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Abstract. We develop a multivalued theory for the stability operator of (a constant multiple
of) a minimally immersed submanifold Σ of a Riemannian manifoldM. We define the multiple
valued counterpart of the classical Jacobi fields as the minimizers of the second variation
functional defined on a Sobolev space of multiple valued sections of the normal bundle of
Σ inM, and we study existence and regularity of such minimizers. Finally, we prove that
any Q-valued Jacobi field can be written as the superposition of Q classical Jacobi fields
everywhere except for a relatively closed singular set having codimension at least two in the
domain.
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0. Introduction

Given an m-dimensional area minimizing integer rectifiable current T in Rm+n and any
point x ∈ spt(T ) \ spt(∂T ), it is a by now well known consequence of the monotonicity of the
function r 7→ ‖T‖(Br(x))

ωmrm
(cf. [All72, Section 5]) that for any sequence of radii {rj}∞j=1 with

rj ↓ 0 there exists a subsequence rj′ such that the corresponding blow-ups Tx,rj′ := (ηx,rj′ )]T
(where ηx,r(y) := y−x

r ) converge to a (locally) area minimizing m-dimensional current C
which is invariant with respect to homotheties centered at the origin: such a limit current
is called a tangent cone to T at x. If x is a regular point, and thus spt(T ) is a classical
m-dimensional minimal submanifold in a neighborhood of x, then the cone C is certainly
unique, and in fact C = QJπK, where π = Tx(spt(T )) is the tangent space to spt(T ) at x and
Q = Θ(‖T‖, x) is the m-dimensional density of the measure ‖T‖ at x. On the other hand,
singularities do occur for area minimizing currents of arbitrary codimension as soon as the
dimension of the current is m ≥ 2: indeed, by the regularity theory developed by F. Almgren
in his monumental Big Regularity Paper [Alm00] and recently revisited by C. De Lellis and E.
Spadaro in [DLS14, DLS16a, DLS16b], we know that area minimizing m-currents in Rm+n

may exhibit a singular set of Hausdorff dimension at most m− 2, and that this result is sharp
when n ≥ 2 ([Fed65]). Now, if x happens to be singular, then not only we have no information
about the limit cone, but in fact it is still an open question whether in general such a limit
cone is unique (that is, independent of the approximating sequence) or not. The problem
of uniqueness of tangent cones at the singular points of area minimizing currents of general
dimension and codimension stands still today as one of the most celebrated of the unsolved
problems in Geometric Measure Theory (cf. [ope86, Problem 5.2]), and only a few partial
answers corresponding to a limited number of particular cases are available in the literature.
In [Whi83], B. White showed such uniqueness for two-dimensional area minimizing currents in
any codimension, building on a characterization of two-dimensional area minimizing cones
proved earlier on by F. Morgan in [Mor82]. In general dimension, W. Allard and F. Almgren
[AA81] were able to prove that uniqueness holds under some additional requirements on the
limit cone. Specifically, they have the following theorem, which is valid in the larger class of
stationary integral varifolds.
Theorem 0.1 ([AA81]). Let T be an m-dimensional area minimizing integer rectifiable current
in Rm+n, and let x ∈ spt(T ) be an isolated singular point. Assume that there exists a tangent
cone C to T at x satisfying the following hypotheses:

(H1) C is the cone over an (m− 1)-dimensional minimal submanifold Σ of Sm+n−1, and
thus C has an isolated singularity at 0 and Θ(‖C‖, x) = 1 for every x ∈ spt(C) \ {0};

(H2) all normal Jacobi fields N of Σ in Sm+n−1 are integrable, that is for every normal
Jacobi field N there exists a one-parameter family of minimal submanifolds of Sm+n−1

having velocity N at Σ.
Then, C is the unique tangent cone to T at x. Furthermore, the blow-up sequence Tx,r

converges to C as r ↓ 0 with rate rµ for some µ > 0.
The hypotheses (H1) and (H2) are however quite restrictive. Allard and Almgren were

able to show that (H2) holds in case Σ is the product of two lower dimensional standard
spheres (of appropriate radii to ensure minimality), since in this case all normal Jacobi fields
of Σ in Sm+n−1 arise from isometric motions of Sm+n−1. It seems however rather unlikely
that the condition can hold for any general Σ admitting normal Jacobi fields other than those
generated by rigid motions of the sphere. In [Sim83a], L. Simon was able to prove Theorem
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0.1 dropping the hypothesis (H2), with a quite different approach with respect to [AA81] and
purely PDE-based techniques. Not much has been done, instead, in the direction of removing
the hypothesis (H1): to our knowledge, indeed, the only result concerning the case when a
tangent cone C has more than one isolated singularity at the origin is contained in L. Simon’s
work [Sim94], where the author proves uniqueness of tangent cones to any codimension one
area minimizing m-current T whenever one limit cone C is of the form C = C0×R, with C0 a
strictly stable, strictly minimizing (m− 1)-dimensional cone in Rm with an isolated singularity
at the origin, and under additional assumptions on the Jacobi fields of C and on the spectrum
of the Jacobi normal operator of C0.

However, all the results discussed above do not cover the cases when a tangent cone has
higher multiplicity: it is remarkable that uniqueness is still open even under the strong
assumption that all tangent cones to an area minimizing m-current T (m > 2) at an interior
singular point x are of the form C = QJπK, where JπK is the rectifiable current associated with
an oriented m-dimensional linear subspace of Rm+n and Q > 1 (cf. [Alm00, Section I.11(2), p.
9]).

The purpose of this work is to present a multivalued theory of the Jacobi normal operator:
we believe that such a theory may facilitate the understanding of the qualitative behaviour of
the area functional near a minimal submanifold with multiplicity, and eventually lead to a
generalization of Theorem 0.1 (and neighbouring results) to relevant cases when the condition
that Θ(‖C‖, x) = 1 for every x ∈ spt(C) \ {0} fails to hold.

In our investigation, we will make use of tools and techniques coming from the theory of
multiple valued functions minimizing the Dirichlet energy, developed by Almgren in [Alm00]
and revisited by De Lellis and Spadaro in [DLS11]. A quick tutorial on the theory of multiple
valued functions is contained in § 1.2, in order to ease the reading of the remaining part of
the paper. As a byproduct, the theory of multiple valued Jacobi fields will show that the
regularity theory for Dir-minimizing Q-valued functions is robust enough to allow one to
produce analogous regularity results for minimizers of functionals defined on Sobolev spaces
of Q-valued functions other than the Dirichlet energy (see also [DLFS11] for a discussion
about general integral functionals defined on spaces of multiple valued functions and their
semi-continuity properties, and [Hir16b, HSV17] for a regularity theory for multiple valued
energy minimizing maps with values into a Riemannian manifold).

0.1. Main results. Let us first recall what is classically meant by Jacobi operator and Jacobi
fields. Let Σ be an m-dimensional compact oriented submanifold (with or without boundary)
of an (m+ k)-dimensional Riemannian manifoldM⊂ Rd, and assume that Σ is stationary
with respect to the m-dimensional area functional. Then, a one-parameter family of normal
variations of Σ inM can be defined by setting Σt := Ft(Σ), where Ft is the flow generated by a
smooth cross-section N of the normal bundle NΣ of Σ inM which has compact support in Σ.
It is known that the second variation formula corresponding to such a family of variations can
be expressed in terms of an elliptic differential operator L defined on the space Γ(NΣ) of the
cross-sections of the normal bundle. This operator, usually called the Jacobi normal operator,
is given by L = −∆⊥Σ −A −R, where ∆⊥Σ is the Laplacian on NΣ, and A and R are linear
transformations of NΣ defined in terms of the second fundamental form of the immersion
ι : Σ→M and of a partial Ricci tensor of the ambient manifoldM, respectively. The notions
of Morse index, stability and Jacobi fields, central in the analysis of the properties of the class
of minimal submanifolds of a given Riemannian manifold, are all defined by means of the
Jacobi normal operator and its spectral properties (see Section 2 for the precise definitions
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and for a discussion about the most relevant literature related to the topic). In particular,
Jacobi fields are defined as those sections N ∈ Γ(NΣ) lying in the kernel of the operator L,
and thus solving the system of partial differential equations L(N) = 0.

In this work, we consider instead multivalued normal variations in the following sense. Let Σ
andM be as above, and consider, for a fixed integer Q > 1, a Lipschitz multiple valued vector
field N : Σ→ AQ(Rd) vanishing at ∂Σ and having the form N =

∑Q
`=1JN

`K, where N `(x) is
tangent toM and orthogonal to Σ at every point x ∈ Σ and for every ` = 1, . . . , Q. The “flow”
of such a multiple valued vector field generates a one-parameter family Σt of m-dimensional
integer rectifiable currents supported onM such that Σ0 = QJΣK and ∂Σt = QJ∂ΣK for every
t. The second variation

δ2JΣK(N) := d2

dt2
M(Σt)

∣∣
t=0,

M(·) denoting the mass of a current, is a well-defined functional on the space Γ1,2
Q (NΣ) of

Q-valued W 1,2 sections of the normal bundle NΣ of Σ in M. We will denote such Jacobi
functional by Jac. Explicitly, the Jac functional is given by

Jac(N,Σ) :=
ˆ

Σ

Q∑

`=1

(
|∇⊥N `|2 − |A ·N `|2 −R(N `, N `)

)
dHm, (0.1)

where ∇⊥ is the projection of the Levi-Civita connection of M onto NΣ, |A · N `| is the
Hilbert-Schmidt norm of the projection of the second fundamental form of the embedding
Σ ↪→M onto N ` and R(N `, N `) is a partial Ricci tensor of the ambient manifoldM in the
direction of N ` (see Section 2 for the precise definition of the notation used in (0.1)).

Unlike the classical case, it is not possible to characterize the stationary maps of the Jac
functional as the solutions of a certain Euler-Lagrange equation, and no PDE techniques seem
available to study their regularity. Therefore, we develop a completely variational theory of
multiple valued Jacobi fields. Hence, we give the following definition.
Definition 0.2. Let Ω ⊂ Σ ↪→M be a Lipschitz open set. A map N ∈ Γ1,2

Q (NΩ) is said to
be a Jac-minimizer, or a Jacobi Q-field in Ω, if it minimizes the Jacobi functional among
all Q-valued W 1,2 sections of the normal bundle of Ω in M having the same trace at the
boundary, that is

Jac(N,Ω) ≤ Jac(u,Ω) for all u ∈ Γ1,2
Q (NΩ) such that u|∂Ω = N |∂Ω. (0.2)

We are now ready to state the main theorems of this paper. They develop the theory of
Jacobi Q-fields along three main directions, concerning existence, regularity and estimate of
the singular set.
Theorem 0.3 (Conditional existence). Let Ω be an open and connected subset of Σ ↪→M
with C2 boundary. Assume that the following strict stability condition is satisfied: the only
Q-valued Jacobi field N in Ω such that N |∂Ω = QJ0K is the null field N0 ≡ QJ0K. Then, for
any g ∈ Γ1,2

Q (NΩ) such that g|∂Ω ∈ W 1,2(∂Ω,AQ(Rd)) there is a Jacobi Q-field N such that
N |∂Ω = g|∂Ω.
Remark 0.4. Note that the above result strongly resembles the classical Fredholm alternative
condition for solving linear elliptic boundary value problems: the solvability of the minimum
problem for the Jac functional in Γ1,2

Q (NΩ) for any given boundary datum g as in the statement
is guaranteed whenever Ω does not admit any non-trivial Jacobi Q-field vanishing at the
boundary.
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Theorem 0.5 (Regularity). Let Ω ⊂ Σ be an open subset, with Σ ↪→ M as above. There
exists a universal constant α = α(m,Q) ∈ (0, 1) such that if N ∈ Γ1,2

Q (NΩ) is Jac-minimizing
then N ∈ C0,α

loc (Ω,AQ(Rd)).

The statement of the next theorem requires the definition of regular and singular points of
a Jacobi Q-field.

Definition 0.6 (Regular and singular set). Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. A point

p ∈ Ω is regular for N (and we write p ∈ reg(N)) if there exists a neighborhood B of p in Ω
and Q classical Jacobi fields N ` : B → Rd such that

N(x) =
Q∑

`=1
JN `(x)K ∀x ∈ B

and either N ` ≡ N `′ or N `(x) 6= N `′(x) for all x ∈ B, for any `, `′ ∈ {1, . . . , Q}. The singular
set of N is defined by

sing(N) := Ω \ reg(N).

Theorem 0.7 (Estimate of the singular set). Let N be a Q-valued Jacobi field in Ω ⊂ Σm.
Then, the singular set sing(N) is relatively closed in Ω. Furthermore, if m = 2, then sing(N)
is at most countable; if m ≥ 3, then the Hausdorff dimension dimH sing(N) does not exceed
m− 2.

Remark 0.8. Following the approach of [DMSV16], we expect to be able to improve Theorem
0.7 to show, for m ≥ 3, that sing(N) is countably (m− 2)-rectifiable.

Theorems 0.3, 0.5 and 0.7 have a counterpart in Almgren’s theory of Dir-minimizing
multiple valued functions (cf. Theorems 1.25 and 1.27 below). The existence result for Jacobi
Q-field is naturally more difficult than its Dir-minimizing counterpart, because in general the
space of Q-valued W 1,2 sections of NΣ with bounded Jacobi energy is not weakly compact.
Therefore, the proof of Theorem 0.3 requires a suitable extension result (cf. Corollary 4.3) for
multiple valued Sobolev functions defined on the boundary of an open subset of Σ to a tubular
neighborhood, which eventually allows one to exploit the strict stability condition in order to
gain the desired compactness. In turn, such an extension theorem is obtained as a corollary of
a multivalued version of the celebrated Luckhaus’ Lemma, cf. Proposition 4.1. The proof of
Theorem 0.5 is obtained from the Hölder regularity of Dir-minimizing Q-valued functions by
means of a perturbation argument. Finally, the estimate of the Hausdorff dimension of the
singular set of a Jac-minimizer, Theorem 0.7, relies on its Dir-minimizing counterpart once
we have shown that the tangent maps of a Jacobi Q-field at a collapsed singular point are
non-trivial homogeneous Dir-minimizing functions, see Theorem 7.8. In turn, the proof of
the Blow-up Theorem 7.8 is based on a delicate asymptotic analysis of an Almgren’s type
frequency function, which is shown to be almost monotone and bounded at every collapsed
point. This is done by providing fairly general first variation integral identities satisfied by the
Jac-minimizers.

Let us also remark that Theorem 7.8 does not guarantee that tangent maps to a Jacobi
Q-field at a collapsed singularity are unique. Similarly to what happens for tangent cones to
area minimizing currents (and for several other problems in Geometric Analysis), different
blow-up sequences may converge to different limit profiles. Whether this phenomenon can
actually occur or not is an open problem. On the other hand, if the dimension of the base
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manifold is m = dim Σ = 2, then we are able to show that the limit profile must be a unique
non-trivial Dirichlet minimizer. Indeed, we have the following theorem.
Theorem 0.9 (Uniqueness of the tangent map at collapsed singularities). Let m = dim Σ = 2,
and let N be a Q-valued Jacobi field in Ω ⊂ Σ2. Let p be a collapsed singular point, that is,
assume that N(p) = QJvK for some v ∈ T⊥p Σ ⊂ TpM but there exists no neighborhood U of p
such that N |U ≡ QJζK for some single-valued section ζ. Then, there exists a unique tangent
map Np to N at p. Np is a non-trivial homogeneous Dir-minimizer Np : TpΣ→ AQ(T⊥p Σ).

The key to prove Theorem 0.9 is to show that, in dimension m = 2, the rate of convergence
of the frequency function at a collapsed singularity to its limit is a small power of the radius.
In turn, this is achieved by exploiting one more time the variation formulae satisfied by N .

This note is organized as follows. In Section 1 we fix the terminology and notation that will
be used throughout the paper and we summarize the main results of the theory of multiple
valued functions. Section 2 contains the derivation of the second variation formula generated
by a Q-valued section of NΣ which leads to the definition of the Jac functional. In section 3
we investigate the first elementary properties of the Jac functional, we show that it is lower
semi-continuous with respect to W 1,2 weak convergence (cf. Proposition 3.1) and we study the
strict stability condition mentioned in the statement of Theorem 0.3 (cf. Lemma 3.4). Section
4 contains the proof of Theorem 0.3. The proof of Theorem 0.5 (and actually of a quantitative
version of it including an estimate of the α-Hölder seminorm, cf. Theorem 5.1) is contained in
Section 5. In Section 6 we prove the properties of the frequency function which are needed to
carry on the blow-up scheme, which is instead the content of Section 7. Theorem 0.7 is finally
proved in Section 8. Last, Section 9 contains the uniqueness of tangent maps in dimension 2.

Acknowledgements. The author is warmly thankful to Camillo De Lellis for suggesting him
to study this problem, and for his precious guidance and support; and to Guido De Philippis,
Francesco Ghiraldin, and Luca Spolaor for several useful discussions.

The research of S.S. has been supported by the ERC grant agreement RAM (Regularity for
Area Minimizing currents), ERC 306247.

1. Notation and preliminaries

1.1. The geometric setting. We start immediately specifying the geometric environment
and fixing the notation that will be used throughout the paper.
Assumption 1.1. We will consider:

(M) a closed (i.e. compact with empty boundary) Riemannian manifoldM of dimension
m+ k and class C3,β for some β ∈ (0, 1);

(S) a compact oriented minimal submanifold Σ of the ambient manifoldM of dimension
dim(Σ) = m and class C3,β.

Without loss of generality, we will also regardM as an isometrically embedded submanifold
of some Euclidean space Rd. We will let n := d−m and K := d− (m+k) be the codimensions
of Σ andM in Rd respectively.

Let Σm ↪→Mm+k ⊂ Rd be as in Assumption 1.1. The Euclidean scalar product in Rd is
denoted 〈·, ·〉. The metric on M and Σ is induced by the flat metric in Rd: therefore, the
same symbol will also denote the scalar product between tangent vectors toM or to Σ.

The tangent space toM at a point z will be denoted TzM. The maps pMz : Rd → TzM
and pM⊥z : Rd → T⊥z M denote orthogonal projections of Rd onto the tangent space toM at
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z and its orthogonal complement in Rd respectively. If x ∈ Σ, the tangent space TxM can be
decomposed into the direct sum

TxM = TxΣ⊕ T⊥x Σ,
where T⊥x Σ is the orthogonal complement of TxΣ in TxM. At each point x ∈ Σ, we define
orthogonal projections px : TxM→ TxΣ and p⊥x : TxM→ T⊥x Σ.

This decomposition at the level of the tangent spaces induces an orthogonal decomposition
at the level of the tangent bundle, namely

TM = T Σ⊕NΣ,
where NΣ denotes the normal bundle of Σ inM.

If f : Σ→ Rq is a C1 map and ξ is a vector field tangent to Σ, the symbol Dξf will denote
the directional derivative of f along ξ, that is

Dξf(x) := d

dt
(f ◦ γ)

∣∣∣∣
t=0

whenever γ = γ(t) is a C1 curve on Σ with γ(0) = x and γ̇(0) = ξ(x). The differential of f at
x ∈ Σ will be denoted Df(x): we recall that this is the linear operator Df(x) : TxΣ→ Rq such
that Df(x) · ξ(x) = Dξf(x) for any tangent vector field ξ. The notation Df |x will sometimes
be used in place of Df(x). Moreover, the derivative along ξ of a scalar function f : Σ → R
will be sometimes simply denoted by ξ(f).

The symbol ∇, instead, will identify the Levi-Civita connection on M. If ξ and X are
tangent vector fields to Σ, then for every x ∈ Σ we have

∇ξX(x) = px · ∇ξX(x) + p⊥x · ∇ξX(x) =: ∇Σ
ξ X(x) +Ax (ξ(x), X(x)) ,

where ∇Σ is the Levi-Civita connection on Σ and A is the 2-covariant tensor with values in
NΣ defined by Ax(X,Y ) := p⊥x · ∇XY for any x ∈ Σ, for any X,Y ∈ TxΣ. A is called the
second fundamental form of the embedding Σ ↪→M by some authors (cf. [Sim83b, Section
7], where the tensor is denoted B, or [Lee97, Chapter 8], where the author uses the notation
II) and we will use the same terminology, although in the literature in differential geometry
(above all when working with embedded hypersurfaces, that is in case the codimension of the
submanifold is k = 1) it is sometimes more customary to call A “shape operator” and to use
“second fundamental form” for scalar products h(X,Y ) = 〈A(X,Y ), η〉 with a fixed normal
vector field η (cf. [dC92, Chapter 6, Section 2]).

Observe that, since we have assumed Σ to be minimal inM, the mean curvature H := tr(A)
is everywhere vanishing on Σ.

The curvature endomorphism of the ambient manifoldM is denoted by R: we recall that
this is a tensor field onM of type (3, 1), whose action on vector fields is defined by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where [X,Y ] is the Lie bracket of the vector fields X and Y .
Recall also that the Riemann tensor can be defined by setting

Rm(X,Y, Z,W ) := 〈R(X,Y )Z,W 〉
for any choice of the vector fields X,Y, Z,W , and that the Ricci tensor is the trace of the
curvature endomorphism with respect to its first and last indices, that is Ric(X,Y ) is the
trace of the linear map

Z 7→ R(Z,X)Y.



8 SALVATORE STUVARD

Observe that Σ has a natural structure of metric measure space: for any pair of points
x, y ∈ Σ, d(x, y) will be their Riemannian geodesic distance, while measures and integrals
will be computed with respect to the m-dimensional Hausdorff measure Hm defined in the
ambient space Rd (note that the Hausdorff measure can be defined also intrinsically in terms
of the distance d: however, since Σ is isometrically embedded in Rd, the intrinsic Hm measure
coincides with the restriction of the “Euclidean one”). Boldface characters will always be
used to denote quantities which are related to the Riemannian geodesic distance: for instance,
if x ∈ Σ and r is a positive number, Br(x) is the geodesic ball with center x and radius r,
namely the set of points y ∈ Σ such that d(y, x) < r. In the same fashion, if U and V are two
subsets of Σ we will set

dist(U, V ) := inf{d(x, y) : x ∈ U, y ∈ V }.
Finally, constants will be usually denoted by C. The precise value of C may change from

line to line throughout a computation. Moreover, we will write C(a, b, . . . ) or Ca,b,... to specify
that C depends on previously introduced quantities a, b, . . . .

1.2. Multiple valued functions. In this subsection, we briefly recall the relevant definitions
and properties concerning Q-valued functions. First introduced by Almgren in his ground-
breaking Big Regularity Paper [Alm00], multiple valued functions have proved themselves to be
a fundamental tool to tackle the problem of the interior regularity of area minimizing integral
currents in codimension higher than one. The interested reader can see [DLS11] for a simple,
complete and self-contained reference for Almgren’s theory of multiple valued functions, [DS15]
for a nice presentation of their link with integral currents, and [DL16a, DL16b] for a nice survey
of the strategy adopted in [DLS14, DLS16a, DLS16b] to revisit Almgren’s program and obtain
a much shorter proof of his celebrated partial regularity result for area minimizing currents in
higher codimension. Other remarkable references where the theory of Dirichlet minimizing mul-
tiple valued functions plays a major role include the papers [DSS15a, DSS15b, DSS15c], where
the authors investigate the regularity of suitable classes of almost-minimizing two-dimensional
integral currents.

1.2.1. The metric space of Q-points. From now on, let Q ≥ 1 be a fixed positive integer.

Definition 1.2 (Q-points). The space of Q-points in the Euclidean space Rd is denoted
AQ(Rd) and defined as follows:

AQ(Rd) :=



T =

Q∑

`=1
Jp`K : p` ∈ Rd for every ` = 1, . . . , Q



 , (1.1)

where Jp`K is the Dirac mass δp` centered at the point p` ∈ Rd. Hence, every Q-point T is in
fact a purely atomic non-negative measure of mass Q in Rd.

For the sake of notational simplicity, we will sometimes write AQ instead of AQ(Rd) if there
is no chance of ambiguity.

The space AQ(Rd) has a natural structure of complete separable metric space.

Definition 1.3. If T =
∑

Jp`K and S =
∑

Jq`K, then the distance between T and S is denoted
G(T, S) and given by

G(T, S)2 := min
σ∈PQ

Q∑

`=1
|p` − qσ(`)|2, (1.2)
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where PQ is the group of permutations of {1, . . . , Q}.
To any T =

∑
Jp`J∈ AQ(Rd) we associate its center of mass η(T ) ∈ Rd, classically defined

by:

η(T ) := 1
Q

Q∑

`=1
p`. (1.3)

1.2.2. Q-valued maps. Given an open subset Ω ⊂ Σ, continuous, Lipschitz, Hölder and
measurable functions u : Ω→ AQ(Rd) can be straightforwardly defined taking advantage of
the metric space structure of both the domain and the target. As for the spaces Lp (Ω,AQ),
1 ≤ p ≤ ∞, they consist of those measurable maps u : Ω → AQ(Rd) such that ‖u‖Lp :=
‖G(u,QJ0K)‖Lp(Ω) is finite. We will systematically use the notation |u| := G(u,QJ0K), so that

‖u‖pLp =
ˆ

Ω
|u|p dHm

for 1 ≤ p <∞ and
‖u‖L∞ = ess sup

Ω
|u|.

In spite of this notation, we remark here that, when Q > 1, AQ(Rd) is not a linear space: thus,
in particular, the map T 7→ |T | is not a norm.

Any measurable Q-valued function can be thought as coming together with a measurable
selection, as specified in the following proposition.

Proposition 1.4 (Measurable selection, cf. [DLS11, Proposition 0.4]). Let B ⊂ Σ be a Hm-
measurable set and u : B → AQ(Rd) be a measurable function. Then, there exist measurable
functions u1, . . . , uQ : B → Rd such that

u(x) =
Q∑

`=1
Ju`(x)K for a.e. x ∈ B. (1.4)

It is possible to introduce a notion of differentiability for multiple valued maps.

Definition 1.5 (Differentiable Q-valued functions). A map u : Ω → AQ(Rd) is said to be
differentiable at x ∈ Ω if there exist Q linear maps λ` : TxΣ→ Rd satisfying:

(i) G (u(expx(ξ)), Txu(ξ)) = o(|ξ|) as |ξ| → 0 for any ξ ∈ TxΣ, where exp is the exponential
map on Σ and

Txu(ξ) :=
Q∑

`=1
Ju`(x) + λ` · ξK; (1.5)

(ii) λ` = λ`′ if u`(x) = u`′(x).

We will use the notation Du`(x) for λ`, and formally set Du(x) =
∑
`JDu`(x)K: observe that

one can regard Du(x) as an element of AQ(Rd×m) as soon as a basis of TxΣ has been fixed. For
any ξ ∈ TxΣ, we define the directional derivative of u along ξ to be Dξu(x) :=

∑
`JDu`(x) · ξK,

and establish the notation Dξu =
∑
`JDξu`K.

Differentiable functions enjoy a chain rule formula.

Proposition 1.6 (Chain rules, cf. [DLS11, Proposition 1.12]). Let u : Ω → AQ(Rd) be
differentiable at x0.



10 SALVATORE STUVARD

(i) Consider Φ: Ω̃→ Ω such that Φ(y0) = x0, and assume that Φ is differentiable at y0.
Then, u ◦ Φ is differentiable at y0 and

D(u ◦ Φ)(y0) =
Q∑

`=1
JDu`(x0) ·DΦ(y0)K. (1.6)

(ii) Consider Ψ: Ωx × Rdp → Rq such that Ψ is differentiable at the point (x0, u`(x0)) for
every `. Then, the map Ψ(x, u) : x ∈ Ω 7→∑Q

`=1JΨ(x, u`(x))K ∈ AQ(Rq) fulfills (i) of
Definition 1.5. Moreover, if also (ii) holds, then

DΨ(x, u)(x0) =
Q∑

`=1
JDxΨ(x0, u`(x0)) +DpΨ(x0, u`(x0)) ·Du`(x0)K. (1.7)

(iii) Consider a map F : (Rd)Q → Rq with the property that, for any choice of Q points
(y1, . . . , yQ) ∈ (Rd)Q, for any permutation σ ∈ PQ

F (y1, . . . , yQ) = F (yσ(1), . . . , yσ(Q)).

Then, if F is differentiable at (u1(x0), . . . , uQ(x0)) the composition F ◦ u 1 is differen-
tiable at x0 and

D(F ◦ u)(x0) =
Q∑

`=1
Dy`F (u1(x0), . . . , uQ(x0)) ·Du`(x0). (1.8)

Rademacher’s theorem extends to the Q-valued setting, as shown in [DLS11, Theorem
1.13]: Lipschitz Q-valued functions are differentiable Hm-almost everywhere in the sense of
Definition 1.5. Moreover, for a Lipschitz Q-valued function the decomposition result stated in
Proposition 1.4 can be improved as follows.

Proposition 1.7 (Lipschitz selection, cf. [DS15, Lemma 1.1]). Let B ⊂ Σ be measurable, and
assume u : B → AQ(Rd) is Lipschitz. Then, there are a countable partition of B in measurable
subsets Bi (i ∈ N) and Lipschitz functions u`i : Bi → Rd (` ∈ {1, . . . , Q}) such that

(a) u|Bi =
∑Q
`=1Ju

`
iK for every i ∈ N, and Lip(u`i) ≤ Lip(u) for every i, `;

(b) for every i ∈ N and `, `′ ∈ {1, . . . , Q}, either u`i ≡ u`
′
i or u`i(x) 6= u`

′
i (x) ∀x ∈ Bi;

(c) for every i one has Du(x) =
∑Q
`=1JDu

`
i(x)K for a.e. x ∈ Bi.

1.2.3. Push-forward through multiple valued functions of C1 submanifolds. A useful fact, which
will indeed be the starting point of our analysis of multivalued normal variations of Σ inM, is
that it is possible to push-forward C1 submanifolds of the Euclidean space through Q-valued
Lipschitz functions. Before giving the rigorous definition of a Q-valued push-forward, it will be
useful to introduce some further notation. We will assume the reader to be familiar with the
basic concepts and notions related to the theory of currents: standard references on this topic
include the textbooks [Sim83b] and [KP08], the monograph [GMS98] and the treatise [Fed69].
The space of smooth and compactly supported differential m-forms in Rd will be denoted
Dm(Rd), and T (ω) will be the action of the m-current T on ω ∈ Dm(Rd). If T is a current,
then ∂T and M(T ) are its boundary and its mass respectively. If B ⊂ Rd is m-rectifiable with
orientation ~ξ and multiplicity θ ∈ L1(B,Z), then the integer rectifiable current T associated to

1Observe that F ◦ u is a well defined function Ω→ Rq, because F is, by hypothesis, a well defined map on
the quotient AQ(Rd) = (Rd)Q/PQ.
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the triple
(
B, ~ξ, θ

)
will be denoted T = JB, ~ξ, θK. In particular, if Σ ⊂ Rd is an m-dimensional

C1 oriented submanifold with finite Hm-measure and orientation ~ξ = ξ1 ∧ · · · ∧ ξm 2, and
B ⊂ Σ is a measurable subset, then we will simply write JBK instead of the more cumbersome
JB, ~ξ, 1K to denote the current associated to B. We remark that the action of JBK on a form
ω ∈ Dm(Rd) is given by

JBK(ω) :=
ˆ
B
〈ω(x), ~ξ(x)〉 dHm(x).

In particular, the m-current JΣK is obtained by integration of m-forms over Σ in the usual
sense of differential geometry: JΣK(ω) =

´
Σ ω.

3 Since we will always deal with compact
manifolds, we continue to assume that Σ is compact, in order to avoid some technicalities
which are instead necessary when dealing with the non-compact case (see [DS15, Definition
1.2]).

Definition 1.8 (Q-valued push-forward, cf. [DS15, Definition 1.3]). Let Σ be as above, B ⊂ Σ
a measurable subset and u : B → AQ(Rd) a Lipschitz map. Then, the push-forward of B
through u is the current Tu :=

∑
i,`(u`i)]JBiK, where Bi and u`i are as in Proposition 1.7: that

is,

Tu(ω) :=
∑

i∈N

Q∑

`=1

ˆ
Bi

〈
ω
(
u`i(x)

)
, Du`i(x)]~ξ(x)

〉
dHm(x) ∀ω ∈ Dm(Rd), (1.9)

where Du`i(x)]~ξ(x) := Dξ1u
`
i(x) ∧ · · · ∧Dξmu

`
i(x) for a.e. x ∈ Bi.

It is straightforward, using the properties of the Lipschitz decomposition outlined in
Proposition 1.7 and recalling the standard theory of rectifiable currents (cf. [Sim83b, Section
27]) and the area formula (cf. [Sim83b, Section 8]), to conclude the following proposition.

Proposition 1.9 (Representation of the push-forward, cf. [DS15, Proposition 1.4]). The
definition of the action of Tu in (1.9) does not depend on the chosen partition Bi, nor on the
chosen decomposition {u`i}. If u =

∑
`Ju`K, we are allowed to write

Tu(ω) =
ˆ
B

Q∑

`=1

〈
ω
(
u`(x)

)
, Du`(x)]~ξ(x)

〉
dHm(x) ∀ω ∈ Dm(Rd). (1.10)

Thus, Tu is a well-defined integer rectifiable m-current in Rd given by Tu = JIm(u), ~τ ,ΘK,
where:

(R1) Im(u) =
⋃
x∈B spt(u(x)) =

⋃
i∈N

⋃Q
`=1 u

`
i(Bi) is an m-rectifiable set in Rd;

(R2) ~τ is a Borel unit m-vector field orienting Im(u); moreover, for Hm-a.e. p ∈ Im(u), we
have Du`i(x)]~ξ(x) 6= 0 for every i, `, x such that u`i(x) = p and

Du`i(x)]~ξ(x)
|Du`i(x)]~ξ(x)|

= ±~τ(p); (1.11)

2That is, ~ξ(x) is a continuous unit m-vector field on Σ with (ξi)mi=1 an orthonormal frame of the tangent
bundle T Σ.

3Observe that this convention is coherent with the use of JpK, p ∈ Rd, to denote the Dirac delta δp, considered
as a 0-dimensional current in Rd.
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(R3) for Hm-a.e. p ∈ Im(u), the (Borel) multiplicity function Θ equals

Θ(p) =
∑

i,`,x : u`i(x)=p

〈
~τ(p), Du

`
i(x)]~ξ(x)

|Du`i(x)]~ξ(x)|

〉
. (1.12)

Remark 1.10. The definition of a Q-valued push-forward can be extended to more general
objects than C1 submanifolds of the Euclidean space. Already in [DS15] it is indeed observed
that, using standard methods in measure theory, it is possible to define a multiple valued
push forward of Lipschitz manifolds. Furthermore, a simple application of the polyhedral
approximation theorem [Fed69, Theorem 4.2.22] allows one to actually give a definition of
the Q-valued push-forward of any m-dimensional flat chain with compact support in Rd: the
interested reader can refer to our note [Stu17] for the details.

The next proposition is the key tool to compute explicitly the mass of the current Tu.
Following standard notation, we will denote by Ju`(x) the Jacobian determinant of Du`, i.e.
the number

Ju`(x) := |Du`(x)]~ξ(x)| =
√

det ((Du`(x))T ·Du`(x)). (1.13)

Proposition 1.11 (Q-valued area formula, cf. [DS15, Lemma 1.9]). Let B ⊂ Σ be as above,
and u =

∑
`Ju`K a Lipschitz Q-function. Then, for every Borel function h : Rd → [0,∞), we

have ˆ
h(p) d‖Tu‖(p) ≤

ˆ
B

Q∑

`=1
h
(
u`(x)

)
Ju`(x) dHm(x). (1.14)

Equality holds in (1.14) if there is a set B′ ⊂ B of full Hm-measure for which

〈Du`(x)]~ξ(x), Duh(y)]~ξ(y)〉 ≥ 0 ∀x, y ∈ B′ and `, h with u`(x) = uh(y). (1.15)

1.2.4. Q-valued Sobolev functions and their properties. Next, we study the Sobolev spaces
W 1,p (Ω,AQ). The definition that we use here was proposed by C. De Lellis and E. Spadaro
(cf. [DLS11, Definition 0.5 and Proposition 4.1]), and allowed the authors to develop an
alternative, intrinsic approach to the study of Q-valued Sobolev mappings minimizing a
suitable generalization of the Dirichlet energy (Dir-minimizing multiple valued maps), which
does not rely on Almgren’s embedding of the space AQ(Rd) in a larger Euclidean space (cf.
[Alm00] and [DLS11, Chapter 2]). Such an approach is close in spirit to the general theory of
Sobolev maps taking values in abstract metric spaces and started in the works of Ambrosio
[Amb90] and Reshetnyak [Res97, Res04, Res06].

Definition 1.12 (Sobolev Q-valued functions). A measurable function u : Ω→ AQ(Rd) is in
the Sobolev classW 1,p, 1 ≤ p ≤ ∞ if and only if there exists a non-negative function ψ ∈ Lp(Ω)
such that, for every Lipschitz function φ : AQ(Rd)→ R, the following two properties hold:

(i) φ ◦ u ∈W 1,p(Ω) 4;
(ii) |D(φ ◦ u)(x)| ≤ Lip(φ)ψ(x) for almost every x ∈ Ω.

4Here, the Sobolev space W 1,p(Ω) is classically defined as the completion of C1(Ω) with respect to the
W 1,p-norm

‖f‖p
W1,p(Ω) :=

ˆ
Ω

(|f(x)|p + |Df(x)|p) dHm(x)

for 1 ≤ p <∞ and
‖f‖W1,∞(Ω) := ess sup

Ω
(|f(x)|+ |Df(x)|) .
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We also recall (cf. [DLS11, Proposition 4.2]) that if u ∈ W 1,p
(
Ω,AQ(Rd)

)
and ξ is a

tangent vector field defined in Ω, there exists a non-negative function gξ ∈ Lp(Ω) with the
following two properties:

(i) |DξG(u, T )| ≤ gξ a.e. in Ω for all T ∈ AQ;
(ii) if hξ ∈ Lp(Ω) satisfies |DξG(u, T )| ≤ hξ for all T ∈ AQ, then gξ ≤ hξ a.e.

Such a function is clearly unique (up to sets of Hm-measure zero), and will be denoted by
|Dξu|. Moreover, chosen a countable dense subset {Ti}∞i=0 ⊂ AQ, it satisfies

|Dξu| = sup
i∈N
|DξG(u, Ti)| (1.16)

almost everywhere in Ω.
As in the classical theory, Sobolev Q-valued maps can be approximated by Lipschitz maps.

Proposition 1.13 (Lipschitz approximation, cf. [DLS11, Proposition 4.4]). Let u be a
function in W 1,p(Ω,AQ). For every λ > 0, there exists a Lipschitz Q-function uλ such that
Lip(uλ) ≤ Cλ and

Hm ({x ∈ Ω : uλ(x) 6= u(x)}) ≤ C

λp

ˆ
Ω
|Du|p dHm, (1.17)

where the constant C depends only on Q, m and Ω.

As a corollary, Proposition 1.13 allows to prove that Sobolev Q-valued maps are approxi-
mately differentiable almost everywhere.

Corollary 1.14 (cf. [DLS11, Corollary 2.7]). Let u ∈W 1,p(Ω,AQ). Then, u is approximately
differentiable Hm-a.e. in Ω: precisely, for Hm-a.e. x ∈ Ω there exists a measurable set Ω̃ ⊂ Ω
containing x such that Ω̃ has density 1 at x and u|Ω̃ is differentiable at x.

The next proposition explores the link between the metric derivative defined in (1.16) and
the approximate differential of a Q-valued Sobolev function.

Proposition 1.15 (cf. [DLS11, Proposition 2.17]). Let u be a map in W 1,2
(
Ω,AQ(Rd)

)
.

Then, for any vector field ξ defined in Ω and tangent to Σ the metric derivative |Dξu| defined
in (1.16) satisfies

|Dξu|2 =
Q∑

`=1
|Dξu

`|2 Hm- a.e. in Ω, (1.18)

where
∑
` |Dξu

`|2 = G(Dξu,QJ0K)2 and Dξu(x) ∈ AQ(Rd) is the approximate directional
derivative of u along ξ at the point x ∈ Ω. In particular, we will set

|Du|2(x) :=
m∑

i=1
|Dξiu|2(x) =

m∑

i=1

Q∑

`=1
|Dξiu

`|2(x), (1.19)

with (ξi)mi=1 any orthonormal frame of T Σ, at all points x of approximate differentiability for
u in Ω.

Remark 1.16. Observe that the definition in (1.19) is independent of the choice of the frame
(ξi), as in fact one has

|Du|2(x) =
Q∑

`=1
|Du`(x)|2,
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where |Du`(x)| is the Hilbert-Schmidt norm of the linear map Du`(x) : TxΣ → Rd at every
point of approximate differentiability for u.

The main consequence of the above proposition is that essentially all the conclusions of the
usual Sobolev space theory for single-valued functions can be recovered in the multivalued
setting modulo routine modifications of the usual arguments. Some of these conclusions will
be useful in the coming sections, thus we will list them here, again referring the interested
reader to [DLS11] for their proofs and other useful considerations. In what follows, Ω ⊂ Σ is
an open set with Lipschitz boundary.

Definition 1.17 (Trace of Sobolev Q-functions). Let u ∈ W 1,p
(
Ω,AQ(Rd)

)
. A function g

belonging to Lp
(
∂Ω,AQ(Rd)

)
is said to be the trace of u at ∂Ω (and we write g = u|∂Ω) if

for any T ∈ AQ the trace of the real-valued Sobolev function G (u, T ) coincides with G (g, T ).

Definition 1.18 (Weak convergence). Let {uh}∞h=1 be a sequence of maps in W 1,p(Ω,AQ).
We say that uh converges weakly to u ∈W 1,p(Ω,AQ) for h→∞, and we write uh ⇀ u, if

(i) limh→∞
´

Ω G(uh, u)p dHm = 0;
(ii) there exists a constant C such that suph

´
Ω |Duh|p dHm ≤ C.

Proposition 1.19 (Weak sequential closure, cf. [DLS11, Proposition 2.10, Proposition 4.5]).
Let u ∈W 1,p(Ω,AQ). Then, there is a unique function g ∈ Lp(∂Ω,AQ) such that g = u|∂Ω in
the sense of Definition 1.17. Moreover, the set

W 1,p
g (Ω,AQ) := {u ∈W 1,p(Ω,AQ) : u|∂Ω = g}

is sequentially closed with respect to the notion of weak convergence introduced in Definition
1.18.

Proposition 1.20 (Sobolev embeddings, cf. [DLS11, Proposition 2.11, Proposition 4.6]). The
following embeddings hold:

(i) if p < m, then W 1,p(Ω,AQ) ⊂ Lq(Ω,AQ) for every q ∈ [1, p∗], p∗ := mp
m−p , and the

inclusion is compact when q < p∗;
(ii) if p = m, then W 1,p(Ω,AQ) ⊂ Lq(Ω,AQ) for all q ∈ [1,∞), with compact inclusion;

(iii) if p > m, then W 1,p(Ω,AQ) ⊂ C0,α(Ω,AQ) for all α ∈
[
0, 1− m

p

]
, with compact

inclusion if α < 1− m
p .

Proposition 1.21 (Poincaré inequality, cf. [DLS11, Proposition 2.12, Proposition 4.9]). Let
Ω be a connected open subset of Σ with Lipschitz boundary, and let p < m. There exists a
constant C = C(p,m, d,Q,Ω) with the following property: for every u ∈ W 1,p

(
Ω,AQ(Rd)

)

there exists a point u ∈ AQ(Rd) such that
(ˆ

Ω
G(u, u)p∗ dHm

) 1
p∗

≤ C
(ˆ

Ω
|Du|p dHm

) 1
p

. (1.20)

Proposition 1.22 (Campanato-Morrey estimates, cf. [DLS11, Proposition 2.14]). Let u be a
W 1,2(B1,AQ) function, with B1 = B1(0) ⊂ Rm, and assume α ∈ (0, 1] is such thatˆ

Br(y)
|Du|2 ≤ Arm−2+2α for every y ∈ B1 and a.e. r ∈ (0, 1− |y|) .
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Then, for every 0 < δ < 1 there is a constant C = C(m, d,Q, δ) such that

[u]C0,α(Bδ) := sup
x,y∈Bδ

G (u(x), u(y))
|x− y|α ≤ C

√
A. (1.21)

1.2.5. The Dirichlet energy. Dir-minimizers. A simple corollary of Proposition 1.15 and
Remark 1.16 is that the Dirichlet energy of a map u ∈W 1,2

(
Ω,AQ(Rd)

)
can be defined in a

unique way by setting

Dir(u,Ω) :=
ˆ

Ω

m∑

i=1
|Dξiu|2 dHm =

ˆ
Ω

m∑

i=1

Q∑

`=1
|Dξiu

`|2 dHm, (1.22)

for any choice of a (local) orthonormal frame (ξ1, . . . , ξm) of the tangent bundle of Σ.
Another interesting quantity that can be defined in our setting, the importance of which

will become apparent in the sequel, is the Dirichlet energy of a tangent vector field to the
manifoldM.

Definition 1.23 (Dirichlet energy of a tangent Q-field). Let Ω be an open subset of Σ ↪→M
as above. Let u ∈W 1,2

(
Ω,AQ(Rd)

)
be a Sobolev Q-valued tangent vector field toM: that

is, assume that spt(u(x)) ⊂ TxM for Hm-a.e. x ∈ Ω. Then, for any point x of approximate
differentiability for u in Ω, and for any tangent vector field ξ, we set

∇ξu(x) :=
Q∑

`=1
JpMx ·Dξu

`(x)K. (1.23)

The Dirichlet energy of the vector field u in Ω is thus given by

DirTM(u,Ω) :=
ˆ

Ω

m∑

i=1
|∇ξiu|2 dHm (1.24)

for any orthonormal frame (ξ1, . . . , ξm) of T Σ.

Remark 1.24. Observe that, when u is Lipschitz continuous and u|Bi =
∑Q
`=1Ju

`
iK is a local

Lipschitz selection of u as in Proposition 1.7, one has

|∇ξu(x)|2 =
Q∑

`=1
|∇ξu`i(x)|2 for Hm − a.e. x ∈ Bi, for all vector fields ξ,

where the ∇ on the right-hand side has to be intended as the classical covariant derivative
(which can be extended to Lipschitz maps by means of Rademacher’s theorem).

The functional DirTM defined in (1.24) is the “right” geometric quantity to consider when
dealing with tangent vector fields, since it does not involve any geometric structure external
to the manifold M. In particular, it does not depend on the isometric embedding of the
Riemannian manifoldM in the Euclidean space Rd.

As already mentioned before, a theory concerning existence and regularity properties of
minimizers of the Dirichlet energy in W 1,2 (the so called Dir-minimizers) has been extensively
studied by Almgren in [Alm00] and revisited by De Lellis and Spadaro in [DLS11]. The theory
can be summarized in three main theorems.
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Theorem 1.25 (Existence and Hölder regularity, cf. [DLS11, Theorems 0.8 and 0.9]). Let
Ω ⊂ Rm be a bounded open subset with Lipschitz boundary. Let g ∈ W 1,2(Ω,AQ). Then,
there exists a function u ∈ W 1,2(Ω,AQ) minimizing the Dirichlet energy (1.22) among all
W 1,2 Q-valued functions v such that v|∂Ω = g|∂Ω. Furthermore, any Dir-minimizer u is in
C0,α(Ω′,AQ) for every Ω′ b Ω, for some exponent α = α(m,Q).

The statement of the other two results requires the definition of regular and singular points
of a Dir-minimizer u.

Definition 1.26 (Regular and singular points of a Dir-minimizing map). A Q-valued Dir-
minimizer u is regular at a point x ∈ Ω if there exist a neighborhood B of x in Ω and Q
harmonic functions u` : B → Rd such that

u(y) =
Q∑

`=1
Ju`(y)K for almost every y ∈ B

and either u`(y) 6= uh(y) for every y ∈ B or u` ≡ uh. We will write x ∈ reg(u) if x is a regular
point. The complement of reg(u) in Ω is the singular set, and will be denoted sing(u).

Theorem 1.27 (Estimate of the singular set, cf. [DLS11, Theorem 0.11]). Let u be a Dir-
minimizer. Then, the Hausdorff dimension of sing(u) is at most m− 2. If m = 2, then sing(u)
is at most countable.

Theorem 1.28 (Improved estimate of the singular set for m = 2, cf. [DLS11, Theorem 0.12]).
Let u be Dir-minimizing, and m = 2. Then, the singular set sing(u) consists of isolated points.

Remark 1.29. It is worth observing that here we have only discussed those results in the
theory of Dir-minimizing multiple valued functions which will be useful for our purposes at
a later stage of this paper, and therefore our summary is far from being complete. Among
the results that we have not included in the above presentation, we mention the paper
[Hir16a], concerned with the problem of extending the Hölder regularity in Theorem 1.25
up to the boundary of Ω, and the recent result [DMSV16], where the authors prove that if
u is Dir-minimizing then sing(u) is actually countably (m− 2)-rectifiable (and hence Hm−2

σ-finite), thus extending to general Q a previous result obtained for Q = 2 by Krummel and
Wickramasekera in [KW13] and considerably improving Almgren’s original theory.

2. Q-valued second variation of the area functional

LetM and Σ be as in Assumption 1.1. The goal of this section is to define the admissible Q-
valued normal variations of Σ inM and to compute the associated second variation functional.
In what follows, we will denote by AQ(M) the space of Q-points T =

∑
`Jp`K ∈ AQ(Rd) with

each p` inM.

Definition 2.1. An admissible variational Q-field of Σ inM is a Lipschitz map

N :=
Q∑

`=1
JN `K : Σ→ AQ(Rd)

satisfying the following assumptions:
(H1) N `(x) ∈ T⊥x Σ ⊂ TxM for every ` ∈ {1, . . . , Q}, for every x ∈ Σ;
(H2) N ` vanishes in a neighborhood of ∂Σ for every ` ∈ {1, . . . , Q}.
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Definition 2.2. Given an admissible variational Q-field N , the one-parameter family of
Q-valued deformations of Σ inM induced by N is the map

F : Σ× (−δ, δ)→ AQ(M)

defined by

F (x, t) :=
Q∑

`=1
Jexpx(tN `(x))K, (2.1)

where exp denotes the exponential map onM.

Observe that, for any given N as in Definition 2.1, the induced one-parameter family of
Q-valued deformations is always well defined for a positive δ which depends on the L∞ norm
of N and on the injectivity radius ofM. Note, furthermore, that F (x, 0) = QJxK for every
x ∈ Σ, and that F (x, t) = QJxK for all t if x ∈ ∂Σ.

If F is an admissible one-parameter family of Q-valued deformations, we will often write
Ft(x) instead of F (x, t). Moreover, we will set F `t (x) := expx(tN `(x)).

In what follows, we will always assume to have fixed an orthonormal frame (ξ1, . . . , ξm) of
the tangent bundle T Σ, so that ~ξ = ξ1 ∧ · · · ∧ ξm is a continuous simple unit m-vector field
orienting Σ. Given any admissible variational Q-field N , we can now apply the results of the
previous section, and consider the push-forward of Σ through the family Ft induced by N .
An immediate consequence of Proposition 1.9 is that the resulting object is a one-parameter
family of integer rectifiable m-currents, denoted Σt := TFt = (Ft)]JΣK with spt(Σt) ⊂ M.
From (1.10), we have also the explicit representation formula

Σt(ω) =
ˆ

Σ

Q∑

`=1

〈
ω
(
F `t (x)

)
, DF `t (x)]~ξ(x)

〉
dHm(x) ∀ω ∈ Dm(Rd). (2.2)

We will denote µ(t) the mass M(Σt) of the current Σt.

Definition 2.3. Let Σ ⊂M, and let N be an admissible variational Q-field. For any integer
j ≥ 1, the jth order variation of Σ generated by N is the quantity

δjJΣK(N) := djµ

dtj

∣∣∣∣∣
t=0

. (2.3)

δ1JΣK is usually denoted δJΣK, and called first variation. δ2JΣK is called second variation.

For every j, δjJΣK is a functional defined on the space of admissible variational Q-fields.
In the following theorem we show that the first variation functional δJΣK is identically zero
under the assumption that Σ is minimal inM. Furthermore, and more importantly for our
purposes, we provide an explicit representation formula for δ2JΣK.

Theorem 2.4. Let Σ ↪→M be as in Assumption 1.1. If N is an admissible variational Q-field
of Σ inM, then

δJΣK(N) = 0, (2.4)
and

δ2JΣK(N) = DirTM(N,Σ)− 2
ˆ

Σ

Q∑

`=1
|A ·N `|2 dHm −

ˆ
Σ

Q∑

`=1
R(N `, N `) dHm, (2.5)
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where
|A ·N `|2 :=

m∑

i,j=1
|〈A(ξi, ξj), N `〉|2 (2.6)

and
R(N `, N `) :=

m∑

i=1
〈R(N `, ξi)ξi, N `〉. (2.7)

Remark 2.5. Observe that formula (2.5) makes sense because the quantity on the right-hand
side does not depend on the particular selection chosen for N , nor on the orthonormal frame
chosen for the tangent bundle T Σ.

The first addendum in the sum is the Dirichlet energy of the multivalued vector field N on
the manifoldM as defined in (1.24).

The second term in the sum can as well be given an intrinsic formulation, once we observe
that |A ·N `| is the Hilbert-Schmidt norm of the symmetric bilinear form A ·N ` : T Σ×T Σ→ R
defined by A ·N `(ξ, η) := 〈A(ξ, η), N `〉.

Regarding the third term, the symmetry properties of the Riemann tensor allow to write
〈R(N `, ξi)ξi, N `〉 = 〈R(ξi, N `)N `, ξi〉 = 〈p ·R(ξi, N `)N `, ξi〉,

which in turn implies that R(N `, N `) coincides with the trace of the endomorphism
ξ 7→ p ·R(ξ,N `)N `

of the tangent bundle T Σ. In other words, this term is a partial Ricci curvature in the direction
of the vector field N `.

Proof of Theorem 2.4. Let N be an admissible variational Q-field of Σ in M, and let F =
F (x, t) denote the induced one-parameter family of Q-valued deformations. The proof of the
representation formulae (2.4) and (2.5) will be obtained by direct computation.

The starting point is the Q-valued area formula, Proposition 1.11, which yields an explicit
formula for the function µ(t). Indeed, we may write

µ(t) =
ˆ

Σ

Q∑

`=1
JF `t (x) dHm(x), (2.8)

provided condition (1.15) is satisfied: that is, provided there is a set B ⊂ Σ of full measure for
which

〈DF `t (x)]~ξ(x), DF `′t (y)]~ξ(y)〉 ≥ 0 ∀x, y ∈ B and `, `′ with F `t (x) = F `
′
t (y). (2.9)

Now, it is not difficult to show that in fact condition (2.9) holds with B = Σ: to see this,
first observe that since Σ is compact there exists a number ε > 0 such that 〈~ξ(x), ~ξ(y)〉 ≥ 1

2
for all points x, y ∈ Σ such that d(x, y) ≤ ε. On the other hand, the very definition
of F implies that for any x ∈ Σ one may write F `t (x) = x + tN `(x) + o(t) for t → 0.
Therefore, if |t| is chosen small enough, depending on Σ, ε and on the L∞ norm of N
in Σ, the condition F `t (x) = F `

′
t (y) implies d(x, y) ≤ ε and consequently the condition

〈~ξ(x), ~ξ(y)〉 ≥ 1
2 . But now, since DF `t (x) = Id + tDN `(x) + o(t), we easily infer that

〈DF `t (x)]~ξ(x), DF `′t (y)]~ξ(y)〉 ≥ 1
4 for all x, y ∈ Σ and `, `′ with F `t (x) = F `

′
t (y) provided

|t| ≤ δ0 for some δ0 = δ0
(
Σ, ε, ‖N‖L∞(Σ),Lip(N)

)
.

Thus, we can work on each component F ` of the decomposition of F separately: in the end,
we will just apply (2.8) to obtain the desired variation formulae. Moreover, since the coming
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arguments are local, we will assume in what follows that the frame {ξi}mi=1 is C2 and that the
selection N =

∑
`JN `K is Lipschitz in a neighborhood of any given point x.

With that being said, let us now consider a fixed value of ` ∈ {1, . . . , Q} and introduce the
following quantities. For any x point of differentiability for N in Σ, let Z`(x) := ∂ttF

`(x, 0)
denote the initial acceleration of the `th sheet at the point x, so that the second order Taylor
expansion of F `(x, ·) around t = 0 is

F `(x, t) = x+ tN `(x) + 1
2 t

2Z`(x) + o(t2)

in a suitable δ-neighborhood of t = 0. Then, for any i ∈ {1, . . . ,m}, define

e`i = e`i(x, t) := DξiF
`
t (x) = ξi(x) + tDξiN

`(x) + 1
2 t

2DξiZ
`(x) + o(t2) (2.10)

and
V ` = V `(x, t) := ∂tF

`(x, t). (2.11)
Observe that e`i and V ` are tangent vector fields toM.

Next, for i, j ∈ {1, . . . ,m} denote
g`ij = g`ij(x, t) := 〈e`i(x, t), e`j(x, t)〉 (2.12)

and
g` = g`(x, t) := det(g`ij(x, t)). (2.13)

Using the above notation, we readily see that the Jacobian determinant JF `t can be written
as follows:

J ` = J `(x, t) := JF `t (x) =
√

g`(x, t), (2.14)
so that, finally, the mass of the push-forwarded current is given by

µ(t) =
Q∑

`=1
µ`(t), (2.15)

where
µ`(t) :=

ˆ
Σ
J `(x, t) dHm(x). (2.16)

Thus, we conclude that the first and second variation of Σ under the deformation generated
by N can be represented in the following way:

δJΣK(N) =
Q∑

`=1

dµ`

dt

∣∣∣∣∣
t=0

(2.17)

and

δ2JΣK(N) =
Q∑

`=1

d2µ`

dt2

∣∣∣∣∣
t=0

. (2.18)

In what follows, in order to simplify the notation, we will drop the superscript ` when
carrying on the computation.

One has:
dµ

dt

∣∣∣∣
t=0

=
ˆ

Σ
∂tJ(x, 0) dHm(x). (2.19)

Now, since
∂tJ = 1

2J ∂tg,
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and since gij = δij at time t = 0, easy computations show that

∂tJ
∣∣
t=0 = 1

2

m∑

i=1
∂tgii

∣∣
t=0 =

m∑

i=1
〈ei, ∂tei〉

∣∣
t=0 , (2.20)

and thus

δJΣK(N) =
ˆ

Σ

Q∑

`=1

m∑

i=1
〈ξi, DξiN

`〉 dHm =
ˆ

Σ

Q∑

`=1

m∑

i=1
〈ξi,∇ξiN `〉dHm =

ˆ
Σ

Q∑

`=1
divΣ(N `) dHm.

In particular, recalling the definition of the map η in (1.3), we deduce from the linearity of
the divergence operator that

δJΣK(N) = Q

ˆ
Σ

divΣ(η ◦N) dHm, (2.21)

where η ◦N : Σ→ Rd, the “average” of the sheets of the vector field N , is a classical single-
valued Lipschitz map. Note that if N is single-valued then η ◦N ≡ N , and we recover the
usual formulation of the first variation formula in terms of the divergence of the variational
vector field. Observe now that the average η ◦N vanishes in a neighborhood of ∂Σ and satisfies
η ◦N(x) ∈ T⊥x Σ ⊂ TxM for every x ∈ Σ. Hence, for every i ∈ {1, . . . ,m} the scalar product
〈ξi,η ◦ N〉 is everywhere vanishing, and we have that 〈ξi,∇ξi(η ◦ N)〉 = −〈∇ξiξi,η ◦ N〉 =
−〈A(ξi, ξi),η ◦N〉. Therefore, recalling the definition of the mean curvature vector H as the
trace of the second fundamental form, one can also write

δJΣK(N) = Q

ˆ
Σ

m∑

i=1
〈ξi,∇ξi(η ◦N)〉dHm = −Q

ˆ
Σ
〈H,η ◦N〉dHm = 0 (2.22)

because Σ is minimal inM. This proves (2.4).
Next, we go further and we compute the second variation of the mass. We first write, for

every t and for every x ∈ Σ of differentiability for the variational field:

∂tJ = 1
2√g∂tg = 1

2J
1
g∂tg = 1

2J∂t (log(g)) = 1
2Jgij∂tgji,

where in the last identity we have used Jacobi’s formula

∂t log detA(t) = tr
(
A(t)−1 · ∂tA(t)

)

for any invertible matrix A(t) with positive determinant. Moreover,
(
gij
)
is the inverse matrix

of (gij), and Einstein’s convention on the summation of repeated indices has been used. Now,
since

∂tgji = ∂t (〈ej , ei〉) = 〈∂tej , ei〉+ 〈ej , ∂tei〉,
and using the fact that the matrix

(
gij
)
is symmetric, we can conclude the following identity:

∂tJ = Jgij〈ei, ∂tej〉.
In turn, this produces:

∂ttJ = (∂tJ) gij〈ei, ∂tej〉︸ ︷︷ ︸
=:I

+ J
(
∂tgij

)
〈ei, ∂tej〉

︸ ︷︷ ︸
=:II

+ Jgij∂t (〈ei, ∂tej〉)︸ ︷︷ ︸
=:III

. (2.23)
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Now, we evaluate equation (2.23) at time t = 0. Regarding the first term in the sum, we use
(2.20), the orthonormality condition gij

∣∣
t=0 = δij and the fact that ei

∣∣
t=0 = ξi, ∂tei

∣∣
t=0 = DξiN

(here, of course, we are writing N instead of N `) to conclude

I
∣∣
t=0 =

(
m∑

i=1
〈ξi,∇ξiN〉

)2

. (2.24)

Since N = N ` is Lipschitz, and since 〈ξi, N〉 ≡ 0, we have 〈ξi,∇ξiN〉 = −〈A(ξi, ξi), N〉, and
thus

I
∣∣
t=0 = (〈H,N〉)2 = 0 (2.25)

due to the minimality of Σ.
In order to derive a formula for II

∣∣
t=0, we first differentiate the identity

gijgjh = δih

to obtain that
∂tgij = −gik (∂tgkh) ghj ,

whence
∂tgij

∣∣
t=0 = −∂tgij

∣∣
t=0 = −

(
〈∇ξiN, ξj〉+ 〈ξi,∇ξjN〉

)
. (2.26)

Since 〈∇ξiN, ξj〉 = −〈A (ξi, ξj) , N〉, the symmetry of the second fundamental form implies
∂tgij

∣∣
t=0 = 2〈A (ξi, ξj) , N〉. (2.27)

Again, since
〈ei, ∂tej〉

∣∣
t=0 = 〈ξi,∇ξjN〉 = −〈A (ξi, ξj) , N〉,

we can finally obtain

II
∣∣
t=0 = −2

m∑

i,j=1
|〈A(ξi, ξj), N〉|2. (2.28)

Finally, we compute III
∣∣
t=0. The simplest way to do it is to regard the operator ∂t as the

covariant derivative along the vector field V = V `. One therefore has:
∂t (〈ei, ∂tej〉) = V 〈ei,∇V ej〉

= 〈∇V ei,∇V ej〉+ 〈ei,∇V∇V ej〉
= 〈∇eiV,∇ejV 〉+ 〈ei,∇V∇ejV 〉,

where in the last identity we have used the fact that the vector fields ei and V commute,
and, of course, that the Riemannian connection onM is torsion-free. Now, using again that
[V, ej ] = 0 and the definition of the curvature tensor R, we may write

∇V∇ejV = ∇ej∇V V +R(V, ej)V,
so that, finally, the evaluation of ∂t (〈ei, ∂tej〉) at time t = 0 yields

∂t (〈ei, ∂tej〉)
∣∣
t=0 = 〈∇ξiN,∇ξjN〉+ 〈ξi,∇ξjZ〉+ 〈ξi, R(N, ξj)N〉,

with Z = Z`. Since J
∣∣
t=0 = 1 and gij

∣∣
t=0 = δij , we conclude the following identity:

III
∣∣
t=0 =

m∑

i=1
|∇ξiN |2 + divΣZ −

m∑

i=1
〈R(N, ξi)ξi, N〉. (2.29)

Observe that, in deriving formula (2.29), we have used that 〈R(X,Y )U,W 〉 = −〈R(X,Y )W,U〉
for any choice of X,Y, U,W vector fields onM.
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We have now all the tools to conclude: from the Q-valued area formula (2.8) it follows that

d2µ

dt2

∣∣∣∣∣
t=0

=
ˆ

Σ

Q∑

`=1
∂ttJ

`(x, 0) dHm(x),

thus it suffices to plug equations (2.25), (2.28), (2.29) in (2.23) to get

δ2JΣK(N) =
ˆ

Σ

Q∑

`=1




m∑

i=1
|∇ξiN `|2 − 2

m∑

i,j=1
|〈A(ξi, ξj), N `〉|2 −

m∑

i=1
〈R(N `, ξi)ξi, N `〉


dHm

+Q

ˆ
Σ

divΣ(η ◦ Z) dHm,
(2.30)

where Z :=
∑
`JZ`K. Now, we decompose

η ◦ Z = p · (η ◦ Z) + p⊥ · (η ◦ Z) = (η ◦ Z)> + (η ◦ Z)⊥, (2.31)

and we see that, since 〈ξi, (η ◦ Z)⊥〉 = 0 for all i,

divΣ((η ◦ Z)⊥) =
m∑

i=1
〈ξi,∇ξi(η ◦ Z)⊥〉 = −

m∑

i=1
〈A(ξi, ξi),η ◦ Z〉 = −〈H,η ◦ Z〉 = 0. (2.32)

On the other hand, Stokes’ theorem and the fact that N is vanishing in a neighborhood of ∂Σ
readily imply that ˆ

Σ
divΣ((η ◦ Z)>) dHm = 0, (2.33)

and thus the last addendum on the right-hand side of (2.30) vanishes. This completes the
proof of formula (2.5). �

We note now that the quantity appearing on the right-hand side of formula (2.30) is in
fact well defined for any Q-valued vector field tangent to M and belonging to the class
W 1,2

(
Σ,AQ(Rd)

)
. This motivates the following definitions.

Definition 2.6 (W 1,2 sections of the normal bundle). Let Σ ↪→ M be as above, and let
Ω ⊂ Σ be open. We define the class of W 1,2 sections of the normal bundle of Ω inM, denoted
Γ1,2
Q (NΩ), as follows:

Γ1,2
Q (NΩ) :=

{
N ∈W 1,2

(
Ω,AQ(Rd)

)
: spt(N(x)) ⊂ T⊥x Σ ⊂ TxM for Hm-a.e. x ∈ Ω

}
.

(2.34)

Definition 2.7 (Jacobi functional). For a section N ∈ Γ1,2
Q (NΩ), the Jacobi functional, or

stability functional, is defined by:

Jac(N,Ω) := DirTM(N,Ω)− 2
ˆ

Ω

Q∑

`=1
|A ·N `|2 dHm −

ˆ
Ω

Q∑

`=1
R(N `, N `) dHm. (2.35)

Our first observation is that the classical theory of the Jacobi normal operator can be
recovered within the above framework by simply setting Q = 1.
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Remark 2.8. Consider the classical single-valued setting, corresponding to Q = 1, let Ω = Σ
and recall that

DirTM(N,Σ) =
ˆ

Σ

m∑

i=1
|∇ξiN |2 dHm

for any orthonormal frame (ξ1, . . . , ξm) of T Σ. Assume also that N is Lipschitz continuous for
convenience. Let (ν1, . . . , νk) be local sections of the normal bundle NΣ of Σ inM such that,
at each point x ∈ Σ, the system

(
(ξj(x))mj=1, (να(x))kα=1

)
is an orthonormal basis of TxM.

Then, for every point of differentiability for N and for every i = 1, . . . ,m we have:

|∇ξiN |2 =
m∑

j=1
|〈∇ξiN, ξj〉|2 +

k∑

α=1
|〈∇ξiN, να〉|2.

Now, the usual considerations about the orthogonality of N and ξj imply that 〈∇ξiN, ξj〉 =
−〈A(ξi, ξj), N〉. We therefore obtain that

ˆ
Σ




m∑

i=1
|∇ξiN |2 −

m∑

i,j=1
|〈A(ξi, ξj), N〉|2


 dHm =

ˆ
Σ

m∑

i=1

k∑

α=1
|〈∇ξiN, να〉|2 dHm,

and finally conclude the identity

Jac(N,Σ) =
ˆ

Σ




m∑

i=1

k∑

α=1
|〈∇ξiN, να〉|2 −

m∑

i,j=1
|〈A(ξi, ξj), N〉|2 −

m∑

i=1
〈R(N, ξi)ξi, N〉


 dHm.

(2.36)
It is immediately seen that the Euler-Lagrange operator associated to the second variation

functional (2.36) is the linear elliptic operator L defined on the space of sections of NΣ and
given by

L := −∆⊥Σ −A −R, (2.37)
where ∆⊥Σ is the Laplacian on the normal bundle of Σ, A is Simons’ operator, defined by

A (N) :=
m∑

i,j=1
〈A(ξi, ξj), N〉A(ξi, ξj), (2.38)

and R is given by

R(N) :=
m∑

i=1
p⊥ ·R(N, ξi)ξi. (2.39)

As already anticipated in the Introduction, the operator L is classically called Jacobi normal
operator, and the solutions of the differential equation L(N) = 0 (that is, the normal vector
fields that are in its kernel) are known in the literature as Jacobi fields. The importance of
studying the second variation operator of minimal submanifolds into Riemannian manifolds
is well justified by the arguments given earlier on in this section: in the single valued case
Q = 1, the Jacobi operator L carries the information about the stability properties of the
submanifold itself, when it is thought of as a stationary point for the m-dimensional volume.
In particular, non-trivial Jacobi fields vanishing on ∂Σ are, when they exist, the infinitesimal
normal deformations of Σ which preserve the volume up to second order. From a functional
analytic point of view, L is a second-order strongly elliptic operator. When diagonalized on
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the space of sections of NΣ vanishing on ∂Σ with respect to the standard inner product, it
exhibits distinct, real eigenvalues {λh}∞h=1 (counted with multiplicities) such that

λ1 < λ2 < · · · < λh < · · · → +∞.
Moreover, the dimension of each eigenspace is finite. The sum of the dimensions of the
eigenspaces corresponding to negative eigenvalues is called the Morse index of Σ: it accounts
for the number of independent infinitesimal normal deformations of Σ which do decrease the
volume at second order. If λ = 0 is an eigenvalue, then the dimension of ker(L) is called
nullity. We recall that Σ is called stable if its Morse index is 0, and strictly stable if there exist
no non-trivial Jacobi fields vanishing at the boundary, i.e. if index(Σ) + nullity(Σ) = 0.

A systematic study of the Jacobi normal operator was initiated by J. Simons in [Sim68].
One of Simons’ main results was to prove that if M = Sm+1 and Σm is a closed minimal
hypersurface immersed in Sm+1 which is not totally geodesic then the first eigenvalue of the
operator L satisfies the upper bound λ1 ≤ −m. As a consequence of this, he was able to show
that no non-trivial stable minimal hypercones exist in Rm+1 for m ≤ 6. In turn, this led to
the proof of the Bernstein conjecture, stating that the only entire solutions u : Rm → R of the
minimal surface equation are linear, for every m ≤ 7. The result is sharp, as the Bernstein
conjecture was proved to be false for m > 7 by E. Bombieri, E. De Giorgi and E. Giusti in
[BDGG69].

The considerations leading to formula (2.36) can be repeated in the Q-valued setting, thus
showing that the Definition 2.7 of the Jacobi functional agrees with the one given in formula
(0.1). This equivalence is recorded in Lemma 2.10 below. We first need a definition.

Definition 2.9 (Normal Dirichlet energy of a section). Let N ∈ Γ1,2
Q (NΩ). For any point

x ∈ Ω where N is approximately differentiable, and for any tangent vector field ξ, set

∇⊥ξ N(x) :=
Q∑

`=1
JpΣ⊥

x ·DξN
`(x)K, (2.40)

where pΣ⊥
x = p⊥x ◦ pMx is the orthogonal projection of Rd onto T⊥x Σ. Then, the normal

Dirichlet energy of N in Ω is the quantity

DirNΣ(N,Ω) :=
ˆ

Ω

m∑

i=1
|∇⊥ξiN |2 dHm, (2.41)

for any choice of a (local) orthonormal frame {ξi}mi=1 of T Σ.

Lemma 2.10 (Equivalence of the definitions of the Jac functional). For any N =
∑
`JN `K ∈

Γ1,2
Q (NΩ) it holds

Jac(N,Ω) = DirNΣ(N,Ω)−
ˆ

Ω

Q∑

`=1
|A ·N `|2 dHm −

ˆ
Ω

Q∑

`=1
R(N `, N `) dHm

=
ˆ

Ω

Q∑

`=1




m∑

i=1

k∑

α=1
|〈DξiN

`, να〉|2 −
m∑

i,j=1
|〈A(ξi, ξj), N `〉|2 −

m∑

i=1
〈R(ξi, N `)N `, ξi〉


 dHm ,

(2.42)

where {ξi}mi=1 and {να}kα=1 are (local) orthonormal frames of T Σ and NΣ respectively.
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Proof. It is a straightforward consequence of the arguments contained in Remark 2.8 combined
with the Lipschitz approximation theorem, Proposition 1.13 (cf. also [DLS14, Lemma 4.5])
and the Lipschitz selection property in Proposition 1.7. �

On the other hand, unlike the single-valued case, the lack of linear structure of Γ1,2
Q (NΩ) in

the multivalued case Q > 1 does not allow one to associate an operator to the Jacobi functional,
nor to characterize multiple valued Jacobi fields as the solutions of a certain (Euler-Lagrange)
PDE. Nonetheless, the variational structure of the problem suggests that the minimizers of the
Jacobi functional for a given boundary datum have the right to be considered the multivalued
counterpart of the classical Jacobi fields. This justifies the definition of Jacobi Q-fields given
in Definition 0.2. In the next section we explore the first elementary properties of multiple
valued Jacobi fields.

3. Jacobi Q-fields

The goal of this section is to provide the two fundamental tools which will be used in Section
4 to address the question of the existence of Jacobi Q-fields N in Ω with prescribed boundary
value N |∂Ω = g|∂Ω for some fixed g ∈ Γ1,2

Q (NΩ), and ultimately to prove Theorem 0.3. These
tools are encoded in Proposition 3.1 and Lemma 3.4 below. The proof of Theorem 0.3 will
be obtained by direct methods in the Calculus of Variations, and therefore it is natural to
analyze the properties of lower semi-continuity and compactness of the stability functional.
The proof of the weak lower semi-continuity is rather simple, and it is the content of the
following proposition.

Proposition 3.1. The Jacobi functional is lower semi-continuous with respect to the weak
topology of Γ1,2

Q (NΩ).

Before coming to the proof, it will be useful to make some further considerations about the
structure of the Jacobi functional, in order to simplify the notation and to express it as a
perturbation of the Dirichlet functional Dir(u,Ω).

Remark 3.2. Given any Q-valued Lipschitz map u =
∑
`Ju`K satisfying u`(x) ∈ T⊥x Σ ⊂ TxM

for all x ∈ Ω, the orthogonal decomposition

Dξu
`(x) = pMx ·Dξu

`(x) + pM⊥x ·Dξu
`(x) = ∇ξu`(x) +Ax

(
ξ(x), u`(x)

)

holds for any tangent vector field ξ at any point x of differentiability for u, hence Hm-a.e. in
Ω. Here, A denotes the second fundamental form of the embeddingM ↪→ Rd. Hence, at any
such point we may write

|∇ξu`|2 = |Dξu
`|2 − |A(ξ, u`)|2.

These considerations are extended in the obvious way to all sections u ∈ Γ1,2
Q (NΩ) at all points

of approximate differentiability. Ultimately, we will write

Jac(u,Ω) = Dir(u,Ω)− BΩ(u), (3.1)

where BΩ is the functional on Γ1,2
Q (NΩ) defined by

BΩ(u) :=
ˆ

Ω

Q∑

`=1




m∑

i=1
|A(ξi, u`)|2 + 2

m∑

i,j=1
|〈A(ξi, ξj), u`〉|2 +

m∑

i=1
〈R(u`, ξi)ξi, u`〉


 dHm. (3.2)
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Observe that BΩ satisfies an estimate of the form
|BΩ(u)| ≤ C0‖u‖2L2 , (3.3)

where C0 is a geometric constant, depending on A,A,R, where

A = ‖A‖L∞ := max
x∈Σ

max
{
|Ax(X,Y )| : X,Y ∈ Sm−1 ⊂ TxΣ

}
, (3.4)

A = ‖A‖L∞ := max
x∈Σ

max
{
|Ax(X,Y )| : X,Y ∈ Sm+k−1 ⊂ TxM

}
, (3.5)

R = ‖R‖L∞ := max
x∈Σ

max
{
|pΣ⊥
x ·Rx(X,Y )Z| : X ∈ T⊥x Σ, Y, Z ∈ TxΣ, |X| = |Y | = |Z| = 1

}
.

(3.6)

Proof of Proposition 3.1. Consider Q-valued sections uh, u ∈ Γ1,2
Q (NΩ) and assume that uh ⇀

u weakly in W 1,2(Ω,AQ) as in Definition 1.18. Now, use (3.1) in order to write
Jac(uh,Ω) = Dir(uh,Ω)− BΩ(uh).

The weak lower semi-continuity of the Dirichlet energy was proved by De Lellis and Spadaro
in [DLS11, Proof of Theorem 0.8, p.30]. On the other hand, the condition

lim
h→∞

ˆ
Ω
G (uh, u)2 dHm = 0

is enough to show that in fact
lim
h→∞

BΩ(uh) = BΩ(u). (3.7)

To see this, just write (3.7) as

lim
h

ˆ
Ω
bh dHm =

ˆ
Ω
bdHm, (3.8)

with

bh(x) =
Q∑

`=1




m∑

i=1
|A(ξi, u`h)|2 + 2

m∑

i,j=1
|〈A(ξi, ξj), u`h〉|2 +

m∑

i=1
〈R(u`h, ξi)ξi, u`h〉




and

b(x) =
Q∑

`=1




m∑

i=1
|A(ξi, u`)|2 + 2

m∑

i,j=1
|〈A(ξi, ξj), u`〉|2 +

m∑

i=1
〈R(u`, ξi)ξi, u`〉


 ,

and observe that the strong convergence uh → u in L2(Ω,AQ) suffices to prove that along a
subsequence (not relabeled) bh(x)→ b(x) pointwise Hm-a.e. in Ω. Equation (3.8) then follows
by standard techniques in integration theory. �

As for compactness, the situation is much more involved. Indeed, as already anticipated, the
existence of a solution of the minimum problem for the Jacobi functional with any boundary
datum g is strictly related with showing that N0 ≡ QJ0K is in fact the only minimizer under
QJ0K boundary conditions.

Remark 3.3. If N ∈ Γ1,2
Q (NΩ) is a Jacobi Q-field with N |∂Ω = QJ0K, then Jac(N,Ω) = 0.

This is a consequence of the homogeneity properties of the functional: in this case, indeed, for
any t ∈ R the Q-field tN :=

∑
`JtN `K is a suitable competitor, and

Jac(tN,Ω) = t2Jac(N,Ω).
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Hence, were Jac(N,Ω) < 0 5, one would obtain that limt→∞ Jac(tN,Ω) = −∞, thus contra-
dicting the definition of N .

We are then able to conclude that if the minimum problem for the Jacobi functional with
QJ0K boundary data does admit a solution, then for any minimizer N one has Jac(N,Ω) = 0.
In particular, N0 ≡ QJ0K is a minimizer.

The condition that N0 ≡ QJ0K is the only minimizer for its boundary value will be referred
to as strict stability condition, as it characterizes the strictly stable submanifolds in the Q = 1
case. In the following lemma we provide an equivalent condition to the strict stability.

Lemma 3.4. There exists a unique solution N0 ≡ QJ0K of the problem

min
{

Jac(u,Ω) : u ∈ Γ1,2
Q (NΩ) such that u|∂Ω = QJ0K

}

if and only if there exists a positive constant c = c(Ω) such that

Jac(u,Ω) ≥ c
ˆ

Ω
|u|2dHm, (3.9)

for all u ∈ Γ1,2
Q (NΩ) with u|∂Ω = QJ0K.

Remark 3.5. If Q = 1 and Σ is strictly stable, then the largest positive constant c(Ω) such
that (3.9) holds for every W 1,2 section u of NΩ with u|∂Ω = 0 is the first eigenvalue λ1 of the
Jacobi normal operator L.
Proof. Assume first that (3.9) holds. Then, the Jacobi functional is non-negative on the space
of W 1,2 sections of NΩ with vanishing trace at the boundary. It is then clear that N0 ≡ QJ0K
is a minimizer. Moreover, it is the only one. Indeed, if u is a minimizer, then Jac(u,Ω) = 0,
and therefore (3.9) forces ˆ

Ω
G(u,QJ0K)2dHm = 0.

For the converse, assume that the minimum problem for the Jacobi functional with vanishing
boundary condition admits N0 ≡ QJ0K as the only solution. In particular, this implies
that Jac(u,Ω) ≥ 0 for all sections u ∈ Γ1,2

Q (NΩ) such that u|∂Ω = QJ0K, and in fact that
Jac(u,Ω) > 0 for all such sections except the trivial one N0. Now, assume by contradiction
that (3.9) does not hold. Then, for any h ∈ N there is a competitor uh ∈ Γ1,2

Q (NΩ) such that
uh|∂Ω = QJ0K, ‖uh‖L2 = 1 and

Jac(uh,Ω) ≤ 1
h
.

In particular, as a consequence of (3.3), we conclude thatˆ
Ω
|Duh|2 dHm ≤ C. (3.10)

By the compact embedding theorem for Q-valued maps, Proposition 1.20, and by Proposition
1.19, we infer that there exist a subsequence {uh′} of {uh} and a section u∞ ∈ Γ1,2

Q (NΩ),
u∞|∂Ω = QJ0K, such that

lim
h′→∞

ˆ
Ω
G(uh′ , u∞)2 dHm = 0,

5Observe that if N |∂Ω = QJ0K, then the null Q-field N0 ≡ QJ0K is a competitor, whence Jac(N,Ω) ≤
Jac(N0,Ω) = 0 if N is a minimizer.
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that is uh′ ⇀ u∞ weakly in W 1,2. Then, from the semi-continuity of the Jacobi functional
follows:

0 ≤ Jac(u∞,Ω) ≤ lim inf
h′→∞

Jac(uh′ ,Ω) = 0.

Hence, Jac(u∞,Ω) = 0, and thus u∞ is a minimizer. By hypothesis, u∞ ≡ QJ0K, which
contradicts ‖u∞‖L2 = 1. �

4. Existence of Jacobi Q-fields: the proof of Theorem 0.3

4.1. Q-valued Luckhaus Lemma and the extension theorem. The first step to prove
existence of Jacobi Q-fields is to derive an extension theorem for Q-valued W 1,2 maps. Such a
theorem will be obtained as a simple corollary of the following result, which is interesting per
se.

Proposition 4.1. Let N be a d-dimensional closed Riemannian manifold of class C2. Assume
0 < λ < 1 and f1, f2 : N → AQ(Rq) are two maps in W 1,2. Then, there exist a constant
C = C(N , d, q,Q) and a map h ∈W 1,2 (N × [0, λ],AQ(Rq)) such that

h(·, 0) ≡ f1 and h(·, λ) ≡ f2 in N , (4.1)

satisfying ˆ
N×[0,λ]

|h|2 ≤ Cλ
ˆ
N

(
|f1|2 + |f2|2

)
, (4.2)

ˆ
N×[0,λ]

|Dh|2 ≤ Cλ
ˆ
N

(
|Df1|2 + |Df2|2

)
+ C

λ

ˆ
N
G(f1, f2)2. (4.3)

Such a result adapts to the Q-valued setting a classical result by S. Luckhaus, concerning
the extension of a Sobolev map defined on the boundary of an annulus ∂(B1 \ B1−λ) in its
interior with control on the L2 norm of the gradient of the extension map (for the precise
statement and the proof, see the original paper [Luc88, Lemma 1], or the nice presentations
given by L. Simon in [Sim96, Section 2.12.2] or by R. Moser in [Mos05, Lemma 4.4]).

A version of this result in the Q-valued setting was given by C. De Lellis in [DL13], where
the author interpolates between two functions defined on flat cubes, and by J. Hirsch in
[Hir16b, Lemma C.1] in the original Luckhaus setting of functions defined on the boundary of
an annulus. The proof of the interpolation between maps defined over a closed Riemannian
manifold presented here is based on De Lellis’ result and on a decomposition of the manifold
that is bi-Lipschitz to a d-dimensional cubic complex, following ideas already contained in
[Whi88] and [Han05]. We will make an extensive use of the following Lemma, which provides
the elementary step in the construction of the interpolation.

Lemma 4.2. There is a constant C depending only on j and Q with the following property.
Assume that 0 < λ ≤ 1, L = [0, λ]j + z is a j-dimensional cube of side length λ, and
ϕ ∈W 1,2 (∂L,AQ(Rq)). Then, there is an extension ψ of ϕ to L such thatˆ

L
|ψ|2 dHj ≤ Cλ

ˆ
∂L
|ϕ|2 dHj−1 (4.4)

and
Dir(ψ,L) ≤ CλDir(ϕ, ∂L). (4.5)
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Proof. First observe that, since the inequalities (4.4) and (4.5) are invariant with respect to
translations and dilations, it suffices to prove the lemma when L = [0, 1]j . Moreover, since L
is bi-Lipschitz equivalent to the unit ball, it is enough to show the claim for L = B1 ⊂ Rj .

For reasons that will soon become clear, the proof when working in dimension j = 2 is
different with respect to the one in the higher dimensional case (j ≥ 3): for this reason, we
will distinguish between these two scenarios.

The higher dimensional case (j ≥ 3). This is the easiest situation: indeed, it suffices to
define ψ as the zero-degree homogeneous extension of ϕ. That is, if ϕ =

∑
`Jϕ`K on ∂B1, then

one just sets

ψ(x) :=
Q∑

`=1

s
ϕ`
(
x

|x|

){
for x ∈ B1 \ {0}. (4.6)

A simple computation in radial coordinates shows that both estimates (4.4) and (4.5) hold
with C = max{j−1, (j − 2)−1} = (j − 2)−1. Observe that this proof breaks down when j = 2,
because the zero-degree homogeneous extension of ϕ has infinite Dirichlet energy in two
dimensions.

The planar case (j = 2). For this proof, it will be useful to introduce a suitable notation.
We identify R2 with the complex plane C, and the unit ball B1 ⊂ R2 with the disk D, as usual
defined as

D := {z ∈ C : |z| < 1} = {reiθ : 0 ≤ r < 1, θ ∈ R}.
The boundary of D is the unit circle S1, described by

S1 := {z ∈ C : |z| = 1} = {eiθ : θ ∈ R}.
Consider now a function ϕ ∈ W 1,2(S1,AQ). By [DLS11, Proposition 1.5], there exists a
decomposition ϕ =

∑P
`=1Jϕ`K, where each ϕ` is an irreducible map in W 1,2(S1,Ak`). This

means that
∑P
`=1 k` = Q, and furthermore that for every ` = 1, . . . , P there exists a W 1,2 map

γ` : S1 → Rq such that
ϕ`(x) =

∑

zk`=x
Jγ`(z)K, (4.7)

and with γ`(z1) 6= γ`(z2) if z1 6= z2 are two distinct k`th roots of x. In other words, if we
identify the point x = eiθ ∈ S1 with the phase θ ∈ [0, 2π) we have that

ϕ`(θ) =
k`−1∑

m=0

s
γ`

(
θ + 2πm

k`

){
, (4.8)

with
γ`

(
θ + 2πm

k`

)
6= γ`

(
θ + 2πm̃

k`

)
for m 6= m̃.

The idea, now, is to consider the harmonic extension to the disk D of the function γ`: if

γ`(θ) = a`,0
2 +

∞∑

n=1
(a`,n cos(nθ) + b`,n sin(nθ)) (4.9)

is the Fourier series of γ`, we let

ζ`(r, θ) = a`,0
2 +

∞∑

n=1
rn (a`,n cos(nθ) + b`,n sin(nθ)) (4.10)
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denote its harmonic extension to the whole disk. Then, for each ` = 1, . . . , P , we consider the
k`-valued function ψ` obtained “rolling” back the ζ`, that is

ψ`(x) :=
∑

zk`=x
Jζ`(z)K (4.11)

for x ∈ D, and, finally, we set ψ :=
∑P
`=1Jψ`K. We claim now that ψ is aW 1,2(D,AQ) extension

of ϕ satisfying the estimates (4.4) and (4.5). To see this, fix ` ∈ {1, . . . , P} and define the
following subsets of the unit disk,

Dm :=
{
reiθ : 0 < r < 1, 2πm

k`
< θ <

2π(m+ 1)
k`

}

for m = 0, . . . , k` − 1, and

C := {reiθ : 0 < r < 1, θ 6= 0}.

One immediately sees that ψ`|C =
∑k`−1
m=0Jζ`◦σmK, where σm : C → Dm are the k` determinations

of the k`th root, that is

σm(reiθ) = r
1
k` e

i

(
θ+2πm
k`

)
.

Similarly, if the arcs Sm are defined by

Sm :=
{
eiθ : 2πm

k`
< θ <

2π(m+ 1)
k`

}
,

we have that ϕ`|S1\{1} =
∑k`−1
m=0Jγ` ◦ τmK, where τm : S1 \ {1} → Sm is given by τm := σm|S1 .

Thus, we can immediately compute

ˆ
S1
|ϕ`|2 =

k`−1∑

m=0

ˆ
S1
|γ` ◦ τm|2

= k`

k`−1∑

m=0

ˆ
Sm
|γ`|2

= k`

ˆ
S1
|γ`|2 = k`π

(
|a`,0|2

2 +
∞∑

n=1
(|a`,n|2 + |b`,n|2)

)

(4.12)
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by Plancherel’s theorem. On the other hand, we can use polar coordinates to compute the
integral of the extension ψ` to the disk and see that

ˆ
D
|ψ`|2 =

k`−1∑

m=0

ˆ
C
|ζ` ◦ σm|2

=
k`−1∑

m=0

ˆ 1

0

(ˆ 2π

0

∣∣∣∣ζ`
(
ρ

1
k` ,

α+ 2πm
k`

)∣∣∣∣
2
dα

)
ρ dρ

= k2
`

k`−1∑

m=0

ˆ 1

0



ˆ 2π(m+1)

k`

2πm
k`

|ζ`(r, θ)|2 dθ

 r2k`−1 dr

= k2
`

ˆ 1

0

(ˆ 2π

0
|ζ`(r, θ)|2 dθ

)
r2k`−1 dr

= k2
`π

ˆ 1

0

(
|a`,0|2

2 +
∞∑

n=1
r2n(|a`,n|2 + |b`,n|2)

)
r2k`−1 dr

(4.12)
≤ k`

(ˆ
S1
|ϕ`|2

)(ˆ 1

0
r2k`−1 dr

)

= 1
2

ˆ
S1
|ϕ`|2.

(4.13)

Summing over ` ∈ {1, . . . , P}, we finally conclude thatˆ
D
|ψ|2 ≤ 1

2

ˆ
S1
|ϕ|2, (4.14)

that is, (4.4) holds with C = 1
2 . Concerning (4.5), we exploit the invariance of the Dirichlet

energy under conformal mappings in order to infer that, for any ` = 1, . . . , P ,

Dir(ψ`, C) =
k`−1∑

m=0
Dir(ζ` ◦ σm, C) =

k`−1∑

m=0
Dir(ζ`,Dm) =

ˆ
D
|Dζ`|2. (4.15)

Now, by a simple computation on planar harmonic functions, it is easy to see thatˆ
D
|Dζ`|2 ≤

ˆ
S1
|∂θγ`|2, (4.16)

where ∂θ is the tangential derivative along the circle. On the other hand, for every ` = 1, . . . , P ,

Dir(ϕ`, S1) =
k`−1∑

m=0

ˆ
S1
|∂θ(γ` ◦ τm)|2

=
k`−1∑

m=0

ˆ
S1

1
k2
`

|∂θγ` ◦ τm|2

=
k`−1∑

m=0

ˆ
Sm

1
k`
|∂θγ`|2

= 1
k`

ˆ
S1
|∂θγ`|.

(4.17)
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Finally, summing on `, the above arguments produce

Dir(ψ,D) (4.15)=
P∑

`=1

ˆ
D
|Dζ`|2

(4.16)
≤

P∑

`=1

ˆ
S1
|∂θγ`|2

(4.17)=
P∑

`=1
k`Dir(ϕ`,S1) ≤ QDir(ϕ,S1), (4.18)

whence (4.5) holds with C = Q. �

Proof of Proposition 4.1. Without loss of generality, we assume that N is an embedded
submanifold of some Euclidean space RN . We shall divide the proof into steps.

Step 1. We first consider a Lipschitz cubic decomposition of the manifold N , that is a pair
(K, σ), where K is a d-dimensional cubic complex, and σ : |K| → N is a bi-Lipschitz map, |K|
denoting the union of all cells of K. Without loss of generality, we may assume that each cell
in K has unit d-dimensional volume. Set m := b 1

λc+ 1. Using that [0, 1] =
⋃m
i=1

[
i−1
m , im

]
, we

can divide each cell in K into md smaller d-dimensional cubes, whose side length is at most
λ. We will denote the resulting cubic complex by Km, and regard σ as a bi-Lipschitz map
σ : |Km| → N : observe that if L is any cell in Km then the image σ(L) is a domain in N with
diameter (computed with respect to the geodesic distance on N ) diam(σ(L)) ≤

√
dLip(σ)λ.

For each j ∈ {0, 1, . . . , d}, Kjm will denote the j-skeleton of the complex Km, that is the
family of all j-dimensional faces, and |Kjm| will be their union.

Step 2. Let now η = η(N ) > 0 be so small that the set U = U2η(N ) := {x ∈
RN : dist(x,N ) < 2η} is a tubular neighborhood of N , with (unique) differentiable near-
est point projection Π: U2η(N )→ N . For i = 1, 2, we extend f i to a map F i : U→ AQ(Rq)
by setting F i := f i ◦Π. One has thatˆ

U
|F i|2 ≤ c1

ˆ
N
|f i|2, (4.19)

ˆ
U
|DF i|2 ≤ c1

ˆ
N
|Df i|2, (4.20)

and ˆ
U
G(F 1, F 2)2 ≤ c1

ˆ
N
G(f1, f2)2, (4.21)

where the constant c1 depends only on the retraction Π (and, thus, on the dimensions d and
N and on the width η of the tubular neighborhood).

Furthermore, for every z ∈ |Km| and for every vector v ∈ BN
η , we define σv(z) :=

Π (σ(z) + v). Assume that η is so small that all σv’s are bi-Lipschitz maps |Km| → N ,
and set f iv := f i ◦ σv, that is f iv(z) = F i (σ(z) + v). By Fubini’s theorem, for all j = 1, . . . , d
and for a.e. v ∈ BN

η one has that f iv ∈W 1,2 (F,AQ(Rq)) for all faces F ∈ Kjm.
Consider now any non-negative function α ∈ L1(U). It is easily seen that there exists a

constant c2 = c2(N , d,N, η) such that for any j = 0, . . . , d and for every θ ∈ (0, 1)ˆ
|Kjm|

α (σ(z) + v) dHj(z) ≤ c2θ
−1λj−d

ˆ
U
α (4.22)

for all v ∈ BN
η with the exception of a set E of LN -measure |E| ≤ θ|BN

η |. To prove this, first
note thatˆ

|Kjm|
α (σ(z) + v) dHj(z) ≤ 1

θ|BN
η |

ˆ
BNη

(ˆ
|Kjm|

α (σ(z) + v) dHj(z)
)
dv (4.23)
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for all v ∈ BN
η \ E, |E| ≤ θ|BN

η |. Then, conclude by estimating:
ˆ
BNη

(ˆ
|Kjm|

α (σ(z) + v) dHj(z)
)
dv =

ˆ
|Kjm|

(ˆ
BNη

α (σ(z) + v) dv
)

dHj(z)

=
ˆ
|Kjm|

(ˆ
BNη (σ(z))

α(w) dw
)

dHj(z)

≤ Hj(|Kj
m|)
ˆ

U
α

≤ Cmdλj
ˆ

U
α

≤ Cλj−d
ˆ

U
α,

(4.24)

where the constant C appearing in the last line depends only on the number of cells in the
original cubic complex K and on the dimension d.

Now, it suffices to apply (4.22) with α = |F i|2, α = |DF i|2 and α = G(F 1, F 2)2, and, say,
θ = 1

2 , and to plug in equations (4.19), (4.20) and (4.21) to finally show the following: there
exists v ∈ BN

η such that for all j ∈ {1, . . . , d} the following inequalities
ˆ
|Kjm|

(
|f1
v |2 + |f2

v |2
)
≤ Cλj−d

ˆ
N

(
|f1|2 + |f2|2

)
, (4.25)

andˆ
|Kjm|

(
|Df1

v |2 + |Df2
v |2 + G(f1

v , f
2
v )2
)
≤ Cλj−d

ˆ
N

(
|Df1|2 + |Df2|2 + G(f1, f2)2

)
(4.26)

hold true with a constant C = C(c1, c2,Lip(σ)). Furthermore, for j = 0:
∑

z∈|K0
m|

(
|f1
v |2(z) + |f2

v |2(z)
)
≤ Cλ−d

ˆ
N

(
|f1|2 + |f2|2

)
, (4.27)

∑

z∈|K0
m|
G
(
f1
v (z), f2

v (z)
)2
≤ Cλ−d

ˆ
N
G
(
f1, f2

)2
. (4.28)

From now on, we will then assume to have fixed a v ∈ BN
η such that the corresponding

maps f iv : |Km| → AQ(Rq) satisfy equations (4.25), (4.26), (4.27), (4.28) and the following
condition: for every j ≥ 1, for each τ ∈ Kjm and for all γ ∈ Kj−1

m with γ ⊂ τ , the restrictions
f iv|τ and f iv|γ are all W 1,2, and moreover the trace of f iv|τ at γ is precisely f iv|γ .

Step 3. Consider now the (d + 1)-dimensional cubic complex K := Km × [0, λ] whose
(d + 1)-dimensional cells are cubes of the form L × [0, λ] for some L ∈ Kdm. A face τ ∈ Kj ,
j < d+ 1, is said to be horizontal if it is contained in Km×{0} (lower horizontal) or Km×{λ}
(upper horizontal), vertical otherwise. The collection of j-dimensional faces of K is hence given
by

Kj = L j ∪U j ∪ V j , (4.29)



34 SALVATORE STUVARD

where L j , U j and V j are the lower horizontal, upper horizontal and vertical j-dimensional
faces respectively. Observe that V 0 = ∅, L 0 consists of points (z, 0), while U 0 consists of
points (z, λ) with z ∈ K0

m; note, furthermore, that all (d+ 1)-dimensional cells are vertical.
We are now in the position to define a map h : |K| → AQ(Rq). First of all, we set h|β ≡ f1

v |β
if β is a lower horizontal face, and h|τ ≡ f2

v |τ if τ is an upper horizontal face. Consider
next any vertical segment γ ∈ V 1. Its two endpoints are given by (z, 0) and (z, λ) for some
z ∈ K0

m. Now, if f1
v (z) =

∑
`J(f1

v )`(z)K and f2
v (z) =

∑
`J(f2

v )`(z)K are ordered in such a way
that G (f1

v (z), f2
v (z)

)2 =
∑
` |(f1

v )`(z) − (f2
v )`(z)|2, then a natural extension is obtained by

setting

h(z, θ) :=
Q∑

`=1

s
(f1
v )`(z) + θ

λ

(
(f2
v )`(z)− (f1

v )`(z)
){

, (4.30)

for all θ ∈ [0, λ]. In this way, we obtain the boundsˆ
γ
|h|2 ≤ 2λ

(
|f1
v |2(z) + |f2

v |2(z)
)

(4.31)

and ˆ
γ
|Dh|2 ≤ λ−1G

(
f1
v (z), f2

v (z)
)2
. (4.32)

If we carry on this procedure for all vertical segments, we obtain a well defined Q-valued map
h on all the vertical 1-skeleton V 1, which, thanks to (4.27) and (4.28), satisfiesˆ

|V 1|
|h|2 ≤ Cλ1−d

ˆ
N

(
|f1|2 + |f2|2

)
(4.33)

and ˆ
|V 1|
|Dh|2 ≤ Cλ−1−d

ˆ
N
G
(
f1, f2

)2
. (4.34)

β

τ

h
∣∣∣
τ
≡ f2

v

∣∣
τ

h
∣∣∣
β
≡ f1

v

∣∣
β

A vertical segment γ ∈ V1

1

Figure 1. The cubic complex K and the first step in the construction of h.
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Pick next a vertical 2-dimensional face τ . Its boundary consists of two horizontal segments
β ∈ L 1 and δ ∈ U 1, and two vertical segments joining the points (z, 0), (w, 0) to the points
(z, λ), (w, λ) respectively. Using our assumptions on v, we can conclude that h|∂τ is in W 1,2,
whence Lemma 4.2 yields an extension of h to τ with estimatesˆ

τ
|h|2 ≤ Cλ

(ˆ
β
|f1
v |2 +

ˆ
δ
|f2
v |2
)

+ Cλ2
(
(|f1

v |2 + |f2
v |2)(z) + (|f1

v |2 + |f2
v |2)(w)

)
(4.35)

andˆ
τ
|Dh|2 ≤ Cλ

(ˆ
β
|Df1

v |2 +
ˆ
δ
|Df2

v |2
)

+ C

(
G
(
f1
v (z), f2

v (z)
)2

+ G
(
f1
v (w), f2

v (w)
)2
)
.

(4.36)
Summing over the 2-skeleton V 2, from the estimates (4.25) and (4.27) we deduceˆ

|V 2|
|h|2 ≤ Cλ2−d

ˆ
N

(
|f1|2 + |f2|2

)
, (4.37)

whereas (4.26) and (4.28) implyˆ
|V 2|
|Dh|2 ≤ Cλ2−d

ˆ
N

(
|Df1|2 + |Df2|2

)
+ Cλ−d

ˆ
N
G
(
f1, f2

)2
. (4.38)

We then proceed inductively over V j , iteratively applying Lemma 4.2 and using the
inequalities (4.25) to (4.28) at each step. At the final iteration, namely for j = d + 1, we
construct a map h which is W 1,2 on each (d+ 1)-dimensional cell L× [0, λ], coinciding with f1

v

on L×{0} and with f2
v on L×{λ}. Furthermore, if two cells H = L1×[0, λ] and K = L2×[0, λ]

have a common face S ∈ V d, the traces of h|H and h|K at S coincide. Thus, we can regard h
as aW 1,2 map defined on the whole cubic complex K. Moreover, since |K| = ⋃

V d+1 = |V d+1|,
the inductive step provides the following estimates:ˆ

|K|
|h|2 ≤ Cλ

ˆ
N

(
|f1|2 + |f2|2

)
, (4.39)

ˆ
|K|
|Dh|2 ≤ Cλ

ˆ
N

(
|Df1|2 + |Df2|2

)
+ C

λ

ˆ
N
G
(
f1, f2

)2
. (4.40)

Step 4. Finally, we simply define a map h ∈W 1,2 (N × [0, λ],AQ(Rq)) by setting

h(x, θ) := h
(
σ−1
v (x), θ

)
. (4.41)

It is immediate to check that such a map indeed satisfies (4.1), (4.2) and (4.3) in the statement.
�

Corollary 4.3. Let Σm ↪→ Rd be a regular compact submanifold, and let λ0 := inj(Σ) > 0 be
the injectivity radius of Σ. Then, for any 0 < λ < λ0, for any V ( Σ connected, open subset
with C2 boundary and such that

dist(x, ∂Σ) ≥ λ for every x ∈ ∂V,
and for any g̃0 ∈W 1,2(∂V,AQ(Rd)) there exist an open set Vλ ⊂ Σ with V b Vλ, dist(V, ∂Vλ) ≤
λ, and a map gλ ∈W 1,2

(
Vλ \ V,AQ(Rd)

)
satisfying:

gλ|∂V = g̃0 and gλ|∂Vλ = QJ0K, (4.42)
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ˆ
Vλ\V

|gλ|2 dHm ≤ Cλ
ˆ
∂V
|g̃0|2 dHm−1, (4.43)

Dir(gλ,Vλ \ V) ≤ CλDir(g̃0, ∂V) + C

λ

ˆ
∂V
|g̃0|2 dHm−1, (4.44)

for a constant C = C(V,m, d,Q).

Proof. Let V and g̃0 be as in the statement. Then, by the very definition of injectivity radius,
for any 0 < λ < λ0 the exponential map, restricted to ∂V, is injective in a ball of radius λ
around the zero section of the normal bundle of ∂V in Σ. In turn, this allows one to define,
for any such λ, a λ-tubular neighborhood Uλ of ∂V in Σ by setting

Uλ := {expπ (θη(π)) : π ∈ ∂V, |θ| < λ}, (4.45)
where for every point π ∈ ∂V we have denoted η(π) ∈ TπΣ the unit outer co-normal vector to
∂V at π.

Note that it is well defined a differentiable parametrization x ∈ Uλ 7→ (π(x), θ(x)) ∈
∂V × (−λ, λ) such that expπ(x) (θ(x)η(π(x))) = x for all x ∈ Uλ.

Next, the positive and negative λ-tubular neighborhoods of ∂V in Σ are respectively defined
by

U+
λ := {expπ (θη(π)) : π ∈ ∂V, 0 < θ < λ}, (4.46)

U−λ := {expπ (θη(π)) : π ∈ ∂V, −λ < θ < 0}. (4.47)
We set Vλ := V∪Uλ. The claimed result is then simply obtained by applying Proposition 4.1

with N = ∂V , f1 = g̃0, f2 = QJ0K and setting gλ(x) := h (π(x), θ(x)) for x ∈ Vλ\V = U+
λ . �

4.2. The compactness theorem. Back to our original setting, we let Ω be an open and
connected subset of Σ ↪→ M in which we wish to solve the minimum problem for the Jac
functional. We will assume C2 regularity for ∂Ω. Let λ0 := inj(Σ). For 0 < λ < λ0, set
V := {x ∈ Ω : dist(x, ∂Ω) > λ}, so that Ω coincides with the set Vλ = V ∪Uλ which was
obtained in the proof of Corollary 4.3. Using the same notations introduced in the proof of
Corollary 4.3, we parametrize Uλ with coordinates (π, θ) ∈ ∂V × (−λ, λ).

Let us now define Φλ : V → Ω to be the diffeomorphism given by:

Φλ(x) :=
{

expπ(x) (ϕλ(θ(x))η(π(x))) if x ∈ U−λ
x otherwise ,

(4.48)

where ϕλ is any monotone increasing diffeomorphism ϕλ : (−λ, 0) → (−λ, λ) such that
ϕλ(θ) = θ for θ ∈

(
−λ,−λ

2

)
. From this moment on, we will assume that such a family

of diffeomorphisms ϕλ has been fixed, and satisfies a bound of the form
c−1 ≤ |ϕ′λ| ≤ c (4.49)

for a positive constant c which does not depend on λ.
Furthermore, if u =

∑
`Ju`K is any map in W 1,2

(
Ω,AQ(Rd)

)
, we set:

u⊥(x) :=
Q∑

`=1
JpΣ⊥

x · u`(x)K, (4.50)

where pΣ⊥ is the normal bundle projection defined in Definition 2.9. Observe that u⊥ ∈
Γ1,2
Q (NΩ). The following Lemma yields a useful formula to relate the Dirchlet energy of u

with the Dirichlet energy of u⊥.
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Lemma 4.4. For every ε > 0 there exists a positive constant Cε such that the following
estimate holds true:

Dir(u⊥,Ω) ≤ (1 + ε)Dir(u,Ω) + Cε

ˆ
Ω
|u|2 dHm. (4.51)

Proof. Write pΣ⊥(x, v) := pΣ⊥
x · v for x ∈ Ω, v ∈ Rd. If v = v(x) is a (single valued) Lipschitz

map defined in Ω, then for any tangent vector field ξ one has

DξpΣ⊥(x, v(x)) = ∂xpΣ⊥(x, v(x)) · ξ(x) + ∂vpΣ⊥(x, v(x)) ·Dξv(x).

Since, for fixed x, the map v ∈ Rd 7→ pΣ⊥(x, v) ∈ T⊥x Σ is linear with Lipschitz constant not
larger than 1, we conclude that for any v : Ω→ Rd Lipschitz one has

Dir(v⊥,Ω) ≤ Dir(v,Ω) + C

ˆ
Ω
|v|2 dHm + C

ˆ
Ω
|v||Dv|dHm,

where C is a constant depending on maxΩ×Sd−1 |∂xpΣ⊥|.
Formula (4.51) is then a consequence of Young’s inequality. The formula is then extended

to Lipschitz Q-valued maps via decomposition into Q Lipschitz functions (Proposition 1.7),
and finally to Sobolev Q-maps via approximation (Proposition 1.13). �

We are now ready to state and prove the proposition that will provide the key towards
Theorem 0.3.

Proposition 4.5. Let Ω ⊂ Σ be open, connected with C2 boundary. Assume the strict stability
condition (3.9) holds for every u ∈ Γ1,2

Q (NΩ) such that u|∂Ω = QJ0K. Then, if g ∈ Γ1,2
Q (NΩ)

has boundary trace g0 := g|∂Ω ∈W 1,2(∂Ω,AQ(Rd)), the following estimate

Jac(N,Ω) ≥ c(Ω)
ˆ

Ω
|N |2 dHm − C(Ω, g0) (4.52)

holds true for any N ∈ Γ1,2
Q (NΩ) such that N |∂Ω = g0.

Proof. Fix λ < λ0 to be chosen, and let V b Ω be such that Ω = Vλ as above. For any
N ∈ Γ1,2

Q (NΩ) such that N |∂Ω = g0, consider the map Ñ := N ◦ Φλ ∈W 1,2(V,AQ(Rd)), and
observe that Ñ |∂V = g̃0, where g̃0(π) = g0(expπ(λη(π))) for π ∈ ∂V.

Now, apply Corollary 4.3 with this choice of V, g̃0 and λ in order to extend Ñ to the map
u ∈W 1,2(Ω,AQ(Rd)) given by

u(x) :=
{
Ñ(x) if x ∈ V
gλ(x) if x ∈ Ω \ V = U+

λ ,
(4.53)

Observe that the normal bundle projection u⊥ satisfies u⊥ ∈ Γ1,2
Q (NΩ) and the boundary

condition u⊥|∂Ω = QJ0K. From the hypothesis, we are therefore able to conclude that

Jac(u⊥,Ω) ≥ c(Ω)
ˆ

Ω
|u⊥|2 dHm. (4.54)

Now, note that u⊥ ≡ N in Ω \Uλ. Combining this observation with (4.54), we trivially
deduce

Jac (N,Ω \Uλ) + Jac
(
u⊥,Uλ

)
≥ c(Ω)

(ˆ
Ω\Uλ

|N |2 dHm +
ˆ

Uλ

|u⊥|2 dHm
)
. (4.55)
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In order to prove our result, we then clearly have to provide suitable estimates for
Jac

(
u⊥,Uλ

)
and
´

Uλ
|u⊥|2.

We observe first that̂

Uλ

|u⊥|2 =
ˆ

U−
λ

|u⊥|2 +
ˆ

U+
λ

|u⊥|2 ≥
ˆ

U−
λ

|u⊥|2. (4.56)

Recall that

u⊥|U−
λ

=
Q∑

`=1
JpΣ⊥ · (N` ◦ Φλ)K =

Q∑

`=1

t
k∑

β=1
〈N` ◦ Φλ, νβ〉νβ

|

,

whence ˆ
U−
λ

|u⊥|2 =
ˆ

U−
λ

Q∑

`=1

k∑

β=1
|〈N` (Φλ(x)) , νβ(x)〉|2 dHm(x). (4.57)

Now, changing variable y = Φλ(x), integrating along geodesics and using (4.49) one easily
proves that from this followsˆ

U−
λ

|u⊥|2 ≥ C
(ˆ

Uλ

|N |2 dHm − E(1)
λ

)
, (4.58)

where the error term E(1)
λ satisfies the estimate

|E(1)
λ | ≤

1
2

ˆ
Uλ

|N |2 dHm, (4.59)

provided λ satisfies some suitable smallness conditions which are not depending on N . Com-
bining (4.55), (4.56), (4.58) and (4.59), we conclude that for suitably small λ

Jac (N,Ω \Uλ) + Jac
(
u⊥,Uλ

)
≥ c(Ω)

ˆ
Ω
|N |2 dHm, (4.60)

up to possibly changing the value of c(Ω).
Now, we work on Jac

(
u⊥,Uλ

)
. As before, decompose

Jac
(
u⊥,Uλ

)
= Jac

(
u⊥,U−λ

)
+ Jac

(
u⊥,U+

λ

)
. (4.61)

Concerning the first addendum, one shows that

Jac
(
u⊥,U−λ

)
≤ CJac (N,Uλ) + E(2)

λ , (4.62)

where the error E(2)
λ satisfies

|E(2)
λ | ≤ ε

(
Dir (N,Uλ) +

ˆ
Uλ

|N |2 dHm
)

(4.63)

for any choice of ε > 0, provided λ is smaller than some λ∗ depending on ε and on the geometry
of the problem, but, again, not on the map N . In particular, this allows to absorb the error
term and conclude, under the previously considered smallness assumptions on λ, that

Jac (N,Ω) ≥ c(Ω)
(ˆ

Ω
|N |2 dHm − Jac

(
u⊥,U+

λ

))
(4.64)

after possibly having redefined c(Ω).
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Now we are able to conclude: following the same strategy as before, it is not difficult to
estimate

|Jac
(
u⊥,U+

λ

)
| ≤ C

(
Dir

(
gλ,U+

λ

)
+
ˆ

U+
λ

|gλ|2 dHm
)
, (4.65)

where λ is small, but fixed, and does not depend on N . Our result, equation (4.52), is then
an immediate consequence of Corollary 4.3 and of the definition of g̃0. �

We are now ready to prove the Conditional Existence Theorem 0.3.

Proof of Theorem 0.3. The proof is an application of the direct methods in the Calculus of
Variations. Fix any g ∈ Γ1,2

Q (NΩ) with boundary trace g0 := g|∂Ω ∈W 1,2(∂Ω,AQ(Rd)). Then,
the inequality (4.52) implies that for any N ∈ Γ1,2

Q (NΩ) with N |∂Ω = g0 one has

Jac(N,Ω) ≥ −C(Ω, g0),

thus the Jacobi functional is bounded from below in the class of competitors.
Set

Λ := inf{Jac(N,Ω) : N ∈ Γ1,2
Q (NΩ), N |∂Ω = g0} > −∞,

and consider a minimizing sequence {Nh}∞h=1 ⊂ Γ1,2
Q (NΩ), Nh|∂Ω = g0, limh→∞ Jac(Nh,Ω) =

Λ. Then, for h ≥ h0 sufficiently large, one has

Jac(Nh,Ω) ≤ Λ + 1,

from which we deduce

Dir(Nh,Ω) ≤ C
ˆ

Ω
|Nh|2 dHm + |Λ|+ 1.

On the other hand, (4.52) immediately implies thatˆ
Ω
|Nh|2 dHm ≤ C(|Λ|,Ω, g0).

Putting all together, we conclude that

Dir(Nh,Ω) +
ˆ

Ω
|Nh|2 dHm ≤ C, (4.66)

where C is a constant depending only on |Λ|, Ω, g0 and the geometry of the embeddings
Σ ↪→M ↪→ Rd. Hence, up to extracting a subsequence, Nh converges weakly in W 1,2, strongly
in L2, to a map N ∈ Γ1,2

Q (NΩ) with N |∂Ω = g0. The lower semi-continuity of the Jacobi
functional with respect to weak convergence, Proposition 3.1, allows us to conclude that N is
the desired minimizer. �

5. Hölder regularity of Jacobi Q-fields

In this section, we present a proof of the following quantitative version of Theorem 0.5. As
usual, Ω is an open subset of the compact m-dimensional manifold Σ minimally embedded in
M.
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Theorem 5.1 (Hölder regularity of Jacobi multi-fields). There exist universal constants
α = α(m,Q) ∈ (0, 1) and Λ = Λ(m,Q) > 0 and a radius 0 < r0 = r0(m,Q) < inj(Σ) with the
following property. If N ∈ Γ1,2

Q (NΩ) is Jac-minimizing, then for every 0 < θ < 1 there exists
a constant C = C(m, d,Q,Σ, θ) such that

[N ]C0,α(Bθr(p)) : = sup
x1,x2∈Bθr(p)

G(N(x1), N(x2))
d(x1, x2)α

≤ C
(
r2−m−2α

(
Dir(N,Br(p)) + Λ

ˆ
Br(p)

|N |2 dHm
))1/2 (5.1)

for every p ∈ Ω and for every r ≤ min{r0,dist(p, ∂Ω)}. In particular, N ∈ C0,α
loc (Ω,AQ(Rd)).

The proof of Theorem 5.1 is a fairly easy consequence of Proposition 5.2 below. Before
stating it, we need to introduce some further notation.

Let us fix a point p ∈ Ω, and a radius r < min{inj(Σ),dist(p, ∂Ω)}, in such a way that the
exponential map expp defines a diffeomorphism

expp : Br(0) ⊂ TpΣ→ Br(p) ⊂ Ω.

Denote by y = (y1, . . . , ym) coordinates in TpΣ corresponding to the choice of an orthonormal
basis (e1, . . . , em), and set u := N ◦expp. Observe that for any y ∈ Br the differential d(expp)|y
realizes a linear isomorphism between TpΣ and Texpp(y)Σ. Fix an orthonormal frame (ξ1, . . . , ξm)
of the tangent bundle T Σ|Br(p) extending (e1, . . . , em) (i.e. such that ξi|p = ei for i = 1, . . . ,m),
and define, for y ∈ Br,

εi(y) :=
(
d(expp)|y

)−1
· ξi(expp(y)). (5.2)

Then, an elementary computation shows thatˆ
Br(p)

|N(x)|2 dHm(x) =
ˆ
Br

|u(y)|2J expp(y) dy (5.3)

and
Dir(N,Br(p)) =

ˆ
Br

m∑

i=1
|Dεiu(y)|2J expp(y) dy, (5.4)

where J expp is the Jacobian determinant of the exponential map. From this it is immediate
to deduce that the following asymptotic behaviors are satisfied for r → 0 uniformly in p:ˆ

Br(p)
|N(x)|2 dHm(x) = (1 +O(r))

ˆ
Br

|u(y)|2 dy, (5.5)

Dir(N,Br(p)) = (1 +O(r))
ˆ
Br

m∑

i=1
|Deiu(y)|2 dy = (1 +O(r))Dir(u,Br). (5.6)

We can now state the key result from which we will conclude the Hölder regularity of Jacobi
Q-fields.

Proposition 5.2. There exist a universal positive constant Λ = Λ(m,Q) and a radius
0 < r0 = r0(m,Q) < inj(Σ) with the following property. Let N ∈ Γ1,2

Q (NΩ) be Jac-minimizing
and p ∈ Ω. Then, for a.e. radius r ≤ min{r0,dist(p, ∂Ω)} one has

Dir(u,Br) + Λ
ˆ
Br

|u|2 dy ≤ C(m)r
(

Dir(u, ∂Br) + Λ
ˆ
∂Br

|u|2 dHm−1
)
, (5.7)
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where u := N ◦ expp |Br ∈W 1,2
(
Br,AQ(Rd)

)
and C(m) < (m− 2)−1 when m ≥ 3.

In order to prove Proposition 5.2, we will need the following simple result on classical
Sobolev functions in the Euclidean space.

Lemma 5.3. For every ε > 0 there exists a constant C = Cε > 0 such that the inequalityˆ
Br

|g|2 dy ≤
( 1
m

+ ε

)
r

ˆ
∂Br

|g|2 dHm−1 + Cεr
2
ˆ
Br

|Dg|2 dy (5.8)

holds for any function g ∈W 1,2(Bm
r ).

Proof. First observe that, by a simple scaling argument, it is enough to prove the lemma for
r = 1. Assume the lemma is false: suppose, by contradiction, that there exists ε0 > 0 such
that for any h ∈ N there is gh ∈W 1,2(Bm

1 ), with ‖gh‖L2 = 1, such that

1 >
( 1
m

+ ε0

) ˆ
∂B1

|gh|2 dHm−1 + h

ˆ
B1

|Dgh|2 dy. (5.9)

The inequality (5.9) readily implies that

lim
h→∞

ˆ
B1

|Dgh|2 dy = 0, (5.10)

whence, by Rellich’s compactness theorem, the sequence gh converges up to a subsequence
(not relabeled) weakly in W 1,2, strongly in L2, to a constant function g ≡ c. The condition
‖g‖L2 = 1 forces the constant to satisfy |c|2 = ω−1

m , where ωm is the volume of the unit ball in
Rm. Hence, it suffices to pass to the limit the inequality

1 >
( 1
m

+ ε0

) ˆ
∂B1

|gh|2 dHm−1 (5.11)

to obtain the desired contradiction:

1 >
( 1
m

+ ε0

)
m. (5.12)

�

Corollary 5.4. For every ε > 0 there exists a constant Cε > 0 such that for any function
v ∈W 1,2

(
Br,AQ(Rd)

)
one has:

ˆ
Br

|v|2 dy ≤
( 1
m

+ ε

)
r

ˆ
∂Br

|v|2 dHm−1 + Cεr
2Dir(v,Br). (5.13)

Proof. Fix ε > 0 and v ∈W 1,2(Br,AQ(Rd)), and apply Lemma 5.3 to the function g = |v| =
G(v,QJ0K) ∈W 1,2(Br). The inequality (5.13) then follows immediately, because g|∂Br = |v|∂Br |
and |∂jg| ≤ |∂jv| for every j = 1, . . . ,m. �

Proof of Proposition 5.2. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing, and fix any point p ∈ Ω.

For every radius r < min{inj(Σ),dist(p, ∂Ω)} the exponential map expp maps the Euclidean
ball Br(0) ⊂ TpΣ diffeomorphically onto the geodesic ball Br(p) ⊂ Σ, and the composition
u := N ◦ expp is a W 1,2 Q-valued map defined in Br.
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Let now f ∈ W 1,2
(
Br,AQ(Rd)

)
be Dir-minimizing in Br such that f |∂Br = u|∂Br 6,

and set h := f ◦ exp−1
p . Then, the normal bundle projection h⊥ ∈ Γ1,2

Q (NBr(p)) satisfies
h⊥|∂Br(p) = N |∂Br(p) and is therefore a competitor for the Jacobi functional. Hence, using
minimality, the definition of the Jacobi functional and (3.3), we deduce:

Jac(N,Br(p)) ≤ Jac(h⊥,Br(p)) ≤ Dir(h⊥,Br(p)) + C0

ˆ
Br(p)

|h|2 dHm, (5.14)

which in turn produces

Dir(N,Br(p)) ≤ Dir(h⊥,Br(p)) + C0

(ˆ
Br(p)

|h|2 dHm +
ˆ

Br(p)
|N |2 dHm

)
. (5.15)

Hence, combining Lemma 4.4 with (5.5) and (5.6), we can conclude that for any ε1 ∈ (0, 1)
there exists a radius 0 < rε1 < inj(Σ) such that the estimate

Dir(u,Br) ≤ (1 + ε1) Dir(f,Br) + Cε1

(ˆ
Br

|f |2 dy +
ˆ
Br

|u|2 dy
)
, (5.16)

holds true whenever r ≤ rε1 .
Now we apply [DLS11, Proposition 3.10]: since f is Dir-minimizing in Br, the estimate

Dir(f,Br) ≤ C(m)rDir(u, ∂Br) (5.17)
holds with constants C(2) = Q and C(m) < (m − 2)−1 for m ≥ 3 whenever Dir(u, ∂Br) is
finite, and thus for a.e. r. Combining (5.16) with (5.17), we deduce that we can choose
ε1 = ε1(m,Q) so small that the inequality

Dir(u,Br) ≤ C(m)rDir(u, ∂Br) + C

(ˆ
Br

|f |2 dy +
ˆ
Br

|u|2 dy
)

(5.18)

holds with, say, C(2) = 2Q and again C(m) < (m− 2)−1 when m ≥ 3 for a.e. r ≤ rm,Q.
Now, fix ε > 0 and apply the result of Corollary 5.4 first with v = f and then with v = u,

and plug the resulting inequalities in (5.18). Using the fact that f and u have the same
boundary value and that Dir(f,Br) ≤ Dir(u,Br), we obtain the following key inequality:

Dir(u,Br) ≤ C(m)rDir(u, ∂Br) + C

( 1
m

+ ε

)
r

ˆ
∂Br

|u|2dHm−1 + Cεr
2Dir(u,Br). (5.19)

This implies the following: for every Λ > 0 one has

Dir(u,Br) + Λ
ˆ
Br

|u|2 dy ≤ C(m)rDir(u, ∂Br)

+ (C + Λ)
( 1
m

+ ε

)
r

ˆ
∂Br

|u|2 dHm−1

+ Cε,Λr
2Dir(u,Br).

(5.20)

For a suitable choice of Λ = Λm,ε � 1 this yields:
(
1− Cm,εr2

)
Dir(u,Br)+Λ

ˆ
Br

|u|2 dy ≤ C(m)rDir(u, ∂Br)+Λ
( 1
m

+ 2ε
)
r

ˆ
∂Br

|u|2 dHm−1.

(5.21)

6Recall that the existence of such a map f is guaranteed by Theorem 1.25.
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Finally, we divide the whole inequality by 1− Cm,εr2 and conclude that if r is sufficiently
small, say r ≤ rm,ε,Q then the inequality

Dir(u,Br) + Λ
ˆ
Br

|u|2 dy ≤ C(m)rDir(u, ∂Br) + Λ
( 1
m

+ 4ε
)
r

ˆ
∂Br

|u|2 dHm−1 (5.22)

holds with a possible new choice of C(m), say C(2) = 4Q and still C(m) < (m − 2)−1 for
m ≥ 3. The conclusion immediately follows, by choosing ε = ε(m,Q) in such a way that
1
m + 4ε < 4Q when m = 2 and 1

m + 4ε < 1
m−2 when m ≥ 3. �

We have now all the ingredients that are needed to prove Theorem 5.1: as announced at
the beginning of the section, the proof can be easily achieved by combining our Proposition
5.2 with the Campanato-Morrey estimates 1.22.

Proof of Theorem 5.1. Let r0 be the radius given in Proposition 5.2. Fix any point p ∈ Ω, and
assume without loss of generality that Br0(p) b Ω. Consider the corresponding exponential
map expp : Br0(0) ⊂ TpΣ → Br0(p) ⊂ Σ, and set u := N ◦ expp. By Proposition 5.2, for
a.e. radius r ≤ r0 the inequality (5.7) is satisfied with universal constants Λ and C(m), with
C(m) < (m− 2)−1 when m ≥ 3. We set:

γ(m) :=
{
C(m)−1 if m = 2
C(m)−1 −m+ 2 if m ≥ 3,

(5.23)

and we denote by φ = φ(r) the absolutely continuous function

φ(r) := Dir(u,Br) + Λ
ˆ
Br

|u|2 dy (5.24)

for r ∈ (0, r0]. By (5.7), φ satisfies the differential inequality
(m− 2 + γ)φ ≤ rφ′ (5.25)

almost everywhere in the interval (0, r0]. Integrating (5.25) we obtain:

Dir(u,Br) ≤ φ(r) ≤ φ(r0)
rm−2+γ

0
rm−2+γ =: Arm−2+γ . (5.26)

As a consequence of the Campanato - Morrey estimates, Proposition 1.22, we conclude that u
is Hölder continuous with exponent α := γ

2 , with

[u]C0,α(Bθr0) := sup
y1,y2∈Bθr0

G (u(y1), u(y2))
|y1 − y2|α

≤ C
√
A, (5.27)

for any 0 < θ < 1 and for a constant C = C(m, d,Q, θ).
The estimate (5.1) is an immediate consequence of (5.27) and the properties of the expo-

nential map. �

6. First variation formulae and the analysis of the frequency function

In this section we start the machinery that will eventually lead us, in Section 8, to the proof
of Theorem 0.7, according to which a Jacobi Q-field N is in fact the “superposition” of Q
classical Jacobi fields in a neighborhood of all points of the domain Ω with the exception of
those belonging to a singular set of small Hausdorff dimension.

The first step towards this result consists of deriving some Euler-Lagrange conditions for
Jac-minimizing multivalued maps. Throughout the whole section, we will assume, as usual,
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that N is a Q-valued section of the normal bundle of Σ inM defined in an open set Ω, where
it minimizes the Jacobi functional as specified in Definition 0.2.

6.1. First variations. Suppose that for some δ > 0 we have a 1-parameter family {Ns}s∈(−δ,δ) ⊂
Γ1,2
Q (NΩ) such that N0 = N and Ns ≡ N in a neighborhood of ∂Ω for all s. Then, the mini-

mization property of N implies that the map s 7→ Jac(Ns,Ω) takes its minimum at s = 0, and
thus

d

ds
Jac(Ns,Ω)

∣∣∣∣
s=0

= 0 (6.1)

whenever the derivative on the left exists. The family {Ns} is called an (admissible) 1-
parameter family of variations of N in Ω, and formula (6.1) is the first variation formula
corresponding to the given variation.

We will consider two natural types of variations in order to perturb the map N . The inner
variations are generated by right compositions with diffeomorphisms of the domain and by
a suitable “orthogonalization procedure”; the outer variations correspond instead to “left
compositions”. The relevant definition is the following.

Definition 6.1. Let N =
∑
`JN `K ∈ Γ1,2

Q (NΩ) be Jac-minimizing in Ω.
(OV) Given ψ ∈ C1(Ω× Rd,Rd) such that spt(ψ) ⊂ Ω′ × Rd for some Ω′ b Ω and ψ(x, u) ∈

T⊥x Σ ⊂ TxM for all (x, u) ∈ Ω×T⊥x Σ, an admissible variation of N in Ω can be defined
by Ns(x) :=

∑Q
`=1JN

`(x)+sψ(x,N `(x))K. Such a family is called outer variation (OV);
(IV) Given a C1 vector field X of T Σ compactly supported in Ω, for s sufficiently small the

map x 7→ Φs(x) := expx (sX(x)) is a diffeomorphism of Ω which leaves ∂Ω fixed. As a
consequence, the family {Ns} defined by Ns := (N ◦ Φs)⊥ is an admissible variation
of N in Ω, which we call inner variation (IV).

In the next proposition, we obtain an explicit formulation of (6.1) in the case of outer
variations induced by maps ψ as above. Consistently with the notation introduced for multi-
fields in Definition 2.9, given (x, u) ∈ Ω× Rd we will denote by ∇⊥ψ(x, u) the linear operator
TxΣ→ T⊥x Σ obtained by projecting Dxψ(x, u) onto T⊥x Σ at every x. Also, recall the definitions
of A · u, u being a (single-valued) section of NΩ, and of the quadratic form R. The symbol
〈L : M〉 will be used to denote the usual Hilbert-Schmidt scalar product of two matrices L
and M .

Proposition 6.2 (Outer variation formula). Let ψ be as in (OV) and such that
|Duψ| ≤ C <∞ and |ψ|+ |Dxψ| ≤ C(1 + |u|). (6.2)

Then, the first variation formula corresponding to the outer variation Ns defined by ψ is
ˆ

Ω

Q∑

`=1
〈∇⊥N `(x) :

(
∇⊥ψ(x,N `(x)) +Duψ(x,N `(x)) ·DN `(x)

)
〉dHm(x) = EOV(ψ), (6.3)

where

EOV(ψ) :=
ˆ

Ω

Q∑

`=1

(
〈A ·N `(x) : A · ψ(x,N `(x))〉+R(N `(x), ψ(x,N `(x)))

)
dHm(x). (6.4)

Proof. The proof is straightforward: using (2.42) withNs in place of u, it suffices to differentiate
in s and recall that R is a symmetric quadratic form on the normal bundle of Σ in M
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(the hypotheses in (6.2) ensure the summability of the various integrands involved in the
computation). �

An explicit formula for (6.1) in the case of inner variations induced by vector fields X as in
Definition 6.1 is the content of the following proposition. Recall that A denotes the second
fundamental form of the embeddingM ↪→ Rd.

Proposition 6.3 (Inner variation formula). Let X be as in (IV). Then, the first variation
formula corresponding to the inner variation Ns defined by the family Φs of diffeomorphisms
induced by X is

−
ˆ

Ω
|∇⊥N |2divΣ(X) dHm + 2

ˆ
Ω

Q∑

`=1
〈∇⊥N ` : ∇⊥N ` · ∇ΣX〉 dHm = EIV(X), (6.5)

where
EIV(X) = E(1)

IV (X) + E(2)
IV (X) + E(3)

IV (X)
is defined by

E(1)
IV (X) := 2

ˆ
Ω

Q∑

`=1

(
trΣ(〈A(·, N `), A(X,∇⊥(·)N `)〉)− trΣ(〈A(X,N `), A(·,∇⊥(·)N `)〉)

)
dHm,

(6.6)

E(2)
IV (X) := 2

ˆ
Ω

Q∑

`=1
〈A ·N ` : A · ∇⊥XN `〉dHm, (6.7)

and

E(3)
IV (X) := 2

ˆ
Ω

Q∑

`=1
R(N `,∇⊥XN `) dHm. (6.8)

Proof. Fix the vector field X, and consider the associated variation {Ns}, with Ns =
∑
`JN `

sK
defined by

N `
s(x) = (N ` ◦ Φs)⊥(x) =

k∑

β=1
〈N `(Φs(x)), νβ(x)〉νβ(x), (6.9)

(νβ)kβ=1 being a (local) orthonormal frame ofNΩ. Recall that Φ0 = IdΩ and that ∂
∂sΦs(x)

∣∣∣
s=0

=
X(x). Now, using (2.42), we write the first variation formula as

0 = d

ds
Jac(Ns,Ω)

∣∣∣∣
s=0

= d

ds

∣∣∣∣
s=0

DirNΣ(Ns,Ω)
︸ ︷︷ ︸

=:I1

+


− d

ds

∣∣∣∣
s=0

ˆ
Ω

Q∑

`=1
|A ·N `

s |2 dHm



︸ ︷︷ ︸
=:I2

+


− d

ds

∣∣∣∣
s=0

ˆ
Ω

Q∑

`=1
R(N `

s , N
`
s) dHm




︸ ︷︷ ︸
=:I3

,

(6.10)
and we will work on the three terms separately.

Step 1: computing I1. Write I1 =
∑
` I

`
1, where

I`1 = d

ds

∣∣∣∣
s=0

ˆ
Ω

m∑

i=1

k∑

α=1
|〈DξiN

`
s , να〉|2 dHm. (6.11)
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Using the representation formula (6.9), one immediately computes
〈DξiN

`
s , να〉(x) = 〈DN `|Φs(x) ·DΦs|x · ξi(x), να(x)〉

+ 〈N `(Φs(x)), Dξiνα(x)〉

+
k∑

β=1
〈N `(Φs(x)), νβ(x)〉〈Dξiνβ(x), να(x)〉.

(6.12)

Now, since 〈να, νβ〉 = δαβ, we have that 〈Dξiνβ, να〉 = −〈νβ, Dξiνα〉, so that the last term in
formula (6.12) becomes

−
k∑

β=1
〈N `(Φs(x)), νβ(x)〉〈Dξiνα(x), νβ(x)〉 = −〈N `(Φs(x)),∇⊥ξiνα(x)〉, (6.13)

and we can write
〈DξiN

`
s , να〉(x) = 〈DN `|Φs(x) ·DΦs|x · ξi(x), να(x)〉

+ 〈N `(Φs(x)), (Dξiνα −∇⊥ξiνα)(x)〉.
(6.14)

For small values of the parameter s, the map Φs is a diffeomorphism of Ω, and we will denote
by Φ−1

s its inverse. Then, we can change variable x = Φ−1
s (y) in the integral, and finally write

I`1 = d

ds

∣∣∣∣
s=0

ˆ
Ω

m∑

i=1

k∑

α=1
|g`iα(s, y)|2JΦ−1

s (y) dHm(y), (6.15)

where JΦ−1
s is the Jacobian determinant of DΦ−1

s and
g`iα(s, y) = 〈DN `|y · ζi(s, y), να(Φ−1

s (y))〉+ 〈N `(y), (Dξiνα −∇⊥ξiνα)(Φ−1
s (y))〉, (6.16)

with ζi(s, y) := DΦs|Φ−1
s (y) · ξi(Φ−1

s (y)). Hence, we have:

I`1 = −
ˆ

Ω

m∑

i=1

k∑

α=1
|g`iα(0, y)|2divΣ(X) dHm + 2

ˆ
Ω

m∑

i=1

k∑

α=1
g`iα(0, y)∂sg`iα(0, y) dHm

= −
ˆ

Ω

m∑

i=1

k∑

α=1
|g`iα(0, y)|2divΣ(X) dHm +

ˆ
Ω

∂

∂s

(
m∑

i=1

k∑

α=1
|g`iα(s, y)|2

) ∣∣∣∣
s=0

dHm(y).

(6.17)
Now, since

m∑

i=1

k∑

α=1
|g`iα(s, y)|2 = |∇⊥N `

s |2(Φ−1
s (y)),

its value is independent of the orthonormal frame chosen: thus, having fixed a point y ∈ Ω,
we can impose ∇ξi = ∇να = 0 at y.

We can now proceed computing explicitly (6.17). Clearly, g`iα(0, y) = 〈DξiN
`, να〉(y), so we

are only left with the computation of ∂sg`iα(0, y). We start observing that
∂sζi(0, y) = (DξiX −DXξi)(y) = − [X, ξi] (y), (6.18)

from which we easily deduce

∂s|s=0
(
〈DN `|y · ζi(s, y), να(Φ−1

s (y))〉
)

= −〈D[X,ξi]N
`, να〉 − 〈DξiN

`, DXνα〉
= 〈D∇Σ

ξi
XN

`, να〉 − 〈A(ξi, N `), A(X, να)〉,
(6.19)
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where we have used that ∇Xξi = ∇Xνα = 0 at y (and, therefore, [X, ξi] (y) = −∇Σ
ξi
X(y) and

DXνα = A(X, να)).
On the other hand,

∂s|s=0
(
〈N `(y), (Dξiνα −∇⊥ξiνα)(Φ−1

s (y))〉
)

= −〈N `, DX(Dξiνα −∇⊥ξiνα)〉
= 〈DXN

`, Dξiνα −∇⊥ξiνα〉
= 〈A(X,N `), A(ξi, να)〉

(6.20)

because the fields N ` and Dξiνα−∇⊥ξiνα are mutually orthogonal and, again, because ∇να = 0
at y.

This allows to conclude:

I1 =−
ˆ

Ω
|∇⊥N |2divΣ(X) dHm + 2

ˆ
Ω

Q∑

`=1
〈∇⊥N ` : ∇⊥N ` · ∇ΣX〉 dHm

+ 2
ˆ

Ω

Q∑

`=1

(
trΣ(〈A(X,N `), A(·,∇⊥(·)N `)〉)− trΣ(〈A(·, N `), A(X,∇⊥(·)N `)〉)

)
dHm

= −
ˆ

Ω
|∇⊥N |2divΣ(X) dHm + 2

ˆ
Ω

Q∑

`=1
〈∇⊥N ` : ∇⊥N ` · ∇ΣX〉dHm − E(1)

IV (X).

(6.21)

Step 2: computing I2. Write I2 =
∑
` I

`
2, where

I`2 = − d

ds

∣∣∣∣
s=0

ˆ
Ω
|A ·N `

s |2 dHm. (6.22)

Since the tensor A takes values in the normal bundle of Σ, clearly A · N `
s = A · (N ` ◦ Φs),

whence ˆ
Ω
|A ·N `

s |2 dHm =
ˆ

Ω

m∑

i,j=1
|〈Ax(ξi(x), ξj(x)), N `(Φs(x))|2 dHm(x). (6.23)

We can now differentiate in s and evaluate for s = 0 in formula (6.23) to obtain:

I`2 = −2
ˆ

Ω

m∑

i,j=1
〈Ax(ξi(x), ξj(x)), N `(x)〉〈Ax(ξi(x), ξj(x)), DXN

`(x)〉, (6.24)

which readily yields

I2 = −2
ˆ

Ω

Q∑

`=1
〈A ·N ` : A · ∇⊥XN `〉 dHm = −E(2)

IV (X). (6.25)

Step 3: computing I3. As before, write I3 =
∑
` I

`
3, where

I`3 = − d

ds

∣∣∣∣
s=0

ˆ
Ω
R(N `

s , N
`
s) dHm. (6.26)

Now, it suffices to differentiate in s and evaluate at s = 0 inside the integral keeping in
mind that R is a symmetric 2-tensor to get

I3 = −2
ˆ

Ω

Q∑

`=1
R(N `,∇⊥XN `) dHm = −E(3)

IV (X). (6.27)
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Conclusion. The statement, formula (6.5), is immediately obtained by plugging equations
(6.21), (6.25) and (6.27) into (6.10).

�

The first variation formulae (6.3) and (6.5) will play a fundamental role in the next section
to discuss the almost monotonicity properties of the frequency function. Before proceeding,
we apply the outer variation formula to show that minimizers of the Jac functional enjoy a
Caccioppoli type inequality.

Proposition 6.4 (Caccioppoli inequality). There exists a geometric constant C > 0 such that
for any Jac-minimizing Q-valued map N =

∑
`JN `K ∈ Γ1,2

Q (NΩ) the inequalityˆ
Ω
η(x)2|∇⊥N(x)|2 dHm(x) ≤ 4

ˆ
Ω
|Dη(x)|2|N(x)|2 dHm(x) + C

ˆ
Ω
η(x)2|N(x)|2 dHm(x)

(6.28)
holds for any choice of η ∈ C1

c (Ω). In particular, for every p ∈ Ω and for every r <
min {inj(Σ),dist(p, ∂Ω)} one hasˆ

B r
2

(p)
|∇⊥N |2 dHm ≤ C

r2

ˆ
Br(p)

|N |2 dHm. (6.29)

Proof. Fix N and η as in the statement, and apply the outer variation formula (6.3) with
ψ(x, u) := η(x)2u. Since Dxψ(x, u) = 2η(x)u ⊗ Dη(x) and Duψ(x, u) = η(x)2Id, for this
choice of ψ the outer variation formula reads
ˆ

Ω
η2|∇⊥N |2 + 2

Q∑

`=1
〈η∇⊥N ` : N ` ⊗Dη〉dHm =

ˆ
Ω
η2

Q∑

`=1

(
|A ·N `|2 +R(N `, N `)

)
dHm.

(6.30)
Applying Young’s inequality we immediately deduce that for any δ > 0 one hasˆ

Ω
η2|∇⊥N |2 dHm ≤ δ

ˆ
Ω
η2|∇⊥N |2 dHm + 1

δ

ˆ
Ω
|Dη|2|N |2 dHm +C

ˆ
Ω
η2|N |2 dHm, (6.31)

for a constant C = C(A,R), where, we recall, A = ‖A‖L∞ and R = ‖R‖L∞ are defined in
(3.4) and (3.6). Choose δ = 1

2 to obtain (6.28). In order to deduce (6.29), apply (6.28) with
η(x) := φ

(
d(x)
r

)
, where d(x) := d(x, p) and φ is a cut-off function 0 ≤ φ ≤ 1 such that φ(t) = 1

for 0 ≤ t ≤ 1
2 , φ(t) = 0 for t ≥ 1 and |φ′| ≤ 2. �

6.2. Almost monotonicity of the frequency function and its consequences. The next
step towards the proof of Theorem 0.7 consists of a careful asymptotic analysis of the celebrated
frequency function.

Definition 6.5 (Frequency function). Fix any point p ∈ Ω. For any radius 0 < r <
min{inj(Σ),dist(p, ∂Ω)}, define the energy function

DN,p(r) :=
ˆ

Br(p)
|∇⊥N |2(x) dHm(x) (6.32)

and the height function

HN,p(r) :=
ˆ
∂Br(p)

|N |2(x) dHm−1(x). (6.33)
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The frequency function is then defined by

IN,p(r) := rDN,p(r)
HN,p(r)

(6.34)

for all r such that HN,p(r) > 0. When the Q-field N and the point p are fixed and there is no
ambiguity, we will drop the subscripts and simply write D(r), H(r) and I(r).

Remark 6.6. Observe that D(r) = DirNΣ(N,Br(p)); D is an absolutely continuous function
with derivative

D′(r) =
ˆ
∂Br(p)

|∇⊥N |2 dHm−1

almost everywhere. As for H(r), note that |N | is the composition of N with the Lipschitz
function G(·, QJ0K), thus it belongs toW 1,2. Hence, |N |2 is aW 1,1 function, and also H ∈W 1,1.

Remark 6.7. It is an easy consequence of the Hölder regularity of N that the frequency
function I(r) is well defined and bounded for suitably small radii at any point p ∈ Ω such that
N(p) 6= QJ0K. Indeed, if such assumption is satisfied then

lim
r→0+

1
Hm−1(∂Br(p))

H(r) = |N |2(p) = G(N(p), QJ0K)2 > 0,

which in turn implies that H(r) > 0 for small values of r. Furthermore, from the proof of
Theorem 5.1 (cf. in particular formula (5.26)) we can also infer that if r is sufficiently small
then

D(r) ≤ Crm−2+2α,

where α is the Hölder exponent of N . In particular, from this one immediately concludes that
there exists the limit

lim
r→0

I(r) = 0

at every point p such that N(p) 6= QJ0K.
As we shall see, we will obtain as a byproduct of the improved regularity theory developed
in this section that the frequency function is well defined and bounded also in a suitable
neighborhood of r = 0 at every point p such that N(p) = QJ0K, and that also at such points
the limit limr→0+ I(r) exists, but it is strictly positive.

The main analytic feature of the frequency function is the following almost monotonicity
property.

Theorem 6.8 (Almost monotonicity of the frequency). There exist a geometric constant C0
and a radius 0 < r0 < min{inj(Σ),dist(p, ∂Ω)} such that for all 0 < s < t ≤ r0 with H

∣∣
[s,t] > 0

one has
I(s) ≤ C0 (1 + I(t)) . (6.35)

Propositions 6.9 and 6.10 below contain the most relevant consequences of Theorem 6.8.
Both these results will be derived under the additional assumption that p ∈ Ω has been fixed
in such a way that N(p) = QJ0K. As already observed in Remark 6.7 above, these are exactly
the points where we lack a precise description of the behavior of the frequency function. The
arguments contained in the next sections will illustrate the reason why an analysis of the
Jacobi multi-field N in a neighborhood of such a point is indeed crucial in order to obtain the
proof of Theorem 0.7.
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The first result we are interested in is the following dichotomy: if N(p) = QJ0K, then either
there exists a neighborhood of p where the map N is identically vanishing, and thus where
the frequency function is not defined at all, or, conversely, there is a neighborhood of p where
the frequency function is well defined everywhere and bounded.

Proposition 6.9. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. Assume p ∈ Ω is such that N(p) =

QJ0K. Then, the following dichotomy holds:
(i) either N ≡ QJ0K in a neighborhood of p;

(ii) or there exists a radius r0 > 0 such that
H(r) > 0 for all r ∈ (0, r0] and lim sup

r→0
I(r) <∞.

As it is natural, the most interesting situation is when condition (ii) in the above Proposition
6.9 is observed. As a first remark, we observe that the fact that the frequency function is
bounded in a neighborhood of a point p allows to improve the almost monotonicity property
itself.

Proposition 6.10 (Improved almost monotonicity of the frequency). Let N ∈ Γ1,2
Q (NΩ)

be Jac-minimizing. Assume p ∈ Ω is such that N(p) = QJ0K but N does not vanish in a
neighborhood of p. Then, there exist r0 > 0 and a constant λ = λ(I(r0)) > 0 such that the
function

r ∈ (0, r0] 7→ eλrI(r) (6.36)
is monotone non-decreasing. The limit

lim
r→0

I(r) =: I0(p) (6.37)

exists and is strictly positive.

The rest of the section will be devoted to the proofs of Theorem 6.8, Proposition 6.9 and
Proposition 6.10.

6.3. First variation estimates and the proof of Theorem 6.8. The proof of Theorem
6.8 is a consequence of some estimates involving the functions D and H and their derivatives,
which in turn can be obtained by testing the first variations formulae (6.3) and (6.5) with
a suitable choice of the maps ψ and X. The derivation of these estimates is the content of
Lemma 6.13 below. We need to define the following auxiliary functions.

Definition 6.11. We denote by ∂
∂r̂ the vector field which is tangent to geodesic arcs

parametrized by arc length and emanating from p. We will set ∇r̂ := ∇ ∂
∂r̂
, the direc-

tional derivative along ∂
∂r̂ , and we will let ∇⊥r̂ be its projection onto the normal bundle of Σ

inM. We set:

E(r) = EN,p(r) :=
ˆ
∂Br(p)

Q∑

`=1
〈N `(x),∇⊥r̂ N `(x)〉 dHm−1(x), (6.38)

G(r) = GN,p(r) :=
ˆ
∂Br(p)

|∇⊥r̂ N |2(x) dHm−1(x), (6.39)

and
F(r) = FN,p(r) :=

ˆ
Br(p)

|N |2(x) dHm(x). (6.40)



MULTIPLE VALUED JACOBI FIELDS 51

Remark 6.12. Note that F(r) = ‖N‖2L2(Br(p)) is an absolutely continuous function, and for
a.e. r

F′(r) =
ˆ
∂Br(p)

|N |2 dHm−1 = H(r). (6.41)

Lemma 6.13 (First variation estimates). There exist a geometric constant C0 > 0 and a
radius 0 < r0 < min{inj(Σ),dist(p, ∂Ω)} such that the following inequalities hold true for a.e.
0 < r ≤ r0:

|D(r)−E(r)| ≤ C0F(r), (6.42)

|D′(r)− 2G(r)− m− 2
r

D(r)| ≤ C0rD(r) + C0(D(r)F(r))1/2, (6.43)

|H′(r)− m− 1
r

H(r)− 2E(r)| ≤ C0rH(r). (6.44)

Furthermore, if I(r) ≥ 1 then
|D(r)−E(r)| ≤ C0r

2D(r), (6.45)
and

|D′(r)− 2G(r)− m− 2
r

D(r)| ≤ C0rD(r). (6.46)

Proof. Step 1: proof of (6.42). We test the outer variation formula (6.3) with the map ψ
given by

ψ(x, u) := φ

(d(x)
r

)
u, (6.47)

where d(·) := d(·, p), and φ = φ(t) ∈ C∞([0,∞)) is a cut-off function such that:
0 ≤ φ ≤ 1, φ ≡ 1 in a neighborhood of t = 0, φ ≡ 0 for t ≥ 1. (6.48)

Observe first that this choice of ψ induces an admissible family of outer variations: indeed,
one clearly sees that spt(ψ) ⊂ Br(p), the geodesic ball centered at p and of radius r, which is
compactly supported in Ω, and that the orthogonality conditions and the assumptions in (6.2)
are satisfied. We compute:

Dxψ(x, u) = r−1φ′
(d(x)

r

)
u⊗∇d,

which yields

〈∇⊥N `(x) : ∇⊥ψ(x,N `(x))〉 = r−1φ′
(d(x)

r

)
〈∇⊥r̂ N `(x), N `(x)〉. (6.49)

On the other hand, Duψ(x, u) = φ
(

d(x)
r

)
Id, whence

〈∇⊥N `(x) : Duψ(x,N `(x)) ·DN `(x)〉 = φ

(d(x)
r

)
|∇⊥N `|2(x). (6.50)

Analogously, we can compute explicitly the right-hand side of (6.3) corresponding to our
choice of ψ and get:

EOV(ψ) =
ˆ

Σ
φ

(d(x)
r

) Q∑

`=1

(
|A ·N `|2(x) +R(N `(x), N `(x))

)
dHm(x). (6.51)
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By a standard approximation procedure, the details of which are left to the reader, it is
easy to see that we can test with

φ(t) = φh(t) =





1 for 0 ≤ t ≤ 1− 1
h

h(1− t) for 1− 1
h ≤ t ≤ 1

0 for t ≥ 1.
(6.52)

Inserting into (6.49), (6.50) and (6.51), the outer variation formula (6.3) becomes

−h
r

ˆ
Br(p)\Br− r

h
(p)

Q∑

`=1
〈∇⊥r̂ N `(x), N `(x)〉dHm(x) +

ˆ
Σ
φh

(d(x)
r

)
|∇⊥N(x)|2 dHm(x)

=
ˆ

Σ
φh

(d(x)
r

) Q∑

`=1

(
|A ·N `|2(x) +R(N `(x), N `(x))

)
dHm(x).

(6.53)

Now, let h ↑ ∞. The left-hand side of (6.53) converges to D(r)−E(r), whereas the right-hand
side converges to ˆ

Br(p)

Q∑

`=1

(
|A ·N `|2 +R(N `, N `)

)
dHm.

In particular, the inequality (6.42) readily follows with a constant C0 depending on A = ‖A‖L∞
and R = ‖R‖L∞ .

Step 2: proof of (6.43). We test now the inner variation formula (6.5) with the vector field
X defined by

X(x) := d(x)
r
φ

(d(x)
r

)
∂

∂r̂

= φ

(d(x)
r

) 1
2r∇(d(x)2),

(6.54)

with φ as in (6.48).
Standard computations lead to

∇ΣX(x) = φ′
(d(x)

r

) d(x)
r2

∂

∂r̂
⊗ ∂

∂r̂
+ φ

(d(x)
r

) 1
2rHessΣ(d(x)2)

= φ′
(d(x)

r

) d(x)
r2

∂

∂r̂
⊗ ∂

∂r̂
+ φ

(d(x)
r

)( Id
r

+O(r)
)

for r → 0, and consequently

divΣX(x) = φ′
(d(x)

r

) d(x)
r2 + φ

(d(x)
r

) 1
2r∆Σ(d(x)2)

= φ′
(d(x)

r

) d(x)
r2 + φ

(d(x)
r

)(
m

r
+O(r)

)
.

Choosing again tests of the form φ = φh as in (6.52), plugging into (6.5) and taking the
limit h ↑ ∞, we see that the left-hand side of the inner variation formula reads

D′(r)− 2G(r)− m− 2
r

D(r) +O(r)D(r) (6.55)

for r → 0.
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We proceed with the analysis of the error term EIV(X). Straightforward computations
imply the following estimates:

|E(1)
IV | ≤ C1

ˆ
Br(p)

|N(x)||∇⊥N(x)| dHm(x),

|E(2)
IV |+ |E

(3)
IV | ≤ C2,3

ˆ
Br(p)

|N(x)||∇⊥r̂ N(x)|dHm(x),

where C1 is a geometric constant depending on A = ‖A‖L∞ , and C2,3 depends on A and R.
Applying the Cauchy-Schwarz inequality we conclude

|EIV(X)| ≤ C0 (D(r)F(r))1/2 . (6.56)

Combining (6.55) and (6.56), we deduce the inequality (6.43) whenever r is small enough.

Step 3: proof of (6.44). Let expp : V ⊂ TpΣ→ Σ be the exponential map with pole p. Since
Br(0) b V for every r < inj(Σ), we can use the change of coordinates x = expp(y) to write:

H(r) =
ˆ
∂Br

|N |2(expp(y)) J expp(y) dHm−1(y)

= rm−1
ˆ
∂B1

|N |2(expp(rz)) J expp(rz) dHm−1(z).

Thus, we differentiate under the integral sign and compute

H′(r) = (m− 1)rm−2
ˆ
∂B1

|N |2(expp(rz)) J expp(rz) dHm−1(z)

+ 2rm−1
ˆ
∂B1

Q∑

`=1
〈N `(expp(rz)),∇⊥r̂ N `(expp(rz))〉J expp(rz) dHm−1(z)

+ rm−1
ˆ
∂B1

|N |2(expp(rz))
d

dr

(
J expp(rz)

)
dHm−1(z).

Since d
dr

(
J expp(rz)

)
= O(r) for r → 0, we are able to conclude

H′(r) = m− 1
r

H(r) + 2E(r) +O(r)H(r), (6.57)

from which (6.44) readily follows.

Step 4: proof of (6.45) and (6.46). It suffices to exploit the inequality

F(r) ≤ C0rH(r) + C0r
2D(r), (6.58)

which can be easily deduced from the Poincaré inequality (note also that the same inequality
has been already proved in the Euclidean setting earlier on, cf. Corollary 5.13). In the regime
I(r) ≥ 1, that is H(r) ≤ rD(r), (6.58) simply reads

F(r) ≤ C0r
2D(r). (6.59)

Then, (6.45) and (6.46) are an immediate consequence of (6.42) and (6.43) respectively. �

We can now proceed with the proof of the almost monotonicity property of the frequency.
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Proof of Theorem 6.8. Set Ω(r) := log(max{I(r), 1}). In order to prove the theorem, it suffices
to show that

Ω(s) ≤ C + Ω(t) (6.60)
for some positive geometric constant C. If Ω(s) = 0 there is nothing to prove. Thus, we
assume that Ω(s) > 0. Define

τ := sup{r ∈ (s, t] : Ω(r) > 0 on (s, r)}.
If τ < t, then by continuity it must be Ω(τ) = 0: hence, in this case we would have
Ω(τ) = 0 ≤ Ω(t), and therefore proving that Ω(s) ≤ C + Ω(τ) would imply (6.60). Thus, we
can assume without loss of generality that Ω(r) > 0 in (s, t): in other words, I(r) > 1, and
Ω(r) = log(I(r)). Then, as a consequence of (6.45), if r0 is taken small enough one has

D(r)
2 ≤ E(r) ≤ 2D(r), (6.61)

that is the quantity E(r) is positive and comparable to D(r) at small scales.
Guided by this principle, we compute:

− d

dr
(log I(r)) = H′(r)

H(r) −
D′(r)
D(r) −

1
r

= H′(r)
H(r) −

D′(r)
E(r) −D′(r)Z(r)− 1

r
,

(6.62)

where Z(r) := 1
D(r) −

1
E(r) satisfies

|Z(r)| = |D(r)−E(r)|
D(r)E(r)

(6.61)
≤ 2 |D(r)−E(r)|

D(r)2

(6.42)
≤ C0

F(r)
D(r)2 . (6.63)

Now, by (6.44) one has that
H′(r)
H(r) ≤ Cr + m− 1

r
+ 2 E(r)

H(r) , (6.64)

whereas the inner variation formula (6.46) yields

−D′(r)
E(r) ≤ Cr

D(r)
E(r) − 2G(r)

E(r) −
m− 2
r

D(r)
E(r)

(6.61)
≤ Cr − 2G(r)

E(r) −
m− 2
r

(1−D(r)Z(r))

(6.63)
≤ Cr − 2G(r)

E(r) −
m− 2
r

+ Cr−1 F(r)
D(r)

≤ Cr − 2G(r)
E(r) −

m− 2
r

(6.65)

because of (6.59).
Plugging (6.64) and (6.65) into (6.62), and using the estimate on the error term Z(r) given

by (6.63), we obtain the following:

− d

dr
(log I(r)) ≤ Cr + 2

(E(r)
H(r) −

G(r)
E(r)

)
+ C

D′(r)
D(r)2 F(r). (6.66)
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Now, by the Cauchy-Schwarz inequality one has

E(r)2 ≤ G(r)H(r),

whence the term E(r)
H(r) −

G(r)
E(r) is non-positive and (6.66) yields

− d

dr
(log I(r)) ≤ Cr + C

D′(r)
D(r)2 F(r). (6.67)

Integrating for r ∈ (s, t), we obtain

Ω(s)−Ω(t) ≤ C + C

(F(s)
D(s) −

F(t)
D(t)

)
+ C

ˆ t

s

F′(r)
D(r) dr ≤ C, (6.68)

where the last inequality follows from the above observation that, in the regime I ≥ 1, the
inequalities

F(r) ≤ C0r
2D(r), F′(r) = H(r) ≤ rD(r)

hold almost everywhere. This completes the proof. �

6.4. Proof of Propositions 6.9 and 6.10. We will need the following version of the Poincaré
inequality.

Lemma 6.14. There exist a radius 0 < r0 = r0(m,Q) < inj(Σ) and a geometric constant
C > 0 with the following property. Let N ∈ Γ1,2

Q (NΩ) be a multiple valued section of NΣ
Jac-minimizing in Ω. Assume p ∈ Ω is such that N(p) = QJ0K. Then, the inequality

‖N‖2L2(Br(p)) ≤ Cr
2DirNΣ(N,Br(p)) (6.69)

holds true for every 0 < r ≤ min{r0,dist(p, ∂Ω)}.
Proof. Let r0 = r0(m,Q) be the radius given by Theorem 5.1, and let r ≤ min{r0,dist(p, ∂Ω)}
be arbitrary. Let ρ ∈ (0, r2

]
be a radius to be chosen later and split ‖N‖2L2(Br(p)) into the sum

ˆ
Br(p)

|N |2 dHm =
ˆ

Bρ(p)
|N |2 dHm +

ˆ
Br(p)\Bρ(p)

|N |2 dHm. (6.70)

In order to estimate the first term in the sum, we recall that |N |2(x) = G(N(x), QJ0K)2 =
G(N(x), N(p))2 and exploit the α-Hölder continuity of N to concludeˆ

Bρ(p)
|N |2 dHm ≤ ρ2α [N ]2C0,α(Bρ(p))Hm(Bρ(p))

(5.1)
≤ Cρ2

(
Dir(N,B2ρ(p)) + Λ

ˆ
B2ρ(p)

|N |2 dHm
)

≤ Cρ2Dir(N,Br(p)) + CΛρ2
ˆ

Br(p)
|N |2 dHm

≤ Cr2DirNΣ(N,Br(p))︸ ︷︷ ︸
=:I1

+C(Λ + C0)ρ2
ˆ

Br(p)
|N |2 dHm

︸ ︷︷ ︸
=:I2

,

(6.71)

where C0 depends on A and A.
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As for the second addendum in (6.70), we integrate in normal polar coordinates with pole p
to write ˆ

Br(p)\Bρ(p)
|N |2 dHm =

ˆ r

ρ

(ˆ
∂Bτ (p)

|N |2 dHm−1
)

dτ. (6.72)

Now, fix any τ ∈ (ρ, r), and for every x ∈ ∂Bτ (p) let γx = γx(s), s ∈ [0, τ ], be the unique
geodesic parametrized by arclength joining p to x. Also denote by x the point where γx
intersects ∂Bρ(p). Then, the fundamental theorem of calculus immediately yields

|N |2(x) ≤ |N |2(x) + 2
ˆ τ

ρ
(|N ||∇⊥N |)(γx(s)) ds. (6.73)

Integrate the above inequality in x ∈ ∂Bτ (p) to get
ˆ
∂Bτ (p)

|N |2 dHm−1 ≤ C
(
τ

ρ

)m−1
(ˆ

∂Bρ(p)
|N |2 dHm−1 + 2

ˆ
Bτ (p)\Bρ(p)

|N ||∇⊥N | dHm
)
.

(6.74)
Using once again the Hölder estimate (5.1) and recalling that ρ ≤ r

2 , we are able to control
(
τ

ρ

)m−1 ˆ
∂Bρ(p)

|N |2 dHm−1 ≤
(
τ

ρ

)m−1
ρ2α [N ]2C0,α(B r

2
(p))Hm−1(∂Bρ(p))

≤ Cτm−1ρ2αr2−m−2α
(

Dir(N,Br(p)) + Λ
ˆ

Br(p)
|N |2 dHm

)
.

(6.75)

We can now integrate in τ ∈ (ρ, r), so that using the estimates in (6.74) and (6.75) we can
easily deduce from (6.72) the following inequality:

ˆ
Br(p)\Bρ(p)

|N |2 dHm ≤ C
(
ρ

r

)2α
r2DirNΣ(N,Br(p))

︸ ︷︷ ︸
=:J1

+ C(Λ + C0)ρ2α
ˆ

Br(p)
|N |2 dHm

︸ ︷︷ ︸
=:J2

+ C

(
r

ρ

)m−1
r

ˆ
Br(p)

|N ||∇⊥N | dHm
︸ ︷︷ ︸

=:J3

,

(6.76)

where C and C0 are geometric constants. Now we can sum up the contributions coming
from the ball Bρ(p) and from the annulus Br(p) \Bρ(p) and choose ρ = ρ(Λ, C, C0) so small
that the terms I2 and J2 are absorbed in the left-hand side of the equation, thus ultimately
providing

ˆ
Br(p)

|N |2 dHm ≤ Cr2DirNΣ(N,Br(p)) + Cr

ˆ
Br(p)

|N ||∇⊥N |dHm. (6.77)
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Finally, use Young’s inequality: for any choice of the parameter η > 0, (6.77) implies that
ˆ

Br(p)
|N |2 dHm ≤ Cr2DirNΣ(N,Br(p)) + Cr

(
η

ˆ
Br(p)

|N |2 dHm + 1
η

DirNΣ(N,Br(p))
)
.

(6.78)
The conclusion immediately follows by choosing η such that Crη = 1

2 . �

Proof of Proposition 6.9. First observe that if N does not vanish identically in a neighborhood
of p, then there exists r0 > 0 such that H(r0) > 0. Clearly, without loss of generality we
can suppose that (6.69) holds for every 0 < r ≤ r0, and also that (6.35) holds in any interval
[s, t] ⊂ (0, r0] such that H

∣∣
[s,t] > 0. We claim that in fact H(r) > 0 for all 0 < r ≤ r0. Indeed,

if this is not true, let ρ > 0 be given by ρ := sup{r ∈ (0, r0] : H(r) = 0}. By definition
H(r) > 0 for ρ < r ≤ r0, whence for such r’s we can take advantage of Theorem 6.8 and write

I(r) ≤ C0(1 + I(r0)).

By letting r ↓ ρ we conclude

ρD(ρ) ≤ C0(1 + I(r0))H(ρ) = 0,

which in turn produces DirNΣ(N,Bρ(p)) = 0. Then, by Lemma 6.14, N vanishes identically
in Bρ(p), contradiction.

It is now a simple consequence of Theorem 6.8 that

lim sup
r→0

I(r) ≤ C0(1 + I(r0)),

which completes the proof. �

Proof of Proposition 6.10. Under the assumptions in the statement, case (ii) in Proposition
6.9 must hold, and thus the frequency function is well defined and bounded in an interval
(0, r0]. Moreover, the Poincaré inequality (6.69) implies that, modulo possibly taking a smaller
value of r0, the first variation estimates of Lemma 6.13 can be again re-written as in (6.45)
and (6.46), and that (6.61) holds. Thus, we can compute:

I′(r) = D(r)
H(r) + rD′(r)

H(r) −
rD(r)H′(r)

H(r)2

= D(r)
H(r) + r

H(r)

(
2G(r) + m− 2

r
D(r) + E1(r)

)
− rD(r)

H(r)2

(
m− 1
r

H(r) + 2E(r) + E2(r)
)

= 2r
H(r)2

(
G(r)H(r)−E(r)2

)
+ r

H(r) E1(r)− rD(r)
H(r)2 E2(r) + E3(r),

(6.79)

where

|E1(r)|
(6.46)
≤ C0rD(r), (6.80)

|E2(r)|
(6.44)
≤ C0rH(r), (6.81)

and

|E3(r)| = 2rE(r)
H(r)2 |E(r)−D(r)|

(6.45),(6.61)
≤ C0

r3D(r)2

H(r)2 , (6.82)
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if r0 is chosen small enough. Since G(r)H(r)−E(r)2 ≥ 0 by the Cauchy-Schwartz inequality,
the above arguments show the existence of a radius r0 > 0 and a geometric constant C0 > 0
such that

I′(r) ≥ −C0rI(r)− C0rI(r)2 (6.83)
for all r ∈ (0, r0]. On the other hand, for such r’s one has I(r) ≤ C0(1 + I(r0)) by Theorem
6.8. Thus, this allows to conclude that

I′(r) ≥ −λI(r), (6.84)
for some positive λ depending only on r0 and I(r0). The monotonicity of the function
r 7→ eλrI(r) is now a simple consequence of (6.84).

Next, we conclude the proof showing that the limit
I0 := lim

r→0
eλrI(r) = lim

r→0
I(r) (6.85)

is positive. To see this, we show that the Poincaré inequality (6.69) allows to bound the
frequency function from below with a positive constant. Indeed, arguing as in the proof of
Lemma 6.14 (cf. in particular the equations (6.74) and (6.75)), it is easily seen that one can
estimate

H(r) =
ˆ
∂Br(p)

|N |2 dHm−1 ≤ C


ˆ
∂B r

2
(p)
|N |2 dHm−1 +

ˆ
Br(p)\B r

2
(p)
|N ||∇⊥N | dHm




≤ Cr
(

Dir(N,Br(p)) + Λ
ˆ

Br(p)
|N |2 dHm

)
+ C

ˆ
Br(p)

|N ||∇⊥N |dHm

≤ CrD(r) + CrF(r) + C

ˆ
Br(p)

|N ||∇⊥N |dHm.
(6.86)

In turn, applying Young’s inequality to the last addendum in the right-hand side of (6.86)
yields ˆ

Br(p)
|N ||∇⊥N | dHm ≤ r

2D(r) + 1
2rF(r). (6.87)

Plugging (6.87) in (6.86) and using the Poincaré inequality (6.69) finally gives
H(r) ≤ C(1 + r2)rD(r) ≤ C(1 + r2

0)rD(r), (6.88)
thus completing the proof. �

7. Reverse Poincaré and analysis of blow-ups for the top stratum

The final goal of this section is to perform the key step in the proof of Theorem 0.7, namely
the blow-up procedure, see Theorem 7.8 below. In doing this, we will clarify the importance
of the results obtained in the previous paragraph.

7.1. Reverse Poincaré inequalities. The proof of the blow-up theorem will heavily rely on
an important technical tool, a reverse Poincaré inequality for Jac-minimizers. In Proposition
6.4, we have already shown that Jac-minimizers enjoy a Caccioppoli type inequality: the
L2-norm of a Jacobi Q-field N in a ball Br(p) controls the Dirichlet energy in the ball with
half the radius. As an immediate consequence of the boundedness of the frequency function,
one can actually show that the Dirichlet energy in B r

2
(p) can be controlled with the L2-norm
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of N in the annulus Br(p) \B r
2
(p), provided that we allow the constant to depend on the

value of the frequency at a given scale.

Proposition 7.1. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. Then, there exists r0 > 0 such that

for any r ∈ (0, r0] one has

DirNΣ(N,B r
2
(p)) ≤ C

r2

ˆ
Br(p)\B r

2
(p)
|N |2 dHm (7.1)

for some positive C = C(I(r0)).

Proof. If N is vanishing identically in a neighborhood of p there is nothing to prove. Therefore,
we can assume that either N(p) 6= QJ0K or N(p) = QJ0K but N does not vanish identically
in any neighborhood of p. In any of the two cases, either by the arguments contained in
Remark 6.7 or by Proposition 6.9, there exists a positive radius r0 such that the frequency
function is well defined and bounded for all r ∈ (0, r0]. Thus, there exists a positive constant
C = C(I(r0)) such that, for fixed r ≤ r0, τD(τ) ≤ CH(τ) for τ in the interval

[
r
2 , r
]
. Integrate

with respect to τ to get (7.1):
3
8r

2DirNΣ(N,B r
2
(p)) = 3

8r
2D

(
r

2

)
≤
ˆ r

r
2

τD(τ) dτ

≤ C
ˆ r

r
2

H(τ) dτ = C

ˆ
Br(p)\B r

2
(p)
|N |2 dHm.

�

The Caccioppoli inequality can in fact be improved further under the assumption that
N(p) = QJ0K: indeed, at small scales the inequality (6.29) holds without having to increase
the support of the ball on the right-hand side. Again, for this to be true we need to allow the
constant to depend on the value of the frequency at scale r0.

Proposition 7.2 (Reverse Poincaré Inequality). Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing.

Assume N(p) = QJ0K. Then, there exists r0 > 0 such that for any r ∈ (0, r0] the following
inequality

DirNΣ(N,Br(p)) ≤
C

r2

ˆ
Br(p)

|N |2 dHm (7.2)

holds for some positive C = C(I(r0)).

Proof. Once again, we observe that (7.2) is trivial when N ≡ QJ0K in a neighborhood of p.
We assume then that case (ii) in Proposition 6.9 holds, and we let r0 be the radius given
in there. Since the frequency function is well defined and bounded in (0, r0], there exists
C = C(I(r0)) > 0 such thatˆ

Br(p)
|∇⊥N |2 dHm ≤ C

r

ˆ
∂Br(p)

|N |2 dHm−1, (7.3)

for all r’s in the above interval. Arguing once again as in the proof of Lemma 6.14, we have
that for every ρ ∈ (0, r2

]
it holds

ˆ
∂Br(p)

|N |2 dHm−1 ≤ C
(
r

ρ

)m−1
(ˆ

∂Bρ(p)
|N |2 dHm−1 + 2

ˆ
Br(p)\Bρ(p)

|N ||∇⊥N | dHm
)
.

(7.4)
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Furthermore, by the Hölder continuity of N and since ρ ≤ r
2 we also have

(
r

ρ

)m−1 ˆ
∂Bρ(p)

|N |2 dHm−1 (6.69)
≤ C

(
ρ

r

)2α
r

(ˆ
Br(p)

|∇⊥N |2 dHm + (C0 + Λ)
ˆ

Br(p)
|N |2 dHm

)
.

(7.5)
Combining (7.3), (7.4) and (7.5) gives

ˆ
Br(p)

|∇⊥N |2 dHm ≤ C
(
ρ

r

)2α
(ˆ

Br(p)
|∇⊥N |2 dHm +

ˆ
Br(p)

|N |2 dHm
)

+ C

r

(
r

ρ

)m−1 ˆ
Br(p)

|N ||∇⊥N |dHm.
(7.6)

Now, if we choose ρ so small that C
(ρ
r

)2α ≤ 1
2 then from (7.6) followsˆ

Br(p)
|∇⊥N |2 dHm ≤

ˆ
Br(p)

|N |2 dHm + C

r

ˆ
Br(p)

|N ||∇⊥N |dHm

≤
ˆ

Br(p)
|N |2 dHm + C

2rη
ˆ

Br(p)
|∇⊥N |2 dHm + C

2rη

ˆ
Br(p)

|N |2 dHm,
(7.7)

by the Young’s inequality. Choose η = r
C to obtainˆ

Br(p)
|∇⊥N |2 dHm ≤

(
C

r2 + 2
) ˆ

Br(p)
|N |2, (7.8)

which immediately implies (7.2). �

Now that we have the Reverse Poincaré inequality at our disposal, we can enter the core of
the blow-up scheme.

7.2. The top-multiplicity singular stratum. Blow-up. The main difficulty in the proof
of Theorem 0.7 consists of estimating the Hausdorff dimension of the set of singular points
with multiplicity exactly equal to Q. The proof of the general result then follows in a relatively
easy way by an induction argument on Q. Therefore, it is fundamental to study the structure
of the top-multiplicity singular stratum of N , denoted singQ(N) and defined as follows.

Definition 7.3 (Top-multiplicity points). Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. A point

p ∈ Ω has multiplicity Q, or simply is a Q-point for N , and we will write p ∈ DQ(N), if
there exists v ∈ T⊥p Σ such that N(p) = QJvK. We will define the top-multiplicity regular and
singular strata of N by

regQ(N) := reg(N) ∩DQ(N), singQ(N) := sing(N) ∩DQ(N),

respectively.

From this point onward, we will assume to have fixed a point p ∈ DQ(N). The first step is
to show that without loss of generality we can always assume that N(p) = QJ0K. Recall the
definition of the map η given in (1.3).

Lemma 7.4. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. Then:

(i) the map η ◦N : Ω→ Rd is a classical Jacobi field;
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(ii) if ζ : Ω → Rd is a classical Jacobi field, then the Q-valued map u :=
∑
`JN ` + ζK is

Jac-minimizing.

Proof. Recall (cf. Remark 2.8 and the notation therein) that a normal vector field ζ ∈
Γ1,2(NΩ) := Γ1,2

1 (NΣ) is a Jacobi field if it is a weak solution of the linear elliptic PDE on
the normal bundle NΣ (

−∆⊥Σ −A −R
)
ζ = 0,

that is, if the identityˆ
Ω

(
〈∇⊥ζ : ∇⊥φ〉 − 〈A · ζ : A · φ〉 − R(ζ, φ)

)
dHm = 0 (7.9)

holds for all test functions φ ∈ C1
(
Ω,Rd

)
with spt(φ) ⊂ Ω′ b Ω and φ(x) ∈ T⊥x Σ ⊂ TxM for

every x ∈ Ω.
In order to prove (i), first observe that the map η preserves the fibers of the normal bundle,

so that η ◦N(x) ∈ T⊥x Σ for a.e. x ∈ Ω and thus η ◦N ∈ Γ1,2(NΩ) = Γ1,2
1 (NΩ). Now, fix any

vector field φ as above. It is immediate to see that we can test the outer variation formula
(6.3) with ψ(x, u) := φ(x), and that the resulting equation is preciselyˆ

Ω

(
〈∇⊥(η ◦N) : ∇⊥φ〉 − 〈A · (η ◦N) : A · φ〉 − R(η ◦N,φ)

)
dHm = 0,

that is η ◦N solves (7.9) and the proof of (i) is complete.
In order to prove (ii), we take any h ∈ Γ1,2

Q (NΩ) such that h|∂Ω = N |∂Ω and we show that

Jac(u,Ω) ≤ Jac(h̃,Ω),

with h̃ =
∑
`Jh` + ζK. We compute:

Jac(u,Ω) =
ˆ

Ω

Q∑

`=1

(
|∇⊥(N ` + ζ)|2 − |A · (N ` + ζ)|2 −R(N ` + ζ,N ` + ζ)

)
dHm

= Jac(N,Ω) +Q

(ˆ
Ω

(|∇⊥ζ|2 − |A · ζ|2 −R(ζ, ζ)) dHm
)

+ 2Q
(ˆ

Ω
(〈∇⊥(η ◦N) : ∇⊥ζ〉 − 〈A · (η ◦N) : A · ζ〉 − R(η ◦N, ζ)) dHm

)
.

Using that Jac(N,Ω) ≤ Jac(h,Ω) and recalling the definition of h̃, we see that

Jac(u,Ω)− Jac(h̃,Ω) ≤ 2Q
ˆ

Ω
〈∇⊥(η ◦N − η ◦ h) : ∇⊥ζ〉

− 2Q
ˆ

Ω
〈A · (η ◦N − η ◦ h) : A · ζ〉

− 2Q
ˆ

Ω
R(η ◦N − η ◦ h, ζ) = 0,

because ζ is a Jacobi field and the function φ = η ◦N − η ◦ h is a W 1,2 section of the normal
bundle vanishing at ∂Ω. This completes the proof. �

Remark 7.5. As a simple corollary of Lemma 7.4, if N is Jac-minimizing then the Q-valued
map Ñ =

∑
`JN ` − η ◦NK is a Jac-minimizer with η ◦ Ñ ≡ 0 and the same singular set as

N . Therefore, there is no loss of generality in assuming that η ◦ N ≡ 0, and, thus, that
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every Q-point p satisfies N(p) = QJ0K. In particular, when p ∈ DQ(N) we can apply all the
results of the previous section that were proved under the above assumption. Furthermore,
the content of Proposition 6.9 becomes more apparent in this context. Indeed, the dichotomy
stated in there discriminates perfectly between regular and singular top-multiplicity points:
p ∈ regQ(N) if and only if the condition (i) is observed; on the other hand, p ∈ singQ(N) if
and only if the frequency function is well defined and bounded in a neighborhood of p.

In view of the above remark, we assume from this point onwards that N is Jac-minimizing
and such that η ◦N = 0. We fix a point p ∈ singQ(N), and an orthonormal basis

(e1, . . . , em, em+1, . . . , em+k, em+k+1, . . . , ed)

of the euclidean space Rd with the property that TpΣ = span(e1, . . . , em) and T⊥p Σ =
span(em+1, . . . , em+k). Choose local orthonormal frames (ξi)mi=1 and (να)kα=1 of T Σ and
NΣ respectively which extend the basis at p, that is, such that ξi(p) = ei for i = 1, . . . ,m and
να(p) = em+α for α = 1, . . . , k. With a slight abuse of notation, we will sometimes denote the
linear subspace Rm × {0} × {0} by Rm and {0} × Rk × {0} by Rk.

Let r0 > 0 be such that all the conclusions from the previous paragraphs hold. For every
r ∈ (0, r0], translate and rescale the manifoldsM and Σ, setting

Mr := M− p
r

, Σr := Σ− p
r

,

that isMr = ιp,r(M) and Σr = ιp,r(Σ), where

ιp,r(x) := x− p
r

.

The manifolds Mr and Σr will be regarded as Riemannian submanifolds of Rd with the
induced euclidean metric. We will let

exr : B1 ⊂ T0Σr ' Rm → Σr

be the exponential map, and we will use the symbol ψp,r to denote the map

ψp,r := ι−1
p,r ◦ exr.

Observe that ψp,r maps the euclidean ball B1(0) ⊂ Rm diffeomorphically onto the geodesic
ball Br(p) ⊂ Σ.

Remark 7.6. Observe that, since T0Mr = TpM = span(e1, . . . , em+k) for every r, the
ambient manifoldsMr converge, as r ↓ 0, to Rm+k × {0} in C3,β. For the same reason, the
Σr’s converge to Rm × {0} × {0} in C3,β and the exponential maps exr converge in C2,β to
the identity map of the ball B1 ⊂ Rm (cf. [DLS16b, Proposition A.4]).

Definition 7.7. We define the blow-ups of N at p as the one-parameter family of maps
Np,r : B1 ⊂ T0Σr → AQ(Rd) indexed by r ∈ (0, r0] and given by

Np,r(y) := r
m
2 N(ψp,r(y))
‖N‖L2(Br(p))

= r
m
2 N(p+ rexr(y))
‖N‖L2(Br(p))

. (7.10)

Observe that the maps Np,r are well defined because N is not vanishing in any ball Br(p)
with 0 < r ≤ r0.

The next theorem is the anticipated convergence result for the blow-up maps.
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Theorem 7.8. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing with η ◦N = 0. Assume p ∈ singQ(N).

Then, for any sequence Np,rj with rj ↓ 0, a subsequence, not relabeled, converges weakly in
W 1,2, strongly in L2 and locally uniformly to a continuous Q-valued function Np : B1 ⊂ Rm →
AQ(Rk) such that:

(a) Np(0) = QJ0K and η ◦Np ≡ 0, but ‖Np‖L2(B1) = 1, and thus, in particular, Np is
non-trivial;

(b) Np is locally Dir-minimizing in B1;
(c) Np is µ-homogeneous, with µ = I0(p), the frequency of N at p defined in (6.37).

Remark 7.9. Any map Np which is the limit of a blow-up sequence Np,rj in the sense specified
above will be called a tangent map to N at p.

Proof. Let N and p be as in the statement. For any sequence rj ↓ 0, let us denoteMj :=Mrj ,
Σj := Σrj , exj := exrj , ψj := ψp,rj and Nj := Np,rj in order to simplify the notation. We will
divide the proof into steps.

Step 1: boundedness in W 1,2. Assume for the moment that j ∈ N is fixed. We start
estimating ‖Nj‖L2(B1). Changing coordinates x = ψj(y) in the integral, we compute explicitly

‖N‖2L2(Brj (p)) =
ˆ

Brj (p)
|N(x)|2 dHm(x)

= ‖N‖2L2(Brj (p))

ˆ
B1

|Nj(y)|2 Jexj(y) dy,
(7.11)

and thus ˆ
B1

|Nj(y)|2 Jexj(y) dy = 1 (7.12)

for every j. By the considerations in Remark 7.6, we can deduce that necessarily

1
2 ≤ ‖Nj‖2L2(B1) ≤ 2 (7.13)

when j is large enough.
Next, we bound the Dirichlet energy of the blow-up maps in B1. For any y ∈ B1 ⊂ T0Σj ,

and for all i = 1, . . . ,m, let εi = εi(y) be the vector in T0Σj defined by

d(exj)|y · εi(y) = ξi(p+ rjexj(y)).

We note that, when j ↑ ∞, εi converges to ei = ξi(p) uniformly in B1.
Again by changing variable x = ψj(y) in the integral, we compute:

Dir(N,Brj (p)) =
ˆ

Brj (p)

m∑

i=1
|DξiN(x)|2 dHm(x)

=
‖N‖2L2(Brj (p))

r2
j

ˆ
B1

m∑

i=1
|DεiNj(y)|2 Jexj(y) dy.

(7.14)

On the other hand, using that N takes values in the normal bundle, we have the usual estimate

Dir(N,Brj (p)) ≤ DirNΣ(N,Brj (p)) + C0‖N‖2L2(Brj (p)), (7.15)
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for some positive geometric constant C0 = C0(A,A). From (7.14) and (7.15) we conclude
that for any j

ˆ
B1

m∑

i=1
|DεiNj(y)|2 Jexj(y) dy ≤

r2
j DirNΣ(N,Brj (p))
‖N‖2L2(Brj (p))

+ C0r
2
j ≤ C(1 + r2

j ), (7.16)

because of the reverse Poincaré inequality (7.2). Thus, we conclude that the Dirichlet energy
of the blow-up maps in B1 is bounded:

Dir(Nj , B1) :=
ˆ
B1

m∑

i=1
|DeiNj |2 dy ≤ C. (7.17)

Step 2: convergence. The W 1,2 bounds given by estimates (7.13) and (7.17), together with
Proposition 1.20, clearly imply the W 1,2-weak and L2-strong convergence of a subsequence
in B1. We claim now that the Nj ’s are locally Hölder equi-continuous. This is an easy
consequence of the Hölder estimate in (5.1) and of the reverse Poincaré inequality. Indeed, for
any 0 < θ < 1 and for any points y1, y2 ∈ Bθ one has the following:

G(Nj(y1), Nj(y2)) =
r
m
2
j

‖N‖L2(Brj (p))
G(N(p+ rjexj(y1)), N(p+ rjexj(y2)))

≤
r
m
2
j

‖N‖L2(Brj (p))
[N ]C0,α(Bθrj

(p)) d(p+ rjexj(y1), p+ rjexj(y2))α

(5.1)
≤ C

rj
‖N‖L2(Brj (p))

(
DirNΣ(N,Brj (p)) + (Λ + C0)|N‖2L2(Brj (p))

)1/2

|y1 − y2|α

(7.2)
≤ C(1 + rj)|y1 − y2|α.

Hence, for every 0 < θ < 1 there exists C = C(θ) > 0 such that

[Nj ]C0,α(Bθ) := sup
y1,y2∈Bθ

G(Nj(y1), Nj(y2))
|y1 − y2|α

≤ C (7.18)

for all j. Since Nj(0) = QJ0K, the Nj ’s are also locally uniformly bounded, hence the Ascoli-
Arzelà theorem implies that, up to extracting another subsequence if necessary, the convergence
is locally uniform, and the limit is a continuous Q-valued function Np : B1 ⊂ Rm → AQ(Rd).

Step 3: properties of the limit: proof of (a). It is immediate to see that η ◦Np ≡ 0. Indeed,
from the assumption that η ◦N ≡ 0 and the definition of the blow-up maps, we deduce that
η ◦Nj ≡ 0 for every j. Now, the Nj ’s converge to Np locally uniformly, and thus

η ◦Np(y) = lim
j→∞

η ◦Nj(y) = 0

for all y ∈ B1. With the same argument, using the pointwise convergence of Nj to Np and
the fact that Nj(0) = QJ0K for every j we conclude that Np(0) = QJ0K.

Nonetheless, the map Np is non-trivial. Indeed, since Nj → Np strongly in L2, estimate
(7.12) guarantees that:

‖Np‖2L2(B1) = lim
j→∞

ˆ
B1

|Nj(y)|2 Jexj(y) dy = 1. (7.19)
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Next, we see that Np(y) ∈ AQ(Rk) for every y ∈ B1. Indeed, considering the projection
N

(1)
p of Np onto the subspace Rm × {0} × {0} we easily infer that

ˆ
B1

|N (1)
p (y)|2 dy =

ˆ
B1

Q∑

`=1

m∑

i=1
|〈N `

p (y), ei〉|2 dy

= lim
j→∞

ˆ
B1

Q∑

`=1

m∑

i=1
|〈N `

j (y), ξi(p+ rjexj(y))〉|2 dy = 0,

because of the definition of Nj . Analogously, the projection N
(3)
p onto {0}×{0}×RK satisfies

ˆ
B1

|N (3)
p (y)|2 dy =

ˆ
B1

Q∑

`=1

K∑

β=1
|〈N `

p (y), em+k+β〉|2 dy

= lim
j→∞

ˆ
B1

Q∑

`=1

K∑

β=1
|〈N `

j (y), ηβ(p+ rjexj(y))〉|2 dy = 0,

where the ηβ ’s are a local orthonormal frame of the normal bundle ofM in Rd extending the
em+k+β’s in a neighborhood of p.

Step 4: harmonicity of the limit: proof of (b). We show now that Np is locally Dir-minimizing
in B1 and, moreover, that for every 0 < ρ < 1 the following identity holds true:

Dir(Np, Bρ) = lim inf
j→∞

Dir(Nj , Bρ). (7.20)

In order to obtain the proof of the above claim, we need to exploit the minimizing property
of the Jacobi Q-valued field N in order to deduce some crucial information on the blow-up
sequence Nj . Fix j ∈ N, and let u : B1 ⊂ T0Σj ' Rm → AQ(Rd) be any W 1,2 map such that
u|∂B1 = Nj |∂B1 . Then, the map ũ ∈W 1,2

(
Brj (p),AQ(Rd)

)
defined by

ũ(x) := r
−m2
j ‖N‖L2(Brj (p))

(
u ◦ ψ−1

j

)⊥
(x)

= r
−m2
j ‖N‖L2(Brj (p))

Q∑

`=1

t
k∑

β=1
〈u` ◦ ψ−1

j (x), νβ(x)〉νβ(x)
|

is a section of NΣ in Brj (p) such that ũ|∂Brj (p) = N |∂Brj (p). By minimality, it follows then
that

Jac(N,Brj (p)) ≤ Jac(ũ,Brj (p)). (7.21)

Standard computations show that (7.21) is equivalent to the condition

Fj(Nj) ≤ Fj(u), (7.22)
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where Fj(u) is the functional defined by

Fj(u) : =
ˆ
B1

Q∑

`=1

m∑

i=1

k∑

α=1

∣∣∣〈Dεiu
`(y), να ◦ ψj(y)〉+ rj〈u`(y), (Dξiνα −∇⊥ξiνα) ◦ ψj(y)

∣∣∣
2

Jexj(y) dy

− r2
j

ˆ
B1

Q∑

`=1

(∣∣∣A ◦ ψj(y) · (u`)⊥ψj(y)
∣∣∣
2

+R ◦ ψj((u`)⊥ψj(y) , (u`)⊥ψj(y))
)

Jexj(y) dy

= F
(1)
j (u) + F

(2)
j (u)

(7.23)

on the space of u ∈ W 1,2
(
B1,AQ(Rd)

)
such that u|∂B1 = Nj |∂B1 . Note that the following

notation has been adopted in formula (7.13): (u`)⊥ψj(y) is the orthogonal projection of the
vector u`(y) onto T⊥ψj(y)Σ, given by

(u`)⊥ψj(y) =
k∑

β=1
〈u`(y), νβ(ψj(y))〉νβ(ψj(y)).

Hence, one has

∣∣∣A ◦ ψj(y) · (u`)⊥ψj(y)
∣∣∣
2

=
m∑

i,h=1

∣∣∣∣∣∣

k∑

β=1
Aβih(ψj(y))〈u`(y), νβ(ψj(y))〉

∣∣∣∣∣∣

2

,

with Aβih := 〈A(ξi, ξh), νβ〉, and

R ◦ ψj((u`)⊥ψj(y) , (u`)⊥ψj(y)) =
m∑

i=1

k∑

β,γ=1
Riiβγ(ψj(x))〈u`(y), νβ(ψj(y))〉〈u`(y), νγ(ψj(y))〉,

with Riiβγ := 〈R(ξi, νβ)νγ , ξi〉.

Now, for every 0 < ρ < 1, set

Dρ := lim inf
j→∞

Dir(Nj , Bρ) = lim inf
j→∞

ˆ
Bρ

m∑

i=1
|DeiNj |2 dy,

and suppose by contradiction that either Np is not Dir-minimizing in Bρ or Dir(Np, Bρ) < Dρ
7 for some ρ. In any of the two situations, there exists a ρ0 > 0 such that for any ρ ≥ ρ0 there
exists a multiple valued map g ∈W 1,2(Bρ,AQ(Rk)) with

g|∂Bρ = Np|∂Bρ and γρ := Dρ −Dir(g,Bρ) > 0. (7.24)
A simple application of Fatou’s lemma shows that for almost every ρ ∈ (0, 1) both the

quantities lim infj Dir(Nj , ∂Bρ) and lim infj ‖Nj‖2L2(∂Bρ) are finite:
ˆ 1

0
lim inf
j→∞

Dir(Nj , ∂Bρ) dρ ≤ lim inf
j→∞

ˆ 1

0
Dir(Nj , ∂Bρ) dρ = lim inf

j→∞
Dir(Nj , B1) ≤M <∞,

7Observe that the inequality
Dir(Np, Bρ) ≤ Dρ

is guaranteed for every ρ because the Dirichlet functional is lower semi-continuous with respect to weak
convergence in W 1,2.
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ˆ 1

0
lim inf
j→∞

‖Nj‖2L2(∂Bρ) dρ ≤ lim inf
j→∞

ˆ 1

0
‖Nj‖2L2(∂Bρ) dρ = lim

j→∞
‖Nj‖2L2(Bρ) = ‖Np‖2L2(Bρ) ≤ 1.

Therefore, passing if necessary to a subsequence, we can fix a radius ρ ≥ ρ0 such that

Dir(Np, ∂Bρ) ≤ lim
j→∞

Dir(Nj , ∂Bρ) ≤M <∞ (7.25)

and

‖Np‖2L2(∂Bρ) ≤ lim
j→∞

‖Nj‖2L2(∂Bρ) ≤ 1. (7.26)

This allows us also to fix the corresponding map g satisfying the conditions in (7.24). The
strategy to complete the proof is now the following: we will use the map g to construct, for
every j, a competitor uj for the functional Fj , that is a map uj ∈ W 1,2(B1,AQ(Rd)) with
uj |∂B1 = Nj |∂B1 . Then, we will show that if j is chosen sufficiently large then Fj(uj) < Fj(Nj),
thus contradicting (7.22) and, in turn, the minimality of N in Brj (p).

The construction of the maps uj is analogous to the one presented in [DLS11, Proposition
3.20]: we fix a number 0 < δ < ρ

2 to be suitably chosen later, and for every j ∈ N we define uj
on B1 as follows:

uj(y) :=





g
(
ρy
ρ−δ

)
for y ∈ Bρ−δ,

hj(y) for y ∈ Bρ \Bρ−δ,
Nj(y) for y ∈ B1 \Bρ,

where the maps hj interpolate between g
(
ρy
ρ−δ

)
= Np

(
ρy
ρ−δ

)
∈ W 1,2(∂Bρ−δ,AQ) and Nj ∈

W 1,2(∂Bρ,AQ). Observe that the existence of the hj ’s is guaranteed by Proposition 4.1 (also
cf. [DLS11, Lemma 2.15]).

As anticipated, the goal is now to show that this map uj has less Fj energy than Nj when j
is big enough (and thus rj is suitably close to 0). We first note that uj differs from Nj only on
Bρ, therefore our analysis will be carried on this smaller ball only. Then, fix a small number
θ > 0, and recall that, in the limit as j ↑ ∞, the exponential maps exj converge uniformly
to the identity map of the unit ball in Rm, whereas the maps ψj converge uniformly to the
constant map identically equal to p. Hence, the first line in the definition of Fj(uj) can be
estimated by

F
(1)
j (uj)

∣∣
Bρ
≤ (1 + θ)Dir(uj , Bρ) + θ‖uj‖2L2(Bρ) (7.27)

for all j ≥ j0(θ). On the other hand, the definition of uj together with the estimate (4.3)
imply that

Dir(uj , Bρ) ≤ Dir(uj , Bρ−δ) + Cδ
(
Dir(uj , ∂Bρ−δ) + Dir(Nj , ∂Bρ)

)
+ C

δ

ˆ
∂Bρ

G(uj , Nj)2

≤ Dir(g,Bρ) + CδDir(Np, ∂Bρ) + CδDir(Nj , ∂Bρ) + C

δ

ˆ
∂Bρ

G(Np, Nj)2

(7.28)
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whereas
‖uj‖2L2(Bρ) = ‖uj‖2L2(Bρ−δ) + ‖uj‖2L2(Bρ\Bρ−δ)

≤ ‖g‖2L2(Bρ) + ‖hj‖2L2(Bρ\Bρ−δ)
(4.2)
≤ ‖g‖2L2(Bρ) + Cδ

(
‖Np‖2L2(∂Bρ) + ‖Nj‖2L2(∂Bρ)

)

(7.26)
≤ ‖g‖2L2(Bρ) + 3Cδ.

(7.29)

Concerning the second term in the functional Fj , it is easy to compute that

F
(2)
j (uj)

∣∣
Bρ
≤ F

(2)
j (Nj)

∣∣
Bρ

+ Cr2
j

(ˆ
Bρ

|Nj |2 dy
) 1

2
(ˆ

Bρ

G(uj , Nj)2 dy
) 1

2

+ Cr2
j

ˆ
Bρ

G(uj , Nj)2 dy

≤ F
(2)
j (Nj)

∣∣
Bρ

+ Cr2
j ,

(7.30)

because the L2 norms of both the maps uj and Nj are uniformly bounded in j.

We can finally close the argument. Choose δ such that 4Cδ(M + 1) ≤ γρ, where M and
γρ are the constants in (7.25) and (7.24) respectively. Invoking (7.25) and using the uniform
convergence of Nj to Np, from (7.28) follows

Dir(uj , Bρ) ≤ Dρ − γρ + CδM + Cδ(M + 1) + C

δ

ˆ
∂Bρ

G(Np, Nj)2

≤ Dρ −
γρ
2 + C

δ

ˆ
∂Bρ

G(Np, Nj)2 ≤ Dρ −
γρ
4

(7.31)

whenever j is sufficiently large. A suitable choice of the parameter θ in (7.27) depending on γρ,
Dρ and ‖g‖L2(Bρ) allows to conclude that for j big enough (depending on the same quantities):

F
(1)
j (uj)

∣∣
Bρ
≤ Dρ −

γρ
8

≤ Dir(Nj , Bρ)−
γρ
16

≤ F
(1)
j (Nj)

∣∣
Bρ
− γρ

32 .

(7.32)

Observe that in the last inequality we have used again that the manifolds Σj are becoming more
and more flat in the limit j ↑ ∞, and also that the projection of the Nj ’s on the orthogonal
complement to Rk is vanishing in an L2 sense in the same limit. Now, summing (7.30) and
(7.32), we conclude:

Frj (uj) ≤ Frj (Nj)−
γρ
32 + Cr2

j . (7.33)

The desired contradiction is immediately obtained by choosing j so big that Cr2
j ≤ γρ

64 .
Step 5: homogeneity of the limit: proof of (c). We conclude the proof of the theorem

showing that the limit map Np admits a homogeneous extension to the whole Rm. In other
words, the goal is to show that

Np

(
ρy

|y|

)
=
(
ρ

|y|

)µ
Np(y)
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for all y ∈ B1 \ {0}, for all 0 < ρ < 1, and with µ = I0(p).
The strategy is to take advantage of [DLS11, Corollary 3.16]: since Np is Dir-minimizing,

in order to prove that it is homogeneous it suffices to show that its frequency function at the
origin y = 0 is constant. Hence, we set for 0 < ρ < 1:

I (ρ) := ρD(ρ)
H (ρ) , (7.34)

where

D(ρ) := Dir(Np, Bρ) =
ˆ
Bρ

|DNp|2 dy =
ˆ
Bρ

Q∑

`=1

m∑

i=1

k∑

α=1
|〈DeiN

`
p , em+α〉|2 dy, (7.35)

and
H (ρ) :=

ˆ
∂Bρ

|Np|2 dy. (7.36)

We first observe that I (ρ) is well defined for all ρ ∈ (0, 1). Indeed, if there is ρ0 such that
H (ρ0) = 0, then by minimality it must be Np ≡ QJ0K in Bρ0 . On the other hand, the unique
continuation property of Dir-minimizers (cf. [DLS16a, Lemma 7.1]) would then imply that
Np ≡ QJ0K in the whole B1, which in turn contradicts the fact that ‖Np‖L2(B1) = 1. In other
words, this shows that the origin is singular for Np.

Extract, if necessary, a subsequence such that the lim inf in (7.20) can be replaced by a lim,
and compute:

I (ρ) =
ρ
´
Bρ

∑Q
`=1

∑m
i=1

∑k
α=1 |〈DeiN

`
p , em+α〉|2 dy´

∂Bρ
|Np|2 dy

= lim
j→∞

ρ
´
Bρ

∑Q
`=1

∑m
i=1

∑k
α=1 |〈DεiN

`
j , να ◦ ψj〉|2 Jexj(y) dy´

∂Bρ
|Nj |2 Jexj(y) dy

= lim
j→∞

ρrjDirNΣ(N,Bρrj (p))´
∂Bρrj (p) |N |2 dHm−1

= lim
j→∞

ρrjD(ρrj)
H(ρrj)

= lim
j→∞

I(ρrj) = I0,

(7.37)

where we have used (modifications of) formulae (7.11), (7.14) and finally (6.85).
As already anticipated, [DLS11, Corollary 3.16] implies now that Np is a µ-homogeneous

Q-valued function, with µ = I0(p) > 0. �

Remark 7.10. Note that from the proof of Theorem 7.8 it follows that the convergence of (a
subsequence of) the Np,rj to Np is actually strong in W 1,2 in any ball Bρ ⊂ B1 (cf. formula
(7.20)). This stronger convergence has been in fact tacitly used in deriving (7.37).

8. The closing argument: proof of Theorem 0.7

Proposition 8.1. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing. Assume Ω ⊂ Σm is connected.

Then:
(i) either N = QJζK with ζ : Ω→ Rd a classical Jacobi field,

(ii) or the set DQ(N) of multiplicity Q points is a relatively closed proper subset of Ω
consisting of isolated points if m = 2 and with dimH(DQ(N)) ≤ m− 2 if m ≥ 3.
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Proof. Assume without loss of generality that η ◦N = 0, so that p ∈ DQ(N) if and only if
N(p) = QJ0K. We first observe the following fact: the set DQ(N) is relatively closed in Ω.
This can be rapidly seen writing DQ(N) = σ−1({Q}), where σ : Ω→ N is the function given
by

σ(x) := card(spt(N(x))), (8.1)
and noticing that, since N is continuous, σ is lower semi-continuous.

We will now treat the two cases m = 2 and m ≥ 3 separately.
Case 1: dimension m = 2. In this case, we claim that the points p ∈ singQ(N) are isolated

in DQ(N). Assume by contradiction that this is not the case, and let p ∈ singQ(N) be the
limit of a sequence {xj}∞j=1 of points in DQ(N). Set rj := d(xj , p). Since rj ↓ 0, by Theorem
7.8 the corresponding blow-up family Np,rj converges uniformly, up to a subsequence, to a
Dir-minimizing, µ-homogeneous tangent map Np : B1 ⊂ R2 → AQ(Rk) with ‖Np‖L2(B1) = 1
and η ◦Np ≡ 0. Moreover, since each xj ∈ DQ(N), the points yj := ψ−1

p,rj (xj) are a sequence
of multiplicity Q points for the corresponding Np,rj in S1 = ∂B1: from this, we conclude that
there exists w ∈ S1 such that Np(w) = QJ0K. Up to rotations, we can assume that w = e1.
Denote z := 1

2e1, and observe that, since Np is homogeneous, necessarily Np(z) = QJ0K.
Consider now the blow-up of Np at z: by [DLS11, Lemma 3.24], any tangent map h to Np at
z is a non-trivial β-homogeneous Dir-minimizer, with β equal to the frequency of Np at z,
and such that h(x1, x2) = ĥ(x2), for some function ĥ : R→ AQ(Rk) which is Dir-minimizing
on every interval. Moreover, since Dir(h,B1) > 0, it must also be Dir(ĥ, I) > 0, where
I := [−1, 1]. On the other hand, every 1-dimensional Dir-minimizer ĥ is affine, that is it has
the form ĥ(x) =

∑Q
i=1JLi(x)K, where the Li’s are affine functions such that either Li ≡ Lj or

Li(x) 6= Lj(x) for every x ∈ R, for any i, j. Now, since ĥ(0) = QJ0K, we deduce that ĥ = QJLK;
on the other hand, η ◦ h ≡ 0, and thus necessarily L = 0. This contradicts Dir(ĥ, I) > 0.

Hence, if p ∈ DQ(N) then either p is isolated or, in case p is a regular multiplicity Q
point, there exists an open neighborhood V of p such that V ⊂ DQ(N). From this we deduce
that regQ(N) is both open and closed in Ω. Since Ω is connected, then either regQ(N) = Ω,
and N ≡ QJ0K, or regQ(N) = ∅, and DQ(N) = singQ(N) consists of isolated points. This
completes the proof in the dimension m = 2 case.

Case 2: dimension m ≥ 3. In this case, the goal is to show that Hs(DQ(N)) = 0 for every
s > m−2, unless N ≡ QJ0K. Consider the set singQ(N). We first claim that Hs(singQ(N)) = 0
for every s > m− 2. Suppose by contradiction that this is not the case. Then, by [Sim83b,
Theorem 3.6 (2)], there exist s > m− 2 and a subset F ⊂ singQ(N) with Hs(F ) > 0 such that
every point p ∈ F is a point of positive upper s-density for the measure Hs∞, that is

lim sup
r→0

Hs∞(singQ(N) ∩Br(p))
rs

> 0 for every p ∈ F. (8.2)

Here, the symbol Hs∞ denotes as usual the s-dimensional Hausdorff pre-measure, defined by

Hs∞(A) := inf
{ ∞∑

h=1
ωs

(diam(Eh)
2

)s
: A ⊂

∞⋃

h=1
Eh

}
,

with ωs := π
s
2

Γ( s2 +1) , where Γ(s) is the usual Gamma function. Among the properties of Hs∞, it
is worth recalling now that it is upper semi-continuous with respect to Hausdorff convergence
of compact sets: in other words, if Kj is a sequence of compact sets converging to K in the
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sense of Hausdorff, then
lim sup
j→∞

Hs∞(Kj) ≤ Hs∞(K). (8.3)

Now, (8.2) together with Theorem 7.8 imply the existence of a point p ∈ singQ(N) and
a sequence of radii rj ↓ 0 such that the blow-up maps Nj = Np,2rj converge uniformly to a
Dir-minimizing homogeneous Q-valued function Np : B1 ⊂ Rm → AQ(Rk) with η ◦Np ≡ 0
and ‖Np‖L2(B1) = 1, and furthermore such that

lim sup
j→∞

Hs∞(singQ(N) ∩Brj (p))
rsj

> 0, (8.4)

or, equivalently,
lim sup
j→∞

Hs∞(singQ(Nj) ∩B 1
2
) > 0, (8.5)

where B 1
2
⊂ T0Σj ' Rm. Set Kj := singQ(Nj) ∩ B 1

2
, and observe that, since Nj converge

to Np uniformly, the compact sets Kj converge in the sense of Hausdorff to a compact set
K ⊂ DQ(Np). From the semi-continuity property (8.3), we can therefore deduce that:

Hs(DQ(Np)) ≥ Hs∞(DQ(Np)) ≥ Hs∞(K)
≥ lim sup

j→∞
Hs∞(Kj) ≥ lim sup

j→∞
Hs∞(singQ(Nj) ∩B 1

2
) > 0. (8.6)

Since s > m− 2, [DLS11, Proposition 3.22] implies that this can happen only if Np ≡ QJζK,
where ζ : B1 → Rk is a harmonic function. Since η ◦Np ≡ 0, then it must be Np ≡ QJ0K,
which in turns contradicts the fact that ‖Np‖L2(B1) = 1.

We can therefore conclude that necessarily Hs(singQ(N)) = 0 for every s > m− 2. Since
singQ(N) = ∂DQ(N) ∩ Ω, either DQ(N) = Ω and N ≡ QJ0K, or DQ(N) = singQ(N). The
proof is complete. �

Remark 8.2. As a corollary of Proposition 8.1, one easily deduces the following: if N is a
Jac-minimizing Q-valued vector field in the open and connected subset Ω ⊂ Σ which is not
of the form N = QJζK for some classical Jacobi field ζ, then DQ(N) = singQ(N), that is all
multiplicity Q points are singular.

We have now all the tools that are needed to prove Theorem 0.7.

Proof of Theorem 0.7. Since our manifolds are always assumed to be second-countable spaces,
Ω can have at most countably many connected components, and these connected components
are open. Hence, there is no loss of generality in assuming that Ω itself is connected: in the
general case, we would just work on each connected component separately.

The fact that sing(N) is a relatively closed set in Ω (whereas reg(N) is open) is an immediate
consequence of Definition 0.6. Let σ be the function defined in (8.1). If x ∈ Ω is a regular
point, then it is clear that σ is continuous at x. On the other hand, assume x is a point
of continuity for σ, and write N(x) =

∑J
j=1 kjJP jK, where the kj ’s are integers such that∑J

j=1 kj = Q, each P j ∈ T⊥x Σ and P i 6= P j if i 6= j. Since the target of σ is discrete, the fact
that σ is continuous at x implies that in fact σ(z) = J for all z in a neighborhood U of x.
Hence, since N is continuous, there exists a neighborhood x ∈ V ⊂ U such that the map N |V
admits a continuous decomposition N(z) =

∑J
j=1 kjJN j(z)K, where each map N j : V → NΣ

is a classical Jacobi field. Therefore, x ∈ reg(N).
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The above argument implies that sing(N) coincides with the set of points where σ is
discontinuous. The proof that its Hausdorff dimension cannot exceed m− 2 will be obtained
via induction on Q. If Q = 1, there is nothing to prove, since single-valued Jac-minimizers are
classical Jacobi fields. Assume now that the theorem holds for every Q∗-valued Jac-minimizer
with Q∗ < Q and we prove it for N . If N ≡ QJζK with ζ a classical Jacobi field, then sing(N)
is empty, and the theorem follows. Assume, therefore, this is not the case. By Proposition 8.1,
the set DQ(N) = singQ(N) is a closed subset of Ω which is at most countable if m = 2 and has
Hausdorff dimension at mostm−2 ifm ≥ 3. Consider now the open set Ω′ := Ω\DQ(N). Since
N is continuous, we can find countably many open geodesic balls Bj such that Ω′ =

⋃
j Bj

and N |Bj can be written as the superposition of two multiple-valued functions:

N |Bj = JNj,Q1K + JNj,Q2K with Q1 < Q,Q2 < Q (8.7)

and
spt(Nj,Q1(x)) ∩ spt(Nj,Q2(x)) = ∅ for every x ∈ Bj . (8.8)

From this last condition, it follows that

sing(N) ∩Bj = sing(Nj,Q1) ∪ sing(Nj,Q2). (8.9)

The maps Nj,Q1 and Nj,Q2 are both Jac-minimizing, and thus, by inductive hypothesis, their
singular set has Hausdorff dimension at most m−2, and is at most countable if m = 2. Finally:

sing(N) = singQ(N) ∪
∞⋃

j=1
(sing(Nj,Q1) ∪ sing(Nj,Q2)) (8.10)

also has Hausdorff dimension at most m− 2 and is at most countable if m = 2. �

9. Uniqueness of tangent maps in dimension 2

This last section is devoted to the proof of Theorem 0.9, which we restate for convenience
as follows. Observe that, since the average η ◦N of a Jacobi Q-field N is a classical Jacobi
field, there is no loss of generality in assuming that η ◦N ≡ 0.

Theorem 9.1 (Uniqueness of the tangent map at collapsed singularities). Let Σ ↪→M be as
in Assumption 1.1, with m = dim Σ = 2. Let N ∈ Γ1,2

Q (NΩ) be Jac-minimizing in the open
set Ω ⊂ Σ2 with η ◦N ≡ 0, and let p ∈ Ω be such that N(p) = QJ0K but N does not vanish in
a neighborhood of p. Then, there is a unique tangent map Np to N at p (that is, the blow-up
family Np,r defined in (7.10) converges locally uniformly to Np).

Theorem 9.1 has the following natural corollary.

Corollary 9.2. Let Ω be an open subset of the two-dimensional manifold Σ2 ↪→ M as in
Assumption 1.1, and let N ∈ Γ1,2

Q (NΩ) be Jac-minimizing. Then, for every p ∈ Ω there exists
a unique tangent map Np to N at p.

Proof. The proof is by induction on Q ≥ 1. If Q = 1 then the result is trivial, since N is a
classical Jacobi field. Let us then assume that the claim holds true for every Q′ < Q, and
we prove that it holds true for Q as well. Let N ∈ Γ1,2

Q (NΩ) be Jac-minimizing, and let
p ∈ Ω. Without loss of generality, assume that η ◦N ≡ 0. If diam(N(p)) > 0, then, since N
is continuous, there exists a neighborhood U of p in Ω such that N |U = JN1K + JN2K, where
each N i ∈ Γ1,2

Qi
(NU) is Jac-minimizing, Qi < Q for i = 1, 2 and spt(N1(x)) ∩ spt(N2(x)) = ∅
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for every x ∈ U . By induction hypothesis, N1 and N2 have unique tangent maps N 1
p and

N 2
p at p respectively. Hence, Np := JN 1

p K + JN 2
p K is the unique tangent map to N at p.

If, on the other hand, diam(N(p)) = 0, N(p) = QJ0K because N has zero average. If
N ≡ QJ0K in a neighborhood of p, then the unique tangent map to N at p is Np ≡ QJ0K. If
N does not vanish identically in any neighborhood of p, then the tangent map Np is unique
by Theorem 9.1. In either case, this completes the proof of the corollary. �

It only remains to prove Theorem 9.1. The plan is the following: first, in § 9.1 we show that
under the assumptions of Theorem 9.1 the frequency function Ir = IN,p(r) converges, as r ↓ 0,
to its limit I0 = I0(p) > 0 with rate rβ for some β > 0 (cf. Proposition 9.3 below). Then, we
will use this key fact to deduce Theorem 9.1 in § 9.2.

9.1. Decay of the frequency function. The main result of this section is the following
proposition. Recall the definitions of the energy function D(r), the height function H(r) and
the frequency function I(r).

Proposition 9.3. Let N ∈ Γ1,2
Q (NΩ) be Jac-minimizing in Ω ⊂ Σ2, and let p be such that

N(p) = QJ0K but N does not vanish in a neighborhood of p. Let I0 := I0(p) > 0 be the
frequency of N at p (which exists and is strictly positive by Proposition 6.10). Then, there are
β,C,D0, H0 > 0 such that for every r sufficiently small one has

|I(r)− I0|+
∣∣∣∣

H(r)
r2I0+1 −H0

∣∣∣∣+
∣∣∣∣
D(r)
r2I0 −D0

∣∣∣∣ ≤ Crβ . (9.1)

We will need a preliminary lemma.

Lemma 9.4. Let N and p be as in Proposition 9.3. For every µ > 0 there exists β0 = β0(µ)
and C = C(µ) such that for every 0 < β < β0 the inequality

D(r) ≤ r

2(2µ+ β)D′(r) + µ(µ+ β)
r(2µ+ β)H(r) + CµrD(r) (9.2)

holds true for every r small enough.

Proof. Let r0 < inj(Σ) be a radius such that I(r) = IN,p(r) is well defined and bounded in Br(p)
for every 0 < r < min{r0,dist(p, ∂Ω)}. Recall that for every 0 < r < min{r0,dist(p, ∂Ω)} the
exponential map expp defines a diffeomorphism expp : Dr → Br(p), where Dr is the disk of
radius r in R2 ' C. Let g := N ◦ expp : Dr → AQ(Rd), and let f ∈W 1,2(Dr,AQ(Rd)) be the
“harmonic extension” of g|rS1 already considered in § 4.1. In particular, let ϕ(θ) := g(reiθ),
and let ϕ =

∑P
`=1Jϕ`K be an irreducible decomposition of ϕ in maps ϕ` ∈W 1,2(S1,AQ`(Rd))

such that for some γ` ∈W 1,2(S1,Rd)

ϕ(θ) =
P∑

`=1

Q`−1∑

m=0

s
γ`

(
θ + 2πm
Q`

){
.

Such an irreducible decomposition exists by [DLS11, Proposition 1.5]. Then, if the Fourier
expansions of the γ`’s are given by

γ`(θ) = a`,0
2 +

∞∑

n=1
rn (a`,n cos(nθ) + b`,n sin(nθ)) ,
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we consider their harmonic extensions to Dr, namely the functions defined by

ζ`(ρ, θ) := a`,0
2 +

∞∑

n=1
ρn (a`,n cos(nθ) + b`,n sin(nθ)) for every 0 < ρ ≤ r ,

and finally we let

f(ρeiθ) :=
P∑

`=1

Q∑̀

m=0

s
ζ`

(
ρ

1/Q` ,
θ + 2πm
Q`

){
for ρeiθ ∈ Dr .

Recalling [DLS11, Lemma 3.12], one can explicitly compute the following quantities:
ˆ
Dr
|Df |2 =

P∑

`=1
Dir(ζ`,Dr) = π

P∑

`=1

∞∑

n=1
r2nn

(
|a`,n|2 + |b`,n|2

)
, (9.3)

ˆ
rS1
|∂τf |2 =

P∑

`=1
Dir(ϕ`, rS1) = 1

r

P∑

`=1

1
Q`

ˆ 2π

0
|γ′`(α)|2 dα = π

P∑

`=1

∞∑

n=1

r2n−1n2

Q`

(
|a`,n|2 + |b`,n|2

)
,

(9.4)
ˆ
rS1
|f |2 = r

P∑

`=1
Q`

ˆ 2π

0
|γ`(α)|2 dα = π

P∑

`=1
Q`

(
r|a`,0|2

2 +
∞∑

n=1
r2n+1

(
|a`,n|2 + |b`,n|2

))
,

(9.5)

where ∂τ denotes the tangential derivative along rS1.
Now, it is an elementary fact (cf. [DLS11, proof of Proposition 5.2]) that for any µ > 0

there exists β0 = β0(µ) > 0 such that for every 0 < β < β0 it holds

(2µ+ β)n ≤ n2

Q`
+ µ(µ+ β)Q` for every n ∈ N and for every Q` . (9.6)

Multiplying (9.6) by πr2n (|a`,n|2 + |b`,n|2
)
and summing over n and `, we obtain from (9.3),

(9.4), and (9.5) that for every µ > 0 there exists β0 > 0 such that for every 0 < β < β0

(2µ+ β)
ˆ
Dr
|Df |2 ≤ r

ˆ
rS1
|∂τg|2 + µ(µ+ β)

r

ˆ
rS1
|g|2 . (9.7)

Now, let u := f ◦ exp−1
p : Br(p)→ AQ(Rd), so that the orthogonal projection u⊥ is a map

in Γ1,2
Q (NBr(p)) with u⊥

∣∣∣
rS1

= N |rS1 . The minimality of N then implies that

Jac(N,Br(p)) ≤ Jac(u⊥,Br(p))

≤ Dir(u⊥,Br(p)) + C0

ˆ
Br(p)

|u|2

(4.51)
≤ (1 + r)Dir(u,Br(p)) + C

r

ˆ
Br(p)

|u|2 ,

from which in turn follows

D(r) ≤ (1 + r)Dir(u,Br(p)) + C

r

ˆ
Br(p)

|u|2 + C0

ˆ
Br(p)

|N |2 .
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Using that the metric of Σ in Br(p) is almost euclidean when r → 0, we conclude that for
small r’s

D(r) ≤ (1 + Cr)
[
(1 + r)Dir(f,Dr) + C

r

ˆ
Dr
|f |2

]
+ C0

ˆ
Br(p)

|N |2 .

Now, by definition of f one hasˆ
Dr
|f |2 ≤ Cr

ˆ
rS1
|g|2 ≤ Cr(1 + Cr)

ˆ
∂Br(p)

|N |2 . (9.8)

Combining (9.8) with (9.7), we deduce that for every µ > 0 there exists β0 = β0(µ) such that
for every 0 < β < β0

D(r) ≤ (1+Cr)
[

r

2µ+ β

ˆ
∂Br(p)

|∇⊥τ N |2 + µ(µ+ β)
r(2µ+ β)H(r)

]
+CµH(r)+C0

ˆ
Br(p)

|N |2 . (9.9)

Next, observe that the inner variation formula (6.43) together with the Poincaré inequality
(6.69) imply that in dimension m = 2

∣∣∣∣∣

ˆ
∂Br(p)

|∇⊥τ N |2 −
D′(r)

2

∣∣∣∣∣ ≤ CrD(r) ,

and thus, since, again by the Poincaré inequalityˆ
Br(p)

|N |2 ≤ Cr2D(r) ,

equation (9.9) reads

D(r) ≤ (1 + Cr)
[

r

2(2µ+ β)D′(r) + µ(µ+ β)
r(2µ+ β)H(r)

]
+ CµH(r) + Cµr

2D(r) . (9.10)

Finally, divide by 1 + Cr and use that H(r) ≤ 2
I0
rD(r) for small r’s to finally conclude the

validity of (9.2). �

Proof of Proposition 9.3. Let N and p be as in the statement, and fix a suitably small radius
r0 > 0. In particular, take r0 < min{inj(Σ),dist(p, ∂Ω)} such that the conclusions of Proposi-
tion 6.10 hold. Recall from the aforementioned proposition that there exists λ > 0 such that
the function r ∈ (0, r0) 7→ eλrI(r) is monotone non-decreasing. As an immediate corollary we
deduce that when r is small enough

I(r)− I0 ≥ −Cr . (9.11)

The goal now is to get the upper bound. In order to do this, first we exploit the variation
estimates deduced in Lemma 6.13 to compute again the derivative

I′(r) = D(r)
H(r) + rD′(r)

H(r) −
rD(r)H′(r)

H(r)2

= rD′(r)
H(r) − 2rD(r)E(r)

H(r)2 − rD(r)
H(r)2 E(6.44)(r)

= rD′(r)
H(r) − 2rD(r)2

H(r)2 −
rD(r)
H(r)2

(
E(6.44)(r) + 2E(6.42)(r)

)
,
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where

|E(6.44)(r)|
(6.44)
≤ C0rH(r) , (9.12)

|E(6.42)(r)| = |D(r)−E(r)|
(6.42),(6.69)
≤ C0r

2D(r) . (9.13)
Now, apply the estimate (9.2) from the previous lemma with µ = I0 to deduce that for

every 0 < β < β0(I0) one has
rD′(r)
H(r) − 2rD(r)2

H(r)2 ≥
2
r

(I0 + β − I(r)) (I(r)− I0)− 2CI0(2I0 + β)I(r) ,

so that, recalling that I(r) ≤ C, we can finally estimate

I′(r) ≥ 2
r

(I0 + β − I(r)) (I(r)− I0)− CI(r) . (9.14)

Hence, if we fix 0 < β < β0(I0) we easily conclude
d

dr

[I(r)− I0
rβ

]
= I′(r)

rβ
− β I(r)− I0

rβ+1

≥ 1
rβ+1 (2I0 + β − 2I(r)) (I(r)− I0)− C

rβ
≥ − C

rβ
,

(9.15)

for all radii 0 < r < r0(β).
Integrating in [r, r0] we conclude

I(r0)− I0

rβ0
− I(r)− I0

rβ
≥ −Cr1−β

0 , (9.16)

that is
I(r)− I0 ≤ Crβ . (9.17)

This concludes the proof of
|I(r)− I0| ≤ Crβ (9.18)

To get the other estimates, compute
d

dr

[
log

( H(r)
r2I0+1

)]
= H′(r)

H(r) −
2I0 + 1

r
= 2E(r)

H(r) + 1
H(r)E(6.44)(r)−

2I0
r

= 2
r

(I(r)− I0) + 1
H(r)

(
E(6.44)(r) + 2E(6.42)(r)

)
,

with E(6.44)(r) and E(6.42)(r) satisfying the same bounds as in (9.12), (9.13). Using that
I(r) ≤ C, this allows to conclude that

2
r

(I(r)− I0)− Cr ≤ d

dr

[
log

( H(r)
r2I0+1

)]
≤ 2
r

(I(r)− I0) + Cr . (9.19)

After applying (9.18), integrating on 0 < s < r < r0 and taking exponentials, we therefore
obtain the estimate

e−Cβ(rβ−sβ) ≤ H(r)
r2I0+1

s2I0+1

H(s) ≤ e
Cβ(rβ−sβ) . (9.20)

In particular, (9.20) implies that the map

r ∈ (0, r0) 7→ H(r)e−Cβrβ

r2I0+1
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is monotone non-increasing. In turn, from this immediately follows the existence of the limit

H0 := lim
r→0

H(r)
r2I0+1 .

The rate of convergence
∣∣∣∣

H(r)
r2I0+1 −H0

∣∣∣∣ ≤ Crβ for r small enough

is also a standard consequence of (9.20).
Finally, we set D0 := I0 ·H0 and immediately obtain

∣∣∣∣
D(r)
r2I0 −D0

∣∣∣∣ =
∣∣∣∣I(r) H(r)

r2I0+1 − I0 ·H0

∣∣∣∣ ≤ |I(r)− I0|
H(r)
r2I0+1 + I0

∣∣∣∣
H(r)
r2I0+1 −H0

∣∣∣∣
(9.18),(9.20)
≤ Crβ .

(9.21)
�

9.2. Uniqueness of the tangent map at collapsed singularities. We are now ready to
prove Theorem 9.1.

Proof of Theorem 9.1. Let N and p be as in the statement, and recall the definition of the
blow-up maps Nr = Np,r given in (7.10) (together with the definitions of the maps exr and
ψr = ψp,r used in there). We first remark that by the Poincaré inequality (6.69) and the
reverse Poincaré inequality (7.2) any convergence result for the maps Nr as r ↓ 0 is equivalent
to the same result obtained for the maps

Ñr(y) := r
m−2

2 N(ψr(y))√
D(r)

.

Let us assume without loss of generality that D0 = 1. Then, in dimension m = 2 the decay
estimate (9.21) implies that for r ↓ 0

Ñr(z) = r−I0N(ψr(z))
(
1 + o(rβ/2)

)
, (9.22)

and therefore in order to show the existence of a uniform limit for the maps Ñr in D1 it suffices
to show the existence of a uniform limit for the maps ũr(z) := r−I0N(ψr(z)). Furthermore, if
we write z = ρeiθ ∈ D1 we see immediately that

ũr(ρeiθ) = r−I0N(ψr(ρeiθ)) = ρI0(ρr)−I0N(ψρr(eiθ)) = ρI0 ũρr(eiθ) ,

and thus our goal will be achieved if we show uniform convergence of the maps ũr|S1 . For the
sake of notational simplicity we will then remove the tilde, call w = eiθ the variable on S1 and
consider the one-parameter family of maps ur : S1 → AQ(Rd) given by

ur(w) = r−I0N(ψr(w)) .



78 SALVATORE STUVARD

We then fix r
2 ≤ s ≤ r and compute

ˆ
S1
G(ur, us)2 dH1 =

ˆ
S1
G
(
N(ψr(w))

rI0
,
N(ψs(w))

sI0

)2
dH1(w)

≤
ˆ
S1

Q∑

`=1

(ˆ r

s

∣∣∣∣∣
d

dt

(
N `(ψt(w))

tI0

)∣∣∣∣∣ dt
)2

dH1(w)

≤ (r − s)
ˆ
S1

ˆ r

s

Q∑

`=1

∣∣∣∣∣
d

dt

(
N `(ψt(w))

tI0

)∣∣∣∣∣

2

dt dH1(w) .

(9.23)

Note that in the above computation we have used [DLS11, Proposition 1.2] and the fact that
the map t ∈ (s, r) 7→ N(ψt(w))

tI0
is in W 1,2 for a.e. w ∈ S1.

Now, we have

d

dt

(
N `(ψt(w))

tI0

)
=
DN `(ψt(w)) · d expp

∣∣∣
tw

(w)
tI0

− I0
N `(ψt(w))
tI0+1 ,

and thus
∣∣∣∣∣
d

dt

(
N `(ψt(w))

tI0

)∣∣∣∣∣

2

≤|∇
⊥
r̂ N

`(ψt(w))|2
t2I0

+ I2
0
|N `(ψt(w))|2

t2I0+2 − 2I0
〈∇⊥r̂ N `(ψt(w)), N `(ψt(w))

t2I0+1

+ Err ,

where

Err ≤ Ct1−2I0 |∇⊥r̂ N `(ψt(w))|2 + Ct−2I0 |N `(ψt(w))|2

for small t.
Inserting in (9.23) and changing variable x = ψt(w) we easily obtain from the variation

estimates in Lemma 6.13:
ˆ
S1
G(ur, us)2dH1 ≤(r − s)(1 + Cr)

ˆ r

s

G(t)
t2I0+1 + I2

0
H(t)
t2I0+3 − 2I0

E(t)
t2I0+2 dt

+ C(r − s)
ˆ r

s

G(t)
t2I0

+ H(t)
t2I0+1 dt

= (r − s)(1 + Cr)
ˆ r

s

D′(t)
2t2I0+1 + I2

0
H(t)
t2I0+3 − 2I0

D(t)
t2I0+2 dt

︸ ︷︷ ︸
=:A

+ C(r − s)
ˆ r

s

G(t)
t2I0

+ H(t)
t2I0+1 dt

︸ ︷︷ ︸
=:E1

+ (r − s)(1 + Cr)
ˆ r

s

E(6.43)(t)
t2I0+1 +

E(6.42)(t)
t2I0+2 dt

︸ ︷︷ ︸
=:E2

.

(9.24)
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Now, we have

A = (r − s)(1 + Cr)
ˆ r

s

1
2t

(D(t)
t2I0

)′
+ I2

0
H(t)
t2I0+3 − I0

D(t)
t2I0+2 dt

= (r − s)(1 + Cr)
ˆ r

s

1
2t

(D(t)
t2I0

)′
+ I0

H(t)
t2I0+3 (I0 − I(t)) dt ,

(9.25)

so that, for s = r
2

A ≤ C
∣∣∣∣
D(r)
r2I0 −

D(r/2)
(r/2)2I0

∣∣∣∣+ C

ˆ r

r/2

I0 − I(t)
t

dt
(9.21),(9.18)
≤ Crβ . (9.26)

For what concerns the error terms, we can use the variation estimates (6.42) and (6.43)
together with the Poincaré inequality (6.69) to control

|E2| ≤ C
r

2

ˆ r

r/2

D(t)
t2I0

dt
(9.21)
≤ Cr2 , (9.27)

and

|E1| ≤ C
r

2

ˆ r

r/2

D′(t)
t2I0

+
|E(6.43)(t)|

t2I0
+ H(t)
t2I0+1 dt

≤ Cr1−2I0 |D(r)−D(r/2)|+ Cr2
ˆ r

r/2

D(t)
t2I0

dt+ Cr

ˆ r

r/2

H(t)
t2I0+1 dt

(9.21),(9.20)
≤ Cr1+β .

(9.28)

Plugging (9.26), (9.27) and (9.28) in (9.24) we conclude thatˆ
S1
G(ur, u r2 )2 dH1 ≤ Crβ . (9.29)

With an elementary dyadic argument analogous to [DLS11, proof of Theorem 5.3], we
conclude that the family ur is L2-Cauchy. Since the ur’s are equi-Hölder (cf. (7.18)), this
suffice to conclude uniform convergence to a unique limit.

�
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