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Abstract. We characterize the slopes of nontrivial line segments contained in self-similar and non-
self-similar Sierpiński carpets. The set of slopes is related to Farey sequences and the dynamics
of punctured square toral billiards. Our results provide a first step towards a description of the
rectifiable curves contained in such carpets.

1. Introduction. Let Q = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} ⊂ R2 be the unit square. Divide
R0 := Q into nine equal squares of side length 1/3 and remove the central one. In this way, we
obtain a set R1 which is the union of 8 squares Q1,j of side length 1/3. Repeating this procedure
on each square we get a sequence of sets Rk, where Rk consists of 8k squares Qk,j of side length
3−k. We define the Sierpiński carpet to be

S3 =
�

k≥1

Rk.

See Figure 1.

Figure 1. Standard Sierpiński carpet S3

A carpet is a metric space which is homeomorphic to S3. The following fundamental problem
arises in the study of quasiconformal and bi-Lipschitz maps between carpets.

Characterize the rectifiable curves contained in a given carpet.
For instance, such a characterization could perhaps be used to give a direct proof of the following
bi-Lipschitz rigidity property of S3: every bi-Lipschitz map of S3 onto itself is the restriction of
an isometry of the plane which preserves the unit square Q. The bi-Lipschitz rigidity of S3 is a
corollary of the quasisymmetric rigidity, which has been established by Bonk and Merenkov [7] using
conformal modulus techniques. As far as we are aware, there is no independent proof of bi-Lipschitz
rigidity which does not use conformal methods.1 Further results on the conformal geometry of
carpets can be found in [10], [6], [4], [13], [11]. We remark that the conformal geometry of carpets
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arises in connection with the Kapovich–Kleiner conjecture on quasisymmetric uniformization of
Sierpiński carpet group boundaries. See [5] for additional details.

Let us consider planar carpets, i.e., carpets which are realized as subsets of the plane. Every
rectifiable curve contained in such a carpet is, in particular, a rectifiable curve in the plane and hence
admits a tangent line at almost every point by the theorem of Rademacher [14], [12, Theorem 7.3].
We thus naturally begin by considering the line segments contained in such carpets. Our starting
point for this paper was the following folklore observation: there exist points in S3 which are joined
by straight line segments which lie entirely within S3, yet are not horizontal or vertical. See Figure 2
for an illustration of some of these line segments.

Figure 2. Line segments contained in S3

From the figure, we see that the set of slopes of nontrivial line segments contained in S3 is
�

0,±
1
2
,±1,±2,∞

�
.

A proof of this fact was given by Bandt and Mubarak [1].
A planar carpet S is called a square carpet if the bounded components of R2 \ S are Euclidean

squares. The boundaries of the omitted square domains are called the peripheral squares of S. Let
us note that according to this definition the boundary of the largest square is not a peripheral
square; this disagrees with the terminology used by some other authors.

In this paper, we give a complete description of the slopes of nontrivial line segments contained
in the members of a class of square Sierpiński carpets. Our main results are Theorem 4.1 and Theo-
rem 5.3. As a consequence, we deduce conclusions about the collection of everywhere differentiable
curves contained in such carpets.

We conclude this introduction with an outline of the paper. In Section 2 we introduce the class
of carpets under consideration in this paper. Section 3 describes a coordinate system for points in
these carpets. In Section 7, where we present the proofs for our main theorems, we make substantial
use of this coordinate system. Sections 4 and 5 contain the statements of our principal results as
well as various corollaries. Here we also indicate the relationship between our results and the theory
of Farey sequences and billiards. Section 6 contains preliminary material relevant for the proofs
in Section 7. In the final Section 8, we conclude with results and examples connected with more
general differentiable and rectifiable curves in carpets.

Acknowledgments. We benefited from useful conversations on this subject with Enrico Le Donne,
John Mackay and Kevin Wildrick. We also thank the referee, whose careful reading and helpful
comments improved the paper greatly. Research for this paper was completed while both authors
were guests in the Mathematics Institute of the University of Bern in Fall 2009. The hospitality of
the institute is gratefully appreciated. This work would have been impossible to perform without
the help of a ruler, a protractor and Swiss chocolate.
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2. Self-similar and non-self-similar Sierpiński carpets. Let

a = (a−1

1
, a−1

2
, . . .) ∈

�1
3
,
1
5
,
1
7
, . . .

�N
.

Divide R0 := Q into a2
1

equal squares of side length a−1

1
and remove the central one. We obtain a

set R1 which is the union of a2
1
− 1 squares Q1,j of side length a−1

1
. Consider the remaining a2

1
− 1

squares, divide each into a2
2

squares of side length a−1

1
· a−1

2
and again remove each open central

square. Iterating this procedure yields a sequence of sets Rk, where Rk consists of

(a2
1 − 1) · (a2

2 − 1) . . . (a2
j − 1)

squares Qk,j of side length a−1

1
· a−1

2
. . . a−1

k . We define the generalized Sierpiński carpet to be

Sa =
�

k≥1

Rk.

For any sequence a, the carpet Sa is a compact set without interior which is rectifiably connected.
Furthermore, Sa has positive area (Lebesgue 2-measure) if and only if a ∈ �2, i.e.,

�
j a−2

j < ∞.
The metric measure space (Sa, d,L 2) (where d denotes the Euclidean metric and L 2 denotes the
Lebesgue measure in R2) admits a (1, p)-Poincaré inequality for each 1 < p <∞ if a ∈ �2. We will
not need these facts in this paper. See [11] for these and other results.

We will consider the special case when a = ( 1

a , 1

a , 1

a , . . .) is a constant sequence. Note that if
3 =

�
1

3
, 1

3
, 1

3
, . . .

�
, we obtain the standard Sierpiński carpet S3. Similarly, we write S5, S7, and

so on, for the self-similar Sierpiński carpets defined via the constant sequences 5 =
�

1

5
, 1

5
, 1

5
, . . .

�
,

7 =
�

1

7
, 1

7
, 1

7
, . . .

�
, and so on.

See Figure 3 for a picture of the carpet Sa when a = (1

3
, 1

5
, 1

7
, . . .).

Figure 3. Sierpiński carpet S(1/3,1/5,1/7,...)

3. Coordinates in the carpet. The easiest way to characterize points in the usual Cantor set
C is via 3-adic expansions. In fact, a point x lies in C if and only if x admits a 3-adic expansion
which uses no 1’s.

We use the same idea to represent points in the self-similar carpet Sa. Let us consider the
following a-adic expansion for points x ∈ R:

(3.1) x = x0 +
∞�

k=1

xk

ak
x0 ∈ Z, xk ∈ {0, 1, . . . a− 1}.

In the remainder of this paper, we will use the notation

(3.2) x = (x0.x1|x2|x3| · · · )a
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to denote such an expansion. In several places, we will abuse notation and express points x in the
form (3.2) for positive integers xk, k ≥ 1, which are not necessarily in the set {0, 1, . . . , a−1}. This
has the obvious interpretation as in (3.1).

We now state the desired characterization of the carpet Sa.

Proposition 3.1. Let a = (a−1, a−1, . . .) for some a ∈ {3, 5, 7, . . .} and let (x, y) be a point in Q.
Then (x, y) ∈ Sa if and only if x = (0.x1|x2|x3| · · · )a and y = (0.y1|y2|y3| · · · )a where, for each
k ∈ N, either xk �= (a− 1)/2 or yk �= (a− 1)/2.

The proof is elementary.
Proposition 3.1 extends to cover the general (not necessarily self-similar) carpets. Let a =

(a−1

1
, a−1

2
, . . .) and consider the following a-adic expansion for points x ∈ R:

(3.3) x = (x0.x1|x2|x3| · · · )a = x0 +
∞�

k=1

xk

a1 · a2 · · · ak
x0 ∈ Z, xk ∈ {0, 1, . . . ak − 1}.

Proposition 3.2. Let (x, y) be a point in Q. Then (x, y) ∈ Sa if and only if x = (0.x1|x2|x3| · · · )a
and y = (0.y1|y2|y3| · · · )a where, for each k ∈ N, either xk �= (ak − 1)/2 or yk �= (ak − 1)/2.

4. Slopes of nontrivial line segments in Sierpiński carpets. Since the carpet Sa admits all
of the symmetries of the unit square {(x, y) : 0 ≤ x, y ≤ 1} (i.e., the dihedral group D4), we observe
that a value α occurs as a slope if and only if each of the quantities −α, 1

α , and − 1

α occurs as a
slope (with the usual interpretation regarding 0 and ∞). Thus it suffices to characterize the slopes
which lie between 0 and 1. We denote by

Slopes(Sa)

the set of slopes, in the interval [0, 1], of nontrivial line segments contained in the carpet Sa.
The following theorem is the main result of this paper. It characterizes self-similar carpets in

terms of their slope sets, in the sense that it gives a one-to-one correspondence between self-similar
carpets and the set of slopes of nontrivial line segments contained in such carpets.

Theorem 4.1. Let a = ( 1

a , 1

a , 1

a , . . .) be a constant sequence. Then the set of slopes Slopes(Sa) is
the union of the following two sets:

A =
�p

q
: p + q ≤ a, 0 ≤ p < q ≤ a− 1, p, q ∈ N ∪ {0}, p + q odd

�

and
B =

�p

q
: p + q ≤ a− 1, 1 ≤ p ≤ q ≤ a− 2, p, q ∈ N, p, q odd

�
.

Moreover, if α ∈ A, then each nontrivial line segment in Sa with slope α touches vertices of
peripheral squares, while if α ∈ B, then each nontrivial line segment in Sa with slope α is disjoint
from all peripheral squares. For each α ∈ A∪B, there exist maximal line segments in Sa with slope
α. Finally, if b < a, then any maximal nontrivial line segment in Sb is also contained in Sa. In
particular, Slopes(Sb) ⊂ Slopes(Sa).

We say that a line segment in Sa is maximal if it connects two points on the boundary of the
initial square Q = {(x, y) : 0 ≤ x, y ≤ 1}.

We list the set of slopes of the first few carpets Sa. Observe that the slopes appear in strictly
increasing order:

Slopes(S3) = {0,
1
2
, 1},

Slopes(S5) = {0,
1
4
,
1
3
,
1
2
,
2
3
, 1},

Slopes(S7) = {0,
1
6
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
2
3
,
3
4
, 1},
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and
Slopes(S9) = {0,

1
8
,
1
7
,
1
6
,
1
5
,
1
4
,
2
7
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
, 1}.

Remark 4.2. If Sa contains a nontrivial line segment of some slope α, then Sa contains a nontrivial
line segment of slope α which intersects the x-axis. Indeed, any line segment contained in Sa must
intersect the boundary of one of the defining squares Qk,j . Since for fixed k, all of the sets Qk,j ∩Sa

are isometric, there is a corresponding line segment of the same slope which intersects the boundary
of the original square Q. Applying an isometry of Q if necessary, and using the invariance of the
set of slopes under the operations α �→ −α, α �→ 1

α and α �→ −
1

α , we conclude the desired fact.
Figure 4 shows nontrivial line segments of each allowed slope in the Sierpiński carpets S3 and S5.

Figure 4. Nontrivial line segments of various slopes in the carpets S3 and S5

Figure 4 suggests the following refinement of Remark 4.2, which is in fact correct and will be
confirmed in the proof of Theorem 4.1.

Remark 4.3. Fix a, write Slopes(Sa) = A ∪ B as in the statement of Theorem 4.1, and fix
α ∈ A ∪ B. If α ∈ A, then there exists a line segment of slope α passing through the origin (0, 0).
On the other hand, if α ∈ B, then there exists a line segment of slope α passing through the
midpoint (1

2
, 0). Other line segments of this slope are obtained by applying Euclidean translations.

Using Remark 4.2 we can give a quick proof that no irrational slopes can occur in any of the
carpets Sa.

Lemma 4.4. Let Sa be a carpet (possibly non-self-similar) of the type defined in section 2. Let
α ∈ [0, 1] and for each point x ∈ [0, 1] consider the set

Aα
x = {x + αn (mod 1) : n ∈ N}.

If each of the sets Aα
x , x ∈ [0, 1], is dense in [0, 1], then there is no nontrivial line segment in Sa

with slope α.

Proof. By Remark 4.2, it suffices to consider line segments meeting the x-axis.
If each of the sets Aα

x is dense in [0, 1], then the union of the lines with slope α through the
points of Aα

x meets [0, 1]2 in a dense set. It follows that every nontrivial line segment through any
point of the x-axis must meet complementary squares arbitrarily close to the x-axis. �
Corollary 4.5. There are no nontrivial line segments of irrational slope in any of the carpets Sa.

Proof. If α is irrational, then Aα
x is dense in [0, 1]. �

Remark 4.6. A similar argument can be used to prove that if a = ( 1

a , 1

a , . . .) for some odd integer
a ≥ 3, and if each of the sets Aα

x , x ∈ [0, 1], has no gaps of length greater than or equal than 1/a,
then there is no nontrivial line segment in Sa with slope α. However, our proof of Theorem 4.1 will
proceed along different lines.
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A full proof of Theorem 4.1 will be given in section 7. In particular, we will reprove the nonex-
istence of line segments with irrational slope in the carpets.

5. The set of slopes and Farey sequences. In this section, we discuss the connection between
the set of slopes for a self-similar carpet Sa and Farey sequences. Our starting point is the following
corollary of Theorem 4.1.

Corollary 5.1. The set Slopes(Sa) contains all Farey fractions of order (a+1)/2, and is contained
in the set of all Farey fractions of order a− 1.

We recall that the Farey fractions (or Farey sequence) of order n consist of those rational numbers
in [0, 1] which, in lowest terms, have denominator no more than n. Farey fractions arise ubiquitously
in problems at the intersection of number theory, combinatorics and geometry. Their appearance
here stems from one of their well known geometric properties [15, p. 87]: the nth Farey sequence
corresponds to the integer lattice points in the triangle {(x, y) : 0 ≤ y ≤ x ≤ n} which are directly
visible from the origin. See Remark 5.6. For a previous use of Farey sequences in fractal geometry
(enumeration of the components of the Mandelbrot set), see Devaney [9].

Proof of Corollary 5.1. The inclusion of Slopes(Sa) in Fa−1 is clear from Theorem 4.1.
We prove the inclusion F(a+1)/2 ⊂ Slopes(Sa). Suppose that p

q , in lowest terms, is in F(a+1)/2.
Then 0 ≤ p ≤ q ≤ a+1

2
.

If both p and q are odd, then either p = q = 1 or p < q. In the latter case, p+q ≤ a+1

2
+a−3

2
= a−1.

Hence p
q ∈ B.

Suppose instead that either p or q is even. Then 0 ≤ p < q ≤ a+1

2
≤ a − 1 (since a ≥ 3).

Furthermore, p + q ≤ a+1

2
+ a−1

2
= a. Hence p

q ∈ A. �
Corollary 5.2. Slopes(S3) � Slopes(S5) � Slopes(S7) � . . . and

(5.1)
�

Slopes(Sa) = [0, 1] ∩Q.

The identity in (5.1) follows from the inclusion of F(a+1)/2 in Slopes(Sa). The monotonicity of
the sets Slopes(Sa) with respect to a follows from the characterization in Theorem 4.1.

As a consequence of Lemma 4.4 and Corollary 5.1 we draw the following interesting conclusion
for Sierpiński carpets Sa, when a is not necessarily a constant sequence.

Theorem 5.3. Let a = (a−1

1
, a−1

2
, . . .) ∈

�
1

3
, 1

5
, 1

7
, . . .

�N
.

(a) If lim supa = 0 (i.e., if a ∈ c0), then Sa contains nontrivial line segments of every rational
slope, and contains no nontrivial line segments of any irrational slope.

(b) If lim supa > 0, then lim supa = 1

a0
for some a0 ∈ {3, 5, 7, · · · }. In this case, Slopes(Sa)

coincides with Slopes(Sa0).

Proof. If lim supa = 0, then lima = 0 and limk→∞ ak = ∞. By Corollary 5.2 and Theorem 4.1, if
ak ≥ b for all sufficiently large k, then all corresponding subsquares Qk,j ∩Sa contain nontrivial line
segments of all slopes α in Slopes(Sb). Since b may be chosen arbitrarily large and every positive
rational is a Farey fraction of some order, the statement in part (a) follows. The second statement
follows from Lemma 4.4.

For the proof of part (b), we note that if lim supa > 0 and a0 = min{1

b : b ∈ a}, then ak = a0

for infinitely many values of k. From the fact that ak = a0, we easily deduce that there are no line
segments with slope not in Slopes(Sa0) whose length exceeds some quantity �k, where �k → 0 as
k →∞. Hence there are no nontrivial line segments in Sa with slopes which are not in Slopes(Sa0).
We postpone discussion of the remaining claim (there exist nontrivial line segments in Sa with each
slope in Slopes(Sa0)) to Remark 7.2. �
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Remark 5.4. Lemma 4.4 can also be explained by the aid of the theory of square billiards [8].
Consider a square billiard table Q and a particle moving inside Q. When the moving particle reaches
the boundary ∂Q, the angle of incidence is equal to the angle of reflection. However, instead of
reflecting the trajectory of the particle in a side of ∂Q, let us reflect the square Q across that side
and allow the particle to move straight into the mirror image of Q. If we repeat this procedure at
every collision, the particle will move along a straight line through multiple copies of Q obtained
by successive reflections. This construction is called unfolding the billiard trajectory. To recover
the original trajectory in Q, one folds the resulting string of adjacent copies of Q back onto Q. If
we consider the 2× 2 square

Q2 = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 2},
the standard projection of R2 onto Q2 transforms unfolded trajectories into directed straight lines
on the 2× 2 torus (the latter is obtained by identifying opposite sides of the square Q2). Billiards
in the square thus reduces to simple linear flow on a torus. The linear flow on a flat torus is one of
the standard examples in ergodic theory. Its main properties are:

• if a trajectory has rational slope, then it is periodic (it runs along a closed geodesic),
• if a trajectory has irrational slope, then it is dense (its closure is the whole torus).

The theory of square billiards can be applied to study line segments contained in the carpets Sa.
Instead of considering a square, we consider a “punctured” square, and so a punctured torus. Here
by “punctured” we mean a closed square with a square hole in the center of the corresponding
size 1

a . According to the above results, trajectories with irrational slope can not occur in the
punctured torus either. However, since we now have a hole, not all rational slopes will occur, since
eventually the trajectory will hit the hole. In this way, Theorem 4.1 can be interpreted as a game
of “punctured” squared billiards.

The relationship between line segments in the carpet and the dynamics of the corresponding
square billiards is made somewhat more precise in Proposition 6.1, which gives a criterion for
membership in Slopes(Sa).

Remark 5.5. Boca, Gologan and Zaharescu [2], [3] already used the Farey sequences to study
the statistics of the first exit time and collision number for punctured toral billiards with circular
punctures (which in turn can be used to model the periodic 2D Lorentz gas).

Remark 5.6. We indicate a more geometric way to look at the set of slopes which illuminates the
connection to Farey sequences. First, let us introduce a bijection between

Z = {(q, p) ∈ N2 : p and q are coprime}
and the positive rationals by the rule ϕ : (q, p) �→ p

q . Consider the set Z � consisting of all elements
(q, p) of Z satisfying p + q ≤ a and p ≤ q. Then Slopes(Sa) = {0} ∪ ϕ(Z �). This follows directly
from Theorem 4.1. See Figure 5.

1:1

2:1

2:1

1:1

3:1

3:2

4:1
2:1 4:13:1 5:1 6:1

3:2 5:2

4:3

1:1
1:1

3:1 5:1 7:1

5:3

5:4

5:23:2

2:1 4:1 6:1 8:1

7:2

4:3

Figure 5. Pictorial representation of the slope set for the carpets Sa, a ∈ {3,5,7,9}
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Remark 5.7. The inclusion of Slopes(Sa) in Fa−1 will not be directly useful for us since Slopes(Sa)
does not appear in Fa−1 as a consecutive block of elements, that is, there exist elements in Fa−1 \

Slopes(Sa) which lie between two elements of Slopes(Sa). In order to take advantage of properties
of Farey sequences we will give another description of Slopes(Sa).

For each odd a, consider the finite set of fractions

fn =
n

a− 1− n
, n = 0, . . . ,

a− 1
2

.

Observe that {fn}n ∈ Slopes(Sa). Under the bijection ϕ from Remark 5.6, this set corresponds to
lattice points which appear just below the “main diagonal”, that is, points which lie on the segment
which connects (a− 1, 0) to (a−1

2
, a−1

2
).

Next, consider the following inclusion between ordered sets:
ψ : ({fn}n,≤) −→ (Slopes(Sa),≤).

Let Slopes(Sa) = {0 = s0, · · · , sr = 1} (in increasing order) and define

φ : {0, . . . ,
a− 1

2
} −→ {0, · · · , r}

by setting φ(n) = j if and only if ψ(fn) = sj . The set of slopes Slopes(Sa) can be written as the
union of

[s0 = sφ(0), sφ(1)] ∩ Slopes(Sa),
[sφ(1), sφ(2)] ∩ Slopes(Sa),

and so on, through
[sφ(

a−3
2 )

, sφ(
a−1
2 )

= sr] ∩ Slopes(Sa).

Proposition 5.8. For each n = 1, . . . , a−1

2
, the set

[sφ(n−1), sφ(n)] ∩ Slopes(Sa)
is a sequence of consecutive elements in Fa−n.

Proof. Let n = 1, . . . , a−1

2
. It suffices to prove that

(5.2) [sφ(n−1), sφ(n)] ∩ Slopes(Sa) = [sφ(n−1), sφ(n)] ∩ Fa−n.

Let p
q be a rational number expressed in lowest terms and satisfying

(5.3)
n− 1
a− n

≤
p

q
≤

n

a− 1− n
.

The identity in (5.2) asserts that under these hypotheses,
0 ≤ p ≤ q ≤ a− 1 and p + q ≤ a if and only if 0 ≤ p ≤ q ≤ a− n.

First, we prove the “only if” statement. Assume that 0 ≤ p ≤ q ≤ a − 1 and p + q ≤ a. The
conclusion being obvious if n = 1, we also assume that n ≥ 2. Then from (5.3) we obtain

(a− 1)q = (a− n + n− 1)q ≤ (a− n)(p + q) ≤ a(a− n)
so

q ≤
a(a− n)

a− 1
< a− n + 1

(since n ≥ 2). Since q is an integer, we must have q ≤ a− n.
Next, we prove the “if” statement. Assume that 0 ≤ p ≤ q ≤ a− n. Then from (5.3) we obtain

(a− 1− n)(p + q) ≤ (a− 1)q ≤ (a− n)(a− 1)
so

(5.4) p + q ≤
(a− n)(a− 1)

a− 1− n
≤ a + 1.
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If strict inequality holds in either place in (5.4), then p+q ≤ a, since p+q is an integer. Otherwise,
n = a−1

2
and a + 1 = p + q ≤ 2q ≤ 2(a− n) = a + 1 which yields p = q = a+1

2
. This contradicts the

initial assumption that p
q is in lowest terms (recall that a ≥ 3). �

Proposition 5.8 asserts that Slopes(Sa) can be written as a union of “intervals”, each of which
consists of a consecutive block within a particular Farey sequence. This observation allows us to
use many of the properties of the Farey sequences in the proof of Theorem 4.1. We enumerate here
some of the more remarkable properties of Farey sequences. See [8, Ch. 3].

Proposition 5.9. Farey sequences enjoy the following properties:

(1) Fn ⊂ Fn+1. If p1/q1 < p2/q2 are consecutive in Fn and separated in Fn+1, then the fraction
p1+p2
q1+q2

lies in between p1/q1 and p2/q2 and no other elements of Fn+1 lies between p1/q1 and
p2/q2. The fraction p1+p2

q1+q2
is called the mediant of p1/q1 and p2/q2.

(2) If p1/q1 and p2/q2 are consecutive in any Fn, then they satisfy the unimodular relation
p1 · q2 = p2 · q1 − 1.

Observe that the mediant of consecutive Farey fractions is already in reduced form. Indeed,
suppose that p/q is the mediant of p1/q1 and p2/q2, and that p1/q1 and p2/q2 are consecutive Farey
fractions of some order. Then p2q−q2p ≥ 1 and pq1−qp1 ≥ 1. Furthermore, by Proposition 5.9(2),
we have

q1 + q2 = q = q1(p2q − q2p) + q2(pq1 − qp1) ≥ q1 + q2

which shows that p2q − q2p = pq1 − qp1 = 1. By Euclid’s algorithm, p and q are coprime.
The following lemma provides us with a recursive way to construct the set of slopes.2

Lemma 5.10. Suppose p1/q1 and p2/q2 are consecutive fractions in Slopes(Sa), both in reduced
form. Then p1/q1 and p2/q2 are separated in Slopes(Sa+2) if and only if p1 + q1 + p2 + q2 ≤ a + 2.

Proof. Recall (see Remark 5.6) that

(5.5) Slopes(Sa) = {(q, p) ∈ Z2 : p + q ≤ a, 0 ≤ p ≤ q}.

Since p1/q1 and p2/q2 are consecutive in Slopes(Sa), they are consecutive in some Fn and hence
their mediant is in reduced form.

First let us assume that p1/q1 and p2/q2 are separated in Slopes(Sa+2). Then the mediant

p

q
=

p1 + p2

q1 + q2

appears in Slopes(Sa+2), and so p + q = p1 + q1 + p2 + q2 ≤ a + 2. On the other hand, if p1/q1 and
p2/q2 are consecutive fractions in Slopes(Sa+2), then the fraction p

q = p1+p2
q1+q2

is not in Slopes(Sa+2)
and so, by (5.5), we conclude that p1 + q1 + p2 + q2 = p + q > a + 2. �

Observe that one can generate Slopes(Sa+2) from Slopes(Sa) just by adding the mediants of
those consecutive fractions p1/q1 and p2/q2 in Slopes(Sa) for which p1 +q1 +p2 +q2 ≤ a+2. Notice
also that between 0/1 and 1/(a−1) there always appear two fractions in Slopes(Sa+2). The reason
is simple. In this case, the mediant of 0/1 and 1/(a−1) is 1/a. However, there is still space between
p1/q1 = 0/1 and p2/q2 = 1/a, since p1 + q1 + p2 + q2 = a + 1 < a + 2. Thus, the fractions 1/a and
1/(a + 1) appear between 0/1 and 1/(a− 1).

2We would like to thank Javier Gómez Gil for some useful comments regarding this lemma.
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6. A necessary condition for a line segment to lie in the carpet Sa. To show that the
values in Slopes(Sa) are the only slopes which occur, we will need the following useful criterion.
The idea of this criterion is that going deeper into the carpet corresponds to tiling the plane with
squares. This is closely related to the interpretation of line segments in the carpet in terms of
square billiards, as in Remark 5.4.

Proposition 6.1. If there exists a nontrivial line segment of a certain slope α emanating from a
point (c, 0), c ∈ [0, 1], and contained in the carpet Sa, that is, if the set

LSa
c,α = {(x, y) ∈ Sa : y = α(x− c)}

contains a line segment containing (c, 0), then the line

Lc,α = {(x, y) ∈ R2 : y = α(x− c)}

does not intersect any member of the collection

Z2 + Qa :=
�
(k, �) + Qa : (k, �) ∈ Z2

�
,

where Qa = {(x, y) ∈ R2 : a−1

2a < x < a+1

2a , a−1

2a < y < a+1

2a }.

We sketch the proof of Proposition 6.1. Suppose that we are at the mth level of the construction
of Sa. Replace each square that we have removed in all the previous steps by a concentric square
of side length a−m and call the resulting set Am. Observe that Am ⊃ Sa. If LSa

c,α contains a line
segment containing (c, 0), then that line segment also lies in the sets Am for each m ∈ N. The
conclusion now follows by rescaling and passing to the limit as m tends to infinity.

Corollary 6.2. If there exists a nontrivial line segment of a certain slope α emanating from a
point (c, 0), c ∈ [0, 1], and contained in the carpet Sa, then the line L0,α emanating from the origin
of slope α does not intersect any member of the collection

(6.1) aZ2 + Q� :=
�
(ak, a�) + Q� : (k, �) ∈ Z2

�
,

where Q� = {(x, y) : −1 < x < 0, 0 < y < 1}.

We indicate how Corollary 6.2 follows from Proposition 6.1. First, apply the homothety (x, y) �→
(ax − a+1

2
, ay − a−1

2
). Then some line Lc�,α of slope α does not intersect the collection aZ2 + Q�.

If Lc�,α passes through the inferior right vertex of any of the squares in aZ2 + Q�, then applying
another translation shows that the line through the origin of slope α also does not intersect the
collection aZ2+Q�. If Lc�,α does not pass through the inferior right vertex of any square in aZ2+Q�,
we distinguish two cases:

(i) The distance from Lc�,α to the set S of all inferior right vertices of squares in aZ2 + Q� is
positive. In this case, identify a vertex v in S whose distance to Lc�,α is minimal. Translate
Lc�,α to pass through v; such translation does not affect the fact that this line does not
intersect aZ2 + Q�. Finally, translating v to the origin completes the proof.

(ii) The distance from Lc�,α to S is equal to zero, but is not achieved. Choose a sequence of
vertices (vn) in S such that dist(Lc�,α, vn) → 0. Applying the corresponding sequence of
translations (which take these points successively to the origin) yields a sequence of lines,
all of slope α, which do not intersect the collection aZ2 + Q� and whose distance to the
origin tends to zero. The limiting line also has slope α, passes through the origin, and does
not intersect the collection aZ2 + Q�.

Remark 6.3. We emphasize a subtle point in the preceding argument. Consider the decomposition
Slopes(Sa) = A∪B associated to a specific self-similar carpet Sa. For α in B, as already mentioned,
there are no lines of slope α which meet any of the vertices of the peripheral squares associated
to Sa. However, there do exist such lines passing through vertices of squares associated to the
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corresponding collection given in Corollary 6.2. The reason is that this collection is not a self-
similar fractal construction but rather has a definite lower scale; all of the constituent squares in
the collection have mutual distance at least one.

7. Proof of the main theorem. We are now in a position to prove Theorem 4.1. We divide the
proof into two parts. In the first part, we show that nontrivial line segments exist whenever the
slope α is chosen from the set A ∪B. In the second part, we show that no other slopes occur.
Part 1. Let α ∈ A ∪ B. The strategy of this part of the proof is to use the carpet coordinates
introduced in section 3 to see that the lines y = α(x− c) do not intersect the omitted open squares.
It is important to note here that if the line segment L has slope α ∈ A, then we can assume that
c = 0, that is, L emanates from a vertex of the unit square. On the other hand, if L has slope
α ∈ B, then we can assume c = 1

2
, that is, L emanates from a midpoint of an edge of the unit

square.
Observe that if (x, y) �∈ Rn for some n ∈ N, i.e., if (x, y) is contained in some omitted square,

then

(7.1)
�

0.x1

����· · ·
����xn−1

����
a− 1

2

����0
����0

����· · ·
�

a

< x <

�
0.x1

����· · ·
����xn−1

����
a + 1

2

����0
����0

����· · ·
�

a

and

(7.2)
�

0.y1| · · ·

����yn−1

����
a− 1

2

����0
����0

����· · ·
�

a

< y <

�
0.y1| · · ·

����yn−1

����
a + 1

2

����0
����0

����· · ·
�

a

.

The proof will involve detailed computations and estimates of the coordinates of points in base a,
comparing the condition for membership in one of the omitted squares with membership in the line
L.
Case 1a: α ∈ A. We claim that the line L given by the equation

y = αx

does not meet any of the omitted squares from the construction of Sa.
Suppose that (x, y) is a point contained in some omitted square and also contained in L. Since

α ∈ A, there exist p, q ∈ N ∪ {0} with p + q odd, p + q ≤ a, 0 ≤ p < q ≤ a− 1, and

qy = px.

If we multiply by p in (7.1) and by q in (7.2), we obtain
�

�x0.�x1

����· · ·
�����xn−1

����
(a− 1)p

2

����0
����· · ·

�

a

< px <

�
�x0.�x1

����· · ·
�����xn−1

����
(a + 1)p

2

����0
����· · ·

�

a

(7.3)

and
�

�y0. �y1

����· · ·
���� �yn−1

����
(a− 1)q

2

����0
����· · ·

�

a

< qy <

�
�y0. �y1

����· · ·
���� �yn−1

����
(a + 1)q

2

����0
����· · ·

�

a

(7.4)

respectively. Observe that coordinates are written modulo a, and we employ the previously men-
tioned abuse of notation (the coefficients need not be integers in the range {0, 1, . . . , a − 1}).
Moreover, it follows from (7.3) that p �= 0.

If p is even we make a simple arithmetic calculation to recast (7.3) and (7.4) as follows:
�

�x0.�x1

����· · ·
����
p

2
− 1 + �xn−1

����a−
p

2

����0
����· · ·

�

a

< px <

�
�x0.�x1

����· · ·
����
p

2
+ �xn−1

����
p

2

����0
����· · ·

�

a

and
�

�y0. �y1

����· · ·
����
q − 1

2
+ �yn−1

����
a− q

2

����0
����· · ·

�

a

< qy <

�
�y0. �y1

����· · ·
����
q − 1

2
+ �yn−1

����
a + q

2

����0
����· · ·

�

a

.
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Since p ≥ 2 and q ≤ a−2 (note that q is odd), we observe that we have reduced the nth coefficients
to the range {0, 1, . . . , a − 1}. We next observe that p

2
≤

a−q
2

and a+q
2
≤ a − p

2
by the conditions

on p and q. Since the (n − 1)st coefficients in the bounds for qy are equal, while the (n − 1)st
coefficients in the bounds for px disagree by one, we conclude that no such point (x, y) can exist.

Similarly, if p is odd, we recast (7.3) and (7.4) as follows:
�

�x0.�x1

����· · ·
����
p− 1

2
+ �xn−1

����
a− p

2

����0
����· · ·

�

a

< px <

�
�x0.�x1

����· · ·
����
p− 1

2
+ �xn−1

����
a + p

2

����0
����· · ·

�

a

and
�

�y0. �y1

����· · ·
����
q − 2

2
+ �yn−1

����a−
q

2

����0
����· · ·

�

a

< qy <

�
�y0. �y1

����· · ·
����
q

2
+ �yn−1

����
q

2

����0
����· · ·

�

a

.

Since q ≥ 2 and p ≤ a−2 (note that p is odd), we observe that we have reduced the nth coefficients
to the range {0, 1, . . . , a − 1}. We next observe that a+p

2
≤ a − q

2
and q

2
≤

a−p
2

by the conditions
on p and q. Since the (n − 1)st coefficients in the bounds for px are equal, while the (n − 1)st
coefficients in the bounds for qy disagree by one, we conclude that no such point (x, y) can exist.
Case 1b: α ∈ B. We claim that the line L given by the equation

y = α(x−
1
2
)

does not meet any of the omitted squares from the construction of Sa.
Suppose that (x, y) is a point contained in some omitted square and also contained in L. Since

α ∈ B, there exist odd integers p, q ∈ N with p + q ≤ a− 1, 1 ≤ p ≤ q ≤ a− 2, and

p

2
+ qy = px.

Note that

(7.5)
p

2
=

p− 1
2

+
1
2

=
�

p− 1
2

.
a− 1

2

����
a− 1

2

����
a− 1

2

����· · ·
�

a

.

If we multiply by p in (7.1), by q in (7.2) and add p
2

(written in the form (7.5)) to the latter, we
obtain

(7.6)
�

�x0.�x1

����· · ·
�����xn−1

����
(a− 1)p

2

����0
����· · ·

�

a

< px <

�
�x0.�x1

����· · ·
�����xn−1

����
(a + 1)p

2

����0
����· · ·

�

a

and
�

p− 1
2

+ �y0.
a− 1

2
+ �y1

����· · ·
����
a− 1

2
+ �yn−1

����
(a− 1)(q + 1)

2

����
a− 1

2

����· · ·
�

a

<
p

2
+ qy <

�
p− 1

2
+ �y0.

a− 1
2

+ �y1

����· · ·
����
a− 1

2
+ �yn−1

����
(a− 1) + (a + 1)q

2

����
a− 1

2

����· · ·
�

a

(7.7)

respectively. Note that (7.6) coincides with (7.3), while (7.7) is the sum of (7.6) and (7.5).
Another simple arithmetic calculation recasts (7.6) and (7.7) as follows:

�
�x0.�x1

����· · ·
����
p− 1

2
+ �xn−1

����
a− p

2

����0
����· · ·

�

a

< px <

�
�x0.�x1

����· · ·
����
p− 1

2
+ �xn−1

����
a + p

2

����0
����· · ·

�

a
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and �
p− 1

2
+ �y0.

a− 1
2

+ �y1

����· · ·
����
a + q − 2

2
+ �yn−1

����a−
q + 1

2

����
a− 1

2

����· · ·
�

a

<
p

2
+ qy <

�
p− 1

2
+ �y0.

a− 1
2

+ �y1

����· · ·
����
a + q

2
+ �yn−1

����
q − 1

2

����
a− 1

2

����· · ·
�

a

.

Again, we have reduced the nth coefficients to the range {0, 1, . . . , a − 1}. We now observe that
a+p
2
≤ a− q+1

2
and q−1

2
≤

a−p
2

by the conditions on p and q. Since the (n− 1)st coefficients in the
bounds for px are equal, while the (n− 1)st coefficients in the bounds for p

2
+ qy disagree by one,

we conclude that no such point (x, y) can exist.
Note that in Case 1b there is a definite gap between the ranges of possible values for px and

p
2

+ qy. This gap corresponds to the fact that lines with slope in B avoid all of the peripheral
squares in the construction of the carpet.

This completes the proof of Part 1.

Remark 7.1. An analysis of the preceding proof confirms the previous assertion that every maximal
line segment contained in a carpet Sa is also contained in carpets Sb for b ≥ a. Suppose that α is a
slope in either of the sets A or B, associated to Slopes(Sa). If b ≥ a, we may repeat the arithmetic
calculations of the preceding proofs, working modulo b instead of modulo a. The conclusions
remain the same. We conclude that the appropriate line segments {(x, y) ∈ Q : y = αx} or
{(x, y) ∈ Q : y = α(x− 1

2
)} persist as subsets of Sb.

Remark 7.2. A straightforward variation on the above proof shows that Sa contains nontrivial
line segments of each slope in Slopes(Sa0) whenever lim supa = 1

a0
> 0.

Part 2. Now let α �∈ A∪B. We claim that there is no nontrivial line segment of slope α contained
in Sa. By Corollary 6.2, it suffices to show that the line Lα of slope α passing through the origin
intersects the planar tiling aZ2 + Q� given in (6.1).

Observe that lines through the origin which pass through the inferior right vertex of any square
in the tiling have slope a�/ak = �/k for some k, � ∈ Z. On the other hand, the slope of any
line through the origin which passes through the superior left vertex of any such square has slope
(a�+1)/(ak− 1) for some k, � ∈ Z. Consequently, the line Lβ of slope β passing through the origin
intersects a square from the tiling if and only if

�

k
< β <

a� + 1
ak − 1

for some relatively prime integers 0 ≤ � < k.
We may choose consecutive slopes p1/q1 and p2/q2 in Slopes(Sa) so that

(7.8)
p1

q1

< α <
p2

q2

.

Now, for each n ≥ 0, define the iterated mediants

αn =
p1 + np2

q1 + nq2

.

Note that αn+1 is the mediant of αn and p2/q2. All of these rational numbers are in reduced form.
We claim that the union of the intervals

(7.9) αn =
p1 + np2

q1 + nq2

< β <
a(p1 + np2) + 1
a(q1 + nq2)− 1

, n ≥ 0,

covers the interval (7.8). Thus α is contained in one of the intervals (7.9), and hence the line Lα

must intersect one of the squares from the tiling. See Figure 6.
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p /q

p /q

1 1

22

(p +np )/(q +nq )21 21

Figure 6. Lines with iterated mediant slopes

Since the iterated mediants αn converge to p2/q2 as n→∞, it suffices to prove that
p1 + (n− 1)p2

q1 + (n− 1)q2

<
p1 + np2

q1 + nq2

<
a(p1 + (n− 1)p2) + 1
a(q1 + (n− 1)q2)− 1

for each n. The left hand inequality follows immediately from (7.8). After some computations, the
right hand inequality is equivalent to

a(q1p2 − p1q2) < n(p2 + q2) + p1 + q1,

for each n ∈ N. By property (2) in Proposition 5.9 we know that q1p2 − p1q2 = 1, so we only have
to prove that

(7.10) a < p2 + q2 + p1 + q1.

Since p1/q1 and p2/q2 are consecutive fractions in Slopes(Sa), inequality (7.10) can be deduced
from Lemma 5.10 and the result follows.

8. Differentiable and rectifiable curves in the carpets. Characterizing the slopes of line
segments which occur in the carpet permits us to draw conclusions regarding the set of differentiable
curves in the carpet. For instance, since the set of slopes has no interior, we easily see that there
are no C1 curves contained in any of the carpets Sa except for the line segments. We now extend
this statement to cover all differentiable curves.

Proposition 8.1. Let a be any sequence in {
1

3
, 1

5
, . . .}N. Every curve γ ⊂ Sa which is differentiable

with nonzero derivative everywhere is a line segment.

The partial derivatives of such a curve satisfy the Darboux property.

Definition 8.2. A real-valued function f defined on an interval I satisfies the Darboux property if
f takes every connected set to a connected set.

Let γ = (x, y) be a curve as in Proposition 8.1. Without loss of generality, we may assume that
the curve is parameterized to have speed one everywhere: x�(t)2 + y�(t)2 ≡ 1. A simple argument
using the Darboux property shows that the range of γ� = (x�, y�) is a connected subset of S1. Since
the slope of the tangent vector at time t is given by

α(t) =
y�(t)
x�(t)

,

we conclude that the range of α is connected. Since the set of slopes has no interior, we conclude
the proof of Proposition 8.1 modulo the following lemma.
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Lemma 8.3. Let γ be a differentiable curve in Sa. Then γ�(t) ∈ Slopes(Sa) for all t.

Lemma 8.3 is proved by Bandt and Mubarak in [1] in the case a = (1

3
, 1

3
, . . .) and the general

case is similar. Here we provide only a sketch. The proof uses the following quantitative version of
the fact that Sa contains no nontrivial segments with slopes which are not in Slopes(Sa):

If α �∈ Slopes(Sa) and L denotes a nontrivial line segment of slope α through a
point (x, y) ∈ Sa, then for all sufficiently small � there exists a point (x�, y�) in
B((x, y), �) ∩ L whose distance to Sa is at least c�, where c > 0 depends only on
dist(α,Slopes(Sa)).

Suppose that there exists a differentiable curve γ contained entirely in Sa, and γ�(t) �∈ Slopes(Sa)
for some time t. Then γ(s) is well approximated by γ(t) + (s − t)γ�(t) for s near t and hence the
line segment s �→ γ(t) + (s− t)γ�(t) remains close to the carpet Sa for s near t. This can be used
eventually to contradict the preceding quantitative statement.

Ultimately, we are interested in classifying the rectifiable curves in the carpets Sa. The results
of this paper form a first step towards this goal. However, the classification of the rectifiable curves
will necessarily be more subtle. Any arc length parameterized rectifiable curve γ contained in the
carpet Sa is differentiable at H1-a.e. point of the parameterizing interval. At such times, γ has a
tangent line. We might be led to conjecture that γ must contain a (possibly one-sided) nontrivial
line segment through γ(t) in the direction of γ�(t). The following example, due to Enrico Le Donne,
shows that this conjecture is false. This illustrates the difficulty in understanding the structure of
general rectifiable curves. We are grateful to Enrico for allowing us to include his example.

Example 8.4. There exists a rectifiable curve γ : [0, T ]→ S3, parameterized by arc length, so that
γ�(T ) exists, but there is no nontrivial line segment through γ(T ) contained in S3 in the direction
of γ�(T ).

We begin with some observations. Let C denote the usual Cantor set. Construct a set �C ⊂ [0, 1]
as follows: start with C and add new (similar) copies of C into all of the omitted intervals, continuing
recursively until no omitted intervals remain. The set �C is a dense Fσ subset of [0, 1] of Hausdorff
dimension log 2

log 3
. For a given y ∈ [0, 1], the following are equivalent:

(i) the line segment [0, 1]× {y} is contained in S3,
(ii) y ∈ C, and
(iii) y admits a 3-adic representation containing no copies of the digit 1.

Similarly, for a given y ∈ [0, 1], the following are equivalent:
(i) there exists a line segment [0, �]× {y} contained in S3, for some � > 0,
(ii) y ∈ �C, and
(iii) y admits a 3-adic representation containing at most finitely many copies of the digit 1.

We will construct a rectifiable curve γ : [0, T ] → S3 with the property that γ(T ) = (0, y) for some
y �∈ �C and γ�(T ) = (−1, 0). Thus γ is differentiable at time T with horizontal tangent vector, but
there is no nontrivial horizontal line segment through γ(T ) contained in S3.

Let (mj)j≥1 be any increasing sequence of positive integers, e.g., mj = j. Set Mj =
�j

i=1
mi

with the usual interpretation M0 = 0. Note that mj ≥ j for all j. Set

T :=
�

j≥0

3−Mj .

Define sequences (Tk) and (Sk) satisfying

0 = S0 < T0 < S1 < T1 < · · · < T

with limSk = lim Tk = T , as follows: Tk :=
�k

j=0
3−Mj for k ≥ 0 and Sk := Tk−1 + 3−Mk+1 =

Tk+1 − 3−Mk for k ≥ 1.
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We define γ by assigning the values of γ(Sk) and γ(Tk) for all k and extending in a piecewise
linear fashion. For k ≥ 0, let γ(Sk) = (3−Mk , Tk+1 − 1) and γ(Tk) = (3−Mk+1 , Tk+1 − 1). Then
γ|[Sk,Tk] is horizontal for all k, while γ|[Tk,Sk+1] is vertical for all k. From the construction it is
clear that the image of γ|[0,T ) is contained in S3. Extending γ to t = T by continuity gives
γ(T ) = (0, T − 1); we observe that the range of γ is contained in S3. Since T − 1 =

�
j≥1

3−Mj

has a 3-adic representation with infinitely many 1’s, T − 1 is not in �C and there is no nontrivial
horizontal line segment contained in S3 passing through γ(T ).

It remains to show that γ�(T ) exists and to compute its value. First, we note that when Sk ≤

t ≤ Tk, resp. when Tk ≤ t ≤ Sk+1, the difference quotient
γ(T )− γ(t)

T − t

is a convex combination of
γ(T )− γ(Sk)

T − Sk
and

γ(T )− γ(Tk)
T − Tk

,

resp., of
γ(T )− γ(Tk)

T − Tk
and

γ(T )− γ(Sk+1)
T − Sk+1

.

Thus it suffices to show that limk→∞
γ(T )−γ(Tk)

T−Tk
and limk→∞

γ(T )−γ(Sk)

T−Sk
exist and are equal. But

γ(T )− γ(Tk)
T − Tk

= (−1, 0) +
�

T − Tk+1

T − Tk

�
(1, 1)

while
γ(T )− γ(Sk)

T − Sk
= (−1, 0) +

�
T − Tk+1

T − Sk

�
(1, 1).

Lemma 8.5. For all positive N and j ≥ 0,
�N+j

i=N mi ≥ N(j + 1).

Proof. Use the fact that mi ≥ i for all i. �
Using this lemma, we now conclude the proof with the estimate

����
T − Tk+1

T − Tk

���� ≤
�∞

j=k+2
3−Mj

3−Mk+1
=

∞�

j=k+2

3−
Pj

i=k+2 mi ≤

∞�

j=0

3−(k+2)(j+1) =
1

3k+2 − 1
→ 0.(8.1)

To see that T−Tk+1

T−Sk
→ 0, repeat (8.1) with the factor 3−Mk+1 replaced by 3−Mk and note that this

only increases the rate of convergence.

Remark 8.6. In the above example, the limit point γ(T ) = (0, T − 1) is not contained in any
horizontal line segment in S3, but it is contained in a vertical line segment in S3. It is easy to
modify the construction to obtain a rectifiable curve γ : [0, T ]→ S3 so that γ�(T ) exists, but there
are no nontrivial line segments of any slope passing through γ(T ) and contained in S3. Note that
the typical point of S3 lies in no nontrivial line segment contained in S3. Indeed, the union of all
nontrivial line segments contained in S3 has Hausdorff dimension

1 +
log 2
log 3

which is strictly less than
log 8
log 3

,

the Hausdorff dimension of S3.
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carpets. in preparation.
[12] Mattila, P. Geometry of sets and measures in Euclidean spaces, vol. 44 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, 1995.
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