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Abstract. We consider a double layered prestrained elastic rod in the limit of vanishing cross section.

For the resulting limit Kirchoff-rod model with intrinsic curvature we prove a supercritical bifurcation

result, rigorously showing the emergence of a branch of hemihelical local minimizers from the straight
configuration, at a critical force and under clamping at both ends. As a consequence we obtain the

existence of nontrivial local minimizers of the 3-d system.

1. Introduction

The derivation of the elastic energy of a thin object as limit of the elastic energy of the three-
dimensional body when its thickness vanishes has recently gained increasing attention in the case of
prestrained bodies. Many authors contributed to this topics, both in the case of 3-d to 2-d dimension
reduction as in [4, 11, 12, 15] and in the case of 3-d to 1-d dimension reduction as in [5, 8, 10] (see also
[1, 2] for a similar problem in the theory of nematic elastomers).

As a model example in the 3-d to 1-d case in [5], motivated by recent experiments in [14], we have
considered the following model: given two strips of elastomers of the same initial width, but unequal
length, one stretches the short one uniaxially to be equal in length to the longer one and then glues them
together side-by-side along their length. In such a way a bi-strip system is formed in which the initially
shorter strip is under a uniaxial prestrain. The bi-strip is made flat by the presence of a terminal load
which is gradually released so that it starts to bend and twist out of plane. According to [14] the system
may evolve towards either a helical or a hemihelical shape, more complex structure in which helices with
different chiralities seem to periodically alternate, leading to the formation of the so-called perversions.

In the paper [5] we have analyzed the 3-d to 1-d limit of the bi-strip system above via Γ-convergence,
rigorously proving that for small prestrains the Kirchoff-rod energy with intrinsic curvature is the right
variational approximation of the model. Among other things we have also proved a preliminary bifurcation
result, showing the emergence of a branch of nontrivial stationary points from the straight configuration,
at a critical force fcrit and under clamping at both ends. Furthermore, along the lines of a result by
Kohn and Sternberg ([9]), we have proved the existence of local minimizer for the 3d -model arbitrarily
close to the limiting ones. Such a result however could not be applied to the branch of critical points we
found, since we had no information about their stability.

In the present paper we fill this gap by a thorough analysis establishing that the branch of stationary
points found in [5] is locally made of exactly two non trivial strict local minimizers, close to the straight
configuration, for any given value of the force in a left neighborhood of the critical force fcrit (see the
bifurcation diagram in Fig 1). Taking into account our sign convention, motivated by the mechanical
experiment we have in mind, this corresponds to a supercritical bifurcation diagram. As we discuss in
Remark 4.5, these local minimizers have a so-called hemihelical structure. The emergence of such con-
figurations is a well-known experimental fact in the mechanical literature (see [13, Introduction] for an
heuristic description of the phenomenon) which finds now a full mathematical justification. We addi-
tionally prove that for those values of the forces, the local minimizers have less energy than the straight
configuration, an information that can be important to study evolutionary problems. Furthermore, thanks
to our result in [5], existence of 3-d nontrivial local minimizers arbitrarily close to these configurations
immediately follows (see Theorem 4.6). Coming back to the experiment in [14], it is worth noticing, as we
discuss in Remark 3.5, that our result do not cover the case of multiple perversions for which a different
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analysis seems to be needed (see also [10]).

(fcrit, I) f

R

Figure 1. A local bifurcation diagram of the energy. The bold lines indicates stable
configurations.

The main idea behind the proof of our main result (Theorem 4.4) is a careful combination of vari-
ational techniques with classical results about eigenvalue problems in Banach spaces. In particular we
show that if the second differential of the energy along a curve of stationary points is not positive definite,
then a nontrivial solution to an eigenvalue problem (see (4.10)) appears. The behaviour of the smallest
eigenvalue of such a problem can be determined using a classical result by Crandall and Rabinowitz
(Theorem 2.5). Eventually this allows us to find a contradiction and then show that our stationary points
are indeed strict local minimizers. It is worth pointing out that the abstract approach to bifurcation prob-
lems (see [3]) is usually formulated in spaces of smooth functions in order to have high differentiability of
the involved functionals, while local minimality of our configurations is meaningful in the natural energy
space of Sobolev functions. We fill this gap thanks to the regularity of the solutions of the Euler-Lagrange
equation.

From a technical point of view, in order to prove these results we need to describe our energy
functional in terms of Cardan angles (see Section 3), while for the existence result in [5, Theorem 5.6] we
introduced a different auxiliary functional. This latter, however, would be not useful to perform the more
detailed analysis contained in the present paper, since its differentials coincide with those of the energy
only at first order, while for some auxiliary computations as those in Lemma 3.6 and for the arguments
in Theorem 4.4 we need to use differentials of the energy of higher order. Moreover, it is only thanks
to the use of Cardan angles that already in Proposition 4.1 we can obtain more information than in [5,
Theorem 5.6], namely the local behaviour of the force component of the bifurcation curve, as well as the
energy inequality (iii) in the statement.

2. Notation and preliminaries

2.1. Basic notation. We denote by {e1, e2, e3} the standard basis in R3 , by M3×3 the set of all real-
valued 3× 3 matrices and by I the identity matrix. Given a matrix M we denote by MT its transposed
matrix (this convention will be also used for row and column vectors). We let SO(3) ⊂ M3×3 be the
submanifold of all rotations, while M3×3

skew denotes the linear space of the 3×3 skew-symmetric matrices.
Given A ∈M3×3

skew we define ωA as the unique vector such that Av = ωA × v for all v ∈ R3 .
All euclidean spaces will be endowed with the canonical Euclidean norm. The symbol 〈·, ·〉 indicates
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duality products in euclidean or Banach spaces. For an operator F between Banach spaces, we will
denote by N its nullspace and by Rg its range. The derivative of one-dimensional absolutely continuous
functions will be denoted by the prime symbol ′ . We will use the standard notation D (resp. D2 , D3 ...)
for first (resp. second, third...) order (partial) differentials of operators on Euclidean or Banach spaces,
while the symbol ∂ will be used for partial derivatives in Rn . Only in this last context, with a slight
abuse of notation we will sometimes identify differentials with the corresponding derivatives for notational
simplicity.

2.2. A simple experiment with two-layer prestrained beam and its mathematical modeling.
The situation which we aim to describe in this paper is the following. We deform a two-layer elastic
beam of length L and cross section hS , where S satisfies some symmetry conditions (see (2.1)) and
h > 0 is a small parameter. We suppose the physical system (0, L) × hS to be such that the upper
layer (0, L) × hS+ is prestrained with a stretching of order hχ > 0 in order to match the lower one.
We consider the system in its straight configuration (0, L)× hS to be already at equilibrium under the
action of a terminal load fe1 applied at {L} × hS . Moreover both ends of the beam are kept at a fixed
twist by means of a suitable torsional moment (a similar situation is described in [13] under the slightly
more general assumption that the total twist of the filament is constant). As h tends to 0, at the onset
of instability for the straight configuration, one expects that the mid-fiber of the beam deforms into a
new stable configuration showing at least one inversion of curvature. The intrinsic curvature induced by
the prestrain would indeed prefer an helical-like configuration which is now forbidden by the boundary
conditions. Namely, in order to obtain a helix, one end of the beam must be left free to rotate.

We below set the mathematical notation of the problem. Given a small parameter h > 0, a stripe of
thickness h , mid-fiber (0, L) and cross section S ⊂ R2 is denoted by Ωh := (0, L) × hS . On S we will
assume that it is a bounded open connected set having unitary area and Lipschitz boundary. We set

S+ := S ∩ {x3 > 0}.

We moreover assume that S satisfies the following symmetry properties:∫
S

x2x3 dx2dx3 =
∫
S

x2 dx2dx3 =
∫
S

x3 dx2dx3 =
∫
S+

x2 dx2dx3 = 0.(2.1)

We consider a hyperelastic material and assume a multiplicative decomposition for the strain (see
[11]). Denoting by W : M3×3 → [0,+∞] the strain energy density, the stored energy of a deformation
u : Ωh → R3 is expressed by

Eh(u) =
∫

Ωh

W (∇u(x)Ah(x)) dx.

where the prestrain Ah : Ωh →M3×3 is of the form

(2.2) Ah(x) :=

{
diag(1 + hχ, 1√

1+hχ
, 1√

1+hχ
) if x ∈ S+,

I otherwise,

and χ > 0 can be thought of as the effective strength of the stretching.
Throughout the paper we make the following standard assumptions on the density W :
(i) W (RF ) = W (F ) ∀R ∈ SO(3) (frame indifference),

(ii) W (F ) ≥ cdist2(F, SO(3)) and W (I) = 0 (non-degeneracy),
(iii) W is C2 in a neighborhood U of SO(3) (regularity),
(iv) W (FR) = W (F ) ∀R ∈ SO(3) (isotropy).

In addition to the stored energy we consider an external boundary force that is meant to describe the
loading at one end. We set Γh := {L} × hS . Given a force field fh : Γh → R3 we define the total energy
as

Eh(u) =
∫

Ωh

W (∇u(x)Ah(x)) dx−
∫

Γh

〈fh(x), u(x)〉dH2.
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As it is customary when dealing with the variational analysis of thin objects, we perform a change of
variables to rewrite the energy on a fixed domain. Setting Ω = Ω1 and Γ = Γ1 , we define a rescaled
deformation field v : Ω→ R3 , a rescaled prestrain Ah : Ω→M3×3 and a rescaled force fh : Γ→ R3 as

v(x) = u(x1, hx2, hx3), Ah(x) = Ah(x1, hx2, hx3), fh(x) = fh(x1, hx2, hx3).

Introducing the rescaled gradient ∇hv = ∂1v ⊗ e1 + 1
h (∂2v ⊗ e2 + ∂3v ⊗ e3), the energy takes the form

Eh(u) = h2Eh(v), where

(2.3) Eh(v) =
∫

Ω

W (∇hv(x)Ah(x)) dx−
∫

Γ

〈fh(x), v(x)〉dH2.

We are interested in the case where there exists f ∈ R such that

(2.4)
fh
h2

⇀ fe1 in L2(Γ)

as h→ 0, suggesting a meaningful scaling of Eh to be Eh/h2 .

On the thin rod we prescribe the following clamped-clamped boundary conditions at both ends, namely

(2.5) v(0, x2, x3) = v(L, x2, x3)−
∫
S

v(L, x2, x3) dH2 =

 0
hx2

hx3

 .

To save notation, we introduce the class of admissible deformations as

Ah = {v ∈W 1,2(Ω,R3) : v satisfies (2.5) in the sense of traces}.

In [5] we used Γ-convergence techniques to derive an effective one-dimensional limit energy when h→ 0.
It has been proved that, due to (2.5), if R ∈ W 1,2((0, L), SO(3)) is an L2 -limit of the rescaled strains
∇hvh , then R has to satisfy the following one-dimensional version of the clamped Dirichlet boundary
conditions:

(2.6) R(0) = R(L) = I;

as a consequence we introduce the family of those limiting configurations with finite energy to be defined
as

A := {R ∈W 1,2((0, L), SO(3)) : R satisfies (2.6) in the sense of traces}.
Note that with this notation the limit deformation v ∈W 2,2((0, L),R3) can be recovered via the formula
v(x1) =

∫ x1

0
R(t)e1 dt . In the setting introduced above, up to an additive constant the limit energy takes

the form

(2.7) Ef0 (R) =
1
2

∫ L

0

c12a12(t)2 + c13(a13(t)− k)2 + c23a23(t)2 − 2f〈e1, R(t)e1〉dt,

where A(t) = RT (t)R′(t). The constants c12, c13, c23 depend on the coefficients of the quadratic form of
linearized elasticity for the energy density W and on the geometry of S , while k encodes the intrinsic
curvature caused by the two-layer structure of the prestrain (see Proposition 3.8 in [5]).

We now recall one of the main results of [5] that connects isolated local minimizers of the reduced
energy functional to local minimizers of the full three-dimensional model. In the statement below local
minimality of a deformation v has to be understood in the following sense: we say that v is a local
minimizer of Eh if there exists δ > 0 such that Eh(v) ≤ Eh(w) for all w such that ‖∇hv−∇hw‖L2 ≤ δ .
Note that, as shown in [5, Proposition 3.3], such a definition arises naturally on the sublevel sets of 1

h2Eh .

Theorem 2.1. Assume that the functional Eh defined in (2.3) is lower semicontinuous with respect to
weak convergence in W 1,2(Ω,R3) . Moreover let Ef0 be defined as in (2.7) and R ∈ W 1,2((0, L), SO(3))
be a strict local minimizer of Ef0 in A with respect to the strong W 1,2 -topology. Then there exists a
sequence vh of local minimizers of Eh in Ah such that vh → v strongly in W 1,2(Ω,R3) and ∇hvh → R
strongly in L2(Ω,M3×3) .
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In [5] we also analyzed the local minimality of the straight configuration for the limit model (2.7).
Here we recall also this result under the additional assumption that the following inequality holds:

(c13k)2

c23
− 4π2c12

L2
> 0.(2.8)

Such an inequality, which we assume to be true throughout the paper, implies that the critical force,
at which local minimality of the straight configuration gets lost, is positive (a natural condition in the
experiment described at the beginning of the section).

Theorem 2.2 ([5], Theorem 5.2). Let Ef0 be as in (2.7), set fcrit = (c13k)2

c23
− 4π2c12

L2 and assume (2.8).
Then for f > fcrit the straight configuration R(t) ≡ I is a strict local minimizer of Ef0 in the L2 -
topology with the boundary conditions (2.6). If instead f < fcrit the straight configuration is not a local
minimizer.

2.3. Abstract bifurcation results. We now recall two abstract results concerning existence and sta-
bility of bifurcation branches, that are fundamental to our analysis. The first one is an existence result
proved in [6] which we state below:

Theorem 2.3 (Crandall-Rabinowitz, 1971). Let X,Y be Banach spaces, V a neighbourhood of (0, λ0)
in X × R and F : V → Y have the properties

(i) F (0, λ) = 0 ,
(ii) the partial derivatives DϕF,DλF,D

2
ϕ,λF exist and are continuous,

(iii) DϕF (0, λ0) is a Fredholm operator with zero index and N(DϕF (0, λ0)) = span{v} ,
(iv) D2

ϕ,λF (0, λ0)v /∈ Rg(DϕF (0, λ0)) .

If Z is any complement of N(DϕF (0, λ0)) in X , then there is a neighbourhood U of (0, λ0) in X ×R ,
an interval (−a, a) and continuous functions λ : (−δ, δ) → R and ψ : (−δ, δ) → Z such that λ(0) =
0, ψ(0) = 0 and

(2.9) F−1(0) ∩ U = {(sv + sψ(s), λ0 + λ(s)) : |s| < δ} ∪ {(0, s) : (0, s) ∈ U}.

If F ∈ Cn(V ) , then ψ, λ,∈ Cn−1((−δ, δ)) .

In order to state the second one, proved in [7, Corollary 1.13 and Theorem 1.16], we need to recall
the following Definition.

Definition 2.4. Let X,Y be Banach spaces and let T,K ∈ L(X,Y ) be bounded, linear operators. Then
µ ∈ R is called a K -simple eigenvalue of T if dim(N(T − µK)) = codim(Rg(T − µK)) = 1 and, if
N(T − µK) = span{v0} , then Kv0 /∈ Rg(T − µK).

Theorem 2.5 (Crandall-Rabinowitz, 1973). In the setting of Theorem 2.3, let K ∈ L(X,Y ) and assume
that 0 is a K -simple eigenvalue of DϕF (0, λ0) . Then there exist open intervals A,B ⊂ R such that
λ0 ∈ A and 0 ∈ B and continuously differentiable functions γ : A → R , µ : B → R , u : A → X and
w : B → X such that

DϕF (0, λ)u(λ) = γ(λ)Ku(λ) for all λ ∈ A,
DϕF (sv0 + sψ(s), λ0 + λ(s))w(s) = µ(s)Kw(s) for all s ∈ B.(2.10)

It holds that γ(λ0) = µ(0) = 0 , u(λ0) = w(0) = v0 and u(λ)− v0 ∈ Z as well as w(s)− v0 ∈ Z .
Moreover we have γ′(λ0) 6= 0 and for |s| small enough the functions µ(s) and −sλ′(s)γ′(λ0) have the
same zeros and the same sign in the sense that

lim
s→0
µ(s) 6=0

−sλ′(s)γ′(λ0)
µ(s)

= 1.

The curve (µ(s), w(s)) satisfying the eigenvalue problem (2.10) is locally uniquely determined by
the operator, in a sense made precise by the following Lemma, also proved in [7].
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Lemma 2.6 ([7], Lemma 1.3). Let T0,K ∈ L(X,Y ) be bounded, linear operators and µ0 be a K -simple
eigenvalue of T0 , with N(T0 − µ0K) = span{v0} . Then there exist a neigborhood U1 of T0 in L(X,Y )
and a neighborhood U2 of µ0 in R such that, for all T ∈ U1 , T − µK is singular for a unique µ ∈ U2 .
Furthermore, µ depends smoothly on T and is itself a K -simple eigenvalue.
If Z is a complement of span{v0} in X , given (T, µ) ∈ U1 × U2 such that T − µK is singular, there
exists a unique vector w such that w − v0 ∈ Z and

Tw = µKw .

Also w is a smooth function of T .

2.4. Regularity of stationary points. In our analysis, the functional F appearing in the previous
abstract results will be, roughly speaking, given by the first variation of the energy (2.7) (up to rewriting
it in suitable local coordinates) and the sign of λ′(s) will be determined by using the implicit function
theorem along the lines of [3, Section 5.4]. This will require some additional differentiability of the
functional, which can be ensured in stronger topologies than the one of W 1,2 . To this end, we need to
show a priori that local minimizers of the energy are indeed regular.

To see this, we first recall the formula for the first variation of the energy as proved in [5]. Using the
short-hand C = diag(c23, c13, c12), stationary points of (2.7) satisfy the integral equality

0 =
∫ L

0

〈CωA(t)− c13ke2, R
T (t)ωB′(t)〉 − f〈e1, (ωB(t)×R(t)e1)〉dt

=
∫ L

0

〈CωA(t)− c13ke2, R
T (t)ωB′(t)〉+ f〈RT (t)e1 × e1, R

T (t)ωB(t)〉dt(2.11)

for all B ∈W 1,2
0 ((0, L),M3×3

skew) This gives C∞ -regularity of stationary points, which we state and prove
in the next lemma for the sake of completeness.

Lemma 2.7. Let R ∈ W 1,2((0, L), SO(3)) satisfy (2.6) and (2.11). Then R ∈ W k,1((0, L), SO(3)) for
every k ∈ N . In particular R ∈ C∞([0, L], SO(3)) .

Proof. With the admissible ansatz ωB = Rϕ with ϕ ∈W 1,2
0 ((0, L),R3), using that R′ = RA , the integral

equality (2.11) becomes

0 =
∫ L

0

〈CωA(t), ϕ′(t)〉+ 〈c13kA(t)e2 −A(t)CωA(t) + fRT (t)e1 × e1, ϕ(t)〉dt.

Note that by Hölder’s inequality the left entry in the second scalar product belongs to L1((0, L)), so that
by definition of distributional derivatives it follows that ωA ∈ W 1,1((0, L),R3) and, again by R′ = RA ,
we deduce R ∈ W 2,1((0, L), SO(3)). Inductively we conclude that R ∈ W k,1((0, L), SO(3)) for every k
and by the Sobolev embedding we conclude that R ∈ C∞([0, L], SO(3)). �

By the previous lemma stationary points and local minimizers must be regular and solve the system
of ODEs

(2.12) ω′A(t) = c13kC−1A(t)e2 −C−1A(t)CωA(t) + fC−1(RT (t)e1 × e1).

3. The energy in local coordinates

In order to work in a linear space, instead than on the manifold W 1,2((0, L), SO(3)), we will pre-
liminarily rewrite the energy in local coordinates in an L∞ neighborhood of I . To this end we recall the
notion of Cardan angles that we use as parameters. We namely define G : R3 → SO(3) as

G = G(α, β, γ)

=

 cos(β) cos(γ) − cos(β) sin(γ) sin(β)
sin(α) sin(β) cos(γ) + cos(α) sin(γ) cos(α) cos(γ)− sin(α) sin(β) sin(γ) − sin(α) cos(β)
sin(α) sin(γ)− cos(α) sin(β) cos(γ) sin(α) cos(γ) + cos(α) sin(β) sin(γ) cos(α) cos(β)

 .
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It is well-known that G , when restricted to U = (−π, π)×(−π/2, π/2)×(−π, π), is a diffeomorphism from
U onto an open neighbourhood of I in SO(3). With a slight abuse of notation we will also denote with
G the induced mapping from W 1,2((0, L),R3) to W 1,2((0, L), SO(3)). Its properties are summarized in
the following lemma.

Lemma 3.1. There exists δ > 0 such that for each R ∈ W 1,2((0, L), SO(3)) with ‖R − I‖∞ < δ there
exists ϕ ∈ W 1,2((0, L),R3) with R = G(ϕ) . The function ϕ = G−1(R) inherits the differentiability
properties of R . If R additionally satisfies (2.6), then ϕ ∈W 1,2

0 ((0, L),R3) .

Proof. Since G is invertible with smooth inverse in a neighbourhood of I , the claim follows by the chain
rule for Sobolev functions. �

With the previous lemma at hand, we rewrite the energy in terms of Cardan angles. A direct compu-
tation yields that, for a vector-valued function ϕ = (ϕ1, ϕ2, ϕ3), the components of the skew-symmetric
matrix GT (ϕ(t))G(ϕ(t))′ are given by

a12(t) = −ϕ′1(t) sin(ϕ2(t))− ϕ′3(t),

a13(t) = −ϕ′1(t) cos(ϕ2(t)) sin(ϕ3(t)) + ϕ′2(t) cos(ϕ3(t)),

a23(t) = −ϕ′1(t) cos(ϕ2(t)) cos(ϕ3(t))− ϕ′2(t) sin(ϕ3(t)).

Hence, the one-dimensional energy in (2.7) can be written in terms of Cardan angles as

Ef0 (ϕ) =
1
2

∫ L

0

c12 (ϕ′1(t) sin(ϕ2(t)) + ϕ′3(t))2 + c13 (ϕ′1(t) cos(ϕ2(t)) sin(ϕ3(t))− ϕ′2(t) cos(ϕ3(t)) + k)2 dt

+
1
2

∫ L

0

c23 (ϕ′1(t) cos(ϕ2(t)) cos(ϕ3(t)) + ϕ′2(t) sin(ϕ3(t)))2 − 2f cos(ϕ2(t)) cos(ϕ3(t)) dt.(3.1)

For notational convenience we introduce the integrand gf : R3 × R3 → R setting

gf (u, ξ) =
c12

2
(ξ1 sin(u2) + ξ3)2 +

c13

2
(ξ1 cos(u2) sin(u3)− ξ2 cos(u3) + k)2

+
c23

2
(ξ1 cos(u2) cos(u3) + ξ2 sin(u3))2 − f cos(u2) cos(u3).

Notice that this integrand is quadratic in ξ and satisfies all the assumptions in [5, Lemma 4.5]. Therefore,
the same proof yields the following differentiability property:

Ef0 ∈ C2(W 1,2((0, L),R3),R).(3.2)

In order to study the behaviour of the energy close to the critical force, we start with a bifurcation
analysis of the angular-energy (3.1). To this end, we need the associated Euler-Lagrange equation given
by

(3.3) (∇ξgf (ϕ(t), ϕ′(t)))′ = ∇ugf (ϕ(t), ϕ′(t))

Remark 3.2. Let us observe that if ϕ ∈ C2
0 ([0, L],R3) is a strong solution of the system above, then

the function G(ϕ) is a stationary point of the functional Ef0 in (2.7), that is it satisfies (2.11). Indeed,
any curve of admissible deformations that is tangential to G(ϕ) can be transformed via Lemma 3.1 to a
tangential curve of Cardan angles. Conversely, by the Lemmata 2.7 and 3.1, any stationary point of the
functional (2.7) which is sufficiently close to the identity yields Cardan angles that are a regular solutions
of (3.3).

We now set f = λ as bifurcation parameter, and study the operator F : C2
0 ([0, L],R3) × R →

C([0, L],R3) defined as

(3.4) F (ϕ, λ) = (∇ξgλ(ϕ(t), ϕ′(t)))′ −∇ugλ(ϕ(t), ϕ′(t)).

Note that, by definition, for any ϕ ∈ C2
0 ([0, L],R3) and every w ∈W 1,2

0 ((0, L),R3) it holds

(3.5) 〈F (ϕ, λ), w〉 = −〈DEλ0 (ϕ), w〉.
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On its domain this functional is very regular in the sense of Fréchet-differentiability as stated in the
lemma below.

Lemma 3.3. The operator F : C2
0 ([0, L],R3)× R→ C([0, L],R3) is C∞ .

Proof. The proof is left to the reader. �

We set

λ0 =
(c13k)2

c23
− 4π2c12

L2
(3.6)

and

(3.7) w∗(t) =

 c13kL
2c23π

(
1− cos( 2π

L t)
)

0
− sin( 2π

L t)

 .

We remark that, because of (2.8), λ0 > 0. We also note that the third component of w∗ has a change
of sign in [0, L] , which is due to considering clamped boundary conditions in the eigenvalue problem for
DϕF and will eventually lead to an inversion of curvature of the bifurcating stable configurations (see
Fig 2).

As a first step of our analysis, we show that the operator F fulfills the assumption of the bifurcation
theorem for λ = λ0 .

Lemma 3.4. Let λ0 and w∗ ∈ C2
0 ([0, L],R3) be given by (3.6), and (3.7), respectively. Then the operator

F defined in (3.4) satisfies the assumptions of Theorem 2.3 with v = w∗ .

Proof. By a direct computation ∇ξgλ(0, 0) = ∇ugλ(0, 0) = 0 for all λ . Hence F (0, λ) = 0. Moreover,
by Lemma 3.3 the operator fulfills the differentiability assumptions (ii). Next, let us calculate the first
derivative. We have that

(3.8) DϕF (ϕ, λ)w =
(
∂ξ∂ugλ(ϕ,ϕ′)w + ∂2

ξgλ(ϕ,ϕ′)w′
)′ − ∂2

ugλ(ϕ,ϕ′)w − ∂u∂ξgλ(ϕ,ϕ′)w′.

Plugging in ϕ = 0 we obtain by a straightforward calculation that

DϕF (0, λ)w = c12w
′′
3e3 + c13w

′′
2e2 + c13kw

′
3e1 − c13kw

′
1e3 + c23w

′′
1e1 − λw2e2 − λw3e3.

Note that the bounded, linear operator T : C2
0 ([0, L],R3) → C([0, L],R3) defined by Tw = Cw′′ is

bijective. Hence DϕF (0, λ0) is a compact perturbation of a bijective operator, whence a Fredholm-
operator of index zero. A direct computation shows that w∗ given by (3.7) satisfies DϕF (0, λ0)w∗ = 0.
In order to determine the dimension of the kernel, we note that the equation DϕF (0, λ0)w = 0 is a
system of second order linear differential equations. The second component w2 must satisfy

c13w
′′
2 − λ0w2 = 0.

Since we assume λ0 > 0, by the Dirichlet boundary conditions we immediately get w2 ≡ 0. For the
remaining components one can write the equation as a first order four-dimensional system with the
constant matrix

A =


0 −c13k/c23 0 0

c13k/c12 0 0 λ0/c12

1 0 0 0
0 1 0 0

 .

This matrix as the eigenvalues
{

0,±
√

λ0
c12
− (c13k)2

c12c23

}
, where 0 has algebraic multiplicity 2. Hence the

solutions are of the form
w1(t) = a1 + a2t+ a3 exp(2πit/L) + a4 exp(−2πit/L),

w3(t) = b1 + b2t+ b3 exp(2πit/L) + b4 exp(−2πit/L),
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with ai, bi ∈ C . Plugging this ansatz into the equation and comparing the coefficients of the independent
functions, together with the boundary conditions we obtain a 8-dimensional linear system that can be
solved explicitly for a one-dimensional kernel spanned by the function w∗ in (3.7).

To show the transversality condition D2
ϕ,λF (0, λ0)w∗ /∈ Rg(DϕF (0, λ0)), we argue by contradiction.

Then there exists a solution of the system

c12w
′′
3e3 + c13w

′′
2e2 + c13kw

′
3e1 − c13kw

′
1e3 + c23w

′′
1e1 − λ0w2e2 − λ0w3e3 = λ0 sin

(
2π
L
t

)
e3.

Integrating the first component we infer that c23w
′
1 = −c13kw3−C for some constant C ∈ R . With this

formula we can rewrite the third component via

c12w
′′
3 +

c13k

c23
(c13kw3 + C)− λ0w3 = λ0 sin

(
2π
L
t

)
.

Multiplying the equation with the right hand side and integrating twice by parts over (0, L) we obtain

0 < λ0

∫ L

0

−4π2c12

L2
w3 sin

(
2π
L
t

)
+
(

(c13k)2

c23
− λ0

)
w3 sin

(
2π
L
t

)
dt = 0,

where we used the definition of λ0 and the boundary conditions on w3 . This gives the desired contradic-
tion. �

Remark 3.5. With a similar analysis as the one in the previous lemma, one can also find other eigenvalues
of the operator DϕF , corresponding to smaller forces than the critical one. The corresponding eigenstates
show more than one sign change in the third component, that would lead to multiple inversions of
curvature (see [14] for experimental evidence). On the other hand, possible bifurcation curves starting
from the straight configuration along those directions are, at least close to the identity, not made of local
minimizers. This can be proved exploiting that, according to Theorem 2.2, the second differential of Ef0
at the identity is not positive semidefinite for f < fcrit , together with a lower semicontinuity argument.
This is not the case for the bifurcation branch from the largest eigenvalue λ0 = fcrit . Indeed we will
show in Theorem 4.4 that such a branch in a neighborhood of the straight configuration consists of local
minimizers.

The previous lemma and the Crandall-Rabinowitz Theorem 2.3 entail the existence of a branch of
solutions bifurcating the identity at the critical force. A precise statement with additional properties will
be given in the next section. In order to investigate further the behaviour of the non-trivial branch, we
will follow the general approach described in [3, Section 5.4]. To this end, we first notice that

(3.9) Rg(DϕF (0, λ0)) = {w ∈ C([0, L],R3) : 〈w∗, w〉 = 0} ,

where we identify the function w∗ in (4.6) with an absolutely continuous vector-valued measure as
usual. The range has indeed codimension 1 by the previous lemma, while a direct computation based on
integration by parts gives for all w ∈ C2

0 ([0, L],R3)

(3.10) 〈w∗, DϕF (0, λ0)w〉 =
∫ L

0

w∗(t)TDϕF (0, λ0)w(t) dt =
∫ L

0

w(t)TDϕF (0, λ0)w∗(t) dt = 0.

In order to determine the type of bifurcation, in the next lemma we compute the following terms:

a := 〈w∗, D2
ϕ,λF (0, λ0)w∗〉,(3.11)

b :=
1
2
〈w∗, D2

ϕ,ϕF (0, λ0)[w∗, w∗]〉,(3.12)

c := − 1
3a
〈w∗, D3

ϕ,ϕ,ϕF (0, λ0)[w∗, w∗, w∗]〉.(3.13)
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Lemma 3.6. For F as in (3.4) and λ0 as in (3.6), it holds

a = −L
2
,

b = 0,

c = −
(

3(c13 − c23)(c13k)2

c223

+
9(c13k)2

2c23
− λ0

4

)
= −

(
(3c13 + 5

4c23)(c13k)2

c223

+
π2c12

L2

)
.

In particular c < 0 .

Proof. First note that D2
ϕ,λ(0, λ0)w∗ = −w∗3e3 . Then it holds that

a = −
∫ L

0

|w∗3(t)|2 dt = −
∫ L

0

sin2

(
2π
L
t

)
dt = −L

2
.

In order to calculate b and c , we first write the operator F in components. Note that we need only the
first and the third component since w∗2 = 0. By linearity of differentiation, it holds that

〈D2
ϕ,ϕF (0, λ)[w∗, w∗], e1〉 =

(
D2∂ξ1gλ(0, 0)[(w∗, (w∗)′), (w∗, (w∗)′)]

)′
,

where the symbol D2 on the right hand side denotes the Hessian of the scalar function ∂ξ1gλ . Observe
that ∂ξ1gλ(u, ξ) reads as

∂ξ1gλ(u, ξ) =c12

(
ξ1 sin(u2) + ξ3

)
sin(u2) + c13

(
ξ1 cos(u2) sin(u3)− ξ2 cos(u3) + k

)
cos(u2) sin(u3)

+ c23

(
ξ1 cos(u2) cos(u3) + ξ2 sin(u3)

)
cos(u2) cos(u3).

Note that due to the fact that w∗2 = 0, any higher order derivative of ∂ξ1gλ(u, ξ) with at least one
derivative with respect to the variables u2 or ξ2 along the direction w∗ vanishes. Since ∂ξ3∂ξ1gλ(u, ξ) =
c12 sin(u2), the same reasoning allows to neglect any higher order derivatives with at least one derivative
with respect to ξ3 . Finally, the function ∂ξ1gλ(u, ξ) is independent of the variable u1 . Summarizing we
need to take into account only the derivatives of ∂ξ1gλ(u, ξ) with respect to u3 and ξ1 . A straightforward
calculation shows that

∂2
u3
∂ξ1gλ(0, 0) = ∂u3∂

2
ξ1gλ(0, 0) = ∂3

ξ1gλ(0, 0) = 0,

so that it follows directly that

(3.14) 〈D2
ϕ,ϕF (0, λ)[w∗, w∗], e1〉 = 0

for all λ . For the third component we need to compute

〈D2
ϕ,ϕF (0, λ)[w∗, w∗], e3〉 =

(
D2∂ξ3gλ(0, 0)[(w∗, (w∗)′), (w∗, (w∗)′)]

)′
−D2∂u3gλ(0, 0)[(w∗, (w∗)′), (w∗, (w∗)′)].

Using the explicit expressions

∂ξ3gλ(u, ξ) =c12(ξ1 sin(u2) + ξ3),

−∂u3gλ(u, ξ) =− f cos(u2) sin(u3)

− c13 (ξ1 cos(u2) sin(u3)− ξ2 cos(u3) + k) (ξ1 cos(u2) cos(u3) + ξ2 sin(u3))

− c23 (ξ1 cos(u2) cos(u3) + ξ2 sin(u3)) (−ξ1 cos(u2) sin(u3) + ξ2 cos(u3))

and arguing as for the first component, for second or higher order derivatives along the direction w∗ it
suffices to consider partial derivatives with respect to the variables u3 and ξ1 . Again we obtain

(3.15) 〈D2
ϕ,ϕF (0, λ)[w∗, w∗], e3〉 = 0.

for all λ . Combining (3.14) and (3.15) we obtain that b = 0.
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In order to compute c , for the first component we need to take third order derivatives of ∂ξ1gλ(u, ξ)
again only in the variables u3 and ξ1 . Since ∂ξ1gλ is linear in ξ1 , only ∂3

u3
∂ξ1gλ and ∂2

u3
∂2
ξ1
gλ are

non-zero. One finds that
∂2
u3
∂2
ξ1gλ(0, 0) = 2(c13 − c23),

∂3
u3
∂ξ1gλ(0, 0) = −c13k.

(3.16)

Concerning the third component, again by the linear dependence on the components of the variable ξ ,
non-trivial contributions come only from the terms ∂4

u3
gλ, ∂ξ1∂

3
u3
gλ and ∂2

ξ1
∂2
u3
gλ (and permutations of

order). Here we have

− ∂2
ξ1∂

2
u3
gλ(0, 0) = −2(c13 − c23),

− ∂ξ1∂3
u3
gλ(0, 0) = c13k,

− ∂4
u3
gλ(0, 0) = f.

(3.17)

Combining the formulas (3.16) and (3.17) we deduce by integration by parts that

c · a =
1
3

∫ L

0

12(c13 − c23)
[
((w∗1)′w∗3)2 − 6c13k(w∗1)′(w∗3)3 − λ0(w∗3)4

]
dt

=
(

4(c13 − c23)(c13k)2

c223

+
6(c13k)2

c23
− λ0

3

)∫ L

0

sin4

(
2π
L
t

)
dt

=
(

4(c13 − c23)(c13k)2

c223

+
6(c13k)2

c23
− λ0

3

)
3L
8
.

This finishes the proof upon dividing by a and plugging in the value of λ0 . �

4. Proof of the main results

Endowed with the lemmas of the previous section, we can now state and prove our main results.
The first one concerns existence of a bifurcation branch from the identity at the critical force, and
follows directly from the Crandall-Rabinowitz Theorem 2.3 and Lemma 3.4. In the statement we add
some additional information, that we can deduce from Lemma 3.6. First of all, the component of the
bifurcation branch corresponding to the force varies, at least when we are close enough to (I, fcrit) in a
left neighborhood of fcrit . Since loss of stability for the identity happens when the force is decreasing,
this corresponds to a supercritical bifurcation. Furthermore, the nontrivial stationary points have lower
energy than the identity, for the corresponding value of the force along the bifurcation curve. Referring
to the notation of Lemma 3.6, these two results follow (since b = 0) from the fact that c < 0.

Proposition 4.1. Let Ef0 be the functional defined in (2.7), let fcrit = (c13k)2

c23
− 4π2c12

L2 and assume
(2.8). Then there exist δ, η > 0 , an open neighborhood U of I in W 1,2((0, L), SO(3)) and a curve
(R, f) : (−δ, δ)→ U × (fcrit − η, fcrit] satisfying

(i) (R, f)(0) = (I, fcrit) ;
(ii) for all s 6= 0 , R(s) 6= I is a stationary point of the energy (2.7) with f = f(s) and the boundary

conditions (2.6).
(iii) for all s 6= 0 , Ef(s)

0 (R(s)) < E
f(s)
0 (I) .

It holds furthermore

lim
s→0

R(s)− G(sw∗)
s

= 0(4.1)

in C2([0, L], SO(3)) , where w∗ is defined in (3.7).

Proof. Thanks to Lemma 3.4 we can apply Theorem 2.3 with λ0 = fcrit to the functional F in (3.4).
For λ(s) and ψ(s) as in the statement of Theorem 2.3, we then set

(R(s), f(s)) := (G(sw∗ + sψ(s)), fcrit + λ(s)) .
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With this, property (ii) follows from Remark 3.2, while (i) is trivially satisfied. By smoothness of G and
since ψ(0) = 0 we also have

lim
s→0

G(sw∗ + sψ(s))− G(sw∗)
s

= 0 ,

that is (4.1). Since [3, Remark 4.3 (iv)] gives λ′(0) = b and λ′′(0) = c with b and c as in (3.12)-(3.13),
from Lemma 3.6 we have that f ′(0) = 0 and f ′′(0) < 0, which implies

sf ′(s) < 0(4.2)

for s 6= 0 in small neighborhood of 0. This proves that, up to possibly taking a smaller δ than the one
given by Theorem 2.3, f(s) takes values in a left neighborhood (fcrit− η, fcrit] of fcrit . Finally, in order
to prove (iii) we introduce the function e(s) = E

f(s)
0 (R(s)) − Ef(s)

0 (I). Then e(0) = 0 and by (4.2),
differentiation and the fact that R(s) is a stationary point, we obtain

d

ds
e(s) = 〈DEf(s)

0 (R(s)), ∂sR(s)〉︸ ︷︷ ︸
=0

−f ′(s)
∫ L

0

〈(R(s)(t)− I)e1, e1〉 dt

= f ′(s)
∫ L

0

〈(I −R(s)(t))e1, e1〉 dt

{
> 0 if s < 0,
< 0 if s > 0,

where we denoted with ∂sR(s) the tangent vector to the curve s 7→ R(s) and used that the integrand is
always nonnegative and not identically equal to zero. This proves the last assertion. �

The conditions f ′(0) = 0 and f ′′(0) < 0 imply that at least two nontrivial stationary points near
to the straight configuration appear for f < fcrit . Furthermore, the set of stationary points can be
shown to contain exactly three elements, in a suitably small W 1,2 -neighborhood of I . In general, this
neighborhood can be smaller than the set U provided in Proposition 4.1, since we cannot exclude folds in
the bifurcation curve. We give a precise statement of this property, after proving a preliminary lemma. It
allows us to show that stationary points close to I in W 1,2 are indeed also C2 -close and must therefore
lie on the bifurcation curve provided by Theorem 2.3.

Lemma 4.2. Assume that (Rn)n ⊂ W 1,2((0, L), SO(3)) is a sequence of solutions to (2.12) and that
Rn → R strongly in W 1,2((0, L), SO(3)) . Then Rn → R also in the norm-topology of C2([0, L], SO(3)) .

Proof. By (2.12) the sequence A′n converges strongly in L1 and hence Rn → R in W 2,1((0, L), SO(3)).
Again by iteration and Sobolev embedding we find that Rn → R in C2([0, L], SO(3)). �

Proposition 4.3. Let Ef0 be defined as in (2.7). There exist η̂ > 0 and an open neighborhood O of I
in W 1,2((0, L), SO(3)) such that for all f ∈ (fcrit − η̂, fcrit) it holds

#{R ∈ O ∩ A : R is a stationary point of Ef0 in the sense of (2.11)} = 3.

Proof. Let η be as in Proposition 4.1. Assume by contradiction that for each n there exist Rin ∈ A
(i = 1, . . . , 4) and fn such that fn ∈ (fcrit − η, fcrit), ‖Rin − I‖W 1,2 ≤ 1

n and Rin solves (2.11).
By Lemma 2.7 we know that Rin ∈ C∞([0, L], SO(3)) and therefore it solves the strong form (2.12).
Therefore, Lemma 4.2 implies that Rin → I also in the C2 -topology. Using Lemma 3.1 we deduce that,
for n large enough, (G−1(Rin), fn) belongs to the neighborhood U in (2.9). This latter further implies
that either Rin = I , or it must hold (Rin, fn) = (R, f)(sin) for sin ∈ (−δ, δ), where (R, f)(s) is the curve
and (−δ, δ) is the interval provided by Proposition 4.1. In particular, f(sin) takes the same value fn for
all the i ’s such that Rin 6= I , that is at least three times. It is not restrictive to assume that this is the
case for i = 1, i = 2, and i = 3.

We now fix i ∈ {1, 2, 3} , so that Rin 6= I . Since R(s) = G(sw∗ + sψ(s)), ψ(s) takes values in the
topological complement Z of span{w∗} , and we have by construction Rin → I in W 1,2((0, L), SO(3)), it
must hold sin → 0 when n→ +∞ . Since f(s1

n) = f(s2
n) = f(s3

n), applying for instance Rolle’s theorem
twice, we can then construct a sequence ŝn → 0 with f ′′(ŝn)→ 0. Since f is smooth by Lemma 3.3 and
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Theorem 2.3, this contradicts the fact that f ′′(0) < 0 proved in Proposition 4.1. With this, for n0 large
enough, setting

O :=
{
R ∈W 1,2((0, L), SO(3)) : ‖R− I‖W 1,2 <

1
n0

}
we get

#{R ∈ O ∩ A : R is a stationary point of Ef0 in the sense of (2.11)} ≤ 3 .(4.3)

Since f is smooth, monotone decreasing for s > 0 and monotone increasing for s < 0 by (4.2), there
exists 0 < η̂ ≤ η such that f(s) takes each value in (fcrit− η̂, fcrit) twice in a neighborhood of 0. Then,
the converse inequality to (4.3) follows from Proposition 4.1 (ii). �

Relying on Theorem 2.5 and Lemma 3.6, we now prove that the curve R(s) provided by Proposition
4.1 consists, at least for |s| small enough, of isolated local minimizers of the energy (2.7) for f = f(s).

Theorem 4.4. Let Ef0 be the functional defined in (2.7) and let fcrit = (c13k)2

c23
− 4π2c12

L2 > 0 and assume
(2.8). Then there exist δ, η > 0 , an open neighborhood U of I in W 1,2((0, L), SO(3)) and a curve
(R, f) : (−δ, δ)→ U × (fcrit − η, fcrit] satisfying

(i) (R, f)(0) = (I, fcrit) ;
(ii) for all s 6= 0 , R(s) 6= I is an isolated local minimizer of the energy (2.7) with f = f(s) and the

boundary conditions (2.6).
(iii) for all s 6= 0 , Ef(s)

0 (R(s)) < E
f(s)
0 (I) .

Furthermore, R(s) satisfies (4.1).

Proof. Considering the curve (R(s), f(s)) provided by Proposition 4.1, we only have to prove that, up to
possibly reducing the interval (−δ, δ), property (ii) is satisfied. Setting ϕ(s) := G−1(R(s)) and considering
the auxiliary energy E

f(s)
0 (ϕ(s)) defined in (3.1), taking into account (3.2) and Remark 3.2 it suffices to

prove that, for |s| small enough, there exists c(s) > 0 such that

D2E
f(s)
0 (ϕ(s))[w,w] ≥ c(s)‖w‖2W 1,2

for all w ∈W 1,2
0 ((0, L),R3). In order to prove the strict positivity of the second differential of the energy,

we argue by contradiction. We fix s and assume that for each n ∈ N there exists wn ∈ W 1,2
0 ((0, L),R3)

such that ‖wn‖W 1,2 = 1 and D2E
f(s)
0 (ϕ(s))[wn, wn] ≤ 1

n . Passing to a subsequence we have that wn ⇀ w

in W 1,2
0 ((0, L),R3). Observe that

D2E
f(s)
0 (ϕ(s))[wn, wn] =

∫ L

0

∂2
ξgf(s)(ϕ(s), ∂tϕ(s))[w′n, w

′
n] dt

+
∫ L

0

∂2
ugf(s)(ϕ(s), ∂tϕ(s))[wn, wn] + 2∂ξ∂ugf(s)(ϕ(s), ∂tϕ(s))[wn, w′n] dt ,(4.4)

where for the sake of notation we denote with ∂tϕ(s) the derivative of the absolutely continuous function
ϕ(s) with respect to t ∈ [0, L] . The last integral in (4.4) is continuous with respect to weak convergence
of wn in W 1,2((0, L),R3) by uniform convergence of wn and weak-convergence properties of products.
Considering the first integral, it holds that

(4.5) ∂2
ξgf(s)(ϕ(s), ∂tϕ(s))→ C

uniformly on [0, L] when s→ 0, so that the associated quadratic form becomes globally positive definite
for |s| small enough. We conclude that w 7→ D2E

f(s)
0 (ϕ(s))[w,w] is weakly lower semicontinuous on

W 1,2
0 ((0, L),R3), provided |s| is small enough. Consequently

(4.6) D2E
f(s)
0 (ϕ(s))[w,w] ≤ 0.
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We argue that w 6= 0. Indeed, when w = 0 then wn → 0 uniformly on [0, L] and w′n ⇀ 0 weakly in
L2((0, L)). Passing to the limit in the formula (4.4) and using the weak continuity of the second integral,
from our assumptions on wn we infer that

0 ≥ lim sup
n

∫ L

0

∂2
ξgf(s)(ϕ(s), ∂tϕ(s))[w′n, w

′
n] dt.

Since ∂2
ξgf(s)(ϕ(s), ∂tϕ(s)) is globally positive definite, the above inequality implies that wn → 0 strongly

in W 1,2((0, L),R3) which contradicts the normalization of ‖wn‖W 1,2 . Thus w 6= 0.
Now consider the auxiliary problem

inf{D2E
f(s)
0 (ϕ(s))[w,w] : w ∈W 1,2

0 ((0, L),R3), ‖w‖2L2 = 1}.
Again for small |s| weak lower semicontinuity implies that the above problem has a solution. Combining
(4.6) with rescaling, we know that any minimizer w̄(s) satisfies

(4.7) D2E
f(s)
0 (ϕ(s))[w̄(s), w̄(s)] ≤ 0.

By constrained minimality and symmetry of the second variation there exists a Lagrange-multiplier
µ̄(s) ∈ R such that, for all g ∈W 1,2

0 ((0, L),R3),

(4.8) D2E
f(s)
0 (ϕ(s))[w̄(s), g] + µ̄(s)

∫ L

0

〈w̄(s), g〉 dt = 0.

Choosing g = w̄(s) in the above inequality we deduce from (4.7) that

(4.9) µ̄(s) = −D2E
f(s)
0 (ϕ(s))[w̄(s), w̄(s)] ≥ 0.

Note that by (3.5) the equation (4.8) is the weak formulation of the following system:

(4.10) DϕF (ϕ(s), f(s))w̄(s) = µ̄(s)w̄(s),

where the operator DϕF (ϕ(s), f(s)) is given explicitly in (3.8). By (4.5), for |s| small enough, the
matrix ∂2

ξgf(s)(ϕ(s)(t), ∂tϕ(s)(t)) is invertible for all t ∈ [0, L] . Furthermore, the inverse matrix depends
smoothly on t , since, for all s , the function t 7→ ϕ(s)(t) ∈ C∞([0, L],R3) by Remark 3.2. Then by
a similar bootstrap argument as for Lemma 2.7 one proves that w̄(s) ∈ C∞([0, L],R3). Hence we can
replace (4.8) by its strong formulation (4.10).

Now we want to apply Theorem 2.5 with λ0 = fcrit . To this end we set K : C2
0 ([0, L],R3) →

C([0, L],R3) as the natural embedding Kϕ = ϕ . Note that the assumption that 0 is a K -simple eigen-
value has been verified in the proof of Lemma 3.4. Having in mind Lemma 2.6, we first prove that
µ̄(s)→ 0 when s→ 0. Rewriting (4.9) via

µ̄(s) = (D2E
f(0)
0 (0)−D2E

f(s)
0 )(ϕ(s))[w̄(s), w̄(s)]−D2E

f(0)
0 (0)[w̄(s), w̄(s)],

we observe that the first difference vanishes by (3.2) and the convergence properties of s 7→ (ϕ(s), f(s)).
Since D2E

f(0)
0 (0) is positive semidefinite and µ̄(s) ≥ 0, we deduce from the above equality that µ̄(s)→ 0

when s→ 0.
The convergence of µ(s) to 0 eventually implies

lim
s→0

D2E
f(0)
0 (0)[w̄(s), w̄(s)] = 0

The general expression for D2E
f(0)
0 (0)[w,w] can be easily computed from, e.g. , (4.4), inserting ϕ(0) = 0.

We have

D2E
f(0)
0 (0)[w,w] =

∫ L

0

〈Cw′, w′〉 − c13k(w1w
′
3 − w′1w3) + fcrit(w2

2 + w2
3) dt .

Since C is positive definite and w∗

‖w∗‖2 is the unique normalized vector in the nullspace of D2E
f(0)
0 (0), a

standard argument implies then that w̄(s) converges strongly in W 1,2
0 to w∗

‖w∗‖2 . Writing

w̄(s) = c1(s)w∗ + c2(s)z(s)
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with c1(s), c2(s) ∈ R and z(s) in the topological complement Z of w∗ , it follows that c1(s) stays
bounded away from 0, so that (up to possibly dividing by c1(s)), we can assume that w̄(s) − w∗ ∈ Z .
With this, Lemma 2.6 implies that µ̄(s) and w̄(s) coincide with the curves µ(s) and w(s) solving (2.10),
for K being the natural embedding of C2

0 ([0, L],R3) into C([0, L],R3).
Moreover, for every possible curve of eigenvalues γ(λ) of DϕF (0, λ) we have γ′(λ0) ≤ 0 as the

second variation of the energy Ef0 is positive definite for f > λ0 (see Theorem 2.2). Here we remark
that the operator −F corresponds to the first differential of the energy Ef0 in the sense of (3.5), so that
one has to take care of a sign change. By Theorem 2.5 we conclude that γ′(λ0) < 0. By (4.2) we know
that −sλ′(s) = −sf ′(s) > 0 for |s| small enough, and consequently Theorem 2.5 and Remark 2.6 imply
µ̄(s) < 0. This contradicts (4.9). �

Remark 4.5. The local minimizers R(s) are hemihelical minimizers in the following sense. According to
(4.1) they are, for |s| << 1 (that is for f ≈ fcrit ), close in the C2 topology to the function t 7→ G(sw∗)(t).
This one shows clearly an hemihelical shape with the occurrence of a perversion. In Figure 2 we plot the
shape of this asymptotic expansion.
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Figure 2. Shape of the centerline of the function G(sw∗). The parameters are given by
c12 = 4.0848, c13 = 0.0065 and c23 = 0.0087. The intrinsic curvature is k = 375 and
the critical force is fcrit = 687. We chose s = 0.02.

Our final result states that hemihelical local minimizers appear indeed as limits of local minimizers
of the 3-dimensional energy (2.3) as the size of the cross-section vanishes.

Theorem 4.6. Assume that the energy Eh defined in (2.3) is lower-semicontinuous with respect to weak
convergence in W 1,2(Ω,R3) , and consider Ef0 as in (2.7). Set further fcrit = (c13k)2

c23
− 4π2c12

L2 and assume
(2.8). Fix an arbitrary open neighborhood U of I in W 1,2((0, L), SO(3)) .
Then there exists η > 0 such that, for all f ∈ (fcrit−η, fcrit) , we may find two nontrivial local minimizers
R1
f , R

2
f ∈ U of Ef0 and two sequences v1

h , v2
h of local minimizers of Eh in Ah , which satisfy

v`h →
∫ x1

0

R`f (t)e1 dt , ∇hv`h → R`f (` = 1, 2)

strongly in W 1,2(Ω,R3) , and strongly in L2(Ω,M3×3) , respectively.

Proof. The result immediately follows combining Theorem 2.1 and Theorem 4.4, upon noticing that,
by (4.2), there exists η > 0 such that the function f(s) provided by Theorem 4.4 takes each value in
(fcrit − η, fcrit) twice in a neighborhood of 0. �
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