1

0 (Ω) ,
(1.3)

and we set

T (Ω) := ‖uΩ‖L1(Ω) , M(Ω) := ‖uΩ‖L∞(Ω) .

It is easy to check that uΩ is C∞ inside Ω and non negative in Ω, thus

T (Ω) =

∫
Ω

uΩ dx , M(Ω) = max
Ω

uΩ .

We denote by λ1(Ω) the first eigenvalue of the Dirichlet Laplacian and by ϕΩ the corresponding
(normalized) eigenfunction, that is, the solution of{

−∆ϕ = λ1(Ω)ϕ in Ω
ϕ ∈ H1

0 (Ω) ,
(1.4)

with ‖ϕΩ‖L2(Ω) = 1.
We recall that the functionals T and λ1 admit the following variational formulations:

T (Ω) = sup
v∈H1

0 (Ω)\{0}

( ∫
Ω
v dx

)2∫
Ω
|∇v|2 dx

, λ1(Ω) = inf
v∈H1

0 (Ω)\{0}

∫
Ω
|∇v|2 dx∫
Ω
v2 dx

. (1.5)

It follows from the homogeneity relations

T (tΩ) = td+2T (Ω) , M(tΩ) = t2M(Ω) , λ1(tΩ) = t−2λ1(Ω) , t > 0 ,

that both F and G are scale invariant.
In the sequel, when no ambiguity may arise, we will denote the torsion function and the first

eigenfunction of the Dirichlet Laplacian of a given set Ω simply by u and ϕ, respectively.

Remark 1.1. Note that the functional G can be studied on a larger class of sets, satisfying
λ1(Ω) > 0 and ‖uΩ‖∞ < +∞. In particular, since these two conditions are equivalent (see, e.g.,
[5]), G is naturally defined on sets on which a Poincaré inequality holds (e.g., sets bounded in
one direction).

2. Bounds for the functional F

2.1. The upper bound. The upper bound F (Ω) ≤ 1 is obvious. Actually, we are going to
prove that this bound is sharp. This is not so intuitive since the equality F (Ω) = 1 is only
true for constant functions and clearly a torsion function of any domain Ω is a priori far to
be constant. The idea is to use the theory of homogenization. Indeed, by performing suitable
spherical holes (with the appropriate radius) in a domain Ω, we are able to get a sequence of
torsion functions which γ-converges to something which is no longer a torsion function : the
“strange term coming from nowhere” in the celebrated paper by D. Cioranescu and F. Murat,
[9]. Our theorem is the following.

Theorem 2.1. In any dimension, we can find a sequence of domains Ωε such that F (Ωε)→ 1.

Here we recall the construction of a sequence of perforated domains introduced by Cioranescu-
Murat in [9], see also [15] for a more precise estimate and convergence result.

Let Ω ⊂ Rd, d ≥ 2 a regular (or a convex) domain, and C0 > 0 be fixed. For every ε > 0,
consider the ball Tε := Brε(0) with a radius rε which satisfies

rε =

{
C0ε

d/(d−2) if d ≥ 3
exp(−C0/ε

2) if d = 2
(2.1)
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and the perforated domain

Ωε := Ω \ ∪z∈Zd(2εz + T ε) . (2.2)

Note that the removed holes form a periodic set in the plane, with period 2ε. Now let uε denote
the torsion function of the perforated domain Ωε, extended to zero in the holes. It is proved in
[9] that the sequence uε converges weakly in H1

0 (Ω) (and strongly in L2(Ω)) to the solution u∗

of {
−∆u∗ + au∗ = 1 in Ω
u∗ ∈ H1

0 (Ω) ,

where the constant a satisfies

a =

{
Cd−2

0

2d
d(d− 2)ωd if d ≥ 3
π

2C0
if d = 2 ,

(2.3)

and ωd is the volume of the unit ball in Rd. As a consequence we have∫
Ωε

uε dx→
∫

Ω

u∗ dx , |Ωε| → |Ω| , as ε→ 0 . (2.4)

Now we want to analyze the asymptotic behavior of the L∞ norm of the functions uε. We
cannot hope for uniform convergence of uε to u∗, nevertheless we can prove the convergence of
the L∞ norms:

Theorem 2.2. Let uε be the torsion functions of the perforated domains Ωε extended to zero in
the holes and let u∗ be their weak limit in H1

0 (Ω).
Then, up to a subsequence, M(Ωε) = ‖uε‖L∞(Ω) → ‖u∗‖L∞(Ω) as ε→ 0.

Proof. We are indebted to G. Buttazzo and B. Velichkov of this proof (see the final comment at
the end of the paper).

First of all, up to a subsequence, we can assume that uε converges pointwise almost everywhere
to u∗:

for a.e. x ∈ Ω , uε(x)→ u∗(x) .

Applying this to a ball centered at a point where u∗ is maximum, we infer that

‖u∗‖L∞(Ω) ≤ lim inf
ε
‖uε‖L∞(Ω) . (2.5)

Now let us assume that the inequality in (2.5) is strict. Then we could find two positive numbers
b1 < b2 such that

‖u∗‖L∞(Ω) ≤ b1 < b2 ≤ lim inf
ε
‖uε‖L∞(Ω) .

It is proved in [28, Proposition 3.2.34] that for any non negative function v satisfying ∆v+1 ≥ 0
in Ω, the following inequality holds:

‖v‖L∞(Ω) ≤ C
(∫

Ω

v(x) dx

)d/(d+2)

, (2.6)

where C is a positive constant which only depends on Ω. By taking in (2.6) the subsolution
v := (uε − b)+ to the torsion equation in Ω, with b := (b1 + b2)/2, we obtain

‖(uε − b)+‖L∞(Ω) ≤ C
(∫

Ω

(uε − b)+ dx

)d/(d+2)

. (2.7)

It comes on the one hand

lim inf
ε
‖(uε − b)+‖L∞(Ω) ≥ b2 − b = (b2 − b1)/2 > 0 ,

while on the other hand, by L2 convergence,∫
Ω

(uε − b)+ dx→
∫

Ω

(u∗ − b)+ dx = 0 ,

contradicting inequality (2.7). �

Now we are in position to prove Theorem 2.1. Let us introduce v∗ := au∗. In the following
Lemma, we list some properties of this function.
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Lemma 2.3. Let a ∈ R+ and v∗ be the solution of

−a−1∆v∗ + v∗ = 1 (2.8)

in H1
0 (Ω). Then 0 < v∗ ≤ 1 in Ω and, in the limit as a→ +∞, v∗ ⇀ 1 weakly in L2(Ω).

Proof. The positivity of v∗ in Ω is a simple consequence of the maximum principle. For x0 ∈ Ω
maximum point for v∗ it holds ∆v∗(x0) ≤ 0. In particular, for every x ∈ Ω we have

v∗(x) ≤ v∗(x0) ≤ −∆v∗(x0) + v∗(x0) = 1 ,

which proves the upper bound. Exploiting the optimality of v∗ for the functional

H1
0 (Ω) 3 v 7→ 1

2

∫
Ω

a−1|∇v|2 dx+

∫
Ω

(v2 − v) dx ,

it is easy to see that v∗ and a−1/2∇v∗ are uniformly (with respect to a) bounded in L2(Ω)
and L2(Ω;R2), respectively. The former bound implies that, in the limit as a → +∞, up to
subsequences, v∗ weakly converges in L2(Ω) to some v∗. The latter bound, combined with (2.8),
implies that the weak limit v∗ is 1. �

An immediate consequence of the previous Lemma is

lim inf
ε
‖uε‖L∞(Ω) = ‖u∗‖L∞(Ω) ≤

1

a
. (2.9)

Therefore, using (2.4) and (2.9), we get, for a subsequence:

lim sup
ε

F (Ωε) ≥
∫

Ω
u∗ dx

(maxu∗)|Ω|
=

∫
Ω
v∗ dx

(max v∗)|Ω|
≥
∫

Ω
v∗ dx

|Ω|
→ 1 ,

as a→ +∞. This finishes the proof of Theorem 2.1.

2.2. The upper bound for convex sets. The maximizing sequence used in the previous
section is very specific, thus we can expect that in the convex case we can significantly improve
the upper bound. Indeed, let us prove the following

Theorem 2.4. Let Ω be any bounded convex domain in Rd, then

F (Ω) ≤ 2

3
. (2.10)

Moreover, inequality (2.10) is sharp.

Proof. We use the maximum principle for P -functions. Following [21] (for regular convex do-
mains) or [27] (for general convex domains), it is known that the function ψ := |∇u|2 + 2u takes
its maximum at a critical point of u, namely at the point where u is maximum. Note that

√
u

has only one critical point since it is strictly concave (see, e.g., [16] for the concavity property
and [17, Introduction] for the strict one). Therefore, for every x ∈ Ω, we have

|∇u(x)|2 + 2u(x) ≤ 2M(Ω) ; (2.11)

in particular, integrating (2.11) over Ω yields 3T (Ω) ≤ 2M(Ω)|Ω|.

In order to prove the sharpness of the inequality, let us consider the sequence of rectangles
in the plane Ωn := (−n, n)× (0, 1). The same construction holds in any dimension d, using the
sequence of parallelepipeds Ωn := (−n, n)d−1 × (0, 1). Let us denote by un the torsion function
of Ωn. By the maximum principle, we have

un(x, y) ≤ 1

2
y(1− y) . (2.12)

The function 1
2 y(1− y) can be seen as the torsion function of the unbounded strip {0 < y < 1}.

Therefore (2.12) implies that M(Ωn) ≤ 1
8 .

Now, in view of (1.3), it is easy to check that the torsion admits the variational formulation

−1

2
T (Ωn) = min

v∈H1
0 (Ωn)

{
1

2

∫
Ωn

|∇v|2 dx−
∫

Ωn

v dx

}
. (2.13)
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Let us introduce the function ψn(x) defined as

ψn(x) :=


1 if x ∈ [−n+ 1, n− 1]

n− x if x ∈ [n− 1, n]
x− n if x ∈ [−n,−n+ 1]

0 if |x| > n

(2.14)

and let us choose as a test function in (2.13) the function v(x, y) := ψn(x) 1
2 y(1 − y), which is

an element of H1
0 (Ωn). We immediately get∫

Ωn

v dx =

∫ n

−n
ψn(x) dx

∫ 1

0

1

2
y(1− y) dy =

n

6
− 1

12
≥ n

6
− 1 .

Since |ψ′n(x)| = 1 if x ∈ (−n,−n + 1) ∪ (n− 1, n) and it is 0 otherwise, and y(1− y)/2 < 1 for
every y ∈ (0, 1), we have∫

Ωn

|∇v|2 dx ≤ 2 +

∫ n

−n
ψ2
n(x) dx

∫ 1

0

(
1

2
− y)2 dy = 2 +

n

6
− 1

9
≤ n

6
+ 2 .

Thus

−1

2
T (Ωn) ≤ − n

12
+ 2 ,

which implies that

F (Ωn) ≥ 2

3
− 16

n
→ 2/3 when n→ +∞ .

�

For strictly convex and regular domains in the plane, one can improve this upper bound by
the following:

Theorem 2.5. Let Ω be a strictly convex bounded domain of class C2 in R2. Let us introduce
the quantity β which depends only on the geometry of Ω (actually its curvature k):

β = 2− 1

4

(min∂Ω k

max∂Ω k

)3

≤ 2 .

Then we have

F (Ω) ≤ β

β + 1
≤ 2

3
.

We postpone the proof of this Theorem to Section 2.4, where the proof for a similar lower
bound will also be given at the same time.

2.3. The lower bound. Clearly, by the positivity of T , M , and Lebesgue measure, the infimum
of F is greater than or equal to zero. It is easy to show that the lower bound 0 is optimal: consider
the sequence of sets

Ωn := B1(0)

n⋃
i=1

Brn(xi) , n ∈ N ,

with x1, . . . , xn 6= 0 distinct points in a compact set and rn > 0 a small parameter (whose
precise value will be chosen later). In this case, un := uΩn is the sum of the torsion functions
associated to every single connected component of Ωn, namely un =

∑n
i=0 ui with u0 := uB1(0)

and ui := uB
n−1/4 (xi), i = 1 . . . , n. Since

u0(x) =
1− |x|2

2d
and ui =

r2
n − |x− xi|2

2d
,

it is easy to see that

T (Ωn) =
ωd

d2(d+ 2)
(1 + nrd+2

n ) , M(Ωn) =
1

2d
, |Ωn| =

ωd
d

(1 + nrdn) ,

where ωd is the volume of the unit ball in Rd. By taking rn = n−1/(2d), we infer that

F (Ωn) =
2

d+ 2

n
1
2−

1
d + 1

n
1
2 + 1

∼ n−
1
d → 0 ,

implying that inf F = 0.
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2.4. The lower bound for convex sets. By strict concavity of
√
u when Ω is convex, see e.g.

[17], it is easy to get a lower bound for convex sets:

Theorem 2.6. Let Ω be any bounded convex set in Rd, then

F (Ω) ≥ 1

(d+ 1)2
. (2.15)

Proof. Since
√
u is concave, its graph is above the cone of basis Ω and vertex M0 the maximum

point of
√
u. Therefore, by comparison of the volumes:∫

Ω

√
u(x) dx ≥

√
M(Ω)|Ω|
d+ 1

.

By taking the square of the previous inequality and using Cauchy-Schwarz inequality for the
left-hand side (∫

Ω

√
u(x) dx

)2

≤ |Ω|
∫

Ω

u(x) dx ,

we get the desired inequality. �

We believe that inequality (2.15) is not optimal. For example, in the plane, we conjecture:
Conjecture: For any plane convex domain, the following lower bound holds:

F (Ω) ≥ 1

3
.

Moreover, this inequality should be optimal, and a minimizing sequence could be a sequence of
isosceles triangles degenerating to a segment. Let us remark that when u is concave, for instance
when Ω is an ellipse, we obtain exactly in the same way

T (Ω)

|Ω|M(Ω)
≥ 1

3
.

Sufficient conditions on the geometry of Ω to insure the concavity of u have been established by
Kosmodem’yanskii in [18].

Let us conclude this section with a theorem in the spirit of Theorem 2.5.

Theorem 2.7. Let Ω be a strictly convex bounded domain of class C2 in R2. Then we have

F (Ω) ≥ 1

4

(
min∂Ω k

max∂Ω k

)3

, (2.16)

where k is the curvature of Ω.

Set for brevity α :=
(

min∂Ω k/max∂Ω k
)3
/4. Note that inequality (2.16) is better than the

general inequality (2.15) when α > 1/8, which occurs when min∂Ω k > max∂Ω k/
3
√

2. In [25],
Payne and Philippin have derived sharp upper bounds for |∇u|. The goal of this section is to
derive new lower bounds for these quantities by using the same approach as in [25] . For the
torsion problem one can associate an auxiliary function involving the curvature k of the level
lines {u = const.}. Properly chosen, the auxiliary function turns out to satisfy some minimum
principles, implying the convexity of the level sets of u, under suitable convexity assumptions on
Ω. These results have been derived by Makar-Limanov in [19] for the torsion problem with the
associate function

P (x) := k|∆u|3 + u[(∆u)2 − u,iju,ij ] . (2.17)

Proof of Theorems 2.5 and 2.7. Making use of normal coordinates with respect to the level lines
{u = const.} we have

|∇u|2 = u,iu,i = u2
n ,

∆u = unn + kun ,

u,iju,ij = u2
nn + k2u2

n + 2u2
ns ,

where an index n stands for the outward normal derivative and an index s stands for the
derivative along the level lines {u = const.}, and k is the curvature of the level lines defined as

k := −
(
u,i
|∇u|

)
,i

=
u,iju,iu,j − |∇u|2∆u

|∇u|3
.
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The Makar-Limanov function P introduced in (2.17) may be rewritten in terms of normal coor-
dinates as

P = |∇u|3k − 2[kun + k2u2
n + u2

ns] .

Makar-Limanov’s result is based on the fact that P is super-harmonic. It then follows that P
takes its minimum value Pmin on ∂Ω, so that the following quadratic inequality for k holds:

|∇u|3k − 2u[kun + k2u2
n + u2

ns] ≥ Pmin , x ∈ Ω . (2.18)

Omitting the term containing u2
ns and solving (2.18) for k, we obtain

Φ

4u
{1−

√
1− z} ≤ k|∇u| ≤ Φ

4u
{1 +

√
1− z} , (2.19)

with

Φ := |∇u|2 + 2u , (2.20)

z :=
8Pminu

Φ2
.

We note that z ≤ 1 in view of the inequality

P ≤ 1

8u
Φ2 in Ω ,

derived in [26]. Multiplying (2.19) by −2|∇u|
√
u, we obtain

−Φ|∇u|
2
√
u
{1 +

√
1− z} ≤

√
u
∂Φ

∂n
≤ −Φ|∇u|

2
√
u
{1−

√
1− z} , (2.21)

in view of
∂Φ

∂n
= −2k|∇u|2 .

For convenience we set

θ :=
Φ√
u

=
|∇u|2√

u
+ 2
√
u . (2.22)

Replacing (2.22) in (2.21), these inequalities reduce to

∂u

∂n

√(θ
2

)2

− 2Pmin ≤ u
∂θ

∂n
≤ −∂u

∂n

√(θ
2

)2

− 2Pmin ,

which are equivalent to

−1

2

du

u
≤ − dθ√

θ2 − 8Pmin

≤ 1

2

du

u
. (2.23)

These inequalities link the functions u and θ to their differentials along the orthogonal trajectories
of the level lines (also called fall lines of u). Rewriting (2.23) in the form

−1

2
d(log u) ≤ −d(log[θ +

√
θ2 − 8Pmin]) ≤ 1

2
d(log u)

and integrating from a point x ∈ Ω to the maximum point x0 of u along the fall line joining
these points, we obtain √

u(x)

u(x0)
≤
θ(x) +

√
θ2(x)− 8Pmin

θ0 +
√
θ2

0 − 8Pmin

≤

√
u(x0)

u(x)
, (2.24)

with

θ0 := θ(x0) = 2
√
u(x0) .

Multiplying (2.24) by (θ0 +
√
θ2

0 − 8Pmin)
√
u, replacing back θ by Φ, and recalling that u(x0) =

M(Ω), we obtain

2u
(

1 +
√

1− 2Pmin

M(Ω)

)
− Φ ≤

√
Φ2 − 8Pminu

≤ 2M(Ω)
(

1 +
√

1− 2Pmin

M(Ω)

)
− Φ .

(2.25)
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Squaring (2.25) and solving for Φ, we obtain

2Pmin

1 +
√

1− 2Pmin

M(Ω)

+ u
(

1 +

√
1− 2Pmin

M(Ω)

)
≤ Φ

≤ 2Pminu

M(Ω)
(

1 +
√

1− 2Pmin

M(Ω)

) +M(Ω)
(

1 +

√
1− 2Pmin

M(Ω)

)
.

(2.26)

Replacing (2.20) in (2.26), after some reduction we obtain the basic inequalities

α̃(M(Ω)− u) ≤ |∇u|2 ≤ β̃(M(Ω)− u) in Ω , (2.27)

with

α̃ := 1−

√
1− 2Pmin

M(Ω)
, (2.28)

β̃ := 1 +

√
1− 2Pmin

M(Ω)
. (2.29)

The upper bound for |∇u|2 in (2.27) was already derived in [25]. The lower bound is nontrivial
only for strictly convex Ω, whereas the upper bound makes sense even for nonconvex Ω. However
in this case Pmin is negative, and β̃ is greater than two. We note that inequalities (2.27) are

exact when α̃ = β̃, i.e. when 2Pmin(M(Ω))−1 = 1. This is the case if and only if Ω is a disk.
For practical use of (2.27) a computable positive lower bound for the quantity 2Pmin(M(Ω))−1

is needed. To this end, we write

Pmin = min
∂Ω

(|∇u|3k) ≥
(

min
∂Ω
|∇u|

)3(
min
∂Ω

k
)

(2.30)

and make use of the inequalities

min
∂Ω
|∇u| ≥ 1

2 max∂Ω k
, (2.31)

M(Ω) = max
Ω

u ≤ 1

2
ρ2 ≤ 1

2

(
min
∂Ω

k
)−2

, (2.32)

derived in [23], [24], where ρ is the inradius of Ω. Using (2.30), (2.31), and (2.32), for strictly
convex Ω we have

2Pmin

M(Ω)
≥

2
(

min∂Ω |∇u|
)3(

min∂Ω k
)

M(Ω)
≥ 1

2

(
min∂Ω k

max∂Ω k

)3

= 2α . (2.33)

Replacing (2.33) in (2.28) and in (2.29), we obtain the bounds

α̃ ≥ α , β̃ ≤ β := 2− α , (2.34)

in particular, the quantities α and β may be used in (2.27) instead of α̃ and β̃, respectively.
Integrating (2.27) over Ω and exploiting the estimates (2.34), we obtain the following bounds

for T (Ω)
|Ω|M(Ω) :

α

α+ 1
≤ T (Ω)

|Ω|M(Ω)
≤ β

β + 1
≤ 2

3
.

The upper bound proves Theorem 2.5.

A better lower bound for T (Ω)
|Ω|M(Ω) may be derived by integrating the inequality

P (x) = u,iju.iu.j − |∇u|2∆u+ u[(∆u)2 − u.iju,ij ] ≥ Pmin

over Ω. Making use of ∫
Ω

u,iju,iu,j dx = −
∫

Ω

uu,iju,ij dx ,

we obtain ∫
Ω

P (x) dx =

∫
Ω

u[(∆u)2 − 2u,iju,ij ] dx+ T (Ω) ≥ Pmin|Ω| .

Since (∆u)2 − 2u,iju,ij ≤ 0, it follows that

T (Ω) ≥ Pmin|Ω| .
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This inequality, together with (2.33), gives the lower bound F (Ω) ≥ α, concluding the proof of
Theorem 2.7. �

3. Bounds for the functional G

3.1. The upper bound. The best available upper bound for G, still not optimal, is very recent
and is due to Vogt: in [29, Theorem 1.5], exploiting semigroups techniques, the author proved
that

G(Ω) ≤ d

8
+

1

4

√
5(1 + ln 2/4)

√
d+ 1 .

Among the upper bounds obtained before Vogt, let us mention the one obtained in [5, Theorem
1], stating that

G(Ω) ≤ 3d ln 2 + 4 ,

and the one in [3], based on a variational technique, simple and interesting at te same time.
Finding the optimal upper bound suggests to look at the shape optimization problem:

PG sup{G(Ω) , Ω ⊂ Rd}.

Even if it looks like as a standard shape optimization problem, the existence of a solution is not
clear for us. We believe that a maximizer does not exist and a partial result in this direction is
given by the following

Proposition 3.1. Let Ω ⊂ Rd be a bounded open set of class C2. Assume that G is differentiable
at Ω (i.e., the shape derivative of G at Ω exists and is given by (3.12)). Then Ω is not a maximizer
for G.

The proof is postponed to §3.5 and is based on a topological derivative argument: under
suitable regularity assumptions on Ω, removing a small hole near the boundary makes G increase.

In order to further investigate PG, other useful tools are represented by numerical tests and
the theory of shape derivatives. The former technique suggests that, in the case of polygons in
the plane, the optimum should be non convex. The latter, that we detail in §3.5, provides a
necessary condition for critical shapes; in particular, it turns out that the equilateral triangle,
even if strictly better than the disk, is not optimal for supG in dimension d = 2 (see Corollary
3.7 below).

Let us now consider the restricted class of convex domains, for which the equilateral triangle
could be a maximizer.

3.2. The maximization problem in the convex framework. Unlike what happens in the
general case, if we add the convex constraint, the existence of a maximizer for G is guaranteed.

Theorem 3.2. The shape functional G admits a maximizer in the class of bounded convex sets
of Rd.

Proof. Let Ωn be a maximizing sequence of convex subsets of Rd. By the scale invariance of G,
without loss of generality, we may assume that the elements of the sequence are all contained
in a fixed bounded set K. By the Blaschke selection theorem, there exists a subsequence (not
relabeled) converging to some convex set Ω ⊂ K in the Hausdorff metric.

We claim that the minimal width wn of Ωn does not vanish as n→ +∞, so that the limit set
Ω has non-empty interior: choosing a suitable reference frame in Rd, we may assume that Ωn is
contained in the strip {x ∈ Rd : 0 ≤ xd ≤ wn}; by the maximum principle, it is easy to see
that the torsion function un of Ωn satisfies un(x) ≤ xd(wn − xd)/2 in Ωn, in particular

M(Ωn) ≤ w2
n

8
; (3.1)

on the other hand, in [6, formula (4.8)] the authors provide the following upper bound for λ1 in
terms of the minimal width:

λ1(Ωn) ≤ π2

w2
n

(
1 + cn(3/2 + 3/21/3 + 21/3)

)
, (3.2)

with cn = cn(Ωn) a positive constant vanishing as wn → 0 (see (19) in [6]). By combining (3.1),
(3.2), and the lower bound (3.4), we conclude that G(Ωn) → π2/8. This gives a contradiction,
since π2/8 is clearly not the maximum of G.
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In order to conclude the proof, we need to show that the limit set Ω is a maximizer for G.
To this aim, we prove that M , λ1, and hence G, are continuous in the class of bounded open
convex sets, with respect to the Hausdorff metric.

Let {Ωh}h be a sequence of bounded convex sets converging to some convex set Ω, with
respect to the Hausdorff metric. Under these assumptions, there exists a sequence of positive
numbers th → 1 such that thΩh ⊂ Ω for every h. By comparison, such inclusion readily implies
M(thΩh) ≤M(Ω). On the other hand, by applying [14, Proposition 3.6.1] (see also the comments
below its proof), we get M(Ω) ≤M(thΩh)+dH(thΩh,Ω), being dH the Hausdorff distance. Thus
M(thΩh) → M(Ω) as h → +∞. Finally, since M(thΩh) = t2hM(Ωh) and th → 1, we conclude
that M(Ωh) → M(Ω). The continuity of λ1 is more classical and can be found, e.g., in [8] or
[14]. �

The problem of finding an optimal set is still open. We conjecture that in dimension d = 2
the maximizer of G among the convex sets is the equilateral triangle T , namely, for every Ω
convex, G(Ω) ≤ 4

27π
2 = G(T ) (see the computations in the proof of Corollary 3.7 below).

3.3. The lower bound. The lower bound G(Ω) ≥ 1 is obvious: indeed, making use of (1.3)
and (1.4), we get ∫

Ω

ϕdx =

∫
Ω

∇u · ∇ϕdx = λ1(Ω)

∫
Ω

uϕdx ≤ G(Ω)

∫
Ω

ϕdx .

An alternative proof can also be found in [7, Proposition 6], [1, Theorem 5].
Exploiting the same strategy used for the upper bound of F , we show that the constant 1 is

sharp.

Theorem 3.3. In any dimension, we can find a sequence of domains Ωε such that G(Ωε)→ 1.

Proof. Let ε > 0 be fixed and consider the perforated domain Ωε defined in (2.2), obtained by
removing to a given regular set Ω periodic spherical holes of period 2ε and radius rε. The value
of the constant C0 appearing in (2.1) will be chosen later. Let Aε : L2(Ω) → L2(Ω) be the
resolvent operator of the Dirichlet Laplacian on Ωε, which associates to f ∈ L2(Ω) the unique
solution u ∈ H1

0 (Ωε) to −∆u = f , extended by zero outside Ωε.
By applying Theorem 2.5 in [15], we infer that, for every f ∈ L2(Ω), Aε(f) strongly converges

to A(f) in L2(Ω), where A is the resolvent operator of −∆+a in H1(Ω) with Dirichlet boundary
conditions, being a (function of C0) defined in (2.3). In particular, in view of [13, Theorem 2.3.2],
the eigenvalues of Aε converge to the corresponding eigenvalue of A; in other words, we have

λ1(Ωε)→ λ1(Ω) + a ,

as ε→ 0. On the other hand, as already noticed in (2.9), we have lim infεM(Ωε) ≤ 1
a . Thus

lim inf
ε

G(Ωε) = lim inf
ε

λ1(Ωε)M(Ωε) ≤
1

a
(λ1(Ω) + a) = 1 +

λ1(Ω)

a
. (3.3)

By choosing a suitable C0 (small enough in the case of d = 2 and large enough in the case of
d ≥ 3), the parameter a can be taken arbitrarily large, so that the right-hand side of (3.3) is
arbitrarily close to 1. This fact, together with the trivial lower bound G ≥ 1, concludes the
proof. �

3.4. The lower bound for convex sets. In the convex setting, the optimal lower bound for
G was provided by Payne in 1981: for every bounded convex domain Ω of Rd, we have

G(Ω) <
π2

8
, (3.4)

and the bound is sharp (see Theorem I and formula (3.12) in [22]). The optimality of the constant
can be checked, e.g., by considering the sequence of parallelepipeds Ωn := (−n, n)d−1 × (0, 1).
Indeed, as already seen in the proof of Theorem 2.4, by comparing the torsion function of Ωn
with the function xd(1− xd)/2 we get

M(Ωn) ≤ 1/8 ; (3.5)

on the other hand, recalling the definition (2.14) of ψn and taking

v(x1, . . . , xd) := sin(πxd)Π
d−1
j=1ψn(xj) ∈ H1

0 (Ωn)
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as test function in the variational formulation (1.5) of λ1(Ωn), we get

λ1(Ωn) ≤
∫

Ωn
|∇v|2 dx∫

Ωn
v2 dx

=
d− 1

n− 2/3
+ π2 . (3.6)

From (3.5) and (3.6) we obtain the inequality

G(Ωn) ≤ π2

8
+

d− 1

8(n− 2/3)
,

whose right-hand side is arbitrarily close to π2/8 as n→ +∞.

3.5. Optimality conditions via shape derivatives. In this section we derive optimality
conditions by computing the first order shape derivative of G. Namely, given Ω ⊂ Rd bounded,
open, regular or convex, connected set, we study the limit (when the latter exists)

G′(Ω, V ) := lim
t→0

G(Ωt)−G(Ω)

t
,

with Ωt := (I + tV )(Ω), I being the identity map and V : Rd → Rd an arbitrary C1 vector field.
Recalling that G(Ω) = M(Ω)λ1(Ω), if the shape derivative exists, it reads

G′(Ω, V ) = M ′(Ω, V )λ1(Ω) +M(Ω)λ′1(Ω, V ) . (3.7)

It is well known (see, e.g., [14, Théorème 5.7.1]) that

λ′1(Ω, V ) = −
∫
∂Ω

(∂ϕ
∂n

)2

V · n dHd−1 , (3.8)

where ϕ is the (normalized) first eigenfunction and n denotes the unit outer normal to ∂Ω.

Remark that ∂ϕ
∂n is well defined as soon as Ω is regular or convex, since ϕ ∈ H2(Ω) in that case.

The computation of M ′ is more delicate and requires additional assumptions.

Proposition 3.4. Let Ω ⊂ Rd be a bounded open convex set. Then, for every V ∈ C1(Rd), the
shape derivative of M at Ω in direction V exists and is given by

M ′(Ω, V ) = u′(x0) ,

where x0 is a maximum point for u and u′ is the solution of{
∆u′ = 0 in Ω
u′ +∇u · V ∈ H1

0 (Ω) .

Proof. Let ut denote the torsion function of Ωt, for t > 0, and consider the function ψ : R×Rd →
Rd defined as

(t, x) 7→ ψ(t, x) := ∇ut(x) .

By optimality of x0 for u, we have ψ(0, x0) = 0. Moreover, the matrix Dxψ(0, x0) is invertible:
indeed, setting v :=

√
u, we have

Dxψ(0, x0) = Hessu(x0) = 2
√
M(Ω)Hessv(x0) ,

and the matrix Hessv is negative definite everywhere in Ω (see [17]). Thus, by the implicit
function theorem, we infer that, in a neighborhood of x0, for t small enough, there exists a
unique xt such that ∇ut(xt) = 0; furthermore, t 7→ xt is differentiable.

We claim that, for every t,
ut(xt) = M(Ωt) , (3.9)

and that, as t→ 0,

ut(x0)− u(x0)

t
→ u′(x0) , (3.10)

ut(xt)− ut(x0)

t
→ 0 . (3.11)

Once proved the claims we are done, indeed we have

M(Ωt)−M(Ω)

t
=
ut(xt)− u(x0)

t
=
ut(xt)− ut(x0)

t
+
ut(x0)− u(x0)

t
→ u′(x0) ,

which concludes the proof.
Let us show (3.9). As already pointed out in the proof of Theorem 3.2, exploiting [14,

Proposition 3.6.1] we infer that the sequence ut uniformly converges to u, extended to zero in
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a larger common domain independent of t. In particular, every sequence of maximizers yt for
ut converges to the unique minimizer x0 of u (see, e.g., [10, Proposition 5.2, Proposition 7.24]
applied to the sequence −ut). Finally, since xt are isolated critical points in a neighborhood of
x0, they must coincide with yt, so that ut(xt) = ut(yt) = M(Ωt).

Assertion (3.10) follows by applying the mean value property to the harmonic functions ut−u
and u′: choose R > 0 such that BR(x0) ⊂ Ωt for every t << 1, then we have∣∣∣ut(x0)− u(x0)

t
− u′(x0)

∣∣∣ =
∣∣∣−∫
BR(x0)

ut(x)− u(x)

t
− u′(x0) dx

∣∣∣ ≤ C‖(ut − u)/t− u′‖L2(BR(x0)) .

The right-hand side vanishes as t→ 0, since the map t 7→ ut ∈ L2(Rd) is differentiable at 0 with
derivative d

dtubt=0= u′ (see, for instance, [14, Théorème 5.3.1]).
Similarly, property (3.11) follows by combining the mean value property of ∇ut, the differen-

tiability of t 7→ xt, and the strong convergence of ut to u in H1(Rd):
ut(xt)− ut(x0)

t
= ∇ut(ξt) ·

xt − x0

t
=
(
−
∫
BR(ξt)

∇ut(x) dx
)
· xt − x0

t

−→ ∇u(x0) · v0 = 0 , as t→ 0 ,

with ξt a suitable intermediate point between x0 and xt, R a positive radius such that BR(ξt) ⊂
Ωt for every t << 1, and v0 the derivative d

dtxtbt=0. �

Remark 3.5. We point out that Proposition 3.4 is valid in a more general setting, when the
torsion function uΩ belongs to W 1,∞(Ω) and has a unique maximum point which is non degen-
erate (i.e. invertible Hessian at the point). These properties are ensured by the convexity of
Ω.

Theorem 3.6. Let Ω ⊂ Rd be a bounded open convex set. Then, for every V ∈ C1(Rd), the
shape derivative of G at Ω in direction V exists and is given by

G′(Ω, V ) =

∫
∂Ω

[
λ1(Ω)

∂u

∂n

∂φx0

∂n
−M(Ω)

(∂ϕ
∂n

)2]
V · n dHd−1 , (3.12)

where x0 ∈ Ω is a maximum point of u and φx0 is the (Green function) solution of{
−∆φx0 = δx0 in D′(Ω)
φx0

= 0 on ∂Ω .

Proof. First, we rewrite in terms of φx0 the derivative M ′(Ω, V ), whose existence is ensured by
Proposition 3.4:

M ′(Ω, V ) = 〈−∆φx0 , u
′〉 = −

∫
∂Ω

u′
∂φx0

∂n
dHd−1 =

∫
∂Ω

∂u

∂n

∂φx0

∂n
V · ndHd−1 . (3.13)

Formula (3.12) follows by combining (3.7), (3.8), and (3.13). �

As a consequence of Theorem 3.6 we obtain the following optimality condition: if Ω ⊂ Rd
bounded open convex set is a critical shape for G, then

λ1(Ω)
∂u

∂n

∂φx0

∂n
−M(Ω)

(∂ϕ
∂n

)2

= 0 a.e. on ∂Ω . (3.14)

Now we partially answer a question raised in [1] where the author asked whether the disk
could be the maximizer for G.

Corollary 3.7. The equilateral triangle gives a better value than the disk; however it is not a
critical shape for G.

Proof. Let T ⊂ R2 be the equilateral triangle with side of length 1 and vertices in
(−1/2,−1/(2

√
3)), (1/2,−1/(2

√
3)), and (0, 1/

√
3), so that the center is at the origin. In this

case, u, ϕ, M , and λ1 can be explicitly computed and read

u(x, y) =
1

2
√

3

(
y +

1

2
√

3

)(
y −
√

3x− 1√
3

)(
y +
√

3x− 1√
3

)
=

1

2
√

3

(
y3 − 3x2y −

√
3

2
y2 −

√
3

2
x2 +

1

6
√

3

)
ϕ(x, y) =

( 2√
3

)3/2[
sin
(4π

3

(
1−
√

3y
))
− 2 cos(2πx) sin

(2π

3

(
1−
√

3y
))]
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M(T ) = u(0, 0) =
1

36
, λ1(T ) =

16

3
π2 .

Therefore G(T ) = 4π2/27 ' 1.4622 while, for the unit disk D, we have G(D) = j2
0,1/4 ' 1.4458

which proves the first part of the claim.
Now assume by contradiction that T is a critical shape for G. Since the normal derivative of

u on ∂T is never zero except at the vertices (where both ∇u and ∇ϕ vanish), we may recast the
optimality condition (3.14) as

∂φ0

∂n
= h a.e. on ∂T ,

with h := M(Ω)
(
λ1(Ω)

)−1( ∂u
∂n

)−1(∂ϕ
∂n

)2

. In particular, if we multiply both sides by an arbitrary

harmonic function w and integrate over ∂T , we obtain

−w(0) =

∫
∂T

whdH1 . (3.15)

By taking as test functions w ≡ 1 and w = Re(z6), we get
∫
∂T

hdH1 = −1∫
∂T

Re(z6)hdH1 = 0 .

Exploiting the symmetry of the domain and of the functions involved, these conditions can be
rephrased as follows: 

∫
Σ

hdH1 = −1

3∫
Σ

Re(z6)hdH1 = 0 ,

where Σ denotes the basis of the triangle, i.e. the segment Σ = [−1/2, 1/2]×{−1/(2
√

3)}. This
system may be rewritten as

σ :=

∫ 1/2

0

(1 + cos(2πx))2

x2 − 1/4
dx = −27

8

τ :=

∫ 1/2

0

P (x)
(1 + cos(2πx))2

x2 − 1/4
dx = 0 ,

(3.16)

with

P (x) : = Re(z6)bΣ = (x6 − 15x4y2 + 15x2y4 − y6)by=−1/(2
√

3)= x6 − 5

4
x4 +

5

48
x2 − 1

1728
.

Making use of the factorization

P (x) =
(
x2 − 1

4

)(
x4 − x2 − 7

48

)
− 1

27
,

we obtain

τ =

∫ 1/2

0

(
x4 − x2 − 7

48

)
(1 + cos(2πx))2 dx− σ

27
.

It is easy to check that∫ 1/2

0

(1 + cos(2πx))2 dx =
3

4
;∫ 1/2

0

x2(1 + cos(2πx))2 dx =
1

16
− 15

32π2
;∫ 1/2

0

x4(1 + cos(2πx))2 dx =
3

320
− 15

64π2
+

189

128π4
.

Thus we get

τ +
σ

27
=

3

320
− 15

64π2
+

189

128π4
− 1

16
+

15

32π2
− 7

48
· 3

4

=
3

320
− 1

16
− 7

64
+

15

32π2
− 15

64π2
+

189

128π4
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= −13

80
+

15

64π2
+

189

128π4
.

Since π is not algebraic, the last relation is in contradiction with (3.16), which in turn implies
τ +σ/27 = −1/8. Therefore we conclude that the equilateral triangle is not a critical shape. �

Remark 3.8. We point out that the choice of any test function of the form w = Rezn, for
n = 1, . . . , 5, in (3.15) does not provide any contradiction. Moreover the numerical values of σ
and τ defined in the above proof are not so far of what appears in (3.16). In some sense, the
equilateral triangle is not far from being a critical point.

We conclude the Section with the proof of Proposition 3.1.

Proof of Proposition 3.1. Assume by contradiction that Ω is a maximizer for G. Given x ∈ Ω
and ε > 0 a small parameter, we set Ωε(x) the perforated domain Ω \ Bε(x) and we denote by
uε,x the associated torsion function.

In the limit as ε→ 0, we have the following asymptotic expansions for λ1(Ωε(x)) and uε,x in
terms of λ1(Ω) and u (cf. [12] and [20, Chapter 8]):

λ1(Ωε(x)) =

 λ1(Ω) +
2π

| log ε|
ϕ2(x) + o(1/| log ε|) if d = 2

λ1(Ω) + εd−2(d− 2)ωdϕ
2(x) + o(εd−2) if d > 2

uε,x(y) =

 u(y)− 2π

| log ε|
u(x)φx(y) + o(1/| log ε|) if d = 2

u(y)− εd−2(d− 2)ωdu(x)φx(y) + o(εd−2) if d > 2 ,

where ωd is the measure of the (d − 1)-sphere and φx(y) is the Green function of the Laplace
operator vanishing on the boundary of Ω. In particular, choosing x different from the maximum
point x0 of u and evaluating uε,x at x0, we obtain

M(Ωε(x)) ≥

 M(Ω)− 2π

| log ε|
u(x)φx(x0) + o(r(ε)) if d = 2

M(Ω)− εd−2(d− 2)ωdu(x)φx(x0) + o(r(ε)) if d > 2 ,

where r(ε) = 1/| log ε| if d = 2 and εd−2 otherwise. In particular, we obtain the lower bound

G(Ωε(x)) ≥ G(Ω) +R(x)r(ε) + o(r(ε)) , (3.17)

with

R(x) := M(Ω)ϕ2(x)− λ1(Ω)u(x)φx0
(x)

(here we have used the symmetry of the Green function: φx(x0) = φx0
(x)). To get a contra-

diction, it suffices to find a point x in which R(x) > 0. Taking x close to the boundary, say
x = x1 − δn(x1) for some x1 ∈ ∂Ω and 0 < δ << 1, and recalling that ϕ vanishes on ∂Ω, we
may write

ϕ(x) = −δ ∂ϕ
∂n

(x1) +
δ2

2

∂2ϕ

∂n2
(x1) + o(δ2) .

Furthermore, by combining (1.4) with the relation ∆ϕ = ∆∂Ωϕ+H∂Ω
∂ϕ
∂n + ∂2ϕ

∂n2 on ∂Ω, we get

∂2ϕ

∂n2
(x1) = −H∂Ω(x1)

∂ϕ

∂n
(x1) .

Arguing in the same way for u and φx0 , we obtain the developments

u(x) = −δ ∂u
∂n

(x1) +
δ2

2

∂2u

∂n2
(x1) + o(δ2) ,

φx0
(x) = −δ ∂φx0

∂n
(x1) +

δ2

2

∂2φx0

∂n2
(x1) + o(δ2) ,

and the equalities

∂2u

∂n2
(x1) = −1−H∂Ω(x1)

∂u

∂n
(x1) ,

∂2φx0

∂n2
(x1) = −H∂Ω(x1)

∂φx0

∂n
(x1) .
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In view of these computations, we infer that

R(x) =
(
δ2 + δ3H∂Ω(x1)

) [
M(Ω)

(∂ϕ
∂n

)2

− λ1(Ω)
∂u

∂n

∂φx0

∂n

]
(x1)− δ3

2
λ1(Ω)

∂φx0

∂n
(x1) + o(δ3) .

By optimality of Ω, the equality (3.14) holds true at x1, so that

R(x) = −δ
3

2
λ1(Ω)

∂φx0

∂n
(x1) + o(δ3) .

By the Hopf’s principle
∂φx0
∂n is strictly negative on the boundary ∂Ω, therefore R(x) is strictly

positive. In particular, in view of (3.17) we conclude that, if x is close enough to the boundary,

G(Ωε(x)) > G(Ω) ,

which is in contradiction with the maximality of Ω. �

Final comment. In the conference “Shape optimization and isoperimetric and functional
inequalities”, held in CIRM - Luminy (France) on November 21-25, 2016, we had the occasion
to discuss with G. Buttazzo and B. Velichkov, who kindly gave us the proof of Theorem 2.2.

In the same conference, we announced our results to M. van den Berg, since they disproved
some conjectures he gave in [1]. Few weeks later, M. van den Berg posted [2] on ArXiv, where
he gave a different proof of our Theorem 3.3. Finally, we point out that the recent contribution
[11] generalizes some of our results to more general operators.

Acknowledgments. We thank the referee for his/her careful reading of the paper and for the
useful suggestions.
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